1
|
Achary ST, Gupta P, Rajput A, Sohkhia W, Bonam SR, Sahu BD. Phytochemicals Targeting Inflammatory Pathways in Alcohol-Induced Liver Disease: A Mechanistic Review. Pharmaceuticals (Basel) 2025; 18:710. [PMID: 40430529 DOI: 10.3390/ph18050710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2025] [Revised: 05/06/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025] Open
Abstract
Alcoholic beverages play a significant role in social engagement worldwide. Excessive alcohol causes a variety of health complications. Alcohol-induced liver disease (ALD) is responsible for the bulk of linked fatalities. The activation of immune mechanisms has a crucial role in developing ALD. No effective medication promotes liver function, shields the liver from harm, or aids in hepatic cell regeneration. Alcohol withdrawal is one of the most beneficial therapies for ALD patients, which improves the patient's chances of survival. There is a crucial demand for safe and reasonably priced approaches to treating it. Exploring naturally derived phytochemicals has been a fascinating path, and it has drawn attention in recent years to modulators of inflammatory pathways for the prevention and management of ALD. In this review, we have discussed the roles of various immune mechanisms in ALD, highlighting the importance of intestinal barrier integrity and gut microbiota, as well as the roles of immune cells and hepatic inflammation, and other pathways, including cGAS-STING, NLRP3, MAPK, JAK-STAT, and NF-kB. Further, this review also outlines the possible role of phytochemicals in targeting these inflammatory pathways to safeguard the liver from alcohol-induced injury. We highlighted that targeting immunological mechanisms using phytochemicals or herbal medicine may find a place to counteract ALD. Preclinical in vitro and in vivo investigations have shown promising results; nonetheless, more extensive work is required to properly understand these compounds' mechanisms of action. Clinical investigations are very crucial in transferring laboratory knowledge into effective patient therapy.
Collapse
Affiliation(s)
- Swati Tirunal Achary
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati 781101, India
| | - Prerna Gupta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati 781101, India
| | - Apoorva Rajput
- Vaccine Immunology Laboratory, Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Wanphidabet Sohkhia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati 781101, India
| | - Srinivasa Reddy Bonam
- Vaccine Immunology Laboratory, Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Bidya Dhar Sahu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati 781101, India
| |
Collapse
|
2
|
Schnabl B, Damman CJ, Carr RM. Metabolic dysfunction-associated steatotic liver disease and the gut microbiome: pathogenic insights and therapeutic innovations. J Clin Invest 2025; 135:e186423. [PMID: 40166938 PMCID: PMC11957707 DOI: 10.1172/jci186423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a major cause of liver disease worldwide, and our understanding of its pathogenesis continues to evolve. MASLD progresses from steatosis to steatohepatitis, fibrosis, and cirrhosis, and this Review explores how the gut microbiome and their metabolites contribute to MASLD pathogenesis. We explore the complexity and importance of the intestinal barrier function and how disruptions of the intestinal barrier and dysbiosis work in concert to promote the onset and progression of MASLD. The Review focuses on specific bacterial, viral, and fungal communities that impact the trajectory of MASLD and how specific metabolites (including ethanol, bile acids, short chain fatty acids, and other metabolites) contribute to disease pathogenesis. Finally, we underscore how knowledge of the interaction between gut microbes and the intestinal barrier may be leveraged for MASLD microbial-based therapeutics. Here, we include a discussion of the therapeutic potential of prebiotics, probiotics, postbiotics, and microbial-derived metabolites.
Collapse
Affiliation(s)
- Bernd Schnabl
- Department of Medicine, Division of Gastroenterology, UCSD, San Diego, California, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, California, USA
| | - Christopher J. Damman
- Department of Medicine, Division of Gastroenterology, University of Washington, Seattle, Washington, USA
| | - Rotonya M. Carr
- Department of Medicine, Division of Gastroenterology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
3
|
Farhadi S, Mohammadi S, AlKindi AY, Al-Amri IS. Therapeutic potential of elafibranor in alcohol-associated liver disease: Insights into macrophage modulation and fibrosis reduction. World J Biol Chem 2025; 16:104535. [PMID: 40070853 PMCID: PMC11891553 DOI: 10.4331/wjbc.v16.i1.104535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/23/2025] [Accepted: 03/04/2025] [Indexed: 03/05/2025] Open
Abstract
Alcohol-associated liver disease (ALD) is a major global health concern, contributing to liver injury, morbidity, and mortality. Elafibranor (EFN), a dual peroxisome proliferator-activated receptor α/δ agonist, has shown promise as a therapeutic candidate in preclinical studies. EFN reduces liver fibrosis by inhibiting lipid accumulation, apoptosis, and inflammatory pathways (LPS/TLR4/NF-κB), while enhancing autophagy and antioxidant responses. It also improves intestinal barrier function and modulates gut microbiota, reducing endotoxin-producing bacteria and increasing beneficial species. By strengthening the intestinal barrier and suppressing pro-inflammatory mediators like tumor necrosis factor-alpha and interleukin-6, EFN mitigates hepatic stellate cell activation and fibrogenic signaling. Macrophages play a central role in ALD progression, and EFN's ability to modulate macrophage activity further highlights its anti-inflammatory properties. This review emphasizes EFN's dual-targeted approach, addressing both hepatic and intestinal dysfunctions, distinguishing it from conventional ALD treatments. While preclinical results are promising, EFN remains under clinical investigation, with ongoing trials evaluating its safety and efficacy. Future research should focus on elucidating EFN's molecular mechanisms and advancing its clinical application to establish its therapeutic potential in human populations. EFN represents a novel, comprehensive strategy for ALD management, targeting both liver and gut pathologies.
Collapse
Affiliation(s)
- Samira Farhadi
- Department of Biological Sciences and Chemistry, College of Arts and Sciences, University of Nizwa, Nizwa 616, Ad Dākhilīyah, Oman
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Ad Dākhilīyah, Oman
- Department of Agricultural Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht 4188958643, Gīlān, Iran
| | - Saeed Mohammadi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Ad Dākhilīyah, Oman
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan 4934174515, Golestān, Iran
| | - Abdulaziz Y AlKindi
- Department of Biological Sciences and Chemistry, College of Arts and Sciences, University of Nizwa, Nizwa 616, Ad Dākhilīyah, Oman
| | - Issa S Al-Amri
- Department of Biological Sciences and Chemistry, College of Arts and Sciences, University of Nizwa, Nizwa 616, Ad Dākhilīyah, Oman
| |
Collapse
|
4
|
Mullin SM, Kelly AJ, Ní Chathail MB, Norris S, Shannon CE, Roche HM. Macronutrient Modulation in Metabolic Dysfunction-Associated Steatotic Liver Disease-the Molecular Role of Fatty Acids compared with Sugars in Human Metabolism and Disease Progression. Adv Nutr 2025; 16:100375. [PMID: 39842721 PMCID: PMC11849631 DOI: 10.1016/j.advnut.2025.100375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/23/2024] [Accepted: 01/13/2025] [Indexed: 01/24/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a significant public health concern, with its progression to metabolic dysfunction-associated steatohepatitis (MASH) and fibrosis leading to severe outcomes including cirrhosis, hepatocellular carcinoma, and liver failure. Whereas obesity and excess energy intake are well-established contributors to the development and progression of MASLD, the distinct role of specific macronutrients is less clear. This review examines the mechanistic pathways through which dietary fatty acids and sugars contribute to the development of hepatic inflammation and fibrosis, offering a nuanced understanding of their respective roles in MASLD progression. In terms of addressing potential therapeutic options, human intervention studies that investigate whether modifying the intake of dietary fats and carbohydrates affects MASLD progression are reviewed. By integrating this evidence, this review seeks to bridge the gap in the understanding between the mechanisms of macronutrient-driven MASLD progression and the effect of altering the intake of these nutrients in the clinical setting and presents a foundation for future research into targeted dietary strategies for the treatment of the disease.
Collapse
Affiliation(s)
- Sinéad M Mullin
- School of Public Health, Physiotherapy and Sport Science, and Institute of Food and Health, University College Dublin, Belfield, Dublin, Ireland; Nutrigenomics Research Group, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Aidan J Kelly
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Méabh B Ní Chathail
- School of Public Health, Physiotherapy and Sport Science, and Institute of Food and Health, University College Dublin, Belfield, Dublin, Ireland; Nutrigenomics Research Group, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Suzanne Norris
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Christopher E Shannon
- Nutrigenomics Research Group, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland; School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Helen M Roche
- School of Public Health, Physiotherapy and Sport Science, and Institute of Food and Health, University College Dublin, Belfield, Dublin, Ireland; Nutrigenomics Research Group, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland; Institute for Global Food Security, Queen's University Belfast, Northern Ireland.
| |
Collapse
|
5
|
Wayal V, Wang SD, Hsieh CC. Novel bioactive peptides alleviate Western diet-induced MAFLD in C57BL/6J mice by inhibiting NLRP3 inflammasome activation and pyroptosis via TLR4/NF-κB and Keap1/Nrf2/HO-1 signaling pathways. Int Immunopharmacol 2025; 148:114177. [PMID: 39874846 DOI: 10.1016/j.intimp.2025.114177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 01/30/2025]
Abstract
Metabolic-associated fatty liver disease (MAFLD) has emerged as a leading chronic liver disease. This condition is characterized by an abnormal accumulation of fat within liver and can progress from simple steatosis to more severe stages involving chronic inflammation and oxidative stress. In this study, we investigated the potential therapeutic effects and underlying mechanism of novel bioactive peptides (EWYF and EWFY) on Western diet-induced MAFLD in C57BL/6J mice. Mice fed a normal chow diet (ND group) and Western diet (WD and treatment groups) for 8 weeks. Treatment groups received EWYF and EWFY peptides in low (10 mg/kg/day) and high (50 mg/kg/day) doses were divided into four groups: EWYF10, EWYF50, EWFY10, and EWFY50. Western diet-induced body weight gain and increased liver weight along with visceral adiposity, which were markedly reversed by bioactive peptides in a dose-dependent manner. Additionally, bioactive peptides significantly reduced hepatic steatosis, liver injury and proinflammatory response. Western diet-induced glucose tolerance and insulin resistance, whereas bioactive peptides significantly improved glucose tolerance and insulin sensitivity. Persistent intake of Western diet triggered chronic inflammation and severe oxidative stress, which were significantly alleviated by bioactive peptides treatment via inhibiting NOD-like receptor protein 3 (NLRP3) inflammasome activation and mitigated pyroptosis by modulating TLR4/NF-κB and Keap1/Nrf2/HO-1 signaling pathways. Furthermore, molecular docking studies suggest that EWYF and EWFY act as fructokinase antagonists and TLR4 inhibitors, which potentially alleviates Western diet-induced MAFLD. Collectively, these findings highlight EWYF and EWFY as promising candidates for MAFLD treatment due to their potent antioxidant and anti-inflammatory properties via specific molecular inhibition.
Collapse
Affiliation(s)
- Vipul Wayal
- Department of Animal Science and Biotechnology, Tunghai University, Taichung 407224 Taiwan
| | - Shulhn-Der Wang
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404328 Taiwan; Green Abiotechnology Co. Ltd, Taichung 429010 Taiwan
| | - Chang-Chi Hsieh
- Department of Animal Science and Biotechnology, Tunghai University, Taichung 407224 Taiwan.
| |
Collapse
|
6
|
Ku J, Hsu J, Li Y, Wu L. Interplay among IL1R1, gut microbiota, and bile acids in metabolic dysfunction-associated steatotic liver disease: a comprehensive review. J Gastroenterol Hepatol 2025; 40:33-40. [PMID: 39343617 PMCID: PMC11771549 DOI: 10.1111/jgh.16750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/07/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent metabolic disorder characterized by hepatic steatosis associated with metabolic abnormalities. Recent research has shed light on the intricate interplay among interleukin-1 receptor 1 (IL1R1), gut microbiota, and bile acids in the pathogenesis of MASLD. This review aims to provide a comprehensive overview of the current understanding of the role of IL1R1, gut microbiota, and bile acids in MASLD, exploring their interrelationships and potential mechanisms. We summarize the evidence supporting the involvement of IL1R1 in inflammation, discuss the influence of gut microbiota on bile acid metabolism and its influence on liver health, and elucidate the bidirectional interactions among IL1R1 signaling, gut microbiota composition, and bile acid homeostasis in MASLD. Furthermore, we highlight emerging therapeutic strategies targeting these interrelated pathways for the management of MASLD.
Collapse
Affiliation(s)
- Jie‐Lun Ku
- School of Medicine, College of MedicineNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Jia‐Rou Hsu
- Department and Institute of Physiology, College of MedicineNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Yung‐Tsung Li
- Graduate Institute of Clinical Medicine, College of MedicineNational Taiwan UniversityTaipei100Taiwan
| | - Li‐Ling Wu
- Department and Institute of Physiology, College of MedicineNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
- Health Innovation CenterNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
- Microbiota Research CenterNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| |
Collapse
|
7
|
Yilmaz Y. Postbiotics as Antiinflammatory and Immune-Modulating Bioactive Compounds in Metabolic Dysfunction-Associated Steatotic Liver Disease. Mol Nutr Food Res 2024; 68:e2400754. [PMID: 39499063 DOI: 10.1002/mnfr.202400754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/12/2024] [Indexed: 11/07/2024]
Abstract
Postbiotics, defined as products or metabolic byproducts secreted by live bacteria or released after bacterial lysis, are emerging as promising therapeutic agents for metabolic dysfunction-associated steatotic liver disease (MASLD). This review explores the antiinflammatory and immunomodulatory properties of various postbiotics, including exopolysaccharides, lipoteichoic acid, short-chain fatty acids, hydrogen sulfide, polyamines, tryptophan derivatives, and polyphenol metabolites. These compounds have demonstrated potential in mitigating steatotic liver infiltration, reducing inflammation, and slowing fibrosis progression in preclinical studies. Notably, postbiotics exert their beneficial effects by modulating gut microbiota composition, enhancing intestinal barrier function, optimizing lipid metabolism, reducing hepatic inflammation and steatosis, and exhibiting hepatoprotective properties. However, translating these findings into clinical practice requires well-designed trials to validate efficacy and safety, standardize production and characterization, and explore personalized approaches and synergistic effects with other therapeutic modalities. Despite challenges, the unique biological properties of postbiotics, such as enhanced safety compared to probiotics, make them attractive candidates for developing novel nutritional interventions targeting the multifactorial pathogenesis of MASLD. Further research is needed to establish their clinical utility and potential to improve liver and systemic outcomes in this increasingly prevalent condition.
