1
|
Gonzalez-Rellan MJ, Parracho T, Heras V, Rodriguez A, Fondevila MF, Novoa E, Lima N, Varela-Rey M, Senra A, Chantada-Vazquez MD, Ameneiro C, Bernardo G, Fernandez-Ramos D, Lopitz-Otsoa F, Bilbao J, Guallar D, Fidalgo M, Bravo S, Dieguez C, Martinez-Chantar ML, Millet O, Mato JM, Schwaninger M, Prevot V, Crespo J, Frühbeck G, Iruzubieta P, Nogueiras R. Hepatocyte-specific O-GlcNAc transferase downregulation ameliorates nonalcoholic steatohepatitis by improving mitochondrial function. Mol Metab 2023:101776. [PMID: 37453647 PMCID: PMC10382944 DOI: 10.1016/j.molmet.2023.101776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023] Open
Abstract
O-GlcNAcylation is a post-translational modification that directly couples the processes of nutrient sensing, metabolism, and signal transduction, affecting protein function and localization, since the O-linked N-acetylglucosamine moiety comes directly from the metabolism of glucose, lipids, and amino acids. De addition and removal of O-GlcNAc of target proteins is mediated by two highly conserved enzymes: O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) and O-GlcNAcase (OGA), respectively. Deregulation of O-GlcNAcylation has been reported to be associated with various human diseases such as cancer, diabetes, and cardiovascular diseases. The contribution of deregulated O-GlcNAcylation to the progression and pathogenesis of NAFLD remains intriguing, and a better understanding of its roles in this pathophysiological context is required to uncover novel avenues for therapeutic intervention. By using a translational approach, our aim is to describe the role of OGT and O-GlcNAcylation in the pathogenesis of NAFLD. We used primary mouse hepatocytes, human hepatic cell lines and in vivo mouse models of steatohepatitis to manipulate O-GlcNAc transferase (OGT). We also studied OGT and O-GlcNAcylation in liver samples from different cohorts of people with NAFLD. O-GlcNAcylation was upregulated in the liver of people and animal models with steatohepatitis. Downregulation of OGT in NAFLD-hepatocytes improved diet-induced liver injury in both in vivo and in vitro models. Proteomics studies revealed that mitochondrial proteins were hyper-O-GlcNAcylated in the liver of mice with steatohepatitis. Inhibition of OGT is able to restore mitochondrial oxidation and decrease hepatic lipid content in in vitro and in vivo models of NAFLD. These results demonstrate that deregulated hyper-O-GlcNAcylation favors NAFLD progression by reducing mitochondrial oxidation and promoting hepatic lipid accumulation.
Collapse
Affiliation(s)
- Maria J Gonzalez-Rellan
- Department of Physiology, CIMUS, University of Santiago de Compostela, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Spain.
| | - Tamara Parracho
- Department of Physiology, CIMUS, University of Santiago de Compostela, Spain
| | - Violeta Heras
- Department of Physiology, CIMUS, University of Santiago de Compostela, Spain
| | - Amaia Rodriguez
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Spain; Metabolic Research Laboratory, Clínica Universidad de Navarra and IdiSNA, Pamplona, Spain
| | - Marcos F Fondevila
- Department of Physiology, CIMUS, University of Santiago de Compostela, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Spain
| | - Eva Novoa
- Department of Physiology, CIMUS, University of Santiago de Compostela, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Spain
| | - Natalia Lima
- Department of Physiology, CIMUS, University of Santiago de Compostela, Spain
| | - Marta Varela-Rey
- Gene Regulatory Control in Disease, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana Senra
- Department of Physiology, CIMUS, University of Santiago de Compostela, Spain
| | - Maria Dp Chantada-Vazquez
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, 15705 A Coruña, Spain
| | - Cristina Ameneiro
- Department of Biochemistry and Molecular Biology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Ganeko Bernardo
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, Derio 48160, Bizkaia, Spain
| | - David Fernandez-Ramos
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, Derio 48160, Bizkaia, Spain
| | - Fernando Lopitz-Otsoa
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, Derio 48160, Bizkaia, Spain
| | - Jon Bilbao
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, Derio 48160, Bizkaia, Spain
| | - Diana Guallar
- Department of Biochemistry and Molecular Biology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Miguel Fidalgo
- Department of Physiology, CIMUS, University of Santiago de Compostela, Spain
| | - Susana Bravo
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, 15705 A Coruña, Spain
| | - Carlos Dieguez
- Department of Physiology, CIMUS, University of Santiago de Compostela, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Spain
| | - Maria L Martinez-Chantar
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, Derio 48160, Bizkaia, Spain
| | - Oscar Millet
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain. Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology, Spain
| | - Jose M Mato
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain. Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology, Spain
| | - Markus Schwaninger
- University of Lübeck, Institute for Experimental and Clinical Pharmacology and Toxicology, Lübeck, Germany
| | - Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, European Genomic Institute for Diabetes (EGID),F-59000 Lille, France
| | - Javier Crespo
- Gastroenterology and Hepatology Department, Marqués de Valdecilla University Hospital. Clinical and Translational Digestive Research Group, IDIVAL, Santander, Spain
| | - Gema Frühbeck
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Spain; Metabolic Research Laboratory, Clínica Universidad de Navarra and IdiSNA, Pamplona, Spain
| | - Paula Iruzubieta
- Gastroenterology and Hepatology Department, Marqués de Valdecilla University Hospital. Clinical and Translational Digestive Research Group, IDIVAL, Santander, Spain
| | - Ruben Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Spain; Galicia Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, Spain.
| |
Collapse
|
2
|
Simon J, Nuñez-García M, Fernández-Tussy P, Barbier-Torres L, Fernández-Ramos D, Gómez-Santos B, Buqué X, Lopitz-Otsoa F, Goikoetxea-Usandizaga N, Serrano-Macia M, Rodriguez-Agudo R, Bizkarguenaga M, Zubiete-Franco I, Gutiérrez-de Juan V, Cabrera D, Alonso C, Iruzubieta P, Romero-Gomez M, van Liempd S, Castro A, Nogueiras R, Varela-Rey M, Falcón-Pérez JM, Villa E, Crespo J, Lu SC, Mato JM, Aspichueta P, Delgado TC, Martínez-Chantar ML. Targeting Hepatic Glutaminase 1 Ameliorates Non-alcoholic Steatohepatitis by Restoring Very-Low-Density Lipoprotein Triglyceride Assembly. Cell Metab 2020; 31:605-622.e10. [PMID: 32084378 PMCID: PMC7259377 DOI: 10.1016/j.cmet.2020.01.013] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 02/05/2019] [Accepted: 01/28/2020] [Indexed: 12/21/2022]
Abstract
Non-alcoholic steatohepatitis (NASH) is characterized by the accumulation of hepatic fat in an inflammatory/fibrotic background. Herein, we show that the hepatic high-activity glutaminase 1 isoform (GLS1) is overexpressed in NASH. Importantly, GLS1 inhibition reduces lipid content in choline and/or methionine deprivation-induced steatotic mouse primary hepatocytes, in human hepatocyte cell lines, and in NASH mouse livers. We suggest that under these circumstances, defective glutamine fueling of anaplerotic mitochondrial metabolism and concomitant reduction of oxidative stress promotes a reprogramming of serine metabolism, wherein serine is shifted from the generation of the antioxidant glutathione and channeled to provide one-carbon units to regenerate the methionine cycle. The restored methionine cycle can induce phosphatidylcholine synthesis from the phosphatidylethanolamine N-methyltransferase-mediated and CDP-choline pathways as well as by base-exchange reactions between phospholipids, thereby restoring hepatic phosphatidylcholine content and very-low-density lipoprotein export. Overall, we provide evidence that hepatic GLS1 targeting is a valuable therapeutic approach in NASH.
