1
|
Fan F, Guo R, Pan K, Xu H, Chu X. Mucus and mucin: changes in the mucus barrier in disease states. Tissue Barriers 2025:2499752. [PMID: 40338015 DOI: 10.1080/21688370.2025.2499752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 04/16/2025] [Accepted: 04/21/2025] [Indexed: 05/09/2025] Open
Abstract
In this review we discuss mucus, the viscoelastic secretion from goblet or mucous producing cells that covers and protects all non-keratinized wet epithelial surfaces. In addition to the surface of organs directly contacting with the external environment such as the eyes, this layer provides protection to the underlying gastrointestinal, respiratory and female reproductive tracts by trapping pathogens, irritants, environmental fine particles and potentially harmful foreign substances. Mucins, the primary structural components of mucus, form structurally different mucus layers at different sites in a process regulated by a variety of factors. Currently, more and more studies have shown that the mucus barrier is not only closely related to various intestinal mucus diseases, but also involved in the occurrence and development of various airway diseases and mucus-related diseases, thus it may become a new target for the treatment of various related diseases in the future. Since the dysfunction of the mucous layer is closely related to various pathological processes, in-depth understanding of its molecular mechanism and physiological role is of great theoretical and practical significance for disease prevention and treatment. Here, we discuss different aspects of the mucus layer by focusing on its chemical composition, synthetic pathways, and some of the characteristics of the mucus layer in physiological and pathological situations.
Collapse
Affiliation(s)
- Fangfang Fan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Ruihan Guo
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Kun Pan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Hongye Xu
- Quality Assurance department, Tongling Institutes for Food and Drug Control, Tongling, China
| | - Xiaoqin Chu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China
- Engineering Technology Research Center of Modern Pharmaceutical Preparation, Hefei, Anhui Province, China
| |
Collapse
|
2
|
Ye Q, Opoku G, Orlov M, Jaramillo AM, Holguin F, Vladar EK, Janssen WJ, Evans CM. Mucins and Their Roles in Asthma. Immunol Rev 2025; 331:e70034. [PMID: 40305069 DOI: 10.1111/imr.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Accepted: 04/21/2025] [Indexed: 05/02/2025]
Abstract
Mucus is a crucial component of airway host defense. For optimal protection, its chief components-the mucins MUC5AC and MUC5B-need to be tightly regulated. Their expression localizes to specific secretory epithelial cell types capable of producing and secreting massive glycopolymers. In asthma, abnormal mucus is an important clinical problem that is effectively treated with therapies that directly target mucins. This review summarizes what is known about how mucin gene regulation, protein synthesis, and secretion are regulated in healthy and asthmatic lungs. Ultimately, a better understanding of these processes could help identify novel ways of preventing or reversing airway mucus dysfunction.
Collapse
Affiliation(s)
- Qihua Ye
- Division of Pulmonary Science and Critical Care Medicine, University of Colorado School of Medicine, Denver, Colorado, USA
- Immunology PhD Program, University of Colorado School of Medicine, Denver, Colorado, USA
| | - Gilda Opoku
- Division of Pulmonary Science and Critical Care Medicine, University of Colorado School of Medicine, Denver, Colorado, USA
- Integrated Physiology PhD Program, University of Colorado School of Medicine, Denver, Colorado, USA
| | - Marika Orlov
- Division of Pulmonary Science and Critical Care Medicine, University of Colorado School of Medicine, Denver, Colorado, USA
| | - Ana M Jaramillo
- Division of Pulmonary Science and Critical Care Medicine, University of Colorado School of Medicine, Denver, Colorado, USA
| | - Fernando Holguin
- Division of Pulmonary Science and Critical Care Medicine, University of Colorado School of Medicine, Denver, Colorado, USA
| | - Eszter K Vladar
- Division of Pulmonary Science and Critical Care Medicine, University of Colorado School of Medicine, Denver, Colorado, USA
| | - William J Janssen
- Division of Pulmonary Science and Critical Care Medicine, University of Colorado School of Medicine, Denver, Colorado, USA
- Immunology PhD Program, University of Colorado School of Medicine, Denver, Colorado, USA
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, Colorado, USA
| | - Christopher M Evans
- Division of Pulmonary Science and Critical Care Medicine, University of Colorado School of Medicine, Denver, Colorado, USA
- Immunology PhD Program, University of Colorado School of Medicine, Denver, Colorado, USA
- Integrated Physiology PhD Program, University of Colorado School of Medicine, Denver, Colorado, USA
- Research Service, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado, USA
| |
Collapse
|
3
|
Yan D, Zhou M, Tian T, Wu C. Study repair function of mucin-2 on the tight junction protein of uterine epithelial cells under bacterial endotoxins. Toxicon 2024; 252:108162. [PMID: 39522658 DOI: 10.1016/j.toxicon.2024.108162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/01/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
To analysis repair function of mucin-2(MUC2) and glycoprotein particles on the tight junction protein of uterus under bacterial endotoxins. In this experiment, we showed that the thicker mucus layer of the uterus is used to prevent the translocation of endotoxin at 21d postdelivery. When endotoxin acts on the uterus to thin its mucous layer, the cells in the lamina propria of the uterus secrete a large number of glycoprotein particles at 27d postdelivery. Due to a significantly decrease in the expression of glycosyltransferase, the glycoprotein particles are incompletely glycosylation MUC2, which can interact with the cell membrane and are released in large quantities in the form of exocytosis. These glycoprotein particles can significantly repair tight junction proteins in the inter-cellular space and significantly increase the expression of Claudin-1, JAM (Junction adhesion molecule-A), E-cadherin, ZO-1(Zonula occludens-1) and desmosome proteins after endotoxin treatment. The results of the present study show that endotoxins can thin the uterine mucus layer and accelerate the release of incompletely glycosylated MUC2 from lamina propria cells. In inter-cellular spaces, MUC2 can increase its expression levels and distribution area to repair the tight junction structure of cells with larger gaps. Further strengthening of the barrier prevents endotoxin translocation by repairing the tight junction structure of uterine epithelial cells.
Collapse
Affiliation(s)
- Dujian Yan
- Department of Biotechnology, Aks Vocational and Technical College, Akesu, Xinjiang 843000, China
| | - Mengru Zhou
- College of Animal Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tian Tian
- College of Animal Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chenchen Wu
- College of Animal Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
4
|
Néel E, Chiritoiu-Butnaru M, Fargues W, Denus M, Colladant M, Filaquier A, Stewart SE, Lehmann S, Zurzolo C, Rubinsztein DC, Marin P, Parmentier ML, Villeneuve J. The endolysosomal system in conventional and unconventional protein secretion. J Cell Biol 2024; 223:e202404152. [PMID: 39133205 PMCID: PMC11318669 DOI: 10.1083/jcb.202404152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/12/2024] [Accepted: 07/26/2024] [Indexed: 08/13/2024] Open
Abstract
Most secreted proteins are transported through the "conventional" endoplasmic reticulum-Golgi apparatus exocytic route for their delivery to the cell surface and release into the extracellular space. Nonetheless, formative discoveries have underscored the existence of alternative or "unconventional" secretory routes, which play a crucial role in exporting a diverse array of cytosolic proteins outside the cell in response to intrinsic demands, external cues, and environmental changes. In this context, lysosomes emerge as dynamic organelles positioned at the crossroads of multiple intracellular trafficking pathways, endowed with the capacity to fuse with the plasma membrane and recognized for their key role in both conventional and unconventional protein secretion. The recent recognition of lysosomal transport and exocytosis in the unconventional secretion of cargo proteins provides new and promising insights into our understanding of numerous physiological processes.
Collapse
Affiliation(s)
- Eloïse Néel
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| | | | - William Fargues
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| | - Morgane Denus
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| | - Maëlle Colladant
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| | - Aurore Filaquier
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| | - Sarah E Stewart
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Sylvain Lehmann
- Laboratoire de Biochimie-Protéomique Clinique-Plateforme de Protéomique Clinique, Université de Montpellier, Institute for Regenerative Medicine and Biotherapy Centre Hospitalier Universitaire de Montpellier, Institute for Neurosciences of Montpellier INSERM , Montpellier, France
| | - Chiara Zurzolo
- Unité de Trafic Membranaire et Pathogenèse, Institut Pasteur, UMR3691 CNRS , Paris, France
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute , Cambridge, UK
| | - Philippe Marin
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| | - Marie-Laure Parmentier
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| | - Julien Villeneuve
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM , Montpellier, France
| |
Collapse
|
5
|
Jaramillo AM, Vladar EK, Holguin F, Dickey BF, Evans CM. Emerging cell and molecular targets for treating mucus hypersecretion in asthma. Allergol Int 2024; 73:375-381. [PMID: 38692992 PMCID: PMC11491148 DOI: 10.1016/j.alit.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/03/2024] [Indexed: 05/03/2024] Open
Abstract
Mucus provides a protective barrier that is crucial for host defense in the lungs. However, excessive or abnormal mucus can have pathophysiological consequences in many pulmonary diseases, including asthma. Patients with asthma are treated with agents that relax airway smooth muscle and reduce airway inflammation, but responses are often inadequate. In part, this is due to the inability of existing therapeutic agents to directly target mucus. Accordingly, there is a critical need to better understand how mucus hypersecretion and airway plugging are affected by the epithelial cells that synthesize, secrete, and transport mucus components. This review highlights recent advances in the biology of mucin glycoproteins with a specific focus on MUC5AC and MUC5B, the chief macromolecular components of airway mucus. An improved mechanistic understanding of key steps in mucin production and secretion will help reveal novel potential therapeutic strategies.
Collapse
Affiliation(s)
- Ana M Jaramillo
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Eszter K Vladar
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Fernando Holguin
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Burton F Dickey
- Department of Pulmonary Medicine, Anderson Cancer Center, University of Texas M.D., Houston, TX, USA
| | - Christopher M Evans
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
6
|
Zhou M, Tian T, Wu C. Mechanism Underlying the Regulation of Mucin Secretion in the Uterus during Pregnancy. Int J Mol Sci 2023; 24:15896. [PMID: 37958878 PMCID: PMC10647571 DOI: 10.3390/ijms242115896] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/23/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
The function of endometrial epithelial cells is to secrete various substances that are rich in growth factors and nutrients. These substances support both embryo implantation and its subsequent development into a fetus. A vast number of mucins are expressed in endometrial epithelial cells, and they play an important role in regulating the processes of embryo implantation, pregnancy, and parturition. Previous studies have shown that mucin forms a mucus layer covering endometrial epithelial cells, which helps resist damage from foreign bacteria and their toxins. Therefore, this article aims to investigate the location of mucins in the endometrium, the mechanism of mucin secretion by the endometrium, and the regulation of mucins in the uterine epithelium by reproductive hormones, as well as the role of mucins in the protection of the epithelium's structure. This research aims to provide a foundational understanding for future studies on the role and mechanism of endometrial mucins throughout the pregnancy cycle.
Collapse
Affiliation(s)
| | | | - Chenchen Wu
- College of Animal Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (M.Z.); (T.T.)
| |
Collapse
|
7
|
Wojnacki J, Lujan AL, Brouwers N, Aranda-Vallejo C, Bigliani G, Rodriguez MP, Foresti O, Malhotra V. Tetraspanin-8 sequesters syntaxin-2 to control biphasic release propensity of mucin granules. Nat Commun 2023; 14:3710. [PMID: 37349283 PMCID: PMC10287693 DOI: 10.1038/s41467-023-39277-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 06/06/2023] [Indexed: 06/24/2023] Open
Abstract
Agonist-mediated stimulated pathway of mucin and insulin release are biphasic in which rapid fusion of pre-docked granules is followed by slow docking and fusion of granules from the reserve pool. Here, based on a cell-culture system, we show that plasma membrane-located tetraspanin-8 sequesters syntaxin-2 to control mucin release. Tetraspanin-8 affects fusion of granules during the second phase of stimulated mucin release. The tetraspanin-8/syntaxin-2 complex does not contain VAMP-8, which functions with syntaxin-2 to mediate granule fusion. We suggest that by sequestering syntaxin-2, tetraspanin-8 prevents docking of granules from the reserve pool. In the absence of tetraspanin-8, more syntaxin-2 is available for docking and fusion of granules and thus doubles the quantities of mucins secreted. This principle also applies to insulin release and we suggest a cell type specific Tetraspanin/Syntaxin combination is a general mechanism regulating the fusion of dense core granules.