Collapse
Affiliation(s)
- Yusuf Yilmaz
- Department of Gastroenterology, School of Medicine, Recep Tayyip Erdoğan University, Rize, Türkiye
- The Global NASH Council, Washington, DC, 53020, USA
| |
Collapse
|
8
|
Skladany L, Kubanek N, Adamcova Selcanova S, Zilincanova D, Havaj D, Sulejova K, Soltys K, Messingerova L, Lichvar M, Laffers L, Zilincan M, Honsova E, Liptak P, Banovcin P, Bures J, Koller T, Golubnitschaja O, Arab JP. 3PM-guided innovation in treatments of severe alcohol-associated hepatitis utilizing fecal microbiota transplantation. EPMA J 2024; 15:677-692. [PMID: 39635024 PMCID: PMC11612130 DOI: 10.1007/s13167-024-00381-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 10/13/2024] [Indexed: 12/07/2024]
Abstract
RATIONALE Severe alcohol-associated hepatitis (SAH) is the most critical, acute, inflammatory phenotype within the alcohol-associated liver disease (ALD) spectrum, characterized by high 30- and 90-day mortality. Since several decades, corticosteroids (CS) are the only approved pharmacotherapy offering highly limited survival benefits. Contextually, there is an evident demand for 3PM innovation in the area meeting patients' needs and improving individual outcomes. Fecal microbiota transplantation (FMT) has emerged as one of the new potential therapeutic options. In this study, we aimed to address the crucial 3PM domains in order to assess (i) the impact of FMT on mortality in SAH patients beyond CS, (ii) to identify factors associated with the outcome to be improved (iii) the prediction of futility, (iv) prevention of suboptimal individual outcomes linked to increased mortality, and (v) personalized allocation of therapy. METHODS We conducted a prospective study (NCT04758806) in adult patients with SAH who were non-responders (NR) to or non-eligible (NE) for CS between January 2018 and August 2022. The intervention consisted of five 100 ml of FMT, prepared from 30 g stool from an unrelated healthy donor and frozen at - 80 °C, administered daily to the upper gastrointestinal (GI) tract. We evaluated the impact of FMT on 30- and 90-day mortality which we compared to the control group selected by the propensity score matching and treated by the standard of care; the control group was derived from the RH7 registry of patients hospitalized at the liver unit (NCT04767945). We have also scrutinized the FMT outcome against established and potential prognostic factors for SAH - such as the model for end-stage liver disease (MELD), Maddrey Discriminant Function (MDF), acute-on-chronic liver failure (ACLF), Liver Frailty Index (LFI), hepatic venous-portal pressure gradient (HVPG) and Alcoholic Hepatitis Histologic Score (AHHS) - to see if the 3PM method assigns them a new dimension in predicting response to therapy, prevention of suboptimal individual outcomes, and personalized patient management. RESULTS We enrolled 44 patients with SAH (NR or NE) on an intention-to-treat basis; we analyzed 33 patients per protocol for associated factors (after an additional 11 being excluded for receiving less than 5 doses of FMT), and 31 patients by propensity score matching for corresponding individual outcomes, respectively. The mean age was 49.6 years, 11 patients (33.3%) were females. The median MELD score was 29, and ACLF of any degree had 27 patients (81.8%). FMT improved 30-day mortality (p = 0.0204) and non-significantly improved 90-day mortality (p = 0.4386). Univariate analysis identified MELD ≥ 30, MDF ≥ 90, and ACLF grade > 1 as significant predictors of 30-day mortality, (p = 0.031; p = 0.014; p = 0.034). Survival was not associated with baseline LFI, HVPG, or AHHS. CONCLUSIONS AND RECOMMENDATIONS IN THE FRAMEWORK OF 3PM In the most difficult-to-treat sub-cohort of patients with SAH (i.e., NR/NE), FMT improved 30-day mortality. Factors associated with benefit included MELD ≤ 30, MDF ≤ 90, and ACLF < 2. These results support the potential of gut microbiome as a therapeutic target in the context of 3PM research and vice versa - to use 3PM methodology as the expedient unifying template for microbiome research. The results allow for immediate impact on the innovative concepts of (i) personalized phenotyping and stratification of the disease for the clinical research and practice, (ii) multilevel predictive diagnosis related to personalized/precise treatment allocation including evidence-based (ii) prevention of futile and sub-optimally effective therapy, as well as (iii) targeted prevention of poor individual outcomes in patients with SAH. Moreover, our results add to the existing evidence with the potential to generate new research along the SAH's pathogenetic pathways such as diverse individual susceptibility to alcohol toxicity, host-specific mitochondrial function and systemic inflammation, and the role of gut dysbiosis thereof. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13167-024-00381-5.
Collapse
Affiliation(s)
- Lubomir Skladany
- HEGITO - Department of Hepatology, Gastroenterology and Liver Transplantation of F. D., Roosevelt University Hospital, Banska Bystrica, Slovakia
| | - Natalia Kubanek
- HEGITO - Department of Hepatology, Gastroenterology and Liver Transplantation of F. D., Roosevelt University Hospital, Banska Bystrica, Slovakia
| | - Svetlana Adamcova Selcanova
- HEGITO - Department of Hepatology, Gastroenterology and Liver Transplantation of F. D., Roosevelt University Hospital, Banska Bystrica, Slovakia
| | - Daniela Zilincanova
- HEGITO - Department of Hepatology, Gastroenterology and Liver Transplantation of F. D., Roosevelt University Hospital, Banska Bystrica, Slovakia
| | - Daniel Havaj
- HEGITO - Department of Hepatology, Gastroenterology and Liver Transplantation of F. D., Roosevelt University Hospital, Banska Bystrica, Slovakia
| | - Karolina Sulejova
- HEGITO - Department of Hepatology, Gastroenterology and Liver Transplantation of F. D., Roosevelt University Hospital, Banska Bystrica, Slovakia
| | - Katarina Soltys
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava, Slovakia
| | - Lucia Messingerova
- Centre of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Bratislava, Slovakia
- Faculty of Chemical and Food Technology, Institute of Biochemistry and Microbiology, Slovak University of Technology, Bratislava, Slovakia
| | | | - Lukas Laffers
- Department of Mathematics, Faculty of Natural Sciences, Matej Bel University, Banska Bystrica, Slovakia
| | - Michal Zilincan
- Department of Radiology, FD Roosevelt Faculty Hospital, Banska Bystrica, Slovakia
| | - Eva Honsova
- UniLabs S.R.O - Pathology, Prague, Czech Republic
| | - Peter Liptak
- Jessenius Faculty of Medicine in Martin (JFM CU), Gastroenterology Clinic JFM CU, Comenius University in Bratislava, Martin, Slovakia
| | - Peter Banovcin
- Department of Internal Medicine, Charles University First Faculty of Medicine and Military University Hospital Prague, Prague, Czech Republic
| | - Jan Bures
- Department of Internal Medicine, Charles University First Faculty of Medicine and Military University Hospital Prague, Prague, Czech Republic
- Institute of Gastrointestinal Oncology, Military University Hospital Prague, Prague, Czech Republic
| | - Tomas Koller
- Gastroenterology and Hepatology Subdivision, 5Th Department of Internal Medicine, Comenius University Faculty of Medicine, University Hospital Bratislava, Bratislava, Slovakia
| | - Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Juan-Pablo Arab
- Division of Gastroenterology, Department of Medicine, Schulich School of Medicine, Western University & London Health Sciences Centre, London, ON Canada
- Departamento de Gastroenterologia, Escuela de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| |
Collapse
|
9
|
Hermanson JB, Tolba SA, Chrisler EA, Leone VA. Gut microbes, diet, and genetics as drivers of metabolic liver disease: a narrative review outlining implications for precision medicine. J Nutr Biochem 2024; 133:109704. [PMID: 39029595 PMCID: PMC11480923 DOI: 10.1016/j.jnutbio.2024.109704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/01/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is rapidly increasing in prevalence, impacting over a third of the global population. The advanced form of MASLD, Metabolic dysfunction-associated steatohepatitis (MASH), is on track to become the number one indication for liver transplant. FDA-approved pharmacological agents are limited for MASH, despite over 400 ongoing clinical trials, with only a single drug (resmetirom) currently on the market. This is likely due to the heterogeneous nature of disease pathophysiology, which involves interactions between highly individualized genetic and environmental factors. To apply precision medicine approaches that overcome interpersonal variability, in-depth insights into interactions between genetics, nutrition, and the gut microbiome are needed, given that each have emerged as dynamic contributors to MASLD and MASH pathogenesis. Here, we discuss the associations and molecular underpinnings of several of these factors individually and outline their interactions in the context of both patient-based studies and preclinical animal model systems. Finally, we highlight gaps in knowledge that will require further investigation to aid in successfully implementing precision medicine to prevent and alleviate MASLD and MASH.
Collapse
Affiliation(s)
- Jake B Hermanson
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Samar A Tolba
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Evan A Chrisler
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Vanessa A Leone
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
10
|
Mercado-Gómez M, Goikoetxea-Usandizaga N, Kerbert AJC, Gracianteparaluceta LU, Serrano-Maciá M, Lachiondo-Ortega S, Rodriguez-Agudo R, Gil-Pitarch C, Simón J, González-Recio I, Fondevila MF, Santamarina-Ojeda P, Fraga MF, Nogueiras R, Heras JDL, Jalan R, Martínez-Chantar ML, Delgado TC. The lipopolysaccharide-TLR4 axis regulates hepatic glutaminase 1 expression promoting liver ammonia build-up as steatotic liver disease progresses to steatohepatitis. Metabolism 2024; 158:155952. [PMID: 38906371 DOI: 10.1016/j.metabol.2024.155952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 06/23/2024]
Abstract
INTRODUCTION Ammonia is a pathogenic factor implicated in the progression of metabolic-associated steatotic liver disease (MASLD). The contribution of the glutaminase 1 (GLS) isoform, an enzyme converting glutamine to glutamate and ammonia, to hepatic ammonia build-up and the mechanisms underlying its upregulation in metabolic-associated steatohepatitis (MASH) remain elusive. METHODS Multiplex transcriptomics and targeted metabolomics analysis of liver biopsies in dietary mouse models representing the whole spectra of MASLD were carried out to characterize the relevance of hepatic GLS during disease pathological progression. In addition, the acute effect of liver-specific GLS inhibition in hepatic ammonia content was evaluated in cultured hepatocytes and in in vivo mouse models of diet-induced MASLD. Finally, the regulatory mechanisms of hepatic GLS overexpression related to the lipopolysaccharide (LPS)/Toll-like receptor 4 (TLR4) axis were explored in the context of MASH. RESULTS In mouse models of diet-induced MASLD, we found that augmented liver GLS expression is closely associated with the build-up of hepatic ammonia as the disease progresses from steatosis to steatohepatitis. Importantly, the acute silencing/pharmacological inhibition of GLS diminishes the ammonia burden in cultured primary mouse hepatocytes undergoing dedifferentiation, in steatotic hepatocytes, and in a mouse model of diet-induced steatohepatitis, irrespective of changes in ureagenesis and gut permeability. Under these conditions, GLS upregulation in the liver correlates positively with the hepatic expression of TLR4 that recognizes LPS. In agreement, the pharmacological inhibition of TLR4 reduces GLS and hepatic ammonia content in LPS-stimulated mouse hepatocytes and hyperammonemia animal models of endotoxemia. CONCLUSIONS Overall, our results suggest that the LPS/TLR4 axis regulates hepatic GLS expression promoting liver ammonia build-up as steatotic liver disease progresses to steatohepatitis.
Collapse
Affiliation(s)
- Maria Mercado-Gómez
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Naroa Goikoetxea-Usandizaga
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| | - Annarein J C Kerbert
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| | | | - Marina Serrano-Maciá
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Sofia Lachiondo-Ortega
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Rubén Rodriguez-Agudo
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Clàudia Gil-Pitarch
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Jorge Simón
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| | - Irene González-Recio
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Marcos F Fondevila
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain
| | - Pablo Santamarina-Ojeda
- Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Asturias, Spain; Spanish Biomedical Research Network in Rare Diseases (CIBERER), 28029 Madrid, Spain; Nanomaterials and Nanotechnology Research Center (CINN), Spanish National Research Council (CSIC), 33940 El Entrego, Asturias, Spain
| | - Mario F Fraga
- Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Asturias, Spain; Spanish Biomedical Research Network in Rare Diseases (CIBERER), 28029 Madrid, Spain; Nanomaterials and Nanotechnology Research Center (CINN), Spanish National Research Council (CSIC), 33940 El Entrego, Asturias, Spain; Institute of Oncology of Asturias (IUOPA), University of Oviedo, 33006 Oviedo, Asturias, Spain
| | - Rubén Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), 28029 Madrid, Spain; Galician Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, Spain
| | - Javier de Las Heras
- Biobizkaia Health Research Institute, 48903 Barakaldo, Spain; Division of Paediatric Metabolism, CIBERER, MetabERN, Cruces University Hospital, 48903 Barakaldo, Spain.; Department of Paediatrics, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Rajiv Jalan
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| | - María Luz Martínez-Chantar
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain.
| | - Teresa C Delgado
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Biobizkaia Health Research Institute, 48903 Barakaldo, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
11
|
Chayanupatkul M, Machchimapiro P, Chuaypen N, Wanpiyarat N, Tumwasorn S, Siriviriyakul P, Werawatganon D. Single and Mixed Strains of Probiotics Reduced Hepatic Fat Accumulation and Inflammation and Altered Gut Microbiome in a Nonalcoholic Steatohepatitis Rat Model. Biomedicines 2024; 12:1847. [PMID: 39200311 PMCID: PMC11605219 DOI: 10.3390/biomedicines12081847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
As gut dysbiosis has been implicated in the pathogenesis of nonalcoholic steatohepatitis (NASH), probiotic supplementation might be a potential treatment for this condition. The aim of this study was to evaluate the effects of single- and mixed-strain probiotics on the severity of NASH induced by a high-fat, high-fructose (HFHF) diet and their mechanisms of action. Male Sprague-Dawley rats were divided into four groups (n = 7 per group): control group, NASH group, NASH + single-strain group, and NASH + mixed-strain group. In the single-strain and mixed-strain groups, rats received Lactobacillus plantarum B7 and Lactobacillus rhamnosus L34 + Lactobacillus paracasei B13 by oral gavage once daily, respectively. The duration of the study was 6 weeks. Liver tissue was used for histopathology, hepatic fat content was assessed by Oil Red O staining and hepatic free fatty acid (FFA), and hepatic TLR4 and CD14 expression were assessed by immunohistochemistry. Fresh feces was collected for gut microbiota analysis. Liver histology revealed a higher degree of fat accumulation, hepatocyte ballooning, and lobular inflammation in the NASH group, which improved in probiotics-treated groups. The amounts of hepatic fat droplets and hepatic FFA levels were more pronounced in the NASH group than in the control and treatment groups. Serum TNF- α levels were significantly higher in the NASH group than in control and probiotic groups. The expression of CD14 and TLR4 increased in the NASH group as compared with the control and probiotics-treated groups. Alpha diversity was reduced in the NASH group, but increased in both treatment groups. The relative abundance of Lactobacillus significantly decreased in the NASH group, but increased in both treatment groups. The relative abundance of Akkermansia significantly increased in the NASH group, but decreased in both treatment groups. In conclusion, both single-strain and mixed-strain probiotics could improve NASH histology by suppressing inflammatory responses in the liver, with this improvement potentially being associated with changes in the gut microbiota.
