1
|
Zhao Y, Zeng Z, Zheng W, Zhang Z, Zhang H, Luo Y, Zhao K, Ding Y, Lu W, Hao F, Huang Y, Shen L. Cow Placenta Peptides Ameliorate D-Galactose-Induced Intestinal Barrier Damage by Regulating TLR/NF-κB Pathway. Vet Sci 2025; 12:229. [PMID: 40266951 PMCID: PMC11945863 DOI: 10.3390/vetsci12030229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/19/2025] [Accepted: 02/26/2025] [Indexed: 04/25/2025] Open
Abstract
This study investigated the protective effects and mechanisms of cow placenta peptides (CPP) on intestinal barrier damage in aging model mice. Forty-eight male ICR mice were assigned to four groups: a control group (N), an aging model group (M), a CPP treatment group (T), and a vitamin C treatment group (P). Groups T and P received oral administration of CPP (2000 mg/kg/day) and vitamin C (100 mg/kg/day), respectively, while groups M, T, and P were subjected to intraperitoneal injections of D-galactose (D-gal) (300 mg/kg/day). Group N received an equivalent volume of normal saline via intraperitoneal injection. Treatments were administered once daily for 8 weeks. The results demonstrated that CPP significantly alleviated D-galactose-induced intestinal structural damage, increasing the villus height-to-crypt depth ratio and reducing serum diamine oxidase (DAO) and lipopolysaccharide (LPS) levels. CPP notably alleviated intestinal oxidative stress and inflammation, restored tight junction expression, and enhanced intestinal barrier integrity. Transcriptome sequencing identified 1396 DEGs associated with CPP's effects, highlighting TLR4, IL-1β, and Mmp9 as core regulatory genes through protein-protein interaction network analysis. Kyoto Encyclopedia of Genes and Genomes and Gene Ontology enrichment analyses implicated the TLR4/NF-κB signaling pathway, which was further validated. Western blotting confirmed that CPP significantly down-regulated TLR4, IKKβ, and p-NF-κB p65 protein expression in the intestines of aging mice. In conclusion, CPP effectively alleviates D-gal-induced intestinal barrier damage in aging mice by enhancing antioxidant defense and inhibiting the TLR4/NF-κB signaling pathway, thereby diminishing inflammation and protecting intestinal barrier integrity.
Collapse
Affiliation(s)
- Yuquan Zhao
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (Z.Z.); (W.Z.); (Z.Z.); (H.Z.); (Y.L.); (K.Z.); (Y.D.)
| | - Zhi Zeng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (Z.Z.); (W.Z.); (Z.Z.); (H.Z.); (Y.L.); (K.Z.); (Y.D.)
| | - Weijian Zheng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (Z.Z.); (W.Z.); (Z.Z.); (H.Z.); (Y.L.); (K.Z.); (Y.D.)
| | - Zeru Zhang
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (Z.Z.); (W.Z.); (Z.Z.); (H.Z.); (Y.L.); (K.Z.); (Y.D.)
| | - Hanwen Zhang
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (Z.Z.); (W.Z.); (Z.Z.); (H.Z.); (Y.L.); (K.Z.); (Y.D.)
| | - Yuxin Luo
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (Z.Z.); (W.Z.); (Z.Z.); (H.Z.); (Y.L.); (K.Z.); (Y.D.)
| | - Kunshan Zhao
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (Z.Z.); (W.Z.); (Z.Z.); (H.Z.); (Y.L.); (K.Z.); (Y.D.)
| | - Yuyan Ding
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (Z.Z.); (W.Z.); (Z.Z.); (H.Z.); (Y.L.); (K.Z.); (Y.D.)
| | - Wei Lu
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (W.L.); (F.H.)
| | - Fuxing Hao
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (W.L.); (F.H.)
| | - Yixin Huang
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (Z.Z.); (W.Z.); (Z.Z.); (H.Z.); (Y.L.); (K.Z.); (Y.D.)
| | - Liuhong Shen
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (Z.Z.); (W.Z.); (Z.Z.); (H.Z.); (Y.L.); (K.Z.); (Y.D.)
| |
Collapse
|
2
|
Kanika, Ahmad A, Kumar A, Rahul, Mishra RK, Ali N, Navik U, Parvez S, Khan R. Leveraging thiol-functionalized biomucoadhesive hybrid nanoliposome for local therapy of ulcerative colitis. Biomaterials 2025; 312:122747. [PMID: 39142219 DOI: 10.1016/j.biomaterials.2024.122747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/06/2024] [Accepted: 08/04/2024] [Indexed: 08/16/2024]
Abstract
Directly administering medication to inflamed intestinal sites for treating ulcerative colitis (UC), poses significant challenges like retention time, absorption variability, side effects, drug stability, and non-specific delivery. Recent advancements in therapy to treat colitis aim to improve local drug availability that is enema therapy at the site of inflammation, thereby reducing systemic adverse effects. Nevertheless, a key limitation lies in enemas' inability to sustain medication in the colon due to rapid peristaltic movement, diarrhea, and poor local adherence. Therefore, in this work, we have developed site-specific thiolated mucoadhesive anionic nanoliposomes to overcome the limitations of conventional enema therapy. The thiolated delivery system allows prolonged residence of the delivery system at the inflamed site in the colon, confirmed by the adhesion potential of thiolated nanoliposomes using in-vitro and in-vivo models. To further provide therapeutic efficacy thiolated nanoliposomes were loaded with gallic acid (GA), a natural compound known for its antibacterial, antioxidant, and potent anti-inflammatory properties. Consequently, Gallic Acid-loaded Thiolated 2,6 DALP DMPG (GATh@APDL) demonstrates the potential for targeted adhesion to the inflamed colon, facilitated by their small size 100 nm and anionic nature. Therapeutic studies indicate that this formulation offers protective effects by mitigating colonic inflammation, downregulating the expression of NF-κB, HIF-1α, and MMP-9, and demonstrating superior efficacy compared to the free GA enema. The encapsulated GA inhibits the NF-κB expression, leading to enhanced expression of MUC2 protein, thereby promoting mucosal healing in the colon. Furthermore, GATh@APDL effectively reduces neutrophil infiltration and regulates immune cell quantification in colonic lamina propria. Our findings suggest that GATh@APDL holds promise for alleviating UC and addressing the limitations of conventional enema therapy.
Collapse
Affiliation(s)
- Kanika
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector 81, Knowledge City, Sahibzada Ajit Singh Nagar, Mohali, Punjab, 140306, India
| | - Anas Ahmad
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N4N1, Canada
| | - Ajay Kumar
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector 81, Knowledge City, Sahibzada Ajit Singh Nagar, Mohali, Punjab, 140306, India
| | - Rahul
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Rajasthan, 302017, India
| | - Rakesh Kumar Mishra
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun, India
| | - Nemat Ali
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Bathinda, Ghudda, Punjab, 151401, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector 81, Knowledge City, Sahibzada Ajit Singh Nagar, Mohali, Punjab, 140306, India.
| |
Collapse
|
3
|
Xie X, Wang Y, Deng B, Blatchley MR, Lan D, Xie Y, Lei M, Liu N, Xu F, Wei Z. Matrix metalloproteinase-responsive hydrogels with tunable retention for on-demand therapy of inflammatory bowel disease. Acta Biomater 2024; 186:354-368. [PMID: 39117116 DOI: 10.1016/j.actbio.2024.07.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/02/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Therapeutic options for addressing inflammatory bowel disease (IBD) include the administration of an enema to reduce intestinal inflammation and alleviate associated symptoms. However, uncontrollable retention of enemas in the intestinal tract has posed a long-term challenge for improving their therapeutic efficacy and safety. Herein we have developed a protease-labile hydrogel system as an on-demand enema vehicle with tunable degradation and drug release rates in response to varying matrix metalloproteinase-9 (MMP-9) expression. The system, composed of three tailored hydrogel networks, is crosslinked by poly (ethylene glycol) (PEG) with 2-, 4- and 8-arms through dynamic hydrazone bonds to confer injectability and generate varying network connectivity. The retention time of the hydrogels can be tuned from 12 to 36 h in the intestine due to their different degradation behaviors induced by MMP-9. The drug-releasing rate of the hydrogels can be controlled from 0.0003 mg/h to 0.278 mg/h. In addition, injection of such hydrogels in vivo resulted in significant differences in therapeutic effects including MMP-9 consumption, colon tissue repair, reduced collagen deposition, and decreased macrophage cells, for treating a mouse model of acute colitis. Among them, GP-8/5-ASA exhibits the best performance. This study validates the effectiveness of the tailored design of hydrogel architecture in response to pathological microenvironment cues, representing a promising strategy for on-demand therapy of IBD. STATEMENT OF SIGNIFICANCE: The uncontrollable retention of enemas at the delivery site poses a long-term challenge for improving therapeutic efficacy in IBD patients. MMP-9 is highly expressed in IBD and correlates with disease severity. Therefore, an MMP-9-responsive GP hydrogel system was developed as an enema by linking multi-armed PEG and gelatin through hydrazone bonds. This forms a dynamic hydrogel characterized by in situ gelation, injectability, enhanced bio-adhesion, biocompatibility, controlled retention time, and regulated drug release. GP hydrogels encapsulating 5-ASA significantly improved the intestinal phenotype of acute IBD and demonstrated notable therapeutic differences with increasing PEG arms. This method represents a promising on-demand IBD therapy strategy and provides insights into treating diseases of varying severities using endogenous stimulus-responsive drug delivery systems.
Collapse
Affiliation(s)
- Xueyong Xie
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yaohui Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Bo Deng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Michael R Blatchley
- Department of Chemical and Biological Engineering, University of Colorado Boulder 3415 Colorado Ave, Boulder, CO 80303, USA
| | - Dongwei Lan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yizhou Xie
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Meng Lei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Na Liu
- Department of Gastroenterology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, PR China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Zhao Wei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.
| |
Collapse
|
4
|
Seo KJ, Alam MR, Abdul-Ghafar J, Kim SW, Kim HK, Choi HH, Sin SH, Lee HK, Chae HS. Tranilast Treatment Prevents Chronic Radiation-Induced Colitis in Rats by Inhibiting Mast Cell Infiltration. Pharmacology 2024; 110:77-86. [PMID: 39163845 PMCID: PMC11975317 DOI: 10.1159/000541003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 08/12/2024] [Indexed: 08/22/2024]
Abstract
INTRODUCTION Mast cells are the principal cells involved in acute and chronic colitis due to radiation, known as radiation-induced colitis (RIC). In this study, we investigated whether pretreatment with tranilast, a mast cell inhibitor, could alleviate chronic RIC. METHODS A total of 23 Sprague-Dawley rats were randomly divided into three groups: control group (n = 5), radiation group (RG, n = 9), and tranilast-pretreated radiation group (TG, n = 9). The rats in the RG and the TG were irradiated in the pelvic area (1.5 cm from the anus) with a single dose of 20 Gy under general anesthesia. Tranilast (100 mg/kg) was administered intraperitoneally to the rats of the TG for 10 days, starting from the day of pelvic radiation. Ten weeks after radiation, the rats were euthanized. Rectal tissue samples were histologically evaluated for the total inflammation score (TIS) and mast cell count. The expression of MUC2, MUC5AC, and matrix metalloproteinase-9 (MMP-9) was also assessed immunohistochemically. RESULTS Both the TIS and specific components of TIS such as epithelial atypia, vascular sclerosis, and colitis cystica profunda (CCP) were significantly higher in the RG than in the TG (p = 0.02, 0.038, 0.025, and 0.01, respectively). Thein number of infiltrating mast cells was significantly higher in the RG than in the TG (median [range]: 20 [3-54] versus 6 [3-25], respectively; p = 0.034). Quantitatively, the number of MMP-9-positive cells was significantly higher in the RG (23.67 ± 19.00) than in the TG (10.25 ± 8.45) (mean ± standard deviation; p < 0.05). TIS and MMP-9 exhibited a strong association (correlation coefficient r = 0.56, p < 0.05). Immunohistochemically, the mucin-lake of CCP showed no staining for MUC5AC but was stained positive for MUC2. CONCLUSION Tranilast pretreatment of chronic RIC showed an anti-inflammatory effect associated with the reduction of mast cell infiltration and MMP-9 expression.
