1
|
Safaei S, Yari A, Pourbagherian O, Maleki LA. The role of cytokines in shaping the future of Cancer immunotherapy. Cytokine 2025; 189:156888. [PMID: 40010034 DOI: 10.1016/j.cyto.2025.156888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/13/2025] [Accepted: 02/05/2025] [Indexed: 02/28/2025]
Abstract
As essential immune system regulators, cytokines are essential for modulating both innate and adaptive immunological responses. They have become important tools in cancer immunotherapy, improving the immune system's capacity to identify and destroy tumor cells. This article examines the background, workings, and therapeutic uses of cytokines, such as interleukins, interferons, and granulocyte-macropHage colony-stimulating factors, in the management of cancer. It examines the many ways that cytokines affect immune cell activation, signaling pathways, tumor development, metastasis, and prognosis by modifying the tumor microenvironment. Despite the limited effectiveness of cytokine-based monotherapy, recent developments have concentrated on new fusion molecules such as immunocytokines, cytokine delivery improvements, and combination techniques to maximize treatment efficacy while reducing adverse effects. Current FDA-approved cytokine therapeutics and clinical trial results are also included in this study, which offers insights into how cytokines might be used with other therapies including checkpoint inhibitors, chemotherapy, and radiation therapy to address cancer treatment obstacles. This study addresses the intricacies of cytokine interactions in the tumor microenvironment, highlighting the possibility for innovative treatment methods and suggesting fresh techniques for enhancing cytokine-based immunotherapies. PEGylation, viral vector-mediated cytokine gene transfer, antibody-cytokine fusion proteins (immunocytokines), and other innovative cytokine delivery techniques are among the novelties of this work, which focuses on the most recent developments in cytokine-based immunotherapy. Additionally, the study offers a thorough examination of the little-reviewed topic of cytokine usage in conjunction with other treatment techniques. It also discusses the most recent clinical studies and FDA-approved therapies, providing a modern perspective on the developing field of cancer immunotherapy and suggesting creative ways to improve treatment effectiveness while lowering toxicity. BACKGROUND: Cytokines are crucial in cancer immunotherapy for regulating immune responses and modifying the tumor microenvironment (TME). However, challenges with efficacy and safety have driven research into advanced delivery methods and combination therapies to enhance their therapeutic potential.
Collapse
Affiliation(s)
- Sahar Safaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - AmirHossein Yari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Omid Pourbagherian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
2
|
Alboni S, Tascedda F, Uezato A, Sugama S, Chen Z, Marcondes MCG, Conti B. Interleukin 18 and the brain: neuronal functions, neuronal survival and psycho-neuro-immunology during stress. Mol Psychiatry 2025:10.1038/s41380-025-02951-z. [PMID: 40121365 DOI: 10.1038/s41380-025-02951-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/27/2025] [Accepted: 03/10/2025] [Indexed: 03/25/2025]
Abstract
Interleukin 18 (IL-18) is a pleiotropic cytokine that regulates peripheral innate and adaptive immune response and is also expressed in the brain. Here, we summarize the current knowledge on the biology of IL-18 in the brain and the efforts to determine its significance concerning neurological and psychiatric conditions. The picture that emerges is that of a heavily regulated molecule that can contribute to neuroinflammatory-mediated neuronal survival but can also serve as a neuromodulator that affects behaviour. We also summarize evidence showing how the brain can control the synthesis of peripheral IL-18 during stress by hormonal and neuronal signalling, regulating tissue-specific promoter usage. We discuss how this may represent one of the mechanisms by which the brain affects immune functions and what its implications are when considering IL-18 as a biomarker of psychiatric conditions.
Collapse
Affiliation(s)
- Silvia Alboni
- University of Modena and Reggio Emilia, Department of Life Sciences via Campi 287, 41125, Modena, Italy
| | - Fabio Tascedda
- University of Modena and Reggio Emilia, Department of Life Sciences via Campi 287, 41125, Modena, Italy
| | - Akihito Uezato
- Center for Basic Medical Research, International University of Health and Welfare, 2600-1 Kitakanemaru, Otawara, Tochigi, 324-8501, Japan
| | - Shuei Sugama
- Center for Basic Medical Research, International University of Health and Welfare, 2600-1 Kitakanemaru, Otawara, Tochigi, 324-8501, Japan
| | - Zuxin Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, P. R. China
| | | | - Bruno Conti
- San Diego Biomedical Research Institute, 3525 John Hopkins Ct, San Diego, CA, 92121, USA.
| |
Collapse
|
3
|
Okoye GD, Kumar A, Ghanbari F, Chowdhury NU, Wu L, Newcomb DC, Van Kaer L, Algood HMS, Joyce S. Single-cell map of innate-like lymphocyte response to Francisella tularensis infection reveals interleukin-17-dependent protection by MAIT cells. iScience 2025; 28:111810. [PMID: 40160424 PMCID: PMC11951026 DOI: 10.1016/j.isci.2025.111810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/07/2024] [Accepted: 01/10/2025] [Indexed: 04/02/2025] Open
Abstract
Early immune dynamics during the initiation of fatal tularemia caused by Francisella tularensis infection remain unknown. Unto that end, we generated a transcriptomic map at single-cell resolution of the innate-like lymphocyte responses to F. tularensis live vaccine strain (LVS) infection of mice. We found that both interferon-γ (IFN-γ)-producing type 1 and interleukin-17 (IL-17)-producing type 3 innate-like lymphocytes expanded in the infected lungs. Natural killer (NK) and NKT cells drove the type 1 response, whereas mucosal-associated invariant T (MAIT) and γδ T cells drove the type 3 response. Furthermore, tularemia-like disease resistant NKT cell-deficient, Cd1d -/- mice accumulated more MAIT1 cells, MAIT17 cells, and cells with a hybrid phenotype between MAIT1 and MAIT17 cells than wild-type mice. Critically, adoptive transfer of LVS-activated MAIT cells from Cd1d -/- mice, which were enriched in MAIT17 cells, was sufficient to protect LVS-susceptible, immunodeficient RAG2 -/- mice from severe LVS infection-inflicted pathology. Collectively, our findings position MAIT cells as potential mediators of IL-17-dependent protection from pulmonary tularemia-like disease.
Collapse
Affiliation(s)
- G. Donald Okoye
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37232, USA
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Nashville, TN 37232, USA
| | - Amrendra Kumar
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37232, USA
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Nashville, TN 37232, USA
- Vanderbilt Center for Immunobiology, Nashville, TN 37232, USA
- Vanderbilt Institute for Infection, Immunology & Inflammation, Nashville, TN 37232, USA
| | - Farshad Ghanbari
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Nowrin U. Chowdhury
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37232, USA
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Nashville, TN 37232, USA
| | - Lan Wu
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Nashville, TN 37232, USA
- Vanderbilt Center for Immunobiology, Nashville, TN 37232, USA
- Vanderbilt Institute for Infection, Immunology & Inflammation, Nashville, TN 37232, USA
| | - Dawn C. Newcomb
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Nashville, TN 37232, USA
- Vanderbilt Center for Immunobiology, Nashville, TN 37232, USA
- Vanderbilt Institute for Infection, Immunology & Inflammation, Nashville, TN 37232, USA
| | - Luc Van Kaer
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Nashville, TN 37232, USA
- Vanderbilt Center for Immunobiology, Nashville, TN 37232, USA
- Vanderbilt Institute for Infection, Immunology & Inflammation, Nashville, TN 37232, USA
| | - Holly M. Scott Algood
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37232, USA
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Nashville, TN 37232, USA
- Vanderbilt Center for Immunobiology, Nashville, TN 37232, USA
- Vanderbilt Institute for Infection, Immunology & Inflammation, Nashville, TN 37232, USA
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sebastian Joyce
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37232, USA
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Nashville, TN 37232, USA
- Vanderbilt Center for Immunobiology, Nashville, TN 37232, USA
- Vanderbilt Institute for Infection, Immunology & Inflammation, Nashville, TN 37232, USA
| |
Collapse
|
4
|
Hushmandi K, Reiter RJ, Farahani N, Cho WC, Alimohammadi M, Khoshnazar SM. Pyroptosis; igniting neuropsychiatric disorders from mild depression to aging-related neurodegeneration. Prog Neuropsychopharmacol Biol Psychiatry 2025; 138:111325. [PMID: 40081561 DOI: 10.1016/j.pnpbp.2025.111325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 03/16/2025]
Abstract
Neuropsychiatric disorders significantly impact global health and socioeconomic well-being, highlighting the urgent need for effective treatments. Chronic inflammation, often driven by the innate immune system, is a key feature of many neuropsychiatric conditions. NOD-like receptors (NLRs), which are intracellular sensors, detect danger signals and trigger inflammation. Among these, NLR protein (NLRP) inflammasomes play a crucial role by releasing pro-inflammatory cytokines and inducing a particular cell death process known as pyroptosis. Pyroptosis is defined as a proinflammatory form of programmed cell death executed by cysteine-aspartic proteases, also known as caspases. Currently, the role of pyroptotic flux has emerged as a critical factor in innate immunity and the pathogenesis of multiple diseases. Emerging evidence suggests that the induction of pyroptosis, primarily due to NLRP inflammasome activation, is involved in the pathophysiology of various neuropsychiatric disorders, including depression, stress-related issues, schizophrenia, autism spectrum disorders, and neurodegenerative diseases. Within this framework, the current review explores the complex relationship between pyroptosis and neuropsychiatric diseases, aiming to identify potential therapeutic targets for these challenging conditions.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX, USA
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyedeh Mahdieh Khoshnazar
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
5
|
Vuscan P, Röring RJ, Kischkel B, Tintoré M, Cuñé J, de Lecea C, Joosten LAB, Netea MG. Effect of Saccharomyces cerevisiae β-glucan on the T helper cytokine profile. Cytokine 2025; 187:156871. [PMID: 39889564 DOI: 10.1016/j.cyto.2025.156871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/27/2024] [Accepted: 01/13/2025] [Indexed: 02/03/2025]
Abstract
ABBi16 is a high-complexity blend of β-1,3/1,6-glucans from Saccharomyces cerevisiae with strong immunomodulatory activities, that have been recently shown to support anti-tumoral immune responses through the induction of trained immunity. Whether ABBi16 also modulates the balance between the various T helper (Th) lymphocyte responses is not known. Here, we show that ABBi16 induces Th1 responses, as indicated by stimulation of IFNγ and TNF production by human peripheral blood mononuclear cells (PBMCs). Moreover, the elevated secretion of IL-10 and IL-22 suggests a potential regulatory response of the Th1/Th2/Th17 balance. Co-stimulating PBMCs with ABBi16 alongside Bacille Calmette-Guerin (BCG), IL-1beta + IL-23, and IL-12 + IL-18 cytokine combinations further enhanced Th1 polarization and IL-22 induction, hinting at an additive effect of β-glucan on both Th1 and regulatory Th17 immune responses. ABBi16 did not induce IL-17 production, the prototype pro-inflammatory product of Th17 responses, suggesting that it can be safely used as an oral supplement in patients with autoimmune conditions. These results highlight the potential of ABBi16 to regulate the Th1/Th2/Th17 balance toward antimicrobial and regulatory effects.
Collapse
Affiliation(s)
- Patricia Vuscan
- Department of Internal Medicine and Radboud Center of Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rutger J Röring
- Department of Internal Medicine and Radboud Center of Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands; Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Brenda Kischkel
- Department of Internal Medicine and Radboud Center of Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Maria Tintoré
- AB Biotek Human Nutrition and Health, Barcelona, Spain
| | - Jordi Cuñé
- AB Biotek Human Nutrition and Health, Barcelona, Spain
| | | | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center of Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center of Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands; Department for Immunology and Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Germany.
| |
Collapse
|
6
|
Shan J, Ding J, Li DJ, Wang XQ. The double-edged role of IL-18 in reproductive endocrine and reproductive immune related disorders. Int Immunopharmacol 2025; 147:113859. [PMID: 39755106 DOI: 10.1016/j.intimp.2024.113859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/15/2024] [Accepted: 12/11/2024] [Indexed: 01/06/2025]
Abstract
Interleukin (IL)-18 is one of the members of IL-1 family cytokines, it was originally named as interferon gamma (IFN-γ) inducing factor. IL-18 is a pleiotropic immune regulator and has a bidirectional regulatory effect on immunity. It exerts a potent pro-inflammatory effect by inducing the expression of IFN-γ, also has an important anti-inflammatory role. In recent years, IL-18 has received widespread attention and become a research hotspot. Previous studies have described the roles of IL-18 in the pathogenesis of many diseases. However, the biologic activities of IL-18 and its role in the reproductive endocrine and reproductive immune related diseases are still not well understood, such as endometriosis (EMS), recurrent spontaneous abortion (RSA), polycystic ovary syndrome (PCOS), and infertility, which are closely related to inflammation and immunity. Here, we reviewed the research progress of IL-18 in these diseases in the past few years. This article provides an overview of the latest knowledge about the roles of IL-18 in these diseases, with a view to providing new possibilities for the diagnosis and treatment of reproductive endocrine and reproductive immune related disorders.
Collapse
Affiliation(s)
- Jing Shan
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Jie Ding
- Naval Medical University, Changhai Hospital, Department of Traditional Chinese Medicine, Shanghai, China
| | - Da-Jin Li
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.
| | - Xiao-Qiu Wang
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Schärli S, Luther F, Di Domizio J, Hillig C, Radonjic-Hoesli S, Thormann K, Simon D, Rønnstad ATM, Ruge IF, Fritz BG, Bjarnsholt T, Vallone A, Kezic S, Menden MP, Roesner LM, Werfel T, Thyssen JP, Eyerich S, Gilliet M, Bertschi NL, Schlapbach C. IL-9 sensitizes human T H2 cells to proinflammatory IL-18 signals in atopic dermatitis. J Allergy Clin Immunol 2025; 155:491-504.e9. [PMID: 39521283 DOI: 10.1016/j.jaci.2024.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/28/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND TH2 cells crucially contribute to the pathogenesis of atopic dermatitis (AD) by secreting high levels of IL-13 and IL-22. Yet the upstream regulators that activate TH2 cells in AD skin remain unclear. IL-18 is a putative upstream regulator of TH2 cells because it is implicated in AD pathogenesis and has the capacity to activate T cells. OBJECTIVE We sought to decipher the role of IL-18 in TH2 responses in blood and skin of AD patients. METHODS Peripheral blood mononuclear cells and skin biopsy samples from AD patients and healthy donors were used. Functional assays were performed ex vivo using stimulation or blocking experiments. Analysis was performed by flow cytometry, bead-based multiplex assays, RT-qPCR, RNA-Seq, Western blot, and spatial sequencing. RESULTS IL-18Rα+ TH2 cells were enriched in blood and lesional skin of AD patients. Of all the cytokines for which TH2 cells express the receptor, only IL-9 was able to induce IL-18R via an IL-9R-JAK1/JAK3-STAT1 signaling pathway. Functionally, stimulation of circulating TH2 cells with IL-18 induced secretion of IL-13 and IL-22, an effect that was enhanced by costimulation with IL-9. Mechanistically, IL-18 induced TH2 cytokines via activation of IRAK4, NF-κB, and AP-1 signaling in TH2 cells, and neutralization of IL-18 inhibited these cytokines in cultured explants of AD skin lesions. Finally, IL-18 protein levels correlated positively with disease severity in lesional AD skin. CONCLUSION Our data identify a novel IL-9/IL-18 axis that contributes to TH2 responses in AD. Our findings suggest that both IL-9 and IL-18 could represent upstream targets for future treatment of AD.