Collapse
Affiliation(s)
- Maneerat Chayanupatkul
- Center of Excellence in Alternative and Complementary Medicine for Gastrointestinal and Liver Diseases, Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Panrawee Machchimapiro
- Center of Excellence in Alternative and Complementary Medicine for Gastrointestinal and Liver Diseases, Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Natthaya Chuaypen
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Metabolic Diseases in Gut and Urinary System Research Unit (MeDGURU), Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Natcha Wanpiyarat
- Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Somying Tumwasorn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Prasong Siriviriyakul
- Center of Excellence in Alternative and Complementary Medicine for Gastrointestinal and Liver Diseases, Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Duangporn Werawatganon
- Center of Excellence in Alternative and Complementary Medicine for Gastrointestinal and Liver Diseases, Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
12
|
Yang Y, Wang X. Nano-drug delivery systems (NDDS) in metabolic dysfunction-associated steatotic liver disease (MASLD): current status, prospects and challenges. Front Pharmacol 2024; 15:1419384. [PMID: 39166109 PMCID: PMC11333238 DOI: 10.3389/fphar.2024.1419384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/24/2024] [Indexed: 08/22/2024] Open
Abstract
About one-third of the global population suffers from metabolic dysfunction-associated steatotic liver disease (MASLD), but specific treatments for MASLD have long been lacking, primarily due to the unclear etiology of the disease. In addition to lifestyle modifications and weight loss surgery, pharmacotherapy is the most common treatment among MASLD patients, and these drugs typically target the pathogenic factors of MASLD. However, bioavailability, efficacy, and side effects all limit the maximum therapeutic potential of the drugs. With the development of nanomedicine, recent years have seen attempts to combine MASLD pharmacotherapy with nanomaterials, such as liposomes, polymer nanoparticles, micelles, and cocrystals, which effectively improves the water solubility and targeting of the drugs, thereby enhancing therapeutic efficacy and reducing toxic side effects, offering new perspectives and futures for the treatment of MASLD.
Collapse
Affiliation(s)
| | - Xiaojing Wang
- Department of Gastroenterology, The Fifth Affiliated Hospital of Wenzhou Medical University and Lishui Municipal Central Hospital, Lishui, China
| |
Collapse
|
13
|
Mohammadhasani K, Vahedi Fard M, Mottaghi Moghaddam Shahri A, Khorasanchi Z. Polyphenols improve non-alcoholic fatty liver disease via gut microbiota: A comprehensive review. Food Sci Nutr 2024; 12:5341-5356. [PMID: 39139973 PMCID: PMC11317728 DOI: 10.1002/fsn3.4178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 08/15/2024] Open
Abstract
Polyphenols, natural micronutrients derived from plants, are valued for their anti-inflammatory and antioxidant properties. The escalating global prevalence of non-alcoholic fatty liver disease (NAFLD) underscores its status as a chronic progressive liver condition. Furthermore, the dysregulation of gut microbiota (GM) is implicated in the onset and progression of NAFLD through the actions of metabolites such as bile acids (BAs), lipopolysaccharide (LPS), choline, and short-chain fatty acids (SCFAs). Additionally, GM may influence the integrity of the intestinal barrier. This review aims to evaluate the potential effects of polyphenols on GM and intestinal barrier function, and their subsequent impact on NAFLD. We searched through a wide range of databases, such as Web of Science, PubMed, EMBASE, and Scopus to gather information for our non-systematic review of English literature. GM functions and composition can be regulated by polyphenols such as chlorogenic acid, curcumin, green tea catechins, naringenin, quercetin, resveratrol, and sulforaphane. Regulating GM composition improves NAFLD by alleviating inflammation, liver fat accumulation, and liver enzymes. Furthermore, it improves serum lipid profile and gut barrier integrity. All of these components affect NAFLD through the metabolites of GM, including SCFAs, choline, LPS, and BAs. Current evidence indicates that chlorogenic acid, resveratrol, quercetin, and curcumin can modulate GM, improving intestinal barrier integrity and positively impacting NAFLD. More studies are necessary to evaluate the safety and efficacy of naringenin, sulforaphane, and catechin.
Collapse
Affiliation(s)
- Kimia Mohammadhasani
- Department of Nutrition, Food Sciences and Clinical Biochemistry, School of Medicine, Social Determinants of Health Research CenterGonabad University of Medical SciencesGonabadIran
| | - Mohammad Vahedi Fard
- Department of Nutrition, Food Sciences and Clinical Biochemistry, School of Medicine, Social Determinants of Health Research CenterGonabad University of Medical SciencesGonabadIran
| | - Ali Mottaghi Moghaddam Shahri
- International UNESCO Center for Health‐Related Basic Sciences and Human NutritionMashhad University of Medical SciencesMashhadIran
| | - Zahra Khorasanchi
- Department of Nutrition, School of MedicineMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
14
|
Chen H, Zhou Y, Hao H, Xiong J. Emerging mechanisms of non-alcoholic steatohepatitis and novel drug therapies. Chin J Nat Med 2024; 22:724-745. [PMID: 39197963 DOI: 10.1016/s1875-5364(24)60690-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Indexed: 09/01/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become a leading cause of chronic liver disease globally. It initiates with simple steatosis (NAFL) and can progress to the more severe condition of non-alcoholic steatohepatitis (NASH). NASH often advances to end-stage liver diseases such as liver fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Notably, the transition from NASH to end-stage liver diseases is irreversible, and the precise mechanisms driving this progression are not yet fully understood. Consequently, there is a critical need for the development of effective therapies to arrest or reverse this progression. This review provides a comprehensive overview of the pathogenesis of NASH, examines the current therapeutic targets and pharmacological treatments, and offers insights for future drug discovery and development strategies for NASH therapy.
Collapse
Affiliation(s)
- Hao Chen
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yang Zhou
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Haiping Hao
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Jing Xiong
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
15
|
Liu J, Zheng Y, Yang S, Zhang L, Liu B, Zhang J, Yu X, Wei X, Li S, Wang J, Lv H. Targeting antioxidant factor Nrf2 by raffinose ameliorates lipid dysmetabolism-induced pyroptosis, inflammation and fibrosis in NAFLD. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155756. [PMID: 38833791 DOI: 10.1016/j.phymed.2024.155756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/27/2024] [Accepted: 05/16/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a persistent liver condition that affects both human health and animal productive efficiency on a global scale. A number of naturally occurring compounds activate nuclear factor erythroid 2-related factor 2 (Nrf2) as a transcription factor with important protective effects against many liver diseases, including NAFLD. Raffinose (Ra), an oligosaccharide extracted from several plants, exhibits diverse biological functions. However, the uncertainty lies in determining whether the activation of Nrf2 by Ra can provide a preventive effect on liver lipotoxicity. PURPOSE The aim of this study was to shed light on the molecular pathways by which Ra possesses its protective benefits against NAFLD. METHODS Experimental protocols were established using WT and Nrf2-null (Nrf2-/-) mice. Liver samples from each group were collected for Western blot, RT-qPCR, H & E, Sirius red and Oil red O staining. Additionally, serums were processed for ELISA. ALM12 cells were gathered for Western blot and immunofluorescence. Moreover, to elucidate the molecular mechanism of Ra, molecular docking was performed. RESULTS Our results indicated that Ra remarkably alleviated liver lipotoxic in vivo and in vitro. Ra treatment effectively corrected hepatic steatosis, the release of AST, ALT, TG, and TC, as well as the depletion of HDL and LDL. Meanwhile, Ra efficiently prevented inflammation by inhibiting the TLR4-MyD88-NF-κB pathway and pyroptosis. Additionally, these findings implied that Ra reduced the production of fibrosis-related proteins, which enhanced collagen deposition. Molecular docking revealed that Ra possessed the ability to bind specific regions of Nrf2, resulting in the enhancement of Nrf2 activation and nuclear translocation. Ra treatment restored serum redox factors and antioxidant enzymes to normal levels; however, these alterations were clearly reversed in Nrf2-/- mice. CONCLUSION This study reveals novel information on Ra's protective benefits against liver injury caused by abnormal lipid metabolism; these effects are mostly mediated by Nrf2 activation, suggesting a potential new medicine or treatment strategy for NAFLD.
Collapse
Affiliation(s)
- Jiahe Liu
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Yuwei Zheng
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Songya Yang
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Lihan Zhang
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Bingxue Liu
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Jiexing Zhang
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Xiaoqing Yu
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Xiangjian Wei
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Shize Li
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Jianfa Wang
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China.
| | - Hongming Lv
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China.
| |
Collapse
|
16
|
Sugita K, Yano K, Onishi S, Tabata Y, Iwamoto Y, Ogata M, Takada L, Kedoin C, Murakami M, Harumatsu T, Matsukubo M, Kawano T, Muto M, Kumagai K, Ido A, Kaji T, Ieiri S. Impact of hepatocyte growth factor on the colonic morphology and gut microbiome in short bowel syndrome rat model. Pediatr Surg Int 2024; 40:185. [PMID: 38997605 DOI: 10.1007/s00383-024-05776-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/06/2024] [Indexed: 07/14/2024]
Abstract
PURPOSE This study aimed to investigate the impact of hepatocyte growth factor (HGF) on colonic morphology and gut microbiota in a rat model of short bowel syndrome (SBS). METHODS SD rats underwent jugular vein catheterization for total parenteral nutrition (TPN) and 90% small bowel resection [TPN + SBS (control group) or TPN + SBS + intravenous HGF (0.3 mg/kg/day, HGF group)]. Rats were harvested on day 7. Colonic morphology, gut microflora, tight junction, and Toll-like receptor-4 (TLR4) were evaluated. RESULTS No significant differences were observed in the colonic morphological assessment. No significant differences were observed in the expression of tight junction-related genes in the proximal colon. However, the claudin-1 expression tended to increase and the claudin-3 expression tended to decrease in the distal colon of the HGF group. The Verrucomicrobiota in the gut microflora of the colon tended to increase in the HGF group. The abundance of most LPS-producing microbiota was lower in the HGF group than in the control group. The gene expression of TLR4 was significantly downregulated in the distal colon of the HGF group. CONCLUSION HGF may enhance the mucus barrier through the tight junctions or gut microbiome in the distal colon.
Collapse
Affiliation(s)
- Koshiro Sugita
- Department of Pediatric Surgery, Research Field in Medical and Health Sciences, Medical and Dental Area, Research and Education Assembly, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Keisuke Yano
- Department of Pediatric Surgery, Research Field in Medical and Health Sciences, Medical and Dental Area, Research and Education Assembly, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Shun Onishi
- Department of Pediatric Surgery, Research Field in Medical and Health Sciences, Medical and Dental Area, Research and Education Assembly, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Yumiko Tabata
- Department of Pediatric Surgery, Research Field in Medical and Health Sciences, Medical and Dental Area, Research and Education Assembly, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Yumiko Iwamoto
- Department of Pediatric Surgery, Research Field in Medical and Health Sciences, Medical and Dental Area, Research and Education Assembly, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Masato Ogata
- Department of Pediatric Surgery, Research Field in Medical and Health Sciences, Medical and Dental Area, Research and Education Assembly, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Lynne Takada
- Department of Pediatric Surgery, Research Field in Medical and Health Sciences, Medical and Dental Area, Research and Education Assembly, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Chihiro Kedoin
- Department of Pediatric Surgery, Research Field in Medical and Health Sciences, Medical and Dental Area, Research and Education Assembly, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Masakazu Murakami
- Department of Pediatric Surgery, Research Field in Medical and Health Sciences, Medical and Dental Area, Research and Education Assembly, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Toshio Harumatsu
- Department of Pediatric Surgery, Research Field in Medical and Health Sciences, Medical and Dental Area, Research and Education Assembly, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Makoto Matsukubo
- Department of Pediatric Surgery, Kagoshima City Hospital, Kagoshima, Japan
| | - Takafumi Kawano
- Department of Pediatric Surgery, Research Field in Medical and Health Sciences, Medical and Dental Area, Research and Education Assembly, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Mitsuru Muto
- Department of Pediatric Surgery, Research Field in Medical and Health Sciences, Medical and Dental Area, Research and Education Assembly, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Kotaro Kumagai
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, School of Medical and Dental Sciences, Kagoshima University Graduate, Kagoshima, Japan
| | - Akio Ido
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, School of Medical and Dental Sciences, Kagoshima University Graduate, Kagoshima, Japan
| | - Tatsuru Kaji
- Department of Pediatric Surgery, Kurume University School of Medicine, Kurume, Japan
| | - Satoshi Ieiri
- Department of Pediatric Surgery, Research Field in Medical and Health Sciences, Medical and Dental Area, Research and Education Assembly, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8520, Japan.
| |
Collapse
|
17
|
Yu L, Gao F, Li Y, Su D, Han L, Li Y, Zhang X, Feng Z. Role of pattern recognition receptors in the development of MASLD and potential therapeutic applications. Biomed Pharmacother 2024; 175:116724. [PMID: 38761424 DOI: 10.1016/j.biopha.2024.116724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/23/2024] [Accepted: 05/06/2024] [Indexed: 05/20/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) has become one of the most prevalent liver diseases worldwide, and its occurrence is strongly associated with obesity, insulin resistance (IR), genetics, and metabolic stress. Ranging from simple fatty liver to metabolic dysfunction-associated steatohepatitis (MASH), even to severe complications such as liver fibrosis and advanced cirrhosis or hepatocellular carcinoma, the underlying mechanisms of MASLD progression are complex and involve multiple cellular mediators and related signaling pathways. Pattern recognition receptors (PRRs) from the innate immune system, including Toll-like receptors (TLRs), C-type lectin receptors (CLRs), NOD-like receptors (NLRs), RIG-like receptors (RLRs), and DNA receptors, have been demonstrated to potentially contribute to the pathogenesis for MASLD. Their signaling pathways can induce inflammation, mediate oxidative stress, and affect the gut microbiota balance, ultimately resulting in hepatic steatosis, inflammatory injury and fibrosis. Here we review the available literature regarding the involvement of PRR-associated signals in the pathogenic and clinical features of MASLD, in vitro and in animal models of MASLD. We also discuss the emerging targets from PRRs for drug developments that involved agent therapies intended to arrest or reverse disease progression, thus enabling the refinement of therapeutic targets that can accelerate drug development.
Collapse
Affiliation(s)
- Lili Yu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China; The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, Henan, China; Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China
| | - Feifei Gao
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China; Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China
| | - Yaoxin Li
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China; Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China
| | - Dan Su
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China; Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China
| | - Liping Han
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yueming Li
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China; Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China
| | - Xuehan Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China; Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China
| | - Zhiwei Feng
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China; Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China.
| |
Collapse
|
18
|
Shidoji Y. Induction of Hepatoma Cell Pyroptosis by Endogenous Lipid Geranylgeranoic Acid-A Comparison with Palmitic Acid and Retinoic Acid. Cells 2024; 13:809. [PMID: 38786033 PMCID: PMC11119665 DOI: 10.3390/cells13100809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Research on retinoid-based cancer prevention, spurred by the effects of vitamin A deficiency on gastric cancer and subsequent clinical studies on digestive tract cancer, unveils novel avenues for chemoprevention. Acyclic retinoids like 4,5-didehydrogeranylgeranoic acid (4,5-didehydroGGA) have emerged as potent agents against hepatocellular carcinoma (HCC), distinct from natural retinoids such as all-trans retinoic acid (ATRA). Mechanistic studies reveal GGA's unique induction of pyroptosis, a rapid cell death pathway, in HCC cells. GGA triggers mitochondrial superoxide hyperproduction and ER stress responses through Toll-like receptor 4 (TLR4) signaling and modulates autophagy, ultimately activating pyroptotic cell death in HCC cells. Unlike ATRA-induced apoptosis, GGA and palmitic acid (PA) induce pyroptosis, underscoring their distinct mechanisms. While all three fatty acids evoke mitochondrial dysfunction and ER stress responses, GGA and PA inhibit autophagy, leading to incomplete autophagic responses and pyroptosis, whereas ATRA promotes autophagic flux. In vivo experiments demonstrate GGA's potential as an anti-oncometabolite, inducing cell death selectively in tumor cells and thus suppressing liver cancer development. This review provides a comprehensive overview of the molecular mechanisms underlying GGA's anti-HCC effects and underscores its promising role in cancer prevention, highlighting its importance in HCC prevention.