Collapse
Affiliation(s)
- Kyung Jin Seo
- Department of Hospital Pathology, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea,
| | - Mohammad Rizwan Alam
- Department of Hospital Pathology, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jamshid Abdul-Ghafar
- Department of Hospital Pathology, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sang Woo Kim
- Department of Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyung Keun Kim
- Department of Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyun Ho Choi
- Department of Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung Ho Sin
- Department of Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hae Kyung Lee
- Department of Laboratory Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hiun Suk Chae
- Department of Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
5
|
Dovrolis N, Valatas V, Drygiannakis I, Filidou E, Spathakis M, Kandilogiannakis L, Tarapatzi G, Arvanitidis K, Bamias G, Vradelis S, Manolopoulos VG, Paspaliaris V, Kolios G. Landscape of Interactions between Stromal and Myeloid Cells in Ileal Crohn's Disease; Indications of an Important Role for Fibroblast-Derived CCL-2. Biomedicines 2024; 12:1674. [PMID: 39200138 PMCID: PMC11351973 DOI: 10.3390/biomedicines12081674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/20/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND AND AIMS Monocyte recruitment in the lamina propria and inflammatory phenotype driven by the mucosal microenvironment is critical for the pathogenesis of inflammatory bowel disease. However, the stimuli responsible remain largely unknown. Recent works have focused on stromal cells, the main steady-state cellular component in tissue, as they produce pro-inflammatory chemokines that contribute to the treatment-resistant nature of IBD. METHODS We studied the regulation of these processes by examining the communication patterns between stromal and myeloid cells in ileal Crohn's disease (CD) using a complete single-cell whole tissue sequencing analysis pipeline and in vitro experimentation in mesenchymal cells. RESULTS We report expansion of S4 stromal cells and monocyte-like inflammatory macrophages in the inflamed mucosa and describe interactions that may establish sustained local inflammation. These include expression of CCL2 by S1 fibroblasts to recruit and retain monocytes and macrophages in the mucosa, where they receive signals for proliferation, survival, and differentiation to inflammatory macrophages from S4 stromal cells through molecules such as MIF, IFNγ, and FN1. The overexpression of CCL2 in ileal CD and its stromal origin was further demonstrated in vitro by cultured mesenchymal cells and intestinal organoids in the context of an inflammatory milieu. CONCLUSIONS Our findings outline an extensive cross-talk between stromal and myeloid cells, which may contribute to the onset and progression of inflammation in ileal Crohn's disease. Understanding the mechanisms underlying monocyte recruitment and polarization, as well as the role of stromal cells in sustaining inflammation, can provide new avenues for developing targeted therapies to treat IBD.
Collapse
Affiliation(s)
- Nikolas Dovrolis
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.F.); (M.S.); (L.K.); (G.T.); (K.A.); (V.G.M.); (G.K.)
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Vassilis Valatas
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.F.); (M.S.); (L.K.); (G.T.); (K.A.); (V.G.M.); (G.K.)
- Gastroenterology and Hepatology Research Laboratory, Medical School, University of Crete, 71003 Heraklion, Greece;
| | - Ioannis Drygiannakis
- Gastroenterology and Hepatology Research Laboratory, Medical School, University of Crete, 71003 Heraklion, Greece;
| | - Eirini Filidou
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.F.); (M.S.); (L.K.); (G.T.); (K.A.); (V.G.M.); (G.K.)
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Michail Spathakis
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.F.); (M.S.); (L.K.); (G.T.); (K.A.); (V.G.M.); (G.K.)
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Leonidas Kandilogiannakis
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.F.); (M.S.); (L.K.); (G.T.); (K.A.); (V.G.M.); (G.K.)
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Gesthimani Tarapatzi
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.F.); (M.S.); (L.K.); (G.T.); (K.A.); (V.G.M.); (G.K.)
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Konstantinos Arvanitidis
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.F.); (M.S.); (L.K.); (G.T.); (K.A.); (V.G.M.); (G.K.)
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Giorgos Bamias
- GI Unit, 3 Department of Internal Medicine, Sotiria Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Stergios Vradelis
- Second Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Vangelis G. Manolopoulos
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.F.); (M.S.); (L.K.); (G.T.); (K.A.); (V.G.M.); (G.K.)
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | | | - George Kolios
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.F.); (M.S.); (L.K.); (G.T.); (K.A.); (V.G.M.); (G.K.)
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| |
Collapse
|
6
|
Chrzanowski G, Pasternak G, Aebisher D, Dynarowicz K, Myśliwiec A, Bartusik-Aebisher D, Sosna B, Cieślar G, Kawczyk-Krupka A, Filip R. An Analysis of the Content of Metalloproteinases in the Intestinal Wall of Patients with Crohn's Disease. Life (Basel) 2023; 13:2013. [PMID: 37895400 PMCID: PMC10608236 DOI: 10.3390/life13102013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
One of the inflammatory bowel diseases is Crohn's disease. Although this term has been used in the medical community since 1932, a significant increase in the number of publications occurs at the end of the 20th century and the beginning of the 21st century. Crohn's disease is a disease that cannot be fully cured. In many cases, it is chronic, i.e., recurrent. All preventive and therapeutic measures taken by doctors are aimed at inhibiting the development of the disease and minimizing the occurrence of any potential "side effects" resulting from the developing disease. One of the diagnostic methods is the qualitative and quantitative determination of metalloproteinases in inflammatory tissues and in the blood. The aim of the study was the quantitative and qualitative determination of metalloproteinases in inflammatory bowel tissues in patients diagnosed with Crohn's disease. The in vitro study was performed on surgical tissues from patients diagnosed with Crohn's disease. The results show that in inflammatory tissues the concentration of metalloproteinases -3, -7, -8, -9 was higher compared to tissues taken from the resection margin without signs of inflammation, defined as healthy. The experiment confirmed that the biochemical test, which is the determination of metalloproteinases in tissues, is a useful diagnostic tool to differentiate inflammatory from non-inflammatory tissues.
Collapse
Affiliation(s)
- Grzegorz Chrzanowski
- Department of Biology, College of Natural Sciences, University of Rzeszów, 35-310 Rzeszów, Poland;
| | - Grzegorz Pasternak
- Department of General Surgery, Provincial Clinical Hospital No. 2 in Rzeszów, 35-301 Rzeszów, Poland;
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of University of Rzeszów, University of Rzeszów, 35-310 Rzeszów, Poland
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland; (K.D.); (A.M.)
| | - Angelika Myśliwiec
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland; (K.D.); (A.M.)
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of University of Rzeszów, University of Rzeszów, 35-310 Rzeszów, Poland;
| | - Barbara Sosna
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland; (B.S.); (G.C.); (A.K.-K.)
| | - Grzegorz Cieślar
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland; (B.S.); (G.C.); (A.K.-K.)
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland; (B.S.); (G.C.); (A.K.-K.)
| | - Rafał Filip
- Department of Internal Medicine, Medical College of University of Rzeszów, University of Rzeszów, 35-310 Rzeszów, Poland;
| |
Collapse
|
7
|
Zheng S, Zhang D, Duan B, Mo G, Li J, Huang H, Wang S, Ye Y, Huang Z, Huang P, Zhang F, Huang F, Han L. Metabolomics integrated network pharmacology reveals the mechanism of Ma-Mu-Ran Antidiarrheal Capsules on acute enteritis mice. Anal Biochem 2023; 668:115116. [PMID: 36925055 DOI: 10.1016/j.ab.2023.115116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
Acute enteritis (AE) is a type of digestive disease caused by biochemical factors that irritate the intestinal tract or pathogenic bacteria that infect it. In China, Ma-Mu-Ran Antidiarrheal Capsules (MMRAC) have been applied against diarrhea caused by AE and bacillary dysentery for many years, but the underlying mechanisms of their beneficial effects are not known. In the present study, network pharmacology and metabolomics were performed to clarify the active ingredients of MMRAC and explore the specific mechanism of MMRAC on AE mice. A total of 43 active components of MMRAC with 87 anti-AE target genes were identified, and these target genes were enriched in IL-17 and HIF-1 signaling pathways. Integration analysis revealed that purine metabolism was the critical metabolic pathway by which MMRAC exerted its therapeutic effect against AE. Specifically, MAPK14, MMP9, PTGS2, HIF1A, EGLN1, NOS2 were the pivotal targets of MMRAC for the treatment of AE, and Western blot analysis revealed MMRAC to decrease protein levels of these pro-inflammatory signaling molecules. According to molecular docking, these key targets have a strong affinity with the MMRAC compounds. Collectively, MMRAC relieved the colon inflammation of AE mice via regulating inflammatory signaling pathways to reduce hypoxia and improved energy metabolism.
Collapse
Affiliation(s)
- Sili Zheng
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China
| | - Dongning Zhang
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China; Xinjiang Uygur Pharmaceutical Co., LTD, Urumqi, Xinjiang, 830026, China
| | - Bailu Duan
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China
| | - Guoyan Mo
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China; Key Laboratory of Traditional Chinese Medicine Resource and Prescription, Ministry of Education, Wuhan, Hubei, 430065, China
| | - Jingjing Li
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China
| | - Hailing Huang
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China
| | - Shanshan Wang
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China
| | - Yan Ye
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China
| | - Zhuang Huang
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China
| | - Ping Huang
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China
| | - Fengyun Zhang
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China
| | - Fang Huang
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China.
| | - Lintao Han
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China; Key Laboratory of Traditional Chinese Medicine Resource and Prescription, Ministry of Education, Wuhan, Hubei, 430065, China.
| |
Collapse
|
8
|
Zhou T, Xu W, Wang Q, Jiang C, Li H, Chao Y, Sun Y, A L. The effect of the "Oral-Gut" axis on periodontitis in inflammatory bowel disease: A review of microbe and immune mechanism associations. Front Cell Infect Microbiol 2023; 13:1132420. [PMID: 36923589 PMCID: PMC10008960 DOI: 10.3389/fcimb.2023.1132420] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 01/31/2023] [Indexed: 03/02/2023] Open
Abstract
Periodontitis and inflammatory bowel diseases (IBD) are inflammatory diseases of the gastrointestinal tract that share common features of microbial-induced ecological dysregulation and host immune inflammatory response. The close relationship between periodontitis and IBD is characterized by a higher prevalence of IBD in patients with periodontitis and a higher prevalence and severity of periodontitis in patients with IBD, indicating that periodontitis and IBD are different from the traditional independent diseases and form an "Oral-Gut" axis between the two, which affect each other and thus form a vicious circle. However, the specific mechanisms leading to the association between the two are not fully understood. In this article, we describe the interconnection between periodontitis and IBD in terms of microbial pathogenesis and immune dysregulation, including the ectopic colonization of the gut by pathogenic bacteria associated with periodontitis that promotes inflammation in the gut by activating the host immune response, and the alteration of the oral microbiota due to IBD that affects the periodontal inflammatory response. Among the microbial factors, pathogenic bacteria such as Klebsiella, Porphyromonas gingivalis and Fusobacterium nucleatum may act as the microbial bridge between periodontitis and IBD, while among the immune mechanisms, Th17 cell responses and the secreted pro-inflammatory factors IL-1β, IL-6 and TNF-α play a key role in the development of both diseases. This suggests that in future studies, we can look for targets in the "Oral-Gut" axis to control and intervene in periodontal inflammation by regulating periodontal or intestinal flora through immunological methods.
Collapse
Affiliation(s)
- Tianyu Zhou
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Wenzhou Xu
- Department of Periodontology, School and Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, Changchun, China
| | - Qiqi Wang
- Department of Periodontology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Cong Jiang
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Hongyan Li
- Department of Periodontology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Yang Chao
- Department of Gastroendoscopy, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yue Sun
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, Changchun, China
- *Correspondence: Yue Sun, ; Lan A,
| | - Lan A
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, Changchun, China
- *Correspondence: Yue Sun, ; Lan A,
| |
Collapse
|
9
|
Baidya SK, Banerjee S, Adhikari N, Jha T. Selective Inhibitors of Medium-Size S1' Pocket Matrix Metalloproteinases: A Stepping Stone of Future Drug Discovery. J Med Chem 2022; 65:10709-10754. [PMID: 35969157 DOI: 10.1021/acs.jmedchem.1c01855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Among various matrix metalloproteinases (MMPs), MMPs having medium-size S1' pockets are established as promising biomolecular targets for executing crucial roles in cancer, cardiovascular diseases, and neurodegenerative diseases. However, no such MMP inhibitors (MMPIs) are available to date as drug candidates despite a lot of continuous research work for more than three decades. Due to a high degree of structural resemblance among these MMPs, designing selective MMPIs is quite challenging. However, the variability and uniqueness of the S1' pockets of these MMPs make them promising targets for designing selective MMPIs. In this perspective, the overall structural aspects of medium-size S1' pocket MMPs including the unique binding patterns of enzyme-inhibitor interactions have been discussed in detail to acquire knowledge regarding selective inhibitor designing. This overall knowledge will surely be a curtain raiser for the designing of selective MMPIs as drug candidates in the future.
Collapse
Affiliation(s)
- Sandip Kumar Baidya
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Suvankar Banerjee
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Nilanjan Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
10
|
Luceri C, D’Ambrosio M, Bigagli E, Cinci L, Russo E, Staderini F, Cricchio M, Giudici F, Scaringi S. Involvement of MIR-126 and MMP9 in the Pathogenesis of Intra-Abdominal Fistulizing Crohn’s Disease: A Brief Research Report. Front Surg 2022; 9:822407. [PMID: 35620197 PMCID: PMC9127299 DOI: 10.3389/fsurg.2022.822407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 04/22/2022] [Indexed: 11/15/2022] Open
Abstract
Background Intra-abdominal fistulas are complications that affect a significant proportion of Crohn’s disease patients, often requiring surgery. The aim of the present work was to correlate the occurrence of intestinal fistulization to the clinico-pathological features of these patients and to the plasma levels of MMP9, a gelatinase involved in the pathophysiology of fistula formation, and of miR-126, appearing to modulate MMP9 expression. Methods In a series of 31 consecutive Crohn’s patients admitted to surgery due to therapeutic failure and/or complicated disease, we identified nine cases of abdominal fistulas, mainly entero-enteric fistulas. MMP9 protein was determined in plasma and at the intestinal level using immunometric assays. Circulating miR-126 was also measured in all plasma samples by real-time PCR. Results Comparing patients with and without intra-abdominal fistulas, we did not observe differences in terms of age, gender, disease location and duration, number of previous surgeries and pre-biologic medications. However, cases with intra-abdominal fistulas had a significantly higher CDAI (p < 0.0001) and a significantly lower circulating miR-126 (p < 0.05). Patients with intra-abdominal fistulas had also a significantly higher amount of circulating MMP9 (p < 0.0001) and this data was correlated with an increased expression of MMP9 protein in the mucosa and with reduced levels of circulating miR-126. Receiver operating characteristic (ROC) analysis pointed out the ability of circulating MMP9 to discriminate patients with and without intra-abdominal fistulas. Conclusions These data confirm that circulating MMP9 can be used for the identification of cases with intra-abdominal fistulas and suggest that miR-126 may be also involved in the pathogenesis of this complication and that it may be further investigated as a new therapeutic strategy or for monitoring therapeutic response in these patients.