Collapse
Affiliation(s)
- Jorge Simon
- Liver Disease Laboratory, Liver Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - Maitane Nuñez-García
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Bizkaia, Spain
| | - Pablo Fernández-Tussy
- Liver Disease Laboratory, Liver Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - Lucía Barbier-Torres
- Liver Disease Laboratory, Liver Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - David Fernández-Ramos
- Liver Disease Laboratory, Liver Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - Beatriz Gómez-Santos
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Bizkaia, Spain
| | - Xabier Buqué
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Bizkaia, Spain; Biocruces Health Research Institute, 48903 Barakaldo, Bizkaia, Spain
| | - Fernando Lopitz-Otsoa
- Liver Disease Laboratory, Liver Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - Naroa Goikoetxea-Usandizaga
- Liver Disease Laboratory, Liver Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - Marina Serrano-Macia
- Liver Disease Laboratory, Liver Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - Rubén Rodriguez-Agudo
- Liver Disease Laboratory, Liver Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - Maider Bizkarguenaga
- Liver Disease Laboratory, Liver Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - Imanol Zubiete-Franco
- Liver Disease Laboratory, Liver Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - Virginia Gutiérrez-de Juan
- Liver Disease Laboratory, Liver Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - Diana Cabrera
- Metabolomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | | | - Paula Iruzubieta
- Gastroenterology and Hepatology Department, Marqués de Valdecilla University Hospital, 39008 Santander, Spain; Clinical and Traslational Digestive Research Group, Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Manuel Romero-Gomez
- Unit for the Clinical Management of Digestive Diseases, Hospital Universitario Virgen del Rocío, CIBERehd, University of Seville, 41013 Seville, Spain
| | - Sebastiaan van Liempd
- Metabolomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | | | - Ruben Nogueiras
- Department of Physiology, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela-Instituto de Investigación Sanitaria, CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Galician Agency of Innovation (GAIN), Xunta de Galicia, 15782 Santiago de Compostela, Spain
| | - Marta Varela-Rey
- Liver Disease Laboratory, Liver Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - Juan Manuel Falcón-Pérez
- Metabolomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Bizkaia, Spain
| | - Erica Villa
- Department of Gastroenterology, Azienda Ospedaliero-Universitaria & University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Javier Crespo
- Gastroenterology and Hepatology Department, Marqués de Valdecilla University Hospital, 39008 Santander, Spain; Clinical and Traslational Digestive Research Group, Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Shelly C Lu
- Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Jose M Mato
- Liver Disease Laboratory, Liver Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - Patricia Aspichueta
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Bizkaia, Spain; Biocruces Health Research Institute, 48903 Barakaldo, Bizkaia, Spain
| | - Teresa C Delgado
- Liver Disease Laboratory, Liver Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain.
| | - María Luz Martínez-Chantar
- Liver Disease Laboratory, Liver Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain.
| |
Collapse
|
3
|
Payolla TB, Teixeira CJ, Sato FT, Murata GM, Zonta GA, Sodré FS, Campos CV, Mesquita FN, Anhê GF, Bordin S. In Utero Dexamethasone Exposure Exacerbates Hepatic Steatosis in Rats That Consume Fructose During Adulthood. Nutrients 2019; 11:nu11092114. [PMID: 31491968 PMCID: PMC6770256 DOI: 10.3390/nu11092114] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/10/2019] [Accepted: 08/21/2019] [Indexed: 12/12/2022] Open
Abstract
Distinct environmental insults might interact with fructose consumption and contribute to the development of metabolic disorders. To address whether in utero glucocorticoid exposure and fructose intake modulate metabolic responses, adult female Wistar rats were exposed to dexamethasone (DEX) during pregnancy, and the offspring were administered fructose at a later time. Briefly, dams received DEX during the third period of pregnancy, while control dams remained untreated. Offspring born to control and DEX-treated mothers were defined as CTL-off and DEX-off, respectively, while untreated animals were designated CTL-off-CTL and DEX-off-CTL. CLT-off and DEX-off treated with 10% fructose in the drinking water for 8 weeks are referred to as CTL-off-FRU and DEX-off-FRU. We found that fructose promoted glucose intolerance and whole-body gluconeogenesis in both CTL-off-FRU and DEX-off-FRU animals. On the other hand, hepatic lipid accumulation was significantly stimulated in DEX-off-FRU rats when compared to the CTL-off-FRU group. The DEX-off-FRU group also displayed impaired very-low-density lipoprotein (VLDL) production and reduced hepatic expression of apoB, mttp, and sec22b. DEX-off-FRU has lower hepatic levels of autophagy markers. Taken together, our results support the unprecedented notion that in utero glucocorticoid exposure exacerbates hepatic steatosis caused by fructose consumption later in life.
Collapse
Affiliation(s)
- Tanyara B Payolla
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Caio J Teixeira
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, Sao Paulo 13083-887, Brazil
| | - Fabio T Sato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Gilson M Murata
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Gizela A Zonta
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Frhancielly S Sodré
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Carolina V Campos
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Filiphe N Mesquita
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, Sao Paulo 13083-887, Brazil
| | - Gabriel F Anhê
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, Sao Paulo 13083-887, Brazil
| | - Silvana Bordin
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil.
| |
Collapse
|
4
|
Metabolic modulation of acetaminophen-induced hepatotoxicity by osteopontin. Cell Mol Immunol 2018; 16:483-494. [PMID: 29735980 DOI: 10.1038/s41423-018-0033-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 04/04/2018] [Accepted: 04/04/2018] [Indexed: 11/08/2022] Open
Abstract
Induction of osteopontin (OPN), a well-known pro-inflammatory molecule, has been observed in acetaminophen (APAP)-induced hepatotoxicity. However, the precise cell source for OPN induction and its role during APAP-induced hepatotoxicity has not been fully explored. By employing a hepatotoxic mouse model induced by APAP overdose, we demonstrate that both serum and hepatic OPN levels were significantly elevated in response to APAP treatment. Our in vivo and in vitro studies clearly indicated that the induced expression of hepatic OPN was mainly located in necrosis areas and produced by dying or dead hepatocytes. Functional experiments showed that OPN deficiency protected against the APAP-induced liver injury by inhibiting the toxic APAP metabolism via reducing the expression of the cytochrome P450 family 2 subfamily E member 1 (CYP2E1). Interestingly, this inhibition of CYP2E1 expression did not occur in unfasted Opn-/- mice, but was significant in fasted Opn-/- mice and maintained for 2 hours after APAP challenge in fasted Opn-/- mice. In addition, despite the early protective role of OPN deficiency on APAP-induced hepatotoxicity, OPN deficiency retarded injury resolution by sensitizing hepatocytes to apoptosis and impairing liver regeneration. Finally, we demonstrated that a siRNA-mediated transient hepatic Opn knockdown could sufficiently and significantly protect animals from APAP-induced hepatotoxicity and death. In conclusion, this study clearly defines the cell source of OPN induction in response to APAP treatment, provides a novel insight into the metabolic role of OPN to APAP overdose, and suggests an Opn-targeted therapeutic strategy for the treatment or prevention of APAP-induced hepatotoxicity.
Collapse
|
5
|
Pierce AA, Duwaerts CC, Siao K, Mattis AN, Goodsell A, Baron JL, Maher JJ. CD18 deficiency improves liver injury in the MCD model of steatohepatitis. PLoS One 2017; 12:e0183912. [PMID: 28873429 PMCID: PMC5584926 DOI: 10.1371/journal.pone.0183912] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 08/14/2017] [Indexed: 02/06/2023] Open
Abstract
Neutrophils and macrophages are important constituents of the hepatic inflammatory infiltrate in non-alcoholic steatohepatitis. These innate immune cells express CD18, an adhesion molecule that facilitates leukocyte activation. In the context of fatty liver, activation of infiltrated leukocytes is believed to enhance hepatocellular injury. The objective of this study was to determine the degree to which activated innate immune cells promote steatohepatitis by comparing hepatic outcomes in wild-type and CD18-mutant mice fed a methionine-choline-deficient (MCD) diet. After 3 weeks of MCD feeding, hepatocyte injury, based on serum ALT elevation, was 40% lower in CD18-mutant than wild-type mice. Leukocyte infiltration into the liver was not impaired in CD18-mutant mice, but leukocyte activation was markedly reduced, as shown by the lack of evidence of oxidant production. Despite having reduced hepatocellular injury, CD18-mutant mice developed significantly more hepatic steatosis than wild-type mice after MCD feeding. This coincided with greater hepatic induction of pro-inflammatory and lipogenic genes as well as a modest reduction in hepatic expression of adipose triglyceride lipase. Overall, the data indicate that CD18 deficiency curbs MCD-mediated liver injury by limiting the activation of innate immune cells in the liver without compromising intrahepatic cytokine activation. Reduced liver injury occurs at the expense of increased hepatic steatosis, which suggests that in addition to damaging hepatocytes, infiltrating leukocytes may influence lipid homeostasis in the liver.