Collapse
Affiliation(s)
- Stefanie Schärli
- Department of Dermatology, Inselspital, Bern University Hospital, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Fabian Luther
- Department of Dermatology, Inselspital, Bern University Hospital, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Jeremy Di Domizio
- Department of Dermatology, CHUV University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Christina Hillig
- Computational Health Center, Institute of Computational Biology, Helmholtz Munich, Munich, Germany
| | - Susanne Radonjic-Hoesli
- Department of Dermatology, Inselspital, Bern University Hospital, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Kathrin Thormann
- Department of Dermatology, Inselspital, Bern University Hospital, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Dagmar Simon
- Department of Dermatology, Inselspital, Bern University Hospital, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | | | - Iben Frier Ruge
- Department of Dermatology, Bispebjerg Hospital, Copenhagen, Denmark
| | - Blaine G Fritz
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Bjarnsholt
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Angela Vallone
- Department of Dermatology, Inselspital, Bern University Hospital, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Sanja Kezic
- Department of Public and Occupational Health, Amsterdam University Medical Center, University of Amsterdam, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Michael P Menden
- Computational Health Center, Institute of Computational Biology, Helmholtz Munich, Munich, Germany; Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - Lennart M Roesner
- Department of Dermatology and Allergy, Hannover Medical School (MHH), Hannover, Germany
| | - Thomas Werfel
- Department of Dermatology and Allergy, Hannover Medical School (MHH), Hannover, Germany
| | - Jacob P Thyssen
- Department of Dermatology, Bispebjerg Hospital, Copenhagen, Denmark
| | - Stefanie Eyerich
- Center for Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany
| | - Michel Gilliet
- Department of Dermatology, CHUV University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Nicole L Bertschi
- Department of Dermatology, Inselspital, Bern University Hospital, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Christoph Schlapbach
- Department of Dermatology, Inselspital, Bern University Hospital, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.
| |
Collapse
|
8
|
Sun Y, Zhou Y, Peng T, Huang Y, Lu H, Ying X, Kang M, Jiang H, Wang J, Zheng J, Zeng C, Liu W, Zhang X, Ai L, Peng Q. Preventing NLRP3 inflammasome activation: Therapeutic atrategy and challenges in atopic dermatitis. Int Immunopharmacol 2025; 144:113696. [PMID: 39608174 DOI: 10.1016/j.intimp.2024.113696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/06/2024] [Accepted: 11/20/2024] [Indexed: 11/30/2024]
Abstract
Atopic dermatitis (AD) is a prevalent inflammatory skin disorder characterized by its chronic, persistent, and recurrent nature. The pathophysiology of this condition is complex, involving various factors including cell-mediated immune responses, compromised skin barrier function, and alterations in hypersensitivity reactions. These components synergistically contribute to the perpetuation of the bothersome "itch-scratch-itch" cycle. Recent research has highlighted the significant role of the NLRP3 inflammasome in the development of AD and other inflammatory conditions. Current research indicates that the NLRP3 inflammasome plays a pivotal role in both the acute and chronic phases of AD by modulating the Th2/Th1 immune deviation. Moreover, the pharmacological suppression of NLRP3 has shown promising results in mitigating the pathological aspects of AD. This review outlines potential drug development strategies that target the NLRP3 inflammasome as a therapeutic approach for AD and the challenges faced in this endeavor.
Collapse
Affiliation(s)
- Yiran Sun
- School of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Yangang Zhou
- School of Clinical Medicine, Chengdu Medical College, Chengdu 610500, China
| | - Tong Peng
- Department of R&D, Keystonecare Technology (Chengdu) Co., Ltd, Chengdu 610094, China
| | - Yuhang Huang
- School of Clinical Medicine, Chengdu Medical College, Chengdu 610500, China
| | - Hao Lu
- School of Biosciences and Technology, Key Laboratory of Target Discovery and Protein Drug Development in Major Diseases at Chengdu Medical College of Sichuan Province, Chengdu Medical College, Chengdu 610500, China
| | - Xiran Ying
- School of Clinical Medicine, Chengdu Medical College, Chengdu 610500, China
| | - Mingsheng Kang
- School of Clinical Medicine, Chengdu Medical College, Chengdu 610500, China
| | - Hao Jiang
- School of Clinical Medicine, Chengdu Medical College, Chengdu 610500, China
| | - Jingying Wang
- School of Clinical Medicine, Chengdu Medical College, Chengdu 610500, China
| | - Jiayao Zheng
- School of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Chenyu Zeng
- School of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Wanting Liu
- School of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Xiaoyu Zhang
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, China
| | - Lin Ai
- Department of Dermatology and Venereology, Nanbu County People's Hospital, Nanchong 637399, China
| | - Quekun Peng
- School of Biosciences and Technology, Key Laboratory of Target Discovery and Protein Drug Development in Major Diseases at Chengdu Medical College of Sichuan Province, Chengdu Medical College, Chengdu 610500, China.
| |
Collapse
|
9
|
Vanpouille C, Wells A, DeGruttola V, Lynch M, Zhang X, Fitzgerald W, Tu X, Chaillon A, Landay A, Weber K, Scully E, Karn J, Gianella S. Cytokine trajectory over time in men and women with HIV on long-term antiretroviral therapy. AIDS 2025; 39:1-10. [PMID: 39639719 PMCID: PMC11631044 DOI: 10.1097/qad.0000000000004033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/01/2024] [Indexed: 12/07/2024]
Abstract
OBJECTIVE Although antiretroviral therapy (ART) suppresses viral replication and reduces inflammation, it does not lead to the normalization of cytokines. The long-term effects of ART beyond viral suppression have not been studied and are mostly limited to cross-sectional research. DESIGN The impact of long-term ART on the trajectory of 40 cytokines/chemokines in 31 men and 59 women who maintained viral suppression over a median period of 6 years (317 visits ranging from 24 to 384 weeks post ART initiation) were measured by Luminex. METHODS We used a generalized additive model with a Gaussian distribution and identity link function to model concentrations over time and investigate sex and race differences. RESULTS While most cytokine/chemokine trajectories remained stable, the trajectory of nine markers of monocyte/macrophage activation (IP-10, I-TAC, MIG, sCD163, sCD14, MCP-1, MIP-3β, CXCL13, TNF-α) decreased over time (adj. P < 0.05). Despite continuous viral suppression, M-CSF, IL-15, and LBP increased over time (adj. P < 0.05). sCD14 was the only cytokine whose trajectory differed by sex (adj. P = 0.033). Overall, women had lower mean levels of IL-18 but higher levels of sCD14 than did men (adj. P < 0.05). GROα, LBP, and sCD14 showed significant differences between races (adj. P < 0.05). No association between cytokines and cellular HIV DNA/RNA was found. CONCLUSION Our study reveals a continuous decline in markers of monocyte/macrophage activation over 6 years of suppressive ART, indicating that long-term treatment may mitigate inflammaging and cardiovascular-related outcomes. The higher levels of sCD14 observed in women are consistent with them having greater innate immune activation than men do.
Collapse
Affiliation(s)
- Christophe Vanpouille
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Alan Wells
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Victor DeGruttola
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Miranda Lynch
- Department of Biostatistics and Bioinformatics, Hauptman-Woodward Medical Research Institute, Buffalo, NY, USA
| | - Xinlian Zhang
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Wendy Fitzgerald
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Xin Tu
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Antoine Chaillon
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Alan Landay
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Kathleen Weber
- Hektoen Institute of Medicine/Cook County Health, Chicago, IL, USA
| | - Eileen Scully
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, USA
| | - Sara Gianella
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
10
|
Begum E, Mahmod MR, Rahman MM, Fukuma F, Urano T, Fujita Y. IL-18 Blockage Reduces Neuroinflammation and Promotes Functional Recovery in a Mouse Model of Spinal Cord Injury. Biomolecules 2024; 15:16. [PMID: 39858411 PMCID: PMC11761924 DOI: 10.3390/biom15010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
The prognosis of spinal cord injury (SCI) is closely linked to secondary injury processes, predominantly driven by neuroinflammation. Interleukin-18 (IL-18) plays a pivotal role in this inflammatory response. In previous work, we developed an anti-IL-18 antibody capable of neutralizing the active form of IL-18. This study evaluated the functional effects of this antibody in a mouse model of SCI. IL-18 expression was significantly upregulated in the spinal cord following injury. In a mouse model of SCI (C57BL/6J strain), mice were administered 150 μg of the anti-IL-18 antibody intraperitoneally. IL-18 inhibition via antibody treatment facilitated motor functional recovery post-injury. This intervention reduced neuronal death, reactive gliosis, microglia/macrophage activation, and neutrophil infiltration. Additionally, IL-18 inhibition lowered the expression of pro-inflammatory factors, such as IL-1β and the M1 microglia/macrophage marker Ccl17, while enhancing the expression of the M2 microglia/macrophage marker Arginase 1. Collectively, our findings demonstrate that IL-18 inhibition promotes motor recovery and facilitates the polarization of M1 microglia/macrophages to the M2 phenotype, thereby fostering a neuroprotective immune microenvironment in mice with SCI.
Collapse
Affiliation(s)
- Easmin Begum
- Department of Anatomy and Developmental Biology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Shimane, Japan
| | - Md Rashel Mahmod
- Department of Anatomy and Developmental Biology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Shimane, Japan
| | - Md Mahbobur Rahman
- Department of Anatomy and Developmental Biology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Shimane, Japan
| | - Fumiko Fukuma
- Department of Anatomy and Developmental Biology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Shimane, Japan
| | - Takeshi Urano
- Center for Vaccines and Therapeutic Antibodies for Emerging Infectious Diseases, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Shimane, Japan
- mAbProtein Co., Ltd., 89-1 Enya-cho, Izumo 693-8501, Shimane, Japan
| | - Yuki Fujita
- Department of Anatomy and Developmental Biology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Shimane, Japan
| |
Collapse
|
11
|
Taheri M, Tehrani HA, Farzad SA, Korourian A, Arefian E, Ramezani M. The potential of mesenchymal stem cell coexpressing cytosine deaminase and secretory IL18-FC chimeric cytokine in suppressing glioblastoma recurrence. Int Immunopharmacol 2024; 142:113048. [PMID: 39236459 DOI: 10.1016/j.intimp.2024.113048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
Glioblastoma multiforme (GBM) patients have a high recurrence rate of 90%, and the 5-year survival rate is only about 5%. Cytosine deaminase (CDA)/5-fluorocytosine (5-FC) gene therapy is a promising glioma treatment as 5-FC can cross the blood-brain barrier (BBB), while 5-fluorouracil (5-FU) cannot. Furthermore, 5-FU can assist reversing the immunological status of cold solid tumors. This study developed mesenchymal stem cells (MSCs) co-expressing yeast CDA and the secretory IL18-FC superkine to prevent recurrent tumor progression by simultaneously exerting cytotoxic effects and enhancing immune responses. IL18 was fused with Igk and IgG2a FC domains to enhance its secretion and serum half-life. The study confirmed the expression and activity of the CDA enzyme, as well as the expression, secretion, and activity of secretory IL18 and IL18-FC superkine, which were expressed by lentiviruses transduced-MSCs. In the transwell tumor-tropism assay, it was observed that the genetically modified MSCs retained their selective tumor-tropism ability following transduction. CDA-expressing MSCs, in the presence of 5-FC (200 µg/ml), induced cell cycle arrest and apoptosis in glioma cells through bystander effects in an indirect transwell co-culture system. They reduced the viability of the direct co-culture system when they constituted only 12.5 % of the cell population. The effectiveness of engineered MSCs in suppressing tumor progression was assessed by intracerebral administration of a lethal dose of GL261 cells combined in a ratio of 1:1 with MSCs expressing CDA, or CDA and sIL18, or CDA and sIL18-FC, into C57BL/6 mice. PET scan showed no conspicuous tumor mass in the MSC-CDA-sIL18-FC group that received 5-FC treatment. The pathological analysis showed that tumor progression suppressed in this group until 20th day after cell inoculation. Cytokine assessment showed that both interferon-gamma (IFN-γ) and interleukin-4 (IL-4) increased in the serum of MSC-CDA-sIL18 and MSC-CDA-sIL18-FC, treated with normal saline (NS) compared to those of the control group. The MSC-CDA-sIL18-FC group that received 5-FC treatment showed reduced serum levels of IL-6 and a considerably improved survival rate compared to the control group. Therefore, MSCs co-expressing yeast CDA and secretory IL18-FC, with tumor tropism capability, may serve as a supplementary approach to standard GBM treatment to effectively inhibit tumor progression and prevent recurrence.
Collapse
Affiliation(s)
- Mojtaba Taheri
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Abdul Tehrani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Sara Amel Farzad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Korourian
- Quality Control Department Pathobiology Laboratory Center, Tehran, Iran
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran; Stem Cells Technology and Tissue Regeneration Department, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
12
|
Luo C, Zhang Y, Feng Q, Yao K, Zheng L, Yang Y, Zheng W, Li F, Lv Y, Cai Y. Novel candidate plasma proteins for the pathogenesis and treatment of atopic dermatitis revealed by proteome-wide association study. Sci Rep 2024; 14:30096. [PMID: 39627291 PMCID: PMC11615279 DOI: 10.1038/s41598-024-79906-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/13/2024] [Indexed: 12/06/2024] Open
Abstract
Atopic dermatitis (AD) is an immune-related skin disease with a genetic background. Numerous loci have been identified associated with AD to better comprehend its complicated genetic mechanisms by genome‑wide association studies (GWASs). However, current studies reveal the underlying mechanisms of these loci in the pathogenesis of AD inadequately. Therefore, we integrated the GWAS statistics of AD with plasma proteins to explore candidate proteins correlated with the pathogenesis of AD based on protein-centered omics studies. Herein, we adopted the updated AD GWAS statistics (N = 864,982) and the dataset of plasma protein quantitative trait loci (pQTLs), comprising 1,348 proteins from individuals of European descent. We first conducted the AD-related proteome-wide association studies (PWASs) (N = 7,213) by integrating pQTLs with the AD GWAS statistics and identified twenty-six significant plasma proteins by PWAS (FDR < 0.05). Then, the potential causal proteins of AD were identified via Mendelian randomization (MR), and seventeen causal proteins of AD were discovered afterward. Following this, Bayesian colocalization analysis was then utilized to explore proteins sharing the same causal variants. Five causal proteins strongly associated with the pathogenesis of AD were eventually pinpointed. Finally, we discovered drugs that could be repurposed for AD with the plasma proteins that might contribute to the pathogenesis of AD in the Drug Gene Interaction Database.
Collapse
Affiliation(s)
- Chen Luo
- Department of Biochemistry and Molecular Biology, Basic Medical College, Affiliated Cancer Hospital of Shanxi Medical University, Taiyuan, China
| | - YaJing Zhang
- Department of Biochemistry and Molecular Biology, Basic Medical College, Affiliated Cancer Hospital of Shanxi Medical University, Taiyuan, China
| | - QiFan Feng
- Department of Biochemistry and Molecular Biology, Basic Medical College, Affiliated Cancer Hospital of Shanxi Medical University, Taiyuan, China
| | - KaiXin Yao
- Department of Biochemistry and Molecular Biology, Basic Medical College, Affiliated Cancer Hospital of Shanxi Medical University, Taiyuan, China
| | - LeiLei Zheng
- Department of Biochemistry and Molecular Biology, Basic Medical College, Affiliated Cancer Hospital of Shanxi Medical University, Taiyuan, China
| | - Ye Yang
- Department of Biochemistry and Molecular Biology, Basic Medical College, Affiliated Cancer Hospital of Shanxi Medical University, Taiyuan, China
- Department of Anesthesiology, Shanxi Hospital Affiliated to Cancer Hospital, Shanxi Province Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, China
| | - WenXin Zheng
- Department of Biochemistry and Molecular Biology, Basic Medical College, Affiliated Cancer Hospital of Shanxi Medical University, Taiyuan, China
| | - Feng Li
- Central Laboratory, Shanxi Hospital Affiliated to Cancer Hospital, Shanxi Province Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, China.
| | - YongQiang Lv
- Department of Operation Management, Shanxi Hospital Affiliated to Cancer Hospital, Shanxi Province Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, China.
| | - Yue Cai
- Department of Anesthesiology, Shanxi Hospital Affiliated to Cancer Hospital, Shanxi Province Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, China.
| |
Collapse
|
13
|
Silva RCMC. The dichotomic role of cytokines in aging. Biogerontology 2024; 26:17. [PMID: 39621124 DOI: 10.1007/s10522-024-10152-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/30/2024] [Indexed: 12/11/2024]
Abstract
The chronic inflammation present in aged individuals is generally depicted as a detrimental player for longevity. Here, it is discussed several beneficial effects associated with the cytokines that are chronically elevated in inflammaging. These cytokines, such as IL-1β, type I interferons, IL-6 and TNF positively regulate macroautophagy, mitochondrial function, anti-tumor immune responses and skeletal muscle biogenesis, possibly contributing to longevity. On the other side, the detrimental and antagonistic role of these cytokines including the induction of sarcopenia, tissue damage and promotion of tumorigenesis are also discussed, underscoring the dichotomy associated with inflammaging and its players. In addition, it is discussed the role of the anti-inflammatory cytokine IL-10 and other cytokines that affect aging in a more linear way, such as IL-11, which promotes senescence, and IL-4 and IL-15, which promotes longevity. It is also discussed more specific regulators of aging that are downstream cytokines-mediated signaling.
