1
|
Bai S, Cheng H, Li H, Bo P. Integrated bioinformatics analysis identifies autophagy-associated genes as candidate biomarkers and reveals the immune infiltration landscape in psoriasis. Autoimmunity 2024; 57:2259137. [PMID: 38439147 DOI: 10.1080/08916934.2023.2259137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 09/10/2023] [Indexed: 03/06/2024]
Abstract
Autophagy is implicated in the pathogenesis of psoriasis. We aimed to identify autophagy-related biomarkers in psoriasis via an integrated bioinformatics approach. We downloaded the gene expression profiles of GSE30999 dataset, and the "limma" package was applied to identify differentially expressed genes (DEGs). Then, differentially expressed autophagy-related genes (DEARGs) were identified via integrating autophagy-related genes with DEGs. CytoHubba plugin was used for the identification of hub genes and verified by the GSE41662 dataset. Subsequently, a series of bioinformatics analyses were employed, including protein-protein interaction network, functional enrichment, spearman correlation, receiver operating characteristic, and immune infiltration analyses. One hundred and one DEARGs were identified, and seven DEARGs were identified as hub genes and verified using the GSE41662 dataset. These validated genes had good diagnostic value in distinguishing psoriasis lesions. Immune infiltration analysis indicated that ATG5, SQSTM1, EGFR, MAPK8, MAPK3, MYC, and PIK3C3 were correlated with infiltration of immune cells. Seven DEARGs, namely ATG5, SQSTM1, EGFR, MAPK8, MAPK3, MYC, and PIK3C3, may be involved in the pathogenesis of psoriasis, which expanded the understanding of the development of psoriasis and provided important clinical significance for treatment of this disease.
Collapse
Affiliation(s)
- Sixian Bai
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongyu Cheng
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hao Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peng Bo
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Bartolini D, Grignano MA, Piroddi M, Chiaradia E, Galeazzi G, Rende M, Ronco C, Rampino T, Libetta C, Galli F. Induction of Vesicular Trafficking and JNK-Mediated Apoptotic Signaling in Mononuclear Leukocytes Marks the Immuno-Proteostasis Response to Uremic Proteins. Blood Purif 2023; 52:737-750. [PMID: 37703866 DOI: 10.1159/000533309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/25/2023] [Indexed: 09/15/2023]
Abstract
INTRODUCTION Uremic retention solutes have been alleged to induce the apoptotic program of different cell types, including peripheral blood mononuclear leukocytes (PBL), which may contribute to uremic leukopenia and immune dysfunction. METHODS The molecular effects of these solutes were investigated in uremic PBL (u-PBL) and mononuclear cell lines (THP-1 and K562) exposed to the high molecular weight fraction of uremic plasma (u-HMW) prepared by in vitro ultrafiltration with 50 kDa cut-off microconcentrators. RESULTS u-PBL show reduced cell viability and increased apoptotic death compared to healthy control PBL (c-PBL). u-HMW induce apoptosis both in u-PBL and c-PBL, as well as in mononuclear cell lines, also stimulating cellular H2O2 formation and secretion, IRE1-α-mediated endoplasmic reticulum stress signaling, and JNK/cJun pathway activation. Also, u-HMW induce autophagy in THP-1 monocytes. u-PBL were characterized by the presence in their cellular proteome of the main proteins and carbonylation targets of u-HMW, namely albumin, transferrin, and fibrinogen, and by the increased expression of receptor for advanced glycation end-products, a scavenger receptor with promiscuous ligand binding properties involved in leukocyte activation and endocytosis. CONCLUSIONS Large uremic solutes induce abnormal endocytosis and terminal alteration of cellular proteostasis mechanisms in PBL, including UPR/ER stress response and autophagy, ultimately activating the JNK-mediated apoptotic signaling of these cells. These findings describe the suicidal role of immune cells in facing systemic proteostasis alterations of kidney disease patients, a process that we define as the immuno-proteostasis response of uremia.
Collapse
Affiliation(s)
- Desirée Bartolini
- University of Perugia, Department of Pharmaceutical Sciences, Perugia, Italy
- Section of Human, Clinical and Forensic Anatomy, School of Medicine, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Maria Antonietta Grignano
- Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Marta Piroddi
- University of Perugia, Department of Pharmaceutical Sciences, Perugia, Italy
| | | | - Gabriele Galeazzi
- University of Perugia, Department of Pharmaceutical Sciences, Perugia, Italy
| | - Mario Rende
- Section of Human, Clinical and Forensic Anatomy, School of Medicine, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Claudio Ronco
- International Renal Research Institute of Vicenza, Department of Nephrology, Dialysis and Transplantation, St. Bortolo Hospital, Vicenza, Italy
- Department of Medicine, University of Padua, Padua, Italy
| | - Teresa Rampino
- Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Carmelo Libetta
- Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Francesco Galli
- University of Perugia, Department of Pharmaceutical Sciences, Perugia, Italy
| |
Collapse
|
3
|
Zuo H, Chen C, Sa Y. Therapeutic potential of autophagy in immunity and inflammation: current and future perspectives. Pharmacol Rep 2023; 75:499-510. [PMID: 37119445 PMCID: PMC10148586 DOI: 10.1007/s43440-023-00486-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/06/2023] [Accepted: 04/08/2023] [Indexed: 05/01/2023]
Abstract
Autophagy is recognized as a lysosomal degradation pathway important for cellular and organismal homeostasis. Accumulating evidence has demonstrated that autophagy is a paradoxical mechanism that regulates homeostasis and prevents stress under physiological and pathological conditions. Nevertheless, how autophagy is implicated in immune responses remains unclear. It is well established that autophagy bridges innate and adaptive immunity, while autophagic dysfunction is closely related to infection, inflammation, neurodegeneration, and tumorigenesis. Therefore, autophagy has attracted great attention from fundamental and translational fields due to its crucial role in inflammation and immunity. Inflammation is involved in the development and progression of various human diseases, and as a result, autophagy might be a potential target to prevent and treat inflammatory diseases. Nevertheless, insufficient autophagy might cause cell death, perpetrate inflammation, and trigger hereditary unsteadiness. Hence, targeting autophagy is a promising disease prevention and treatment strategy. To accomplish this safely, we should thoroughly understand the basic aspects of how autophagy works. Herein, we systematically summarized the correlation between autophagy and inflammation and its implication for human diseases.
Collapse
Affiliation(s)
- Hui Zuo
- Department of Pharmacology, The First People's Hospital of Yunnan Province, Kunming, 650032, Yunnan Province, China.
- Department of Pharmaceutical Science, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan Province, China.
| | - Cheng Chen
- Department of Pharmacology, The First People's Hospital of Yunnan Province, Kunming, 650032, Yunnan Province, China
| | - Yalian Sa
- Institute of Clinical and Basic Medical Sciences (Yunnan Provincial Key Laboratory of Clinical Virology), The First People's Hospital of Yunnan Province, Kunming, 650032, Yunnan, China.
| |
Collapse
|
4
|
Ogino T, Takeda K. Immunoregulation by antigen-presenting cells in human intestinal lamina propria. Front Immunol 2023; 14:1138971. [PMID: 36845090 PMCID: PMC9947491 DOI: 10.3389/fimmu.2023.1138971] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Antigen-presenting cells, including macrophages and dendritic cells, are a type of innate immune cells that can induce the differentiation of T cells and activate the adaptive immune response. In recent years, diverse subsets of macrophages and dendritic cells have been identified in the intestinal lamina propria of mice and humans. These subsets contribute to the maintenance of intestinal tissue homeostasis by regulating the adaptive immune system and epithelial barrier function through interaction with intestinal bacteria. Further investigation of the roles of antigen-presenting cells localized in the intestinal tract may lead to the elucidation of inflammatory bowel disease pathology and the development of novel treatment approaches.
Collapse
Affiliation(s)
- Takayuki Ogino
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Therapeutics for Inflammatory Bowel Diseases, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Kiyoshi Takeda
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Japan
- Immunology Frontier Research Center, Osaka University, Suita, Japan
| |
Collapse
|
5
|
Abstract
Zika virus (ZIKV) is an emerging virus from the Flaviviridae family that is transmitted to humans by mosquito vectors and represents an important health problem. Infections in pregnant women are of major concern because of potential devastating consequences during pregnancy and have been associated with microcephaly in newborns. ZIKV has a unique ability to use the host machinery to promote viral replication in a tissue-specific manner, resulting in characteristic pathological disorders. Recent studies have proposed that the host ubiquitin system acts as a major determinant of ZIKV tropism by providing the virus with an enhanced ability to enter new cells. In addition, ZIKV has developed mechanisms to evade the host immune response, thereby allowing the establishment of viral persistence and enhancing viral pathogenesis. We discuss recent reports on the mechanisms used by ZIKV to replicate efficiently, and we highlight potential new areas of research for the development of therapeutic approaches.
Collapse
Affiliation(s)
- Maria I Giraldo
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA; ,
| | - Maria Gonzalez-Orozco
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA; ,
| | - Ricardo Rajsbaum
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA; ,
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
- Current affiliation: Center for Virus-Host-Innate-Immunity; Rutgers Biomedical and Health Sciences, Institute for Infectious and Inflammatory Diseases; and Department of Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA;
| |
Collapse
|
6
|
Kim H, Shin SJ. Pathological and protective roles of dendritic cells in Mycobacterium tuberculosis infection: Interaction between host immune responses and pathogen evasion. Front Cell Infect Microbiol 2022; 12:891878. [PMID: 35967869 PMCID: PMC9366614 DOI: 10.3389/fcimb.2022.891878] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Dendritic cells (DCs) are principal defense components that play multifactorial roles in translating innate immune responses to adaptive immunity in Mycobacterium tuberculosis (Mtb) infections. The heterogeneous nature of DC subsets follows their altered functions by interacting with other immune cells, Mtb, and its products, enhancing host defense mechanisms or facilitating pathogen evasion. Thus, a better understanding of the immune responses initiated, promoted, and amplified or inhibited by DCs in Mtb infection is an essential step in developing anti-tuberculosis (TB) control measures, such as host-directed adjunctive therapy and anti-TB vaccines. This review summarizes the recent advances in salient DC subsets, including their phenotypic classification, cytokine profiles, functional alterations according to disease stages and environments, and consequent TB outcomes. A comprehensive overview of the role of DCs from various perspectives enables a deeper understanding of TB pathogenesis and could be useful in developing DC-based vaccines and immunotherapies.