Collapse
Affiliation(s)
- Andrew A. Pierce
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States of America
- Liver Center, University of California, San Francisco, San Francisco, California, United States of America
| | - Caroline C. Duwaerts
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States of America
- Liver Center, University of California, San Francisco, San Francisco, California, United States of America
| | - Kevin Siao
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States of America
- Liver Center, University of California, San Francisco, San Francisco, California, United States of America
| | - Aras N. Mattis
- Liver Center, University of California, San Francisco, San Francisco, California, United States of America
- Department of Pathology, University of California, San Francisco, San Francisco, California, United States of America
| | - Amanda Goodsell
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States of America
- Liver Center, University of California, San Francisco, San Francisco, California, United States of America
| | - Jody L. Baron
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States of America
- Liver Center, University of California, San Francisco, San Francisco, California, United States of America
| | - Jacquelyn J. Maher
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States of America
- Liver Center, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
6
|
Kim M, Yoo G, Randy A, Kim HS, Nho CW. Chicoric acid attenuate a nonalcoholic steatohepatitis by inhibiting key regulators of lipid metabolism, fibrosis, oxidation, and inflammation in mice with methionine and choline deficiency. Mol Nutr Food Res 2017; 61. [DOI: 10.1002/mnfr.201600632] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 11/29/2016] [Accepted: 12/05/2016] [Indexed: 01/01/2023]
Affiliation(s)
- Myungsuk Kim
- Natural Products Research Center; Korea Institute of Science and Technology; Gangneung Republic of Korea
- Convergence Research Center for Smart Farm Solution; Korea Institute of Science and Technology; Gangneung Republic of Korea
| | - GyHye Yoo
- Natural Products Research Center; Korea Institute of Science and Technology; Gangneung Republic of Korea
- Convergence Research Center for Smart Farm Solution; Korea Institute of Science and Technology; Gangneung Republic of Korea
| | - Ahmad Randy
- Natural Products Research Center; Korea Institute of Science and Technology; Gangneung Republic of Korea
- Department of Biological Chemistry, Korea; University of Science and Technology; Daejeon Republic of Korea
| | - Hyoung Seok Kim
- Natural Products Research Center; Korea Institute of Science and Technology; Gangneung Republic of Korea
- Convergence Research Center for Smart Farm Solution; Korea Institute of Science and Technology; Gangneung Republic of Korea
| | - Chu Won Nho
- Natural Products Research Center; Korea Institute of Science and Technology; Gangneung Republic of Korea
- Convergence Research Center for Smart Farm Solution; Korea Institute of Science and Technology; Gangneung Republic of Korea
| |
Collapse
|
7
|
Tubulin alpha 8 is expressed in hepatic stellate cells and is induced in transformed hepatocytes. Mol Cell Biochem 2017; 428:161-170. [DOI: 10.1007/s11010-016-2926-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 12/21/2016] [Indexed: 12/16/2022]
|
8
|
Lu HJ, Li SQ, Zhang YY, Wang SL, Qiao XJ, Huo XL, Li XP, Hou SL. Expression changes of lipid droplets during alcohol-induced liver injury in mice. Shijie Huaren Xiaohua Zazhi 2016; 24:3683-3688. [DOI: 10.11569/wcjd.v24.i25.3683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM To investigate the pathological changes in the process of alcoholic liver injury.
METHODS Thirty healthy male Kunming mice were randomly divided into a control group (n = 10) and a model group (n = 20). The control group was executed to take the liver tissue at 0 wk. The model group was treated with alcohol of 56 degrees (0.15 ml/20 g•d) for 8 wk, and then executed to take the liver tissue at four and 8 wk. The expression changes of lipid droplets during alcoholic liver injury were assessed by hematoxylin and eosin staining and oil red O staining. The integral optical density of histology samples was analyzed with Image-ProPlus6.0 software.
RESULTS The content of lipid drops began to increase at 4 wk (20.29 ± 7.07 vs 8.06 ± 2.06, P < 0.01), and significantly increased at 8 wk (34.88 ± 15.33 vs 8.06 ± 2.06, P < 0.01). Compared to that at 4 wk, the amount of expression of lipid droplets showed a rising trend at 8 wk (34.88 ± 15.33 vs 20.29 ± 7.07, P < 0.05).
CONCLUSION The levels of lipid droplets show a growing trend along with the aggravation of hepatic steatosis during alcoholic liver injury in mice.
Collapse
|
9
|
Kim SM, Grenert JP, Patterson C, Correia MA. CHIP(-/-)-Mouse Liver: Adiponectin-AMPK-FOXO-Activation Overrides CYP2E1-Elicited JNK1-Activation, Delaying Onset of NASH: Therapeutic Implications. Sci Rep 2016; 6:29423. [PMID: 27406999 PMCID: PMC4942616 DOI: 10.1038/srep29423] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 06/17/2016] [Indexed: 02/07/2023] Open
Abstract
Genetic ablation of C-terminus of Hsc70-interacting protein (CHIP) E3 ubiquitin-ligase impairs hepatic cytochrome P450 CYP2E1 degradation. Consequent CYP2E1 gain of function accelerates reactive O2 species (ROS) production, triggering oxidative/proteotoxic stress associated with sustained activation of c-Jun NH2-terminal kinase (JNK)-signaling cascades, pro-inflammatory effectors/cytokines, insulin resistance, progressive hepatocellular ballooning and microvesicular steatosis. Despite this, little evidence of nonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH) was found in CHIP(-/-)-mice over the first 8-9-months of life. We herein document that this lack of tissue injury is largely due to the concurrent up-regulation and/or activation of the adiponectin-5'-AMP-activated protein kinase (AMPK)-forkhead box O (FOXO)-signaling axis stemming from at the least three synergistic features: Up-regulated expression of adipose tissue adiponectin and its hepatic adipoR1/adipoR2 receptors, stabilization of hepatic AMPKα1-isoform, identified herein for the first time as a CHIP-ubiquitination substrate (unlike its AMPKα2-isoform), as well as nuclear stabilization of FOXOs, well-known CHIP-ubiquitination targets. Such beneficial predominance of the adiponectin-AMPK-FOXO-signaling axis over the sustained JNK-elevation and injurious insulin resistance in CHIP(-/-)-livers apparently counteracts/delays rapid progression of the hepatic microvesicular steatosis to the characteristic macrovesicular steatosis observed in clinical NASH and/or rodent NASH-models.
Collapse
Affiliation(s)
- Sung-Mi Kim
- Department of Cellular &Molecular Pharmacology, University of California San Francisco, San Francisco CA 94158-2517, USA
| | - James P Grenert
- Department of Pathology, University of California San Francisco, San Francisco CA 94158-2517, USA.,The Liver Center, University of California San Francisco, San Francisco CA 94158-2517, USA
| | - Cam Patterson
- Department of Medicine, Presbyterian Hospital/Weill-Cornell Medical Center, New York, NY 10065, USA
| | - Maria Almira Correia
- Department of Cellular &Molecular Pharmacology, University of California San Francisco, San Francisco CA 94158-2517, USA.,The Liver Center, University of California San Francisco, San Francisco CA 94158-2517, USA.,Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco CA 94158-2517, USA.,Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco CA 94158-2517, USA
| |
Collapse
|
10
|
Pisonero-Vaquero S, Martínez-Ferreras Á, García-Mediavilla MV, Martínez-Flórez S, Fernández A, Benet M, Olcoz JL, Jover R, González-Gallego J, Sánchez-Campos S. Quercetin ameliorates dysregulation of lipid metabolism genes via the PI3K/AKT pathway in a diet-induced mouse model of nonalcoholic fatty liver disease. Mol Nutr Food Res 2015; 59:879-93. [PMID: 25712622 DOI: 10.1002/mnfr.201400913] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/03/2015] [Accepted: 02/09/2015] [Indexed: 12/12/2022]
Abstract
SCOPE Flavonoids and related compounds seem to have favorable effects on nonalcoholic fatty liver disease (NAFLD) progression, although the exact mechanisms implicated are poorly understood. In this study, we aimed to investigate the effect of the flanovol quercetin on gene expression deregulation involved in the development of NAFLD, as well as the possible implication of phosphatidylinositol 3-kinase (PI3K)/AKT pathway modulation. METHODS AND RESULTS We used an in vivo model based on methionine- and choline-deficient (MCD) diet-fed mice and an in vitro model consisting of Huh7 cells incubated with MCD medium. MCD-fed mice showed classical pathophysiological characteristics of nonalcoholic steatohepatitis, associated with altered transcriptional regulation of fatty acid uptake- and trafficking-related gene expression, with increased lipoperoxidation. PI3K/AKT pathway was activated by MCD and triggered gene deregulation causing either activation or inhibition of all studied genes as demonstrated through cell incubation with the PI3K-inhibitor LY294002. Treatment with quercetin reduced AKT phosphorylation, and oxidative/nitrosative stress, inflammation and lipid metabolism-related genes displayed a tendency to normalize in both in vivo and in vitro models. CONCLUSION These results place quercetin as a potential therapeutic strategy for preventing NAFLD progression by attenuating gene expression deregulation, at least in part through PI3K/AKT pathway inactivation.