Collapse
|
14
|
Wang X, Li Z, Xu J, Wang J, Li Y, Li Q, Niu J, Yang R. HSPA4 Expression is Correlated with Melanoma Cell Proliferation, Prognosis, and Immune Regulation. Clin Cosmet Investig Dermatol 2024; 17:2733-2746. [PMID: 39629045 PMCID: PMC11614586 DOI: 10.2147/ccid.s477870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/15/2024] [Indexed: 12/06/2024]
Abstract
Purpose Heat shock protein A4 (HSPA4) is associated with a variety of human diseases. However, its function in cutaneous malignant melanoma (CMM) remains uncertain. Patients and Methods The gene and protein expression level of HSPA4 in CMM was investigated with public databases. Cell Counting Kit-8 (CCK8) assay was performed to assess the effect of HSPA4 on the proliferation of melanoma cells. Then, the diagnostic and prognostic value of HSPA4 in CMM were analyzed. Gene variations and methylation levels, and the correlation between HSPA4 expression and immune cell infiltration were evaluated, followed by the construction of HSPA4 related protein-protein interaction networks and functional enrichment analysis. Results The mRNA and protein expression level of HSPA4 was significantly higher in CMM. Knocking down HSPA4 in A-375 cell line could inhibit tumor cell growth. The receiver operating characteristic (ROC) curve analysis confirmed the diagnostic value of HSPA4. Survival analysis showed that high expression of HSPA4 was associated with poor prognosis. HSPA4 gene alterations were observed in 3% of CMM patients. Five CpG sites are associated with the prognosis of CMM. HSPA4 is negatively correlated with most immune cells in CMM. The protein interaction network shows that HSPA4 is closely related to proteins such as DnaJ heat shock protein family (Hsp40) member B1 (DNAJB1) and DnaJ heat shock protein family (Hsp40) member B6 (DNAJB6), and the expression of DNAJB1 is positively correlated with HSPA4. Functional enrichment analysis indicated that HSPA4 may be associated with immune suppression and immune escape within the tumor microenvironment of CMM. Conclusion HSPA4 may participate in the regulation of tumor development and microenvironment, which may be a potential diagnostic and prognostic marker of CMM.
Collapse
Affiliation(s)
- Xudong Wang
- Outpatient Department of Yangfangdian, Southern Medical District of Chinese PLA General Hospital, Beijing, 100843, People’s Republic of China
- Department of Dermatology, Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100010, People’s Republic of China
- Medical School of Chinese PLA, Beijing, 100853, People’s Republic of China
| | - Zhiyong Li
- Outpatient Department of Yangfangdian, Southern Medical District of Chinese PLA General Hospital, Beijing, 100843, People’s Republic of China
| | - Jianhong Xu
- Outpatient Department of Yangfangdian, Southern Medical District of Chinese PLA General Hospital, Beijing, 100843, People’s Republic of China
| | - Jun Wang
- Outpatient Department of Yangfangdian, Southern Medical District of Chinese PLA General Hospital, Beijing, 100843, People’s Republic of China
| | - Ying Li
- Outpatient Department of Yangfangdian, Southern Medical District of Chinese PLA General Hospital, Beijing, 100843, People’s Republic of China
| | - Qiang Li
- Medical Health Care Dept, Air Force Medical Center PLA, Beijing, 100142, People’s Republic of China
| | - Jianrong Niu
- Department of Dermatology, Air Force Medical Center PLA, Beijing, 100142, People’s Republic of China
| | - Rongya Yang
- Department of Dermatology, Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100010, People’s Republic of China
| |
Collapse
|
15
|
Zhao AY, Unterman A, Abu Hussein NS, Sharma P, Nikola F, Flint J, Yan X, Adams TS, Justet A, Sumida TS, Zhao J, Schupp JC, Raredon MSB, Ahangari F, Deluliis G, Zhang Y, Buendia-Roldan I, Adegunsoye A, Sperling AI, Prasse A, Ryu C, Herzog E, Selman M, Pardo A, Kaminski N. Single-Cell Analysis Reveals Novel Immune Perturbations in Fibrotic Hypersensitivity Pneumonitis. Am J Respir Crit Care Med 2024; 210:1252-1266. [PMID: 38924775 PMCID: PMC11568434 DOI: 10.1164/rccm.202401-0078oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024] Open
Abstract
Rationale: Fibrotic hypersensitivity pneumonitis (FHP) is a debilitating interstitial lung disease driven by incompletely understood immune mechanisms. Objectives: To elucidate immune aberrations in FHP in single-cell resolution. Methods: Single-cell 5' RNA sequencing was conducted on peripheral blood mononuclear cells and BAL cells obtained from 45 patients with FHP, 63 patients with idiopathic pulmonary fibrosis (IPF), 4 patients with nonfibrotic hypersensitivity pneumonitis, and 36 healthy control subjects in the United States and Mexico. Analyses included differential gene expression (Seurat), TF (transcription factor) activity imputation (DoRothEA-VIPER), and trajectory analyses (Monocle3 and Velocyto-scVelo-CellRank). Measurements and Main Results: Overall, 501,534 peripheral blood mononuclear cells from 110 patients and control subjects and 88,336 BAL cells from 19 patients were profiled. Compared with control samples, FHP has elevated classical monocytes (adjusted-P = 2.5 × 10-3) and is enriched in CCL3hi/CCL4hi and S100Ahi classical monocytes (adjusted-P < 2.2 × 10-16). Trajectory analyses demonstrate that S100Ahi classical monocytes differentiate into SPP1hi lung macrophages associated with fibrosis. Compared with both control subjects and IPF, cells from patients with FHP are significantly enriched in GZMhi cytotoxic T cells. These cells exhibit TF activities indicative of TGFβ and TNFα and NFκB pathways. These results are publicly available at http://ildimmunecellatlas.com. Conclusions: Single-cell transcriptomics of patients with FHP uncovered novel immune perturbations, including previously undescribed increases in GZMhi cytotoxic CD4+ and CD8+ T cells-reflecting this disease's unique inflammatory T cell-driven nature-as well as increased S100Ahi and CCL3hi/CCL4hi classical monocytes also observed in IPF. Both cell populations may guide the development of new biomarkers and therapeutic interventions.
Collapse
Affiliation(s)
- Amy Y. Zhao
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
| | - Avraham Unterman
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
- Institute of Pulmonary Medicine, Tel Aviv Sourasky Medical Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Prapti Sharma
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
| | - Fadi Nikola
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
| | - Jasper Flint
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
| | - Xiting Yan
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
| | - Taylor S. Adams
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
| | - Aurelien Justet
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
- Service de Pneumologie, Centre de Competences de Maladies Pulmonaires Rares, Centre Hospitalier Universitaire de Caen University of Caen Normandie, CEA, Centre National de la Recherche Scientifique, Imagerie et Stratégies Thérapeutiques pour les Cancers et Tissus Cérébraux/CERVOxy Group, GIP CYCERON, Normandie University, Caen, France
| | | | - Jiayi Zhao
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
| | - Jonas C. Schupp
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
- Department of Pulmonary and Infectious Diseases, Hannover Medical School, Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), German Center for Lung Research BREATH, Hannover, Germany
| | - Micha Sam B. Raredon
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
- Department of Anesthesiology, and
- Department of Immunobiology, Yale School of Medicine, New Haven, Conncecticut
| | - Farida Ahangari
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
| | - Giuseppe Deluliis
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
| | - Yingze Zhang
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ivette Buendia-Roldan
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Ayodeji Adegunsoye
- Section of Pulmonary/Critical Care, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Anne I. Sperling
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Virginia, Charlottesville, Virginia
| | - Antje Prasse
- Section of Pulmonary Medicine, University Medical Center, Basel, Switzerland; and
| | - Changwan Ryu
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
| | - Erica Herzog
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
| | - Moises Selman
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Annie Pardo
- Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
| |
Collapse
|
16
|
Wu Y, Sun X, Kang K, Yang Y, Li H, Zhao A, Niu T. Hemophagocytic lymphohistiocytosis: current treatment advances, emerging targeted therapy and underlying mechanisms. J Hematol Oncol 2024; 17:106. [PMID: 39511607 PMCID: PMC11542428 DOI: 10.1186/s13045-024-01621-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a rapidly progressing, life-threatening syndrome characterized by excessive immune activation, often presenting as a complex cytokine storm. This hyperactive immune response can lead to multi-organ failure and systemic damage, resulting in an extremely short survival period if left untreated. Over the past decades, although HLH has garnered increasing attention from researchers, there have been few advancements in its treatment. The cytokine storm plays a crucial role in the treatment of HLH. Investigating the detailed mechanisms behind cytokine storms offers insights into targeted therapeutic approaches, potentially aiding in early intervention and improving the clinical outcome of HLH patients. To date, there is only one targeted therapy, emapalumab targeting interferon-γ, that has gained approval for primary HLH. This review aims to summarize the current treatment advances, emerging targeted therapeutics and underlying mechanisms of HLH, highlighting its newly discovered targets potentially involved in cytokine storms, which are expected to drive the development of novel treatments and offer fresh perspectives for future studies. Besides, multi-targeted combination therapy may be essential for disease control, but further trials are required to determine the optimal treatment mode for HLH.
Collapse
Affiliation(s)
- Yijun Wu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xu Sun
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kai Kang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuqi Yang
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - He Li
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ailin Zhao
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Ting Niu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
17
|
Thawanaphong S, Nair A, Volfson E, Nair P, Mukherjee M. IL-18 biology in severe asthma. Front Med (Lausanne) 2024; 11:1486780. [PMID: 39554494 PMCID: PMC11566457 DOI: 10.3389/fmed.2024.1486780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/18/2024] [Indexed: 11/19/2024] Open
Abstract
The role of interleukin-18 (IL-18) and inflammasomes in chronic inflammatory airway diseases, such as asthma and chronic obstructive pulmonary disease (COPD), has garnered significant attention in recent years. This review aims to provide an overview of the current understanding of IL-18 biology, the associated signaling pathways, and the involvement of inflammasome complexes in airway diseases. We explore the multifaceted role of IL-18 in asthma pathophysiology, including its interactions with other cytokines and contributions to both T2 and non-T2 inflammation. Importantly, emerging evidence highlights IL-18 as a critical player in severe asthma, contributing to chronic airway inflammation, airway hyperresponsiveness (AHR), and mucus impaction. Furthermore, we discuss the emerging evidence of IL-18's involvement in autoimmunity and highlight potential therapeutic targets within the IL-18 and inflammasome pathways in severe asthma patients with evidence of infections and airway autoimmune responses. By synthesizing recent advancements and ongoing research, this review underscores the importance of IL-18 as a potential novel therapeutic target in the treatment of severe asthma and other related conditions.
Collapse
Affiliation(s)
- Sarita Thawanaphong
- Department of Medicine, McMAster University, Hamilton, ON, Canada
- Research Institute of St. Joe’s Hamilton, St. Joseph’s Healthcare Hamilton, Hamilton, ON, Canada
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Aswathi Nair
- Department of Medicine, McMAster University, Hamilton, ON, Canada
- Research Institute of St. Joe’s Hamilton, St. Joseph’s Healthcare Hamilton, Hamilton, ON, Canada
| | - Emily Volfson
- Department of Medicine, McMAster University, Hamilton, ON, Canada
- Research Institute of St. Joe’s Hamilton, St. Joseph’s Healthcare Hamilton, Hamilton, ON, Canada
| | - Parameswaran Nair
- Department of Medicine, McMAster University, Hamilton, ON, Canada
- Research Institute of St. Joe’s Hamilton, St. Joseph’s Healthcare Hamilton, Hamilton, ON, Canada
| | - Manali Mukherjee
- Department of Medicine, McMAster University, Hamilton, ON, Canada
- Research Institute of St. Joe’s Hamilton, St. Joseph’s Healthcare Hamilton, Hamilton, ON, Canada
| |
Collapse
|
18
|
Parthasarathy S, Moreno de Lara L, Carrillo-Salinas FJ, Werner A, Borchers A, Iyer V, Vogell A, Fortier JM, Wira CR, Rodriguez-Garcia M. Human genital dendritic cell heterogeneity confers differential rapid response to HIV-1 exposure. Front Immunol 2024; 15:1472656. [PMID: 39524443 PMCID: PMC11543421 DOI: 10.3389/fimmu.2024.1472656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
Dendritic cells (DCs) play critical roles in HIV pathogenesis and require further investigation in the female genital tract, a main portal of entry for HIV infection. Here we characterized genital DC populations at the single cell level and how DC subsets respond to HIV immediately following exposure. We found that the genital CD11c+HLA-DR+ myeloid population contains three DC subsets (CD1c+ DC2s, CD14+ monocyte-derived DCs and CD14+CD1c+ DC3s) and two monocyte/macrophage populations with distinct functional and phenotypic properties during homeostasis. Following HIV exposure, the antiviral response was dominated by DCs' rapid secretory response, activation of non-classical inflammatory pathways and host restriction factors. Further, we uncovered subset-specific differences in anti-HIV responses. CD14+ DCs were the main population activated by HIV and mediated the secretory antimicrobial response, while CD1c+ DC2s activated inflammasome pathways and IFN responses. Identification of subset-specific responses to HIV immediately after exposure could aid targeted strategies to prevent HIV infection.