Collapse
|
7
|
Santambrogio L. Molecular Determinants Regulating the Plasticity of the MHC Class II Immunopeptidome. Front Immunol 2022; 13:878271. [PMID: 35651601 PMCID: PMC9148998 DOI: 10.3389/fimmu.2022.878271] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
In the last few years, advancement in the analysis of the MHC class II (MHC-II) ligandome in several mouse and human haplotypes has increased our understanding of the molecular components that regulate the range and selection of the MHC-II presented peptides, from MHC class II molecule polymorphisms to the recognition of different conformers, functional differences in endosomal processing along the endocytic tract, and the interplay between the MHC class II chaperones DM and DO. The sum of all these variables contributes, qualitatively and quantitatively, to the composition of the MHC II ligandome, altogether ensuring that the immunopeptidome landscape is highly sensitive to any changes in the composition of the intra- and extracellular proteome for a comprehensive survey of the microenvironment for MHC II presentation to CD4 T cells.
Collapse
Affiliation(s)
- Laura Santambrogio
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, United States
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, United States
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
- *Correspondence: Laura Santambrogio,
| |
Collapse
|
8
|
Bowornruangrit P, Kumkate S, Sirigulpanit W, Leardkamolkarn V. Combined Effects of Fludarabine and Interferon Alpha on Autophagy Regulation Define the Phase of Cell Survival and Promotes Responses in LLC-MK2 and K562 Cells. Med Sci (Basel) 2022; 10:medsci10010020. [PMID: 35323219 PMCID: PMC8950195 DOI: 10.3390/medsci10010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 11/16/2022] Open
Abstract
Autophagy is a known mechanism of cells under internal stress that regulates cellular function via internal protein recycling and the cleaning up of debris, leading to healthy live cells. However, the stimulation of autophagy by external factors such as chemical compounds or viral infection mostly tends to induce apoptosis/cell death. This study hypothesizes that manipulation of the autophagy mechanism to the pro-cell survival and/or decreased pro-viral niche can be a strategy for effective antiviral and anticancer treatment. Cells susceptible to viral infection, namely LLC-MK2, normal monkey epithelium, and K562, human immune-related lymphocyte, which is also a cancer cell line, were treated with fludarabine nucleoside analog (Fdb), interferon alpha (IFN-α), and a combination of Fdb and IFN-α, and then were evaluated for signs of adaptive autophagy and STAT1 antiviral signaling by Western blotting and immunolabeling assays. The results showed that the low concentration of Fdb was able to activate an autophagy response in both cell types, as demonstrated by the intense immunostaining of LC3B foci in the autophagosomes of living cells. Treatment with IFN-α (10 U/mL) showed no alteration in the initiator of mTOR autophagy but dramatically increased the intracellular STAT1 signaling molecules in both cell types. Although in the combined Fdb and IFN-α treatment, both LLC-MK2 and K562 cells showed only slight changes in the autophagy-responsive proteins p-mTOR and LC3B, an adaptive autophagy event was clearly shown in the autophagosome of the LLC-MK2 cell, suggesting the survival phase of the normal cell. The combined effect of Fdb and IFN-α treatment on the antiviral response was identified by the level of activation of the STAT1 antiviral marker. Significantly, the adaptive autophagy mediated by Fdb was able to suppress the IFN-α-mediated pSTAT1 signaling in both cell types to a level that is appropriate for cellular function. It is concluded that the administration of an appropriate dose of Fdb and IFN-α in combination is beneficial for the treatment of some types of cancer and viral infection.
Collapse
Affiliation(s)
| | - Supeecha Kumkate
- Department of Biology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
| | - Wipawan Sirigulpanit
- Division of Pharmacology and Biopharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Burapha University, Chonburi 20131, Thailand;
| | - Vijittra Leardkamolkarn
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
- Correspondence:
| |
Collapse
|
9
|
Effects of Herb-Partitioned Moxibustion on Autophagy and Immune Activity in the Colon Tissue of Rats with Crohn’s Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3534874. [PMID: 35126598 PMCID: PMC8816589 DOI: 10.1155/2022/3534874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/11/2022] [Indexed: 11/18/2022]
Abstract
Objective To investigate the mechanism of action of herb-partitioned moxibustion on CD from the perspective of autophagy and immunity. Methods The expression of microtubule-associated protein LC3II and SQSTM1/p62 in the colon tissues was detected by immunohistochemistry. Western blot was used to detect the expression of autophagic and immune-related proteins in the colon, such as LC3II, SQSTM1/p62, Beclin1, ATG16L1, NOD2, IRGM, IL-1β, IL-17, and TNF-β. mRNA levels of immune factors, such as IL-1β, IL-17, and TNF-β, and autophagy signaling molecules, such as PI3KC, AKT1, LKB1, and mTOR, were detected by RT-qPCR. Results Herb-partitioned moxibustion reduced the protein levels of ATG16L1, NOD2, IRGM, LC3II, and Beclin1 (P < 0.01) and both the protein and mRNA levels of IL-1β, IL-17, and TNF-β in CD rats (P < 0.01 or P < 0.05), and it also increased the expression of SQSTM1/p62 protein (P < 0.01). The modulatory effects of herb-partitioned moxibustion on ATG16L1, NOD2, IRGM, LC3II, TNF-β, and IL-17 protein and IL-1β protein and mRNA were better than those of mesalazine (P < 0.01 or P < 0.05). Herb-partitioned moxibustion also reduced colon PI3KC, AKT1, and LKB1 mRNA expressions in CD rats (P < 0.01 or P < 0.05) and increased mTOR protein expression (P < 0.05). And the modulatory effect of herb-partitioned moxibustion on AKT1 mRNA was better than that of mesalazine (P < 0.05). Conclusion Herb-partitioned moxibustion may inhibit excessively activated autophagy and modulate the expression of immune-related factors by regulating the LKB1-mTOR-PI3KC signal transduction networks, thereby alleviating intestinal inflammation in CD rats.
Collapse
|
10
|
Martano M, Altamura G, Power K, Liguori P, Restucci B, Borzacchiello G, Maiolino P. Beclin 1, LC3 and P62 Expression in Equine Sarcoids. Animals (Basel) 2021; 12:ani12010020. [PMID: 35011126 PMCID: PMC8749869 DOI: 10.3390/ani12010020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Equine sarcoids, caused by bovine papillomaviruses, are equine skin tumors of fibroblastic origin. It is well known that bovine papillomaviruses are able to interfere with the survival and proliferation of cells by regulating autophagy, a mechanism implicated in the breakdown and reuse of old and damaged cellular material. The present study focused on the evaluation in equine sarcoids and normal skins of the expression level of some of the main proteins involved in the autophagic pathway, such as Beclin 1, LC3 and P62, by immunohistochemical and biochemical techniques. Results obtained in equine sarcoids suggested an alteration of the autophagic process which could lead to a predominance of a particular population of fibroblast. Those fibroblasts could survive longer in a hypoxic microenvironment and produce more and/or altered collagen, giving an origin to the equine sarcoid. Abstract Background: It is well known that δ-bovine papillomaviruses (BPV-1, BPV-2 and BPV-13) are one of the major causative agents of equine sarcoids, the most common equine skin tumors. Different viruses, including papillomaviruses, evolved ingenious strategies to modulate autophagy, a complex process involved in degradation and recycling of old and damaged material. Methods: The aim of this study was to evaluate, by immunohistochemistry (IHC) and Western blot (WB) analysis, the expression of the main related autophagy proteins (Beclin 1, protein light chain 3 (LC3) and P62), in 35 BPV1/2 positive equine sarcoids and 5 BPV negative normal skin samples. Results: Sarcoid samples showed from strong-to-moderate cytoplasmic immunostaining, respectively, for Beclin 1 and P62 in >60% of neoplastic fibroblasts, while LC3 immunostaining was weak to moderate in ≤60% of neoplastic fibroblasts. Western blot analysis confirmed the specificity of the antibodies and revealed no activation of autophagic flux despite Beclin 1 overexpression in sarcoid samples. Conclusion: Results could suggest the activation of the initial phase of autophagy in equine sarcoids, and its impairment during the following steps. The impairment of autophagy could lead to a selection of a quiescent population of fibroblasts, which survive longer in a hypoxic microenvironment and produced more and/or altered collagen.
Collapse
Affiliation(s)
- Manuela Martano
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via F. Delpino 1, 80137 Naples, Italy; (G.A.); (K.P.); (B.R.); (G.B.); (P.M.)