Collapse
|
11
|
Benet M, Guzmán C, Pisonero-Vaquero S, García-Mediavilla MV, Sánchez-Campos S, Martínez-Chantar ML, Donato MT, Castell JV, Jover R. Repression of the nuclear receptor small heterodimer partner by steatotic drugs and in advanced nonalcoholic fatty liver disease. Mol Pharmacol 2015; 87:582-94. [PMID: 25576488 DOI: 10.1124/mol.114.096313] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The small heterodimer partner (SHP) (NR0B2) is an atypical nuclear receptor that lacks a DNA-binding domain. It interacts with and inhibits many transcription factors, affecting key metabolic processes, including bile acid, cholesterol, fatty acid, and drug metabolism. Our aim was to determine the influence of steatotic drugs and nonalcoholic fatty liver disease (NAFLD) on SHP expression and investigate the potential mechanisms. SHP was found to be repressed by steatotic drugs (valproate, doxycycline, tetracycline, and cyclosporin A) in cultured hepatic cells and the livers of different animal models of NAFLD: iatrogenic (tetracycline-treated rats), genetic (glycine N-methyltransferase-deficient mice), and nutritional (mice fed a methionine- and choline-deficient diet). Among the different transcription factors investigated, CCAAT-enhancer-binding protein α (C/EBPα) showed the strongest dominant-repressive effect on SHP expression in HepG2 and human hepatocytes. Reporter assays revealed that the inhibitory effect of C/EBPα and steatotic drugs colocalize between -340 and -509 base pair of the SHP promoter, and mutation of a predicted C/EBPα response element at -473 base pair abolished SHP repression by both C/EBPα and drugs. Moreover, inhibition of major stress signaling pathways demonstrated that the mitogen-activated protein kinase kinase 1/2 pathway activates, while the phosphatidylinositol 3 kinase pathway represses SHP in a C/EBP-dependent manner. We conclude that SHP is downregulated by several steatotic drugs and in advanced NAFLD. These conditions can activate signals that target C/EBPα and consequently repress SHP, thus favoring the progression and severity of NAFLD.
Collapse
Affiliation(s)
- Marta Benet
- Experimental Hepatology Unit, IIS Hospital La Fe, Valencia (M.B., C.G., M.T.D., J.V.C., R.J.); CIBERehd, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona (M.B., M.V.G.-M., S.S.-C., M.L.M.-C., M.T.D., J.V.C., R.J.); Institute of Biomedicine, University of León, León (S.P.-V., M.V.G.-M., S.S.-C.); CIC bioGUNE, Technology Park of Bizkaia, Derio (M.L.M.-C.); and Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain (M.T.D., J.V.C., R.J.)
| | - Carla Guzmán
- Experimental Hepatology Unit, IIS Hospital La Fe, Valencia (M.B., C.G., M.T.D., J.V.C., R.J.); CIBERehd, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona (M.B., M.V.G.-M., S.S.-C., M.L.M.-C., M.T.D., J.V.C., R.J.); Institute of Biomedicine, University of León, León (S.P.-V., M.V.G.-M., S.S.-C.); CIC bioGUNE, Technology Park of Bizkaia, Derio (M.L.M.-C.); and Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain (M.T.D., J.V.C., R.J.)
| | - Sandra Pisonero-Vaquero
- Experimental Hepatology Unit, IIS Hospital La Fe, Valencia (M.B., C.G., M.T.D., J.V.C., R.J.); CIBERehd, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona (M.B., M.V.G.-M., S.S.-C., M.L.M.-C., M.T.D., J.V.C., R.J.); Institute of Biomedicine, University of León, León (S.P.-V., M.V.G.-M., S.S.-C.); CIC bioGUNE, Technology Park of Bizkaia, Derio (M.L.M.-C.); and Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain (M.T.D., J.V.C., R.J.)
| | - M Victoria García-Mediavilla
- Experimental Hepatology Unit, IIS Hospital La Fe, Valencia (M.B., C.G., M.T.D., J.V.C., R.J.); CIBERehd, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona (M.B., M.V.G.-M., S.S.-C., M.L.M.-C., M.T.D., J.V.C., R.J.); Institute of Biomedicine, University of León, León (S.P.-V., M.V.G.-M., S.S.-C.); CIC bioGUNE, Technology Park of Bizkaia, Derio (M.L.M.-C.); and Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain (M.T.D., J.V.C., R.J.)
| | - Sonia Sánchez-Campos
- Experimental Hepatology Unit, IIS Hospital La Fe, Valencia (M.B., C.G., M.T.D., J.V.C., R.J.); CIBERehd, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona (M.B., M.V.G.-M., S.S.-C., M.L.M.-C., M.T.D., J.V.C., R.J.); Institute of Biomedicine, University of León, León (S.P.-V., M.V.G.-M., S.S.-C.); CIC bioGUNE, Technology Park of Bizkaia, Derio (M.L.M.-C.); and Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain (M.T.D., J.V.C., R.J.)
| | - M Luz Martínez-Chantar
- Experimental Hepatology Unit, IIS Hospital La Fe, Valencia (M.B., C.G., M.T.D., J.V.C., R.J.); CIBERehd, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona (M.B., M.V.G.-M., S.S.-C., M.L.M.-C., M.T.D., J.V.C., R.J.); Institute of Biomedicine, University of León, León (S.P.-V., M.V.G.-M., S.S.-C.); CIC bioGUNE, Technology Park of Bizkaia, Derio (M.L.M.-C.); and Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain (M.T.D., J.V.C., R.J.)
| | - M Teresa Donato
- Experimental Hepatology Unit, IIS Hospital La Fe, Valencia (M.B., C.G., M.T.D., J.V.C., R.J.); CIBERehd, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona (M.B., M.V.G.-M., S.S.-C., M.L.M.-C., M.T.D., J.V.C., R.J.); Institute of Biomedicine, University of León, León (S.P.-V., M.V.G.-M., S.S.-C.); CIC bioGUNE, Technology Park of Bizkaia, Derio (M.L.M.-C.); and Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain (M.T.D., J.V.C., R.J.)
| | - José Vicente Castell
- Experimental Hepatology Unit, IIS Hospital La Fe, Valencia (M.B., C.G., M.T.D., J.V.C., R.J.); CIBERehd, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona (M.B., M.V.G.-M., S.S.-C., M.L.M.-C., M.T.D., J.V.C., R.J.); Institute of Biomedicine, University of León, León (S.P.-V., M.V.G.-M., S.S.-C.); CIC bioGUNE, Technology Park of Bizkaia, Derio (M.L.M.-C.); and Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain (M.T.D., J.V.C., R.J.)
| | - Ramiro Jover
- Experimental Hepatology Unit, IIS Hospital La Fe, Valencia (M.B., C.G., M.T.D., J.V.C., R.J.); CIBERehd, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona (M.B., M.V.G.-M., S.S.-C., M.L.M.-C., M.T.D., J.V.C., R.J.); Institute of Biomedicine, University of León, León (S.P.-V., M.V.G.-M., S.S.-C.); CIC bioGUNE, Technology Park of Bizkaia, Derio (M.L.M.-C.); and Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain (M.T.D., J.V.C., R.J.)
| |
Collapse
|
12
|
Luther J, Garber JJ, Khalili H, Dave M, Bale SS, Jindal R, Motola DL, Luther S, Bohr S, Jeoung SW, Deshpande V, Singh G, Turner JR, Yarmush ML, Chung RT, Patel SJ. Hepatic Injury in Nonalcoholic Steatohepatitis Contributes to Altered Intestinal Permeability. Cell Mol Gastroenterol Hepatol 2015; 1:222-232. [PMID: 26405687 PMCID: PMC4578658 DOI: 10.1016/j.jcmgh.2015.01.001] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 01/09/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Emerging data suggest that changes in intestinal permeability and increased gut microbial translocation contribute to the inflammatory pathway involved in nonalcoholic steatohepatitis (NASH) development. Numerous studies have investigated the association between increased intestinal permeability and NASH. Our meta-analysis of this association investigates the underlying mechanism. METHODS A meta-analysis was performed to compare the rates of increased intestinal permeability in patients with NASH and healthy controls. To further address the underlying mechanism of action, we studied changes in intestinal permeability in a diet-induced (methionine-and-choline-deficient; MCD) murine model of NASH. In vitro studies were also performed to investigate the effect of MCD culture medium at the cellular level on hepatocytes, Kupffer cells, and intestinal epithelial cells. RESULTS Nonalcoholic fatty liver disease (NAFLD) patients, and in particular those with NASH, are more likely to have increased intestinal permeability compared with healthy controls. We correlate this clinical observation with in vivo data showing mice fed an MCD diet develop intestinal permeability changes after an initial phase of liver injury and tumor necrosis factor-α (TNFα) induction. In vitro studies reveal that MCD medium induces hepatic injury and TNFα production yet has no direct effect on intestinal epithelial cells. Although these data suggest a role for hepatic TNFα in altering intestinal permeability, we found that mice genetically resistant to TNFα-myosin light chain kinase (MLCK)-induced intestinal permeability changes fed an MCD diet still develop increased permeability and liver injury. CONCLUSIONS Our clinical and experimental results strengthen the association between intestinal permeability increases and NASH and also suggest that an early phase of hepatic injury and inflammation contributes to altered intestinal permeability in a fashion independent of TNFα and MLCK.