Collapse
Affiliation(s)
- Yoshihiro Shidoji
- Graduate School of Human Health Science, University of Nagasaki, Nagayo, Nagasaki 851-2195, Japan
| |
Collapse
|
19
|
Li X, Wang Y, Zhang L, Yao S, Liu Q, Jin H, Tuo B. The role of anoctamin 1 in liver disease. J Cell Mol Med 2024; 28:e18320. [PMID: 38685684 PMCID: PMC11058335 DOI: 10.1111/jcmm.18320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/21/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024] Open
Abstract
Liver diseases include all types of viral hepatitis, alcoholic liver disease (ALD), nonalcoholic fatty liver disease (NAFLD), cirrhosis, liver failure (LF) and hepatocellular carcinoma (HCC). Liver disease is now one of the leading causes of disease and death worldwide, which compels us to better understand the mechanisms involved in the development of liver diseases. Anoctamin 1 (ANO1), a calcium-activated chloride channel (CaCC), plays an important role in epithelial cell secretion, proliferation and migration. ANO1 plays a key role in transcriptional regulation as well as in many signalling pathways. It is involved in the genesis, development, progression and/or metastasis of several tumours and other diseases including liver diseases. This paper reviews the role and molecular mechanisms of ANO1 in the development of various liver diseases, aiming to provide a reference for further research on the role of ANO1 in liver diseases and to contribute to the improvement of therapeutic strategies for liver diseases by regulating ANO1.
Collapse
Affiliation(s)
- Xin Li
- Department of Gastroenterology, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Yongfeng Wang
- Department of Gastroenterology, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Li Zhang
- Department of Gastroenterology, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Shun Yao
- Department of Gastroenterology, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Qian Liu
- Department of Gastroenterology, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Hai Jin
- Department of Gastroenterology, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative Innovation Center of Tissue Damage Repair and Regenerative Medicine of Zunyi Medical UniversityZunyiChina
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative Innovation Center of Tissue Damage Repair and Regenerative Medicine of Zunyi Medical UniversityZunyiChina
| |
Collapse
|
20
|
Mandal B, Das R, Mondal S. Anthocyanins: Potential phytochemical candidates for the amelioration of non-alcoholic fatty liver disease. ANNALES PHARMACEUTIQUES FRANÇAISES 2024; 82:373-391. [PMID: 38354975 DOI: 10.1016/j.pharma.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/30/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is described by too much hepatic fat deposition causing steatosis, which further develops into nonalcoholic steatohepatitis (NASH), defined by necroinflammation and fibrosis, progressing further to hepatic cirrhosis, hepatocellular carcinoma, and liver failure. NAFLD is linked to different aspects of the metabolic syndrome like obesity, insulin resistance, hypertension, and dyslipidemia, and its pathogenesis involves several elements including diet, obesity, disruption of lipid homeostasis, and a high buildup of triglycerides and other lipids in liver cells. It is therefore linked to an increase in the susceptibility to developing diabetes mellitus and cardiovascular diseases. Several interventions exist regarding its management, but the availability of natural sources through diet will be a benefit in dealing with the disorder due to the immensely growing dependence of the population worldwide on natural sources owing to their ability to treat the root cause of the disease. Anthocyanins (ACNs) are naturally occurring polyphenolic pigments that exist in the form of glycosides, which are the glucosides of anthocyanidins and are produced from flavonoids via the phenyl propanoid pathway. To understand their mode of action in NAFLD and their therapeutic potential, the literature on in vitro, in vivo, and clinical trials on naturally occurring ACN-rich sources was exhaustively reviewed. It was concluded that ACNs show their potential in the treatment of NAFLD through their antioxidant properties and their efficacy to control lipid metabolism, glucose homeostasis, transcription factors, and inflammation. This led to the conclusion that ACNs possess efficacy in the amelioration of NAFLD and the various features associated with it. However, additional clinical trials are required to justify the potential of ACNs in NAFLD.
Collapse
Affiliation(s)
- Bitasta Mandal
- School of Pharmaceutical Technology, School of Health and Medical Sciences, Adamas University, Kolkata 700126, India.
| | - Rakesh Das
- School of Pharmaceutical Technology, School of Health and Medical Sciences, Adamas University, Kolkata 700126, India.
| | - Sandip Mondal
- School of Pharmaceutical Technology, School of Health and Medical Sciences, Adamas University, Kolkata 700126, India.
| |
Collapse
|
21
|
Zazueta A, Valenzuela-Pérez L, Ortiz-López N, Pinto-León A, Torres V, Guiñez D, Aliaga N, Merino P, Sandoval A, Covarrubias N, Pérez de Arce E, Cattaneo M, Urzúa A, Roblero JP, Poniachik J, Gotteland M, Magne F, Beltrán CJ. Alteration of Gut Microbiota Composition in the Progression of Liver Damage in Patients with Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Int J Mol Sci 2024; 25:4387. [PMID: 38673972 PMCID: PMC11050088 DOI: 10.3390/ijms25084387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/31/2023] [Accepted: 01/09/2024] [Indexed: 04/28/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a complex disorder whose prevalence is rapidly growing in South America. The disturbances in the microbiota-gut-liver axis impact the liver damaging processes toward fibrosis. Gut microbiota status is shaped by dietary and lifestyle factors, depending on geographic location. We aimed to identify microbial signatures in a group of Chilean MASLD patients. Forty subjects were recruited, including healthy controls (HCs), overweight/obese subjects (Ow/Ob), patients with MASLD without fibrosis (MASLD/F-), and MASLD with fibrosis (MASLD/F+). Both MASLD and fibrosis were detected through elastography and/or biopsy, and fecal microbiota were analyzed through deep sequencing. Despite no differences in α- and β-diversity among all groups, a higher abundance of Bilophila and a lower presence of Defluviitaleaceae, Lachnospiraceae ND3007, and Coprobacter was found in MASLD/F- and MASLD/F+, compared to HC. Ruminococcaceae UCG-013 and Sellimonas were more abundant in MASLD/F+ than in Ow/Ob; both significantly differed between MASLD/F- and MASLD/F+, compared to HC. Significant positive correlations were observed between liver stiffness and Bifidobacterium, Prevotella, Sarcina, and Acidaminococcus abundance. Our results show that MASLD is associated with changes in bacterial taxa that are known to be involved in bile acid metabolism and SCFA production, with some of them being more specifically linked to fibrosis.
Collapse
Affiliation(s)
- Alejandra Zazueta
- Microbiology and Mycology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380453, Chile;
| | - Lucía Valenzuela-Pérez
- Laboratory of Immuno-Gastroenterology, Section of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (L.V.-P.); (N.O.-L.); (A.P.-L.); (V.T.); (N.A.); (P.M.)
| | - Nicolás Ortiz-López
- Laboratory of Immuno-Gastroenterology, Section of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (L.V.-P.); (N.O.-L.); (A.P.-L.); (V.T.); (N.A.); (P.M.)
| | - Araceli Pinto-León
- Laboratory of Immuno-Gastroenterology, Section of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (L.V.-P.); (N.O.-L.); (A.P.-L.); (V.T.); (N.A.); (P.M.)
| | - Verónica Torres
- Laboratory of Immuno-Gastroenterology, Section of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (L.V.-P.); (N.O.-L.); (A.P.-L.); (V.T.); (N.A.); (P.M.)
| | - Danette Guiñez
- Unit of Gastroenterology, Department of Medicine, Hospital Clinico Universidad de Chile, Santiago 8380456, Chile; (D.G.); (A.S.); (N.C.); (E.P.d.A.); (M.C.); (A.U.); (J.P.R.); (J.P.)
| | - Nicolás Aliaga
- Laboratory of Immuno-Gastroenterology, Section of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (L.V.-P.); (N.O.-L.); (A.P.-L.); (V.T.); (N.A.); (P.M.)
| | - Pablo Merino
- Laboratory of Immuno-Gastroenterology, Section of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (L.V.-P.); (N.O.-L.); (A.P.-L.); (V.T.); (N.A.); (P.M.)
| | - Alexandra Sandoval
- Unit of Gastroenterology, Department of Medicine, Hospital Clinico Universidad de Chile, Santiago 8380456, Chile; (D.G.); (A.S.); (N.C.); (E.P.d.A.); (M.C.); (A.U.); (J.P.R.); (J.P.)
| | - Natalia Covarrubias
- Unit of Gastroenterology, Department of Medicine, Hospital Clinico Universidad de Chile, Santiago 8380456, Chile; (D.G.); (A.S.); (N.C.); (E.P.d.A.); (M.C.); (A.U.); (J.P.R.); (J.P.)
| | - Edith Pérez de Arce
- Unit of Gastroenterology, Department of Medicine, Hospital Clinico Universidad de Chile, Santiago 8380456, Chile; (D.G.); (A.S.); (N.C.); (E.P.d.A.); (M.C.); (A.U.); (J.P.R.); (J.P.)
| | - Máximo Cattaneo
- Unit of Gastroenterology, Department of Medicine, Hospital Clinico Universidad de Chile, Santiago 8380456, Chile; (D.G.); (A.S.); (N.C.); (E.P.d.A.); (M.C.); (A.U.); (J.P.R.); (J.P.)
| | - Alvaro Urzúa
- Unit of Gastroenterology, Department of Medicine, Hospital Clinico Universidad de Chile, Santiago 8380456, Chile; (D.G.); (A.S.); (N.C.); (E.P.d.A.); (M.C.); (A.U.); (J.P.R.); (J.P.)
| | - Juan Pablo Roblero
- Unit of Gastroenterology, Department of Medicine, Hospital Clinico Universidad de Chile, Santiago 8380456, Chile; (D.G.); (A.S.); (N.C.); (E.P.d.A.); (M.C.); (A.U.); (J.P.R.); (J.P.)
| | - Jaime Poniachik
- Unit of Gastroenterology, Department of Medicine, Hospital Clinico Universidad de Chile, Santiago 8380456, Chile; (D.G.); (A.S.); (N.C.); (E.P.d.A.); (M.C.); (A.U.); (J.P.R.); (J.P.)
| | - Martín Gotteland
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Fabien Magne
- Microbiology and Mycology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380453, Chile;
| | - Caroll Jenny Beltrán
- Laboratory of Immuno-Gastroenterology, Section of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile; (L.V.-P.); (N.O.-L.); (A.P.-L.); (V.T.); (N.A.); (P.M.)
| |
Collapse
|
22
|
Mladenić K, Lenartić M, Marinović S, Polić B, Wensveen FM. The "Domino effect" in MASLD: The inflammatory cascade of steatohepatitis. Eur J Immunol 2024; 54:e2149641. [PMID: 38314819 DOI: 10.1002/eji.202149641] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is an increasingly common complication of obesity, affecting over a quarter of the global adult population. A key event in the pathophysiology of MASLD is the development of metabolic-associated steatohepatitis (MASH), which greatly increases the chances of developing cirrhosis and hepatocellular carcinoma. The underlying cause of MASH is multifactorial, but accumulating evidence indicates that the inflammatory process in the hepatic microenvironment typically follows a pattern that can be roughly divided into three stages: (1) Detection of hepatocyte stress by tissue-resident immune cells including γδ T cells and CD4-CD8- double-negative T cells, followed by their secretion of pro-inflammatory mediators, most notably IL-17A. (2) Recruitment of pro-inflammatory cells, mostly of the myeloid lineage, and initiation of inflammation through secretion of effector-type cytokines such as TNF, TGF-β, and IL-1β. (3) Escalation of the inflammatory response by recruitment of lymphocytes including Th17, CD8 T, and B cells leading to chronic inflammation, hepatic stellate cell activation, and fibrosis. Here we will discuss these three stages and how they are consecutively linked like falling domino tiles to the pathophysiology of MASH. Moreover, we will highlight the clinical potential of inflammation as a biomarker and therapeutic target for the treatment of MASLD.
Collapse
Affiliation(s)
- Karlo Mladenić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Maja Lenartić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Sonja Marinović
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Division of Molecular Medicine, Laboratory for Personalized Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - Bojan Polić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Felix M Wensveen
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
23
|
Wen Y, Zhang T, Zhang B, Wang F, Wei X, Wei Y, Ma X, Tang X. Comprehensive bibliometric and visualized analysis of research on gut-liver axis published from 1998 to 2022. Heliyon 2024; 10:e27819. [PMID: 38496853 PMCID: PMC10944270 DOI: 10.1016/j.heliyon.2024.e27819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/13/2024] [Accepted: 03/07/2024] [Indexed: 03/19/2024] Open
Abstract
Background The concept of the gut-liver axis was proposed by Marshall in 1998, and since then, this hypothesis has been gradually accepted by the academic community. Many publications have been published on the gut-liver axis, making it important to assess the scientific implications of these studies and the trends in this field. Methods Publications were retrieved from the Web of Science Core Collection. Microsoft Excel, CiteSpace, VOSviewer, and Scimago Graphica software were used for bibliometric analysis. Results A total of 776 publications from the Web of Science core database were included in this study. In the past 25 years, the number of publications on the gut-liver axis has shown an upward trend, particularly in the past 3 years (2020-2022). China had the highest number of publications (267 articles, 34.4%). However, the United States was at the top regarding influence and international cooperation in this field. The University of California San Diego had contributed the most publications. Suk, Ki Tae and Schnabl, Bernd were tied for the first rank in most publications. Thematic hotspots and frontiers were focused on gut microbiota, microbial metabolite, intestinal permeability, bacterial translocation, bile acid, non-alcoholic steatohepatitis, and alcoholic liver disease. Conclusion Our study is the first bibliometric analysis of literature using visualization software to present the current research status of the gut-liver axis over the past 25 years. The damage and repair of intestinal barrier function, as well as the disruption of gut microbiota and host metabolism, should be a focus of attention. This study can provide a reference for later researchers to understand the global research trends, hotspots, and frontiers in this field.
Collapse
Affiliation(s)
- Yongtian Wen
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tai Zhang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Beihua Zhang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengyun Wang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiuxiu Wei
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuchen Wei
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiangxue Ma
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xudong Tang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
24
|
Pipitone RM, Lupo G, Zito R, Javed A, Petta S, Pennisi G, Grimaudo S. The PD-1/PD-L1 Axis in the Biology of MASLD. Int J Mol Sci 2024; 25:3671. [PMID: 38612483 PMCID: PMC11011676 DOI: 10.3390/ijms25073671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Metabolic Dysfunction-Associated Steatotic Liver (MASL), previously named nonalcoholic fatty liver (NAFL), is a multifactorial disease in which metabolic, genetic, and environmental risk factors play a predominant role. Obesity and type 2 diabetes act as triggers of the inflammatory response, which contributes to the progression of MASL to Metabolic Dysfunction-Associated Steatohepatitis and the development of hepatocellular carcinoma. In the liver, several parenchymal, nonparenchymal, and immune cells maintain immunological homeostasis, and different regulatory pathways balance the activation of the innate and adaptative immune system. PD-1/PD-L1 signaling acts, in the maintenance of the balance between the immune responses and the tissue immune homeostasis, promoting self-tolerance through the modulation of activated T cells. Recently, PD-1 has received much attention for its roles in inducing an exhausted T cells phenotype, promoting the tumor escape from immune responses. Indeed, in MASLD, the excessive fat accumulation dysregulates the immune system, increasing cytotoxic lymphocytes and decreasing their cytolytic activity. In this context, T cells exacerbate liver damage and promote tumor progression. The aim of this review is to illustrate the main pathogenetic mechanisms by which the immune system promotes the progression of MASLD and the transition to HCC, as well as to discuss the possible therapeutic applications of PD-1/PD-L1 target therapy to activate T cells and reinvigorate immune surveillance against cancer.