Collapse
Affiliation(s)
- José Wojnacki
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Agustin Leonardo Lujan
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Nathalie Brouwers
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Carla Aranda-Vallejo
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Gonzalo Bigliani
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Maria Pena Rodriguez
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Ombretta Foresti
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Vivek Malhotra
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- ICREA, Barcelona, Spain.
| |
Collapse
|
8
|
Bruno S, Lamberty A, McCoy M, Mark Z, Daphtary N, Aliyeva M, Butnor K, Poynter ME, Anathy V, Cunniff B. Deletion of Miro1 in airway club cells potentiates allergic asthma phenotypes. FRONTIERS IN ALLERGY 2023; 4:1187945. [PMID: 37377691 PMCID: PMC10291198 DOI: 10.3389/falgy.2023.1187945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Mitochondria are multifaceted organelles necessary for numerous cellular signaling and regulatory processes. Mitochondria are dynamic organelles, trafficked and anchored to subcellular sites depending upon the cellular and tissue requirements. Precise localization of mitochondria to apical and basolateral membranes in lung epithelial cells is important for key mitochondrial processes. Miro1 is an outer mitochondrial membrane GTPase that associates with adapter proteins and microtubule motors to promote intracellular movement of mitochondria. We show that deletion of Miro1 in lung epithelial cells leads to perinuclear clustering of mitochondria. However, the role of Miro1 in epithelial cell response to allergic insults remains unknown. We generated a conditional mouse model to delete Miro1 in Club Cell Secretory Protein (CCSP) positive lung epithelial cells to examine the potential roles of Miro1 and mitochondrial trafficking in the lung epithelial response to the allergen, house dust mite (HDM). Our data show that Miro1 suppresses epithelial induction and maintenance of the inflammatory response to allergen, as Miro1 deletion modestly induces increases in pro-inflammatory signaling, specifically IL-6, IL-33, CCL20 and eotaxin levels, tissue reorganization, and airway hyperresponsiveness. Furthermore, loss of Miro1 in CCSP+ lung epithelial cells blocks resolution of the asthmatic insult. This study further demonstrates the important contribution of mitochondrial dynamic processes to the airway epithelial allergen response and the pathophysiology of allergic asthma.
Collapse
Affiliation(s)
- Sierra Bruno
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, United States
| | - Amelia Lamberty
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, United States
| | - Margaret McCoy
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, United States
| | - Zoe Mark
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, United States
| | - Nirav Daphtary
- Department of Medicine, University of Vermont, Burlington, VT, United States
| | - Minara Aliyeva
- Department of Medicine, University of Vermont, Burlington, VT, United States
| | - Kelly Butnor
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, United States
| | - Matthew E. Poynter
- Department of Medicine, University of Vermont, Burlington, VT, United States
| | - Vikas Anathy
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, United States
| | - Brian Cunniff
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, United States
| |
Collapse
|
9
|
Weston A, Vladescu SC, Reddyhoff T, Griffiths A, Crouzier T, Fielden M, Garnett JA, Carpenter GH. The influence of ions on the lubricative abilities of mucin and the role of sialic acids. Colloids Surf B Biointerfaces 2023; 227:113327. [PMID: 37172419 DOI: 10.1016/j.colsurfb.2023.113327] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
Mucus reduces friction between epithelial surfaces by providing lubrication in the boundary and mixed regime. Mucins, the main macromolecule, are heavily glycosylated proteins that polymerise and retain water molecules, resulting in a hydrated biogel. It is assumed that positively charged ions can influence mucin film structure by screening the electrostatic repulsions between the negatively charged glycans on mucin moieties and draw in water molecules via hydration shells. The ionic concentration can vary significantly in different mucus systems and here we show that increasing the ionic concentration in mucin films leads to an increase in lubrication between two polydimethylsiloxane surfaces at sliding contact in a compliant oral mimic. Mucins were found to bind sodium ions in a concentration-dependent manner and increased ionic concentration appears to cause mucin films to swell when assessed by Quartz Crystal hiMicrobalance with Dissipation (QCM-D) analysis. Furthermore, we determined that the removal of negatively charged sialic acid moieties by sialidase digestion resulted in reduced adsorption to hydrophilic surfaces but did not affect the swelling of mucin films with increasing ionic concentrations. Moreover, the coefficient of friction was increased with sialic acid removal, but lubrication was still increased with increasing ionic concentrations. Taken together this suggests that sialic acids are important for lubrication and may exert this through the sacrificial layer mechanism. Ionic concentration appears to influence mucin films and their lubrication, and sialic acids, at least partly, may be important for ion binding.
Collapse
Affiliation(s)
- Abby Weston
- Centre for Host Microbiome Interactions, Salivary Research, Faculty of Dentistry, Oral and Craniofacial Science, King's College London, London, UK.
| | - Sorin-Cristian Vladescu
- Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London, UK
| | - Tom Reddyhoff
- Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London, UK
| | - Alex Griffiths
- London Metallomics Facility, King's College London, Waterloo Campus, London, UK
| | - Thomas Crouzier
- Division of Glycoscience, KTH Royal Institute of Technology, Albanova Unversity Centre, Stockholm, Sweden
| | - Matthew Fielden
- Division of Surface and Corrosion Science, KTH Royal Institute of Technology, Albanova University Centre, Stockholm, Sweden
| | - James A Garnett
- Centre for Host Microbiome Interactions, Salivary Research, Faculty of Dentistry, Oral and Craniofacial Science, King's College London, London, UK
| | - Guy H Carpenter
- Centre for Host Microbiome Interactions, Salivary Research, Faculty of Dentistry, Oral and Craniofacial Science, King's College London, London, UK
| |
Collapse
|
10
|
Zeng YR, Song JB, Wang D, Huang ZX, Zhang C, Sun YP, Shu G, Xiong Y, Guan KL, Ye D, Wang P. The immunometabolite itaconate stimulates OXGR1 to promote mucociliary clearance during the pulmonary innate immune response. J Clin Invest 2023; 133:160463. [PMID: 36919698 PMCID: PMC10014103 DOI: 10.1172/jci160463] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 01/25/2023] [Indexed: 03/16/2023] Open
Abstract
Pathogens and inflammatory conditions rapidly induce the expression of immune-responsive gene 1 (IRG1) in cells of myeloid lineage. IRG1 encodes an aconitate decarboxylase (ACOD1) that produces the immunomodulatory metabolite itaconate (ITA). In addition to rapid intracellular accumulation, ITA is also secreted from the cell, but whether secreted ITA functions as a signaling molecule is unclear. Here, we identified ITA as an orthosteric agonist of the GPCR OXGR1, with an EC50 of approximately 0.3 mM, which was in the same range as the physiological concentration of extracellular ITA upon macrophage activation. ITA activated OXGR1 to induce Ca2+ mobilization, ERK phosphorylation, and endocytosis of the receptor. In a mouse model of pulmonary infection with bacterial Pseudomonas aeruginosa, ITA stimulated Oxgr1-dependent mucus secretion and transport in respiratory epithelium, the primary innate defense mechanism of the airway. Our study thus identifies ITA as a bona fide ligand for OXGR1 and the ITA/OXGR1 paracrine signaling pathway during the pulmonary innate immune response.
Collapse
Affiliation(s)
- Yi-Rong Zeng
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University, and Key Laboratory of Metabolism and Molecular Medicine (Ministry of Education), and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Jun-Bin Song
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University, and Key Laboratory of Metabolism and Molecular Medicine (Ministry of Education), and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Dezheng Wang
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University, and Key Laboratory of Metabolism and Molecular Medicine (Ministry of Education), and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Zi-Xuan Huang
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University, and Key Laboratory of Metabolism and Molecular Medicine (Ministry of Education), and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Cheng Zhang
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University, and Key Laboratory of Metabolism and Molecular Medicine (Ministry of Education), and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Yi-Ping Sun
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University, and Key Laboratory of Metabolism and Molecular Medicine (Ministry of Education), and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Gang Shu
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yue Xiong
- Cullgen Inc., San Diego, California, USA
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, UCSD, La Jolla, California, USA
| | - Dan Ye
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University, and Key Laboratory of Metabolism and Molecular Medicine (Ministry of Education), and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Pu Wang
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University, and Key Laboratory of Metabolism and Molecular Medicine (Ministry of Education), and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| |
Collapse
|
11
|
Hoang ON, Ermund A, Jaramillo AM, Fakih D, French CB, Flores JR, Karmouty-Quintana H, Magnusson JM, Fois G, Fauler M, Frick M, Braubach P, Hales JB, Kurten RC, Panettieri R, Vergara L, Ehre C, Adachi R, Tuvim MJ, Hansson GC, Dickey BF. Mucins MUC5AC and MUC5B Are Variably Packaged in the Same and in Separate Secretory Granules. Am J Respir Crit Care Med 2022; 206:1081-1095. [PMID: 35776514 PMCID: PMC9704839 DOI: 10.1164/rccm.202202-0309oc] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/01/2022] [Indexed: 01/27/2023] Open
Abstract
Rationale: MUC5AC (mucin 5AC, oligomeric gel-forming) and MUC5B (mucin 5B, oligomeric gel-forming) are the predominant secreted polymeric mucins in mammalian airways. They contribute differently to the pathogenesis of various muco-obstructive and interstitial lung diseases, and their genes are separately regulated, but whether they are packaged together or in separate secretory granules is not known. Objectives: To determine the packaging of MUC5AC and MUC5B within individual secretory granules in mouse and human airways under varying conditions of inflammation and along the proximal-distal axis. Methods: Lung tissue was obtained from mice stimulated to upregulate mucin production by the cytokines IL-1β and IL-13 or by porcine pancreatic elastase. Human lung tissue was obtained from donated normal lungs, biopsy samples of transplanted lungs, and explanted lungs from subjects with chronic obstructive pulmonary disease. MUC5AC and MUC5B were labeled with antibodies from different animal species or, in mice only, by transgenic chimeric mucin-fluorescent proteins and imaged using widefield deconvolution or Airyscan fluorescence microscopy. Measurements and Main Results: In both mouse and human airways, most secretory granules contained both mucins interdigitating within the granules. Smaller numbers of granules contained MUC5B alone, and even fewer contained MUC5AC alone. Conclusions: MUC5AC and MUC5B are variably stored both in the same and in separate secretory granules of both mice and humans. The high fraction of granules containing both mucins under a variety of conditions makes it unlikely that their secretion can be differentially controlled as a therapeutic strategy. This work also advances knowledge of the packaging of mucins within secretory granules to understand mechanisms of epithelial stress in the pathogenesis of chronic lung diseases.
Collapse
Affiliation(s)
- Oanh N. Hoang
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anna Ermund
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Ana M. Jaramillo
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Dalia Fakih
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Cory B. French
- Washington University School of Medicine, St. Louis, Missouri
| | - Jose R. Flores
- Washington University School of Medicine, St. Louis, Missouri
| | - Harry Karmouty-Quintana
- Division of Critical Care, Pulmonary, and Sleep Medicine, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, Texas
| | - Jesper M. Magnusson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Giorgio Fois
- Institute of General Physiology, Ulm University, Ulm, Germany
| | - Michael Fauler
- Institute of General Physiology, Ulm University, Ulm, Germany
| | - Manfred Frick
- Institute of General Physiology, Ulm University, Ulm, Germany
| | | | - Joshua B. Hales
- Washington University School of Medicine, St. Louis, Missouri
| | | | | | - Leoncio Vergara
- Institute of Biosciences and Technology, Texas A&M School of Medicine, Houston, Texas; and
| | - Camille Ehre
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Roberto Adachi
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael J. Tuvim
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gunnar C. Hansson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Burton F. Dickey
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
12
|
Kesimer M. Mucins MUC5AC and MUC5B in the Airways: MUCing around Together. Am J Respir Crit Care Med 2022; 206:1055-1057. [PMID: 35938865 PMCID: PMC9704829 DOI: 10.1164/rccm.202208-1459ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Mehmet Kesimer
- Marsico Lung Institute and Department of Pathology and Laboratory Medicine The University of North Carolina at Chapel Hill Chapel Hill, North Carolina
| |
Collapse
|
13
|
Hill DB, Button B, Rubinstein M, Boucher RC. Physiology and pathophysiology of human airway mucus. Physiol Rev 2022; 102:1757-1836. [PMID: 35001665 PMCID: PMC9665957 DOI: 10.1152/physrev.00004.2021] [Citation(s) in RCA: 137] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 01/27/2023] Open
Abstract
The mucus clearance system is the dominant mechanical host defense system of the human lung. Mucus is cleared from the lung by cilia and airflow, including both two-phase gas-liquid pumping and cough-dependent mechanisms, and mucus transport rates are heavily dependent on mucus concentration. Importantly, mucus transport rates are accurately predicted by the gel-on-brush model of the mucociliary apparatus from the relative osmotic moduli of the mucus and periciliary-glycocalyceal (PCL-G) layers. The fluid available to hydrate mucus is generated by transepithelial fluid transport. Feedback interactions between mucus concentrations and cilia beating, via purinergic signaling, coordinate Na+ absorptive vs Cl- secretory rates to maintain mucus hydration in health. In disease, mucus becomes hyperconcentrated (dehydrated). Multiple mechanisms derange the ion transport pathways that normally hydrate mucus in muco-obstructive lung diseases, e.g., cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), non-CF bronchiectasis (NCFB), and primary ciliary dyskinesia (PCD). A key step in muco-obstructive disease pathogenesis is the osmotic compression of the mucus layer onto the airway surface with the formation of adherent mucus plaques and plugs, particularly in distal airways. Mucus plaques create locally hypoxic conditions and produce airflow obstruction, inflammation, infection, and, ultimately, airway wall damage. Therapies to clear adherent mucus with hydrating and mucolytic agents are rational, and strategies to develop these agents are reviewed.