Collapse
Affiliation(s)
- Siddharth Parthasarathy
- Department of Immunology, Tufts University School of Medicine, Boston, MA, United States
- Immunology Graduate Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
| | - Laura Moreno de Lara
- Department of Immunology, Tufts University School of Medicine, Boston, MA, United States
| | | | - Alexandra Werner
- Department of Immunology, Tufts University School of Medicine, Boston, MA, United States
- Immunology Graduate Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
- C.S Mott Center for Human Growth and Development, Department of Obstetrics & Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Anna Borchers
- Department of Immunology, Tufts University School of Medicine, Boston, MA, United States
| | - Vidya Iyer
- Department of Gynecology and Obstetrics, Tufts Medical Center, Boston, MA, United States
- Mass General Research Institute (MGRI), Division of Clinical Research, Massachusetts General Hospital, Boston, MA, United States
| | - Alison Vogell
- Department of Gynecology and Obstetrics, Tufts Medical Center, Boston, MA, United States
| | - Jared M. Fortier
- C.S Mott Center for Human Growth and Development, Department of Obstetrics & Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Charles R. Wira
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Marta Rodriguez-Garcia
- Department of Immunology, Tufts University School of Medicine, Boston, MA, United States
- Immunology Graduate Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
- C.S Mott Center for Human Growth and Development, Department of Obstetrics & Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
19
|
Shao W, Ding H, Wang Y, Shi Z, Zhang H, Meng F, Chang Q, Duan H, Lu K, Zhang L, Xu J. Key genes and immune pathways in T-cell mediated rejection post-liver transplantation identified via integrated RNA-seq and machine learning. Sci Rep 2024; 14:24315. [PMID: 39414868 PMCID: PMC11484935 DOI: 10.1038/s41598-024-74874-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/30/2024] [Indexed: 10/18/2024] Open
Abstract
Liver transplantation is the definitive treatment for end-stage liver disease, yet T-cell mediated rejection (TCMR) remains a major challenge. This study aims to identify key genes associated with TCMR and their potential biological processes and mechanisms. The GSE145780 dataset was subjected to differential expression analysis, weighted gene co-expression network analysis (WGCNA), and machine learning algorithms to pinpoint key genes associated with TCMR. Gene Set Enrichment Analysis (GSEA), immune infiltration analysis, and regulatory networks were constructed to ascertain the biological relevance of these genes. Expression validation was performed using single-cell RNA-seq (scRNA-seq) data and liver biopsy tissues from patients. We identified 5 key genes (ITGB2, FCER1G, IL-18, GBP1, and CD53) that are associated with immunological functions, such as chemotactic activity, antigen processing, and T cell differentiation. GSEA highlighted enrichment in chemokine signaling and antigen presentation pathways. A lncRNA-miRNA-mRNA network was delineated, and drug target prediction yielded 26 potential drugs. Evaluation of expression levels in non-rejection (NR) and TCMR groups exhibited significant disparities in T cells and myeloid cells. Tissue analyses from patients corroborated the upregulation of GBP1, IL-18, CD53, and FCER1G in TCMR cases. Through comprehensive analysis, this research has identified 4 genes intimately connected with TCMR following liver transplantation, shedding light on the underlying immune activation pathways and suggesting putative targets for therapeutic intervention.
Collapse
Affiliation(s)
- Wenhao Shao
- Faculty of Graduate Studies, Shanxi Medical University, Taiyuan, 030000, China
| | - Huaxing Ding
- Faculty of Graduate Studies, Shanxi Medical University, Taiyuan, 030000, China
| | - Yan Wang
- Department of Hepatobiliary and Pancreatic Surgery and Liver Transplant Center, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Institute of Liver Diseases and Organ Transplantation, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Zhiyong Shi
- Department of Hepatobiliary and Pancreatic Surgery and Liver Transplant Center, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Institute of Liver Diseases and Organ Transplantation, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Hezhao Zhang
- Department of Hepatobiliary and Pancreatic Surgery and Liver Transplant Center, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Institute of Liver Diseases and Organ Transplantation, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Fanxiu Meng
- Faculty of Graduate Studies, Shanxi Medical University, Taiyuan, 030000, China
| | - Qingyao Chang
- Faculty of Graduate Studies, Shanxi Medical University, Taiyuan, 030000, China
| | - Haojiang Duan
- Faculty of Graduate Studies, Shanxi Medical University, Taiyuan, 030000, China
| | - Kairui Lu
- Faculty of Graduate Studies, Shanxi Medical University, Taiyuan, 030000, China
| | - Li Zhang
- Department of Hepatobiliary and Pancreatic Surgery and Liver Transplant Center, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
- Institute of Liver Diseases and Organ Transplantation, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| | - Jun Xu
- Department of Hepatobiliary and Pancreatic Surgery and Liver Transplant Center, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
- Institute of Liver Diseases and Organ Transplantation, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
20
|
Lage SL, Ramaswami R, Rocco JM, Rupert A, Davis DA, Lurain K, Manion M, Whitby D, Yarchoan R, Sereti I. Inflammasome activation in patients with Kaposi sarcoma herpesvirus-associated diseases. Blood 2024; 144:1496-1507. [PMID: 38941593 PMCID: PMC11474434 DOI: 10.1182/blood.2024024144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/30/2024] [Accepted: 06/17/2024] [Indexed: 06/30/2024] Open
Abstract
ABSTRACT Kaposi sarcoma herpesvirus (KSHV)-associated diseases include Kaposi sarcoma (KS), primary effusion lymphoma (PEL), KSHV-associated multicentric Castleman disease (MCD), and KS inflammatory cytokine syndrome (KICS). PEL, MCD, and KICS are associated with elevated circulating inflammatory cytokines. However, activation of the inflammasome, which generates interleukin-1β (IL-1β) and IL-18 via active caspase-1/4/5, has not been evaluated in patients with KSHV-associated diseases (KADs). Herein we report that patients with HIV and ≥1 KAD present with higher plasma levels of IL-18 and increased caspase-1/4/5 activity in circulating monocytes compared with HIV-negative healthy volunteers (HVs) or people with HIV (PWH) without KAD. Within KAD subtypes, KICS and MCD shared enhanced caspase-1/4/5 activity and IL-18 production compared with HVs and PWH, whereas patients with PEL showed remarkably high levels of inflammasome complex formation (known as apoptosis-associated speck-like protein containing a caspase recruitment domain). Moreover, caspase-1/4/5 activity and IL-18 plasma levels correlated with KSHV viral load, indicating KSHV-driven inflammasome activation in KAD. Accordingly, factors released by cells latently infected with KSHV triggered inflammasome activation and cytokine production in bystander monocytes in vitro. Finally, both supervised and unsupervised analyses with inflammasome measurements and other inflammatory biomarkers demonstrate a unique inflammatory profile in patients with PEL, MCD, and KICS as compared with KS. Our data indicate that detrimental inflammation in patients with KAD is at least partially driven by KSHV-induced inflammasome activation in monocytes, thus offering novel approaches to diagnose and treat these complex disorders. These trials were registered at www.ClinicalTrials.gov as #NCT01419561, NCT00092222, NCT00006518, and NCT02147405.
Collapse
Affiliation(s)
- Silvia Lucena Lage
- HIV Pathogenesis Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Ramya Ramaswami
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Joseph M. Rocco
- HIV Pathogenesis Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Adam Rupert
- AIDS Monitoring Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, MD
| | - David A. Davis
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Kathryn Lurain
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Maura Manion
- HIV Pathogenesis Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Denise Whitby
- Viral Oncology Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, MD
| | - Robert Yarchoan
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Irini Sereti
- HIV Pathogenesis Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
21
|
Yu C, Xu H, Jiang S, Sun L. IL-18 signaling is regulated by caspase 6/8 and IL-18BP in turbot (Scophthalmus maximus). Int J Biol Macromol 2024; 278:135015. [PMID: 39181350 DOI: 10.1016/j.ijbiomac.2024.135015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Interleukin (IL)-18 is synthesized as a precursor that requires intracellular processing to become functionally active. In human, IL-18 is processed by caspase 1 (CASP1). In teleost, the maturation and signal transduction mechanisms of IL-18 are unknown. We identified two IL-18 variants, IL-18a and IL-18b, in turbot. IL-18a, but not IL-18b, was processed by CASP6/8 cleavage. Mature IL-18a bound specifically to IL-18 receptor (IL-18R) α-expressing cells and induced IL-18Rα-IL-18Rβ association. Bacterial infection promoted IL-18a maturation in a manner that required CASP6 activation and correlated with gasdermin E activation. The mature IL-18a induced proinflammatory cytokine expression and enhanced bacterial clearance. IL-18a-mediated immune response was suppressed by IL-18 binding protein (IL-18BP), which functioned as a decoy receptor for IL-18a. IL-18BP also functioned as a pathogen pattern recognition receptor and directly inhibited pathogen infection. Our findings revealed unique mechanism of IL-18 maturation and conserved mechanism of IL-18 signaling and regulation in turbot, and provided new insights into the regulation and function of IL-18 related immune signaling.
Collapse
Affiliation(s)
- Chao Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; School of Foundational Education, University of Health and Rehabilitation Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hang Xu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shuai Jiang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Li Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
22
|
Tezcan G, Yakar N, Hasturk H, Van Dyke TE, Kantarci A. Resolution of chronic inflammation and cancer. Periodontol 2000 2024; 96:229-249. [PMID: 39177291 DOI: 10.1111/prd.12603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/26/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024]
Abstract
Chronic inflammation poses challenges to effective cancer treatment. Although anti-inflammatory therapies have shown short-term benefits, their long-term implications may be unfavorable because they fail to initiate the necessary inflammatory responses. Recent research underscores the promise of specialized pro-resolving mediators, which play a role in modulating the cancer microenvironment by promoting the resolution of initiated inflammatory processes and restoring tissue hemostasis. This review addresses current insights into how inflammation contributes to cancer pathogenesis and explores recent strategies to resolve inflammation associated with cancer.
Collapse
Affiliation(s)
- Gulcin Tezcan
- ADA Forsyth Institute, Cambridge, Massachusetts, USA
- Department of Fundamental Sciences, Faculty of Dentistry, Bursa Uludag University, Bursa, Turkey
| | - Nil Yakar
- ADA Forsyth Institute, Cambridge, Massachusetts, USA
| | - Hatice Hasturk
- ADA Forsyth Institute, Cambridge, Massachusetts, USA
- Department of Oral Microbiology and Infection, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Thomas E Van Dyke
- ADA Forsyth Institute, Cambridge, Massachusetts, USA
- Department of Oral Microbiology and Infection, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Alpdogan Kantarci
- ADA Forsyth Institute, Cambridge, Massachusetts, USA
- Department of Oral Microbiology and Infection, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| |
Collapse
|
23
|
You S, Ouyang J, Wu Q, Zhang Y, Gao J, Luo X, Wang Y, Wu Y, Jiang F. Comparison of serum cytokines and chemokines levels and clinical significance in patients with pemphigus vulgaris-A retrospective study. Exp Dermatol 2024; 33:e15173. [PMID: 39246287 DOI: 10.1111/exd.15173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 09/10/2024]
Abstract
In this study, we aimed to examine the relationship between the serum cytokine levels of patients with pemphigus vulgaris (PV) and the Pemphigus Disease Area Index (PDAI), along with the presence of anti-desmoglein (Dsg) 1 antibody, anti-Dsg3 antibody and co-infection among patients with pemphigus vulgaris. This retrospective study included 62 PV patients and 59 healthy individuals who attended the Second Affiliated Hospital of Kunming Medical University from November 2014 to November 2022. The serum concentrations of cytokines and chemokines were assessed using the Luminex 200 System (a high-throughput cytokine detection method). Additionally, anti-Dsg1 and anti-Dsg3 antibodies were determined through enzyme-linked immunosorbent assay, while disease severity was evaluated using the PDAI scoring system. The PV group exhibited elevated levels of Th1 cytokines (such as interleukin (IL)-1RA, IL-1β, IL-2, IL-12p70, GM-CSF, TNF-α, IL-18, IFN-γ), Th2 cytokines (IL-5, IL-10, IL-13) and Th17/Th22-related cytokines (IL-17A, IL-22) compared to the healthy control group (p < 0.05). Conversely, the levels of chemokines (macrophage inflammatory protein-1 alpha (MIP-1α), stromal cell-derived factor-1 alpha (SDF-1α), interferon-inducible protein-10 (IP-10), Regulated on Activation in Normal T-Cell Expressed And Secreted (RANTES), growth-regulated on-gene-alpha (GRO-α), MIP-1β) and Th2 (IL-31) were lower in the PV group compared to the healthy control group (p < 0.05). No significant differences were observed in other cytokines and chemokines (p > 0.05). Additionally, IL-7, IFN-γ, IL-18 and GRO-α showed positive correlations with PDAI, IL-6 correlated positively with anti-Dsg3 antibody levels, and IL-12p70, IL-18, and IFN-γ correlated positively with anti-Dsg1 antibody levels. Furthermore, IL-15 exhibited a positive association with skin infections. PV patients have elevated levels of various cytokines and chemokines, and there are different degrees of elevation in cytokines and chemokines associated with the activation of various T cell subsets. PDAI and the Dsg1 antibody levels are mainly related to the Th1-related cytokines.
Collapse
Affiliation(s)
- Shuqiong You
- Department of Dermatology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jianting Ouyang
- Department of Dermatology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Qian Wu
- Department of Dermatology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yaozhong Zhang
- Department of Dermatology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jian Gao
- Department of Dermatology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xiaojia Luo
- Department of Dermatology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yuan Wang
- Department of Dermatology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yongzhuo Wu
- Department of Dermatology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Fuqiong Jiang
- Department of Dermatology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
24
|
Rusiñol L, Puig L. A Narrative Review of the IL-18 and IL-37 Implications in the Pathogenesis of Atopic Dermatitis and Psoriasis: Prospective Treatment Targets. Int J Mol Sci 2024; 25:8437. [PMID: 39126010 PMCID: PMC11312859 DOI: 10.3390/ijms25158437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Atopic dermatitis and psoriasis are prevalent inflammatory skin conditions that significantly impact the quality of life of patients, with diverse treatment options available. Despite advances in understanding their underlying mechanisms, recent research highlights the significance of interleukins IL-18 and IL-37, in Th1, Th2, and Th17 inflammatory responses, closely associated with the pathogenesis of psoriasis and atopic dermatitis. Hence, IL-18 and IL-37 could potentially become therapeutic targets. This narrative review synthesizes knowledge on these interleukins, their roles in atopic dermatitis and psoriasis, and emerging treatment strategies. Findings of a literature search up to 30 May 2024, underscore a research gap in IL-37-targeted therapies. Conversely, IL-18-focused treatments have demonstrated promise in adult-onset Still's Disease, warranting further exploration for their potential efficacy in psoriasis and atopic dermatitis.
Collapse
Affiliation(s)
- Lluís Rusiñol
- Dermatology Department, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain;
- Institut de Recerca Sant Pau (IR Sant Pau), Sant Quintí 77-79, 08041 Barcelona, Spain
- Unitat Docent Hospital Universitari Sant Pau, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Lluís Puig
- Dermatology Department, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain;
- Institut de Recerca Sant Pau (IR Sant Pau), Sant Quintí 77-79, 08041 Barcelona, Spain
- Unitat Docent Hospital Universitari Sant Pau, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
25
|
Ikegami S, Maeda K, Urano T, Mu J, Nakamura M, Yamamura T, Sawada T, Ishikawa E, Yamamoto K, Muto H, Oishi A, Iida T, Mizutani Y, Ishikawa T, Kakushima N, Furukawa K, Ohno E, Honda T, Ishigami M, Kawashima H. Monoclonal Antibody Against Mature Interleukin-18 Ameliorates Colitis in Mice and Improves Epithelial Barrier Function. Inflamm Bowel Dis 2024; 30:1353-1366. [PMID: 38141180 DOI: 10.1093/ibd/izad292] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Indexed: 12/25/2023]
Abstract
BACKGROUND Antitumor necrosis factor (TNF)-α antibodies have improved the outcome of inflammatory bowel disease (IBD); but half of patients remain unresponsive to treatment. Interleukin-18 (IL-18) gene polymorphism is associated with resistance to anti-TNF-α antibodies, but therapies targeting IL-18 have not been clinically applied. Only the mature protein is biologically active, and we aimed to investigate whether specific inhibition of mature IL-18 using a monoclonal antibody (mAb) against a neoepitope of caspase-cleaved mature IL-18 could be an innovative treatment for IBD. METHODS The expression of precursor and mature IL-18 in patients with UC was examined. Colitis was induced in C57/BL6 mice by administering dextran sulfate sodium (DSS), followed by injection with anti-IL-18 neoepitope mAb. Colon tissues were collected and subjected to histological analysis, immunohistochemistry, immunoblotting, and quantitative polymerase chain reaction. Colon epithelial permeability and microbiota composition were analyzed. RESULTS Mature IL-18 expression was elevated in colon tissues of patients with active ulcerative colitis. Administration of anti-IL-18 neoepitope mAb ameliorated acute and chronic DSS-induced colitis; reduced interferon-γ, TNF-α, and chemokine (CXC motif) ligand-2 production and epithelial cell permeability; promoted goblet cell function; and altered the intestinal microbiome composition. The suppressive effect of anti-IL-18 neoepitope mAb was superior to that of anti-whole IL-18 mAb. Furthermore, combination therapy with anti-TNF-α Ab suppressed acute and chronic colitis additively by suppressing cytokine expressions and reducing cell permeability by upregulating claudin1 and occludin expression. CONCLUSIONS Anti-IL-18 neoepitope mAb ameliorates acute and chronic colitis, suggesting that this mAb will be an innovative therapeutic option for IBD.