Collapse
|
25
|
Cai T, Song X, Xu X, Dong L, Liang S, Xin M, Huang Y, Zhu L, Li T, Wang X, Fang Y, Xu Z, Wang C, Wang M, Li J, Zheng Y, Sun W, Li L. Effects of plant natural products on metabolic-associated fatty liver disease and the underlying mechanisms: a narrative review with a focus on the modulation of the gut microbiota. Front Cell Infect Microbiol 2024; 14:1323261. [PMID: 38444539 PMCID: PMC10912229 DOI: 10.3389/fcimb.2024.1323261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/30/2024] [Indexed: 03/07/2024] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is a chronic liver disease characterized by the excessive accumulation of fat in hepatocytes. However, due to the complex pathogenesis of MAFLD, there are no officially approved drugs for treatment. Therefore, there is an urgent need to find safe and effective anti-MAFLD drugs. Recently, the relationship between the gut microbiota and MAFLD has been widely recognized, and treating MAFLD by regulating the gut microbiota may be a new therapeutic strategy. Natural products, especially plant natural products, have attracted much attention in the treatment of MAFLD due to their multiple targets and pathways and few side effects. Moreover, the structure and function of the gut microbiota can be influenced by exposure to plant natural products. However, the effects of plant natural products on MAFLD through targeting of the gut microbiota and the underlying mechanisms are poorly understood. Based on the above information and to address the potential therapeutic role of plant natural products in MAFLD, we systematically summarize the effects and mechanisms of action of plant natural products in the prevention and treatment of MAFLD through targeting of the gut microbiota. This narrative review provides feasible ideas for further exploration of safer and more effective natural drugs for the prevention and treatment of MAFLD.
Collapse
Affiliation(s)
- Tianqi Cai
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xinhua Song
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Xiaoxue Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ling Dong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Shufei Liang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Meiling Xin
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Yuhong Huang
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Linghui Zhu
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tianxing Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xueke Wang
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
- The Second Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yini Fang
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
- Basic Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhengbao Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Chao Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Meng Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Jingda Li
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Yanfei Zheng
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wenlong Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Lingru Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
26
|
Zhao X, Zheng J, Wang J, Li B, Huang W. Inhibition of Hyperglycemia and Hyperlipidemia by Blocking Toll-like Receptor 4: Comparison of Wild-Type and Toll-like Receptor 4 Gene Knockout Mice on Obesity and Diabetes Modeling. BIOLOGY 2024; 13:63. [PMID: 38275739 PMCID: PMC10813444 DOI: 10.3390/biology13010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/05/2024] [Accepted: 01/20/2024] [Indexed: 01/27/2024]
Abstract
Innate immune receptor TLR4 plays an important role in glycolipid metabolism. The objective of this study is to investigate the inhibitory effects of blocking TLR4 on hyperglycemia and hyperlipidemia by comparing WT and TLR4-/- mice in obesity and diabetes modeling. The knockout of the TLR4 gene could prevent weight gain induced by a high-fat diet (HFD)/high-sugar and high-fat diet (HSHFD), and the differences in the responses existed between the sexes. It extends the time required to reach the obesity criteria. However, when mice were injected with intraperitoneal streptozotocin (STZ) after being fed by HSHFD for two months, TLR4-/- mice exhibited less weight loss than WT. Blocking TLR4 alleviated the changes in body weight and blood glucose, consequently reducing the efficiency of diabetes modeling, especially for male mice. Additionally, male TLR4-/- obese mice exhibit lower total cholesterol (TC) and low-density lipoprotein (LDL) levels in serum and less formation of fat droplets in the liver compared to WT. On the other hand, the knockout of TLR4 significantly increased the high-density lipoprotein (HDL) of male mice. This study should provide new insights into the role of TLR4, as well as opportunities to target novel approaches to the prevention and treatment of metabolic diseases like obesity and diabetes.
Collapse
Affiliation(s)
- Xingyu Zhao
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Jiawei Zheng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Jing Wang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China;
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China;
| | - Wuyang Huang
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China;
| |
Collapse
|
27
|
Gruzdev SK, Podoprigora IV, Gizinger OA. Immunology of gut microbiome and liver in non-alcoholic fatty liver disease (NAFLD): mechanisms, bacteria, and novel therapeutic targets. Arch Microbiol 2024; 206:62. [PMID: 38216746 DOI: 10.1007/s00203-023-03752-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 01/14/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in the world. Most important contributors to its development are diet and obesity. Gut microbiome's importance for immune system and inflammatory pathways more widely accepted as an important component in NAFLD and other liver diseases' pathogenesis. In this article we review potential mechanisms of microbiome alteration of local and systemic immune responses leading to NAFLD's development, and how can modulate them for the treatment. Our review mentions different immune system pathways and microorganisms regulating metabolism, liver inflammation and fibrosis. We specifically point out TLR-4 as a potential key immune pathway activated by bacterial lipopolysaccharides producing pro-inflammatory cytokines in NAFLD. Also, we discuss three endotoxin-producing strains (Enterobacter cloacae B29, Escherichia coli PY102, Klebsiella pneumoniae A7) that can promote NAFLD development via TLR4-dependent immune response activation in animal models and how they potentially contribute to disease progression in humans. Additionally, we discuss their other immune and non-immune mechanisms contributing to NAFLD pathogenesis. In the end we point out gut microbiome researches' future perspective in NAFLD as a potential new target for both diagnostic and treatment.
Collapse
Affiliation(s)
- Stanislav Konstantinovich Gruzdev
- Department of Microbiology V.S. Kiktenko, Medical Institute, Peoples' Friendship University of Russia, Miklukho-Maklaya Str. 6, Moscow, 117198, Russia.
| | - Irina Viktorovna Podoprigora
- Department of Microbiology V.S. Kiktenko, Medical Institute, Peoples' Friendship University of Russia, Miklukho-Maklaya Str. 6, Moscow, 117198, Russia
| | - Oksana Anatolievna Gizinger
- Department of Microbiology V.S. Kiktenko, Medical Institute, Peoples' Friendship University of Russia, Miklukho-Maklaya Str. 6, Moscow, 117198, Russia
| |
Collapse
|
28
|
Qiu M, Cai F, Huang Y, Sun L, Li J, Wang W, Basharat Z, Zippi M, Goyal H, Pan J, Hong W. Fabp5 is a common gene between a high-cholesterol diet and acute pancreatitis. Front Nutr 2023; 10:1284985. [PMID: 38188879 PMCID: PMC10768664 DOI: 10.3389/fnut.2023.1284985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/08/2023] [Indexed: 01/09/2024] Open
Abstract
BACKGROUND AND AIMS Hypercholesterolemia has been identified as risk factor for severe acute pancreatitis (AP). We aimed to identify the common differentially expressed genes (DEGs) between a high-cholesterol diet and AP. METHODS We retrived gene expression profiles from the GEO database. DEGs were assessed using GEO2R. For AP hub genes, we conducted functional enrichment analysis and protein-protein interaction (PPI) analysis. GeneMANIA and correlation analysis were employed to predict potential DEG mechanisms. Validation was done across various healthy human tissues, pancreatic adenocarcinoma, peripheral blood in AP patients, and Sprague-Dawley rats with AP. RESULTS The gene "Fabp5" emerged as the sole common DEG shared by a high-cholesterol diet and AP. Using the 12 topological analysis methods in PPI network analysis, Rela, Actb, Cdh1, and Vcl were identified as hub DEGs. GeneMANIA revealed 77.6% physical interactions among Fabp5, TLR4, and Rela, while genetic correlation analysis indicated moderate associations among them. Peripheral blood analysis yielded area under the ROC curve (AUC) values of 0.71, 0.63, 0.74, 0.64, and 0.91 for Fabp5, TLR4, Actb, Cdh1 genes, and artificial neural network (ANN) model respectively, in predicting severe AP. In vivo immunohistochemical analysis demonstrated higher Fabp5 expression in the hyperlipidemia-associated AP group compared to the AP and control groups. CONCLUSION Fabp5 emerged as the common DEG connecting a high-cholesterol diet and AP. Rela was highlighted as a crucial hub gene in AP. Genetic interactions were observed among Fabp5, TLR4, and Rela. An ANN model consisting of Fabp5, TLR4, Actb, and Cdh1 was helpful in predicting severe AP.
Collapse
Affiliation(s)
- Minhao Qiu
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fangfang Cai
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Yining Huang
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liang Sun
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianmin Li
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Wang
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | | | - Maddalena Zippi
- Unit of Gastroenterology and Digestive Endoscopy, Sandro Pertini Hospital, Rome, Italy
| | - Hemant Goyal
- Borland Groover Clinic, Baptist Medical Center, Jacksonville, FL, United States
| | - Jingye Pan
- Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wandong Hong
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
29
|
Li F, Zhang Z, Bai Y, Che Q, Cao H, Guo J, Su Z. Glucosamine Improves Non-Alcoholic Fatty Liver Disease Induced by High-Fat and High-Sugar Diet through Regulating Intestinal Barrier Function, Liver Inflammation, and Lipid Metabolism. Molecules 2023; 28:6918. [PMID: 37836761 PMCID: PMC10574579 DOI: 10.3390/molecules28196918] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/28/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a liver disease syndrome. The prevalence of NAFLD has continued to increase globally, and NAFLD has become a worldwide public health problem. Glucosamine (GLC) is an amino monosaccharide derivative of glucose. GLC has been proven to not only be effective in anti-inflammation applications, but also to modulate the gut microbiota effectively. Therefore, in this study, the therapeutic effect of GLC in the NAFLD context and the mechanisms underlying these effects were explored. Specifically, an NAFLD model was established by feeding mice a high-fat and high-sugar diet (HFHSD), and the HFHSD-fed NAFLD mice were treated with GLC. First, we investigated the effect of treating NAFLD mice with GLC by analyzing serum- and liver-related indicator levels. We found that GLC attenuated insulin resistance and inflammation, increased antioxidant function, and attenuated serum and liver lipid metabolism in the mice. Then, we investigated the mechanism underlying liver lipid metabolism, inflammation, and intestinal barrier function in these mice. We found that GLC can improve liver lipid metabolism and relieve insulin resistance and oxidative stress levels. In addition, GLC treatment increased intestinal barrier function, reduced LPS translocation, and reduced liver inflammation by inhibiting the activation of the LPS/TLR4/NF-κB pathway, thereby effectively ameliorating liver lesions in NAFLD mice.
Collapse
Affiliation(s)
- Feng Li
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhengyan Zhang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd., Science City, Guangzhou 510663, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China;
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
30
|
Soppert J, Brandt EF, Heussen NM, Barzakova E, Blank LM, Kuepfer L, Hornef MW, Trebicka J, Jankowski J, Berres ML, Noels H. Blood Endotoxin Levels as Biomarker of Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-analysis. Clin Gastroenterol Hepatol 2023; 21:2746-2758. [PMID: 36470528 DOI: 10.1016/j.cgh.2022.11.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 01/02/2023]
Abstract
BACKGROUND & AIMS Growing evidence supports a role of gut-derived metabolites in nonalcoholic fatty liver disease (NAFLD), but the relation of endotoxin levels with gut permeability and NAFLD stage remains unclear. This systematic review with meta-analysis aims to provide further insights. METHODS PubMed, Embase, and Cochrane Library were searched for studies published until January 2022 assessing blood endotoxins in patients with NAFLD. Meta-analyses and univariate/multivariate meta-regression, as well as correlation analyses, were performed for endotoxin values and potential relationships to disease stage, age, sex, parameters of systemic inflammation, and metabolic syndrome, as well as liver function and histology. RESULTS Forty-three studies were included, of which 34 were used for meta-analyses. Blood endotoxin levels were higher in patients with simple steatosis vs liver-healthy controls (standardized mean difference, 0.86; 95% confidence interval, 0.62-1.11) as well as in patients with nonalcoholic steatohepatitis vs patients with nonalcoholic fatty liver/non-nonalcoholic steatohepatitis (standardized mean difference, 0.81; 95% confidence interval, 0.27-1.35; P = .0078). Consistently, higher endotoxin levels were observed in patients with more advanced histopathological gradings of liver steatosis and fibrosis. An increase of blood endotoxin levels was partially attributed to a body mass index rise in patients with NAFLD compared with controls. Nevertheless, significant increases of blood endotoxin levels in NAFLD retained after compensation for differences in body mass index, metabolic condition, or liver enzymes. Increases in blood endotoxin levels were associated with increases in C-reactive protein concentrations, and in most cases, paralleled a rise in markers for intestinal permeability. CONCLUSION Our results support blood endotoxin levels as relevant diagnostic biomarker for NAFLD, both for disease detection as well as staging during disease progression, and might serve as surrogate marker of enhanced intestinal permeability in NAFLD. Registration number in Prospero: CRD42022311166.
Collapse
Affiliation(s)
- Josefin Soppert
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany; Department of Anesthesiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Elisa Fabiana Brandt
- Department of Internal Medicine III, University Hospital of Aachen, Aachen, Germany
| | - Nicole Maria Heussen
- Department of Medical Statistics, RWTH Aachen University, Aachen, Germany; Center of Biostatistics and Epidemiology, Medical School, Sigmund Freud University, Vienna, Austria
| | - Emona Barzakova
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Lars Mathias Blank
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Aachen, Germany
| | - Lars Kuepfer
- Institute for Systems Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | | | - Jonel Trebicka
- Department of Internal Medicine B, University of Münster, Münster, Germany
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany; Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Marie-Luise Berres
- Department of Internal Medicine III, University Hospital of Aachen, Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Site Aachen, Germany
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany; Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
31
|
Yang K, Song M. New Insights into the Pathogenesis of Metabolic-Associated Fatty Liver Disease (MAFLD): Gut-Liver-Heart Crosstalk. Nutrients 2023; 15:3970. [PMID: 37764755 PMCID: PMC10534946 DOI: 10.3390/nu15183970] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Metabolism-associated fatty liver disease (MAFLD) is a multifaceted disease that involves complex interactions between various organs, including the gut and heart. It is defined by hepatic lipid accumulation and is related to metabolic dysfunction, obesity, and diabetes. Understanding the intricate interplay of the gut-liver-heart crosstalk is crucial for unraveling the complexities of MAFLD and developing effective treatment and prevention strategies. The gut-liver crosstalk participates in the regulation of the metabolic and inflammatory processes through host-microbiome interactions. Gut microbiota have been associated with the development and progression of MAFLD, and its dysbiosis contributes to insulin resistance, inflammation, and oxidative stress. Metabolites derived from the gut microbiota enter the systemic circulation and influence both the liver and heart, resulting in the gut-liver-heart axis playing an important role in MAFLD. Furthermore, growing evidence suggests that insulin resistance, endothelial dysfunction, and systemic inflammation in MAFLD may contribute to an increased risk of cardiovascular disease (CVD). Additionally, the dysregulation of lipid metabolism in MAFLD may also lead to cardiac dysfunction and heart failure. Overall, the crosstalk between the liver and heart involves a complex interplay of molecular pathways that contribute to the development of CVD in patients with MAFLD. This review emphasizes the current understanding of the gut-liver-heart crosstalk as a foundation for optimizing patient outcomes with MAFLD.