- Correspondence: ; Tel.: +39-081-2536465; Fax: +39-081-2536186
| | - Gennaro Altamura
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via F. Delpino 1, 80137 Naples, Italy; (G.A.); (K.P.); (B.R.); (G.B.); (P.M.)
| | - Karen Power
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via F. Delpino 1, 80137 Naples, Italy; (G.A.); (K.P.); (B.R.); (G.B.); (P.M.)
| | | | - Brunella Restucci
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via F. Delpino 1, 80137 Naples, Italy; (G.A.); (K.P.); (B.R.); (G.B.); (P.M.)
| | - Giuseppe Borzacchiello
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via F. Delpino 1, 80137 Naples, Italy; (G.A.); (K.P.); (B.R.); (G.B.); (P.M.)
| | - Paola Maiolino
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via F. Delpino 1, 80137 Naples, Italy; (G.A.); (K.P.); (B.R.); (G.B.); (P.M.)
| |
Collapse
|
11
|
Eng GWL, Zheng Y, Yap DWT, Teo AYT, Cheong JK. Autophagy and ncRNAs: Dangerous Liaisons in the Crosstalk between the Tumor and Its Microenvironment. Cancers (Basel) 2021; 14:cancers14010020. [PMID: 35008183 PMCID: PMC8750064 DOI: 10.3390/cancers14010020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/14/2021] [Accepted: 12/18/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Tumor cells communicate with the stromal cells within the tumor microenvironment (TME) to create a conducive environment for tumor growth. One major avenue for mediating crosstalk between various cell types in the TME involves exchanges of molecular payloads in the form of extracellular vesicles/exosomes. Autophagy is a fundamental mechanism to maintain intracellular homeostasis but recent reports suggest that secretory autophagy plays an important role in promoting secretion of exosomes that are packaged with non-coding RNAs (ncRNAs) and other biomolecules from the donor cell. Uptake of exosomal autophagy-modulating ncRNAs by recipient cells may further perpetuate tumor progression. Abstract Autophagy is a fundamental cellular homeostasis mechanism known to play multifaceted roles in the natural history of cancers over time. It has recently been shown that autophagy also mediates the crosstalk between the tumor and its microenvironment by promoting the export of molecular payloads such as non-coding RNA (ncRNAs) via LC3-dependent Extracellular Vesicle loading and secretion (LDELS). In turn, the dynamic exchange of exosomal ncRNAs regulate autophagic responses in the recipient cells within the tumor microenvironment (TME), for both tumor and stromal cells. Autophagy-dependent phenotypic changes in the recipient cells further enhance tumor growth and metastasis, through diverse biological processes, including nutrient supplementation, immune evasion, angiogenesis, and therapeutic resistance. In this review, we discuss how the feedforward autophagy-ncRNA axis orchestrates vital communications between various cell types within the TME ecosystem to promote cancer progression.
Collapse
Affiliation(s)
- Gracie Wee Ling Eng
- Precision Medicine Programme, Yong Loo Lin School of Medicine (YLLSoM), National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block Level 11, Singapore 119228, Singapore; (G.W.L.E.); (Y.Z.); (D.W.T.Y.); (A.Y.T.T.)
| | - Yilong Zheng
- Precision Medicine Programme, Yong Loo Lin School of Medicine (YLLSoM), National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block Level 11, Singapore 119228, Singapore; (G.W.L.E.); (Y.Z.); (D.W.T.Y.); (A.Y.T.T.)
| | - Dominic Wei Ting Yap
- Precision Medicine Programme, Yong Loo Lin School of Medicine (YLLSoM), National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block Level 11, Singapore 119228, Singapore; (G.W.L.E.); (Y.Z.); (D.W.T.Y.); (A.Y.T.T.)
| | - Andrea York Tiang Teo
- Precision Medicine Programme, Yong Loo Lin School of Medicine (YLLSoM), National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block Level 11, Singapore 119228, Singapore; (G.W.L.E.); (Y.Z.); (D.W.T.Y.); (A.Y.T.T.)
| | - Jit Kong Cheong
- Precision Medicine Programme, Yong Loo Lin School of Medicine (YLLSoM), National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block Level 11, Singapore 119228, Singapore; (G.W.L.E.); (Y.Z.); (D.W.T.Y.); (A.Y.T.T.)
- NUS Centre for Cancer Research, National University of Singapore, 14 Medical Dr, Centre for Translational Medicine #12-01, Singapore 117599, Singapore
- Department of Biochemistry, YLLSoM, National University of Singapore, 8 Medical Drive, MD7 #03-09, Singapore 117597, Singapore
- Correspondence: ; Tel.: +65-66016388
| |
Collapse
|
12
|
Over Fifty Years of Life, Death, and Cannibalism: A Historical Recollection of Apoptosis and Autophagy. Int J Mol Sci 2021; 22:ijms222212466. [PMID: 34830349 PMCID: PMC8618802 DOI: 10.3390/ijms222212466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 01/18/2023] Open
Abstract
Research in biomedical sciences has changed dramatically over the past fifty years. There is no doubt that the discovery of apoptosis and autophagy as two highly synchronized and regulated mechanisms in cellular homeostasis are among the most important discoveries in these decades. Along with the advancement in molecular biology, identifying the genetic players in apoptosis and autophagy has shed light on our understanding of their function in physiological and pathological conditions. In this review, we first describe the history of key discoveries in apoptosis with a molecular insight and continue with apoptosis pathways and their regulation. We touch upon the role of apoptosis in human health and its malfunction in several diseases. We discuss the path to the morphological and molecular discovery of autophagy. Moreover, we dive deep into the precise regulation of autophagy and recent findings from basic research to clinical applications of autophagy modulation in human health and illnesses and the available therapies for many diseases caused by impaired autophagy. We conclude with the exciting crosstalk between apoptosis and autophagy, from the early discoveries to recent findings.
Collapse
|
13
|
Tan G, Wu A, Li Z, Chen G, Wu Y, Huang S, Chen X, Li G. Bioinformatics analysis based on immune-autophagy-related lncRNAs combined with immune infiltration in bladder cancer. Transl Androl Urol 2021; 10:3440-3455. [PMID: 34532269 PMCID: PMC8421818 DOI: 10.21037/tau-21-560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/27/2021] [Indexed: 12/16/2022] Open
Abstract
Background To construct a prognostic model based on immune-autophagy-related long noncoding RNA (IArlncRNAs), mainly to predict the overall survival rate (OS) of bladder cancer patients and investigate its possible mechanisms. Methods Transcriptome and clinical data were obtained from The Cancer Genome Atlas (TCGA) database. We identified the IArlncRNA by co-expression analysis, differential expression analysis, and Venn analysis. Then, we identified the independent prognostic IArlncRNAs by univariate Cox regression, LASSO regression, and multivariate Cox regression analysis. Moreover, we constructed the prognostic model based on the independent prognostic IArlncRNAs and clinical features. The proportion of 22 immune cell subtypes was analyzed by the CIBERSORT algorithm. Besides, we identified the differential proportion of 22 immune cell subtypes between the high- and low-risk groups. In addition, we identified the correlation between immune-infiltrating cells (screened by univariate Cox regression and multivariate Cox regression analysis) and IArlncRNAs by Pearson correlation analysis. Finally, we estimated the half-maximal inhibitory concentration (IC50) of chemotherapeutic drugs in patients with bladder cancer based on the pRRophetic algorithm. Results Four IArlncRNAs were identified as independent prognostic factors, including AL136084.3, AC006270.1, Z84484.1, and AL513218.1. The OS of patients in the high-risk group was significantly worse compared to the low-risk group. The nomogram showed an excellent predictive effect with the C-index of 0.64. The calibration chart showed a good actual vs. predicted probability. B cells naïve, T cells CD8, T cells CD4 memory resting, T cells follicular helper, macrophages M1, dendritic resting and activated cells had higher infiltrations in the low-risk group and lower infiltration of macrophages M2. The fraction of macrophages M2 was positively associated with AL136084.3. The fraction of T cells CD8 was positively associated with Z84484.1. The fraction of M + macrophages M0 was negatively associated with Z84484.1. Further, we identified the differential IC50 of 24 chemotherapeutic drugs between the high- and low-risk groups. Conclusions The prognostic model based on 4 IArlncRNAs showed an excellent predictive effect. Furthermore, we reasonably speculated that IArlncRNAs are directly or indirectly involved in the immune regulation of the tumor microenvironment (TME), as well as autophagy.
Collapse
Affiliation(s)
- Guobin Tan
- Department of Urology, Maoming People's Hospital, Maoming, China
| | - Aiming Wu
- Department of Urology, Maoming People's Hospital, Maoming, China
| | - Zhiqin Li
- Department of Urology, Maoming People's Hospital, Maoming, China
| | - Guangming Chen
- Department of Urology, Maoming People's Hospital, Maoming, China
| | - Yonglu Wu
- Department of Urology, Maoming People's Hospital, Maoming, China
| | - Shuitong Huang
- Department of Urology, Maoming People's Hospital, Maoming, China
| | - Xianxi Chen
- Department of Urology, Maoming People's Hospital, Maoming, China
| | - Guanjun Li
- Department of Urology, Maoming People's Hospital, Maoming, China
| |
Collapse
|
14
|
Movaqar A, Yaghoubi A, Rezaee SAR, Jamehdar SA, Soleimanpour S. Coronaviruses construct an interconnection way with ERAD and autophagy. Future Microbiol 2021; 16:1135-1151. [PMID: 34468179 PMCID: PMC8412035 DOI: 10.2217/fmb-2021-0044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 08/04/2021] [Indexed: 12/20/2022] Open
Abstract
Coronaviruses quickly became a pandemic or epidemic, affecting large numbers of humans, due to their structural features and also because of their impacts on intracellular communications. The knowledge of the intracellular mechanism of virus distribution could help understand the coronavirus's proper effects on different pathways that lead to the infections. They protect themselves from recognition and damage the infected cell by using an enclosed membrane through hijacking the autophagy and endoplasmic reticulum-associated protein degradation pathways. The present study is a comprehensive review of the coronavirus strategy in upregulating the communication network of autophagy and endoplasmic reticulum-associated protein degradation.