Collapse
Affiliation(s)
- David B Hill
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, North Carolina
| | - Brian Button
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Michael Rubinstein
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Mechanical Engineering and Materials Science, Biomedical Engineering, Physics, and Chemistry, Duke University, Durham, North Carolina
| | - Richard C Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
14
|
Yao W, Zhang Y, Zhang W, Wen Y, Yang R, Dong J, Zhang X, Hua Y, Ji P, Wei Y. Pathological mechanism of intestinal mucosal barrier injury of large intestine dampness-heat syndrome rats and the protective effect of Yujin powder. Res Vet Sci 2022; 152:485-496. [PMID: 36156378 DOI: 10.1016/j.rvsc.2022.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 06/12/2022] [Accepted: 09/16/2022] [Indexed: 11/29/2022]
Abstract
Large intestine dampness-heat syndrome (LIDHS) is frequently-occurring in the inflammatory intestinal disease of animals and human. Yujin powder (YJP) is a classical prescription for treating LIDHS. To explore the pathological mechanism of intestinal mucosal barrier injury of LIDHS and the protection of YJP, the LIDHS rat model was established through imitating the inducing conditions of LIDHS and treated with YJP. The integrity of ileal and colonic mucosa was detected through histopathological examination. The serum DAO, D-LA and ET levels were detected by ELISA. The mRNA and protein expression levels of Occludin, ZO-1 and MUC2 in ileum and colon were detected using RT-PCR and immunohistochemistry methods, respectively. The results showed that the ileal and colonic epithelium of LIDHS rats were destroyed; the serum DAO, D-LA and ET levels were significantly increased; the mRNA and protein expression levels of Occludin, ZO-1 and MUC2 in ileum and colon were all abnormally expressed. After treatment with YJP, the mucosal integrity was restored; the levels of serum DAO, D-LA and ET, mRNA and protein levels of Occludin and ZO-1 in ileum and colon and MUC2 in ileum were back-regulated; however, MUC2 level in colon was further increased. The results demonstrated that the intestinal mucosal barrier was damaged in LIDHS rats and Occludin, ZO-1 and MUC2 were abnormally expressed, and YJP could repair the intestinal mucosal barrier through up-regulating the expression of Occludin and ZO-1 in ileum and colon as well as MUC2 in colon and down-regulating MUC2 in ileum.
Collapse
Affiliation(s)
- Wanling Yao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province 730070, China
| | - Yahui Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province 730070, China
| | - Wangdong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province 730070, China
| | - Yanqiao Wen
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province 730070, China
| | - Rong Yang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province 730070, China
| | - Jiaqi Dong
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province 730070, China
| | - Xiaosong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province 730070, China
| | - Yongli Hua
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province 730070, China
| | - Peng Ji
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province 730070, China
| | - Yanming Wei
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province 730070, China.
| |
Collapse
|
15
|
Lu D, Hu W, Tian T, Wang M, Zhou M, Wu C. The Mechanism of Lipopolysaccharide's Effect on Secretion of Endometrial Mucins in Female Mice during Pregnancy. Int J Mol Sci 2022; 23:9972. [PMID: 36077364 PMCID: PMC9456203 DOI: 10.3390/ijms23179972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
The main toxic component of endotoxins released from the death or dissolution of Gram-negative bacteria is lipopolysaccharide (LPS), which exists widely in the natural environment, and a large amount of endotoxin can significantly inhibit the reproductive performance of animals. A previous study showed that endotoxins mainly damaged the physiological function of mucins in the endometrium, but the mechanism is not clear. In this study, the PI3K/Akt signaling pathway was not activated, and the NF-κB signaling pathway was inhibited by LPS treatment; the expression of occludin and E-cadherin proteins were decreased and ZO-1 protein expression was increased, because LPS can lead to the mucous layer becoming thinner, so that the embryonic survival rate is significantly reduced in early pregnancy. In middle and late pregnancy, LPS translocated to the epithelial cells of the uterus and the expression of claudin-1, JAMA, and E-cadherin proteins were decreased; at this time, a large number of glycosaminoglycan particles were secreted by endometrial gland cells through the PI3K/Akt/NF-κB signaling pathway that was activated after LPS treatment, However, there was no significant difference between the survival rates of fetal mice in the LPS (+) and LPS (-) groups. Glycosaminoglycan particles and mucins are secreted by gland cells, which can protect and maintain the pregnancy in the middle and late gestational periods.
Collapse
Affiliation(s)
| | | | | | | | | | - Chenchen Wu
- College of Animal Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China
| |
Collapse
|
16
|
Lee DF, Thompson CL, Baynes RE, Enomoto H, Smith GW, Chambers MA. Development and evaluation of a bovine lung-on-chip (bLOC) to study bovine respiratory diseases. IN VITRO MODELS 2022; 1:333-346. [PMID: 36660607 PMCID: PMC9383688 DOI: 10.1007/s44164-022-00030-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/25/2022] [Accepted: 08/01/2022] [Indexed: 01/22/2023]
Abstract
Purpose Current air-liquid interface (ALI) models of bovine proximal airways have their limitations. They do not simulate blood flow necessary to mimic systemic drug administration, and repeated sampling requires multiple, independent cultures. A bovine lung-on-chip (bLOC) would overcome these limitations, providing a convenient and cost-effective model for pharmacokinetic or pathogenicity studies. Methods Bovine pulmonary arterial endothelial cells seeded into the endothelial channel of an Emulate Lung-Chip were interfaced with bovine bronchial epithelial cells in the epithelial channel. Cells were cultured at ALI for up to 21 days. Differentiation was assessed by mucin quantification, phase-contrast light microscopy and immunofluorescence of cell-specific markers in fixed cultures. Barrier integrity was determined by FITC-labelled dextran 3-5 kDa permeability. To evaluate the model, endothelial-epithelial transport of the antibiotic drug, danofloxacin, was followed using liquid chromatography-mass spectrometry, with the aim of replicating data previously determined in vivo. Results bLOC cultures secreted quantifiable mucins, whilst cilia formation was evident in the epithelial channel. Barrier integrity of the model was demonstrated by resistance to FITC-Dextran 3-5 kDa permeation. Bronchial epithelial and endothelial cell-specific markers were observed. Close to plasma, representative PK data for danofloxacin was observed in the endothelial channel; however, danofloxacin in the epithelial channel was mostly below the limit of quantification. Conclusion A co-culture model of the bovine proximal airway was successfully generated, with potential to replace in vivo experimentation. With further optimisation and characterisation, the bLOC may be suitable to perform drug pharmacokinetic studies for bovine respiratory disease (BRD), and other applications.
Collapse
Affiliation(s)
- Diane F. Lee
- School of Veterinary Medicine, University of Surrey, Guildford, UK
- Now at Sussex Drug Discovery Centre, University of Sussex, Falmer, UK
| | - Clare L. Thompson
- Centre for Predictive In Vitro Models, School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - Ronald E. Baynes
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC USA
| | - Hiroko Enomoto
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC USA
| | | | - Mark A. Chambers
- School of Veterinary Medicine, University of Surrey, Guildford, UK
| |
Collapse
|
17
|
Lai Y, Tuvim MJ, Leitz J, Peters J, Pfuetzner RA, Esquivies L, Zhou Q, Czako B, Cross JB, Jones P, Dickey BF, Brunger AT. Screening of Hydrocarbon-Stapled Peptides for Inhibition of Calcium-Triggered Exocytosis. Front Pharmacol 2022; 13:891041. [PMID: 35814209 PMCID: PMC9258623 DOI: 10.3389/fphar.2022.891041] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
The so-called primary interface between the SNARE complex and synaptotagmin-1 (Syt1) is essential for Ca2+-triggered neurotransmitter release in neuronal synapses. The interacting residues of the primary interface are conserved across different species for synaptotagmins (Syt1, Syt2, Syt9), SNAP-25, and syntaxin-1A homologs involved in fast synchronous release. This Ca2+-independent interface forms prior to Ca2+-triggering and plays a role in synaptic vesicle priming. This primary interface is also conserved in the fusion machinery that is responsible for mucin granule membrane fusion. Ca2+-stimulated mucin secretion is mediated by the SNAREs syntaxin-3, SNAP-23, VAMP8, Syt2, and other proteins. Here, we designed and screened a series of hydrocarbon-stapled peptides consisting of SNAP-25 fragments that included some of the key residues involved in the primary interface as observed in high-resolution crystal structures. We selected a subset of four stapled peptides that were highly α-helical as assessed by circular dichroism and that inhibited both Ca2+-independent and Ca2+-triggered ensemble lipid-mixing with neuronal SNAREs and Syt1. In a single-vesicle content-mixing assay with reconstituted neuronal SNAREs and Syt1 or with reconstituted airway SNAREs and Syt2, the selected peptides also suppressed Ca2+-triggered fusion. Taken together, hydrocarbon-stapled peptides that interfere with the primary interface consequently inhibit Ca2+-triggered exocytosis. Our inhibitor screen suggests that these compounds may be useful to combat mucus hypersecretion, which is a major cause of airway obstruction in the pathophysiology of COPD, asthma, and cystic fibrosis.
Collapse
Affiliation(s)
- Ying Lai
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, United States,*Correspondence: Axel T. Brunger, ; Ying Lai, ; Burton F. Dickey,
| | - Michael J. Tuvim
- Department of Pulmonary Medicine, MD Anderson Cancer Center, University of Texas, Houston, TX, United States
| | - Jeremy Leitz
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, United States
| | - John Peters
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, United States
| | - Richard A. Pfuetzner
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, United States,Howard Hughes Medical Institute, Stanford University, Stanford, CA, United States
| | - Luis Esquivies
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, United States,Howard Hughes Medical Institute, Stanford University, Stanford, CA, United States
| | - Qiangjun Zhou
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, United States
| | - Barbara Czako
- Institute for Applied Cancer Science, MD Anderson Cancer Center, University of Texas, Houston, TX, United States
| | - Jason B. Cross
- Institute for Applied Cancer Science, MD Anderson Cancer Center, University of Texas, Houston, TX, United States
| | - Philip Jones
- Institute for Applied Cancer Science, MD Anderson Cancer Center, University of Texas, Houston, TX, United States
| | - Burton F. Dickey
- Department of Pulmonary Medicine, MD Anderson Cancer Center, University of Texas, Houston, TX, United States,*Correspondence: Axel T. Brunger, ; Ying Lai, ; Burton F. Dickey,
| | - Axel T. Brunger
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, United States,Howard Hughes Medical Institute, Stanford University, Stanford, CA, United States,*Correspondence: Axel T. Brunger, ; Ying Lai, ; Burton F. Dickey,
| |
Collapse
|
18
|
Pednekar DD, Liguori MA, Marques CNH, Zhang T, Zhang N, Zhou Z, Amoako K, Gu H. From Static to Dynamic: A Review on the Role of Mucus Heterogeneity in Particle and Microbial Transport. ACS Biomater Sci Eng 2022; 8:2825-2848. [PMID: 35696291 DOI: 10.1021/acsbiomaterials.2c00182] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mucus layers (McLs) are on the front line of the human defense system that protect us from foreign abiotic/biotic particles (e.g., airborne virus SARS-CoV-2) and lubricates our organs. Recently, the impact of McLs on human health (e.g., nutrient absorption and drug delivery) and diseases (e.g., infections and cancers) has been studied extensively, yet their mechanisms are still not fully understood due to their high variety among organs and individuals. We characterize these variances as the heterogeneity of McLs, which lies in the thickness, composition, and physiology, making the systematic research on the roles of McLs in human health and diseases very challenging. To advance mucosal organoids and develop effective drug delivery systems, a comprehensive understanding of McLs' heterogeneity and how it impacts mucus physiology is urgently needed. When the role of airway mucus in the penetration and transmission of coronavirus (CoV) is considered, this understanding may also enable a better explanation and prediction of the CoV's behavior. Hence, in this Review, we summarize the variances of McLs among organs, health conditions, and experimental settings as well as recent advances in experimental measurements, data analysis, and model development for simulations.
Collapse
Affiliation(s)
- Dipesh Dinanath Pednekar
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| | - Madison A Liguori
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| | | | - Teng Zhang
- Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, New York 13244, United States.,BioInspired Syracuse, Syracuse University, Syracuse, New York 13244, United States
| | - Nan Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Zejian Zhou
- Department of Electrical and Computer Engineering and Computer Science, University of New Haven, West Haven, Connecticut 06516, United States
| | - Kagya Amoako
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| | - Huan Gu
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| |
Collapse
|
19
|
Qiu Z, Yan L, Xu J, Qian X. Nrf2 Improves Airway Goblet Cell Metaplasia in Chronic Obstructive Pulmonary Disease (COPD) and Its Mechanism. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Objective: The aim of our research was to evaluate Nrf2 in COPD treatment and relative mechanism by vivo study. Materials: The mice were divided into Normal, Model and CCL16 groups. Measuring Pathology and goblet cell number by HE or AB/PAS staining; Evaluating apoptosis
cell number by TUNEL assay; using flow separation to analysis inflammatory cells in difference groups; MAPK and NF-κB(p65) protein expression were evaluated by IHC assay in tissues; Total protein concentration of MUC5AC, Nrf2, Bax and Bcl-2 were evaluated by WB assay. Results:
Compared with Normal group, the pathology was deteriorate and goblet cell number were significantly up-regulation in Model group, apoptosis goblet cell number were significantly depressed (P < 0.001), lympbocyte rate and hypertrophic rate were significantly down-regulation and Eosinophils
rate, Macrophage rate and Neutrophils rate were significantly up-regulation (P < 0.001, respectively) in Model group. By IHC assay, MAPK and NF-κB(p65) proteins expression significantly increased (P < 0.001, respectively) in Model group; by WB assay, MUC5AC
and Bcl-2 protein expression were significantly up-regulation and Nrf2 and Bax proteins expression were significantly down-regulation (P < 0.001, respectively) in Model group. Nrf2 supplement, the COPD were significantly improved with relative inflammatory cells rates significantly
improving and relative proteins improving. Conclusion: Nrf2 could improve COPD by inducing goblet cell apoptosis increasing via regulation MAPK/NF-κB(p65) pathway in vivo study.