Collapse
Affiliation(s)
- Cristina Luceri
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Mario D’Ambrosio
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Elisabetta Bigagli
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Lorenzo Cinci
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Edda Russo
- Department of Surgery and Translational Medicine, Section of Surgery, University of Florence, Florence, Italy
- Surgical Unit, Careggi Teaching Hospital, Florence, Italy
| | - Fabio Staderini
- Department of Surgery and Translational Medicine, Section of Surgery, University of Florence, Florence, Italy
- Surgical Unit, Careggi Teaching Hospital, Florence, Italy
| | - Marta Cricchio
- Department of Surgery and Translational Medicine, Section of Surgery, University of Florence, Florence, Italy
- Surgical Unit, Careggi Teaching Hospital, Florence, Italy
| | - Francesco Giudici
- Department of Surgery and Translational Medicine, Section of Surgery, University of Florence, Florence, Italy
- Surgical Unit, Careggi Teaching Hospital, Florence, Italy
- Correspondence: Francesco Giudici
| | - Stefano Scaringi
- Department of Surgery and Translational Medicine, Section of Surgery, University of Florence, Florence, Italy
- Surgical Unit, Careggi Teaching Hospital, Florence, Italy
| |
Collapse
|
11
|
Hrabia A, Miska KB, Schreier LL, Proszkowiec-Weglarz M. Altered gene expression of selected matrix metalloproteinase system proteins in the broiler chicken gastrointestinal tract during post-hatch development and coccidia infection*. Poult Sci 2022; 101:101915. [PMID: 35687960 PMCID: PMC9190011 DOI: 10.1016/j.psj.2022.101915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/31/2022] [Accepted: 03/31/2022] [Indexed: 11/20/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are a family of proteases, that can process extracellular matrix (ECM) components and non-ECM molecules. MMPs can also function intracellularly in proteolytic and nonproteolytic functions. The participation of MMPs in the remodeling of the chicken gastrointestinal tract is largely unknown. The aim of the present study was to examine 1) the early neonatal developmental changes and effect of delayed access to feed immediately post-hatch (PH) and 2) the effect of Eimeria infection on mRNA expression of selected MMPs, their tissue inhibitors (TIMPs), and a disintegrin and metalloproteinase (ADAM) metallopeptidase with thrombospondin type 1 motif 8 (ADAMTS8) in the gastrointestinal tract of chicken. Protein localization of MMPs and TIMPs was also carried out in the normal ileal wall at −48, 24, and 336 h relative to hatch using immunofluorescence. In experiment 1, newly hatched Ross 708 chicks received feed and water immediately PH or were subjected to 48 h delayed access to feed. Chickens were sampled at −48, 0, 4, 24, 48, 72, 96, 144, 192, 240, 288, and 336 h PH. Ileum was collected for investigation of gene expression or fixed in paraformaldehyde for immunofluorescence. In experiments 2 and 3, Ross 708 male broilers were infected, at 21 d of age with Eimeria maxima or E. acervulina or sham-infected with water. Intestinal tissues were collected at 7 and 10 d postinfection for gene expression analysis. In general, mRNA expression patterns of all examined genes showed downregulation during the first 2 wk PH and were not affected by delay in feed access. These development-dependent changes in expression and tissue-dependent localization in the ileum of selected MMPs and TIMPs indicate that these molecules participate in the remodeling of chicken intestinal tissues during PH development. Increased expression of MMP-7 and MMP-9 transcripts in the intestine of Eimeria infected birds suggests an important role for these enzymes in the process of tissue remodeling and destruction in pathological conditions. The findings of this study are important for understanding the relationship between the expression of the MMP system and intestinal development, as well its role in gastrointestinal infection and subsequent recovery.
Collapse
Affiliation(s)
- Anna Hrabia
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Poland
| | - Katarzyna B Miska
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Northeast Area (NEA), Animal Biosciences and Biotechnology Laboratory (ABBL), Beltsville, MD 20705, USA
| | - Lori L Schreier
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Northeast Area (NEA), Animal Biosciences and Biotechnology Laboratory (ABBL), Beltsville, MD 20705, USA
| | - Monika Proszkowiec-Weglarz
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Northeast Area (NEA), Animal Biosciences and Biotechnology Laboratory (ABBL), Beltsville, MD 20705, USA.
| |
Collapse
|
12
|
Lupinus albus Protein Components Inhibit MMP-2 and MMP-9 Gelatinolytic Activity In Vitro and In Vivo. Int J Mol Sci 2021; 22:ijms222413286. [PMID: 34948082 PMCID: PMC8705115 DOI: 10.3390/ijms222413286] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 01/10/2023] Open
Abstract
Matrix metalloproteinases 2 and 9 (MMP-2 and MMP-9) are regarded as important clinical targets due to their nodal-point role in inflammatory and oncological diseases. Here, we aimed at isolating and characterizing am MMP-2 and-9 inhibitor (MMPI) from Lupinus albus and at assessing its efficacy in vitro and in vivo. The protein was isolated using chromatographic and 2-D electrophoretic procedures and sequenced by using MALDI-TOF TOF and MS/MS analysis. In vitro MMP-2 and 9 inhibitions were determined on colon adenocarcinoma (HT29) cells, as well as by measuring the expression levels of genes related to these enzymes. Inhibitory activities were also confirmed in vivo using a model of experimental TNBS-induced colitis in mice, with oral administrations of 15 mg·kg-1. After chromatographic and electrophoretic isolation, the L. albus MMP-9 inhibitor was found to comprise a large fragment from δ-conglutin and, to a lower extent, small fragments of β-conglutin. In vitro studies showed that the MMPI successfully inhibited MMP-9 activity in a dose-dependent manner in colon cancer cells, with an IC50 of 10 µg·mL-1 without impairing gene expression nor cell growth. In vivo studies showed that the MMPI maintained its bioactivities when administered orally and significantly reduced colitis symptoms, along with a very significant inhibition of MMP-2 and -9 activities. Overall, results reveal a novel type of MMPI in lupine that is edible, proteinaceous in nature and soluble in water, and effective in vivo, suggesting a high potential application as a nutraceutical or a functional food in pathologies related to abnormally high MMP-9 activity in the digestive system.
Collapse
|
13
|
NIIMI K, TAKAHASHI E. Reduced differentiation of intestinal epithelial cells in wasting marmoset syndrome. J Vet Med Sci 2021; 83:784-792. [PMID: 33731497 PMCID: PMC8182325 DOI: 10.1292/jvms.20-0532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/05/2021] [Indexed: 11/28/2022] Open
Abstract
Wasting marmoset syndrome (WMS) is a serious disease in captive common marmoset (Callithrix jacchus) colonies. Because of the high mortality rates, elucidation of the underlying mechanisms is essential. In this study, we compared the histopathology, the number of each epithelial cell in the jejunum and colon, and the expression patterns of some molecular markers between healthy and WMS-affected marmosets. Atrophy of villi in the jejunum and mononuclear cell infiltration in the lamina propria were observed in the intestinal tract of WMS-affected marmosets. Although the numbers of transient amplifying cells and tuft cells were increased, the number of goblet cells was obviously decreased in the jejunum and colon of WMS-affected marmosets compared to healthy marmosets. In addition, the number of enterocytes in the jejunum was decreased in WMS animals. There was no apparent difference in the numbers of stem cells, enteroendocrine cells, or Paneth cells. The expression of β-catenin and Tcf7l2 was increased in WMS, and the co-existence of β-catenin and Tcf7l2/Cyclin D1 was observed around the crypts in WMS-affected marmosets. These findings suggest that cell proliferation continues, but cell differentiation is halted in the intestinal tract due to the enhanced β-catenin/Tcf7l2/Cyclin D1signaling pathway in WMS, which results in malfunction of the villus and mucosa.
Collapse
Affiliation(s)
- Kimie NIIMI
- Support Unit for Animal Resources Development, Research Resources Division, RIKEN Center for Brain Science, 2-1 Hirosawa,
Wako-shi, Saitama 351-0198, Japan
| | - Eiki TAKAHASHI
- Research Resources Division, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| |
Collapse
|
14
|
Al-Sadi R, Engers J, Haque M, King S, Al-Omari D, Ma TY. Matrix Metalloproteinase-9 (MMP-9) induced disruption of intestinal epithelial tight junction barrier is mediated by NF-κB activation. PLoS One 2021; 16:e0249544. [PMID: 33826658 PMCID: PMC8026081 DOI: 10.1371/journal.pone.0249544] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/20/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Matrix Metalloproteinase-9 (MMP-9) has been shown to play a key role in mediating inflammation and tissue damage in inflammatory bowel disease (IBD). In patients with IBD, the intestinal tight junction (TJ) barrier is compromised as characterized by an increase in intestinal permeability. MMP-9 is elevated in intestinal tissue, serum and stool of patients with IBD. Previous studies from our laboratory showed that MMP-9 causes an increase in intestinal epithelial TJ permeability and that the MMP-9 induced increase in intestinal permeability is an important pathogenic factor contributing to the development of intestinal inflammation in IBD. However, the intracellular mechanisms that mediate the MMP-9 modulation of intestinal barrier function remain unclear. AIMS The main aim of this study was to further elucidate the molecular mechanisms involved in MMP-9 induced increase in intestinal epithelial TJ permeability using Caco-2 monolayers as an in-vitro model system. RESULTS MMP-9 induced increase in Caco-2 TJ permeability was associated with activation and cytoplasmic-to-nuclear translocation of NF-κB p65. Knocking-down NF-κB p65 by siRNA transfection prevented the MMP-9 induced expression of the NF-κB target gene IL-8, myosin light chain kinase (MLCK) protein expression, and subsequently prevented the increase in Caco-2 TJ permeability. In addition, the effect of MMP-9 on Caco-2 intestinal epithelial TJ barrier function was not mediated by apoptosis or necrosis. CONCLUSION Our data show that the MMP-9 induced disruption of Caco-2 intestinal epithelial TJ barrier function is regulated by NF-κB pathway activation of MLCK.
Collapse
Affiliation(s)
- Rana Al-Sadi
- Department of Medicine, Penn State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
- * E-mail:
| | - Jessica Engers
- Department of Medicine, Penn State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - Mohammad Haque
- Department of Medicine, Penn State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - Steven King
- Department of Medicine, Penn State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - Deemah Al-Omari
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Thomas Y. Ma
- Department of Medicine, Penn State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| |
Collapse
|
15
|
Liu H, Li T, Zhong S, Yu M, Huang W. Intestinal epithelial cells related lncRNA and mRNA expression profiles in dextran sulphate sodium-induced colitis. J Cell Mol Med 2021; 25:1060-1073. [PMID: 33300279 PMCID: PMC7812259 DOI: 10.1111/jcmm.16174] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/10/2020] [Accepted: 11/22/2020] [Indexed: 12/15/2022] Open
Abstract
Intestinal epithelial barrier damage caused by intestinal epithelial cells (IECs) dysfunction plays a crucial role in the pathogenesis and development of inflammatory bowel disease (IBD). Recently, some studies have suggested the emerging role of long non-coding RNAs (lncRNAs) in IBD. The aim of this study was to reveal lncRNAs and mRNA expression profiles in IECs from a mouse model of colitis and to expand our understanding in the intestinal epithelial barrier regulation. IECs from the colons of wild-type mice and dextran sulphate sodium (DSS)-induced mice were isolated for high-throughput RNA-sequencing. A total of 254 up-regulated and 1013 down-regulated mRNAs and 542 up-regulated and 766 down-regulated lncRNAs were detected in the DSS group compared with the Control group. Four mRNAs and six lncRNAs were validated by real-time quantitative PCR. Function analysis showed that dysregulated mRNAs participated in TLR7 signalling pathway, IL-1 receptor activity, BMP receptor binding and IL-17 signalling pathway. Furthermore, the possibility of indirect interactions between differentially expressed mRNAs and lncRNAs was illustrated by the competing endogenous RNA (ceRNA) network. LncRNA ENSMUST00000128026 was predicted to bind to mmu-miR-6899-3p, regulating Dnmbp expression. LncRNA NONMMUT143162.1 was predicted to competitively bind to mmu-miR-6899-3p, regulating Tnip3 expression. Finally, the protein-protein interaction (PPI) network analysis was constructed with 311 nodes and 563 edges. And the highest connectivity degrees were Mmp9, Fpr2 and Ccl3. These results provide novel insights into the functions of lncRNAs and mRNAs involved in the regulation of the intestinal epithelial barrier.