Collapse
Affiliation(s)
- Shuji Ikegami
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Keiko Maeda
- Department of Endoscopy, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Takeshi Urano
- Department of Biochemistry, Shimane University School of Medicine, Izumo 693-8501, Japan
- mAbProtein Co. Ltd., Izumo 693-8501, Japan
| | - Jingxi Mu
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Masanao Nakamura
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Takeshi Yamamura
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Tsunaki Sawada
- Department of Endoscopy, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Eri Ishikawa
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Kenta Yamamoto
- Department of Endoscopy, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Hisanori Muto
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Akina Oishi
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Tadashi Iida
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yasuyuki Mizutani
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Takuya Ishikawa
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Naomi Kakushima
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Kazuhiro Furukawa
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Eizaburo Ohno
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Takashi Honda
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Masatoshi Ishigami
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Hiroki Kawashima
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| |
Collapse
|
26
|
Gao C, Zhao Y, Ge L, Liu W, Zhang M, Ni B, Song Z. Distinct maturation, glucose metabolism, and inflammatory function of human monocytes-derived IDECs mediated by anti-IgE and Pam3CSK4 alone or in combination. Front Immunol 2024; 15:1403263. [PMID: 39086490 PMCID: PMC11288808 DOI: 10.3389/fimmu.2024.1403263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/24/2024] [Indexed: 08/02/2024] Open
Abstract
Background Cell energy metabolism controls the activation and function of dendritic cells (DCs). Inflammatory dendritic epidermal cells (IDECs) in skin lesions of atopic dermatitis (AD) express high-affinity IgE receptor (FcϵRI) and toll-like receptor 2 (TLR2), which mediate the generation and maintenance of inflammation. However, cellular energy metabolism and effector function of IDECs mediated by FcϵRI and TLR2 have not been fully elucidated. Methods IDECs in vitro were treated with TLR2 agonist Pam3CSK4 and anti-IgE alone or in combination for 24 h. Further, we analyzed the expression of cell surface activation markers, production of inflammatory factors, and cellular energy metabolism profiles of IDECs by using flow cytometry, multiplex assay, RNA sequencing, targeted energy metabolism, and seahorse assays. Results Compared to the unstimulated or anti-IgE groups, Pam3CSK4 alone or combined with anti-IgE groups significantly increased the expression of CD80, CD83, and CD86 on IDECs, but did not affect the expression of the above markers in the anti-IgE group. The release of inflammatory cytokines increased in the Pam3CSK4 alone or combined with anti-IgE groups, while there was a weak increasing trend in the anti-IgE group. The glycolysis/gluconeogenesis pathway of carbon metabolism was affected in all treatment groups. Furthermore, compared to the control group, we found a decrease in pyruvic acid, upregulation of PFKM, downregulation of FBP1, and increase in extracellular lactate, glycolysis rate, and glycolysis capacity after all treatments, while there was no difference between each treatment group. However, there was no difference in glycolytic reserve and mitochondrial basic and maximum respiration among all groups. Conclusion Our results indicate that glycolysis of IDECs may be activated through FcϵRI and TLR2 to upregulate inflammatory factors, suggesting that danger signals from bacteria or allergens might evoke an inflammatory response from AD through the glycolysis pathway.
Collapse
Affiliation(s)
- Cuie Gao
- Department of Dermatology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Ying Zhao
- Department of Dermatology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Lan Ge
- Department of Dermatology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Wenying Liu
- Department of Dermatology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Mengjie Zhang
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
| | - Bing Ni
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
| | - Zhiqiang Song
- Department of Dermatology, Southwest Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
27
|
Uslu U, Sun L, Castelli S, Finck AV, Assenmacher CA, Young RM, Chen ZJ, June CH. The STING agonist IMSA101 enhances chimeric antigen receptor T cell function by inducing IL-18 secretion. Nat Commun 2024; 15:3933. [PMID: 38730243 PMCID: PMC11087554 DOI: 10.1038/s41467-024-47692-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/10/2024] [Indexed: 05/12/2024] Open
Abstract
As a strategy to improve the therapeutic success of chimeric antigen receptor T cells (CART) directed against solid tumors, we here test the combinatorial use of CART and IMSA101, a newly developed stimulator of interferon genes (STING) agonist. In two syngeneic tumor models, improved overall survival is observed when mice are treated with intratumorally administered IMSA101 in addition to intravenous CART infusion. Transcriptomic analyses of CART isolated from tumors show elevated T cell activation, as well as upregulated cytokine pathway signatures, in particular IL-18, in the combination treatment group. Also, higher levels of IL-18 in serum and tumor are detected with IMSA101 treatment. Consistent with this, the use of IL-18 receptor negative CART impair anti-tumor responses in mice receiving combination treatment. In summary, we find that IMSA101 enhances CART function which is facilitated through STING agonist-induced IL-18 secretion.
Collapse
Affiliation(s)
- Ugur Uslu
- Center for Cellular Immunotherapies, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lijun Sun
- ImmuneSensor Therapeutics, Dallas, TX, 75235, USA
| | - Sofia Castelli
- Center for Cellular Immunotherapies, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Amanda V Finck
- Center for Cellular Immunotherapies, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Charles-Antoine Assenmacher
- Comparative Pathology Core, Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Regina M Young
- Center for Cellular Immunotherapies, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Zhijian J Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD20815, USA.
| | - Carl H June
- Center for Cellular Immunotherapies, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
28
|
Narros-Fernández P, Chomanahalli Basavarajappa S, Walsh PT. Interleukin-1 family cytokines at the crossroads of microbiome regulation in barrier health and disease. FEBS J 2024; 291:1849-1869. [PMID: 37300849 DOI: 10.1111/febs.16888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/23/2023] [Accepted: 06/08/2023] [Indexed: 06/12/2023]
Abstract
Recent advances in understanding how the microbiome can influence both the physiology and the pathogenesis of disease in humans have highlighted the importance of gaining a deeper insight into the complexities of the host-microbial dialogue. In tandem with this progress, has been a greater understanding of the biological pathways which regulate both homeostasis and inflammation at barrier tissue sites, such as the skin and the gut. In this regard, the Interleukin-1 family of cytokines, which can be segregated into IL-1, IL-18 and IL-36 subfamilies, have emerged as important custodians of barrier health and immunity. With established roles as orchestrators of various inflammatory diseases in both the skin and intestine, it is now becoming clear that IL-1 family cytokine activity is not only directly influenced by external microbes, but can also play important roles in shaping the composition of the microbiome at barrier sites. This review explores the current knowledge surrounding the evidence that places these cytokines as key mediators at the interface between the microbiome and human health and disease at the skin and intestinal barrier tissues.
Collapse
Affiliation(s)
- Paloma Narros-Fernández
- Trinity Translational Medicine Institute, School of Medicine, Trinity College Dublin, Ireland
- National Children's Research Centre, CHI Crumlin, Dublin 12, Ireland
| | - Shrikanth Chomanahalli Basavarajappa
- Trinity Translational Medicine Institute, School of Medicine, Trinity College Dublin, Ireland
- National Children's Research Centre, CHI Crumlin, Dublin 12, Ireland
| | - Patrick T Walsh
- Trinity Translational Medicine Institute, School of Medicine, Trinity College Dublin, Ireland
- National Children's Research Centre, CHI Crumlin, Dublin 12, Ireland
| |
Collapse
|
29
|
Chen W, Jin B, Cheng C, Peng H, Zhang X, Tan W, Tang R, Lian X, Diao H, Luo N, Li X, Fan J, Shi J, Yin C, Wang J, Peng S, Yu L, Li J, Wu RQ, Kuang DM, Shi GP, Zhou Y, Wang F, Jiang X. Single-cell profiling reveals kidney CD163 + dendritic cell participation in human lupus nephritis. Ann Rheum Dis 2024; 83:608-623. [PMID: 38290829 DOI: 10.1136/ard-2023-224788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/12/2024] [Indexed: 02/01/2024]
Abstract
OBJECTIVES The current work aimed to provide a comprehensive single-cell landscape of lupus nephritis (LN) kidneys, including immune and non-immune cells, identify disease-associated cell populations and unravel their participation within the kidney microenvironment. METHODS Single-cell RNA and T cell receptor sequencing were performed on renal biopsy tissues from 40 patients with LN and 6 healthy donors as controls. Matched peripheral blood samples from seven LN patients were also sequenced. Multiplex immunohistochemical analysis was performed on an independent cohort of 60 patients and validated using flow cytometric characterisation of human kidney tissues and in vitro assays. RESULTS We uncovered a notable enrichment of CD163+ dendritic cells (DC3s) in LN kidneys, which exhibited a positive correlation with the severity of LN. In contrast to their counterparts in blood, DC3s in LN kidney displayed activated and highly proinflammatory phenotype. DC3s showed strong interactions with CD4+ T cells, contributing to intrarenal T cell clonal expansion, activation of CD4+ effector T cell and polarisation towards Th1/Th17. Injured proximal tubular epithelial cells (iPTECs) may orchestrate DC3 activation, adhesion and recruitment within the LN kidneys. In cultures, blood DC3s treated with iPTECs acquired distinct capabilities to polarise Th1/Th17 cells. Remarkably, the enumeration of kidney DC3s might be a potential biomarker for induction treatment response in LN patients. CONCLUSION The intricate interplay involving DC3s, T cells and tubular epithelial cells within kidneys may substantially contribute to LN pathogenesis. The enumeration of renal DC3 holds potential as a valuable stratification feature for guiding LN patient treatment decisions in clinical practice.
Collapse
Affiliation(s)
- Wei Chen
- Department of Nephrology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- National Health Commission (NHC), Key Laboratory of Clinical Nephrology (SunYat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, Guangdong, China
| | - Bei Jin
- Department of Pediatric Rheumatology and Nephrology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Cheng Cheng
- Department of Pediatric Rheumatology and Nephrology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Huajing Peng
- Department of Nephrology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- National Health Commission (NHC), Key Laboratory of Clinical Nephrology (SunYat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, Guangdong, China
| | - Xinxin Zhang
- Department of Nephrology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- National Health Commission (NHC), Key Laboratory of Clinical Nephrology (SunYat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, Guangdong, China
| | - Weiping Tan
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ruihan Tang
- Department of Nephrology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- National Health Commission (NHC), Key Laboratory of Clinical Nephrology (SunYat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, Guangdong, China
| | - Xingji Lian
- Department of Nephrology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- National Health Commission (NHC), Key Laboratory of Clinical Nephrology (SunYat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, Guangdong, China
| | - Hui Diao
- Department of Nephrology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- National Health Commission (NHC), Key Laboratory of Clinical Nephrology (SunYat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, Guangdong, China
| | - Ning Luo
- Department of Nephrology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- National Health Commission (NHC), Key Laboratory of Clinical Nephrology (SunYat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, Guangdong, China
| | - Xiaoyan Li
- Department of Nephrology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- National Health Commission (NHC), Key Laboratory of Clinical Nephrology (SunYat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, Guangdong, China
| | - Jinjin Fan
- Department of Nephrology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- National Health Commission (NHC), Key Laboratory of Clinical Nephrology (SunYat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, Guangdong, China
| | - Jian Shi
- Institute of Precision Medicine, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Changjun Yin
- Institute of Precision Medicine, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany
| | - Ji Wang
- Institute of Precision Medicine, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Sui Peng
- Institute of Precision Medicine, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- Clinical Trials Unit, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- Department of Gastroenterology and Hepatology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Li Yu
- Department of Pediatrics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jun Li
- Organ Transplant Center, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Rui-Qi Wu
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, and Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Dong-Ming Kuang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, and Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Yi Zhou
- Department of Nephrology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- National Health Commission (NHC), Key Laboratory of Clinical Nephrology (SunYat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, Guangdong, China
| | - Fang Wang
- Institute of Precision Medicine, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Xiaoyun Jiang
- Department of Pediatric Rheumatology and Nephrology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| |
Collapse
|
30
|
Maeda K, Kawashima H. Reply: Interleukin-18 Inhibition in Inflammatory Bowel Diseases: A Delicate Balance. Inflamm Bowel Dis 2024; 30:695-696. [PMID: 38442897 DOI: 10.1093/ibd/izae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Affiliation(s)
- Keiko Maeda
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Hiroki Kawashima
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| |
Collapse
|
31
|
Guglielmo A, Zengarini C, Agostinelli C, Motta G, Sabattini E, Pileri A. The Role of Cytokines in Cutaneous T Cell Lymphoma: A Focus on the State of the Art and Possible Therapeutic Targets. Cells 2024; 13:584. [PMID: 38607023 PMCID: PMC11012008 DOI: 10.3390/cells13070584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
Cutaneous T cell lymphomas (CTCLs), encompassing mycosis fungoides (MF) and Sézary syndrome (SS), present a complex landscape influenced by cytokines and cellular responses. In this work, the intricate relationship between these inflammatory proteins and disease pathogenesis is examined, focusing on what is known at the clinical and therapeutic levels regarding the most well-known inflammatory mediators. An in-depth look is given to their possible alterations caused by novel immunomodulatory drugs and how they may alter disease progression. From this narrative review of the actual scientific landscape, Interferon-gamma (IFN-γ) emerges as a central player, demonstrating a dual role in both promoting and inhibiting cancer immunity, but the work navigates through all the major interleukins known in inflammatory environments. Immunotherapeutic perspectives are elucidated, highlighting the crucial role of the cutaneous microenvironment in shaping dysfunctional cell trafficking, antitumor immunity, and angiogenesis in MF, showcasing advancements in understanding and targeting the immune phenotype in CTCL. In summary, this manuscript aims to comprehensively explore the multifaceted aspects of CTCL, from the immunopathogenesis and cytokine dynamics centred around TNF-α and IFN-γ to evolving therapeutic modalities. Including all the major known and studied cytokines in this analysis broadens our understanding of the intricate interplay influencing CTCL, paving the way for improved management of this complex lymphoma.
Collapse
Affiliation(s)
- Alba Guglielmo
- Institute of Dermatology, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), 33100 Udine, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, University of Bologna, 40138 Bologna, Italy
| | - Corrado Zengarini
- Dipartimento di Scienze Mediche e Chirurgiche, University of Bologna, 40138 Bologna, Italy
- Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Claudio Agostinelli
- Dipartimento di Scienze Mediche e Chirurgiche, University of Bologna, 40138 Bologna, Italy
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Giovanna Motta
- Dipartimento di Scienze Mediche e Chirurgiche, University of Bologna, 40138 Bologna, Italy
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Elena Sabattini
- Dipartimento di Scienze Mediche e Chirurgiche, University of Bologna, 40138 Bologna, Italy
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Alessandro Pileri
- Dipartimento di Scienze Mediche e Chirurgiche, University of Bologna, 40138 Bologna, Italy
- Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
32
|
Kaieda S, Kinoshita T, Chiba A, Miyake S, Hoshino T. IL-18 receptor-α signalling pathway contributes to autoantibody-induced arthritis via neutrophil recruitment and mast cell activation. Mod Rheumatol 2024; 34:500-508. [PMID: 37285315 DOI: 10.1093/mr/road043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/08/2023] [Indexed: 06/09/2023]
Abstract
OBJECTIVES The interleukin (IL)-18 signalling pathway is involved in animal models of collagen-induced arthritis, but the role of this pathway in autoantibody-induced arthritis is poorly understood. An autoantibody-induced arthritis model, K/BxN serum transfer arthritis, reflects the effector phase of arthritis and is important in innate immunity including neutrophils and mast cells. This study aimed to investigate the role of the IL-18 signalling pathway in autoantibody-induced arthritis using IL-18 receptor (IL-18R) α-deficient mice. METHODS K/BxN serum transfer arthritis was induced in IL-18Rα-/- and wild-type B6 (controls) mice. The severity of arthritis was graded, and histological and immunohistochemical examinations were performed on paraffin-embedded ankle sections. Total Ribonucleic acid (RNA) isolated from mouse ankle joints was analysed by real-time reverse transcriptase-polymerase chain reaction. RESULTS IL-18 Rα-/- mice had significantly lower arthritis clinical scores, neutrophil infiltration, and numbers of activated, degranulated mast cells in the arthritic synovium than in controls. IL-1β, which is indispensable for the progression of arthritis, was significantly downregulated in inflamed ankle tissue in IL-18 Rα-/- mice. CONCLUSIONS IL-18/IL-18Rα signalling contributes to the development of autoantibody-induced arthritis by enhancing synovial tissue expression of IL-1β and inducing neutrophil recruitment and mast cell activation. Therefore, inhibition of the IL-18Rα signalling pathway might be a new therapeutic strategy for rheumatoid arthritis.