Collapse
Affiliation(s)
- Zhihong Qiu
- YiChun University School of Medicine, 336000, China
| | - Li Yan
- YiChun University School of Medicine, 336000, China
| | - Juan Xu
- YiChun University School of Medicine, 336000, China
| | - Xiaojun Qian
- Department of Pulmonary and Critical Care Medicine, YiChun People’s Hospital, Yichun, Jiangxi Province, 336000, China
| |
Collapse
|
20
|
Rogers TD, Button B, Kelada SNP, Ostrowski LE, Livraghi-Butrico A, Gutay MI, Esther CR, Grubb BR. Regional Differences in Mucociliary Clearance in the Upper and Lower Airways. Front Physiol 2022; 13:842592. [PMID: 35356083 PMCID: PMC8959816 DOI: 10.3389/fphys.2022.842592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/24/2022] [Indexed: 12/16/2022] Open
Abstract
As the nasal cavity is the portal of entry for inspired air in mammals, this region is exposed to the highest concentration of inhaled particulate matter and pathogens, which must be removed to keep the lower airways sterile. Thus, one might expect vigorous removal of these substances via mucociliary clearance (MCC) in this region. We have investigated the rate of MCC in the murine nasal cavity compared to the more distal airways (trachea). The rate of MCC in the nasal cavity (posterior nasopharynx, PNP) was ∼3-4× greater than on the tracheal wall. This appeared to be due to a more abundant population of ciliated cells in the nasal cavity (∼80%) compared to the more sparsely ciliated trachea (∼40%). Interestingly, the tracheal ventral wall exhibited a significantly lower rate of MCC than the tracheal posterior membrane. The trachealis muscle underlying the ciliated epithelium on the posterior membrane appeared to control the surface architecture and likely in part the rate of MCC in this tracheal region. In one of our mouse models (Bpifb1 KO) exhibiting a 3-fold increase in MUC5B protein in lavage fluid, MCC particle transport on the tracheal walls was severely compromised, yet normal MCC occurred on the tracheal posterior membrane. While a blanket of mucus covered the surface of both the PNP and trachea, this mucus appeared to be transported as a blanket by MCC only in the PNP. In contrast, particles appeared to be transported as discrete patches or streams of mucus in the trachea. In addition, particle transport in the PNP was fairly linear, in contrast transport of particles in the trachea often followed a more non-linear route. The thick, viscoelastic mucus blanket that covered the PNP, which exhibited ∼10-fold greater mass of mucus than did the blanket covering the surface of the trachea, could be transported over large areas completely devoid of cells (made by a breach in the epithelial layer). In contrast, particles could not be transported over even a small epithelial breach in the trachea. The thick mucus blanket in the PNP likely aids in particle transport over the non-ciliated olfactory cells in the nasal cavity and likely contributes to humidification and more efficient particle trapping in this upper airway region.
Collapse
Affiliation(s)
- Troy D. Rogers
- Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Brian Button
- Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Samir N. P. Kelada
- Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, NC, United States
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lawrence E. Ostrowski
- Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | | | - Mark I. Gutay
- Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Charles R. Esther
- Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Barbara R. Grubb
- Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| |
Collapse
|
21
|
Lai Y, Fois G, Flores JR, Tuvim MJ, Zhou Q, Yang K, Leitz J, Peters J, Zhang Y, Pfuetzner RA, Esquivies L, Jones P, Frick M, Dickey BF, Brunger AT. Inhibition of calcium-triggered secretion by hydrocarbon-stapled peptides. Nature 2022; 603:949-956. [PMID: 35322233 PMCID: PMC8967716 DOI: 10.1038/s41586-022-04543-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 02/11/2022] [Indexed: 02/06/2023]
Abstract
Membrane fusion triggered by Ca2+ is orchestrated by a conserved set of proteins to mediate synaptic neurotransmitter release, mucin secretion and other regulated exocytic processes1-4. For neurotransmitter release, the Ca2+ sensitivity is introduced by interactions between the Ca2+ sensor synaptotagmin and the SNARE complex5, and sequence conservation and functional studies suggest that this mechanism is also conserved for mucin secretion6. Disruption of Ca2+-triggered membrane fusion by a pharmacological agent would have therapeutic value for mucus hypersecretion as it is the major cause of airway obstruction in the pathophysiology of respiratory viral infection, asthma, chronic obstructive pulmonary disease and cystic fibrosis7-11. Here we designed a hydrocarbon-stapled peptide that specifically disrupts Ca2+-triggered membrane fusion by interfering with the so-called primary interface between the neuronal SNARE complex and the Ca2+-binding C2B domain of synaptotagmin-1. In reconstituted systems with these neuronal synaptic proteins or with their airway homologues syntaxin-3, SNAP-23, VAMP8, synaptotagmin-2, along with Munc13-2 and Munc18-2, the stapled peptide strongly suppressed Ca2+-triggered fusion at physiological Ca2+ concentrations. Conjugation of cell-penetrating peptides to the stapled peptide resulted in efficient delivery into cultured human airway epithelial cells and mouse airway epithelium, where it markedly and specifically reduced stimulated mucin secretion in both systems, and substantially attenuated mucus occlusion of mouse airways. Taken together, peptides that disrupt Ca2+-triggered membrane fusion may enable the therapeutic modulation of mucin secretory pathways.
Collapse
Affiliation(s)
- Ying Lai
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA.
- National Clinical Research Center for Geriatrics, West China Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China.
| | - Giorgio Fois
- Institute of General Physiology, Ulm University, Ulm, Germany
| | - Jose R Flores
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael J Tuvim
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qiangjun Zhou
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Cell & Developmental Biology, Vanderbilt Brain Institute, Center for Structural Biology, Vanderbilt University, TN, USA
| | - Kailu Yang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Jeremy Leitz
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
| | - John Peters
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Yunxiang Zhang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Chemistry, Fudan University, Shanghai, China
| | - Richard A Pfuetzner
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Luis Esquivies
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Philip Jones
- Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Manfred Frick
- Institute of General Physiology, Ulm University, Ulm, Germany.
| | - Burton F Dickey
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Axel T Brunger
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
22
|
Liu H, Gao P, Jia B, Lu N, Zhu B, Zhang F. IBD-Associated Atg16L1T300A Polymorphism Regulates Commensal Microbiota of the Intestine. Front Immunol 2022; 12:772189. [PMID: 35154071 PMCID: PMC8829142 DOI: 10.3389/fimmu.2021.772189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
The development of inflammatory bowel disease (IBD) is driven by the interaction among host genetics, microbiota, and the immune system of the entire digestive tract. Atg16L1T300A polymorphism is a genetic factor that confers increased risk for the pathogenesis of Crohn's disease. However, the exact contributions of Atg16L1T300A to intestinal mucosal homeostasis are not well understood. Here we show that Atg16L1T300A polymorphism impacts commensal bacterial flora in the intestine under a steady state. Analysis of intestinal bacteria from Atg16L1T300A/T300A mice showed that they harbored an altered microbiota in both the terminal ileum and colon compared to cohoused WT mice. Interestingly, Atg16L1T300A/T300A mice harbored a significant increase in the abundance of Tyzzerella, Mucispirillum, Ruminococcaceae, and Cyanobacteria which were known associated with IBD. Moreover, Akkermansia, a bacterium that is mucin-associated, was reduced greatly in Atg16L1T300A/T300A mice. Further analysis indicated that goblet cells of Atg16L1T300A/T300A mice had diminished mucin secretion that resulted from defective autophagy. Finally, Atg16L1T300A/T300A mice developed more severe inflammation in the DSS colitis model than in WT mice. These results indicate that the altered microbiota in Atg16L1T300A/T300A mice might be an important factor that contributed to the risk of Atg16L1T300A carriers to Crohn's disease and supports a multi-hit disease model involving specific gene-microbe interactions.
Collapse
Affiliation(s)
- Hongtao Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Ping Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Baoqian Jia
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Na Lu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Baoli Zhu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.,Department of Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Fuping Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.,Department of Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
23
|
Zhang J, Yu Q, Jiang D, Yu K, Yu W, Chi Z, Chen S, Li M, Yang D, Wang Z, Xu T, Guo X, Zhang K, Fang H, Ye Q, He Y, Zhang X, Wang D. Epithelial Gasdermin D shapes the host-microbial interface by driving mucus layer formation. Sci Immunol 2022; 7:eabk2092. [PMID: 35119941 DOI: 10.1126/sciimmunol.abk2092] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Goblet cells and their main secretory product, mucus, play crucial roles in orchestrating the colonic host-microbe interactions that help maintain gut homeostasis. However, the precise intracellular machinery underlying this goblet cell-induced mucus secretion remains poorly understood. Gasdermin D (GSDMD) is a recently identified pore-forming effector protein that causes pyroptosis, a lytic proinflammatory type of cell death occurring during various pathophysiological conditions. Here, we reveal an unexpected function of GSDMD in goblet cell mucin secretion and mucus layer formation. Specific deletion of Gsdmd in intestinal epithelial cells (ΔIEC) led to abrogated mucus secretion with a concomitant loss of the mucus layer. This impaired colonic mucus layer in GsdmdΔIEC mice featured a disturbed host-microbial interface and inefficient clearance of enteric pathogens from the mucosal surface. Mechanistically, stimulation of goblet cells activates caspases to process GSDMD via reactive oxygen species production; in turn, this activated GSDMD drives mucin secretion through calcium ion-dependent scinderin-mediated cortical F-actin disassembly, which is a key step in granule exocytosis. This study links epithelial GSDMD to the secretory granule exocytotic pathway and highlights its physiological nonpyroptotic role in shaping mucosal homeostasis in the gut.
Collapse
Affiliation(s)
- Jian Zhang
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P. R. China
| | - Qianzhou Yu
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P. R. China
| | - Danlu Jiang
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P. R. China
| | - Kang Yu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Weiwei Yu
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P. R. China
| | - Zhexu Chi
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P. R. China
| | - Sheng Chen
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P. R. China.,Department of Colorectal Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P. R. China
| | - Mobai Li
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P. R. China
| | - Dehang Yang
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P. R. China
| | - Zhen Wang
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P. R. China
| | - Ting Xu
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P. R. China
| | - Xingchen Guo
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P. R. China
| | - Kailian Zhang
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P. R. China
| | - Hui Fang
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P. R. China
| | - Qizhen Ye
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P. R. China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Xue Zhang
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou 310058, P. R. China
| | - Di Wang
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P. R. China
| |
Collapse
|
24
|
Lu Y, Zhou Y, Lin Y, Li W, Tian S, Hao X, Guo H. Preventive effects of donkey milk powder on the ovalbumin-induced asthmatic mice. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
25
|
Mucus Release and Airway Constriction by TMEM16A May Worsen Pathology in Inflammatory Lung Disease. Int J Mol Sci 2021; 22:ijms22157852. [PMID: 34360618 PMCID: PMC8346050 DOI: 10.3390/ijms22157852] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022] Open
Abstract
Activation of the Ca2+ activated Cl− channel TMEM16A is proposed as a treatment in inflammatory airway disease. It is assumed that activation of TMEM16A will induce electrolyte secretion, and thus reduce airway mucus plugging and improve mucociliary clearance. A benefit of activation of TMEM16A was shown in vitro and in studies in sheep, but others reported an increase in mucus production and airway contraction by activation of TMEM16A. We analyzed expression of TMEM16A in healthy and inflamed human and mouse airways and examined the consequences of activation or inhibition of TMEM16A in asthmatic mice. TMEM16A was found to be upregulated in the lungs of patients with asthma or cystic fibrosis, as well as in the airways of asthmatic mice. Activation or potentiation of TMEM16A by the compounds Eact or brevenal, respectively, induced acute mucus release from airway goblet cells and induced bronchoconstriction in mice in vivo. In contrast, niclosamide, an inhibitor of TMEM16A, blocked mucus production and mucus secretion in vivo and in vitro. Treatment of airway epithelial cells with niclosamide strongly inhibited expression of the essential transcription factor of Th2-dependent inflammation and goblet cell differentiation, SAM pointed domain-containing ETS-like factor (SPDEF). Activation of TMEM16A in people with inflammatory airway diseases is likely to induce mucus secretion along with airway constriction. In contrast, inhibitors of TMEM16A may suppress pulmonary Th2 inflammation, goblet cell metaplasia, mucus production, and bronchoconstriction, partially by inhibiting expression of SPDEF.
Collapse
|
26
|
McKelvey MC, Brown R, Ryan S, Mall MA, Weldon S, Taggart CC. Proteases, Mucus, and Mucosal Immunity in Chronic Lung Disease. Int J Mol Sci 2021; 22:5018. [PMID: 34065111 PMCID: PMC8125985 DOI: 10.3390/ijms22095018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/06/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022] Open
Abstract
Dysregulated protease activity has long been implicated in the pathogenesis of chronic lung diseases and especially in conditions that display mucus obstruction, such as chronic obstructive pulmonary disease, cystic fibrosis, and non-cystic fibrosis bronchiectasis. However, our appreciation of the roles of proteases in various aspects of such diseases continues to grow. Patients with muco-obstructive lung disease experience progressive spirals of inflammation, mucostasis, airway infection and lung function decline. Some therapies exist for the treatment of these symptoms, but they are unable to halt disease progression and patients may benefit from novel adjunct therapies. In this review, we highlight how proteases act as multifunctional enzymes that are vital for normal airway homeostasis but, when their activity becomes immoderate, also directly contribute to airway dysfunction, and impair the processes that could resolve disease. We focus on how proteases regulate the state of mucus at the airway surface, impair mucociliary clearance and ultimately, promote mucostasis. We discuss how, in parallel, proteases are able to promote an inflammatory environment in the airways by mediating proinflammatory signalling, compromising host defence mechanisms and perpetuating their own proteolytic activity causing structural lung damage. Finally, we discuss some possible reasons for the clinical inefficacy of protease inhibitors to date and propose that, especially in a combination therapy approach, proteases represent attractive therapeutic targets for muco-obstructive lung diseases.