Collapse
Affiliation(s)
| | - Myeongjun Song
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| |
Collapse
|
32
|
Luo K, Chen Y, Fang S, Wang S, Wu Z, Li H. Study on inflammation and fibrogenesis in MAFLD from 2000 to 2022: a bibliometric analysis. Front Endocrinol (Lausanne) 2023; 14:1231520. [PMID: 37720529 PMCID: PMC10500306 DOI: 10.3389/fendo.2023.1231520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/08/2023] [Indexed: 09/19/2023] Open
Abstract
Chronic inflammation and fibrosis are significant factors in the pathogenesis of metabolic-associated fatty liver disease (MAFLD). In this study, we conducted a bibliometric analysis of publications on inflammation and fibrogenesis in MAFLD, with a focus on reporting publication trends. Our findings indicate that the USA and China are the most productive countries in the field, with the University of California San Diego being the most productive institution. Over the past 23 years, Prof. Diehl AM has published 25 articles that significantly contributed to the research community. Notably, the research focus of the field has shifted from morbid obesity and adiponectin to metabolic syndrome, genetics, and microbiome. Our study provides a comprehensive and objective summary of the historical characteristics of research on inflammation and fibrogenesis in MAFLD, which will be of interest to scientific researchers in this field.
Collapse
Affiliation(s)
- Kuanhong Luo
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuzheng Fang
- College of Art and Sciences, Washington University in St. Louis, St. Louis, MO, United States
| | - Siqi Wang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhixin Wu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiqing Li
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
33
|
Garcia NA, Mellergaard M, Gonzalez-King H, Salomon C, Handberg A. Comprehensive Strategy for Identifying Extracellular Vesicle Surface Proteins as Biomarkers for Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2023; 24:13326. [PMID: 37686134 PMCID: PMC10487973 DOI: 10.3390/ijms241713326] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a liver disorder that has become a global health concern due to its increasing prevalence. There is a need for reliable biomarkers to aid in the diagnosis and prognosis of NAFLD. Extracellular vesicles (EVs) are promising candidates in biomarker discovery, as they carry proteins that reflect the pathophysiological state of the liver. In this review, we developed a list of EV proteins that could be used as diagnostic biomarkers for NAFLD. We employed a multi-step strategy that involved reviewing and comparing various sources of information. Firstly, we reviewed papers that have studied EVs proteins as biomarkers in NAFLD and papers that have studied circulating proteins as biomarkers in NAFLD. To further identify potential candidates, we utilized the EV database Vesiclepedia.org to qualify each protein. Finally, we consulted the Human Protein Atlas to search for candidates' localization, focusing on membrane proteins. By integrating these sources of information, we developed a comprehensive list of potential EVs membrane protein biomarkers that could aid in diagnosing and monitoring NAFLD. In conclusion, our multi-step strategy for identifying EV-based protein biomarkers for NAFLD provides a comprehensive approach that can also be applied to other diseases. The protein candidates identified through this approach could have significant implications for the development of non-invasive diagnostic tests for NAFLD and improve the management and treatment of this prevalent liver disorder.
Collapse
Affiliation(s)
| | - Maiken Mellergaard
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg Hobrovej 18-22, 9000 Aalborg, Denmark
- Department of Clinical Medicine, The Faculty of Medicine, Aalborg University, 9000 Aalborg, Denmark
| | - Hernan Gonzalez-King
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden
| | - Carlos Salomon
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland, Brisbane, QLD 4029, Australia
| | - Aase Handberg
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg Hobrovej 18-22, 9000 Aalborg, Denmark
- Department of Clinical Medicine, The Faculty of Medicine, Aalborg University, 9000 Aalborg, Denmark
| |
Collapse
|
34
|
Garcia-Martinez I, Alen R, Pereira L, Povo-Retana A, Astudillo AM, Hitos AB, Gomez-Hurtado I, Lopez-Collazo E, Boscá L, Francés R, Lizasoain I, Moro MÁ, Balsinde J, Izquierdo M, Valverde ÁM. Saturated fatty acid-enriched small extracellular vesicles mediate a crosstalk inducing liver inflammation and hepatocyte insulin resistance. JHEP Rep 2023; 5:100756. [PMID: 37360906 PMCID: PMC10285285 DOI: 10.1016/j.jhepr.2023.100756] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND & AIMS Lipotoxicity triggers non-alcoholic fatty liver disease (NAFLD) progression owing to the accumulation of toxic lipids in hepatocytes including saturated fatty acids (SFAs), which activate pro-inflammatory pathways. We investigated the impact of hepatocyte- or circulating-derived small extracellular vesicles (sEV) secreted under NAFLD conditions on liver inflammation and hepatocyte insulin signalling. METHODS sEV released by primary mouse hepatocytes, characterised and analysed by lipidomics, were added to mouse macrophages/Kupffer cells (KC) to monitor internalisation and inflammatory responses. Insulin signalling was analysed in hepatocytes exposed to conditioned media from sEV-loaded macrophages/KC. Mice were i.v. injected sEV to study liver inflammation and insulin signalling. Circulating sEV from mice and humans with NAFLD were used to evaluate macrophage-hepatocyte crosstalk. RESULTS Numbers of sEV released by hepatocytes increased under NAFLD conditions. Lipotoxic sEV were internalised by macrophages through the endosomal pathway and induced pro-inflammatory responses that were ameliorated by pharmacological inhibition or deletion of Toll-like receptor-4 (TLR4). Hepatocyte insulin signalling was impaired upon treatment with conditioned media from macrophages/KC loaded with lipotoxic sEV. Both hepatocyte-released lipotoxic sEV and the recipient macrophages/KC were enriched in palmitic (C16:0) and stearic (C18:0) SFAs, well-known TLR4 activators. Upon injection, lipotoxic sEV rapidly reached KC, triggering a pro-inflammatory response in the liver monitored by Jun N-terminal kinase (JNK) phosphorylation, NF-κB nuclear translocation, pro-inflammatory cytokine expression, and infiltration of immune cells into the liver parenchyma. sEV-mediated liver inflammation was attenuated by pharmacological inhibition or deletion of TLR4 in myeloid cells. Macrophage inflammation and subsequent hepatocyte insulin resistance were also induced by circulating sEV from mice and humans with NAFLD. CONCLUSIONS We identified hepatocyte-derived sEV as SFA transporters targeting macrophages/KC and activating a TLR4-mediated pro-inflammatory response enough to induce hepatocyte insulin resistance. IMPACT AND IMPLICATIONS Small extracellular vesicles (sEV) released by the hepatocytes under non-alcoholic fatty liver disease (NAFLD) conditions cause liver inflammation and insulin resistance in hepatocytes via paracrine hepatocyte-macrophage-hepatocyte crosstalk. We identified sEV as transporters of saturated fatty acids (SFAs) and potent lipotoxic inducers of liver inflammation. TLR4 deficiency or its pharmacological inhibition ameliorated liver inflammation induced by hepatocyte-derived lipotoxic sEV. Evidence of this macrophage-hepatocyte interactome was also found in patients with NAFLD, pointing to the relevance of sEV in SFA-mediated lipotoxicity in NAFLD.
Collapse
Affiliation(s)
- Irma Garcia-Martinez
- Instituto de Investigaciones Biomédicas (IIBm) Alberto Sols (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain
| | - Rosa Alen
- Instituto de Investigaciones Biomédicas (IIBm) Alberto Sols (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Pereira
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Adrián Povo-Retana
- Instituto de Investigaciones Biomédicas (IIBm) Alberto Sols (CSIC-UAM), Madrid, Spain
| | - Alma M. Astudillo
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Ana B. Hitos
- Instituto de Investigaciones Biomédicas (IIBm) Alberto Sols (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain
| | - Isabel Gomez-Hurtado
- Instituto de Investigación Sanitaria ISABIAL, Hospital General Universitario Alicante, Alicante, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Eduardo Lopez-Collazo
- Instituto de Investigación Sanitaria La Paz (IdiPaz), Hospital Universitario La Paz, Madrid, Spain
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas (IIBm) Alberto Sols (CSIC-UAM), Madrid, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), Hospital Universitario La Paz, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERcv), Instituto de Salud Carlos III, Madrid, Spain
| | - Rubén Francés
- Instituto de Investigación Sanitaria ISABIAL, Hospital General Universitario Alicante, Alicante, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Dpto. Medicina Clínica, Universidad Miguel Hernández, San Juan de Alicante, Spain
| | - Ignacio Lizasoain
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - María Ángeles Moro
- Neurovascular Pathophysiology Group, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Jesús Balsinde
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Manuel Izquierdo
- Instituto de Investigaciones Biomédicas (IIBm) Alberto Sols (CSIC-UAM), Madrid, Spain
| | - Ángela M. Valverde
- Instituto de Investigaciones Biomédicas (IIBm) Alberto Sols (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
35
|
Jiang W, Xu Y, Chen JC, Lee YH, Hu Y, Liu CH, Chen E, Tang H, Zhang H, Wu D. Role of extracellular vesicles in nonalcoholic fatty liver disease. Front Endocrinol (Lausanne) 2023; 14:1196831. [PMID: 37534206 PMCID: PMC10392952 DOI: 10.3389/fendo.2023.1196831] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/21/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease that affects approximately one-quarter of the global population and is becoming increasingly prevalent worldwide. The lack of current noninvasive tools and efficient treatment is recognized as a significant barrier to the clinical management of these conditions. Extracellular vesicles (EVs) are nanoscale vesicles released by various cells and deliver bioactive molecules to target cells, thereby mediating various processes, including the development of NAFLD. SCOPE OF REVIEW There is still a long way to actualize the application of EVs in NAFLD diagnosis and treatment. Herein, we summarize the roles of EVs in NAFLD and highlight their prospects for clinical application as a novel noninvasive diagnostic tool as well as a promising therapy for NAFLD, owing to their unique physiochemical characteristics. We summarize the literatures on the mechanisms by which EVs act as mediators of intercellular communication by regulating metabolism, insulin resistance, inflammation, immune response, intestinal microecology, and fibrosis in NAFLD. We also discuss future challenges that must be resolved to improve the therapeutic potential of EVs. MAJOR CONCLUSIONS The levels and contents of EVs change dynamically at different stages of diseases and this phenomenon may be exploited for establishing sensitive stage-specific markers. EVs also have high application potential as drug delivery systems with low immunogenicity and high biocompatibility and can be easily engineered. Research on the mechanisms and clinical applications of EVs in NAFLD is in its initial phase and the applicability of EVs in NAFLD diagnosis and treatment is expected to grow with technological progress.
Collapse
Affiliation(s)
- Wei Jiang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Youhui Xu
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Jou-Chen Chen
- West China College of Stomatology, Sichuan University, Chengdu, China
| | - Yi-Hung Lee
- West China College of Stomatology, Sichuan University, Chengdu, China
| | - Yushin Hu
- West China College of Stomatology, Sichuan University, Chengdu, China
| | - Chang-Hai Liu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Enqiang Chen
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Hua Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Dongbo Wu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
36
|
Huang Y, Wang C, Wang M, Xiong T, Song X, Sun W, Li J. Oroxin B improves metabolic-associated fatty liver disease by alleviating gut microbiota dysbiosis in a high-fat diet-induced rat model. Eur J Pharmacol 2023; 951:175788. [PMID: 37179040 DOI: 10.1016/j.ejphar.2023.175788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/15/2023]
Abstract
Metabolic-associated fatty liver disease (MAFLD) has become a common chronic liver disease, but there is no FDA-approved drug for MAFLD treatment. Numerous studies have revealed that gut microbiota dysbiosis exerts a crucial effect on MAFLD progression. Oroxin B is a constituent of the traditional Chinese medicine Oroxylum indicum (L.) Kurz. (O. indicum), which has the characteristics of low oral bioavailability but high bioactivity. However, the mechanism through which oroxin B improves MAFLD by restoring the gut microbiota balance remains unclear. To this end, we assessed the anti-MAFLD effect of oroxin B in HFD-fed rats and investigated the underlying mechanism. Our results indicated that oroxin B administration reduced the lipid levels in the plasma and liver and lowered the lipopolysaccharide (LPS), interleukin 6 (IL-6), and tumor necrosis factor-α (TNF-α) levels in the plasma. Moreover, oroxin B alleviated hepatic inflammation and fibrosis. Mechanistically, oroxin B modulated the gut microbiota structure in HFD-fed rats by increasing the levels of Lactobacillus, Staphylococcus, and Eubacterium and decreasing the levels of Tomitella, Bilophila, Acetanaerobacterium, and Faecalibaculum. Furthermore, oroxin B not only suppressed Toll-like receptor 4-inhibitor kappa B-nuclear factor kappa-B-interleukin 6/tumor necrosis factor-α (TLR4-IκB-NF-κB-IL-6/TNF-α) signal transduction but also strengthened the intestinal barrier by elevating the expression of zonula occludens 1 (ZO-1) and zonula occludens 2 (ZO-2). In summary, these results demonstrate that oroxin B could alleviate hepatic inflammation and MAFLD progression by regulating the gut microbiota balance and strengthening the intestinal barrier. Hence, our study suggests that oroxin B is a promising effective compound for MAFLD treatment.
Collapse
Affiliation(s)
- Yuhong Huang
- College of Life Science, Yangtze University, Jingzhou, Hubei, People's Republic of China
| | - Chao Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, People's Republic of China
| | - Meng Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, People's Republic of China
| | - Tao Xiong
- College of Life Science, Yangtze University, Jingzhou, Hubei, People's Republic of China
| | - Xinhua Song
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, People's Republic of China.
| | - Wenlong Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, People's Republic of China.
| | - Jingda Li
- College of Life Science, Yangtze University, Jingzhou, Hubei, People's Republic of China.
| |
Collapse
|
37
|
Singh TP, Kadyan S, Devi H, Park G, Nagpal R. Gut microbiome as a therapeutic target for liver diseases. Life Sci 2023; 322:121685. [PMID: 37044173 DOI: 10.1016/j.lfs.2023.121685] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/27/2023] [Accepted: 04/05/2023] [Indexed: 04/14/2023]
Abstract
The prominent role of gut in regulating the physiology of different organs in a human body is increasingly acknowledged, to which the bidirectional communication between gut and liver is no exception. Liver health is modulated via different key components of gut-liver axis. The gut-derived products mainly generated from dietary components, microbial metabolites, toxins, or other antigens are sensed and transported to the liver through portal vein to which liver responds by secreting bile acids and antibodies. Therefore, maintaining a healthy gut microbiome can promote homeostasis of this gut-liver axis by regulating the intestinal barrier function and reducing the antigenic molecules. Conversely, liver secretions also regulate the gut microbiome composition. Disturbed homeostasis allows luminal antigens to reach liver leading to impaired liver functioning and instigating liver disorders. The perturbations in gut microbiome, permeability, and bile acid pool have been associated with several liver disorders, although precise mechanisms remain largely unresolved. Herein, we discuss functional fingerprints of a healthy gut-liver axis while contemplating mechanistic understanding of pathophysiology of liver diseases and plausible role of gut dysbiosis in different diseased states of liver. Further, novel therapeutic approaches to prevent the severity of liver disorders are discussed in this review.