Collapse
Affiliation(s)
- Huan Liu
- The Precision Medicine InstituteThe Third Affiliated HospitalSouthern Medical UniversityGuangzhouChina
- Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
| | - Teming Li
- Department of General SurgeryXinqiao HospitalArmy Medical UniversityChongqingChina
| | - Shizhen Zhong
- Guangdong Engineering Research Center for Translation of Medical 3D Printing ApplicationGuangdong Provincial Key Laboratory of Medical BiomechanicsSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Min Yu
- Department of General SurgeryXinqiao HospitalArmy Medical UniversityChongqingChina
| | - Wenhua Huang
- The Precision Medicine InstituteThe Third Affiliated HospitalSouthern Medical UniversityGuangzhouChina
- Guangdong Engineering Research Center for Translation of Medical 3D Printing ApplicationGuangdong Provincial Key Laboratory of Medical BiomechanicsSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
- Pathological Diagnosis and Research CenterAffiliated Hospital of Guangdong Medical UniversityZhanjiangChina
| |
Collapse
|
16
|
Wu H, Chen QY, Wang WZ, Chu S, Liu XX, Liu YJ, Tan C, Zhu F, Deng SJ, Dong YL, Yu T, Gao F, He HX, Leng XY, Fan H. Compound sophorae decoction enhances intestinal barrier function of dextran sodium sulfate induced colitis via regulating notch signaling pathway in mice. Biomed Pharmacother 2021; 133:110937. [PMID: 33217689 DOI: 10.1016/j.biopha.2020.110937] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 10/18/2020] [Accepted: 10/25/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Compound sophorae decoction (CSD), a Chinese Herbal decoction, is frequently clinically prescribed for patients suffered from ulcerative colitis (UC) characterized by bloody diarrhea. Yet, the underlying mechanism about how this formulae works is remain elusive. METHODS In the present study, the experimental colitis in C57BL/6 J mice was induced by oral administration of standard diets containing 3% dextran sodium sulfate (DSS), and CSD was given orally for treatment at the same time. The clinical symptoms including stool and body weight were recorded each day, and colon length and its histopathological changes were observed. Apoptosis of colonic epithelium was studied by detecting protein expression of cleaved caspase-3, and cell proliferation by Ki-67 immunohistochemistry. Tight junction complex like ZO-1 and occludin were also determined by transmission electron microscope and immunofluorescence. The concentration of FITC-dextran 4000 was measured to evaluate intestinal barrier permeability and possible signaling pathway was investigated. Mucin2 (MUC2) and notch pathway were tested through western blot. The M1/M2 ratio in spleen and mesenteric lymph nodes were detected by flow cytometry. And the mRNA levels of iNOS and Arg1 were examined by qRT-PCR. RESULTS CSD could significantly alleviate the clinical manifestations and pathological damage. Body weight loss and DAI score of mice with colitis were improved and shortening of colon was inhibited. The administration of CSD was able to reduce apoptotic epithelial cells and facilitate epithelial cell regeneration. Increased intestinal permeability was reduced in DSS-induced colitis mice. In addition, CSD treatment obviously up-regulated the expression of ZO-1 and occludin and the secretion of MUC2, regulated notch signaling, and decreased the ratio of M1/M2. CONCLUSIONS These data together suggest that CSD can effectively mitigate intestinal inflammation, promote phenotypic change in macrophage phenotype and enhance colonic mucosal barrier function by, at least in part, regulating notch signaling in mice affected by DSS-induced colitis.
Collapse
Affiliation(s)
- Hui Wu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qian-Yun Chen
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wen-Zhu Wang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Si Chu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xing-Xing Liu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu-Jin Liu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chen Tan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Feng Zhu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shuang-Jiao Deng
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ya-Lan Dong
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ting Yu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fei Gao
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hong-Xia He
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xue-Yuan Leng
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Heng Fan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
17
|
Gerber A, Goldklang M, Stearns K, Ma X, Xiao R, Zelonina T, D'Armiento J. Attenuation of pulmonary injury by an inhaled MMP inhibitor in the endotoxin lung injury model. Am J Physiol Lung Cell Mol Physiol 2020; 319:L1036-L1047. [PMID: 33026238 DOI: 10.1152/ajplung.00420.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is characterized by pulmonary edema and poor gas exchange resulting from severe inflammatory lung injury. Neutrophilic infiltration and increased pulmonary vascular permeability are hallmarks of early ARDS and precipitate a self-perpetuating cascade of inflammatory signaling. The biochemical processes initiating these events remain unclear. Typically associated with extracellular matrix degradation, recent data suggest matrix metalloproteinases (MMPs) are regulators of pulmonary inflammation. To demonstrate that inhalation of a broad MMP inhibitor attenuates LPS induced pulmonary inflammation. Nebulized CGS27023AM (CGS) was administered to LPS-injured mice. Pulmonary CGS levels were examined by mass spectroscopy. Inflammatory scoring of hematoxylin-eosin sections, examination of vascular integrity via lung wet/dry and bronchoalveolar lvage/serum FITC-albumin ratios were performed. Cleaved caspase-3 levels were also assessed. Differential cell counts and pulse-chase labeling were utilized to determine the effects of CGS on neutrophil migration. The effects of CGS on human neutrophil migration and viability were examined using Boyden chambers and MTT assays. Nebulization successfully delivered CGS to the lungs. Treatment decreased pulmonary inflammatory scores, edema, and apoptosis in LPS treated animals. Neutrophil chemotaxis was reduced by CGS treatment, with inhalation causing significant reductions in both the total number and newly produced bromodeoxyuridine-positive cells infiltrating the lung. Mechanistic studies on cells isolated from humans demonstrate that CGS-treated neutrophils exhibit decreased chemotaxis. The protective effect observed following treatment with a nonspecific MMP inhibitor indicates that one or more MMPs mediate the development of pulmonary edema and neutrophil infiltration in response to LPS injury. In accordance with this, inhaled MMP inhibitors warrant further study as a potential new therapeutic avenue for treatment of acute lung injury.
Collapse
Affiliation(s)
- Adam Gerber
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, New York
| | - Monica Goldklang
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, New York
| | - Kyle Stearns
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, New York
| | - Xinran Ma
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, New York
| | - Rui Xiao
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, New York
| | - Tina Zelonina
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, New York
| | - Jeanine D'Armiento
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
18
|
Luzardo-Ocampo I, Campos-Vega R, Gonzalez de Mejia E, Loarca-Piña G. Consumption of a baked corn and bean snack reduced chronic colitis inflammation in CD-1 mice via downregulation of IL-1 receptor, TLR, and TNF-α associated pathways. Food Res Int 2020; 132:109097. [PMID: 32331643 DOI: 10.1016/j.foodres.2020.109097] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/06/2019] [Accepted: 02/10/2020] [Indexed: 12/12/2022]
Abstract
Ulcerative colitis (UC) is a condition that has been rising in the number of cases around the world. Food products made from natural ingredients such as corn and common bean might serve as alternatives for the treatment of UC. This study aimed to assess the anti-inflammatory effect of the consumption of a baked corn and bean snack (CBS) in an in vivo model of UC using 2% dextran sodium sulfate (DSS) as inductor of colitis. CD-1 mice (45, n = 9/group) were randomly separated into 5 groups, treated for 6-weeks as follows: G1 (basal diet, BD), G2 (2% DSS), G3 (20 g CBS/body weight BW/day + BD), G4 (40 g CBS/BW/day + BD) and G5 (60 g CBS/BW/day + BD). BW, Disease Activity Index (DAI), and feces were collected throughout the treatment. After euthanasia, organs (spleen, liver, and colon) were excised and weighed. Feces were analyzed for β-glucuronidase (β-GLUC) activity and gas-chromatography. The colons were analyzed for histopathology, myeloperoxidase (MPO) activity, and gene analysis. At the end of treatments, among the DSS-induced groups, G3 exhibited the lowest BW losses (11.5%), MPO activity (10.4%) and β-GLUC (8.6%). G4 presented the lowest DAI (0.88), relative spleen weight, and histological inflammation score (p < 0.05). Compared to G2, CBS consumption significantly (p < 0.05) reduced serum TNF-α, IL-10, and MCP-1 levels. The fecal metabolome analysis ranked 9-decenoic acid, decane, and butyric acid as the main contributors of pathways associated with the β-oxidation of fatty acids. G4 showed the highest fecal/cecal contents of short-chain fatty acids among all the DSS-induced groups. For the gene expression, G4 was clustered with G1, showing a differential inhibition of the pro-inflammatory genes Il1r1, Il1a, Tlr4, Tlr2, and Tnfrsf1b. In conclusion, CBS consumption decreased the inflammatory state and reduced the expression of the IL-1 receptor, TLR, and TNF-α-associated pathways in DSS-induced UC in CD-1 mice.
Collapse
Affiliation(s)
- Ivan Luzardo-Ocampo
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Program in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, 76010 Queretaro, Mexico; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 228-230 ERML, 1201 W. Gregory Dr., Urbana, IL 61801, United States.
| | - Rocio Campos-Vega
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Program in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, 76010 Queretaro, Mexico.
| | - Elvira Gonzalez de Mejia
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 228-230 ERML, 1201 W. Gregory Dr., Urbana, IL 61801, United States.
| | - Guadalupe Loarca-Piña
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Program in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, 76010 Queretaro, Mexico.
| |
Collapse
|
19
|
Ehrhardt K, Steck N, Kappelhoff R, Stein S, Rieder F, Gordon IO, Boyle EC, Braubach P, Overall CM, Finlay BB, Grassl GA. Persistent Salmonella enterica Serovar Typhimurium Infection Induces Protease Expression During Intestinal Fibrosis. Inflamm Bowel Dis 2019; 25:1629-1643. [PMID: 31066456 PMCID: PMC6749888 DOI: 10.1093/ibd/izz070] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Intestinal fibrosis is a common and serious complication of Crohn's disease characterized by the accumulation of fibroblasts, deposition of extracellular matrix, and formation of scar tissue. Although many factors including cytokines and proteases contribute to the development of intestinal fibrosis, the initiating mechanisms and the complex interplay between these factors remain unclear. METHODS Chronic infection of mice with Salmonella enterica serovar Typhimurium was used to induce intestinal fibrosis. A murine protease-specific CLIP-CHIP microarray analysis was employed to assess regulation of proteases and protease inhibitors. To confirm up- or downregulation during fibrosis, we performed quantitative real-time polymerase chain reaction (PCR) and immunohistochemical stainings in mouse tissue and tissue from patients with inflammatory bowel disease. In vitro infections were used to demonstrate a direct effect of bacterial infection in the regulation of proteases. RESULTS Mice develop severe and persistent intestinal fibrosis upon chronic infection with Salmonella enterica serovar Typhimurium, mimicking the pathology of human disease. Microarray analyses revealed 56 up- and 40 downregulated proteases and protease inhibitors in fibrotic cecal tissue. Various matrix metalloproteases, serine proteases, cysteine proteases, and protease inhibitors were regulated in the fibrotic tissue, 22 of which were confirmed by quantitative real-time PCR. Proteases demonstrated site-specific staining patterns in intestinal fibrotic tissue from mice and in tissue from human inflammatory bowel disease patients. Finally, we show in vitro that Salmonella infection directly induces protease expression in macrophages and epithelial cells but not in fibroblasts. CONCLUSIONS In summary, we show that chronic Salmonella infection regulates proteases and protease inhibitors during tissue fibrosis in vivo and in vitro, and therefore this model is well suited to investigating the role of proteases in intestinal fibrosis.
Collapse
Affiliation(s)
- Katrin Ehrhardt
- Institute of Medical Microbiology and Hospital Epidemiology and German Center for Infection Research (DZIF), Partner Site Hannover, Hannover Medical School, Hannover, Germany
| | - Natalie Steck
- Institute for Experimental Medicine, Christian-Albrechts University of Kiel, Kiel, Germany, and Research Center Borstel, Borstel, Germany
| | - Reinhild Kappelhoff
- Department of Oral Biological and Medical Sciences, Centre for Blood Research, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada
| | - Stephanie Stein
- Institute for Experimental Medicine, Christian-Albrechts University of Kiel, Kiel, Germany, and Research Center Borstel, Borstel, Germany,Present affiliation: Center for Internal Medicine, I. Medical Clinic and Polyclinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florian Rieder
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute
| | - Ilyssa O Gordon
- Department of Pathology, Pathology and Laboratory Medicine Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Erin C Boyle
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany,Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Peter Braubach
- Institute for Pathology, Hannover Medical School, Hannover, Germany
| | - Christopher M Overall
- Department of Oral Biological and Medical Sciences, Centre for Blood Research, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada
| | - B Brett Finlay
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Guntram A Grassl
- Institute of Medical Microbiology and Hospital Epidemiology and German Center for Infection Research (DZIF), Partner Site Hannover, Hannover Medical School, Hannover, Germany,Address correspondence to: Guntram A. Grassl, PhD, Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany ()
| |
Collapse
|
20
|
Holota Y, Dovbynchuk T, Kaji I, Vareniuk I, Dzyubenko N, Chervinska T, Zakordonets L, Stetska V, Ostapchenko L, Serhiychuk T, Tolstanova G. The long-term consequences of antibiotic therapy: Role of colonic short-chain fatty acids (SCFA) system and intestinal barrier integrity. PLoS One 2019; 14:e0220642. [PMID: 31437166 PMCID: PMC6705842 DOI: 10.1371/journal.pone.0220642] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 07/19/2019] [Indexed: 12/19/2022] Open
Abstract
Epidemiological studies revealed that antibiotics exposure increases a risk of inflammatory bowel diseases (IBD) development. It remained largely unknown how antibiotic-induced dysbiosis confers the risk for enhanced inflammatory response. The aim of the present study was to test the hypothesis that SCFAs, their receptors and transporters mediate the antibiotic long-term effects on the functional state of colonic mucosa and susceptibility to the experimental colitis. Male Wistar rats were treated daily for 14 days with antibiotic ceftriaxone (300 mg/kg, i.m.) or vehicle; euthanized by CO2 inhalation followed by cervical dislocation in 1, 14 or 56 days after antibiotic withdrawal. We found increased cecum weight and sustained changes in microbiota composition after ceftriaxone treatment with increased number of conditionally pathogenic enterobacteria, E. coli, Clostridium, Staphylococcus spp. and hemolytic bacteria even at 56 days after antibiotic withdrawal. The concentration of SCFAs was decreased after ceftriaxone withdrawal. We found decreased immunoreactivity of the FFA2, FFA3 receptors, SMCT1 and increased MCT1 & MCT4 transporters of SCFAs in colon mucosa. These changes evoked a significant shift in colonic mucosal homeostasis: the disturbance of oxidant-antioxidant balance; activation of redox-sensitive transcription factor HIF1α and ERK1/2 MAP kinase; increased colonic epithelial permeability and bacterial translocation to blood; morphological remodeling of the colonic tissue. Ceftriaxone pretreatment significantly reinforced inflammation during experimental colitis 56 days after ceftriaxone withdrawal, which was confirmed by increased histopathology of colitis, Goblet cell dysfunction, colonic dilatation and wall thickening, and increased serum levels of inflammatory cytokines (TNF-α and IL-10). Since the recognition of the importance of microbiota metabolic activity rather than their composition in the development of inflammatory disorders, e.g. IBD, the present study is the first report on the role of the SCFA system in the long lasting side effects of antibiotic treatment and its implication in IBD development.