Collapse
Affiliation(s)
- Aref Movaqar
- Antimicrobial Resistance Research Center, Mashhad University of Medical Science, Mashhad, Iran
- Department of Microbiology & Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atieh Yaghoubi
- Antimicrobial Resistance Research Center, Mashhad University of Medical Science, Mashhad, Iran
- Department of Microbiology & Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - SA Rahim Rezaee
- Inflammation & Inflammatory Diseases Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeid A Jamehdar
- Antimicrobial Resistance Research Center, Mashhad University of Medical Science, Mashhad, Iran
- Department of Microbiology & Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Soleimanpour
- Antimicrobial Resistance Research Center, Mashhad University of Medical Science, Mashhad, Iran
- Department of Microbiology & Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
15
|
Silva BJDA, Bittencourt TL, Leal-Calvo T, Mendes MA, Prata RBDS, Barbosa MGDM, Andrade PR, Côrte-Real S, Sperandio da Silva GM, Moraes MO, Sarno EN, Pinheiro RO. Autophagy-Associated IL-15 Production Is Involved in the Pathogenesis of Leprosy Type 1 Reaction. Cells 2021; 10:2215. [PMID: 34571865 PMCID: PMC8468917 DOI: 10.3390/cells10092215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 01/18/2023] Open
Abstract
Leprosy reactional episodes are acute inflammatory events that may occur during the clinical course of the disease. Type 1 reaction (T1R) is associated with an increase in neural damage, and the understanding of the molecular pathways related to T1R onset is pivotal for the development of strategies that may effectively control the reaction. Interferon-gamma (IFN-γ) is a key cytokine associated with T1R onset and is also associated with autophagy induction. Here, we evaluated the modulation of the autophagy pathway in Mycobacterium leprae-stimulated cells in the presence or absence of IFN-γ. We observed that IFN-γ treatment promoted autophagy activation and increased the expression of genes related to the formation of phagosomes, autophagy regulation and function, or lysosomal pathways in M. leprae-stimulated cells. IFN-γ increased interleukin (IL)-15 secretion in M. leprae-stimulated THP-1 cells in a process associated with autophagy activation. We also observed higher IL15 gene expression in multibacillary (MB) patients who later developed T1R during clinical follow-up when compared to MB patients who did not develop the episode. By overlapping gene expression patterns, we observed 13 common elements shared between T1R skin lesion cells and THP-1 cells stimulated with both M. leprae and IFN-γ. Among these genes, the autophagy regulator Translocated Promoter Region, Nuclear Basket Protein (TPR) was significantly increased in T1R cells when compared with non-reactional MB cells. Overall, our results indicate that IFN-γ may induce a TPR-mediated autophagy transcriptional program in M. leprae-stimulated cells similar to that observed in skin cells during T1R by a pathway that involves IL-15 production, suggesting the involvement of this cytokine in the pathogenesis of T1R.
Collapse
Affiliation(s)
- Bruno Jorge de Andrade Silva
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro 21040-360, Brazil; (B.J.d.A.S.); (T.L.B.); (T.L.-C.); (M.A.M.); (R.B.d.S.P.); (M.G.d.M.B.); (P.R.A.); (M.O.M.); (E.N.S.)
| | - Tamiris Lameira Bittencourt
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro 21040-360, Brazil; (B.J.d.A.S.); (T.L.B.); (T.L.-C.); (M.A.M.); (R.B.d.S.P.); (M.G.d.M.B.); (P.R.A.); (M.O.M.); (E.N.S.)
| | - Thyago Leal-Calvo
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro 21040-360, Brazil; (B.J.d.A.S.); (T.L.B.); (T.L.-C.); (M.A.M.); (R.B.d.S.P.); (M.G.d.M.B.); (P.R.A.); (M.O.M.); (E.N.S.)
| | - Mayara Abud Mendes
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro 21040-360, Brazil; (B.J.d.A.S.); (T.L.B.); (T.L.-C.); (M.A.M.); (R.B.d.S.P.); (M.G.d.M.B.); (P.R.A.); (M.O.M.); (E.N.S.)
| | - Rhana Berto da Silva Prata
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro 21040-360, Brazil; (B.J.d.A.S.); (T.L.B.); (T.L.-C.); (M.A.M.); (R.B.d.S.P.); (M.G.d.M.B.); (P.R.A.); (M.O.M.); (E.N.S.)
| | - Mayara Garcia de Mattos Barbosa
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro 21040-360, Brazil; (B.J.d.A.S.); (T.L.B.); (T.L.-C.); (M.A.M.); (R.B.d.S.P.); (M.G.d.M.B.); (P.R.A.); (M.O.M.); (E.N.S.)
| | - Priscila Ribeiro Andrade
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro 21040-360, Brazil; (B.J.d.A.S.); (T.L.B.); (T.L.-C.); (M.A.M.); (R.B.d.S.P.); (M.G.d.M.B.); (P.R.A.); (M.O.M.); (E.N.S.)
| | - Suzana Côrte-Real
- Structural Biology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro 21040-360, Brazil;
| | | | - Milton Ozório Moraes
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro 21040-360, Brazil; (B.J.d.A.S.); (T.L.B.); (T.L.-C.); (M.A.M.); (R.B.d.S.P.); (M.G.d.M.B.); (P.R.A.); (M.O.M.); (E.N.S.)
| | - Euzenir Nunes Sarno
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro 21040-360, Brazil; (B.J.d.A.S.); (T.L.B.); (T.L.-C.); (M.A.M.); (R.B.d.S.P.); (M.G.d.M.B.); (P.R.A.); (M.O.M.); (E.N.S.)
| | - Roberta Olmo Pinheiro
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro 21040-360, Brazil; (B.J.d.A.S.); (T.L.B.); (T.L.-C.); (M.A.M.); (R.B.d.S.P.); (M.G.d.M.B.); (P.R.A.); (M.O.M.); (E.N.S.)
| |
Collapse
|
16
|
Münz C. Non-canonical functions of autophagy proteins in immunity and infection. Mol Aspects Med 2021; 82:100987. [PMID: 34147281 DOI: 10.1016/j.mam.2021.100987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/20/2021] [Accepted: 06/08/2021] [Indexed: 10/21/2022]
Abstract
The molecular machinery of macroautophagy, a catabolic pathway for cytoplasmic constituent degradation in lysosomes, remodels membranes by lipid phosphorylation and conjugation of LC3 and GABARAP proteins. In recent year it has become clear that these membrane modifications also regulate endo- and exocytosis. Here I will discuss recent evidence of how such non-canonical functions of the macroautophagy machinery with its autophagy related gene (atg) products influences infectious viral particle secretion, inflammation, and MHC restricted antigen presentation. Especially LC3-Associated Phagocytosis and ATG supported exocytosis will be high-lighted during immunity and infection.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zurich, Switzerland.
| |
Collapse
|
17
|
Khodakarimi S, Zarebkohan A, Kahroba H, Omrani M, Sepasi T, Mohaddes G, Beyrampour-Basmenj H, Ebrahimi A, Ebrahimi-Kalan A. The role of miRNAs in the regulation of autophagy in autoimmune diseases. Life Sci 2021; 287:119726. [PMID: 34144058 DOI: 10.1016/j.lfs.2021.119726] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/22/2021] [Accepted: 06/05/2021] [Indexed: 10/21/2022]
Abstract
Autoimmune diseases (AD), which are classified as chronic injuries, are caused by a specific auto-reactive reaction. The etiology of most ADs is not well understood. Meanwhile, Autophagy is a protective response defining as a catabolic method by lysosomes tending to maintain homeostasis acts by recycling and discrediting cell compartments. Autophagy plays a crucial role in controlling immune homeostasis by eliminating intracellular pathogens and presenting antigens to immune cognition. MicroRNAs are commonly known as endogenous non-coding small RNAs, which span 18-25 nt and take part in the gene expression at the post-transcriptional level regulation. miRNAs play important roles in different processes like, cell differentiation, duplicating, and apoptosis. Moreover, miRNAs are the critical molecules for the regular function of the immune system by modulating immune tolerance mechanisms and autoimmunity. Recent findings support the role of dysregulated miRNAs in the pathogenesis of ADs and in the regulation of autophagy. In this review, we will focus on the role of the miRNAs in the regulation of autophagy and then will explain the role of dysregulated miRNAs in the initiation of the ADs by modulating autophagy.
Collapse
Affiliation(s)
- Sina Khodakarimi
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Zarebkohan
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of medical sciences, Tabriz, Iran
| | - Houman Kahroba
- Molecular Medicine Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadhassan Omrani
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tina Sepasi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of medical sciences, Tabriz, Iran
| | - Gisou Mohaddes
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hanieh Beyrampour-Basmenj
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ayyub Ebrahimi
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Haliç University, Istanbul, Turkey
| | - Abbas Ebrahimi-Kalan
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
18
|
Harlé G, Kowalski C, Dubrot J, Brighouse D, Clavel G, Pick R, Bessis N, Niven J, Scheiermann C, Gannagé M, Hugues S. Macroautophagy in lymphatic endothelial cells inhibits T cell-mediated autoimmunity. J Exp Med 2021; 218:212000. [PMID: 33861848 PMCID: PMC8056750 DOI: 10.1084/jem.20201776] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/21/2020] [Accepted: 02/05/2021] [Indexed: 12/11/2022] Open
Abstract
Lymphatic endothelial cells (LECs) present peripheral tissue antigens to induce T cell tolerance. In addition, LECs are the main source of sphingosine-1-phosphate (S1P), promoting naive T cell survival and effector T cell exit from lymph nodes (LNs). Autophagy is a physiological process essential for cellular homeostasis. We investigated whether autophagy in LECs modulates T cell activation in experimental arthritis. Whereas genetic abrogation of autophagy in LECs does not alter immune homeostasis, it induces alterations of the regulatory T cell (T reg cell) population in LNs from arthritic mice, which might be linked to MHCII-mediated antigen presentation by LECs. Furthermore, inflammation-induced autophagy in LECs promotes the degradation of Sphingosine kinase 1 (SphK1), resulting in decreased S1P production. Consequently, in arthritic mice lacking autophagy in LECs, pathogenic Th17 cell migration toward LEC-derived S1P gradients and egress from LNs are enhanced, as well as infiltration of inflamed joints, resulting in exacerbated arthritis. Our results highlight the autophagy pathway as an important regulator of LEC immunomodulatory functions in inflammatory conditions.