Collapse
Affiliation(s)
- Jay Luther
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - John J. Garber
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Hamed Khalili
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Maneesh Dave
- Division of Gastroenterology, Department of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Shyam Sundhar Bale
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, and the Shriners Burns Hospital, Boston, Massachusetts
| | - Rohit Jindal
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, and the Shriners Burns Hospital, Boston, Massachusetts
| | - Daniel L. Motola
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sanjana Luther
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Stefan Bohr
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, and the Shriners Burns Hospital, Boston, Massachusetts
| | - Soung Won Jeoung
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Vikram Deshpande
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Gurminder Singh
- Department of Pathology, University of Chicago, Chicago, Illinois
| | | | - Martin L. Yarmush
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, and the Shriners Burns Hospital, Boston, Massachusetts
| | - Raymond T. Chung
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Suraj J. Patel
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, and the Shriners Burns Hospital, Boston, Massachusetts
| |
Collapse
|
13
|
Seth D, Duly A, Kuo PC, McCaughan GW, Haber PS. Osteopontin is an important mediator of alcoholic liver disease via hepatic stellate cell activation. World J Gastroenterol 2014; 20:13088-13104. [PMID: 25278703 PMCID: PMC4177488 DOI: 10.3748/wjg.v20.i36.13088] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 05/05/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate over-expression of Osteopontin (OPN) pathway expression and mechanisms of action in human alcoholic liver disease (ALD), in vivo and in vitro acute alcohol models.
METHODS: OPN pathway was evaluated in livers from patients with progressive stages of human ALD and serum from drinkers with and without liver cirrhosis. In vitro stellate LX2 cells exposed to acute alcohol and in vivo in acute alcoholic steatosis mouse models were also investigated for OPN pathway expression and function. WT and OPN-/- mice were administered an acute dose of alcohol and extent of liver injury was examined by histopathology and liver biochemistry after 16-24 h. The causative role of OPN was studied in OPN knockout animals and in vitro in stellate LX2 cells, utilizing siRNA, aptamer and neutralizing antibodies to block OPN and OPN pathway. OPN pathway expression and downstream functional consequences were measured for signaling by Western blotting, plasmin activation by spectrophotometric assays and cell migration by confocal imaging and quantitation.
RESULTS: OPN expression positively correlated with disease severity in patients with progressive stages of ALD. In vivo, associated with alcoholic steatosis, a single dose of acute alcohol significantly increased hepatic OPN mRNA and protein, and a cleaved OPN form in a dose dependent manner. OPN mRNA and secreted OPN also increased in parallel with activation of LX2 stellate cells within 4 h of a single dose of alcohol. Expression of OPN receptors, αvβ3-integrin and CD44, increased in human ALD, and in vivo and in vitro with alcohol administration. This was accompanied by downstream phosphorylation of Akt and Erk, increased mRNA expression of several fibrogenesis, fibrinolysis and extracellular matrix pathway genes, plasmin activation and hepatic stellate cell (HSC) migration. Inhibition of OPN and OPN-receptor mediated signaling partially inhibited alcohol-induced HSC activation, plasmin activity and cell migration.
CONCLUSION: OPN is a key mediator of the alcohol-induced effects on hepatic stellate cell functions and liver fibrogenesis.
Collapse
MESH Headings
- Animals
- Case-Control Studies
- Cell Movement
- Cells, Cultured
- Disease Models, Animal
- Extracellular Matrix/metabolism
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Fatty Liver, Alcoholic/genetics
- Fatty Liver, Alcoholic/metabolism
- Fatty Liver, Alcoholic/pathology
- Female
- Fibrinolysin/metabolism
- Fibrinolysis
- Hepatic Stellate Cells/metabolism
- Hepatic Stellate Cells/pathology
- Humans
- Hyaluronan Receptors/metabolism
- Integrin alphaVbeta3/metabolism
- Liver Cirrhosis, Alcoholic/genetics
- Liver Cirrhosis, Alcoholic/metabolism
- Liver Cirrhosis, Alcoholic/pathology
- Mice, Inbred C57BL
- Mice, Knockout
- Osteopontin/deficiency
- Osteopontin/genetics
- Osteopontin/metabolism
- Phosphorylation
- Proto-Oncogene Proteins c-akt/metabolism
- RNA Interference
- RNA, Messenger/metabolism
- Severity of Illness Index
- Signal Transduction
- Time Factors
- Transfection
- Up-Regulation
Collapse
|
14
|
Williams JA, Manley S, Ding WX. New advances in molecular mechanisms and emerging therapeutic targets in alcoholic liver diseases. World J Gastroenterol 2014; 20:12908-12933. [PMID: 25278688 PMCID: PMC4177473 DOI: 10.3748/wjg.v20.i36.12908] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/07/2014] [Accepted: 04/16/2014] [Indexed: 02/06/2023] Open
Abstract
Alcoholic liver disease is a major health problem in the United States and worldwide. Chronic alcohol consumption can cause steatosis, inflammation, fibrosis, cirrhosis and even liver cancer. Significant progress has been made to understand key events and molecular players for the onset and progression of alcoholic liver disease from both experimental and clinical alcohol studies. No successful treatments are currently available for treating alcoholic liver disease; therefore, development of novel pathophysiological-targeted therapies is urgently needed. This review summarizes the recent progress on animal models used to study alcoholic liver disease and the detrimental factors that contribute to alcoholic liver disease pathogenesis including miRNAs, S-adenosylmethionine, Zinc deficiency, cytosolic lipin-1β, IRF3-mediated apoptosis, RIP3-mediated necrosis and hepcidin. In addition, we summarize emerging adaptive protective effects induced by alcohol to attenuate alcohol-induced liver pathogenesis including FoxO3, IL-22, autophagy and nuclear lipin-1α.
Collapse
|
15
|
Stefanutti C. Targeting MTP for the treatment of homozygous familial hypercholesterolemia. ACTA ACUST UNITED AC 2014. [DOI: 10.2217/clp.14.17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
16
|
Patouraux S, Rousseau D, Rubio A, Bonnafous S, Lavallard VJ, Lauron J, Saint-Paul MC, Bailly-Maitre B, Tran A, Crenesse D, Gual P. Osteopontin deficiency aggravates hepatic injury induced by ischemia-reperfusion in mice. Cell Death Dis 2014; 5:e1208. [PMID: 24810044 PMCID: PMC4047890 DOI: 10.1038/cddis.2014.174] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 02/26/2014] [Accepted: 03/18/2014] [Indexed: 12/17/2022]
Abstract
Osteopontin (OPN) is a multifunctional protein involved in hepatic steatosis, inflammation, fibrosis and cancer progression. However, its role in hepatic injury induced by ischemia–reperfusion (I–R) has not yet been investigated. We show here that hepatic warm ischemia for 45 min followed by reperfusion for 4 h induced the upregulation of the hepatic and systemic level of OPN in mice. Plasma aspartate aminotransferase and alanine aminotransferase levels were strongly increased in Opn−/− mice compared with wild-type (Wt) mice after I–R, and histological analysis of the liver revealed a significantly higher incidence of necrosis of hepatocytes. In addition, the expression levels of inducible nitric oxide synthase (iNOS), tumor necrosis factor-α (TNFα), interleukin 6 (IL6) and interferon-γ were strongly upregulated in Opn−/− mice versus Wt mice after I–R. One explanation for these responses could be the vulnerability of the OPN-deficient hepatocyte. Indeed, the downregulation of OPN in primary and AML12 hepatocytes decreased cell viability in the basal state and sensitized AML12 hepatocytes to cell death induced by oxygen–glucose deprivation and TNFα. Further, the downregulation of OPN in AML12 hepatocytes caused a strong decrease in the expression of anti-apoptotic Bcl2 and in the ATP level. The hepatic expression of Bcl2 also decreased in Opn−/− mice versus Wt mice livers after I–R. Another explanation could be the regulation of the macrophage activity by OPN. In RAW macrophages, the downregulation of OPN enhanced iNOS expression in the basal state and sensitized macrophages to inflammatory signals, as evaluated by the upregulation of iNOS, TNFα and IL6 in response to lipopolysaccharide. In conclusion, OPN partially protects from hepatic injury and inflammation induced in this experimental model of liver I–R. This could be due to its ability to partially prevent death of hepatocytes and to limit the production of toxic iNOS-derived NO by macrophages.