Collapse
Affiliation(s)
- Shinjiro Kaieda
- Department of Medicine, Division of Respirology, Neurology and Rheumatology, Kurume University School of Medicine, Kurume, Japan
| | - Takashi Kinoshita
- Department of Medicine, Division of Respirology, Neurology and Rheumatology, Kurume University School of Medicine, Kurume, Japan
| | - Asako Chiba
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Sachiko Miyake
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Tomoaki Hoshino
- Department of Medicine, Division of Respirology, Neurology and Rheumatology, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
33
|
Ju J, Li Z, Jia X, Peng X, Wang J, Gao F. Interleukin-18 in chronic pain: Focus on pathogenic mechanisms and potential therapeutic targets. Pharmacol Res 2024; 201:107089. [PMID: 38295914 DOI: 10.1016/j.phrs.2024.107089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
Chronic pain has been proven to be an independent disease, other than an accompanying symptom of certain diseases. Interleukin-18 (IL-18), a pro-inflammatory cytokine with pleiotropic biological effects, participates in immune modulation, inflammatory response, tumor growth, as well as the process of chronic pain. Compelling evidence suggests that IL-18 is upregulated in the occurrence of chronic pain. Antagonism or inhibition of IL-18 expression can alleviate the occurrence and development of chronic pain. And IL-18 is located in microglia, while IL-18R is mostly located in astrocytes in the spinal cord. This indicates that the interaction between microglia and astrocytes mediated by the IL-18/IL-18R axis is involved in the occurrence of chronic pain. In this review, we described the role and mechanism of IL-18 in different types of chronic pain. This review provides strong evidence that IL-18 is a potential therapeutic target in pain management.
Collapse
Affiliation(s)
- Jie Ju
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoqian Jia
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoling Peng
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jihong Wang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Gao
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
34
|
Tölken LA, Paulikat AD, Jachmann LH, Reder A, Salazar MG, Medina LMP, Michalik S, Völker U, Svensson M, Norrby-Teglund A, Hoff KJ, Lammers M, Siemens N. Reduced interleukin-18 secretion by human monocytic cells in response to infections with hyper-virulent Streptococcus pyogenes. J Biomed Sci 2024; 31:26. [PMID: 38408992 PMCID: PMC10898077 DOI: 10.1186/s12929-024-01014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/20/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Streptococcus pyogenes (group A streptococcus, GAS) causes a variety of diseases ranging from mild superficial infections of the throat and skin to severe invasive infections, such as necrotizing soft tissue infections (NSTIs). Tissue passage of GAS often results in mutations within the genes encoding for control of virulence (Cov)R/S two component system leading to a hyper-virulent phenotype. Dendritic cells (DCs) are innate immune sentinels specialized in antigen uptake and subsequent T cell priming. This study aimed to analyze cytokine release by DCs and other cells of monocytic origin in response to wild-type and natural covR/S mutant infections. METHODS Human primary monocyte-derived (mo)DCs were used. DC maturation and release of pro-inflammatory cytokines in response to infections with wild-type and covR/S mutants were assessed via flow cytometry. Global proteome changes were assessed via mass spectrometry. As a proof-of-principle, cytokine release by human primary monocytes and macrophages was determined. RESULTS In vitro infections of moDCs and other monocytic cells with natural GAS covR/S mutants resulted in reduced secretion of IL-8 and IL-18 as compared to wild-type infections. In contrast, moDC maturation remained unaffected. Inhibition of caspase-8 restored secretion of both molecules. Knock-out of streptolysin O in GAS strain with unaffected CovR/S even further elevated the IL-18 secretion by moDCs. Of 67 fully sequenced NSTI GAS isolates, 28 harbored mutations resulting in dysfunctional CovR/S. However, analyses of plasma IL-8 and IL-18 levels did not correlate with presence or absence of such mutations. CONCLUSIONS Our data demonstrate that strains, which harbor covR/S mutations, interfere with IL-18 and IL-8 responses in monocytic cells by utilizing the caspase-8 axis. Future experiments aim to identify the underlying mechanism and consequences for NSTI patients.
Collapse
Affiliation(s)
- Lea A Tölken
- Department of Molecular Genetics and Infection Biology, University of Greifswald, Greifswald, Germany
| | - Antje D Paulikat
- Department of Molecular Genetics and Infection Biology, University of Greifswald, Greifswald, Germany
| | - Lana H Jachmann
- Department of Molecular Genetics and Infection Biology, University of Greifswald, Greifswald, Germany
| | - Alexander Reder
- Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | | | - Laura M Palma Medina
- Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden
| | - Stephan Michalik
- Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Mattias Svensson
- Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden
| | - Anna Norrby-Teglund
- Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden
| | - Katharina J Hoff
- Institute of Mathematics and Computer Science, University of Greifswald, Greifswald, Germany
| | - Michael Lammers
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Nikolai Siemens
- Department of Molecular Genetics and Infection Biology, University of Greifswald, Greifswald, Germany.
| |
Collapse
|
35
|
Segbefia SP, Asandem DA, Amoah LE, Kusi KA. Cytokine gene polymorphisms implicated in the pathogenesis of Plasmodium falciparum infection outcome. Front Immunol 2024; 15:1285411. [PMID: 38404582 PMCID: PMC10884311 DOI: 10.3389/fimmu.2024.1285411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/24/2024] [Indexed: 02/27/2024] Open
Abstract
Cytokines play a critical role in the immune mechanisms involved in fighting infections including malaria. Polymorphisms in cytokine genes may affect immune responses during an infection with Plasmodium parasites and immunization outcomes during routine administration of malaria vaccines. These polymorphisms can increase or reduce susceptibility to this deadly infection, and this may affect the physiologically needed balance between anti-inflammatory and pro-inflammatory cytokines. The purpose of this review is to present an overview of the effect of selected cytokine gene polymorphisms on immune responses against malaria.
Collapse
Affiliation(s)
- Selorm Philip Segbefia
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
- Department of Molecular Medicine, School of Medicine and Dentistry, College of Science, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Diana Asema Asandem
- Department of Virology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Linda Eva Amoah
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Kwadwo Asamoah Kusi
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
36
|
Wang D, Zhang B, Liu X, Kan LLY, Leung PC, Wong CK. Agree to disagree: The contradiction between IL-18 and IL-37 reveals shared targets in cancer. Pharmacol Res 2024; 200:107072. [PMID: 38242220 DOI: 10.1016/j.phrs.2024.107072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/28/2023] [Accepted: 01/10/2024] [Indexed: 01/21/2024]
Abstract
IL-37 is a newly discovered member of the IL-1 cytokine family which plays an important role in regulating inflammation and maintaining physiological homeostasis. IL-37 showed a close relationship with IL-18, another key cytokine in inflammation regulation and cancer development. IL-37 affects the function of IL-18 either by binding to IL-18Rα, a key subunit of both IL-37 and IL-18 receptor, or by drastically neutralizing the IL-18 protein expression of IL-18 binding protein, an important natural inhibitory molecule of IL-18. Moreover, as another subunit receptor of IL-37, IL-1R8 can suppress IL-18Rα expression, functioning as a surveillance mechanism to prevent overactivation of both IL-18 and IL-37 signaling pathways. While IL-18 and IL-37 share the same receptor subunit, IL-18 would in turn interfere with IL-37 signal transduction by binding to IL-18Rα. It is also reported that IL-18 and IL-37 demonstrated opposing effects in a variety of cancers, such as glioblastoma, lung cancer, leukemia, and hepatocellular cancer. Although the mutual regulation of IL-18 and IL-37 and their diametrically opposed effects in cancers has been reported, IL-18 has not been taken into consideration when interpreting clinical findings and conducting mechanism investigations related to IL-37 in cancer. We aim to review the recent progress in IL-18 and IL-37 research in cancer and summarize the correlation between IL-18 and IL-37 in cancer based on their expression level and underlying mechanisms, which would provide new insights into elucidating the conflicting roles of IL-18 and IL-37 in cancer and bring new ideas for translational research related to IL-18 and IL-37.
Collapse
Affiliation(s)
- Dongjie Wang
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Bitian Zhang
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaolin Liu
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Lea Ling-Yu Kan
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Ping-Chung Leung
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Chun-Kwok Wong
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China; Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China; Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
37
|
Chen J, Wang W, Li S, Wang Z, Zuo W, Nong T, Li Y, Liu H, Wei P, He X. RNA-seq reveals role of cell-cycle regulating genes in the pathogenicity of a field very virulent infectious bursal disease virus. Front Vet Sci 2024; 11:1334586. [PMID: 38362295 PMCID: PMC10867150 DOI: 10.3389/fvets.2024.1334586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/10/2024] [Indexed: 02/17/2024] Open
Abstract
Infectious bursal disease virus (IBDV) infection causes highly contagious and immunosuppressive disease in poultry. The thymus, serving as the primary organ for T cell maturation and differentiation, plays an important role in the pathogenicity of IBDV in the infected chickens. However, there are no reports on the molecular pathogenesis of IBDV in the thymus currently. The aim of the study was to elucidate the molecular mechanisms underlying the pathogenicity of a field very virulent (vv) IBDV strain NN1172 in the thymus of SPF chickens using integrative transcriptomic and proteomic analyses. Our results showed that a total of 4,972 Differentially expressed genes (DEGs) in the thymus of NN1172-infected chickens by transcriptomic analysis, with 2,796 up-regulated and 2,176 down-regulated. Meanwhile, the proteomic analysis identified 726 differentially expressed proteins (DEPs) in the infected thymus, with 289 up-regulated and 437 down-regulated. Overall, a total of 359 genes exhibited differentially expression at both mRNA and protein levels, with 134 consistently up-regulated and 198 genes consistently down-regulated, as confirmed through a comparison of the RNA-seq and the proteomic datasets. The gene ontology (GO) analysis unveiled the involvement of both DEGs and DEPs in diverse categories encompassing cellular components, biological processes, and molecular functions in the pathological changes in IBDV-infected thymus. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that the host mainly displayed severely disruption of cell survival/repair, proliferation and metabolism pathway, meanwhile, the infection triggers antiviral immune activation with a potential emphasis on the MDA5 pathway. Network inference analysis identified seven core hub genes, which include CDK1, TYMS, MCM5, KIF11, CCNB2, MAD2L1, and MCM4. These genes are all associated with cell-cycle regulating pathway and are likely key mediators in the pathogenesis induced by NN1172 infection in the thymus. This study discovered dominant pathways and genes which enhanced our understanding of the molecular mechanisms underlying IBDV pathogenesis in the thymus.
Collapse
Affiliation(s)
- Jinnan Chen
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Weiwei Wang
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| | - Shangquan Li
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Zhiyuan Wang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Wenbo Zuo
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Tingbin Nong
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Yihai Li
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Hongquan Liu
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Ping Wei
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| | - Xiumiao He
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| |
Collapse
|
38
|
Taheri M, Tehrani HA, Daliri F, Alibolandi M, Soleimani M, Shoari A, Arefian E, Ramezani M. Bioengineering strategies to enhance the interleukin-18 bioactivity in the modern toolbox of cancer immunotherapy. Cytokine Growth Factor Rev 2024; 75:65-80. [PMID: 37813764 DOI: 10.1016/j.cytogfr.2023.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023]
Abstract
Cytokines are the first modern immunotherapeutic agents used for activation immunotherapy. Interleukin-18 (IL-18) has emerged as a potent anticancer immunostimulatory cytokine over the past three decades. IL-18, structurally is a stable protein with very low toxicity at biological doses. IL-18 promotes the process of antigen presentation and also enhances innate and acquired immune responses. It can induce the production of proinflammatory cytokines and increase tumor infiltration of effector immune cells to revert the immunosuppressive milieu of tumors. Furthermore, IL-18 can reduce tumorigenesis, suppress tumor angiogenesis, and induce tumor cell apoptosis. These characteristics present IL-18 as a promising option for cancer immunotherapy. Although several preclinical studies have reported the immunotherapeutic potential of IL-18, clinical trials using it as a monotherapy agent have reported disappointing results. These results may be due to some biological characteristics of IL-18. Several bioengineering approaches have been successfully used to correct its defects as a bioadjuvant. Currently, the challenge with this anticancer immunotherapeutic agent is mainly how to use its capabilities in a rational combinatorial therapy for clinical applications. The present study discussed the strengths and weaknesses of IL-18 as an immunotherapeutic agent, followed by comprehensive review of various promising bioengineering approaches that have been used to overcome its disadvantages. Finally, this study highlights the promising application of IL-18 in modern combinatorial therapies, such as chemotherapy, immune checkpoint blockade therapy, cell-based immunotherapy and cancer vaccines to guide future studies, circumventing the barriers to administration of IL-18 for clinical applications, and bring it to fruition as a potent immunotherapy agent in cancer treatment.
Collapse
Affiliation(s)
- Mojtaba Taheri
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Abdul Tehrani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | | | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoud Soleimani
- Department of Hematology and Cell Therapy, Faculty of Medical Sciences, Tarbiat Modares University, Iran
| | - Alireza Shoari
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran; Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
39
|
Tiemi Enokida Mori M, Name Colado Simão A, Danelli T, Rangel Oliveira S, Luis Candido de Souza Cassela P, Lerner Trigo G, Morais Cardoso K, Mestre Tejo A, Naomi Tano Z, Regina Delicato de Almeida E, Maria Vissoci Reiche E, Maes M, Alysson Batisti Lozovoy M. Protective effects of IL18-105G > A and IL18-137C > Ggenetic variants on severity of COVID-19. Cytokine 2024; 174:156476. [PMID: 38128426 DOI: 10.1016/j.cyto.2023.156476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/29/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVE AND DESIGN A cross-sectional study evaluated the IL18-105G > A (rs360717) and IL18-137C > G (rs187238) variants on Coronavírus Disease 2019 (COVID-19) severity. SUBJECTS AND METHODS 528 patients with COVID-19 classifed with mild (n = 157), moderate (n = 63) and critical (n = 308) disease were genotpyed for the IL18-105G > A and IL18-137C > G variants. RESULTS We observed associations between severe + critical COVID-19 groups (reference group was mild COVID-19) and the IL18-105G > A (p = 0.008) and IL18-137C > G (p = 0.01) variants, which remained significant after adjusting for sex, ethnicity and age. Consequently, we have examined the associations between moderate + critical COVID-19 and the genotypes of both variants using different genetic models. The IL18-105G > A was associated with severe disease (moderate + critical), with effects of the GA genotype in the codominant [Odds ratio (OR), (95 % confidence interval) 0.55, 0.34-0.89, p = 0.015], overdominant (0.56, 0.35-0.89, p = 0.014) and dominant (0.60, 0.38-0.96, p = 0.031) models. IL18-105 GA coupled with age, chest computed tomograhy scan anormalities, body mass index, heart diseases, type 2 diabetes mellitus, hypertension, and inflammation may be used to predict the patients who develop severe disease with an accuracy of 84.3 % (sensitivity: 83.3 % and specificity: 86.5 %). Therefore, the presence of the IL18-105 A allele in homozygosis or heterozygosis conferred about 44.0 % of protection in the development of moderate and severe COVID-19. The IL18-137C > G variant was also associated with protective effects in the codominant (0.55, 0.34-0.89, p = 0.015), overdominant (0.57, 0.36-0.91, p = 0.018), and dominant models (0.59, 0.37-0.93, p = 0.025). Therefore, the IL18-137 G allele showed a protective effect against COVID-19 severity. CONCLUSION The IL18-105G > A and IL18-137C > Gvariants may contribute with protective effects for COVID-19 severity and the effects of IL18-137C > G may be modulating IL-18 production and Th1-mediated immune responses.