Collapse
Affiliation(s)
- Michael C. McKelvey
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; (M.C.M.); (R.B.); (S.R.); (S.W.)
| | - Ryan Brown
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; (M.C.M.); (R.B.); (S.R.); (S.W.)
| | - Sinéad Ryan
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; (M.C.M.); (R.B.); (S.R.); (S.W.)
| | - Marcus A. Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany;
- Berlin Institute of Health (BIH), 10178 Berlin, Germany
- German Center for Lung Research (DZL), 35392 Gießen, Germany
| | - Sinéad Weldon
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; (M.C.M.); (R.B.); (S.R.); (S.W.)
| | - Clifford C. Taggart
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; (M.C.M.); (R.B.); (S.R.); (S.W.)
| |
Collapse
|
27
|
Schepler H, Wang X, Neufurth M, Wang S, Schröder HC, Müller WEG. The therapeutic potential of inorganic polyphosphate: A versatile physiological polymer to control coronavirus disease (COVID-19). Theranostics 2021; 11:6193-6213. [PMID: 33995653 PMCID: PMC8120197 DOI: 10.7150/thno.59535] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/19/2021] [Indexed: 12/15/2022] Open
Abstract
Rationale: The pandemic caused by the novel coronavirus SARS-CoV-2 is advancing rapidly. In particular, the number of severe courses of the disease is still dramatically high. An efficient drug therapy that helps to improve significantly the fatal combination of damages in the airway epithelia, in the extensive pulmonary microvascularization and finally multiorgan failure, is missing. The physiological, inorganic polymer, polyphosphate (polyP) is a molecule which could prevent the initial phase of the virus life cycle, the attachment of the virus to the target cells, and improve the epithelial integrity as well as the mucus barrier. Results: Surprisingly, polyP matches perfectly with the cationic groove on the RBD. Subsequent binding studies disclosed that polyP, with a physiological chain length of 40 phosphate residues, abolishes the binding propensity of the RBD to the ACE2 receptor. In addition to this first mode of action of polyP, this polymer causes in epithelial cells an increased gene expression of the major mucins in the airways, of MUC5AC and MUC1, as well as a subsequent glycoprotein production. MUC5AC forms a gel-like mucus layer trapping inhaled particles which are then transported out of the airways, while MUC1 constitutes the periciliary liquid layer and supports ciliary beating. As a third mode of action, polyP undergoes enzymatic hydrolysis of the anhydride bonds in the airway system by alkaline phosphatase, releasing metabolic energy. Conclusions: This review summarizes the state of the art of the biotherapeutic potential of the polymer polyP and the findings from basic research and outlines future biomedical applications.
Collapse
Affiliation(s)
- Hadrian Schepler
- Department of Dermatology, University Clinic Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, 55128 Mainz, Germany
| | - Meik Neufurth
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, 55128 Mainz, Germany
| | - Shunfeng Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, 55128 Mainz, Germany
| | - Heinz C. Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, 55128 Mainz, Germany
| | - Werner E. G. Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, 55128 Mainz, Germany
| |
Collapse
|
28
|
Fan Y, Bai B, Liang Y, Ren Y, Liu Y, Zhou F, Lou X, Zi J, Hou G, Chen F, Zhao Q, Liu S. Proteomic Profiling of Gastric Signet Ring Cell Carcinoma Tissues Reveals Characteristic Changes of the Complement Cascade Pathway. Mol Cell Proteomics 2021; 20:100068. [PMID: 33676000 PMCID: PMC8121970 DOI: 10.1016/j.mcpro.2021.100068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/25/2020] [Accepted: 02/23/2021] [Indexed: 02/08/2023] Open
Abstract
Signet ring cell carcinoma (SRCC) is a histological subtype of gastric cancer with distinct features in multiple aspects compared with adenocarcinomas (ACs). The lack of a systematic molecular overview of this disease has led to slow progress in its clinical practice. In the present proteomics study, gastric tissues were collected from tumors and adjacent tissues, including 14 SRCCs and 34 ACs, and laser capture microdissection (LCM) was employed to eradicate the cellular heterogeneity of the tissues. The proteomes of tissues were profiled by data-independent acquisition (DIA) mass spectrometry (MS). Based on the over 6000 proteins quantified, univariate analysis and pathway enrichment revealed that some proteins and pathways demonstrated differences between SRCC and ACs. Importantly, the upregulation of a majority of complement-related proteins was notable for SRCC but not for ACs. A hypothesis, based on the proteomics evidence, was proposed that the complement cascade was evoked in the SRCC microenvironment upon infiltration, and the SRCC cells survived the complement cytotoxicity by secreting endogenous negative regulators. Moreover, an attempt was made to establish appropriate cell models for gastric SRCC through proteomic comparison of the 15 gastric cell lines and gastric tumors. The predictions of a supervised classifier suggested that none of these gastric cell lines qualified to mimic SRCC. This study discovered that the complement cascade is activated at a higher level in gastric SRCC than in ACs.
LCM-DIA extracted unprecedented proteomic details of gastric in different subtypes. Complement cascade was found to be an SRCC-specific pathway for the first time. Gastric cell lines were evaluated based on proteomic features for the first time. Re-analyzable DIA data collected provide rich opportunity for future research.
Collapse
Affiliation(s)
- Yang Fan
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China; Clinical Laboratory of BGI Health, BGI-Shenzhen, Shenzhen, China
| | - Bin Bai
- State Key Laboratory of Cancer Biology & Department of Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Yuting Liang
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China; Clinical Laboratory of BGI Health, BGI-Shenzhen, Shenzhen, China
| | - Yan Ren
- Clinical Laboratory of BGI Health, BGI-Shenzhen, Shenzhen, China
| | - Yanxia Liu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Fenli Zhou
- State Key Laboratory of Cancer Biology & Department of Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Xiaomin Lou
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Jin Zi
- Clinical Laboratory of BGI Health, BGI-Shenzhen, Shenzhen, China
| | - Guixue Hou
- Clinical Laboratory of BGI Health, BGI-Shenzhen, Shenzhen, China
| | - Fei Chen
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Qingchuan Zhao
- State Key Laboratory of Cancer Biology & Department of Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China.
| | - Siqi Liu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China; Clinical Laboratory of BGI Health, BGI-Shenzhen, Shenzhen, China.
| |
Collapse
|
29
|
das Neves J, Sverdlov Arzi R, Sosnik A. Molecular and cellular cues governing nanomaterial-mucosae interactions: from nanomedicine to nanotoxicology. Chem Soc Rev 2021; 49:5058-5100. [PMID: 32538405 DOI: 10.1039/c8cs00948a] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mucosal tissues constitute the largest interface between the body and the surrounding environment and they regulate the access of molecules, supramolecular structures, particulate matter, and pathogens into it. All mucosae are characterized by an outer mucus layer that protects the underlying cells from physicochemical, biological and mechanical insults, a mono-layered or stratified epithelium that forms tight junctions and controls the selective transport of solutes across it and associated lymphoid tissues that play a sentinel role. Mucus is a gel-like material comprised mainly of the glycoprotein mucin and water and it displays both hydrophilic and hydrophobic domains, a net negative charge, and high porosity and pore interconnectivity, providing an efficient barrier for the absorption of therapeutic agents. To prolong the residence time, absorption and bioavailability of a broad spectrum of active compounds upon mucosal administration, mucus-penetrating and mucoadhesive particles have been designed by tuning the chemical composition, the size, the density, and the surface properties. The benefits of utilizing nanomaterials that interact intimately with mucosae by different mechanisms in the nanomedicine field have been extensively reported. To ensure the safety of these nanosystems, their compatibility is evaluated in vitro and in vivo in preclinical and clinical trials. Conversely, there is a growing concern about the toxicity of nanomaterials dispersed in air and water effluents that unintentionally come into contact with the airways and the gastrointestinal tract. Thus, deep understanding of the key nanomaterial properties that govern the interplay with mucus and tissues is crucial for the rational design of more efficient drug delivery nanosystems (nanomedicine) and to anticipate the fate and side-effects of nanoparticulate matter upon acute or chronic exposure (nanotoxicology). This review initially overviews the complex structural features of mucosal tissues, including the structure of mucus, the epithelial barrier, the mucosal-associated lymphatic tissues and microbiota. Then, the most relevant investigations attempting to identify and validate the key particle features that govern nanomaterial-mucosa interactions and that are relevant in both nanomedicine and nanotoxicology are discussed in a holistic manner. Finally, the most popular experimental techniques and the incipient use of mathematical and computational models to characterize these interactions are described.
Collapse
Affiliation(s)
- José das Neves
- i3S - Instituto de Investigação e Inovação em Saúde & INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Roni Sverdlov Arzi
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, De-Jur Building, Office 607, Haifa, 3200003, Israel.
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, De-Jur Building, Office 607, Haifa, 3200003, Israel.
| |
Collapse
|
30
|
Cortez V, Schultz-Cherry S. The role of goblet cells in viral pathogenesis. FEBS J 2021; 288:7060-7072. [PMID: 33507606 PMCID: PMC8013445 DOI: 10.1111/febs.15731] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 12/19/2022]
Abstract
Goblet cells are specialized epithelial cells that are essential to the formation of the mucus barriers in the airways and intestines. Armed with an arsenal of defenses, goblet cells can rapidly respond to infection but must balance this response with maintaining homeostasis. Whereas goblet cell defenses against bacterial and parasitic infections have been characterized, we are just beginning to understand their responses to viral infections. Here, we outline what is known about the enteric and respiratory viruses that target goblet cells, the direct and bystander effects caused by viral infection and how viral interactions with the mucus barrier can alter the course of infection. Together, these factors can play a significant role in driving viral pathogenesis and disease outcomes.
Collapse
Affiliation(s)
- Valerie Cortez
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
31
|
Optimizations of In Vitro Mucus and Cell Culture Models to Better Predict In Vivo Gene Transfer in Pathological Lung Respiratory Airways: Cystic Fibrosis as an Example. Pharmaceutics 2020; 13:pharmaceutics13010047. [PMID: 33396283 PMCID: PMC7823756 DOI: 10.3390/pharmaceutics13010047] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 11/17/2022] Open
Abstract
The respiratory epithelium can be affected by many diseases that could be treated using aerosol gene therapy. Among these, cystic fibrosis (CF) is a lethal inherited disease characterized by airways complications, which determine the life expectancy and the effectiveness of aerosolized treatments. Beside evaluations performed under in vivo settings, cell culture models mimicking in vivo pathophysiological conditions can provide complementary insights into the potential of gene transfer strategies. Such models must consider multiple parameters, following the rationale that proper gene transfer evaluations depend on whether they are performed under experimental conditions close to pathophysiological settings. In addition, the mucus layer, which covers the epithelial cells, constitutes a physical barrier for gene delivery, especially in diseases such as CF. Artificial mucus models featuring physical and biological properties similar to CF mucus allow determining the ability of gene transfer systems to effectively reach the underlying epithelium. In this review, we describe mucus and cellular models relevant for CF aerosol gene therapy, with a particular emphasis on mucus rheology. We strongly believe that combining multiple pathophysiological features in single complex cell culture models could help bridge the gaps between in vitro and in vivo settings, as well as viral and non-viral gene delivery strategies.
Collapse
|
32
|
Flores-Sanchez F, Chavez-Dueñas L, Sanchez-Villamil J, Navarro-Garcia F. Pic Protein From Enteroaggregative E. coli Induces Different Mechanisms for Its Dual Activity as a Mucus Secretagogue and a Mucinase. Front Immunol 2020; 11:564953. [PMID: 33281812 PMCID: PMC7705071 DOI: 10.3389/fimmu.2020.564953] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
A hallmark of enteroaggregative Escherichia coli (EAEC) infection is the formation of an intestinal biofilm, which comprises a mucus layer with immersed bacteria. Pic is an autotransporter secreted by EAEC, and other E. coli pathotypes, and has been involved in two apparently contradictory phenotypes, as a mucus secretagogue and as a mucinase. Here, we investigated this Pic dual activity, mucus secretagogue capability and mucinolytic activity, in human goblet cells that secrete MUC2 and MUC5AC. Pic induced mucus hypersecretion directly in the goblet cells, without other intestinal cell types involved. At the same time, Pic exhibited strong proteolytic activity on the secreted mucins. These activities were independent since a mutation in the serine protease motif (PicS258I) abolished mucin degradation while maintaining the mucus secretagogue activity intact. Furthermore, deoxycholic acid (DCA)-induced mucins were proteolytically degraded when goblet cells were co-incubated with DCA/Pic, while co-incubation with DCA/PicS258I induced a synergistic effect on mucus hypersecretion. Pic was more efficient degrading MUC5AC than MUC2, but no degradation was detected with Pic inactivated at the active site by mutation or pharmacological inhibition. Remarkably, Pic cleaved MUC2 and MUC5AC in the C-terminal domain, leaving N-terminal subproducts, impacting the feature of gel-forming mucins and allowing mucus layer penetration by EAEC. Astonishingly, Pic stimulated rapid mucin secretion in goblet-like cells by activating the intracellular calcium pathway resulting from the PLC signal transduction pathway, leading to the production of DAG and releasing IP3, a second messenger of calcium signaling. Therefore, the dual activity of Pic, as a mucus secretagogue and a mucinase, is relevant in the context of carbon source generation and mucus layer penetration, allowing EAEC to live within the layer of mucus but also access epithelial cells.