Collapse
Affiliation(s)
- S Patouraux
- 1] INSERM, U1065, Centre Méditerranéen de médecine Moléculaire (C3M), Équipe 8 « Complications hépatiques de l'obésité», Nice, France [2] Université de Nice-Sophia-Antipolis, Faculté de Médecine, Nice, France [3] Centre Hospitalier Universitaire de Nice, Pôle Biologique, Hôpital Pasteur, Nice, France
| | - D Rousseau
- 1] INSERM, U1065, Centre Méditerranéen de médecine Moléculaire (C3M), Équipe 8 « Complications hépatiques de l'obésité», Nice, France [2] Université de Nice-Sophia-Antipolis, Faculté de Médecine, Nice, France
| | - A Rubio
- 1] INSERM, U1065, Centre Méditerranéen de médecine Moléculaire (C3M), Équipe 8 « Complications hépatiques de l'obésité», Nice, France [2] Université de Nice-Sophia-Antipolis, Faculté de Médecine, Nice, France
| | - S Bonnafous
- 1] INSERM, U1065, Centre Méditerranéen de médecine Moléculaire (C3M), Équipe 8 « Complications hépatiques de l'obésité», Nice, France [2] Université de Nice-Sophia-Antipolis, Faculté de Médecine, Nice, France [3] Centre Hospitalier Universitaire de Nice, Pôle Digestif, Hôpital L'Archet, Nice, France
| | - V J Lavallard
- 1] INSERM, U1065, Centre Méditerranéen de médecine Moléculaire (C3M), Équipe 8 « Complications hépatiques de l'obésité», Nice, France [2] Université de Nice-Sophia-Antipolis, Faculté de Médecine, Nice, France
| | - J Lauron
- 1] INSERM, U1065, Centre Méditerranéen de médecine Moléculaire (C3M), Équipe 8 « Complications hépatiques de l'obésité», Nice, France [2] Université de Nice-Sophia-Antipolis, Faculté de Médecine, Nice, France
| | - M-C Saint-Paul
- 1] INSERM, U1065, Centre Méditerranéen de médecine Moléculaire (C3M), Équipe 8 « Complications hépatiques de l'obésité», Nice, France [2] Université de Nice-Sophia-Antipolis, Faculté de Médecine, Nice, France [3] Centre Hospitalier Universitaire de Nice, Pôle Biologique, Hôpital Pasteur, Nice, France
| | - B Bailly-Maitre
- 1] INSERM, U1065, Centre Méditerranéen de médecine Moléculaire (C3M), Équipe 8 « Complications hépatiques de l'obésité», Nice, France [2] Université de Nice-Sophia-Antipolis, Faculté de Médecine, Nice, France
| | - A Tran
- 1] INSERM, U1065, Centre Méditerranéen de médecine Moléculaire (C3M), Équipe 8 « Complications hépatiques de l'obésité», Nice, France [2] Université de Nice-Sophia-Antipolis, Faculté de Médecine, Nice, France [3] Centre Hospitalier Universitaire de Nice, Pôle Digestif, Hôpital L'Archet, Nice, France
| | - D Crenesse
- 1] INSERM, U1065, Centre Méditerranéen de médecine Moléculaire (C3M), Équipe 8 « Complications hépatiques de l'obésité», Nice, France [2] Université de Nice-Sophia-Antipolis, Faculté de Médecine, Nice, France [3] Centre Hospitalier Universitaire de Nice, Hôpitaux Pédiatriques CHU Lenval, Nice, France
| | - P Gual
- 1] INSERM, U1065, Centre Méditerranéen de médecine Moléculaire (C3M), Équipe 8 « Complications hépatiques de l'obésité», Nice, France [2] Université de Nice-Sophia-Antipolis, Faculté de Médecine, Nice, France
| |
Collapse
|
17
|
McKee C, Soeda J, Asilmaz E, Sigalla B, Morgan M, Sinelli N, Roskams T, Oben JA. Propranolol, a β-adrenoceptor antagonist, worsens liver injury in a model of non-alcoholic steatohepatitis. Biochem Biophys Res Commun 2013; 437:597-602. [PMID: 23850676 PMCID: PMC5226920 DOI: 10.1016/j.bbrc.2013.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 07/02/2013] [Indexed: 12/21/2022]
Abstract
β-Blocker propranolol worsens liver injury in model of non-alcoholic steatohepatitis. Mechanism of hepatic injury is via activation of apoptotic pathway in hepatocytes. β-Blockers should be avoided or used with extreme caution in patients with NASH. Prazosin an α1-adrenoceptor (AR) antagonist has been shown to reduce liver injury in a mouse model of non-alcoholic steatohepatitis (NASH) and is suggested as a potential treatment of NASH especially given its concomitant anti-fibrotic properties. The effect however, of β-AR blockade in non-cirrhotic NASH is unknown and is as such investigated here. In the presence of the β-blocker propranolol (PRL), mice fed normal chow or a half methionine and choline deficient diet, supplemented with ethionine (HMCDE), to induce NASH, showed significantly enhanced liver injury, as evidenced by higher hepatic necrosis scores and elevated serum aminotransferases (ALT). Mechanistically, we showed that murine hepatocytes express α and β adrenoceptors; that PRL directly induces hepatocyte injury and death as evidenced by increased release of lactate dehydrogenase, FASL and TNF-α from hepatocytes in the presence of PRL; and that PRL activated the apoptotic pathway in primary hepatocyte cultures, as indicated by upregulation of Fas receptor and caspase-8 proteins. The β-AR antagonist PRL therefore appears to enhance liver injury through induction of hepatocyte death via the death pathway. Further studies are now required to extrapolate these findings to humans but meanwhile, β-AR antagonists should be avoided or used with caution in patients with non-cirrhotic NASH as they may worsen liver injury.
Collapse
Affiliation(s)
- Chad McKee
- Institute for Liver and Digestive Health, University College London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
AIM Osteopontin (OPN), a multifunctional protein, has been reported to be protoxicant in acetaminophen hepatotoxicity. In this study, the mechanisms underlying the detrimental role of OPN in acetaminophen toxicity were explored. METHODS Male C57BL/6 (wild-type, WT) and OPN(-/-) mice were administered with acetaminophen (500 mg/kg, ip). After the treatment, serum transaminase (ALT), as well as OPN expression, histology changes, oxidative stress and inflammation response in liver tissue were studied. Freshly isolated hepatocytes of WT and OPN(-/-) mice were prepared. RESULTS Acetaminophen administration significantly increased OPN protein level in livers of WT mice. OPN expression was mainly localized in hepatic macrophages 6 h after the administration. In OPN(-/-) mice, acetaminophen-induced serum ALT release was reduced, but the centrilobular hepatic necrosis was increased. In OPN(-/-) mice, the expression of CYP2E1 and CYP1A2 in livers was significantly increased; GSH depletion and lipid peroxidation in livers were enhanced. On the other hand, OPN(-/-) mice exhibited less macrophage and neutrophil infiltration and reduced expression of proinflammatory cytokines TNF-α and IL-1α in livers. An anti-OPN neutralizing antibody significantly reduced acetaminophen-induced serum ALT level and inflammatory infiltration in livers of WT mice. CONCLUSION OPN plays a dual role in acetaminophen toxicity: OPN in hepatocytes inhibits acetaminophen metabolism, while OPN in macrophages enhances acetaminophen toxicity via recruitment of inflammatory cells and production of proinflammatory cytokines.