Collapse
Affiliation(s)
| | - Andréa Name Colado Simão
- Laboratory of Research in Applied Immunology, University of Londrina, Londrina, PR, Brazil; Department of Pathology, Clinical Analysis and Toxicology, Laboratory of Research in Applied Immunology, University of Londrina, Londrina, PR, Brazil.
| | - Tiago Danelli
- Laboratory of Research in Applied Immunology, University of Londrina, Londrina, PR, Brazil
| | - Sayonara Rangel Oliveira
- Department of Pathology, Clinical Analysis and Toxicology, Laboratory of Research in Applied Immunology, University of Londrina, Londrina, PR, Brazil
| | | | - Guilherme Lerner Trigo
- Laboratory of Research in Applied Immunology, University of Londrina, Londrina, PR, Brazil
| | - Kauê Morais Cardoso
- Laboratory of Research in Applied Immunology, University of Londrina, Londrina, PR, Brazil.
| | | | - Zuleica Naomi Tano
- Depertment of Medical Clinic, University of Londrina, Londrina, PR, Brazil.
| | - Elaine Regina Delicato de Almeida
- Laboratory of Research in Applied Immunology, University of Londrina, Londrina, PR, Brazil; Department of Pathology, Clinical Analysis and Toxicology, Laboratory of Research in Applied Immunology, University of Londrina, Londrina, PR, Brazil
| | - Edna Maria Vissoci Reiche
- Postgraduate Program of Clinical and Laboratory Pathophysiology, Health Sciences Center, Londrina State University, Lodrina, Paraná, Brazil; Pontifical Catholic University of Paraná, School of Medicine, Campus Londrina, Lonidrna, Paraná, Brazil.
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China.
| | - Marcell Alysson Batisti Lozovoy
- Laboratory of Research in Applied Immunology, University of Londrina, Londrina, PR, Brazil; Department of Pathology, Clinical Analysis and Toxicology, Laboratory of Research in Applied Immunology, University of Londrina, Londrina, PR, Brazil
| |
Collapse
|
40
|
Tamamoto-Mochizuki C, Santoro D, Saridomikelakis MN, Eisenschenk MNC, Hensel P, Pucheu-Haston C. Update on the role of cytokines and chemokines in canine atopic dermatitis. Vet Dermatol 2024; 35:25-39. [PMID: 37485553 DOI: 10.1111/vde.13192] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/02/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023]
Abstract
BACKGROUND Cytokines and chemokines play central roles in the pathogenesis of canine atopic dermatitis (cAD). Numerous studies have been published and provide new insights into their roles in cAD. OBJECTIVES To summarise the research updates on the role of cytokines and chemokines in the pathogenesis of cAD since the last review by the International Committee on Allergic Diseases of Animals in 2015. MATERIAL AND METHODS Online citation databases, abstracts and proceedings from international meetings on cytokines and chemokines relevant to cAD that had been published between 2015 and 2022 were reviewed. RESULTS Advances in technologies have allowed the simultaneous analysis of a broader range of cytokines and chemokines, which revealed an upregulation of a multipolar immunological axis (Th1, Th2, Th17 and Th22) in cAD. Most studies focused on specific cytokines, which were proposed as potential novel biomarkers and/or therapeutic targets for cAD, such as interleukin-31. Most other cytokines and chemokines had inconsistent results, perhaps as a consequence of their varied involvement in the pathogenesis of different endotypes of cAD. CONCLUSIONS AND CLINICAL RELEVANCE Inconsistent results for many cytokines and chemokines illustrate the difficulty of studying the complex cytokine and chemokine networks in cAD, and highlight the need for more comprehensive and structured studies in the future.
Collapse
Affiliation(s)
- Chie Tamamoto-Mochizuki
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Domenico Santoro
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | | | | | | | - Cherie Pucheu-Haston
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
41
|
Velez C, Williamson D, Cánovas ML, Giai LR, Rutland C, Pérez W, Barbeito CG. Changes in Immune Response during Pig Gestation with a Focus on Cytokines. Vet Sci 2024; 11:50. [PMID: 38275932 PMCID: PMC10819333 DOI: 10.3390/vetsci11010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/28/2023] [Accepted: 01/08/2024] [Indexed: 01/27/2024] Open
Abstract
Pigs have the highest percentage of embryonic death not associated with specific diseases of all livestock species, at 20-45%. During gestation processes, a series of complex alterations can arise, including embryonic migration and elongation, maternal immunological recognition of pregnancy, and embryonic competition for implantation sites and subsequent nutrition requirements and development. Immune cells and cytokines act as mediators between other molecules in highly complex interactions between various cell types. However, other non-immune cells, such as trophoblast cells, are important in immune pregnancy regulation. Numerous studies have shed light on the crucial roles of several cytokines that regulate the inflammatory processes that characterize the interface between the fetus and the mother throughout normal porcine gestation, but most of these reports are limited to the implantational and peri-implantational periods. Increase in some proinflammatory cytokines have been found in other gestational periods, such as placental remodeling. Porcine immune changes during delivery have not been studied as deeply as in other species. This review details some of the immune system cells actively involved in the fetomaternal interface during porcine gestation, as well as the principal cells, cytokines, and molecules, such as antibodies, that play crucial roles in sow pregnancy, both in early and mid-to-late gestation.
Collapse
Affiliation(s)
- Carolina Velez
- Laboratory of Histology, Faculty of Veterinary Science, National University of La Pampa (UNLPam), Santa Rosa 6300, Argentina; (C.V.); (D.W.); (L.R.G.)
- National Scientific and Technical Research Council of Argentina (CONICET), Buenos Aires 2690, Argentina;
| | - Delia Williamson
- Laboratory of Histology, Faculty of Veterinary Science, National University of La Pampa (UNLPam), Santa Rosa 6300, Argentina; (C.V.); (D.W.); (L.R.G.)
| | - Mariela Lorena Cánovas
- Laboratory of Histology, Faculty of Veterinary Science, National University of La Pampa (UNLPam), Santa Rosa 6300, Argentina; (C.V.); (D.W.); (L.R.G.)
| | - Laura Romina Giai
- Laboratory of Histology, Faculty of Veterinary Science, National University of La Pampa (UNLPam), Santa Rosa 6300, Argentina; (C.V.); (D.W.); (L.R.G.)
| | - Catrin Rutland
- Sutton Bonington Campus, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - William Pérez
- Department of Veterinary Anatomy, University of Montevideo, Montevideo 11600, Uruguay
| | - Claudio Gustavo Barbeito
- National Scientific and Technical Research Council of Argentina (CONICET), Buenos Aires 2690, Argentina;
- Laboratory of Descriptive, Comparative and Experimental Histology and Embriology (LHYEDEC), Department of Basic Sciences, Faculty of Veterinary Science, National University of La Plata (UNLP), La Plata 1900, Argentina
| |
Collapse
|
42
|
Watanabe S, Suzukawa M, Tashimo H, Ohshima N, Asari I, Takada K, Imoto S, Nagase T, Ohta K. Low Serum IL-18 Levels May Predict the Effectiveness of Dupilumab in Severe Asthma. Intern Med 2024; 63:179-187. [PMID: 37225484 PMCID: PMC10864083 DOI: 10.2169/internalmedicine.1808-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/10/2023] [Indexed: 05/26/2023] Open
Abstract
Objective Dupilumab, a monoclonal antibody specific for the human interleukin (IL)-4 receptor α, is used to treat severe asthma, especially in patients with elevated blood eosinophil counts and fractional exhaled nitric oxide (FeNO). The therapeutic response to dupilumab is highly variable. In this study, we explored new serum biomarkers to accurately predict the effect of dupilumab and examine the effect of dupilumab based on changes in the clinical parameters and cytokine levels. Methods Seventeen patients with severe asthma treated with dupilumab were enrolled. Responders, defined as those with a >0.5-point decrease in the Asthma Control Questionnaire (ACQ) score after 6 months of treatment, were included. Results There were 10 responders and 7 non-responders. Serum type 2 cytokines were equivalent between responders and non-responders; the baseline serum IL-18 level was significantly lower in responders than in non-responders (responders, 194.9±51.0 pg/mL; non-responders, 323.4±122.7 pg/mL, p=0.013). The cut-off value of IL-18 at 230.5 pg/mL could be used to distinguish non-responders from responders (sensitivity 71.4, specificity 80.0, p=0.032). Conclusion A low baseline serum IL-18 level may be a useful predictor of an unfavorable response to dupilumab in terms of the ACQ-6.
Collapse
Affiliation(s)
- Shizuka Watanabe
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, Japan
- Department of Respiratory Medicine, The University of Tokyo, Japan
| | - Maho Suzukawa
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, Japan
- Asthma, Allergy and Rheumatology Center, National Hospital Organization Tokyo National Hospital, Japan
| | - Hiroyuki Tashimo
- Asthma, Allergy and Rheumatology Center, National Hospital Organization Tokyo National Hospital, Japan
| | - Nobuharu Ohshima
- Center for Pulmonary Diseases, National Hospital Organization Tokyo National Hospital, Japan
| | - Isao Asari
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, Japan
| | - Kazufumi Takada
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, Japan
- Department of Geriatric Medicine, The University of Tokyo, Japan
| | - Sahoko Imoto
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, Japan
- Department of Respiratory Medicine, The University of Tokyo, Japan
| | - Takahide Nagase
- Department of Respiratory Medicine, The University of Tokyo, Japan
| | - Ken Ohta
- Department of Respiratory Medicine, The University of Tokyo, Japan
- Department of Respiratory Medicine, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Japan
| |
Collapse
|
43
|
Ceraolo MG, Romero-Medina MC, Gobbato S, Melita G, Krynska H, Sirand C, Gupta P, Viarisio D, Robitaille A, Marvel J, Tommasino M, Venuti A, Gheit T. HPV38 impairs UV-induced transcriptional activation of the IL-18 pro-inflammatory cytokine. mSphere 2023; 8:e0045023. [PMID: 37877723 PMCID: PMC10732055 DOI: 10.1128/msphere.00450-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/13/2023] [Indexed: 10/26/2023] Open
Abstract
IMPORTANCE Here, we demonstrate that the direct binding of p53 on the IL-18 promoter region regulates its gene expression. However, the presence of E6 and E7 from human papillomavirus type 38 impairs this mechanism via a new inhibitory complex formed by DNA methyltransferase 1 (DNMT1)/PKR/ΔNp73α, which binds to the region formerly occupied by p53 in primary keratinocytes.
Collapse
Affiliation(s)
- Maria Grazia Ceraolo
- International Agency for Research on Cancer (IARC), World Health Organization, Lyon, France
| | | | - Simone Gobbato
- International Agency for Research on Cancer (IARC), World Health Organization, Lyon, France
| | - Giusi Melita
- International Agency for Research on Cancer (IARC), World Health Organization, Lyon, France
| | - Hanna Krynska
- International Agency for Research on Cancer (IARC), World Health Organization, Lyon, France
- Biotechnology and Cell Signaling (CNRS/Université de Strasbourg, UMR 7242), Ecole Superieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, Illkirch, France
| | - Cecilia Sirand
- International Agency for Research on Cancer (IARC), World Health Organization, Lyon, France
| | - Purnima Gupta
- International Agency for Research on Cancer (IARC), World Health Organization, Lyon, France
| | | | - Alexis Robitaille
- International Agency for Research on Cancer (IARC), World Health Organization, Lyon, France
| | - Jacqueline Marvel
- CIRI, Centre International de Recherche en Infectiologie, Université Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Université Lyon, Lyon, France
| | | | - Assunta Venuti
- International Agency for Research on Cancer (IARC), World Health Organization, Lyon, France
| | - Tarik Gheit
- International Agency for Research on Cancer (IARC), World Health Organization, Lyon, France
| |
Collapse
|
44
|
Mirabedini Z, Mirjalali H, Kazemirad E, Khamesipour A, Samimirad K, Koosha M, Saberi R, Rahimi HM, Mohebali M, Hajjaran H. The effects of Leishmania RNA virus 2 (LRV2) on the virulence factors of L. major and pro-inflammatory biomarkers: an in vitro study on human monocyte cell line (THP-1). BMC Microbiol 2023; 23:398. [PMID: 38097942 PMCID: PMC10720061 DOI: 10.1186/s12866-023-03140-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Cutaneous Leishmaniasis (CL) is a parasitic disease with diverse outcomes. Clinical diversity is influenced by various factors such as Leishmania species and host genetic background. The role of Leishmania RNA virus (LRV), as an endosymbiont, is suggested to not only affect the pathogenesis of Leishmania, but also impact host immune responses. This study aimed to investigate the influence of LRV2 on the expression of a number of virulence factors (VFs) of Leishmania and pro-inflammatory biomarkers. MATERIALS AND METHODS Sample were obtained from CL patients from Golestan province. Leishmania species were identified by PCR (LIN 4, 17), and the presence of LRV2 was checked using the semi-nested PCR (RdRp gene). Human monocyte cell line (THP-1) was treated with three isolates of L. major with LRV2 and one isolate of L. major without LRV2. The treatments with four isolates were administered for the time points: zero, 12, 24, 36, and 48 h after co-infection. The expression levels of Leishmania VFs genes including GP63, HSP83, and MPI, as well as pro-inflammatory biomarkers genes including NLRP3, IL18, and IL1β, were measured using quantitative real-time PCR. RESULTS The expression of GP63, HSP83, and MPI revealed up-regulation in LRV2 + isolates compared to LRV2- isolates. The expression of the pro-inflammatory biomarkers including NLRP3, IL1β, and IL18 genes in LRV2- were higher than LRV2 + isolates. CONCLUSION This finding suggests that LRV2 + may have a probable effect on the Leishmania VFs and pro-inflammatory biomarkers in the human macrophage model.