Collapse
Affiliation(s)
- Tejinder Pal Singh
- Department of Dairy Microbiology, College of Dairy Science and Technology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana 125004, India
| | - Saurabh Kadyan
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Harisha Devi
- Department of Dairy Microbiology, College of Dairy Science and Technology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana 125004, India
| | - Gwoncheol Park
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Ravinder Nagpal
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
38
|
Molina-Tijeras JA, Ruiz-Malagón AJ, Hidalgo-García L, Diez-Echave P, Rodríguez-Sojo MJ, Cádiz-Gurrea MDLL, Segura-Carretero A, del Palacio JP, González-Tejero MR, Rodríguez-Cabezas ME, Gálvez J, Rodríguez-Nogales A, Vezza T, Algieri F. The Antioxidant Properties of Lavandula multifida Extract Contribute to Its Beneficial Effects in High-Fat Diet-Induced Obesity in Mice. Antioxidants (Basel) 2023; 12:antiox12040832. [PMID: 37107207 PMCID: PMC10135096 DOI: 10.3390/antiox12040832] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Obesity is a worldwide public health problem whose prevalence rate has increased steadily over the last few years. Therefore, it is urgent to improve the management of obesity and its comorbidities, and plant-based treatments are receiving increasing attention worldwide. In this regard, the present study aimed to investigate a well-characterized extract of Lavandula multifida (LME) in an experimental model of obesity in mice and explore the underlying mechanisms. Interestingly, the daily administration of LME reduced weight gain as well as improved insulin sensitivity and glucose tolerance. Additionally, LME ameliorated the inflammatory state in both liver and adipose tissue by decreasing the expression of various proinflammatory mediators (Il-6, Tnf-α, Il-1β, Jnk-1, Pparα, Pparγ, and Ampk) and prevented increased gut permeability by regulating the expression of mucins (Muc-1, Muc-2, and Muc-3) and proteins implicated in epithelial barrier integrity maintenance (Ocln, Tjp1, and Tff-3). In addition, LME showed the ability to reduce oxidative stress by inhibiting nitrite production on macrophages and lipid peroxidation. These results suggest that LME may represent a promising complementary approach for the management of obesity and its comorbidities.
Collapse
Affiliation(s)
- Jose Alberto Molina-Tijeras
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
| | - Antonio Jesús Ruiz-Malagón
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
| | - Laura Hidalgo-García
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
- Correspondence: (L.H.-G.); (A.R.-N.); Tel.: +34-958241519 (A.R.-N.)
| | - Patricia Diez-Echave
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
| | - María Jesús Rodríguez-Sojo
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
| | | | - Antonio Segura-Carretero
- Department of Analytical Chemistry, Faculty of Science, University of Granada, 18071 Granada, Spain
| | - José Pérez del Palacio
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, 18016 Granada, Spain
| | | | - María Elena Rodríguez-Cabezas
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
| | - Julio Gálvez
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto Salud Carlos III, 28029 Madrid, Spain
| | - Alba Rodríguez-Nogales
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
- Correspondence: (L.H.-G.); (A.R.-N.); Tel.: +34-958241519 (A.R.-N.)
| | - Teresa Vezza
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
- Servicio de Digestivo, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
| | - Francesca Algieri
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18012 Granada, Spain
| |
Collapse
|
39
|
Fecal Metagenomics and Metabolomics Identifying Microbial Signatures in Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2023; 24:ijms24054855. [PMID: 36902288 PMCID: PMC10002933 DOI: 10.3390/ijms24054855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
The frequency of non-alcoholic fatty liver disease (NAFLD) has intensified, creating diagnostic challenges and increasing the need for reliable non-invasive diagnostic tools. Due to the importance of the gut-liver axis in the progression of NAFLD, studies attempt to reveal microbial signatures in NAFLD, evaluate them as diagnostic biomarkers, and to predict disease progression. The gut microbiome affects human physiology by processing the ingested food into bioactive metabolites. These molecules can penetrate the portal vein and the liver to promote or prevent hepatic fat accumulation. Here, the findings of human fecal metagenomic and metabolomic studies relating to NAFLD are reviewed. The studies present mostly distinct, and even contradictory, findings regarding microbial metabolites and functional genes in NAFLD. The most abundantly reproducing microbial biomarkers include increased lipopolysaccharides and peptidoglycan biosynthesis, enhanced degradation of lysine, increased levels of branched chain amino acids, as well as altered lipid and carbohydrate metabolism. Among other causes, the discrepancies between the studies may be related to the obesity status of the patients and the severity of NAFLD. In none of the studies, except for one, was diet considered, although it is an important factor driving gut microbiota metabolism. Future studies should consider diet in these analyses.
Collapse
|
40
|
Ji L, Deng H, Xue H, Wang J, Hong K, Gao Y, Kang X, Fan G, Huang W, Zhan J, You Y. Research progress regarding the effect and mechanism of dietary phenolic acids for improving nonalcoholic fatty liver disease via gut microbiota. Compr Rev Food Sci Food Saf 2023; 22:1128-1147. [PMID: 36717374 DOI: 10.1111/1541-4337.13106] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 02/01/2023]
Abstract
Phenolic acids (PAs), a class of small bioactive molecules widely distributed in food and mainly found as secondary plant metabolites, present significant advantages such as antioxidant activity and other health benefits. The global epidemic of nonalcoholic fatty liver disease (NAFLD) is becoming a serious public health problem. Existing studies showed that gut microbiota (GM) dysbiosis is highly associated with the occurrence and development of NAFLD. In recent years, progress has been made in the study of the relationship among PA compounds, GM, and NAFLD. PAs can regulate the composition and functions of the GM to promote human health, while GM can increase the dietary sources of PAs and improve its bioavailability. This paper discussed PAs, GM, and their interrelationship while introducing several representative dietary PA sources and examining the absorption and metabolism of PAs mediated by GM. It also summarizes the effect and mechanisms of PAs in improving and regulating NAFLD via GM and their metabolites. This helps to better evaluate the potential preventive effect of PAs on NAFLD via the regulation of GM and expands the utilization of PAs and PA-rich food resources.
Collapse
Affiliation(s)
- Lin Ji
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Huan Deng
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Huimin Xue
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Jiting Wang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Kexin Hong
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Yunxiao Gao
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Xiping Kang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Guanghe Fan
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Weidong Huang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Jicheng Zhan
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Yilin You
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| |
Collapse
|
41
|
Kuraji R, Shiba T, Dong TS, Numabe Y, Kapila YL. Periodontal treatment and microbiome-targeted therapy in management of periodontitis-related nonalcoholic fatty liver disease with oral and gut dysbiosis. World J Gastroenterol 2023; 29:967-996. [PMID: 36844143 PMCID: PMC9950865 DOI: 10.3748/wjg.v29.i6.967] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/14/2022] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
A growing body of evidence from multiple areas proposes that periodontal disease, accompanied by oral inflammation and pathological changes in the microbiome, induces gut dysbiosis and is involved in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). A subgroup of NAFLD patients have a severely progressive form, namely nonalcoholic steatohepatitis (NASH), which is characterized by histological findings that include inflammatory cell infiltration and fibrosis. NASH has a high risk of further progression to cirrhosis and hepatocellular carcinoma. The oral microbiota may serve as an endogenous reservoir for gut microbiota, and transport of oral bacteria through the gastro-intestinal tract can set up a gut microbiome dysbiosis. Gut dysbiosis increases the production of potential hepatotoxins, including lipopolysaccharide, ethanol, and other volatile organic compounds such as acetone, phenol and cyclopentane. Moreover, gut dysbiosis increases intestinal permeability by disrupting tight junctions in the intestinal wall, leading to enhanced translocation of these hepatotoxins and enteric bacteria into the liver through the portal circulation. In particular, many animal studies support that oral administration of Porphyromonas gingivalis, a typical periodontopathic bacterium, induces disturbances in glycolipid metabolism and inflammation in the liver with gut dysbiosis. NAFLD, also known as the hepatic phenotype of metabolic syndrome, is strongly associated with metabolic complications, such as obesity and diabetes. Periodontal disease also has a bidirectional relationship with metabolic syndrome, and both diseases may induce oral and gut microbiome dysbiosis with insulin resistance and systemic chronic inflammation cooperatively. In this review, we will describe the link between periodontal disease and NAFLD with a focus on basic, epidemiological, and clinical studies, and discuss potential mechanisms linking the two diseases and possible therapeutic approaches focused on the microbiome. In conclusion, it is presumed that the pathogenesis of NAFLD involves a complex crosstalk between periodontal disease, gut microbiota, and metabolic syndrome. Thus, the conventional periodontal treatment and novel microbiome-targeted therapies that include probiotics, prebiotics and bacteriocins would hold great promise for preventing the onset and progression of NAFLD and subsequent complications in patients with periodontal disease.
Collapse
Affiliation(s)
- Ryutaro Kuraji
- Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo 102-0071, Japan
- Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA 94143, United States
| | - Takahiko Shiba
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, United States
- Department of Periodontology, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
| | - Tien S Dong
- The Vatche and Tamar Manoukian Division of Digestive Diseases, University of California Los Angeles, Department of Medicine, University of California David Geffen School of Medicine, Los Angeles, CA 90095, United States
| | - Yukihiro Numabe
- Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo 102-8159, Japan
| | - Yvonne L Kapila
- Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA 94143, United States
- Sections of Biosystems and Function and Periodontics, Professor and Associate Dean of Research, Felix and Mildred Yip Endowed Chair in Dentistry, University of California Los Angeles, Los Angeles, CA 90095, United States
| |
Collapse
|
42
|
Dukić M, Radonjić T, Jovanović I, Zdravković M, Todorović Z, Kraišnik N, Aranđelović B, Mandić O, Popadić V, Nikolić N, Klašnja S, Manojlović A, Divac A, Gačić J, Brajković M, Oprić S, Popović M, Branković M. Alcohol, Inflammation, and Microbiota in Alcoholic Liver Disease. Int J Mol Sci 2023; 24:ijms24043735. [PMID: 36835145 PMCID: PMC9966185 DOI: 10.3390/ijms24043735] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
Alcoholic liver disease (ALD) is a consequence of excessive alcohol use. According to many studies, alcohol represents a significant socioeconomic and health risk factor in today's population. According to data from the World Health Organization, there are about 75 million people who have alcohol disorders, and it is well known that its use leads to serious health problems. ALD is a multimodality spectrum that includes alcoholic fatty liver disease (AFL) and alcoholic steatohepatitis (ASH), consequently leading to liver fibrosis and cirrhosis. In addition, the rapid progression of alcoholic liver disease can lead to alcoholic hepatitis (AH). Alcohol metabolism produces toxic metabolites that lead to tissue and organ damage through an inflammatory cascade that includes numerous cytokines, chemokines, and reactive oxygen species (ROS). In the process of inflammation, mediators are cells of the immune system, but also resident cells of the liver, such as hepatocytes, hepatic stellate cells, and Kupffer cells. These cells are activated by exogenous and endogenous antigens, which are called pathogen and damage-associated molecular patterns (PAMPs, DAMPs). Both are recognized by Toll-like receptors (TLRs), which activation triggers the inflammatory pathways. It has been proven that intestinal dysbiosis and disturbed integrity of the intestinal barrier perform a role in the promotion of inflammatory liver damage. These phenomena are also found in chronic excessive use of alcohol. The intestinal microbiota has an important role in maintaining the homeostasis of the organism, and its role in the treatment of ALD has been widely investigated. Prebiotics, probiotics, postbiotics, and symbiotics represent therapeutic interventions that can have a significant effect on the prevention and treatment of ALD.
Collapse
Affiliation(s)
- Marija Dukić
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia
| | - Tijana Radonjić
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia
| | - Igor Jovanović
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia
| | - Marija Zdravković
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Zoran Todorović
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Nemanja Kraišnik
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia
| | - Bojana Aranđelović
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia
| | - Olga Mandić
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia
| | - Višeslav Popadić
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia
| | - Novica Nikolić
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia
| | - Slobodan Klašnja
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia
| | - Andrea Manojlović
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia
| | - Anica Divac
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia
| | - Jasna Gačić
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Milica Brajković
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia
| | - Svetlana Oprić
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia
| | - Maja Popović
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia
| | - Marija Branković
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Correspondence: or
| |
Collapse
|
43
|
Overview of Cellular and Soluble Mediators in Systemic Inflammation Associated with Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2023; 24:ijms24032313. [PMID: 36768637 PMCID: PMC9916753 DOI: 10.3390/ijms24032313] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is currently the most prevalent chronic liver disease in Western countries, affecting approximately 25% of the adult population. This condition encompasses a spectrum of liver diseases characterized by abnormal accumulation of fat in liver tissue (non-alcoholic fatty liver, NAFL) that can progress to non-alcoholic steatohepatitis (NASH), characterized by the presence of liver inflammation and damage. The latter form often coexists with liver fibrosis which, in turn, may progress to a state of cirrhosis and, potentially, hepatocarcinoma, both irreversible processes that often lead to the patient's death and/or the need for liver transplantation. Along with the high associated economic burden, the high mortality rate among NAFLD patients raises interest, not only in the search for novel therapeutic approaches, but also in early diagnosis and prevention to reduce the incidence of NAFLD-related complications. In this line, an exhaustive characterization of the immune status of patients with NAFLD is mandatory. Herein, we attempted to gather and compare the current and relevant scientific evidence on this matter, mainly on human reports. We addressed the current knowledge related to circulating cellular and soluble mediators, particularly platelets, different leukocyte subsets and relevant inflammatory soluble mediators.
Collapse
|
44
|
Hakeem AN, Kamal MM, Tawfiq RA, Abdelrahman BA, Hammam OA, Elmazar MM, El-Khatib AS, Attia YM. Elafibranor modulates ileal macrophage polarization to restore intestinal integrity in NASH: Potential crosstalk between ileal IL-10/STAT3 and hepatic TLR4/NF-κB axes. Biomed Pharmacother 2023; 157:114050. [PMID: 36462310 DOI: 10.1016/j.biopha.2022.114050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/17/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Experimental and clinical evidence implicate disrupted gut barrier integrity in provoking innate immune responses, specifically macrophages, towards the progression of non-alcoholic steatohepatitis (NASH). Peroxisome proliferator-activated receptors (PPARs), a subset of the nuclear receptor superfamily, act to fine-tune several metabolic and inflammatory processes implicated in NASH. As such, the current study was carried out to decipher the potential role of dual PPAR α/δ activation using elafibranor (ELA) on ileal macrophage polarization (MP) and its likely impact on the liver in a NASH setting. To achieve this aim, an in vitro NASH model using fat-laden HepG2 cells was first used to validate the impact of ELA on hepatic fat accumulation. Afterwards, ELA was used in a combined model of dietary NASH and chronic colitis analogous to the clinical presentation of NASH parallel with intestinal barrier dysfunction. ELA mitigated fat accumulation in vitro as evidenced by Oil Red-O staining and curbed triglyceride levels. Additionally, ELA restored the expression of tight junctional proteins, claudin-1 and occludin, along with decreasing intestinal permeability and inflammation skewing ileal macrophages towards the M2 phenotype, as indicated by boosted arginase-1 (Arg1) and curtailed inducible nitric oxide synthase (iNOS) expression levels. These changes were aligned with a modulation in hepatic toll-like receptor-4 (TLR4)/nuclear factor kappa B (NF-κB) along with ileal interleukin-10 (IL-10)/signal transducer and activator of transcription-3 (STAT3) axes. Overall, the present findings suggest that the dual PPAR α/δ agonist, ELA, may drive MP in the ileum towards the M2 phenotype improving intestinal integrity towards alleviating NASH.