Collapse
Affiliation(s)
- Fernando Flores-Sanchez
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), México DF, México
| | - Lucia Chavez-Dueñas
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), México DF, México
| | - Javier Sanchez-Villamil
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), México DF, México
| | - Fernando Navarro-Garcia
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), México DF, México
| |
Collapse
|
33
|
Liu Y, Yu X, Zhao J, Zhang H, Zhai Q, Chen W. The role of MUC2 mucin in intestinal homeostasis and the impact of dietary components on MUC2 expression. Int J Biol Macromol 2020; 164:884-891. [PMID: 32707285 DOI: 10.1016/j.ijbiomac.2020.07.191] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/05/2020] [Accepted: 07/17/2020] [Indexed: 12/19/2022]
Abstract
MUC2 mucin is an important secretory protein found in the human gut. Recent studies indicated that MUC2 mucin plays a role in the protection of gut barrier, the regulation of microbiome homeostasis and the prevention of diseases. In this review, the physiological properties of MUC2 mucin and its interactions with the intestinal microbiome are firstly discussed. Its roles in intestinal diseases including inflammatory bowel disease, colorectal cancer and parasitic infections are concluded. We also reviewed dietary components known to have modulative effects on MUC2 mucin expression, such as polysaccharides, amino acids and polyphenols.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xinjie Yu
- Hwa Chong Institution (College), 661 Bukit Timah Road, Singapore 269734, Singapore
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China; Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China; Beijing Innovation Center of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| |
Collapse
|
34
|
Limage R, Tako E, Kolba N, Guo Z, García-Rodríguez A, Marques CNH, Mahler GJ. TiO 2 Nanoparticles and Commensal Bacteria Alter Mucus Layer Thickness and Composition in a Gastrointestinal Tract Model. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000601. [PMID: 32338455 PMCID: PMC7282385 DOI: 10.1002/smll.202000601] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 05/05/2023]
Abstract
Nanoparticles (NPs) are used in food packaging and processing and have become an integral part of many commonly ingested products. There are few studies that have focused on the interaction between ingested NPs, gut function, the mucus layer, and the gut microbiota. In this work, an in vitro model of gastrointestinal (GI) tract is used to determine whether, and how, the mucus layer is affected by the presence of Gram-positive, commensal Lactobacillus rhamnosus; Gram-negative, opportunistic Escherichia coli; and/or exposure to physiologically relevant doses of pristine or digested TiO2 NPs. Caco-2/HT29-MTX-E12 cell monolayers are exposed to physiological concentrations of bacteria (expressing fluorescent proteins) and/or TiO2 nanoparticles for a period of 4 h. To determine mucus thickness and composition, cell monolayers are stained with alcian blue, periodic acid schiff, or an Alexa Fluor 488 conjugate of wheat germ agglutinin. It is found that the presence of both bacteria and nanoparticles alter the thickness and composition of the mucus layer. Changes in the distribution or pattern of mucins can be indicative of pathological conditions, and this model provides a platform for understanding how bacteria and/or NPs may interact with and alter the mucus layer.
Collapse
Affiliation(s)
| | - Elad Tako
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA
| | - Nikolai Kolba
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA
| | - Zhongyuan Guo
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY, 13902, USA
| | - Alba García-Rodríguez
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY, 13902, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY, 13902, USA
| | - Cláudia N H Marques
- Department of Biological Sciences, Binghamton University, Binghamton, NY, 13902, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY, 13902, USA
| | - Gretchen J Mahler
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY, 13902, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY, 13902, USA
| |
Collapse
|
35
|
Lo Bello F, Ieni A, Hansbro PM, Ruggeri P, Di Stefano A, Nucera F, Coppolino I, Monaco F, Tuccari G, Adcock IM, Caramori G. Role of the mucins in pathogenesis of COPD: implications for therapy. Expert Rev Respir Med 2020; 14:465-483. [PMID: 32133884 DOI: 10.1080/17476348.2020.1739525] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: Evidence accumulated in the last decade has started to reveal the enormous complexity in the expression, interactions and functions of the large number of different mucins present in the different compartments of the human lower airways. This occurs both in normal subjects and in COPD patients in different clinical phases and stages of severity.Areas covered: We review the known physiological mechanisms that regulate mucin production in human lower airways of normal subjects, the changes in mucin synthesis/secretion in COPD patients and the clinical efficacy of drugs that modulate mucin synthesis/secretion.Expert opinion: It is evident that the old simplistic concept that mucus hypersecretion in COPD patients is associated with negative clinical outcomes is not valid and that the therapeutic potential of 'mucolytic drugs' is under-appreciated due to the complexity of the associated molecular network(s). Likewise, our current knowledge of the effects of the drugs already available on the market that target mucin synthesis/secretion/structure in the lower airways is extremely limited and often indirect and more well-controlled clinical trials are needed in this area.
Collapse
Affiliation(s)
- Federica Lo Bello
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Antonio Ieni
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Section of Anatomic Pathology, University of Messina, Messina, Italy
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute, Sydney, University of Technology Sydney, Ultimo, Australia
| | - Paolo Ruggeri
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Antonino Di Stefano
- Divisione di Pneumologia e Laboratorio di Citoimmunopatologia dell'Apparato Cardio Respiratorio, Istituti Clinici Scientifici Maugeri, IRCCS, Veruno, Italy
| | - Francesco Nucera
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Irene Coppolino
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Francesco Monaco
- Unità Operativa Semplice Dipartimentale di Chirurgia Toracica, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), AOU Policlinico "G.martino", Messina, Italy
| | - Giovanni Tuccari
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Section of Anatomic Pathology, University of Messina, Messina, Italy
| | - Ian M Adcock
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London, UK
| | - Gaetano Caramori
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| |
Collapse
|
36
|
Chen Q, Zhou Y, Zhou L, Fu Z, Yang C, Zhao L, Li S, Chen Y, Wu Y, Ling Z, Wang Y, Huang J, Li J. TRPC6-dependent Ca 2+ signaling mediates airway inflammation in response to oxidative stress via ERK pathway. Cell Death Dis 2020; 11:170. [PMID: 32139669 PMCID: PMC7058000 DOI: 10.1038/s41419-020-2360-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 02/06/2023]
Abstract
Ozone (O3) plays an extremely important role in airway inflammation by generating reactive oxygen species (ROS) including hydrogen peroxide, then promoting redox actions and causing oxidative stress. Evidences indicate that TRPC6 (canonical transient receptor potential channel 6) is a redox-regulated Ca2+ permeable nonselective cation channel, but its role in the setting of oxidative stress-related airway inflammation remains unknown. Here, we found that both TRPC6-/- mice and mice pretreated with SAR7334, a potent TRPC6 inhibitor, were protected from O3-induced airway inflammatory responses. In vitro, both knockdown of TRPC6 expression with shRNA and TRPC6 blockage markedly attenuated the release of cytokines IL-6 and IL-8 induced by O3 or H2O2 in 16HBE cells (human bronchial epithelial cell line). Treatment with O3 or H2O2 enhanced TRPC6 protein expression in vivo and vitro. We also observed that TRPC6-dependent increase of intracellular Ca2+ concentration ([Ca2+]i) was triggered by H2O2, which consisted of the release from intracellular calcium store and the influx of extracellular Ca2+ and could be further strengthened by 6-h O3 exposure in both 16HBE cells and HBEpiCs (primary human bronchial epithelial cells). Moreover, we confirmed that the activation of MAPK signals (ERK1/2, p38, JNK) was required for the inflammatory response induced by O3 or H2O2 while only the phosphorylation of ERK pathway was diminished in the TRPC6-knockdown situation. These results demonstrate that oxidative stress regulates TRPC6-mediated Ca2+ cascade, which leads to the activation of ERK pathway and inflammation and could become a potential target to treat oxidative stress-associated airway inflammatory diseases.
Collapse
Affiliation(s)
- Qingzi Chen
- Affiliated Cancer Hospital & Institute; Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yubo Zhou
- Affiliated Cancer Hospital & Institute; Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Lifen Zhou
- Affiliated Cancer Hospital & Institute; Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Zhaodi Fu
- Affiliated Cancer Hospital & Institute; Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Chuntao Yang
- Affiliated Cancer Hospital & Institute; Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Lei Zhao
- Affiliated Cancer Hospital & Institute; Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Shuni Li
- Affiliated Cancer Hospital & Institute; Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yan Chen
- Affiliated Cancer Hospital & Institute; Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yousen Wu
- Affiliated Cancer Hospital & Institute; Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Zhenwei Ling
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center of Guangzhou Medical University, Guangzhou, China
| | - Yufeng Wang
- Affiliated Cancer Hospital & Institute; Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jianrong Huang
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Jianhua Li
- Affiliated Cancer Hospital & Institute; Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
37
|
Feng S, Duan E, Shi X, Zhang H, Li H, Zhao Y, Chao L, Zhong X, Zhang W, Li R, Yan X. Hydrogen ameliorates lung injury in a rat model of subacute exposure to concentrated ambient PM2.5 via Aryl hydrocarbon receptor. Int Immunopharmacol 2019; 77:105939. [DOI: 10.1016/j.intimp.2019.105939] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/22/2019] [Accepted: 09/26/2019] [Indexed: 01/16/2023]
|
38
|
WNT/RYK signaling restricts goblet cell differentiation during lung development and repair. Proc Natl Acad Sci U S A 2019; 116:25697-25706. [PMID: 31776260 DOI: 10.1073/pnas.1911071116] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Goblet cell metaplasia and mucus hypersecretion are observed in many pulmonary diseases, including asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis. However, the regulation of goblet cell differentiation remains unclear. Here, we identify a regulator of this process in an N-ethyl-N-nitrosourea (ENU) screen for modulators of postnatal lung development; Ryk mutant mice exhibit lung inflammation, goblet cell hyperplasia, and mucus hypersecretion. RYK functions as a WNT coreceptor, and, in the developing lung, we observed high RYK expression in airway epithelial cells and moderate expression in mesenchymal cells as well as in alveolar epithelial cells. From transcriptomic analyses and follow-up studies, we found decreased WNT/β-catenin signaling activity in the mutant lung epithelium. Epithelial-specific Ryk deletion causes goblet cell hyperplasia and mucus hypersecretion but not inflammation, while club cell-specific Ryk deletion in adult stages leads to goblet cell hyperplasia and mucus hypersecretion during regeneration. We also found that the airway epithelium of COPD patients often displays goblet cell metaplastic foci, as well as reduced RYK expression. Altogether, our findings reveal that RYK plays important roles in maintaining the balance between airway epithelial cell populations during development and repair, and that defects in RYK expression or function may contribute to the pathogenesis of human lung diseases.
Collapse
|
39
|
Abstract
Mucociliary clearance is a crucial component of innate defense of the lung. In respiratory diseases, such as asthma, chronic obstructive pulmonary disease, and cystic fibrosis, mucus with abnormal properties contributes to obstruction of the airways. The failure in function of mucus in airway clearance and pathogen protection leads to chronic infection and risk of death. Polymeric mucins (MUC5AC and MUC5B) provide the structural framework of the airway mucus gel. The intracellular synthesis and assembly of these enormous, polymeric O-linked glycoproteins is a complex, multistage process involving intra- and intermolecular disulfide bond formation and extensive addition of O-glycan chains. The fully formed polymers are packaged in a highly organized and condensed form within secretory granules inside specialized secretory cells, and after the appropriate stimulus, mucins are released and expand to form mucus. This short article brings together the current knowledge on the different steps in the production of mucin polymers and the molecular mechanisms that condense them into a packaged form in secretory granules. It is by unraveling the molecular mechanisms that control intracellular mucin supramolecular structure that we might gain new insight into what determines mucus gel properties in health and disease.
Collapse
|
40
|
Abstract
Exocytosis of secreted mucins is the final step in their intracellular processing, resulting in their release into the airway lumen to interact with water and ions to form mucus. Mucins are secreted at a low baseline rate and a high stimulated rate, and both rates are regulated by second messengers acting on components of the exocytic machinery. The principal physiologic function of the low baseline rate is to support steady-state mucociliary clearance of inhaled particles and pathogens that enter the airways during normal breathing. Even in the setting of mucin hyperproduction, baseline secretion generally does not induce mucus occlusion. The principal physiologic function of the high stimulated rate of secretion from both submucosal glands and surface goblet cells in proximal airways appears to be to sweep away larger particles, whereas in distal airways it appears to act in concert with mucin hyperproduction to induce mucus occlusion to trap migrating helminths. Pathophysiologically, stimulated mucin secretion in the setting of mucin hyperproduction from allergic or other types of airway inflammation in the absence of helminth infection causes airflow obstruction and infection. Molecular components of the mucin exocytic machinery are increasingly being identified, and surprisingly, many components are not shared between baseline and stimulated machines. The physiologic significance of the presence of two distinct molecular machines is not yet known, such as whether these interact selectively with secretory granules of different sizes or contents. A full understanding of the mechanism and regulation of airway mucin secretion will provide further insight into pathophysiologic processes and may identify therapeutic strategies to alleviate obstructive airway diseases.