Collapse
Affiliation(s)
- Zahra Mirabedini
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirjalali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Kazemirad
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Khamesipour
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran, Iran
| | - Katayoun Samimirad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mona Koosha
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Saberi
- Toxoplasmosis Research Center, Communicable Disease Institute, Department of Parasitology, School of Medicine, Mazandaran University of Medical Science, Sari, Iran
| | - Hanieh Mohammad Rahimi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Mohebali
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
- Center for Research of Endemic Parasites of Iran (CREPI), Tehran University of Medical Sciences, Tehran, Iran.
| | - Homa Hajjaran
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
45
|
Khare S, Jog R, Bright A, Burgess DJ, Chakder SK, Gokulan K. Evaluation of mucosal immune profile associated with Zileuton nanocrystal-formulated BCS-II drug upon oral administration in Sprague Dawley rats. Nanotoxicology 2023; 17:583-603. [PMID: 38146991 DOI: 10.1080/17435390.2023.2289940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 10/23/2023] [Accepted: 11/23/2023] [Indexed: 12/27/2023]
Abstract
Nanocrystal drug formulation involves several critical manufacturing procedures that result in complex structures to improve drug solubility, dissolution, bioavailability, and consequently the efficacy of poorly soluble Biopharmaceutics Classification System (BCS) II and IV drugs. Nanocrystal formulation of an already approved oral drug may need additional immunotoxic assessment due to changes in the physical properties of the active pharmaceutical ingredient (API). In this study, we selected Zileuton, an FDA-approved drug that belongs to BCS-II for nanocrystal formulation. To evaluate the efficacy and mucosal immune profile of the nanocrystal drug, 10-week-old rats were dosed using capsules containing either API alone or nanocrystal formulated Zileuton (NDZ), or with a physical mixture (PM) using flexible oral gavage syringes. Control groups consisted of untreated, or placebo treated animals. Test formulations were administrated to rats at a dose of 30 mg/kg body weight (bw) once a day for 15 days. The rats treated with NDZ or PM had approximately 4.0 times lower (7.5 mg/kg bw) API when compared to the micron sized API treated rats. At the end of treatment, mucosal (intestinal tissue) and circulating cytokines were measured. The immunological response revealed that NDZ decreased several proinflammatory cytokines in the ileal mucosa (Interleukin-18, Tumor necrosis Factor-α and RANTES [regulated upon activation, normal T cell expressed and secreted]). A similar pattern in the cytokine profile was also observed for the micron sized API and PM treated rats. The cytokine production revealed that there was a significant increase in the production of IL-1β and IL-10 in the females in all experimental groups. Additionally, NDZ showed an immunosuppressive effect on proinflammatory cytokines both locally and systemically, which was similar to the response in micron sized API treated rats. These findings indicate that NDZ significantly decreased several proinflammatory cytokines and it displays less immunotoxicity, probably due to the nanocrystal formulation. Thus, the nanocrystal formulation is more suitable for oral drug delivery, as it exhibited better efficacy, safety, and reduced toxicity.
Collapse
Affiliation(s)
- Sangeeta Khare
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA
| | - Rajan Jog
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| | - Anshel Bright
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA
| | - Diane J Burgess
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| | - Sushanta K Chakder
- Center for Drug Evaluation Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Kuppan Gokulan
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA
| |
Collapse
|
46
|
Jang YS, Lee K, Park M, Joo Park J, Choi GM, Kim C, Dehkohneh SB, Chi S, Han J, Song MY, Han YH, Cha SH, Goo Kang S. Albumin-binding recombinant human IL-18BP ameliorates macrophage activation syndrome and atopic dermatitis via direct IL-18 inactivation. Cytokine 2023; 172:156413. [PMID: 37918054 DOI: 10.1016/j.cyto.2023.156413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/06/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023]
Abstract
Given the clinical success of cytokine blockade in managing diverse inflammatory human conditions, this approach could be exploited for numerous refractory or uncontrolled inflammatory conditions by identifying novel targets for functional blockade. Interleukin (IL)-18, a pro-inflammatory cytokine, is relatively underestimated as a therapeutic target, despite accumulated evidence indicating the unique roles of IL-18 in acute and chronic inflammatory conditions, such as macrophage activation syndrome. Herein, we designed a new form of IL-18 blockade, i.e., APB-R3, a long-acting recombinant human IL-18BP linked to human albumin-binding Fab fragment, SL335, for extending half-life. We then explored the pharmacokinetics and pharmacodynamics of APB-R3. In addition to an extended serum half-life, APB-R3 alleviates liver inflammation and splenomegaly in a model of the macrophage activation syndrome induced in IL-18BP knockout mice. Moreover, APB-R3 substantially controlled skin inflammation in a model of atopic dermatitis. Thus, we report APB-R3 as a new potent IL-18 blocking agent that could be applied to treat IL-18-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Young-Saeng Jang
- Institute of Bioscience and Biotechnology, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Kyungsun Lee
- AprilBio Co., Ltd., Rm602, Biomedical Science Building, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Mihyun Park
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jin Joo Park
- AprilBio Co., Ltd., Rm602, Biomedical Science Building, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ga Min Choi
- AprilBio Co., Ltd., Rm602, Biomedical Science Building, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Chohee Kim
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Shima Barati Dehkohneh
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Susan Chi
- AprilBio Co., Ltd., Rm602, Biomedical Science Building, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jaekyu Han
- AprilBio Co., Ltd., Rm602, Biomedical Science Building, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Moo Young Song
- AprilBio Co., Ltd., Rm602, Biomedical Science Building, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Yong-Hyun Han
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea; Multidimensional Genomics Research Center, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sang-Hoon Cha
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea; AprilBio Co., Ltd., Rm602, Biomedical Science Building, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Seung Goo Kang
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea; AprilBio Co., Ltd., Rm602, Biomedical Science Building, Kangwon National University, Chuncheon 24341, Republic of Korea; Institute of Bioscience and Biotechnology, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
47
|
Haseli M, Pinzon-Herrera L, Hao X, Wickramasinghe SR, Almodovar J. Novel Strategy to Enhance Human Mesenchymal Stromal Cell Immunosuppression: Harnessing Interferon-Gamma Presentation in Metal-Organic Frameworks Embedded on Heparin/Collagen Multilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16472-16483. [PMID: 37944116 DOI: 10.1021/acs.langmuir.3c02355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The immunomodulatory potential of human mesenchymal stromal cells (hMSCs) can be boosted when exposed to interferon-gamma (IFN-γ). While pretreating hMSCs with IFN-γ is a common practice to enhance their immunomodulatory effects, the challenge lies in maintaining a continuous IFN-γ presence within cellular environments. Therefore, in this research, we investigate the sustainable presence of IFN-γ in the cell culture medium by immobilizing it in water-stable metal-organic frameworks (MOFs) [PCN-333(Fe)]. The immobilized IFN-γ in MOFs was coated on top of multilayers composed of combinations of heparin (HEP) and collagen (COL) that were used as a bioactive surface. Multilayers were created by using a layer-by-layer assembly technique, with the final layer alternating between collagen (COL) and heparin (HEP). We evaluated the viability, differentiation, and immunomodulatory activity of hMSCs cultured on (HEP/COL) coated with immobilized IFN-γ in MOFs after 3 and 6 days of culture. Cell viability, compared to tissue culture plastic, was not affected by immobilized IFN-γ in MOFs when they were coated on (HEP/COL) multilayers. We also verified that the osteogenic and adipogenic differentiation of the hMSCs remained unchanged. The immunomodulatory activity of hMSCs was evaluated by examining the expression of indoleamine 2,3-dioxygenase (IDO) and 11 essential immunomodulatory markers. After 6 days of culture, IDO expression and the expression of 11 immunomodulatory markers were higher in (HEP/COL) coated with immobilized IFN-γ in MOFs. Overall, (HEP/COL) multilayers coated with immobilized IFN-γ in MOFs provide a sustained presentation of cytokines to potentiate the hMSC immunomodulatory activity.
Collapse
Affiliation(s)
- Mahsa Haseli
- Ralph E. Martin Department of Chemical Engineering, 3202 Bell Engineering Center, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Luis Pinzon-Herrera
- Ralph E. Martin Department of Chemical Engineering, 3202 Bell Engineering Center, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Xiaolei Hao
- Department of Biomedical Engineering, University of Arkansas, John A. White, Jr. Engineering Hall, 790 W. Dickson St. Suite 120, Fayetteville, Arkansas 72701, United States
| | - S Ranil Wickramasinghe
- Ralph E. Martin Department of Chemical Engineering, 3202 Bell Engineering Center, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Jorge Almodovar
- Ralph E. Martin Department of Chemical Engineering, 3202 Bell Engineering Center, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
48
|
Reinke S, Pantazi E, Chappell GR, Sanchez-Martinez A, Guyon R, Fergusson JR, Salman AM, Aktar A, Mukhopadhyay E, Ventura RA, Auderset F, Dubois PM, Collin N, Hill AVS, Bezbradica JS, Milicic A. Emulsion and liposome-based adjuvanted R21 vaccine formulations mediate protection against malaria through distinct immune mechanisms. Cell Rep Med 2023; 4:101245. [PMID: 37913775 PMCID: PMC10694591 DOI: 10.1016/j.xcrm.2023.101245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/07/2023] [Accepted: 09/22/2023] [Indexed: 11/03/2023]
Abstract
Adjuvanted protein vaccines offer high efficacy, yet most potent adjuvants remain proprietary. Several adjuvant compounds are being developed by the Vaccine Formulation Institute in Switzerland for global open access clinical use. In the context of the R21 malaria vaccine, in a mouse challenge model, we characterize the efficacy and mechanism of action of four Vaccine Formulation Institute adjuvants: two liposomal (LQ and LMQ) and two squalene emulsion-based adjuvants (SQ and SMQ), containing QS-21 saponin (Q) and optionally a synthetic TLR4 agonist (M). Two R21 vaccine formulations, R21/LMQ and R21/SQ, offer the highest protection (81%-100%), yet they trigger different innate sensing mechanisms in macrophages with LMQ, but not SQ, activating the NLRP3 inflammasome. The resulting in vivo adaptive responses have a different TH1/TH2 balance and engage divergent innate pathways while retaining high protective efficacy. We describe how modular changes in vaccine formulation allow for the dissection of the underlying immune pathways, enabling future mechanistically informed vaccine design.
Collapse
Affiliation(s)
- Sören Reinke
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Eirini Pantazi
- Kennedy Institute of Rheumatology Research, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Medical Sciences Division, University of Oxford, Oxford OX3 7FY, UK
| | - Gabrielle R Chappell
- Kennedy Institute of Rheumatology Research, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Medical Sciences Division, University of Oxford, Oxford OX3 7FY, UK
| | | | - Romain Guyon
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Joannah R Fergusson
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Ahmed M Salman
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Anjum Aktar
- Kennedy Institute of Rheumatology Research, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Medical Sciences Division, University of Oxford, Oxford OX3 7FY, UK
| | - Ekta Mukhopadhyay
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Roland A Ventura
- Vaccine Formulation Institute, Rue du Champ-Blanchod 4, 1228 Plan-Les-Ouates, Switzerland
| | - Floriane Auderset
- Vaccine Formulation Institute, Rue du Champ-Blanchod 4, 1228 Plan-Les-Ouates, Switzerland
| | - Patrice M Dubois
- Vaccine Formulation Institute, Rue du Champ-Blanchod 4, 1228 Plan-Les-Ouates, Switzerland
| | - Nicolas Collin
- Vaccine Formulation Institute, Rue du Champ-Blanchod 4, 1228 Plan-Les-Ouates, Switzerland
| | - Adrian V S Hill
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Jelena S Bezbradica
- Kennedy Institute of Rheumatology Research, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Medical Sciences Division, University of Oxford, Oxford OX3 7FY, UK.
| | - Anita Milicic
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK.
| |
Collapse
|
49
|
Urbańska DM, Pawlik M, Korwin-Kossakowska A, Rutkowska K, Kawecka-Grochocka E, Czopowicz M, Mickiewicz M, Kaba J, Bagnicka E. The Expression of Selected Cytokine Genes in the Livers of Young Castrated Bucks after Supplementation with a Mixture of Dry Curcuma longa and Rosmarinus officinalis Extracts. Animals (Basel) 2023; 13:3489. [PMID: 38003107 PMCID: PMC10668812 DOI: 10.3390/ani13223489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
The study aims to determine the effect of supplementation with a mixture of Curcuma longa and Rosmarinus officinalis extracts (896:19 ratio) on the expression of 15 cytokine genes in the livers of 20 castrated goat bucks. Two equal groups were created: treated and control groups. The treated group was provided a mixture (1.6 g/day/buck) for 124 days. Liver tissue samples were collected after slaughter. The gene expression was analyzed using RT-qPCR with two reference genes. Variance analysis was conducted using a model with the group fixed effect. IL-2 and IL-8 expression was below the detection level. No differences were found for IL-1α, IL-1β, IL-4, IL-6, IL-10, IL-16, IFN-α, IFN-β, TNF-α, and CCL4 expressions, suggesting that supplementation does not activate cytokine production in the healthy hepatocytes. The treated group demonstrated lower IL-12 expression (p < 0.05) and a tendency for higher IL-18 and INF-γ (0.05 < p < 0.10) expressions, which may indicate a hypersensitivity resulting from excessive supplement dose. The increased IFN-γ expression could be caused by the increased IL-18 expression. If a small dose of extract can induce an allergic reaction in young goat bucks, it is also possible that humans may be susceptible to an overdose of curcumin and/or turmeric extracts.
Collapse
Affiliation(s)
- Daria Maria Urbańska
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology Polish Academy of Sciences, ul. Postepu 36A, 05-552 Jastrzebiec, Poland
| | - Marek Pawlik
- Department of Neurotoxicology, Mossakowski Medical Research Institute Polish Academy of Sciences, ul. Pawińskiego 5, 02-106 Warsaw, Poland;
| | - Agnieszka Korwin-Kossakowska
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology Polish Academy of Sciences, ul. Postepu 36A, 05-552 Jastrzebiec, Poland
| | - Karolina Rutkowska
- Department of Medical Genetics, Medical University of Warsaw, Pawińskiego 3c, 02-106 Warsaw, Poland
| | - Ewelina Kawecka-Grochocka
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology Polish Academy of Sciences, ul. Postepu 36A, 05-552 Jastrzebiec, Poland
| | - Michał Czopowicz
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland; (M.C.); (M.M.); (J.K.)
| | - Marcin Mickiewicz
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland; (M.C.); (M.M.); (J.K.)
| | - Jarosław Kaba
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland; (M.C.); (M.M.); (J.K.)
| | - Emilia Bagnicka
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology Polish Academy of Sciences, ul. Postepu 36A, 05-552 Jastrzebiec, Poland
| |
Collapse
|
50
|
Fan Y, Guan B, Xu J, Zhang H, Yi L, Yang Z. Role of toll-like receptor-mediated pyroptosis in sepsis-induced cardiomyopathy. Biomed Pharmacother 2023; 167:115493. [PMID: 37734261 DOI: 10.1016/j.biopha.2023.115493] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023] Open
Abstract
Sepsis, a life-threatening dysregulated status of the host response to infection, can cause multiorgan dysfunction and mortality. Sepsis places a heavy burden on the cardiovascular system due to the pathological imbalance of hyperinflammation and immune suppression. Myocardial injury and cardiac dysfunction caused by the aberrant host responses to pathogens can lead to cardiomyopathy, one of the most critical complications of sepsis. However, many questions about the specific mechanisms and characteristics of this complication remain to be answered. The causes of sepsis-induced cardiac dysfunction include abnormal cardiac perfusion, myocardial inhibitory substances, autonomic dysfunction, mitochondrial dysfunction, and calcium homeostasis dysregulation. The fight between the host and pathogens acts as the trigger for sepsis-induced cardiomyopathy. Pyroptosis, a form of programmed cell death, plays a critical role in the progress of sepsis. Toll-like receptors (TLRs) act as pattern recognition receptors and participate in innate immune pathways that recognize damage-associated molecular patterns as well as pathogen-associated molecular patterns to mediate pyroptosis. Notably, pyroptosis is tightly associated with cardiac dysfunction in sepsis and septic shock. In line with these observations, induction of TLR-mediated pyroptosis may be a promising therapeutic approach to treat sepsis-induced cardiomyopathy. This review focuses on the potential roles of TLR-mediated pyroptosis in sepsis-induced cardiomyopathy, to shed light on this promising therapeutic approach, thus helping to prevent and control septic shock caused by cardiovascular disorders and improve the prognosis of sepsis patients.
Collapse
Affiliation(s)
- Yixuan Fan
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Intensive Care Unit, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baoyi Guan
- Department of Internal Medicine-Cardiovascular, The First Affiliated Hospital of Guangzhou University of Chinese Medicine
| | - Jianxing Xu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Intensive Care Unit, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - He Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Liang Yi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Intensive Care Unit, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Zhixu Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Intensive Care Unit, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|