Collapse
Affiliation(s)
- Andrew N Hakeem
- Department of Pharmacology, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt; The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Mohamed M Kamal
- The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Rasha A Tawfiq
- Department of Pharmacology, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt; The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Basma A Abdelrahman
- Department of Pharmacology, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt; The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Olfat A Hammam
- Department of Pathology, Theodor Bilharz Research Institute, Giza, Egypt
| | - Mohamed M Elmazar
- Department of Pharmacology, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt; The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Aiman S El-Khatib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Yasmeen M Attia
- Department of Pharmacology, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt; The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt.
| |
Collapse
|
45
|
Park J, Zhao Y, Zhang F, Zhang S, Kwong AC, Zhang Y, Hoffmann HH, Bushweller L, Wu X, Ashbrook AW, Stefanovic B, Chen S, Branch AD, Mason CE, Jung JU, Rice CM, Wu X. IL-6/STAT3 axis dictates the PNPLA3-mediated susceptibility to non-alcoholic fatty liver disease. J Hepatol 2023; 78:45-56. [PMID: 36049612 PMCID: PMC9772150 DOI: 10.1016/j.jhep.2022.08.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 07/27/2022] [Accepted: 08/17/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS A number of genetic polymorphisms have been associated with susceptibility to or protection against non-alcoholic fatty liver disease (NAFLD), but the underlying mechanisms remain unknown. Here, we focused on the rs738409 C>G single nucleotide polymorphism (SNP), which produces the I148M variant of patatin-like phospholipase domain-containing protein 3 (PNPLA3) and is strongly associated with NAFLD. METHODS To enable mechanistic dissection, we developed a human pluripotent stem cell (hPSC)-derived multicellular liver culture by incorporating hPSC-derived hepatocytes, hepatic stellate cells, and macrophages. We first applied this liver culture to model NAFLD by utilising a lipotoxic milieu reflecting the circulating levels of disease risk factors in affected individuals. We then created an isogenic pair of liver cultures differing only at rs738049 and compared NAFLD phenotype development. RESULTS Our hPSC-derived liver culture recapitulated many key characteristics of NAFLD development and progression including lipid accumulation and oxidative stress, inflammatory response, and stellate cell activation. Under the lipotoxic conditions, the I148M variant caused the enhanced development of NAFLD phenotypes. These differences were associated with elevated IL-6/signal transducer and activator of transcription 3 (STAT3) activity in liver cultures, consistent with transcriptomic data of liver biopsies from individuals carrying the rs738409 SNP. Dampening IL-6/STAT3 activity alleviated the I148M-mediated susceptibility to NAFLD, whereas boosting it in wild-type liver cultures enhanced NAFLD development. Finally, we attributed this elevated IL-6/STAT3 activity in liver cultures carrying the rs738409 SNP to increased NF-κB activity. CONCLUSIONS Our study thus reveals a potential causal link between elevated IL-6/STAT3 activity and 148M-mediated susceptibility to NAFLD. IMPACT AND IMPLICATIONS An increasing number of genetic variants manifest in non-alcoholic fatty liver disease (NAFLD) development and progression; however, the underlying mechanisms remain elusive. To study these variants in human-relevant systems, we developed an induced pluripotent stem cell-derived multicellular liver culture and focused on a common genetic variant (i.e. rs738409 in PNPLA3). Our findings not only provide mechanistic insight, but also a potential therapeutic strategy for NAFLD driven by this genetic variant in PNPLA3. Our liver culture is therefore a useful platform for exploring genetic variants in NAFLD development.
Collapse
Affiliation(s)
- Jiwoon Park
- Laboratory of Virology and Infectious Disease, Rockefeller University, New York, NY, USA; Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Yuanyuan Zhao
- Infection Biology Program and Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Fan Zhang
- Infection Biology Program and Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Shaoyan Zhang
- Infection Biology Program and Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Andrew C Kwong
- Laboratory of Virology and Infectious Disease, Rockefeller University, New York, NY, USA; The Biological and Biomedical Sciences Program, Harvard Medical School, Boston, MA, USA
| | - Yujie Zhang
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Hans-Heinrich Hoffmann
- Laboratory of Virology and Infectious Disease, Rockefeller University, New York, NY, USA
| | - Leila Bushweller
- Infection Biology Program and Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Xin Wu
- Infection Biology Program and Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Alison W Ashbrook
- Laboratory of Virology and Infectious Disease, Rockefeller University, New York, NY, USA
| | - Branko Stefanovic
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Shuyang Chen
- Infection Biology Program and Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Andrea D Branch
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christopher E Mason
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Jae U Jung
- Infection Biology Program and Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, Rockefeller University, New York, NY, USA.
| | - Xianfang Wu
- Laboratory of Virology and Infectious Disease, Rockefeller University, New York, NY, USA; Infection Biology Program and Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
| |
Collapse
|
46
|
Alharthi J, Bayoumi A, Thabet K, Pan Z, Gloss BS, Latchoumanin O, Lundberg M, Twine NA, McLeod D, Alenizi S, Adams LA, Weltman M, Berg T, Liddle C, George J, Eslam M. A metabolic associated fatty liver disease risk variant in MBOAT7 regulates toll like receptor induced outcomes. Nat Commun 2022; 13:7430. [PMID: 36473860 PMCID: PMC9726889 DOI: 10.1038/s41467-022-35158-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
The breakdown of toll-like receptor (TLR) tolerance results in tissue damage, and hyperactivation of the TLRs and subsequent inflammatory consequences have been implicated as risk factors for more severe forms of disease and poor outcomes from various diseases including COVID-19 and metabolic (dysfunction) associated fatty liver disease (MAFLD). Here we provide evidence that membrane bound O-acyltransferase domain containing 7 (MBOAT7) is a negative regulator of TLR signalling. MBOAT7 deficiency in macrophages as observed in patients with MAFLD and in COVID-19, alters membrane phospholipid composition. We demonstrate that this is associated with a redistribution of arachidonic acid toward proinflammatory eicosanoids, induction of endoplasmic reticulum stress, mitochondrial dysfunction, and remodelling of the accessible inflammatory-related chromatin landscape culminating in macrophage inflammatory responses to TLRs. Activation of MBOAT7 reverses these effects. These outcomes are further modulated by the MBOAT7 rs8736 (T) MAFLD risk variant. Our findings suggest that MBOAT7 can potentially be explored as a therapeutic target for diseases associated with dysregulation of the TLR signalling cascade.
Collapse
Affiliation(s)
- Jawaher Alharthi
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia
- Department of Biotechnology, Faculty of Science, Taif University, Taif, Saudi Arabia
| | - Ali Bayoumi
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia
| | - Khaled Thabet
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 6111, Egypt
| | - Ziyan Pan
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia
| | - Brian S Gloss
- Westmead Research Hub, Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Olivier Latchoumanin
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia
| | - Mischa Lundberg
- Transformational Bioinformatics, Commonwealth Scientific and Industrial Research Organisation, Sydney, NSW, Australia
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia
- The University of Queensland Faculty of Medicine, Brisbane, QLD, Australia
| | - Natalie A Twine
- Transformational Bioinformatics, Commonwealth Scientific and Industrial Research Organisation, Sydney, NSW, Australia
| | - Duncan McLeod
- Department of Anatomical Pathology, Institute of Clinical Pathology and Medical Research (ICPMR), Westmead Hospital, Sydney, NSW, Australia
| | - Shafi Alenizi
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia
| | - Leon A Adams
- Medical School, Sir Charles Gairdner Hospital Unit, University of Western Australia, Nedlands, WA, Australia
| | - Martin Weltman
- Department of Gastroenterology and Hepatology, Nepean Hospital, Sydney, NSW, Australia
| | - Thomas Berg
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Leipzig, Germany
| | - Christopher Liddle
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
47
|
Wei W, Liu L, Liu X, Tao Y, Gong J, Wang Y, Liu S. Black ginseng protects against Western diet-induced nonalcoholic steatohepatitis by modulating the TLR4/NF-κB signaling pathway in mice. J Food Biochem 2022; 46:e14432. [PMID: 36183169 DOI: 10.1111/jfbc.14432] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/18/2022] [Accepted: 09/15/2022] [Indexed: 01/13/2023]
Abstract
Black ginseng (BG) shows beneficial effects on liver injury, but the related mechanism has not been fully revealed. This study attempted to investigate the protective effects and associated mechanisms of BG against nonalcoholic steatohepatitis (NASH). Twelve ginsenosides in BG were annotated by ultrahigh performance liquid chromatography combined with high resolution mass spectrometry (UHPLC-HRMS). The Western diet (WD) together with the low-dose CCl4 was given to mice to create the NASH model. Histopathological examination and liver/serum biochemical analysis revealed that the NASH mice displayed severe steatosis and liver damage compared with control mice. After BG administration, the serum and liver triglycerides (TG) concentrations and the serum level of low-density lipoprotein (LDL) were dramatically reduced. Besides, the BG treatment greatly decreased the serum values of interleukin 6 (IL-6) and tumor necrosis factor-α (TNF-α), and the hepatic expression of fibrotic-related genes, such as alpha-smooth muscle actin (α-SMA) and collagen type I alpha 1 (Col1α1). We further discovered that BG administration could block the protein expression of toll-like receptor 4 (TLR4) and the phosphorylation of nuclear factor-kappa B p65 (NF-κB p65), indicating that BG exerted a liver protective effect via regulating the TLR4/NF-κB pathway. This study demonstrated the therapeutic efficacy and the associated mechanism of BG in the treatment of NASH, giving evidence for BG as a potential functional food to prevent NASH. PRACTICAL APPLICATIONS: BG is a type of processed ginseng product that has been used as diet supplementation and has shown favorable effects on liver injury. However, the pharmacological impact of BG on NASH has not been studied in depth. The present study showed that BG could effectively reduce WD-induced liver fibrosis and inflammation through the TLR4/NF-κB axis, which indicated that BG has the potential to be utilized as a functional herb to attenuate liver injury.
Collapse
Affiliation(s)
- Wei Wei
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Liming Liu
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, China
| | - Xiaokang Liu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Ye Tao
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Jiyu Gong
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Yang Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Shuying Liu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
48
|
Proton Pump Inhibitor Pantoprazole Modulates Intestinal Microbiota and Induces TLR4 Signaling and Fibrosis in Mouse Liver. Int J Mol Sci 2022; 23:ijms232213766. [PMID: 36430244 PMCID: PMC9693486 DOI: 10.3390/ijms232213766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/21/2022] [Accepted: 11/02/2022] [Indexed: 11/12/2022] Open
Abstract
Proton pump inhibitors (PPIs) are one of the most prescribed drugs around the world. PPIs induce microbiota modulation such as obesity both in humans and in animal models. However, since PPIs can induce microbiota modulation despite the absence of a high-fat diet or weight gain, it is an interesting model to correlate microbiota modulation with the establishment of non-alcoholic fatty liver disease (NAFLD). We investigated the effect of pantoprazole treatment on TLR4 signaling and liver histology in C57BL/6J mice for 60 days, trying to correlate microbiota modulation with some aspects of liver injury. We performed glucose (GTT) and insulin (ITT) tolerance tests, serum lipopolysaccharide (LPS) dosage, liver histology, liver and intestine extraction for Western blot and qPCR. Fecal microbiota were investigated via metagenomics. Chronic treatment with pantoprazole induced microbiota modulation and impaired ileum barrier integrity, without an association with insulin resistance. Furthermore, increased circulating LPS and increased Toll-like receptor 4 (TLR4) and TGFβ downstream signaling may have an important role in the development of the observed liver microvesicular steatosis and fibrosis. Finally, this model of PPI-induced changes in microbiota might be useful to investigate liver microvesicular steatosis and fibrosis.
Collapse
|
49
|
Pezzino S, Sofia M, Faletra G, Mazzone C, Litrico G, La Greca G, Latteri S. Gut-Liver Axis and Non-Alcoholic Fatty Liver Disease: A Vicious Circle of Dysfunctions Orchestrated by the Gut Microbiome. BIOLOGY 2022; 11:1622. [PMID: 36358323 PMCID: PMC9687983 DOI: 10.3390/biology11111622] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 09/24/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a prevalent, multifactorial, and poorly understood liver disease with an increasing incidence worldwide. NAFLD is typically asymptomatic and coupled with other symptoms of metabolic syndrome. The prevalence of NAFLD is rising in tandem with the prevalence of obesity. In the Western hemisphere, NAFLD is one of the most prevalent causes of liver disease and liver transplantation. Recent research suggests that gut microbiome dysbiosis may play a significant role in the pathogenesis of NAFLD by dysregulating the gut-liver axis. The so-called "gut-liver axis" refers to the communication and feedback loop between the digestive system and the liver. Several pathological mechanisms characterized the alteration of the gut-liver axis, such as the impairment of the gut barrier and the increase of the intestinal permeability which result in endotoxemia and inflammation, and changes in bile acid profiles and metabolite levels produced by the gut microbiome. This review will explore the role of gut-liver axis disruption, mediated by gut microbiome dysbiosis, on NAFLD development.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Saverio Latteri
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95126 Catania, Italy
| |
Collapse
|
50
|
Jiang LY, Kan YN, Yu ZP, Jian BY, Yao SJ, Lv LY, Liu JC. Prebiotic Effects of Chinese Herbal Polysaccharides on NAFLD Amelioration: The Preclinical Progress. Nat Prod Commun 2022; 17. [DOI: 10.1177/1934578x221124751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is caused by fatty degeneration of liver cells, and there are currently no effective treatments. Numerous investigations have demonstrated that Chinese herbal medicines (CHMs) are effective against NAFLD. Polysaccharides (PS), the major components of most CHM, are primarily taken orally to be degraded and fermented by gut microbiota, which makes them a promising multivalent and multifunctional prebiotic candidate for NAFLD. In this review, the experimental evidence to prevent and treat NAFLD using the unique prebiotic effects of PS isolated from CHM are summarized to discuss additional treatment options for NAFLD.
Collapse
Affiliation(s)
- Li-Yan Jiang
- Department of Pathogen Biology, Medical Technology College of Qiqihar Medical University, Qiqihar, China
| | - Yu-Na Kan
- Department of Polygenic Diseases, Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Zhi-Pu Yu
- Department of Equipment, The Second Affiliated Hospital, Qiqihar Medical University, Qiqihar, China
| | - Bai-Yu Jian
- Department of Polygenic Diseases, Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Shu-Juan Yao
- Department of Pathogen Biology, Medical Technology College of Qiqihar Medical University, Qiqihar, China
| | - Li-Yan Lv
- Department of Pathogen Biology, Medical Technology College of Qiqihar Medical University, Qiqihar, China
| | - Ji-Cheng Liu
- Department of Polygenic Diseases, Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, China
| |
Collapse
|