Collapse
|
41
|
Petit A, Knabe L, Khelloufi K, Jory M, Gras D, Cabon Y, Begg M, Richard S, Massiera G, Chanez P, Vachier I, Bourdin A. Bronchial Epithelial Calcium Metabolism Impairment in Smokers and Chronic Obstructive Pulmonary Disease. Decreased ORAI3 Signaling. Am J Respir Cell Mol Biol 2019; 61:501-511. [DOI: 10.1165/rcmb.2018-0228oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Aurelie Petit
- Department of Respiratory Diseases and Addictology, Hôpital Arnaud de Villeneuve, Centre Hospitalier Universitaire Montpellier, Montpellier, France
| | - Lucie Knabe
- Department of Respiratory Diseases and Addictology, Hôpital Arnaud de Villeneuve, Centre Hospitalier Universitaire Montpellier, Montpellier, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1046, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 9214, University of Montpellier, Montpellier, France
| | - Kamel Khelloufi
- CNRS, Centre Interdisciplinaire de Nanoscience de Marseille UMR 7325, and
| | - Myriam Jory
- UMR 5221 CNRS, Laboratoire Charles Coulomb (L2C), Montpellier, France
| | - Delphine Gras
- Assistance Publique Hôpitaux de Marseille (APHM), Centre de recherche en CardioVasculaire et Nutrition, INSERM U1263 Institut National de la Recherche Agronomique (INRA) 1260, Clinique des Bronches Allergies et Sommeil, Aix Marseille University, Marseille, France
| | - Yann Cabon
- Department of Medical Information, Montpellier University Hospital, Montpellier, France; and
| | - Malcolm Begg
- Refractory Respiratory Inflammation Data Processing Unit, Respiratory TAU, GlaxoSmithKline, Stevenage, United Kingdom
| | - Sylvain Richard
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1046, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 9214, University of Montpellier, Montpellier, France
| | - Gladys Massiera
- UMR 5221 CNRS, Laboratoire Charles Coulomb (L2C), Montpellier, France
| | - Pascal Chanez
- Assistance Publique Hôpitaux de Marseille (APHM), Centre de recherche en CardioVasculaire et Nutrition, INSERM U1263 Institut National de la Recherche Agronomique (INRA) 1260, Clinique des Bronches Allergies et Sommeil, Aix Marseille University, Marseille, France
| | - Isabelle Vachier
- Department of Respiratory Diseases and Addictology, Hôpital Arnaud de Villeneuve, Centre Hospitalier Universitaire Montpellier, Montpellier, France
| | - Arnaud Bourdin
- Department of Respiratory Diseases and Addictology, Hôpital Arnaud de Villeneuve, Centre Hospitalier Universitaire Montpellier, Montpellier, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1046, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 9214, University of Montpellier, Montpellier, France
| |
Collapse
|
42
|
Widdicombe JH. Early studies on the surface epithelium of mammalian airways. Am J Physiol Lung Cell Mol Physiol 2019; 317:L486-L495. [PMID: 31313615 DOI: 10.1152/ajplung.00240.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
This article traces the beginnings of the various areas of physiological research on airway epithelium. First mentioned in 1600, it was not until 1834 that it was found to be ciliated. Goblet and basal cells were described in 1852, to be followed by ~10 other epithelial cell types (the most recent in 2018). It also contains nerve endings and resident leukocytes. Mucociliary clearance was documented in 1835, but the first studies on the ciliary beat cycle did not appear until 1890, and a definitive description was not published until 1981. It was established in 1932 that goblet cells in the cat trachea were unresponsive to cholinergic agents; but only since 1980 or so has any significant progress been made on what does cause them to degranulate. Active transfer of salts across epithelia creates local osmotic gradients that drive transepithelial water flows. Vectorial salt transport was first described for airway epithelium in 1968, and the associated volume flows were measured in 1981. Evidence that airway epithelium releases signaling molecules first appeared in 1981. Since then, scores of molecules have been identified. The pace of research in most areas increased dramatically after the development of confluent, polarized cultures of airway epithelium in the early 1980s.
Collapse
Affiliation(s)
- Jonathan H Widdicombe
- Department of Physiology and Membrane Biology, University of California, Davis, California
| |
Collapse
|
43
|
Jaramillo AM, Piccotti L, Velasco WV, Delgado ASH, Azzegagh Z, Chung F, Nazeer U, Farooq J, Brenner J, Parker-Thornburg J, Scott BL, Evans CM, Adachi R, Burns AR, Kreda SM, Tuvim MJ, Dickey BF. Different Munc18 proteins mediate baseline and stimulated airway mucin secretion. JCI Insight 2019; 4:124815. [PMID: 30721150 PMCID: PMC6483006 DOI: 10.1172/jci.insight.124815] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/31/2019] [Indexed: 12/15/2022] Open
Abstract
Airway mucin secretion is necessary for ciliary clearance of inhaled particles and pathogens but can be detrimental in pathologies such as asthma and cystic fibrosis. Exocytosis in mammals requires a Munc18 scaffolding protein, and airway secretory cells express all 3 Munc18 isoforms. Using conditional airway epithelial cell-deletant mice, we found that Munc18a has the major role in baseline mucin secretion, Munc18b has the major role in stimulated mucin secretion, and Munc18c does not function in mucin secretion. In an allergic asthma model, Munc18b deletion reduced airway mucus occlusion and airflow resistance. In a cystic fibrosis model, Munc18b deletion reduced airway mucus occlusion and emphysema. Munc18b deficiency in the airway epithelium did not result in any abnormalities of lung structure, particle clearance, inflammation, or bacterial infection. Our results show that regulated secretion in a polarized epithelial cell may involve more than one exocytic machine at the apical plasma membrane and that the protective roles of mucin secretion can be preserved while therapeutically targeting its pathologic roles.
Collapse
Affiliation(s)
- Ana M. Jaramillo
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Institute of Bioscience and Technology, Texas A&M University Health Science Center, Houston, Texas, USA
| | - Lucia Piccotti
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Walter V. Velasco
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Zoulikha Azzegagh
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Felicity Chung
- Marsico Lung Institute/Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Usman Nazeer
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Junaid Farooq
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Josh Brenner
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jan Parker-Thornburg
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Brenton L. Scott
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Christopher M. Evans
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver School of Medicine, Aurora, Colorado, USA
| | - Roberto Adachi
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Alan R. Burns
- College of Optometry, University of Houston, Houston, Texas, USA
| | - Silvia M. Kreda
- Marsico Lung Institute/Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Michael J. Tuvim
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Burton F. Dickey
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
44
|
Okuda K, Chen G, Subramani DB, Wolf M, Gilmore RC, Kato T, Radicioni G, Kesimer M, Chua M, Dang H, Livraghi-Butrico A, Ehre C, Doerschuk CM, Randell SH, Matsui H, Nagase T, O’Neal WK, Boucher RC. Localization of Secretory Mucins MUC5AC and MUC5B in Normal/Healthy Human Airways. Am J Respir Crit Care Med 2019; 199:715-727. [PMID: 30352166 PMCID: PMC6423099 DOI: 10.1164/rccm.201804-0734oc] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 10/19/2018] [Indexed: 12/15/2022] Open
Abstract
RATIONALE MUC5AC and MUC5B are the predominant gel-forming mucins in the mucus layer of human airways. Each mucin has distinct functions and site-specific expression. However, the regional distribution of expression and cell types that secrete each mucin in normal/healthy human airways are not fully understood. OBJECTIVES To characterize the regional distribution of MUC5B and MUC5AC in normal/healthy human airways and assess which cell types produce these mucins, referenced to the club cell secretory protein (CCSP). METHODS Multiple airway regions from 16 nonsmoker lungs without a history of lung disease were studied. MUC5AC, MUC5B, and CCSP expression/colocalization were assessed by RNA in situ hybridization and immunohistochemistry in five lungs with histologically healthy airways. Droplet digital PCR and cell cultures were performed for absolute quantification of MUC5AC/5B ratios and protein secretion, respectively. MEASUREMENTS AND MAIN RESULTS Submucosal glands expressed MUC5B, but not MUC5AC. However, MUC5B was also extensively expressed in superficial epithelia throughout the airways except for the terminal bronchioles. Morphometric calculations revealed that the distal airway superficial epithelium was the predominant site for MUC5B expression, whereas MUC5AC expression was concentrated in proximal, cartilaginous airways. RNA in situ hybridization revealed MUC5AC and MUC5B were colocalized with CCSP-positive secretory cells in proximal superficial epithelia, whereas MUC5B and CCSP-copositive cells dominated distal regions. CONCLUSIONS In normal/healthy human airways, MUC5B is the dominant secretory mucin in the superficial epithelium and glands, with distal airways being a major site of expression. MUC5B and MUC5AC expression is a property of CCSP-positive secretory cells in superficial airway epithelia.
Collapse
Affiliation(s)
- Kenichi Okuda
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Gang Chen
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Durai B. Subramani
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Monroe Wolf
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Rodney C. Gilmore
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Takafumi Kato
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Giorgia Radicioni
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Mehmet Kesimer
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Michael Chua
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Hong Dang
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Alessandra Livraghi-Butrico
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Camille Ehre
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Claire M. Doerschuk
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Scott H. Randell
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Hirotoshi Matsui
- Center for Respiratory Diseases, Tokyo National Hospital, Kiyose, Tokyo, Japan; and the
| | - Takahide Nagase
- Department of Respiratory Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Wanda K. O’Neal
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Richard C. Boucher
- Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
45
|
Patel W, Moore PJ, Sassano MF, Lopes-Pacheco M, Aleksandrov AA, Amaral MD, Tarran R, Gray MA. Increases in cytosolic Ca 2+ induce dynamin- and calcineurin-dependent internalisation of CFTR. Cell Mol Life Sci 2019; 76:977-994. [PMID: 30547226 PMCID: PMC6394554 DOI: 10.1007/s00018-018-2989-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 11/28/2018] [Accepted: 12/04/2018] [Indexed: 12/12/2022]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-regulated, apical anion channel that regulates ion and fluid transport in many epithelia including the airways. We have previously shown that cigarette smoke (CS) exposure to airway epithelia causes a reduction in plasma membrane CFTR expression which correlated with a decrease in airway surface hydration. The effect of CS on CFTR was dependent on an increase in cytosolic Ca2+. However, the underlying mechanism for this Ca2+-dependent, internalisation of CFTR is unknown. To gain a better understanding of the effect of Ca2+ on CFTR, we performed whole cell current recordings to study the temporal effect of raising cytosolic Ca2+ on CFTR function. We show that an increase in cytosolic Ca2+ induced a time-dependent reduction in whole cell CFTR conductance, which was paralleled by a loss of cell surface CFTR expression, as measured by confocal and widefield fluorescence microscopy. The decrease in CFTR conductance and cell surface expression were both dynamin-dependent. Single channel reconstitution studies showed that raising cytosolic Ca2+ per se had no direct effect on CFTR. In fact, the loss of CFTR plasma membrane activity correlated with activation of calcineurin, a Ca2+-dependent phosphatase, suggesting that dephosphorylation of CFTR was linked to the loss of surface expression. In support of this, the calcineurin inhibitor, cyclosporin A, prevented the Ca2+-induced decrease in cell surface CFTR. These results provide a hitherto unrecognised role for cytosolic Ca2+ in modulating the residency of CFTR at the plasma membrane through a dynamin- and calcineurin-dependent mechanism.