Collapse
Affiliation(s)
- Yuliia Holota
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | | | - Izumi Kaji
- UCLA/CURE West LA VA Medical Center, Los Angeles, California, United States of America
| | - Igor Vareniuk
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | | | | | | | | | | | | | - Ganna Tolstanova
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
- * E-mail: ,
| |
Collapse
|
21
|
Dosh RH, Jordan-Mahy N, Sammon C, Le Maitre C. Interleukin 1 is a key driver of inflammatory bowel disease-demonstration in a murine IL-1Ra knockout model. Oncotarget 2019; 10:3559-3575. [PMID: 31191826 PMCID: PMC6544399 DOI: 10.18632/oncotarget.26894] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 04/03/2019] [Indexed: 02/07/2023] Open
Abstract
Interleukin 1 (IL-1) is an important mediator of inflammation and tissue damage in inflammatory bowel disease (IBD). The balance between IL-1 and IL-1Ra as a natural inhibitor plays a vital role in a variety of diseases. Here, we investigated whether changes seen during IBD are induced spontaneously in mice lacking a functional IL-1rn gene. Histological staining was performed on the jejunum and ileum of BALB/c IL-1rn+/+ and IL-1rn-/- mice to characterize crypt-villus height, villus width, and number of goblet cells per villus. Pro-inflammatory cytokines, immune cell infiltration and matrix-degrading enzymes, together with the production of intestinal enzymes and the integrity of tight and adherent junction proteins were determined using immunohistochemistry. In the small intestine of BALB/c IL-1rn-/- mice the villus heights were significantly reduced; and in the ileum this was accompanied by a decrease in villi width. There was also an increase in goblet cell number and mucin production compared to wild-type mice. IL-1α and IL-1β immunopositivity were increased, whilst IL-1R1 expression was decreased in IL-1rn-/- mice. IL-15 and TNFα were also increased in older IL-1rn-/- mice. Increased polymorphonuclear and macrophage infiltration were seen in IL-1rn-/- mice, whilst expression of matrix-degrading enzymes and digestive enzymes were unchanged, except for dipeptidyl peptidase IV which was increased in younger IL-1rn-/- mice compared to wild type mice. The expression of tight and adhesion junctions were also dramatically decreased in IL-1rn-/- mice. In conclusion, IL-1rn-/- mice developed spontaneous abnormalities which displayed features associated with IBD, demonstrating a clear role for IL-1 in IBD.
Collapse
Affiliation(s)
- Rasha H. Dosh
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
- Department of Anatomy and Histology, Faculty of Medicine, University of Kufa, Kufa, Iraq
| | - Nicola Jordan-Mahy
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Christopher Sammon
- Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield, UK
| | - Christine Le Maitre
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| |
Collapse
|
22
|
Al-Sadi R, Youssef M, Rawat M, Guo S, Dokladny K, Haque M, Watterson MD, Ma TY. MMP-9-induced increase in intestinal epithelial tight permeability is mediated by p38 kinase signaling pathway activation of MLCK gene. Am J Physiol Gastrointest Liver Physiol 2019; 316:G278-G290. [PMID: 30543452 PMCID: PMC6397336 DOI: 10.1152/ajpgi.00126.2018] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 11/21/2018] [Accepted: 12/07/2018] [Indexed: 01/31/2023]
Abstract
Matrix metalloproteinase-9 (MMP-9) has been implicated as being an important pathogenic factor in inflammatory bowel disease (IBD). MMP-9 is markedly elevated in intestinal tissue of patients with IBD, and IBD patients have a defective intestinal tight-junction (TJ) barrier manifested by an increase in intestinal permeability. The loss of intestinal epithelial barrier function is an important contributing factor in the development and prolongation of intestinal inflammation; however, the role of MMP-9 in intestinal barrier function remains unclear. The purpose of this study was to investigate the effect of MMP-9 on the intestinal epithelial TJ barrier and to delineate the intracellular mechanisms involved by using in vitro (filter-grown Caco-2 monolayers) and in vivo (mouse small intestine recycling perfusion) systems. MMP-9 caused a time- and dose-dependent increase in Caco-2 TJ permeability. MMP-9 also caused an increase in myosin light-chain kinase (MLCK) gene activity, protein expression, and enzymatic activity. The pharmacological MLCK inhibition and siRNA-induced knockdown of MLCK inhibited the MMP-9-induced increase in Caco-2 TJ permeability. MMP-9 caused a rapid activation of the p38 kinase signaling pathway and inhibition of p38 kinase activity prevented the MMP-9-induced increase in MLCK gene activity and the increase in Caco-2 TJ permeability. MMP-9 also caused an increase in mouse intestinal permeability in vivo, which was accompanied by an increase in MLCK expression. The MMP-9-induced increase in mouse intestinal permeability was inhibited in MLCK-deficient mice. These data show for the first time that the MMP-9-induced increase in intestinal TJ permeability in vitro and in vivo was mediated by the p38 kinase signal transduction pathway upregulation of MLCK gene activity and that therapeutic targeting of these pathways can prevent the MMP-9-induced increase in intestinal TJ permeability. NEW & NOTEWORTHY MMP-9 is highly elevated in patients with IBD. IBD patients have compromised intestinal TJ barrier function manifested by an increase in intestinal permeability and intestinal inflammation. This study shows that MMP-9, at clinically achievable concentrations, causes an increase in intestinal TJ permeability in vitro and in vivo. In addition, a MMP-9-induced increase in intestinal TJ permeability was mediated by an increase in MLCK gene and protein expression via the p38 kinase pathway.
Collapse
Affiliation(s)
- Rana Al-Sadi
- Penn State Milton S. Hershey Medical Center, College of Medicine , Hershey, Pennsylvania
| | - Moustafa Youssef
- Department of Internal Medicine, University of New Mexico School of Medicine , Albuquerque, New Mexico
| | - Manmeet Rawat
- Department of Internal Medicine, University of New Mexico School of Medicine , Albuquerque, New Mexico
| | - Shuhong Guo
- Department of Internal Medicine, University of New Mexico School of Medicine , Albuquerque, New Mexico
| | - Karol Dokladny
- Department of Internal Medicine, University of New Mexico School of Medicine , Albuquerque, New Mexico
| | - Mohammad Haque
- Penn State Milton S. Hershey Medical Center, College of Medicine , Hershey, Pennsylvania
| | | | - Thomas Y Ma
- Penn State Milton S. Hershey Medical Center, College of Medicine , Hershey, Pennsylvania
- Department of Internal Medicine, University of New Mexico School of Medicine , Albuquerque, New Mexico
| |
Collapse
|
23
|
Lin JC, Wu JQ, Wang F, Tang FY, Sun J, Xu B, Jiang M, Chu Y, Chen D, Li X, Su S, Zhang Y, Wu N, Yang S, Wu K, Liang J. QingBai decoction regulates intestinal permeability of dextran sulphate sodium-induced colitis through the modulation of notch and NF-κB signalling. Cell Prolif 2019; 52:e12547. [PMID: 30657238 PMCID: PMC6496276 DOI: 10.1111/cpr.12547] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/20/2018] [Accepted: 10/10/2018] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE Chinese Herb QingBai decoction (QBD) has been approved affective in the treatment of IBD patients in clinic. However, the underlying mechanism remains unknown. We aim to investigate the effect of QBD on the mouse model of ulcerative colitis and its possible mechanism. METHODS C57/bL mice were given 5% DSS to induce colitis and were divided as QBD and mesalazine group. Weight, faeces and mental status were recorded each day and the histopathological changes (goblet cells etc) of the colon were observed after sacrificed. Fluorescein isothiocyanate-dextran 4000 was measured to reflect the intestinal mucosal permeability. In addition, cell junction-related proteins and possible signal pathways were investigated. RESULTS QingBai decoction could significantly alleviate the inflammation and the protection effect of colitis is comparable as those in mesalazine enema group. It was found that the permeability reduced significantly with QBD treatment vs the control group, while no significant difference between the mesalazine and QBD groups. QBD treatment could upregulate the expression of tight junction complex(ZO-1, claudin-1 and occludin)and muc-2 expression. It significantly reduced the production and secretion of serials proinflammatory cytokines (IL-1β, IL-6, Kc and TNF-α) compared with the control group. Meanwhile, NF-κB and Notch pathways were regulated. CONCLUSION QingBai decoction can effectively alleviate intestinal inflammation and mucosal barrier function in colitis mice, and the mechanism may be related to the inhibition of inflammatory cascade as well as enhanced mucus layer barrier and mechanical barrier function by NF-κB and Notch signalling.
Collapse
Affiliation(s)
- Jun-Chao Lin
- Department of Gastroenterology, Second Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Shanxi, China
| | - Jie-Qiong Wu
- Department of Gastroenterology, Second Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Shanxi, China
| | - Fang Wang
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Feng-Ying Tang
- Department of Gastroenterology, Second Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Shanxi, China
| | - Jia Sun
- Department of Gastroenterology, Second Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Shanxi, China
| | - Bing Xu
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Mingzuo Jiang
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yi Chu
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Di Chen
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiaowei Li
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Song Su
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.,Department of Gastroenterology, NO. 307 Hospital of PLA, Beijing, China
| | - Yujie Zhang
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Nan Wu
- Laboratory of Tissue Engineering, Faculty of Life Science, Northwest University, Xi'an, China
| | - Shaoqi Yang
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Kaichun Wu
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jie Liang
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
24
|
Chami B, Martin NJJ, Dennis JM, Witting PK. Myeloperoxidase in the inflamed colon: A novel target for treating inflammatory bowel disease. Arch Biochem Biophys 2018; 645:61-71. [PMID: 29548776 DOI: 10.1016/j.abb.2018.03.012] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/08/2018] [Accepted: 03/12/2018] [Indexed: 12/17/2022]
Abstract
Inflammatory bowel disease (IBD) is a debilitating disorder involving inflammation of the gastrointestinal tract. The incidence of IBD is increasing worldwide. Immunological responses in the gastrointestinal (GI) tract to altered gut microbiota, mucosal injury and loss of intestinal epithelial cell function all contribute to a complex mechanism underlying IBD pathogenesis. Immune cell infiltration, particularly neutrophils, is a histological feature of IBD. This innate immune response is aimed at resolving intestinal damage however, neutrophils and monocytes that are recruited and accumulate in the GI wall, participate in IBD pathogenesis by producing inflammatory cytokines and soluble mediators such as reactive oxygen species (ROS; one- and two-electron oxidants). Unregulated ROS production in host tissue is linked to oxidative damage and inflammation and may potentiate mucosal injury. Neutrophil-myeloperoxidase (MPO) is an abundant granule enzyme that catalyses production of potent ROS; biomarkers of oxidative damage (and MPO protein) are increased in the mucosa of patients with IBD. Targeting MPO may mitigate oxidative damage to host tissue and ensuing inflammation. Here we identify mechanisms by which MPO activity perpetuates inflammation and contributes to host-tissue injury in patients with IBD and discuss MPO as a potential therapeutic target to protect the colon from inflammatory injury.