Collapse
|
19
|
Kong L, Ren W, Li W, Zhao S, Mi H, Wang R, Zhang Y, Wu W, Nan Y, Yu J. Activation of peroxisome proliferator activated receptor alpha ameliorates ethanol induced steatohepatitis in mice. Lipids Health Dis 2011. [PMID: 22208561 DOI: 10.1016/j.jnutbio.2012.02.246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Peroxisome proliferator activated receptor alpha (PPARα) regulates lipids metabolism and inhibits inflammatory response. However, the role of PPARα in alcoholic liver disease is largely unknown. We aim to elucidate the effect and the molecular basis of PPARα in ethanol induced hepatic injury in mice. RESULTS C57BL/6J mice fed with 4% ethanol-containing Lieber-DeCarli liquid diet for 12 weeks exhibited hepatocyte steatosis, necrosis and inflammatory infiltration, accompanied with elevated serum alanine aminotransferase (ALT) and aspartic transaminase (AST) levels, decreased hepatic expression of PPARα, lipids oxidation promoting genes and anti-inflammatory factors, as well as enhanced hepatic expression of fatty acids synthesis promoting genes and pro-inflammatory cytokines. Induction of PPARα by PPARα agonist WY14643 treatment for 2 weeks ameliorated the severity of liver injury and restored expression of genes altered by ethanol treatment. However, administration of PPARα antagonist GW6471 for 2 weeks promoted the inflammatory response. CONCLUSIONS The present study provided the evidence for the protective role of PPARα in ameliorating ethanol induced liver injury through modulation of the genes related to lipid metabolism and inflammatory response.
Collapse
Affiliation(s)
- Lingbo Kong
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kong L, Ren W, Li W, Zhao S, Mi H, Wang R, Zhang Y, Wu W, Nan Y, Yu J. Activation of peroxisome proliferator activated receptor alpha ameliorates ethanol induced steatohepatitis in mice. Lipids Health Dis 2011; 10:246. [PMID: 22208561 PMCID: PMC3278384 DOI: 10.1186/1476-511x-10-246] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Accepted: 12/30/2011] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Peroxisome proliferator activated receptor alpha (PPARα) regulates lipids metabolism and inhibits inflammatory response. However, the role of PPARα in alcoholic liver disease is largely unknown. We aim to elucidate the effect and the molecular basis of PPARα in ethanol induced hepatic injury in mice. RESULTS C57BL/6J mice fed with 4% ethanol-containing Lieber-DeCarli liquid diet for 12 weeks exhibited hepatocyte steatosis, necrosis and inflammatory infiltration, accompanied with elevated serum alanine aminotransferase (ALT) and aspartic transaminase (AST) levels, decreased hepatic expression of PPARα, lipids oxidation promoting genes and anti-inflammatory factors, as well as enhanced hepatic expression of fatty acids synthesis promoting genes and pro-inflammatory cytokines. Induction of PPARα by PPARα agonist WY14643 treatment for 2 weeks ameliorated the severity of liver injury and restored expression of genes altered by ethanol treatment. However, administration of PPARα antagonist GW6471 for 2 weeks promoted the inflammatory response. CONCLUSIONS The present study provided the evidence for the protective role of PPARα in ameliorating ethanol induced liver injury through modulation of the genes related to lipid metabolism and inflammatory response.
Collapse
Affiliation(s)
- Lingbo Kong
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Seth D, Haber PS, Syn WK, Diehl AM, Day CP. Pathogenesis of alcohol-induced liver disease: classical concepts and recent advances. J Gastroenterol Hepatol 2011; 26:1089-105. [PMID: 21545524 DOI: 10.1111/j.1440-1746.2011.06756.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alcoholic liver disease (ALD) is a primary consequence of heavy and prolonged drinking. ALD contributes to the bulk of liver disease burden worldwide. Progression of ALD is a multifactorial and multistep process that includes many genetic and environmental risk factors. The molecular pathogenesis of ALD involves alcohol metabolism and secondary mechanisms such as oxidative stress, endotoxin, cytokines and immune regulators. The histopathological manifestation of ALD occurs as an outcome of complex but controlled interactions between hepatic cell types. Hepatic stellate cells (HSCs) are the key drivers of fibrogenesis, but transformation of hepatocytes to myofibroblastoids also implicate parenchymal cells as playing an active role in hepatic fibrogenesis. Recent discoveries indicate that lipogenesis during the early stages of ALD is a risk for advancement to cirrhosis. Other recently identified novel molecules and physiological/cell signaling pathways include fibrinolysis, osteopontin, transforming growth factor-β-SMAD and hedgehog signaling, and involvement of novel cytokines in hepatic fibrogenesis. The observation that ALD and non-alcoholic steatohepatitis share common pathways and genetic polymorphisms suggests operation of parallel pathogenic mechanisms. Future research involving genomics, epigenomics, deep sequencing and non-coding regulatory elements holds promise to identify novel diagnostic and therapeutic targets for ALD. There is also a need for adequate animal models to study pathogenic mechanisms at the molecular level and targeted therapy.
Collapse
Affiliation(s)
- Devanshi Seth
- Drug Health Services, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia.
| | | | | | | | | |
Collapse
|
22
|
Greene MW, Burrington CM, Ruhoff MS, Johnson AK, Chongkrairatanakul T, Kangwanpornsiri A. PKC{delta} is activated in a dietary model of steatohepatitis and regulates endoplasmic reticulum stress and cell death. J Biol Chem 2010; 285:42115-29. [PMID: 20971848 DOI: 10.1074/jbc.m110.168575] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Hepatic steatosis can progress to the clinical condition of non-alcoholic steatohepatitis (NASH), which is a precursor of more serious liver diseases. The novel PKC isoforms δ and ε are activated by lipid metabolites and have been implicated in lipid-induced hepatic disease. Using a methionine- and choline-deficient (MCD) dietary model of NASH, we addressed the question of whether hepatic PKCδ and PKCε are activated. With progression from steatosis to steatohepatitis, there was activation and increased PKCδ protein content coincident with hepatic endoplasmic reticulum (ER) stress parameters. To examine whether similar changes could be induced in vitro, McA-RH 7777 (McA) hepatoma cells were used. We observed that McA cells stored triglyceride and released alanine aminotransferase (ALT) when treated with MCD medium in the presence of fatty acids. Further, MCD medium with palmitic acid, but not oleic or linoleic acids, maximally activated PKCδ and stimulated ER stress. In PKCδ knockdown McA cells, MCD/fatty acid medium-induced ALT release and ER stress induction were completely blocked, but triglyceride storage was not. In addition, a reduction in the uptake of propidium iodide and the number of apoptotic nuclei and a significant increase in cell viability and DNA content were observed in PKCδ knockdown McA cells incubated in MCD medium with palmitic acid. Our studies show that PKCδ activation and protein levels are elevated in an animal model of steatohepatitis, which was recapitulated in a cell model, supporting the conclusion that PKCδ plays a role in ALT release, the ER stress signal, and cell death.
Collapse
Affiliation(s)
- Michael W Greene
- Bassett Research Institute, Bassett Medical Center, Bassett Healthcare Network, Cooperstown, New York 13326, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Gupta NA, Mells J, Dunham RM, Grakoui A, Handy J, Saxena NK, Anania FA. Glucagon-like peptide-1 receptor is present on human hepatocytes and has a direct role in decreasing hepatic steatosis in vitro by modulating elements of the insulin signaling pathway. Hepatology 2010; 51:1584-92. [PMID: 20225248 PMCID: PMC2862093 DOI: 10.1002/hep.23569] [Citation(s) in RCA: 402] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
UNLABELLED Glucagon-like peptide 1 (GLP-1) is a naturally occurring peptide secreted by the L cells of the small intestine. GLP-1 functions as an incretin and stimulates glucose-mediated insulin production by pancreatic beta cells. In this study, we demonstrate that exendin-4/GLP-1 has a cognate receptor on human hepatocytes and that exendin-4 has a direct effect on the reduction of hepatic steatosis in the absence of insulin. Both glucagon-like peptide 1 receptor (GLP/R) messenger RNA and protein were detected on primary human hepatocytes, and receptor was internalized in the presence of GLP-1. Exendin-4 increased the phosphorylation of 3-phosphoinositide-dependent kinase-1 (PDK-1), AKT, and protein kinase C zeta (PKC-zeta) in HepG2 and Huh7 cells. Small interfering RNA against GLP-1R abolished the effects on PDK-1 and PKC-zeta. Treatment with exendin-4 quantitatively reduced triglyceride stores compared with control-treated cells. CONCLUSION This is the first report that the G protein-coupled receptor GLP-1R is present on human hepatocytes. Furthermore, it appears that exendin-4 has the same beneficial effects in vitro as those seen in our previously published in vivo study in ob/ob mice, directly reducing hepatocyte steatosis. Future use for human nonalcoholic fatty liver disease, either in combination with dietary manipulation or other pharmacotherapy, may be a significant advance in treatment of this common form of liver disease.