Collapse
Affiliation(s)
- Guillaume Harlé
- Department of Pathology and Immunology, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Camille Kowalski
- Department of Pathology and Immunology, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Juan Dubrot
- Department of Pathology and Immunology, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Dale Brighouse
- Department of Pathology and Immunology, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Gaëlle Clavel
- Institut National de la Santé et de la Recherche Médicale, UMR 1125, Université Sorbonne Paris Cité, Université Paris, Paris, France
| | - Robert Pick
- Department of Pathology and Immunology, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Natacha Bessis
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Jennifer Niven
- Department of Pathology and Immunology, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Christoph Scheiermann
- Department of Pathology and Immunology, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Monique Gannagé
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Stéphanie Hugues
- Department of Pathology and Immunology, School of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
19
|
Ligeon LA, Pena-Francesch M, Vanoaica LD, Núñez NG, Talwar D, Dick TP, Münz C. Oxidation inhibits autophagy protein deconjugation from phagosomes to sustain MHC class II restricted antigen presentation. Nat Commun 2021; 12:1508. [PMID: 33686057 PMCID: PMC7940406 DOI: 10.1038/s41467-021-21829-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 02/15/2021] [Indexed: 01/31/2023] Open
Abstract
LC3-associated phagocytosis (LAP) contributes to a wide range of cellular processes and notably to immunity. The stabilization of phagosomes by the macroautophagy machinery in human macrophages can maintain antigen presentation on MHC class II molecules. However, the molecular mechanisms involved in the formation and maturation of the resulting LAPosomes are not completely understood. Here, we show that reactive oxygen species (ROS) produced by NADPH oxidase 2 (NOX2) stabilize LAPosomes by inhibiting LC3 deconjugation from the LAPosome cytosolic surface. NOX2 residing in the LAPosome membrane generates ROS to cause oxidative inactivation of the protease ATG4B, which otherwise releases LC3B from LAPosomes. An oxidation-insensitive ATG4B mutant compromises LAP and thereby impedes sustained MHC class II presentation of exogenous Candida albicans antigens. Redox regulation of ATG4B is thereby an important mechanism for maintaining LC3 decoration of LAPosomes to support antigen processing for MHC class II presentation.
Collapse
Affiliation(s)
- Laure-Anne Ligeon
- grid.7400.30000 0004 1937 0650Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Maria Pena-Francesch
- grid.7400.30000 0004 1937 0650Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Liliana Danusia Vanoaica
- grid.7400.30000 0004 1937 0650Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Nicolás Gonzalo Núñez
- grid.7400.30000 0004 1937 0650Inflammation Research, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Deepti Talwar
- grid.7497.d0000 0004 0492 0584Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Heidelberg, Germany ,grid.7700.00000 0001 2190 4373Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Tobias P. Dick
- grid.7497.d0000 0004 0492 0584Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Heidelberg, Germany ,grid.7700.00000 0001 2190 4373Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Christian Münz
- grid.7400.30000 0004 1937 0650Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
20
|
Luo X, Qiu Y, Dinesh P, Gong W, Jiang L, Feng X, Li J, Jiang Y, Lei YL, Chen Q. The functions of autophagy at the tumour-immune interface. J Cell Mol Med 2021; 25:2333-2341. [PMID: 33605033 PMCID: PMC7933948 DOI: 10.1111/jcmm.16331] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/08/2021] [Accepted: 01/15/2021] [Indexed: 02/05/2023] Open
Abstract
Autophagy is frequently induced in the hypoxic tumour microenvironment. Accumulating evidence reveals important functions of autophagy at the tumour-immune interface. Herein, we propose an update on the roles of autophagy in modulating tumour immunity. Autophagy promotes adaptive resistance of established tumours to the cytotoxic effects of natural killer cells (NKs), macrophages and effector T cells. Increased autophagic flux in tumours dampen their immunogenicity and inhibits the expansion of cytotoxic T lymphocytes (CTLs) by suppressing the activation of STING type I interferon signalling (IFN-I) innate immune sensing pathway. Autophagy in suppressive tumour-infiltrating immune subsets maintains their survival through metabolic remodelling. On the other hand, autophagy is involved in the antigen processing and presentation process, which is essential for anti-tumour immune responses. Genetic deletion of autophagy induces spontaneous tumours in some models. Thus, the role of autophagy is context-dependent. In summary, our review has revealed the dichotomous roles of autophagy in modulating tumour immunity. Broad targeting of autophagy may not yield maximal benefits. The characterization of specific genes regulating tumour immunogenicity and innovation in targeted delivery of autophagy inhibitors into certain tumours are among the most urgent tasks to sensitize cold cancers to immunotherapy.
Collapse
Affiliation(s)
- Xiaobo Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yan Qiu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Palani Dinesh
- Department of Periodontics and Oral Medicine, Department of Otolaryngology-Head and Neck Surgery, Rogel Cancer Center, the University of Michigan, Ann Arbor, MI, USA
| | - Wang Gong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Periodontics and Oral Medicine, Department of Otolaryngology-Head and Neck Surgery, Rogel Cancer Center, the University of Michigan, Ann Arbor, MI, USA
| | - Lu Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaodong Feng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuchen Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu L Lei
- Department of Periodontics and Oral Medicine, Department of Otolaryngology-Head and Neck Surgery, Rogel Cancer Center, the University of Michigan, Ann Arbor, MI, USA
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
21
|
IRGM promotes melanoma cell survival through autophagy and is a promising prognostic biomarker for clinical application. MOLECULAR THERAPY-ONCOLYTICS 2020; 20:187-198. [PMID: 33665357 PMCID: PMC7889451 DOI: 10.1016/j.omto.2020.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/11/2020] [Indexed: 01/12/2023]
Abstract
Previously, we showed that mouse immunity-related guanosine triphosphatase (GTPase) family M protein 1 (Irgm1) promotes malignant melanoma progression by inducing cellular autophagy flux and metastasis. Human IRGM, a truncated protein functionally distinct from its mouse counterpart, has several splice isoforms. In this study, we analyzed the association of IRGM and human melanoma clinical prognosis and investigated the function of IRGM in human melanoma cells. Data from the training cohort (n = 144) showed that overexpression of IRGM is proportional to melanoma genesis and clinical stages in human tissue chips. A validation cohort (n = 78) further confirmed that IRGM is an independent risk factor promoting melanoma progression and is associated with poor survival of patients. Among IRGM isoforms, we found that IRGMb is responsible for such correlation. In addition, IRGM promoted melanoma cell survival through autophagy, both in vitro and in vivo. We further showed that the blockade of translocation of high-mobility group box 1 (HMGB1) from the nucleus to cytoplasm inhibits IRGM1-mediated cellular autophagy and reduces cell survival. IRGM functions as a positive regulator of melanoma progression through autophagy and may serve as a promising prognostic marker and therapeutic target.
Collapse
|
22
|
Perrotta C, Cattaneo MG, Molteni R, De Palma C. Autophagy in the Regulation of Tissue Differentiation and Homeostasis. Front Cell Dev Biol 2020; 8:602901. [PMID: 33363161 PMCID: PMC7758408 DOI: 10.3389/fcell.2020.602901] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/20/2020] [Indexed: 12/14/2022] Open
Abstract
Autophagy is a constitutive pathway that allows the lysosomal degradation of damaged components. This conserved process is essential for metabolic plasticity and tissue homeostasis and is crucial for mammalian post-mitotic cells. Autophagy also controls stem cell fate and defective autophagy is involved in many pathophysiological processes. In this review, we focus on established and recent breakthroughs aimed at elucidating the impact of autophagy in differentiation and homeostasis maintenance of endothelium, muscle, immune system, and brain providing a suitable framework of the emerging results and highlighting the pivotal role of autophagic response in tissue functions, stem cell dynamics and differentiation rates.
Collapse
Affiliation(s)
- Cristiana Perrotta
- Department of Biomedical and Clinical Sciences "Luigi Sacco" (DIBIC), Università degli Studi di Milano, Milan, Italy
| | - Maria Grazia Cattaneo
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Milan, Italy
| | - Raffaella Molteni
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Milan, Italy
| | - Clara De Palma
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
23
|
de Souza ASC, Gonçalves LB, Lepique AP, de Araujo-Souza PS. The Role of Autophagy in Tumor Immunology-Complex Mechanisms That May Be Explored Therapeutically. Front Oncol 2020; 10:603661. [PMID: 33335860 PMCID: PMC7736605 DOI: 10.3389/fonc.2020.603661] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/02/2020] [Indexed: 12/15/2022] Open
Abstract
The tumor microenvironment (TME) is complex, and its composition and dynamics determine tumor fate. From tumor cells themselves, with their capacity for unlimited replication, migration, and invasion, to fibroblasts, endothelial cells, and immune cells, which can have pro and/or anti-tumor potential, interaction among these elements determines tumor progression. The understanding of molecular pathways involved in immune escape has permitted the development of cancer immunotherapies. Targeting molecules or biological processes that inhibit antitumor immune responses has allowed a significant improvement in cancer patient’s prognosis. Autophagy is a cellular process required to eliminate dysfunctional proteins and organelles, maintaining cellular homeostasis. Usually a process associated with protection against cancer, autophagy associated to cancer cells has been reported in response to hypoxia, nutrient deficiency, and oxidative stress, conditions frequently observed in the TME. Recent studies have shown a paradoxical association between autophagy and tumor immune responses. Tumor cell autophagy increases the expression of inhibitory molecules, such as PD-1 and CTLA-4, which block antitumor cytotoxic responses. Moreover, it can also directly affect antitumor immune responses by, for example, degrading NK cell-derived granzyme B and protecting tumor cells. Interestingly, the activation of autophagy on dendritic cells has the opposite effects, enhancing antigen presentation, triggering CD8+ T cells cytotoxic activity, and reducing tumor growth. Therefore, this review will focus on the most recent aspects of autophagy and tumor immune environment. We describe the dual role of autophagy in modulating tumor immune responses and discuss some aspects that must be considered to improve cancer treatment.