Collapse
Affiliation(s)
- Waseema Patel
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Marsico Lung Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Patrick J Moore
- Marsico Lung Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - M Flori Sassano
- Marsico Lung Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Miquéias Lopes-Pacheco
- Faculty of Sciences, BioISI-Biosystems and Integrative Sciences Institute, University of Lisboa, Lisbon, Portugal
| | - Andrei A Aleksandrov
- Department of Biochemistry and Biophysics, Cystic Fibrosis Research and Treatment Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Margarida D Amaral
- Faculty of Sciences, BioISI-Biosystems and Integrative Sciences Institute, University of Lisboa, Lisbon, Portugal
| | - Robert Tarran
- Marsico Lung Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Cell Biology and Physiology, Cystic Fibrosis Research and Treatment Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael A Gray
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
46
|
Xiang SJ, Li MH, Chan CO, Shen Q, Chen SB, An BC, Yuen ACY, Wu WF, Tang HH, Cao SW, Ruan SF, Wang ZX, Weng LD, Zhu HX, Chen HJ, Wong MYM, Zhang Y, Mok DKW, Liu Q. Altered metabolites in guinea pigs with allergic asthma after acupoint sticking therapy: New insights from a metabolomics approach. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 54:182-194. [PMID: 30668368 DOI: 10.1016/j.phymed.2018.09.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 06/16/2018] [Accepted: 09/03/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Clinical evidence gathered in Chinese communities suggested that acupoint sticking therapy could be an alternative treatment for asthma-related diseases. However, its underlying mechanism is still poorly understood. AIM/HYPOTHESIS In this study, we aimed to investigate the mechanism of the anti-inflammatory effect of acupoint sticking application with 'Treatment of Winter Disease in Summer' (TWDS) prescription by using metabolomics. METHODS Allergic asthma in guinea pig was sensitized and challenged by ovalbumin (OVA). Histopathological evaluation of the lung tissue was performed by hematoxylin and eosin (H&E) staining and Masson's trichrome staining. The levels of Th2 cytokine and IgE level in serum were measured using enzyme-linked immunoassay (ELISA). The mRNA expression levels of IL-4, IL-5, IL-13 and orosomucoid-like 3 (ORMDL3) were measured using quantitative reverse transcription polymerase chain reaction (RT-qPCR). Proteins of NF-κB signaling pathway were measured using western blot. The serum metabolomics profiles were obtained by using ultra-performance liquid chromatography combined with electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC-ESI-QTOF-MS). RESULTS The overall results confirmed that AST with TWDS prescription had a significant protective effect against OVA-induced allergic asthma in guinea pig. This treatment not only attenuated airway inflammation and collagen deposition in the airway, but also decreased the levels of IL-4, IL-5, IL-13 and IgE in serum. In addition, metabolomics results indicated that metabolisms of phospholipid, sphingolipid, purine, amino acid and level of epinephrine were restored back to the normal control level. Moreover, results of the gene expression of ORMDL3 in lung tissues indicated that AST using TWDS could alter the sphingolipid metabolism. Further western blotting analysis also showed that its anti-inflammatory mechanism was by decreasing the phosphorylation of p65 and IκB. CONCLUSION The study demonstrated that metabolomics provides a better understanding of the actions of TWDS acupoint sticking therapy on OVA-induced allergic asthma.
Collapse
Affiliation(s)
- Shi-Jian Xiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Meng-Heng Li
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Chi-On Chan
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen 518057, China; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Qun Shen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Si-Bao Chen
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen 518057, China; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Bai-Chao An
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Ailsa Chui-Ying Yuen
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen 518057, China; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Wen-Feng Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Hok-Him Tang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Si-Wei Cao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Shi-Fa Ruan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Zhu-Xian Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Li-Dong Weng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Hong-Xia Zhu
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | - Huo-Ji Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Melody Yee-Man Wong
- University Research Facility in Chemical and Environmental Analysis, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yan Zhang
- Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Daniel Kam-Wah Mok
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen 518057, China; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Qiang Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
47
|
Dickinson JD, Sweeter JM, Staab EB, Nelson AJ, Bailey KL, Warren KJ, Jaramillo AM, Dickey BF, Poole JA. MyD88 controls airway epithelial Muc5ac expression during TLR activation conditions from agricultural organic dust exposure. Am J Physiol Lung Cell Mol Physiol 2019; 316:L334-L347. [PMID: 30358438 PMCID: PMC6397350 DOI: 10.1152/ajplung.00206.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 10/19/2018] [Accepted: 10/21/2018] [Indexed: 02/04/2023] Open
Abstract
Inflammation from airborne microbes can overwhelm compensatory mucociliary clearance mechanisms, leading to mucous cell metaplasia. Toll-like receptor (TLR) activation via myeloid differentiation factor 88 (MyD88) signaling is central to pathogen responses. We have previously shown that agricultural organic dust extract (ODE), with abundant microbial component diversity, activates TLR-induced airway inflammation. With the use of an established model, C57BL/6J wild-type (WT) and global MyD88 knockout (KO) mice were treated with intranasal inhalation of ODE or saline, daily for 1 wk. ODE primarily increased mucin (Muc)5ac levels relative to Muc5b. Compared with ODE-challenged WT mice, ODE-challenged, MyD88-deficient mice demonstrated significantly increased Muc5ac immunostaining, protein levels by immunoblot, and expression by quantitative PCR. The enhanced Muc5ac levels in MyD88-deficient mice were not explained by differences in the differentiation program of airway secretory cells in naïve mice. Increased Muc5ac levels in MyD88-deficient mice were also not explained by augmented inflammation, IL-17A, or neutrophil elastase levels. Furthermore, the enhanced airway mucins in the MyD88-deficient mice were not due to defective secretion, as the mucin secretory capacity of MyD88-KO mice remained intact. Finally, ODE-induced Muc5ac levels were enhanced in MyD88-deficient airway epithelial cells in vitro. In conclusion, MyD88 deficiency enhances airway mucous cell metaplasia under environments with high TLR activation.
Collapse
Affiliation(s)
- John D Dickinson
- Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center , Omaha, Nebraska
| | - Jenea M Sweeter
- Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center , Omaha, Nebraska
| | - Elizabeth B Staab
- Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center , Omaha, Nebraska
| | - Amy J Nelson
- Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center , Omaha, Nebraska
| | - Kristina L Bailey
- Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center , Omaha, Nebraska
| | - Kristi J Warren
- Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center , Omaha, Nebraska
| | - Ana Maria Jaramillo
- Department of Pulmonary Medicine, MD Anderson Cancer Center , Houston, Texas
| | - Burton F Dickey
- Department of Pulmonary Medicine, MD Anderson Cancer Center , Houston, Texas
| | - Jill A Poole
- Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center , Omaha, Nebraska
| |
Collapse
|
48
|
Benedetto R, Cabrita I, Schreiber R, Kunzelmann K. TMEM16A is indispensable for basal mucus secretion in airways and intestine. FASEB J 2018; 33:4502-4512. [PMID: 30586313 DOI: 10.1096/fj.201801333rrr] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Transmembrane member 16A (TMEM16A) is the Ca2+-activated chloride channel in airways and intestine. It has been associated with goblet cell metaplasia, as expression of TMEM16A is strongly up-regulated in cystic fibrosis and asthma during mucus hypersecretion. However, the possible role of TMEM16A for mucus production or mucus secretion remains obscure, and whether TMEM16A controls the function of intestinal goblet cells is entirely unknown. Basal mucus secretion in lungs occurs through low levels of ATP in the airway surface liquid. Here, we report for the first time that TMEM16A is essential for basal secretion of mucus in airways and intestine. Airway-ciliated and intestinal epithelial-specific knockout of TMEM16A ( TMEM16Aflox/floxFoxJ1, TMEM16Aflox/floxVil1) leads to accumulation of mucus in airway club (Clara) cells and intestinal goblet cells, respectively. Acute ATP-induced mucus secretion by airway club cells is inhibited when TMEM16A is knocked out in ciliated cells, possibly as a result of compromised release of prosecretory cytokines. Knockdown or inhibition of TMEM16A in human Calu3 airway epithelial cells indicates compromised IL-8 release. In intestinal goblet cells lacking expression of TMEM16A, mucus accumulates as a result of compromised ATP-induced secretion. In contrast, cholinergic mucus secretion by compound exocytosis is independent of TMEM16A. The data demonstrate a previously unrecognized role of TMEM16A for membrane exocytosis and describe a novel, ATP-driven pathway for intestinal mucus secretion. We conclude that ATP-dependent mucus secretion in both airways and intestine requires TMEM16A. The present results may form the basis for a novel, therapeutic approach for the treatment of mucus hypersecretion in inflammatory airway and intestinal disease.-Benedetto, R., Cabrita, I., Schreiber, R., Kunzelmann, K. TMEM16A is indispensable for basal mucus secretion in airways and intestine.
Collapse
Affiliation(s)
- Roberta Benedetto
- Institut für Physiologie, Universität Regensburg, Regensburg, Germany
| | - Inês Cabrita
- Institut für Physiologie, Universität Regensburg, Regensburg, Germany
| | - Rainer Schreiber
- Institut für Physiologie, Universität Regensburg, Regensburg, Germany
| | - Karl Kunzelmann
- Institut für Physiologie, Universität Regensburg, Regensburg, Germany
| |
Collapse
|
49
|
Wu W, Li Y, Jiao Z, Zhang L, Wang X, Qin R. Phyllanthin and hypophyllanthin from Phyllanthus amarus ameliorates immune-inflammatory response in ovalbumin-induced asthma: role of IgE, Nrf2, iNOs, TNF-α, and IL's. Immunopharmacol Immunotoxicol 2018; 41:55-67. [PMID: 30541359 DOI: 10.1080/08923973.2018.1545788] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background: Asthma is a chronic airway immunoinflammatory disorder characterized by airway remodeling. Phyllanthus amarus has been reported to possess antioxidant and anti-inflammatory potential. Aim: To evaluate the possible mechanism of action of isolated phytoconstituents from P. amarus (PA) against ovalbumin (OVA)-induced experimental airway hyperresponsiveness (AHR). Material and method: Phyllanthin and hypophyllanthin were isolated and characterized (HPLC) from the methanolic extract of PA. AHR was induced in Sprague-Dawley rats by OVA-challenged, and animals were treated with PA (50, 100, and 200 mg/kg, p.o.) for 28 days. Results: The HPLC analysis showed the presence of phyllanthin and hypophyllanthin in methanolic extract of PA at RT of 25.243 and 26.832 min, respectively. OVA-induced alterations in hemodynamic parameters, lung functions test, peripheral blood oxygen level, total, and differential cell count in Bronchoalveolar Lavage Fluid was significantly attenuated (p < .05) by PA (100 and 200 mg/kg). It also significantly decreased (p < .05) the levels of total protein and albumin in serum, BALF, and lungs. OVA-induced increase in IgE (total and OVA-specific), and oxido-nitrosative stress (SOD, GSH, MDA, and NO) levels were significantly (p < .05) decreased by PA. RT-PCR analysis revealed that elevated oxido-nitrosative stress (Nrf2 and iNOs), immune-inflammatory makers (HO-1, TNF-α, IL-1β, and TGF-β1), Th2 cytokines (IL-4 and IL-6) levels were significantly attenuated (p < .05) by PA. PA also attenuated histological and ultrastructural aberrations induced by OVA. Conclusion: Results of the present investigation demonstrated that the presence of phyllanthin and hypophyllanthin in P. amarus alleviated Th2 response in OVA-induced AHR via modulation of endogenous markers in a murine model of asthma. Thus, phyllanthin and hypophyllanthin may be a new therapeutic approach for the management of asthma.
Collapse
Affiliation(s)
- Wei Wu
- a Department of Pediatrics , The First Affiliated Hospital of Nanjing Medical University , Nanjing , Jiangsu , P.R. China.,b Department of Pediatrics , The Second Affiliated Hospital of Nanjing Medical University , Nanjing , Jiangsu , P.R. China
| | - Yinfang Li
- c Department of Pediatrics , Nanjing First Hospital Nanjing Medical University , Nanjing , Jiangsu , P.R. China
| | - Zelin Jiao
- b Department of Pediatrics , The Second Affiliated Hospital of Nanjing Medical University , Nanjing , Jiangsu , P.R. China
| | - Li Zhang
- c Department of Pediatrics , Nanjing First Hospital Nanjing Medical University , Nanjing , Jiangsu , P.R. China
| | - Xiaohua Wang
- c Department of Pediatrics , Nanjing First Hospital Nanjing Medical University , Nanjing , Jiangsu , P.R. China
| | - Rui Qin
- a Department of Pediatrics , The First Affiliated Hospital of Nanjing Medical University , Nanjing , Jiangsu , P.R. China
| |
Collapse
|
50
|
Cantero-Recasens G, Butnaru CM, Brouwers N, Mitrovic S, Valverde MA, Malhotra V. Sodium channel TRPM4 and sodium/calcium exchangers (NCX) cooperate in the control of Ca 2+-induced mucin secretion from goblet cells. J Biol Chem 2018; 294:816-826. [PMID: 30482841 DOI: 10.1074/jbc.ra117.000848] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 11/21/2018] [Indexed: 01/08/2023] Open
Abstract
Regulated mucin secretion is essential for the formation of the mucus layer that protects the underlying epithelial cells from foreign particles. Alterations in the quantity or quality of secreted mucins are therefore detrimental to airway and colon physiology. Based on various biochemical assays in several human cell lines, we report here that Na+/Ca2+ exchanger 2 (NCX2) works in conjunction with transient receptor potential cation channel subfamily M member 4 (TRPM4), and perhaps TRPM5, Na+ channels to control Ca2+-mediated secretion of both mucin 2 (MUC2) and MUC5AC from HT29-18N2 colonic cancer cells. Differentiated normal bronchial epithelial (NHBE) cells and tracheal cells from patients with cystic fibrosis (CFT1-LC3) expressed only TRPM4 and all three isoforms of NCXs. Blocking the activity of TRPM4 or NCX proteins abrogated MUC5AC secretion from NHBE and CFT1-LC3 cells. Altogether, our findings reveal that NCX and TRPM4/TRPM5 are both required for mucin secretion. We therefore propose that these two proteins could be potential pharmacological targets to control mucus-related pathologies such as cystic fibrosis.
Collapse
Affiliation(s)
- Gerard Cantero-Recasens
- From the Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Cristian M Butnaru
- From the Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Nathalie Brouwers
- From the Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Sandra Mitrovic
- the University Hospital of Basel, Clinical Chemistry, Petersgraben 4, 4031 Basel, Switzerland
| | - Miguel A Valverde
- the Laboratory of Molecular Physiology, Faculty of Health and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Catalonia, Spain, and
| | - Vivek Malhotra
- From the Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain, .,the Universitat Pompeu Fabra (UPF), Barcelona, Spain.,the Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluis Companys 23, 08010 Barcelona, Spain
| |
Collapse
|