Collapse
Affiliation(s)
- Belal Chami
- Redox Biology Group, Discipline of Pathology, Sydney Medical School, Charles Perkins Centre, The University of Sydney NSW 2006 Australia
| | - Nathan J J Martin
- Redox Biology Group, Discipline of Pathology, Sydney Medical School, Charles Perkins Centre, The University of Sydney NSW 2006 Australia
| | - Joanne M Dennis
- Redox Biology Group, Discipline of Pathology, Sydney Medical School, Charles Perkins Centre, The University of Sydney NSW 2006 Australia
| | - Paul K Witting
- Redox Biology Group, Discipline of Pathology, Sydney Medical School, Charles Perkins Centre, The University of Sydney NSW 2006 Australia.
| |
Collapse
|
25
|
Lin X, Li J, Zhao Q, Feng JR, Gao Q, Nie JY. WGCNA Reveals Key Roles of IL8 and MMP-9 in Progression of Involvement Area in Colon of Patients with Ulcerative Colitis. Curr Med Sci 2018; 38:252-258. [PMID: 30074183 DOI: 10.1007/s11596-018-1873-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 01/15/2018] [Indexed: 12/21/2022]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory disease and its involvement area in colon is influenced by a complex network of gene interactions. We analyzed the weighted gene co-expression networks in microarray dataset from colonic mucosa of patients with UC and identified one gene co-expression module that was highly associated with the progression of involved area in UC colon (Pearson coefficient=0.81, P<0.0001). In total, 523 hub genes in this module were found to be involved in immune system process after enrichment analysis in Gene Ontology. By the STRING and Cytoscape analysis, we observed that interleukin-8 (IL-8) and matrix metalloproteinase-9 (MMP-9) were centered in the network of hub genes. We then detected the expression of IL-8 and MMP-9 in mucosa from left-sided colon of patients using quantitative PCR and immunofluorescence assay respectively. Both quantitative PCR and immunofluorescence assay revealed the expression levels of IL-8 and MMP-9 were significantly different among the healthy controls, left-sided colitis group and pancolitis group (P<0.05). IL-8 and MMP-9 were detected with an enhanced expression in pancolitis as compared with leftsided colitis and healthy controls, respectively (P<0.05). This study demonstrates that immune system process is indispensable in the progression of disease in colon, and identifies that IL-8 and MMP-9 play potential critical roles for the progression.
Collapse
Affiliation(s)
- Xue Lin
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China
| | - Jin Li
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China
| | - Jue-Rong Feng
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China
| | - Qian Gao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China
| | - Jia-Yan Nie
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China.
| |
Collapse
|
26
|
Walter L, Pujada A, Bhatnagar N, Bialkowska AB, Yang VW, Laroui H, Garg P. Epithelial derived-matrix metalloproteinase (MMP9) exhibits a novel defensive role of tumor suppressor in colitis associated cancer by activating MMP9-Notch1-ARF-p53 axis. Oncotarget 2018; 8:364-378. [PMID: 27861153 PMCID: PMC5352126 DOI: 10.18632/oncotarget.13406] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 11/11/2016] [Indexed: 12/19/2022] Open
Abstract
Colitis associated cancer (CAC) is chronic inflammation driven colon cancer, prevalent among individuals with Inflammatory Bowel Disease. Matrix-metalloproteinase (MMP9) is one of the essential regulators of extra cellular matrix components. We have shown that MMP9 is protective in CAC contrary to its inflammatory role in acute-colitis. Aim of our study is to identify the mechanism of the protective role of epithelial derived-MMP9 in CAC. We used homozygous transgenic mice constitutively-expressing MMP9 in colonic-epithelium (TgM9) and wild-type (WT) littermates for in vivo experiments. Stably-transfected HCT116 with/without MMP9, and mouse embryonic-fibroblasts (WT and MMP9−/−, MEFs) were used for in vitro experiments. TgM9 mice exhibited less tumor burden, increased apoptosis, and increased expressions of active-Notch1, p53, p21WAF1/Cip1, caspase-3 and cyclin E in CAC compared to WTs. These results were supported by MEFs data. HCT116-cells overexpressing MMP9 indicated decreased cell proliferation, S-phase cell-cycle arrest and less DNA damage compared to vector. MMP9−/− mice showed attenuation of MMP9 was directly associated with p19ARF. Our study identifies the tumor suppressor role of epithelial derived-MMP9 in CAC via novel mechanistic pathway “MMP9-Notch1-ARF-p53 axis” regulating apoptosis, cell-cycle arrest and DNA damage implying, that MMP9 expression might be a natural/biological way to suppress colonic ulceration due to chronic inflammation.
Collapse
Affiliation(s)
- Lewins Walter
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Adani Pujada
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Noopur Bhatnagar
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | | | - Vincent W Yang
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Hamed Laroui
- Department of Chemistry/Biology, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Pallavi Garg
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
27
|
Chen L, You Q, Hu L, Gao J, Meng Q, Liu W, Wu X, Xu Q. The Antioxidant Procyanidin Reduces Reactive Oxygen Species Signaling in Macrophages and Ameliorates Experimental Colitis in Mice. Front Immunol 2018; 8:1910. [PMID: 29354126 PMCID: PMC5760499 DOI: 10.3389/fimmu.2017.01910] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 12/14/2017] [Indexed: 12/28/2022] Open
Abstract
Management of inflammatory bowel disease (IBD) is a real clinical challenge. Despite intense investigation, the mechanisms of IBD remain substantially unidentified. Some inflammatory conditions, such as matrix metalloproteinases (MMPs) and the nuclear factor-κB (NF-κB) and NOD-like receptor protein 3 (NLRP3) inflammasome signaling pathways, are reported to contribute to the development and maintenance of IBD. Regulation of their common upstream signaling, that is, reactive oxygen species (ROS), may be important to control the progression of IBD. In the present study, we found that procyanidin, a powerful antioxidation flavonoid, has a significant effect on ROS clearance on THP-1 macrophages after lipopolysaccharide (LPS) or LPS-combined adenosine triphosphate stimulation, thus downregulating MMP9 expression, suppressing NF-κB signaling, and interrupting the formation of the NLRP3 inflammasome. Moreover, our in vivo data showed that procyanidin attenuated Dextran sulfate sodium-induced experimental colitis in a dose-dependent fashion by suppressing the expression of MMP9, NF-κB, and NLRP3 inflammasome signaling in colonic tissues in mice. Overall, our results suggested that targeting ROS could be a potential therapeutic choice for colonic inflammation.
Collapse
Affiliation(s)
- Lu Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qian You
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Liang Hu
- Department of Pharmacy, Sir Run Run Shaw Hospital Affiliated to Nanjing Medical University, Jiangsu, China.,Department of Pharmacology, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Jiangsu, China
| | - Jian Gao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qianqian Meng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Wentao Liu
- Department of Pharmacy, Sir Run Run Shaw Hospital Affiliated to Nanjing Medical University, Jiangsu, China.,Department of Pharmacology, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Jiangsu, China
| | - Xuefeng Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
28
|
Betulinic acid alleviates dextran sulfate sodium-induced colitis and visceral pain in mice. Naunyn Schmiedebergs Arch Pharmacol 2017; 391:285-297. [PMID: 29279966 DOI: 10.1007/s00210-017-1455-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 12/13/2017] [Indexed: 12/14/2022]
|
29
|
Matrix metalloproteinases as regulators of inflammatory processes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2036-2042. [DOI: 10.1016/j.bbamcr.2017.05.010] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/06/2017] [Accepted: 05/09/2017] [Indexed: 12/26/2022]
|
30
|
Pujada A, Walter L, Patel A, Bui TA, Zhang Z, Zhang Y, Denning TL, Garg P. Matrix metalloproteinase MMP9 maintains epithelial barrier function and preserves mucosal lining in colitis associated cancer. Oncotarget 2017; 8:94650-94665. [PMID: 29212256 PMCID: PMC5706902 DOI: 10.18632/oncotarget.21841] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 08/14/2017] [Indexed: 02/06/2023] Open
Abstract
In colitis associated cancer (CAC), chronic inflammation exposes the epithelial mucosal defensive lining to inflammatory mediators such as cytokines and anti-microbial peptides (AMPs) causing the dysbiosis of microbiota population and the dysregulation of immune response. Matrix Metalloproteinases (MMPs) are zinc dependent endopeptidases which mediate inflammation, tissue remodeling, and carcinogenesis. MMP9 is undetectable in healthy tissue, although highly upregulated during inflammation and cancer. We have previously shown that MMP9 plays a protective role in CAC opposite to its conventional role of acute inflammation and cancer mediator. In this study, we investigated the mechanistic role of MMP9 in preserving the epithelial mucosal integrity to suppress the progression of tumor microenvironment in CAC. We used transgenic mice constitutively expressing MMP9 in colonic epithelium (TgM9) as an in vivo model and intestinal cell line CaCo2BBE as an in vitro model. We induced CAC with three cycles of dextran sodium sulfate (DSS). We observed that MMP9 expression in colonic epithelium maintains the microbiota. We also observed that MMP9 mediates pro-inflammatory cytokine levels and AMPs but suppresses IL-22 resulting in lower levels of REG3-g and S100A8 AMPs. We also found that MMP9 maintains an efficient barrier function and the integrity of tight junctions. We also observed increased levels of mucin and intestinal trefoil factor among TgM9 mice in CAC. We also found that MMP9 expressing CaCo2BBE cells had increased expressions of EGFR and nuclear transcription factor- specificity protein 1 (Sp1). These data imply that MMP9 acts as a tumor suppressor in CAC by sustaining the epithelial mucosal integrity due to the activation of EGFR-Sp1 signaling pathway.
Collapse
Affiliation(s)
- Adani Pujada
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Lewins Walter
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Aashka Patel
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Tien Anh Bui
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Zhan Zhang
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Yuchen Zhang
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | | | - Pallavi Garg
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW The extracellular matrix (ECM) is a frequently overlooked component of the pathogenesis of inflammatory bowel disease (IBD). However, the functional and clinically significant interactions between immune as well as nonimmune cells with the ECM have important implications for disease pathogenesis. In this review, we discuss how the ECM participates in process associated with IBD that involves diverse cell types of the intestine. RECENT FINDINGS Remodeling of the ECM is a consistent feature of IBD, and studies have implicated key ECM molecules in IBD pathogenesis. While the majority of prior studies have focused on ECM degradation by proteases, more recent studies have uncovered additional degrading enzymes, identified fragments of ECM components as potential biomarkers, and revealed that ECM synthesis is increased in IBD. These new studies support the notion that the ECM, rather than acting as a passive element, is an active participant in promoting inflammation. SUMMARY New studies have offered exciting clues about the function of the ECM during IBD pathogenesis. The balance of ECM synthesis and turnover is altered in IBD, and the molecules involved exhibit discreet biological functions that regulate inflammation on the basis of specific cell type and matrix molecule.
Collapse
|
32
|
Inhibition of gelatinase B/MMP-9 does not attenuate colitis in murine models of inflammatory bowel disease. Nat Commun 2017; 8:15384. [PMID: 28561062 PMCID: PMC5460016 DOI: 10.1038/ncomms15384] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 03/24/2017] [Indexed: 12/19/2022] Open
Abstract
One third of patients with inflammatory bowel disease (IBD) inadequately respond to anti-TNF treatment and preclinical data suggest that matrix metalloproteinase-9 (MMP-9) is a novel therapeutic target. Here we show that IBD clinical and histopathological parameters found in wild type mice challenged with three different models of colitis, acute and chronic dextran sodium sulphate (DSS), and acute 2,4,6-trinitrobenzenesulfonic acid-induced colitis are not attenuated in MMP-9 knockout mice. We find similar colonic gene expression profiles in wild type and MMP-9 knockout mice in control and acute DSS conditions with the exception of eleven genes involved in antimicrobial response during colitis. Parameters of chronic colitis are similar in wild type and MMP-9 knockout mice. Pharmacological inhibition of MMP-9 with bio-active peptides does not improve DSS colitis. We suggest that MMP-9 upregulation is a consequence rather than a cause of intestinal inflammation and we question whether MMP-9 represents a disease target in IBD. Metalloproteinase-9 has been suggested as therapeutic target to treat inflammatory bowel disease. Here de Bruyn et al. show that genetic and pharmacological inhibition of metalloproteinase-9 does not ameliorate inflammation and fibrosis in mice challenged with acute and chronic colitis protocols.
Collapse
|
33
|
Van Spaendonk H, Ceuleers H, Witters L, Patteet E, Joossens J, Augustyns K, Lambeir AM, De Meester I, De Man JG, De Winter BY. Regulation of intestinal permeability: The role of proteases. World J Gastroenterol 2017; 23:2106-2123. [PMID: 28405139 PMCID: PMC5374123 DOI: 10.3748/wjg.v23.i12.2106] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/20/2017] [Accepted: 03/02/2017] [Indexed: 02/06/2023] Open
Abstract
The gastrointestinal barrier is - with approximately 400 m2 - the human body's largest surface separating the external environment from the internal milieu. This barrier serves a dual function: permitting the absorption of nutrients, water and electrolytes on the one hand, while limiting host contact with noxious luminal antigens on the other hand. To maintain this selective barrier, junction protein complexes seal the intercellular space between adjacent epithelial cells and regulate the paracellular transport. Increased intestinal permeability is associated with and suggested as a player in the pathophysiology of various gastrointestinal and extra-intestinal diseases such as inflammatory bowel disease, celiac disease and type 1 diabetes. The gastrointestinal tract is exposed to high levels of endogenous and exogenous proteases, both in the lumen and in the mucosa. There is increasing evidence to suggest that a dysregulation of the protease/antiprotease balance in the gut contributes to epithelial damage and increased permeability. Excessive proteolysis leads to direct cleavage of intercellular junction proteins, or to opening of the junction proteins via activation of protease activated receptors. In addition, proteases regulate the activity and availability of cytokines and growth factors, which are also known modulators of intestinal permeability. This review aims at outlining the mechanisms by which proteases alter the intestinal permeability. More knowledge on the role of proteases in mucosal homeostasis and gastrointestinal barrier function will definitely contribute to the identification of new therapeutic targets for permeability-related diseases.