Collapse
Affiliation(s)
- Alana Serrano Campelo de Souza
- Laboratório de Imunogenética e Histocompatibilidade (LIGH), Departamento de Genética, Setor de Ciências Biológicas, Universidade Federal do Paraná (UFPR), Curitiba, Brazil.,Programa de Pós-graduação em Genética, Departamento de Genética, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Letícia Boslooper Gonçalves
- Laboratório de Imunogenética e Histocompatibilidade (LIGH), Departamento de Genética, Setor de Ciências Biológicas, Universidade Federal do Paraná (UFPR), Curitiba, Brazil.,Programa de Pós-graduação em Genética, Departamento de Genética, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Ana Paula Lepique
- Laboratório de Imunomodulação, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Patrícia Savio de Araujo-Souza
- Laboratório de Imunogenética e Histocompatibilidade (LIGH), Departamento de Genética, Setor de Ciências Biológicas, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| |
Collapse
|
24
|
Barili V, Boni C, Rossi M, Vecchi A, Zecca A, Penna A, Missale G, Ferrari C, Fisicaro P. Metabolic regulation of the HBV-specific T cell function. Antiviral Res 2020; 185:104989. [PMID: 33248194 DOI: 10.1016/j.antiviral.2020.104989] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 12/15/2022]
Abstract
Chronically HBV infected subjects are more than 260 million worldwide; cirrhosis and liver cancer represent possible outcomes which affect around 700,000 patients per year. Both innate and adaptive immune responses are necessary for viral control and both have been shown to be defective in chronic patients. Metabolic remodeling is an essential process in T cell biology, particularly for T cell activation, differentiation and survival. Cellular metabolism relies on the conversion of nutrients into energy to support intracellular processes, and to generate fundamental intermediate components for cell proliferation and growth. Adaptive immune responses are the central mechanisms for the resolution of primary human infections leading to the activation of pathogen-specific B and T cell functions. In chronic HBV infection the anti-viral immune response fails to contain the virus and leads to persistent hepatic tissue damage which may finally result in liver cirrhosis and cancer. This T cell failure is associated with metabolic alterations suggesting that control of nutrient uptake and intracellular utilization as well as correct regulation of intracellular metabolic pathways are strategic for T cell differentiation during persistent chronic infections. This review will discuss some of the main features of the T cell metabolic processes which are relevant to the generation of an efficient antiviral response, with specific focus on their clinical relevance in chronic HBV infection in the perspective of possible strategies to correct deregulated metabolic pathways underlying T cell dysfunction of chronic HBV patients.
Collapse
Affiliation(s)
- Valeria Barili
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Carolina Boni
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Marzia Rossi
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Andrea Vecchi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Alessandra Zecca
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Amalia Penna
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Gabriele Missale
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Carlo Ferrari
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.
| | - Paola Fisicaro
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| |
Collapse
|
25
|
Salvatore T, Pafundi PC, Galiero R, Gjeloshi K, Masini F, Acierno C, Di Martino A, Albanese G, Alfano M, Rinaldi L, Sasso FC. Metformin: A Potential Therapeutic Tool for Rheumatologists. Pharmaceuticals (Basel) 2020; 13:ph13090234. [PMID: 32899806 PMCID: PMC7560003 DOI: 10.3390/ph13090234] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 12/18/2022] Open
Abstract
Metformin is an oral antihyperglycemic drug widely used to treat type 2 diabetes, acting via indirect activation of 5′ Adenosine Monophosphate-activated Protein Kinase (AMPK). Actually, evidence has accumulated of an intriguing anti-inflammatory activity, mainly mediated by AMPK through a variety of mechanisms such as the inhibition of cytokine-stimulated Nuclear Factor-κB (NF-κB) and the downregulation of the Janus Kinase/Signal Transducer and Activator of Transcription (JAK/STAT) signaling pathways. Moreover, AMPK plays an important role in the modulation of T lymphocytes and other pivotal cells of the innate immune system. The current understanding of these AMPK effects provides a strong rationale for metformin repurposing in the management of autoimmune and inflammatory conditions. Several studies demonstrated metformin’s beneficial effects on both animal and human rheumatologic diseases, especially on rheumatoid arthritis. Unfortunately, even though data are large and remarkable, they almost exclusively come from experimental investigations with only a few from clinical trials. The lack of support from prospective placebo-controlled trials does not allow metformin to enter the therapeutic repertoire of rheumatologists. However, a large proportion of rheumatologic patients can currently benefit from metformin, such as those with concomitant obesity and type 2 diabetes, two conditions strongly associated with rheumatoid arthritis, osteoarthritis, and gout, as well as those with diabetes secondary to steroid therapy.
Collapse
Affiliation(s)
- Teresa Salvatore
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via de Crecchio, 7, I-80138 Naples, Italy;
| | - Pia Clara Pafundi
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Piazza L. Miraglia, 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (K.G.); (F.M.); (C.A.); (A.D.M.); (G.A.); (M.A.); (L.R.)
| | - Raffaele Galiero
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Piazza L. Miraglia, 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (K.G.); (F.M.); (C.A.); (A.D.M.); (G.A.); (M.A.); (L.R.)
| | - Klodian Gjeloshi
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Piazza L. Miraglia, 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (K.G.); (F.M.); (C.A.); (A.D.M.); (G.A.); (M.A.); (L.R.)
| | - Francesco Masini
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Piazza L. Miraglia, 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (K.G.); (F.M.); (C.A.); (A.D.M.); (G.A.); (M.A.); (L.R.)
| | - Carlo Acierno
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Piazza L. Miraglia, 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (K.G.); (F.M.); (C.A.); (A.D.M.); (G.A.); (M.A.); (L.R.)
| | - Anna Di Martino
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Piazza L. Miraglia, 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (K.G.); (F.M.); (C.A.); (A.D.M.); (G.A.); (M.A.); (L.R.)
| | - Gaetana Albanese
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Piazza L. Miraglia, 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (K.G.); (F.M.); (C.A.); (A.D.M.); (G.A.); (M.A.); (L.R.)
| | - Maria Alfano
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Piazza L. Miraglia, 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (K.G.); (F.M.); (C.A.); (A.D.M.); (G.A.); (M.A.); (L.R.)
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Piazza L. Miraglia, 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (K.G.); (F.M.); (C.A.); (A.D.M.); (G.A.); (M.A.); (L.R.)
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Piazza L. Miraglia, 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (K.G.); (F.M.); (C.A.); (A.D.M.); (G.A.); (M.A.); (L.R.)
- Correspondence: ; Tel.: +39-081-566-5010
| |
Collapse
|
26
|
Wang Z, Li C. Xenophagy in innate immunity: A battle between host and pathogen. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 109:103693. [PMID: 32243873 DOI: 10.1016/j.dci.2020.103693] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
Autophagy is a fundamental bulk intracellular degradation and recycling process that directly eliminates intracellular microorganisms through "xenophagy" in various types of cells, especially in macrophages. Meanwhile, bacteria have evolved strategies and cellular self-defense mechanisms to prevent autophagosomal degradation and even attack the immune system of host. The lack of knowledge about the roles of autophagy in innate immunity severely limits our understanding of host defensive system and the development of farmed industry consisting of aquaculture. Increasing evidence in recent decades has shown the importance of autophagy. This review focuses on the triggering of xenophagy, targeting of invading pathogens to autophagosomes and elimination in the autophagolysosomes during pathogen infection. How the pathogen can escape from the xenophagy pathway was also discussed. Overall, we aim to reduce diseases and improve industrial production in aquaculture by providing theoretical and technical guidance on xenophagy.
Collapse
Affiliation(s)
- Zhenhui Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, PR China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China.
| |
Collapse
|
27
|
Autophagy Contributes to Host Immunity and Protection against Zika Virus Infection via Type I IFN Signaling. Mediators Inflamm 2020; 2020:9527147. [PMID: 32410874 PMCID: PMC7204160 DOI: 10.1155/2020/9527147] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/20/2020] [Accepted: 04/08/2020] [Indexed: 11/17/2022] Open
Abstract
Recent studies have indicated that the Zika virus (ZIKV) has a significant impact on the fetal brain, and autophagy is contributing to host immune response and defense against virus infection. Here, we demonstrate that ZIKV infection triggered increased LC3 punctuation in mouse monocyte-macrophage cell line (RAW264.7), mouse microglial cell line (BV2), and hindbrain tissues, proving the occurrence of autophagy both in vitro and in vivo. Interestingly, manual intervention of autophagy, like deficiency inhibited by 3-MA, can reduce viral clearance in RAW264.7 cells upon ZIKV infection. Besides, specific siRNA strategy confirmed that autophagy can be activated through Atg7-Atg5 and type I IFN signaling pathway upon ZIKV infection, while knocking down of Atg7 and Atg5 effectively decreased the ZIKV clearance in phagocytes. Furthermore, we analyzed that type I IFN signaling could contribute to autophagic clearance of invaded ZIKV in phagocytes. Taken together, our findings demonstrate that ZIKV-induced autophagy is favorable to activate host immunity, particularly through type I IFN signaling, which participates in host protection and defense against ZIKV infection.