Collapse
Affiliation(s)
- Nitika Arora Gupta
- Department of Pediatrics, Emory University School of Medicine
- Children’s Healthcare of Atlanta, Transplant services
| | - Jamie Mells
- Nutrition and Health Sciences Program, Graduate Division of Biological and Biomedical Sciences
| | - Richard M. Dunham
- Department of Medicine, Division of Infectious Diseases, Microbiology and Immunology, Emory Vaccine Center
| | - Arash Grakoui
- Department of Medicine, Division of Infectious Diseases, Microbiology and Immunology, Emory Vaccine Center
| | - Jeffrey Handy
- Division of Digestive Diseases, Emory University School of Medicine
| | | | - Frank A. Anania
- Division of Digestive Diseases, Emory University School of Medicine
| |
Collapse
|
24
|
Abstract
The intracellular storage and utilization of lipids are critical to maintain cellular energy homeostasis. During nutrient deprivation, cellular lipids stored as triglycerides in lipid droplets are hydrolysed into fatty acids for energy. A second cellular response to starvation is the induction of autophagy, which delivers intracellular proteins and organelles sequestered in double-membrane vesicles (autophagosomes) to lysosomes for degradation and use as an energy source. Lipolysis and autophagy share similarities in regulation and function but are not known to be interrelated. Here we show a previously unknown function for autophagy in regulating intracellular lipid stores (macrolipophagy). Lipid droplets and autophagic components associated during nutrient deprivation, and inhibition of autophagy in cultured hepatocytes and mouse liver increased triglyceride storage in lipid droplets. This study identifies a critical function for autophagy in lipid metabolism that could have important implications for human diseases with lipid over-accumulation such as those that comprise the metabolic syndrome.
Collapse
|
25
|
Amino acids: metabolism, functions, and nutrition. Amino Acids 2009; 37:1-17. [PMID: 19301095 DOI: 10.1007/s00726-009-0269-0] [Citation(s) in RCA: 1759] [Impact Index Per Article: 109.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2009] [Accepted: 03/01/2009] [Indexed: 02/06/2023]
Abstract
Recent years have witnessed the discovery that amino acids (AA) are not only cell signaling molecules but are also regulators of gene expression and the protein phosphorylation cascade. Additionally, AA are key precursors for syntheses of hormones and low-molecular weight nitrogenous substances with each having enormous biological importance. Physiological concentrations of AA and their metabolites (e.g., nitric oxide, polyamines, glutathione, taurine, thyroid hormones, and serotonin) are required for the functions. However, elevated levels of AA and their products (e.g., ammonia, homocysteine, and asymmetric dimethylarginine) are pathogenic factors for neurological disorders, oxidative stress, and cardiovascular disease. Thus, an optimal balance among AA in the diet and circulation is crucial for whole body homeostasis. There is growing recognition that besides their role as building blocks of proteins and polypeptides, some AA regulate key metabolic pathways that are necessary for maintenance, growth, reproduction, and immunity. They are called functional AA, which include arginine, cysteine, glutamine, leucine, proline, and tryptophan. Dietary supplementation with one or a mixture of these AA may be beneficial for (1) ameliorating health problems at various stages of the life cycle (e.g., fetal growth restriction, neonatal morbidity and mortality, weaning-associated intestinal dysfunction and wasting syndrome, obesity, diabetes, cardiovascular disease, the metabolic syndrome, and infertility); (2) optimizing efficiency of metabolic transformations to enhance muscle growth, milk production, egg and meat quality and athletic performance, while preventing excess fat deposition and reducing adiposity. Thus, AA have important functions in both nutrition and health.
Collapse
|
26
|
Liu R, Pan X, Whitington PF. Increased hepatic expression is a major determinant of serum alanine aminotransferase elevation in mice with nonalcoholic steatohepatitis. Liver Int 2009; 29:337-43. [PMID: 18710424 DOI: 10.1111/j.1478-3231.2008.01862.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Serum alanine aminotransferase (ALT) is a biomarker for hepatitis of various aetiologies including fatty liver disease. Increased serum ALT is thought to be related to its increased release from dying hepatocytes. AIM We sought to understand the mechanisms by which serum ALT is elevated in a mouse model of experimental fatty liver disease where hepatocyte death is minimal. METHODS To induce fatty liver disease, female A/J mice were fed a methionine-choline deficient (MCD) diet for up to 12 weeks. Serum and liver ALT expression and hepatic inflammation, necrosis and apoptosis were assessed and expressed relative to their expressions in control-diet-fed mice. RESULTS Feeding mice the MCD diet produced hepatic steatosis with minimal hepatic inflammation or necrosis. Liver cell apoptosis was not significantly increased by MCD diet treatment. Conversely, serum ALT activity was approximately four-fold increased at 12 weeks of diet treatment, and ALT protein expressions in serum were correspondingly increased: ALT1 1.7-fold and ALT2 1.9-fold at 12 weeks. The expressions of ALT1 and ALT2 protein in liver increased over 2-12 weeks of MCD treatment. At 12 weeks, liver ALT1 protein was 2.27+/-0.31-fold increased and ALT2 protein 4.72+/-0.48-fold increased relative to their expressions in the mice fed a diet replete with methionine and choline. Liver ALT mRNA expressions were correspondingly increased: ALT1 mRNA 2.58-fold and ALT2 mRNA 4.97-fold at 12 weeks. Linear regression analysis showed a strong correlation between serum and liver tissue expressions for both ALT1 and ALT2. CONCLUSIONS These findings suggest that induction of hepatic expression significantly contributes to increased serum ALT in this model of experimental fatty liver disease, whereas cell death appears not to.
Collapse
Affiliation(s)
- Rui Liu
- Department of Pediatrics, Children's Memorial Research Center, Northwestern University, Feinberg School of Medicine, Chicago, IL 60614, USA
| | | | | |
Collapse
|
27
|
Shen B, Yu J, Wang S, Chu ESH, Wong VWS, Zhou X, Lin G, Sung JJY, Chan HLY. Phyllanthus urinaria ameliorates the severity of nutritional steatohepatitis both in vitro and in vivo. Hepatology 2008; 47:473-83. [PMID: 18157836 DOI: 10.1002/hep.22039] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hepatic oxidative stress plays a critical role in metabolic forms of steatohepatitis. Phyllanthus urinaria, an herbal medicine, has been reported to have potential antioxidant properties. We tested the effects of P. urinaria on nutritional steatohepatitis both in vitro and in vivo. Immortalized normal hepatocytes (AML-12) or primary hepatocytes were exposed to control, the methionine-and-choline-deficient (MCD) culture medium, in the presence or absence of P. urinaria for 24 hours. Hepatocyte triglyceride, release of alanine aminotransferase, lipoperoxides, and reactive oxygen species production were determined. Age-matched C57BL/6 and db/db mice were fed control or MCD diet for 10 days with or without P. urinaria. Hepatic steatosis, necroinflammation, triglycerides, and lipid peroxide levels were determined. Hepatic expression of inflammatory factors and lipid regulatory mediators were assayed. P. urinaria reduced steatosis and alanine aminotransferase (ALT) levels in culture of hepatocytes in a dose-dependent manner. Phyllanthus prevented MCD-induced hepatic fat accumulation and steatohepatitis in mice. This effect was associated with repressed levels of hepatic lipid peroxides, reduced expression of cytochrome P450-2E1, pro-inflammatory tumor necrosis factor alpha, interleukin-6, dampened activation of inflammatory c-Jun N-terminal kinase (JNK) and nuclear factor kappa B (NF-kappaB), increased expression of lipolytic cytochrome P450 (Cyp4a10), and suppressed transcriptional activity of lipogenic CCAAT/enhancer binding protein beta (C/EBPbeta). Hepatic acyl co-enzyme A oxidase that regulated hepatic beta-oxidation of fatty acid and other lipid regulators were not affected by P. urinaria. In conclusion, P. urinaria effectively alleviated the steatohepatitis induced by the MCD, probably through dampening oxidative stress, ameliorating inflammation, and decreasing lipid accumulation.
Collapse
Affiliation(s)
- Bo Shen
- Institute of Digestive Disease, Department of Medicine and Therapeutics, Hong Kong, China
| | | | | | | | | | | | | | | | | |
Collapse
|