Collapse
|
34
|
O'Sullivan S, Wang J, Pigott MT, Docherty N, Boyle N, Lis SK, Gilmer JF, Medina C. Inhibition of matrix metalloproteinase-9 by a barbiturate-nitrate hybrid ameliorates dextran sulphate sodium-induced colitis: effect on inflammation-related genes. Br J Pharmacol 2017; 174:512-524. [PMID: 28079248 DOI: 10.1111/bph.13712] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 11/18/2016] [Accepted: 12/19/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Matrix metalloproteinase-9 (MMP-9) is up-regulated in ulcerative colitis and implicated in the pathology of the disease. In this study, we have examined the effects of a barbiturate-based MMP inhibitor incorporating a nitric oxide donor/mimetic group (dinitrate-barbiturate) on the intestinal injury induced by dextran sulphate sodium (DSS). EXPERIMENTAL APPROACH In vivo experiments were carried out using male Wistar rats given 5% DSS ad libitum in drinking water. The dinitrate-barbiturate, non-nitrate equivalent, nitrate side chains alone or vehicle were administered rectally, twice daily. MMP-9 release was measured by gelatin zymography, and analysis of gene expression was carried out using RT-qPCR. TaqMan low density arrays were used to evaluate the expression of 91 inflammatory genes in the rat colon. KEY RESULTS The dinitrate-barbiturate inhibited the induction and activity of MMP-9 during DSS colitis in the rat. This occurred in association with significant reductions in the colitic response to DSS as assessed by an established clinical disease activity index and a pathological colitis grade score. The compound modified expression rates of numerous inflammation-related genes in the colon. CONCLUSIONS AND IMPLICATIONS This study demonstrated the efficacy of the dinitrate-barbiturate in DSS-induced colitis. Therefore, barbiturate-nitrate hybrids may be developed as a promising anti-inflammatory approach to the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Shane O'Sullivan
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Jun Wang
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | | - Neil Docherty
- Department of Physiology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Noreen Boyle
- Department of Physiology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Samuel Kana Lis
- Department of Physiology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - John F Gilmer
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Carlos Medina
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
35
|
Kang Y, Xue Y, Du M, Zhu MJ. Preventive effects of Goji berry on dextran-sulfate-sodium-induced colitis in mice. J Nutr Biochem 2016; 40:70-76. [PMID: 27863347 DOI: 10.1016/j.jnutbio.2016.10.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/28/2016] [Accepted: 10/21/2016] [Indexed: 12/14/2022]
Abstract
Goji berry (Lycium barbarum) exerts immune modulation and suppresses inflammation in vitro and in vivo. We hypothesized that Goji berry had beneficial effects on dextran sulfate sodium (DSS)-induced colitis in C57BL/6 mice through suppressing inflammation. Six-week-old male C57BL/6 mice were supplemented with a standard AIN-93G diet with or without 1% (w/w) Goji berry for 4 weeks. Then, colitis was induced by supplementing 3% DSS in drinking water for 7 days, followed by 7 days of remission period to mimic ulcerative colitis symptoms. Goji berry supplementation ameliorated DSS-induced body weight loss, diminished diarrhea and gross bleeding, and resulted in a significantly decreased disease activity index, as well as DSS-associated colon shortening. Moreover, 30% mortality rate caused by DSS-induced colitis was avoided because of Goji berry supplementation. Histologically, Goji berry ameliorated colonic edema, mucosal damage and neutrophil infiltration into colonic intestinal tissue in response to DSS challenge, which was associated with decreased expression of chemokine (C-X-C motif) ligand 1 and monocyte chemoattractant protein-1, as well as inflammatory mediators interleukin-6 and cyclooxygenase-2. In conclusion, Goji supplementation confers protective effects against DSS-induced colitis, which is associated with decreased neutrophil infiltration and suppressed inflammation. Thus, dietary Goji is likely beneficial to inflammatory bowel disease patients as a complementary therapeutic strategy.
Collapse
Affiliation(s)
- Yifei Kang
- School of Food Science, Washington State University, Pullman, WA, 99164, USA
| | - Yansong Xue
- School of Food Science, Washington State University, Pullman, WA, 99164, USA
| | - Min Du
- Department of Animal Science, Washington State University, Pullman, WA, 99164, USA
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
36
|
Anti-MMP-9 Antibody: A Promising Therapeutic Strategy for Treatment of Inflammatory Bowel Disease Complications with Fibrosis. Inflamm Bowel Dis 2016; 22:2041-57. [PMID: 27542125 DOI: 10.1097/mib.0000000000000863] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Despite medical treatments or surgical options, more than one-third of patients with Crohn's disease suffer from recurring fistulae. Matrix metalloprotease 9 (MMP-9), a type IV collagenase that cleaves components of the extracellular matrix leading to tissue remodeling, is upregulated in crypt abscesses and around fistulae suggesting an important role for this enzyme in fistula formation. Our aims were (1) to correlate serum levels of MMP-9 degradation products in patients with CD with the presence of fistulae and (2) to investigate the impact of selective MMP-9 inhibition in a mouse model of intestinal fibrosis. METHODS Serum MMP-9 degradation products were quantified in subjects affected with nonstricturing and nonpenetrating CD (n = 50), stricturing CD (n = 41), penetrating CD (n = 22), CD with perianal fistula (n = 29), and healthy controls (n = 10). Therapeutic efficacy of anti-MMP-9 monoclonal antibodies was assessed in a heterotopic xenograft model of intestinal fibrosis. RESULTS C3M, an MMP-9 degradation product of collagen III, demonstrated the highest serum levels in patients with penetrating CD and differentiated penetrating CD from other CD subgroups and healthy controls, P = 0.0005. Anti-MMP-9 treatments reduced collagen deposition and hydroxyproline content in day-14 intestinal grafts indicating reduced fibrosis. CONCLUSIONS The serologic biomarker C3M can discriminate penetrating CD from other CD subgroups and could serve as marker for the development of penetrating CD. Anti-MMP-9 antibody has therapeutic potential to prevent intestinal fibrosis in CD complications.
Collapse
|
37
|
de Bruyn M, Vandooren J, Ugarte-Berzal E, Arijs I, Vermeire S, Opdenakker G. The molecular biology of matrix metalloproteinases and tissue inhibitors of metalloproteinases in inflammatory bowel diseases. Crit Rev Biochem Mol Biol 2016; 51:295-358. [PMID: 27362691 DOI: 10.1080/10409238.2016.1199535] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
38
|
Hoeksema MA, Laan LC, Postma JJ, Cummings RD, de Winther MPJ, Dijkstra CD, van Die I, Kooij G. Treatment with Trichuris suis soluble products during monocyte-to-macrophage differentiation reduces inflammatory responses through epigenetic remodeling. FASEB J 2016; 30:2826-36. [PMID: 27095802 DOI: 10.1096/fj.201600343r] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 04/12/2016] [Indexed: 01/09/2023]
Abstract
Helminths have strong immunoregulatory properties that may be exploited in treatment of chronic immune disorders, such as multiple sclerosis and inflammatory bowel disease. Essential players in the pathogenesis of these diseases are proinflammatory macrophages. We present evidence that helminths modulate the function and phenotype of these innate immune cells. We found that soluble products derived from the Trichuris suis (TsSP) significantly affect the differentiation of monocytes into macrophages and their subsequent polarization. TsSPs reduce the expression and production of inflammatory cytokines, including IL-6 and TNF, in human proinflammatory M1 macrophages. TsSPs induce a concomitant anti-inflammatory M2 signature, with increased IL-10 production. Furthermore, they suppress CHIT activity and enhance secretion of matrix metalloproteinase 9. Short-term triggering of monocytes with TsSPs early during monocyte-to-macrophage differentiation imprinted these phenotypic alterations, suggesting long-lasting epigenetic changes. The TsSP-induced effects in M1 macrophages were completely reversed by inhibiting histone deacetylases, which corresponded with decreased histone acetylation at the TNF and IL6 promoters. These results demonstrate that TsSPs have a potent and sustained immunomodulatory effect on human macrophage differentiation and polarization through epigenetic remodeling and provide new insights into the mechanisms by which helminths modulate human immune responses.-Hoeksema, M. A., Laan, L. C., Postma, J. J., Cummings, R. D., de Winther, M. P. J., Dijkstra, C. D., van Die, I., Kooij, G. Treatment with Trichuris suis soluble products during monocyte-to-macrophage differentiation reduces inflammatory responses through epigenetic remodeling.
Collapse
Affiliation(s)
- Marten A Hoeksema
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Lisa C Laan
- Department of Molecular Cell Biology and Immunology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands; and
| | - Juliette J Postma
- Department of Molecular Cell Biology and Immunology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands; and
| | - Richard D Cummings
- National Center for Functional Glycomics, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Menno P J de Winther
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Christine D Dijkstra
- Department of Molecular Cell Biology and Immunology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands; and
| | - Irma van Die
- Department of Molecular Cell Biology and Immunology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands; and
| | - Gijs Kooij
- Department of Molecular Cell Biology and Immunology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands; and
| |
Collapse
|
39
|
Siegmund B, Feakins RM, Barmias G, Ludvig JC, Teixeira FV, Rogler G, Scharl M. Results of the Fifth Scientific Workshop of the ECCO (II): Pathophysiology of Perianal Fistulizing Disease. J Crohns Colitis 2016; 10:377-386. [PMID: 26681764 PMCID: PMC4946764 DOI: 10.1093/ecco-jcc/jjv228] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 12/08/2015] [Indexed: 12/19/2022]
Abstract
The fifth scientific workshop of the European Crohn's and Colitis Organization (ECCO) focused on the relevance of fistulas to the disease course of patients with Crohn's disease (CD). The objectives were to reach a better understanding of the pathophysiological mechanisms underlying the formation of CD fistulas; to identify future topics in fistula research that could provide insights into pathogenesis; to develop novel therapeutic approaches; and to review current therapeutic strategies (with clarification of existing approaches to prevention, diagnosis and treatment). The results of the workshop are presented in two separate manuscripts. This manuscript describes current state-of-the-art knowledge about fistula pathogenesis, including the roles of epithelial-to-mesenchymal transition and cytokine matrix remodelling enzymes, and highlights the common association between fistulas and stenosis in CD. The review also considers the possible roles that genetic predisposition and intestinal microbiota play in fistula development. Finally, it proposes future directions and needs for fistula research that might substantially increase our understanding of this complex condition and help unravel novel therapeutic strategies and specific targets for treatment. Overall, it aims to highlight unanswered questions in fistula research and to provide a framework for future research work.
Collapse
Affiliation(s)
- Britta Siegmund
- Department of Medicine (Gastroenterology, Infectious Diseases, Rheumatology), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Roger M Feakins
- Department of Histopathology, Royal London Hospital, London, UK
| | - Giorgos Barmias
- Academic Department of Gastroenterology, Ethnikon and Kapodistriakon University of Athens, Laikon Hospital, Athens, Greece
| | - Juliano Coelho Ludvig
- ESADI Clinic and Gastroenterology Unit, Santa Isabel Hospital, Blumenau, Santa Catarina, Brazil
| | - Fabio Vieira Teixeira
- Colorectal Unit, Gastrosaude Clinic, Marilia, Sao Paulo, Brazil Department of Surgery, UNESP Botucatu, Sao Paulo, Brazil
| | - Gerhard Rogler
- Division of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Michael Scharl
- Division of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
40
|
Nighot P, Al-Sadi R, Rawat M, Guo S, Watterson DM, Ma T. Matrix metalloproteinase 9-induced increase in intestinal epithelial tight junction permeability contributes to the severity of experimental DSS colitis. Am J Physiol Gastrointest Liver Physiol 2015; 309:G988-G997. [PMID: 26514773 PMCID: PMC4683300 DOI: 10.1152/ajpgi.00256.2015] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/07/2015] [Indexed: 01/31/2023]
Abstract
Recent studies have implicated a pathogenic role for matrix metalloproteinases 9 (MMP-9) in inflammatory bowel disease. Although loss of epithelial barrier function has been shown to be a key pathogenic factor for the development of intestinal inflammation, the role of MMP-9 in intestinal barrier function remains unclear. The aim of this study was to investigate the role of MMP-9 in intestinal barrier function and intestinal inflammation. Wild-type (WT) and MMP-9(-/-) mice were subjected to experimental dextran sodium sulfate (DSS) colitis by administration of 3% DSS in drinking water for 7 days. The mouse colonic permeability was measured in vivo by recycling perfusion of the entire colon using fluorescently labeled dextran. The DSS-induced increase in the colonic permeability was accompanied by an increase in intestinal epithelial cell MMP-9 expression in WT mice. The DSS-induced increase in intestinal permeability and the severity of DSS colitis was found to be attenuated in MMP-9(-/-) mice. The colonic protein expression of myosin light chain kinase (MLCK) and phospho-MLC was found to be significantly increased after DSS administration in WT mice but not in MMP-9(-/-) mice. The DSS-induced increase in colonic permeability and colonic inflammation was attenuated in MLCK(-/-) mice and MLCK inhibitor ML-7-treated WT mice. The DSS-induced increase in colonic surface epithelial cell MLCK mRNA was abolished in MMP-9(-/-) mice. Lastly, increased MMP-9 protein expression was detected within the colonic surface epithelial cells in ulcerative colitis cases. These data suggest a role of MMP-9 in modulation of colonic epithelial permeability and inflammation via MLCK.