Collapse
|
28
|
Nie N, Bai C, Song S, Zhang Y, Wang B, Li Z. Bifidobacterium plays a protective role in TNF-α-induced inflammatory response in Caco-2 cell through NF-κB and p38MAPK pathways. Mol Cell Biochem 2020; 464:83-91. [PMID: 31741130 DOI: 10.1007/s11010-019-03651-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 11/08/2019] [Indexed: 12/17/2022]
Abstract
Kawasaki disease is an immune-mediated acute, systemic vasculitis and is the leading cause of acquired heart disease in children in the developed world. Bifidobacterium (BIF) is one of the dominant bacteria in the intestines of humans and many mammals and is able to adjust the intestinal flora disorder. The Caco-2 cell monolayers were treated with tumor necrosis factor-α (TNF-α) at 10 ng/ml for 24 h to induce the destruction of intestinal mucosal barrier system. Cells viability was detected through Cell Counting Kit-8 assay. Cell apoptosis was measured by flow cytometry and the expression of apoptosis related proteins was also detected through Western blot. The level of pro-inflammatory cytokines interleukin-6 (IL-6) and IL-8 was detected through ELISA, Western blot and qRT-PCR, respectively. Transepithelial electrical resistance (TEER) assay was conducted to value the barrier function of intestinal mucosa. Cell autophagy and NF-κB and p38MAPK pathways associated proteins were examined through Western blot. In the absence of TNF-α treatment, cell viability and apoptosis showed no significant change. TNF-α decreased cell viability and increased cell apoptosis and BIF treatment mitigated the TNF-α-induced change. Then, we found that BIF treatment effectively suppressed TNF-α-induced overexpression of IL-6 and IL-8. Besides, the results of TEER assay showed that barrier function of intestinal mucosa which was destroyed by TNF-α was effectively recovered by BIF treatment. In addition, TNF-α induced autophagy was also suppressed by BIF. Moreover, TNF-α activated NF-κB and p38MAPK signal pathways were also blocked by BIF, SN50 and SB203580. Our present study reveals that BIF plays a protective role in TNF-α-induced inflammatory response in Caco-2 cells through NF-κB and p38MAPK pathways.
Collapse
Affiliation(s)
- Nana Nie
- Department of Pediatric Cardiology, Nephrology and Rheumatology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Cui Bai
- Department of Pediatric Cardiology, Nephrology and Rheumatology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Shanai Song
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Yanyan Zhang
- Department of Neonatal Intensive Care Unit, Qingdao Women and Children's Hospital, No. 6 Tongfu Road, Shibei District, Qingdao, 266034, China
| | - Benzhen Wang
- Heart Center, Qingdao Women and Children's Hospital, No. 6 Tongfu Road, Shibei District, Qingdao, 266034, China
| | - Zipu Li
- Heart Center, Qingdao Women and Children's Hospital, No. 6 Tongfu Road, Shibei District, Qingdao, 266034, China.
| |
Collapse
|
29
|
Li N, Fan X, Wang X, Zhang X, Zhang K, Han Q, Lv Y, Liu Z. Genetic association of polymorphisms at the intergenic region between PRDM1 and ATG5 with hepatitis B virus infection in Han Chinese patients. J Med Virol 2019; 92:1198-1205. [PMID: 31729038 DOI: 10.1002/jmv.25629] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/12/2019] [Indexed: 12/21/2022]
Abstract
Chronic hepatitis B virus (HBV) infection is related to chronic hepatitis, cirrhosis, and hepatocellular carcinoma (HCC), and the interplay between the virus and host immune response leads to different outcomes of the infection. PR domain zinc finger protein 1 (PRDM1) and autophagy-related protein 5 (ATG5) are involved in immune response and HBV infection. An intergenic region between PRDM1 and ATG5 (PRDM1-ATG5 region) has been identified, and single-nucleotide polymorphisms (SNPs) in this region were shown to be involved in immune regulation. This study investigated the functionally relevant rs548234, rs6937876, and rs6568431 polymorphisms at the PRDM1-ATG5 region in a Han Chinese population (403 patients with chronic HBV infection [171 chronic hepatitis, 119 cirrhosis, and 113 HCC], 70 infection resolvers, and 196 healthy controls). The frequencies of the rs6568431 allele A in HBV patients (P = .005) and genotype CA in infection resolvers (P = .005) were significantly higher than in healthy controls. In the dominant model, HCC patients had significantly higher frequencies of rs548234 genotypes CC + TC than cirrhosis patients (P = .009). Rs548234 was an independent factor for HCC in comparison with either cirrhosis (P = .005) or all chronic HBV infection without HCC (P = .018). Functional annotation showed evidence of the role of the SNPs in gene regulation. In conclusion, through this study it is revealed for the first time that rs6568431 may be associated with susceptibility to HBV infection and that rs548234 may be associated with HCC risk in chronic HBV infection, supporting the presence of HBV-related disease-causing regulatory polymorphisms in the PRDM1-ATG5 intergenic region.
Collapse
Affiliation(s)
- Na Li
- Department of Infectious Diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiude Fan
- Department of Infectious Diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaoyun Wang
- Department of Infectious Diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaoge Zhang
- Department of Infectious Diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Kun Zhang
- Department of Infectious Diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qunying Han
- Department of Infectious Diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yi Lv
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Institute of Advanced Surgical Technology and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhengwen Liu
- Department of Infectious Diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Institute of Advanced Surgical Technology and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
30
|
Li Y, Song AM, Fu Y, Walayat A, Yang M, Jian J, Liu B, Xia L, Zhang L, Xiao D. Perinatal nicotine exposure alters Akt/GSK-3β/mTOR/autophagy signaling, leading to development of hypoxic-ischemic-sensitive phenotype in rat neonatal brain. Am J Physiol Regul Integr Comp Physiol 2019; 317:R803-R813. [PMID: 31553625 DOI: 10.1152/ajpregu.00218.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Maternal cigarette smoking is a major perinatal insult that contributes to an increased risk of cardiovascular and neurodevelopmental diseases in offspring. Our previous studies revealed that perinatal nicotine exposure reprograms a sensitive phenotype in neonatal hypoxic-ischemic encephalopathy (HIE), yet the underlying molecular mechanisms remain largely elusive. The present study tested the hypothesis that perinatal nicotine exposure impacts autophagy signaling in the developing brain, resulting in enhanced susceptibility to neonatal HIE. Nicotine was administered to pregnant rats via subcutaneous osmotic minipumps. Neonatal HIE was conducted in 9-day-old male rat pups. Protein kinase B/glycogen synthase kinase-3β/mammalian target of rapamycin (Akt/GSK-3β/mTOR) signaling and key autophagy markers were determined by Western blotting analysis. Rapamycin and MK2206 were administered via intracerebroventricular injection. Nicotine exposure significantly inhibited autophagy activities in neonatal brain tissues, characterized by an increased ratio of phosphoylated (p-) to total mTOR protein expression but reduced levels of autophagy-related 5, Beclin 1, and LC3βI/II. Treatment with mTOR inhibitor rapamycin effectively blocked nicotine-mediated autophagy deficiency and, more importantly, reversed the nicotine-induced increase in HI brain infarction. In addition, nicotine exposure significantly upregulated p-Akt and p-GSK-3β. Treatment with the Akt selective inhibitor MK2206 reversed the enhanced p-Akt and p-GSK-3β, restored basal autophagic flux, and abolished nicotine-mediated HI brain injury. These findings suggest that perinatal nicotine-mediated alteration of Akt/GSK-3β/mTOR signaling plays a key role in downregulation of autophagic flux, which contributes to the development of hypoxia/ischemia-sensitive phenotype in the neonatal brain.
Collapse
Affiliation(s)
- Yong Li
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Andrew M Song
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Yingjie Fu
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Andrew Walayat
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Meizi Yang
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California.,Department of Pharmacology, Binzhou Medical University, Yantai, China
| | - Jie Jian
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California.,Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong, China
| | - Bailin Liu
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Liang Xia
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California.,Department of Surgical Intensive Care Unit, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lubo Zhang
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Daliao Xiao
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| |
Collapse
|
31
|
Girolamo F, Lia A, Annese T, Giannini M, Amati A, D'Abbicco D, Tampoia M, Virgintino D, Ribatti D, Serlenga L, Iannone F, Trojano M. Autophagy markers LC3 and p62 accumulate in immune‐mediated necrotizing myopathy. Muscle Nerve 2019; 60:315-327. [DOI: 10.1002/mus.26608] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 05/29/2019] [Accepted: 06/02/2019] [Indexed: 01/23/2023]
Affiliation(s)
- Francesco Girolamo
- Unit of Human Anatomy and Histology, Department of Basic Medical Sciences, Neuroscience and Sense Organs Bari Italy
| | - Anna Lia
- Unit of Neurophysiopathology, Department of Basic Medical Sciences, Neuroscience and Sense OrgansUniversity of Bari Bari Italy
| | - Tiziana Annese
- Unit of Human Anatomy and Histology, Department of Basic Medical Sciences, Neuroscience and Sense Organs Bari Italy
| | - Margherita Giannini
- Unit of Rheumatology, Department of Emergency and Organ TransplantationUniversity of Bari Bari Italy
| | - Angela Amati
- Unit of Neurophysiopathology, Department of Basic Medical Sciences, Neuroscience and Sense OrgansUniversity of Bari Bari Italy
| | - Dario D'Abbicco
- Institute of General Surgery “G Marinaccio”Department of Emergency and Organ Transplantation, University of Bari Bari Italy
| | - Marilina Tampoia
- Unit of Clinical Pathology, Department of Biomedical Sciences and Human OncologyUniversity of Bari Bari Italy
| | - Daniela Virgintino
- Unit of Human Anatomy and Histology, Department of Basic Medical Sciences, Neuroscience and Sense Organs Bari Italy
| | - Domenico Ribatti
- Unit of Human Anatomy and Histology, Department of Basic Medical Sciences, Neuroscience and Sense Organs Bari Italy
| | - Luigi Serlenga
- Unit of Neurophysiopathology, Department of Basic Medical Sciences, Neuroscience and Sense OrgansUniversity of Bari Bari Italy
| | - Florenzo Iannone
- Unit of Rheumatology, Department of Emergency and Organ TransplantationUniversity of Bari Bari Italy
| | - Maria Trojano
- Unit of Neurophysiopathology, Department of Basic Medical Sciences, Neuroscience and Sense OrgansUniversity of Bari Bari Italy
| |
Collapse
|
32
|
Chen X, Wang L, Deng Y, Li X, Li G, Zhou J, Cheng D, Yang Y, Yang Q, Chen G, Wang G. Inhibition of Autophagy Prolongs Recipient Survival Through Promoting CD8 + T Cell Apoptosis in a Rat Liver Transplantation Model. Front Immunol 2019; 10:1356. [PMID: 31258533 PMCID: PMC6587890 DOI: 10.3389/fimmu.2019.01356] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/29/2019] [Indexed: 12/13/2022] Open
Abstract
In liver transplantation (LT), although various immunosuppressants have been used in clinical practice, acute rejection remains a common complication that significantly shortens recipient survival. In recent years, manipulating immune tolerance has been regarded as one of the promising solutions to rejection. Autophagy, an evolutionarily conserved protein degradation system, has been reported to be involved in immune rejection and may be a target to establish immune tolerance. However, the role of autophagy in acute rejection reaction after LT has not been elucidated. Here, we showed that the autophagy of CD8+ T cells was strongly enhanced in patients with graft rejection and that the autophagy level was positively correlated with the severity of rejection. Similar findings were observed in a rat acute hepatic rejection model. Furthermore, administration of the autophagy inhibitor 3-methyladenine (3-MA) largely decreased the viability and function of CD8+ T cells through inhibiting autophagy, which significantly prolonged graft survival in rats. In addition, inhibiting the autophagy of activated CD8+ T cells in vitro considerably suppressed mitochondria mediated survival and downregulated T cell function. Conclusions: We first showed that the inhibition of autophagy significantly prolongs liver allograft survival by promoting the apoptosis of CD8+ T cells, which may provide a novel strategy for immune tolerance induction.