Collapse
Affiliation(s)
- Prashant Nighot
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Rana Al-Sadi
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Manmeet Rawat
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico;
| | - Shuhong Guo
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - D Martin Watterson
- Northwestern University Feinberg School of Medicine, Chicago, Illinois; and
| | - Thomas Ma
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico; Veterans Affairs Medical Center, Albuquerque, New Mexico
| |
Collapse
|
41
|
de Bruyn M, Arijs I, De Hertogh G, Ferrante M, Van Assche G, Rutgeerts P, Vermeire S, Opdenakker G. Serum Neutrophil Gelatinase B-associated Lipocalin and Matrix Metalloproteinase-9 Complex as a Surrogate Marker for Mucosal Healing in Patients with Crohn's Disease. J Crohns Colitis 2015; 9:1079-87. [PMID: 26351381 DOI: 10.1093/ecco-jcc/jjv148] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 08/20/2015] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND AIMS Although costly and uncomfortable for the patient, the current standard to assess mucosal healing in Crohn's disease [CD] patients is endoscopy. The aim of this study was to evaluate NGAL-MMP-9 as surrogate marker for mucosal healing in CD patients. METHODS Serum NGAL-MMP-9 levels were determined with sandwich enzyme-linked immunosorbent assay before and up to 5 years after first infliximab infusion in 108 active CD patients [median age at first infliximab 36 years, 57% female] and 43 healthy controls [HC, median age 27 years, 60% female]. Serum samples were matched to the time of endoscopy and complete endoscopic healing was defined as absence of ulcerations. Histological healing was defined as absence of epithelial damage [D'Haens score]. RESULTS At baseline, median [interquartile range] NGAL-MMP-9 levels were significantly higher in active CD patients vs HC (77.6 [36.9-141.0] vs 25.5 [17.8-42.8] ng/ml; p < 0.001). After treatment, NGAL-MMP-9 levels significantly decreased in completely healed CD patients [n = 38] (84.5 [36.7-138.4] to 23.4 [7.4-42.5] ng/ml; p < 0.001) and--to a lesser extent--in non-healed CD patients [n = 36] (100.9 [43.4-152.6] to 43.8 [27.0-96.8] ng/ml; p = 0.001). Receiver operating characteristic analysis defined a NGAL-MMP-9 cut-off level of 45 ng/ml corresponding to complete endoscopic healing (area under the curve [AUC] = 0.79, 82% sensitivity, 65% specificity) and histological healing [AUC = 0.72, 79% sensitivity, 53% specificity]. At baseline, C-reactive protein [CRP] was not elevated in 33% of active CD patients, whereas 53% of these patients did have elevated NGAL-MMP-9 levels. CONCLUSIONS In the search for surrogate markers to assess mucosal healing in inflammatory bowel disease, NGAL-MMP-9 supplements and outperforms CRP in both ulcerative colitis and CD patients.
Collapse
Affiliation(s)
- Magali de Bruyn
- Rega Institute for Medical Research, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium Translational Research Center for Gastrointestinal Disorders [TARGID], Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Ingrid Arijs
- Translational Research Center for Gastrointestinal Disorders [TARGID], Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Gert De Hertogh
- Translational Cell and Tissue Research, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Marc Ferrante
- Translational Research Center for Gastrointestinal Disorders [TARGID], Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Gert Van Assche
- Translational Research Center for Gastrointestinal Disorders [TARGID], Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Paul Rutgeerts
- Translational Research Center for Gastrointestinal Disorders [TARGID], Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Séverine Vermeire
- Translational Research Center for Gastrointestinal Disorders [TARGID], Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Ghislain Opdenakker
- Rega Institute for Medical Research, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| |
Collapse
|
42
|
Malago JJ, Sangu CL. Intraperitoneal administration of butyrate prevents the severity of acetic acid colitis in rats. J Zhejiang Univ Sci B 2015; 16:224-34. [PMID: 25743124 DOI: 10.1631/jzus.b1400191] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Intrarectal infusion of butyrate improves colorectal disorders including ulcerative colitis (UC). However, it is not established whether systemically administered butyrate benefits such patients. The current study aimed at exploring and comparing the potential of intraperitoneally, intrarectally, and orally administered butyrate against acetic acid (AA)-induced UC in rats. Intrarectal administration of 2 ml of 50% AA was done after or without prior treatment of rats for 7 consecutive days with 100 mg/kg sodium butyrate (SB) intraperitoneally, intrarectally, or orally. Rats were sacrificed after 48 h of AA-treatment. Subsequently, colon sections were processed routinely for histopathological examination. We clinically observed diarrhea, loose stools, and hemoccult-positive stools, and histologically, epithelial loss and ulceration, crypt damage, goblet cell depletion, hemorrhage, and mucosal infiltration of inflammatory cells. The changes were significantly reduced by intraperitoneal, intrarectal, or oral butyrate, with intraperitoneal butyrate exhibiting the highest potency. It is concluded that intraperitoneal administration of butyrate abrogates the lesions of AA-induced UC and its potency surpasses that of intrarectal or oral butyrate.
Collapse
Affiliation(s)
- Joshua J Malago
- Department of Pathology, Faculty of Veterinary Medicine, Sokoine University of Agriculture, P.O. Box 3203, Morogoro, Tanzania; c/o Walter Oseko, P.O. Box 62, Duluti, Arusha, Tanzania
| | | |
Collapse
|
43
|
Matrix metalloproteinases in inflammatory bowel disease: an update. Mediators Inflamm 2015; 2015:964131. [PMID: 25948887 PMCID: PMC4408746 DOI: 10.1155/2015/964131] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/07/2014] [Indexed: 02/07/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are known to be upregulated in inflammatory bowel disease (IBD) and other inflammatory conditions, but while their involvement is clear, their role in many settings has yet to be determined. Studies of the involvement of MMPs in IBD since 2006 have revealed an array of immune and stromal cells which release the proteases in response to inflammatory cytokines and growth factors. Through digestion of the extracellular matrix and cleavage of bioactive proteins, a huge diversity of roles have been revealed for the MMPs in IBD, where they have been shown to regulate epithelial barrier function, immune response, angiogenesis, fibrosis, and wound healing. For this reason, MMPs have been recognised as potential biomarkers for disease activity in IBD and inhibition remains a huge area of interest. This review describes new roles of MMPs in the pathophysiology of IBD and suggests future directions for the development of treatment strategies in this condition.
Collapse
|
44
|
Vela G, Stark P, Socha M, Sauer AK, Hagmeyer S, Grabrucker AM. Zinc in gut-brain interaction in autism and neurological disorders. Neural Plast 2015; 2015:972791. [PMID: 25878905 PMCID: PMC4386645 DOI: 10.1155/2015/972791] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/05/2015] [Indexed: 12/27/2022] Open
Abstract
A growing amount of research indicates that abnormalities in the gastrointestinal (GI) system during development might be a common factor in multiple neurological disorders and might be responsible for some of the shared comorbidities seen among these diseases. For example, many patients with Autism Spectrum Disorder (ASD) have symptoms associated with GI disorders. Maternal zinc status may be an important factor given the multifaceted effect of zinc on gut development and morphology in the offspring. Zinc status influences and is influenced by multiple factors and an interdependence of prenatal and early life stress, immune system abnormalities, impaired GI functions, and zinc deficiency can be hypothesized. In line with this, systemic inflammatory events and prenatal stress have been reported to increase the risk for ASD. Thus, here, we will review the current literature on the role of zinc in gut formation, a possible link between gut and brain development in ASD and other neurological disorders with shared comorbidities, and tie in possible effects on the immune system. Based on these data, we present a novel model outlining how alterations in the maternal zinc status might pathologically impact the offspring leading to impairments in brain functions later in life.
Collapse
Affiliation(s)
- Guillermo Vela
- Zinpro Corporation, Eden Prairie, MN 55344, USA
- Autismo ABP, 64639 Monterrey, NL, Mexico
| | - Peter Stark
- Zinpro Corporation, Eden Prairie, MN 55344, USA
| | | | - Ann Katrin Sauer
- WG Molecular Analysis of Synaptopathies, Neurology Department, Neurocenter of Ulm University, 89081 Ulm, Germany
| | - Simone Hagmeyer
- WG Molecular Analysis of Synaptopathies, Neurology Department, Neurocenter of Ulm University, 89081 Ulm, Germany
| | - Andreas M. Grabrucker
- WG Molecular Analysis of Synaptopathies, Neurology Department, Neurocenter of Ulm University, 89081 Ulm, Germany
- Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
| |
Collapse
|
45
|
Shimshoni E, Yablecovitch D, Baram L, Dotan I, Sagi I. ECM remodelling in IBD: innocent bystander or partner in crime? The emerging role of extracellular molecular events in sustaining intestinal inflammation. Gut 2015; 64:367-72. [PMID: 25416065 PMCID: PMC4345769 DOI: 10.1136/gutjnl-2014-308048] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Elee Shimshoni
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Doron Yablecovitch
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel,Department of Gastroenterology, Chaim Sheba Medical Center, Tel HaShomer, Israel
| | - Liran Baram
- IBD Center, Department of Gastroenterology and Liver Diseases, Tel Aviv Sourasky Medical Center and the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Iris Dotan
- IBD Center, Department of Gastroenterology and Liver Diseases, Tel Aviv Sourasky Medical Center and the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
46
|
Is there new hope for therapeutic matrix metalloproteinase inhibition? Nat Rev Drug Discov 2014; 13:904-27. [DOI: 10.1038/nrd4390] [Citation(s) in RCA: 524] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
47
|
Scharl M, Rogler G. Pathophysiology of fistula formation in Crohn's disease. World J Gastrointest Pathophysiol 2014; 5:205-212. [PMID: 25133023 PMCID: PMC4133520 DOI: 10.4291/wjgp.v5.i3.205] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 04/04/2014] [Accepted: 05/29/2014] [Indexed: 02/06/2023] Open
Abstract
Fistulae represent an important complication in patient suffering from Crohn’s disease (CD). Cumulative incidence of fistula formation in CD patients is 17%-50% and about one third of patients suffer from recurring fistulae formation. Medical treatment options often fail and also surgery frequently is not successful. Available data indicate that CD-associated fistulae originate from an epithelial defect that may be caused by ongoing inflammation. Having undergone epithelial to mesenchymal transition (EMT), intestinal epithelial cells (IEC) penetrate into deeper layers of the mucosa and the gut wall causing localized tissue damage formation of a tube like structure and finally a connection to other organs or the body surface. EMT of IEC may be initially aimed to improve wound repair mechanisms since “conventional” wound healing mechanisms, such as migration of fibroblasts, are impaired in CD patients. EMT also enhances activation of matrix remodelling enzymes such as matrix metalloproteinase (MMP)-3 and MMP-9 causing further tissue damage and inflammation. Finally, soluble mediators like TNF and interleukin-13 further induce their own expression in an autocrine manner and enhance expression of molecules associated with cell invasiveness aggravating the process. Additionally, pathogen-associated molecular patterns also seem to play a role for induction of EMT and fistula development. Though current knowledge suggests a number of therapeutic options, new and more effective therapeutic approaches are urgently needed for patients suffering from CD-associated fistulae. A better understanding of the pathophysiology of fistula formation, however, is a prerequisite for the development of more efficacious medical anti-fistula treatments.
Collapse
|
48
|
O'Sullivan S, Medina C, Ledwidge M, Radomski MW, Gilmer JF. Nitric oxide-matrix metaloproteinase-9 interactions: biological and pharmacological significance--NO and MMP-9 interactions. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:603-17. [PMID: 24333402 DOI: 10.1016/j.bbamcr.2013.12.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 12/02/2013] [Accepted: 12/05/2013] [Indexed: 12/24/2022]
Abstract
Nitric oxide (NO) and matrix metalloproteinase 9 (MMP-9) levels are found to increase in inflammation states and in cancer, and their levels may be reciprocally modulated. Understanding interactions between NO and MMP-9 is of biological and pharmacological relevance and may prove crucial in designing new therapeutics. The reciprocal interaction between NO and MMP-9 have been studied for nearly twenty years but to our knowledge, are yet to be the subject of a review. This review provides a summary of published data regarding the complex and sometimes contradictory effects of NO on MMP-9. We also analyse molecular mechanisms modulating and mediating NO-MMP-9 interactions. Finally, a potential therapeutic relevance of these interactions is presented.
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW To summarize the recent knowledge regarding intestinal proteases and the gut barrier. RECENT FINDINGS It is now well established that intestinal proteases, such as matrix metalloproteinase (MMP)-1, MMP-3, MMP-10 and MMP-12, are key players in the development of ulcers in inflammatory bowel disease, have direct effects on epithelial barrier function and are involved in epithelial restitution. However, more recent work has suggested that the membrane-anchored epithelial cell serine protease matriptase is critical in maintaining the gut barrier, and roles have also been described for elastase, MMP-13, gelatinases, mast cell proteases and proteases derived from parasites and gut bacteria. Interestingly, epithelial proteases often co-localize with epithelial adherens junctions, and nonepithelial-derived proteases have junctional proteins as targets. SUMMARY The role of proteases in controlling normal barrier function in the gut is now becoming very clear, to go alongside their role in intestinal inflammation.
Collapse
|