Collapse
Affiliation(s)
- Xiaolong Chen
- Department of Hepatic Surgery, Liver Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Li Wang
- Department of Hepatic Surgery, Liver Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yinan Deng
- Department of Hepatic Surgery, Liver Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xuejiao Li
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guolin Li
- Department of Biliary and Pancreatic Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jing Zhou
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Daorou Cheng
- Department of Hepatic Surgery, Liver Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yang Yang
- Department of Hepatic Surgery, Liver Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qing Yang
- Department of Hepatic Surgery, Liver Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guihua Chen
- Department of Hepatic Surgery, Liver Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Genshu Wang
- Department of Hepatic Surgery, Liver Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
33
|
Abstract
Macroautophagy has recently emerged as an important catabolic process involved not only in innate immunity but also in adaptive immunity. Initially described to deliver intracellular antigens to MHC class II loading compartments, its molecular machinery has now also been described to impact the delivery of extracellular antigens to MHC class II loading compartments through the noncanonical use of the macroautophagy machinery during LC3-associated phagocytosis (LAP). Therefore, in pathological situations (viral or bacterial infections, tumorigenesis) the pathway might be involved in shaping CD4+ T cell responses.In this chapter we describe three basic experiments for the monitoring and manipulation of macroautophagic antigen processing toward MHC class II presentation through the canonical pathway. Firstly, we will discuss how to monitor autophagic flux and autophagosome fusion with MHC class II loading compartments. Secondly, we will show how to target proteins to autophagosomes in order to monitor macroautophagy dependent antigen processing via their enhanced presentation on MHC class II molecules to CD4+ T cells. And finally, we will describe how macroautophagy can be silenced in antigen presenting cells, like human monocyte-derived dendritic cells (DCs).
Collapse
|
34
|
Fiorotti J, Menna-Barreto RFS, Gôlo PS, Coutinho-Rodrigues CJB, Bitencourt ROB, Spadacci-Morena DD, Angelo IDC, Bittencourt VREP. Ultrastructural and Cytotoxic Effects of Metarhizium robertsii Infection on Rhipicephalus microplus Hemocytes. Front Physiol 2019; 10:654. [PMID: 31191351 PMCID: PMC6548823 DOI: 10.3389/fphys.2019.00654] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/09/2019] [Indexed: 12/15/2022] Open
Abstract
Metarhizium is an entomopathogenic fungus widely employed in the biological control of arthropods. Hemocytes present in the hemolymph of invertebrates are the cells involved in the immune response of arthropods. Despite this, knowledge about Rhipicephalus microplus hemocytes morphological aspects as well as their role in response to the fungal infection is scarce. The present study aimed to analyze the hemocytes of R. microplus females after Metarhizium robertsii infection, using light and electron microscopy approaches associated with the cytotoxicity evaluation. Five types of hemocytes (prohemocytes, spherulocytes, plasmatocytes, granulocytes, and oenocytoids) were described in the hemolymph of uninfected ticks, while only prohemocytes, granulocytes, and plasmatocytes were observed in fungus-infected tick females. Twenty-four hours after the fungal infection, only granulocytes and plasmatocytes were detected in the transmission electron microscopy analysis. Hemocytes from fungus-infected tick females showed several cytoplasmic vacuoles with different electron densities, and lipid droplets in close contact to low electron density vacuoles, as well as the formation of autophagosomes and subcellular material in different stages of degradation could also be observed. M. robertsii propagules were more toxic to tick hemocytes in the highest concentration tested (1.0 × 108 conidia mL-1). Interestingly, the lowest fungus concentration did not affect significantly the cell viability. Microanalysis showed that cells granules from fungus-infected and uninfected ticks had similar composition. This study addressed the first report of fungal cytotoxicity analyzing ultrastructural effects on hemocytes of R. microplus infected with entomopathogenic fungi. These results open new perspectives for the comprehension of ticks physiology and pathology, allowing the identification of new targets for the biological control.
Collapse
Affiliation(s)
- Jéssica Fiorotti
- Programa de Pós-Graduação em Ciências Veterinárias, Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
| | | | - Patrícia Silva Gôlo
- Departamento de Parasitologia Animal, Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
| | | | - Ricardo Oliveira Barbosa Bitencourt
- Programa de Pós-Graduação em Ciências Veterinárias, Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
| | | | - Isabele da Costa Angelo
- Departamento de Epidemiologia e Saúde Pública, Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
| | | |
Collapse
|
35
|
't Hart BA. Experimental autoimmune encephalomyelitis in the common marmoset: a translationally relevant model for the cause and course of multiple sclerosis. Primate Biol 2019; 6:17-58. [PMID: 32110715 PMCID: PMC7041540 DOI: 10.5194/pb-6-17-2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023] Open
Abstract
Aging Western societies are facing an increasing prevalence of chronic
autoimmune-mediated inflammatory disorders (AIMIDs) for which treatments that are safe and effective are scarce. One of the
main reasons for this situation is the lack of animal models, which accurately replicate
clinical and pathological aspects of the human diseases. One important AIMID is the
neuroinflammatory disease multiple sclerosis (MS), for which the mouse experimental
autoimmune encephalomyelitis (EAE) model has been frequently used in preclinical
research. Despite some successes, there is a long list of experimental treatments that
have failed to reproduce promising effects observed in murine EAE models when they were
tested in the clinic. This frustrating situation indicates a wide validity gap between
mouse EAE and MS. This monography describes the development of an EAE model in nonhuman
primates, which may help to bridge the gap.
Collapse
Affiliation(s)
- Bert A 't Hart
- Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, the Netherlands.,Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, the Netherlands
| |
Collapse
|
36
|
Münz C. Autophagy proteins influence endocytosis for MHC restricted antigen presentation. Semin Cancer Biol 2019; 66:110-115. [PMID: 30928540 DOI: 10.1016/j.semcancer.2019.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/19/2019] [Accepted: 03/25/2019] [Indexed: 12/25/2022]
Abstract
T cells of the adaptive immune system monitor protein degradation products via their presentation on major histocompatibility complex (MHC) molecules to recognize infected cells. Both macroautophagy and endocytosis target intra- and extracellular constituents, respectively, for lysosomal degradation. This results in antigen processing for MHC presentation and influences the trafficking of MHC molecules. This review will discuss recent evidence that the molecular machinery of macroautophagy regulates also endocytosis at the level of phagosome maturation and cell membrane internalization. These non-canonical functions of this machinery affect both MHC class I and II restricted antigen presentation to CD8+ and CD4+ T cells, respectively, and should be harnessed to improve immune responses against infectious diseases and cancer.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| |
Collapse
|
37
|
Tian L, Cheng F, Wang L, Qin W, Zou K, Chen J. CLE-10 from Carpesium abrotanoides L. Suppresses the Growth of Human Breast Cancer Cells (MDA-MB-231) In Vitro by Inducing Apoptosis and Pro-Death Autophagy Via the PI3K/Akt/mTOR Signaling Pathway. Molecules 2019; 24:molecules24061091. [PMID: 30897708 PMCID: PMC6471079 DOI: 10.3390/molecules24061091] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/15/2019] [Accepted: 03/16/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The antitumor activity of CLE-10 (4-epi-isoinuviscolide), a sesquiterpene lactone compound, isolated from Carpesium abrotanoides L. has rarely been reported. The aim of this study is to investigate the antitumor activity of CLE-10 and give a greater explanation of its underlying mechanisms. METHODS The cytotoxicity of CLE-10 was evaluated using MTT assay. Autophagy was detected by the formation of mRFP-GFP-LC3 fluorescence puncta and observed using transmission electron microscopy, while flow cytometry was employed to detect apoptosis. The protein expressions were detected through Western blotting. RESULTS CLE-10 induced pro-death autophagy and apoptosis in MDA-MB-231 cells by increasing the protein expression of LC3-II, p-ULK1, Bax, and Bad, as well as downregulating p-PI3K, p-Akt, p-mTOR, p62, LC3-I, Bcl-2, and Bcl-xl. CLE-10 that was pretreated with 3-methyladenine (3-MA) or chloroquine (CQ) weakened the upregulation of the protein expression of p-ULK1, or the downregulation of p62, p-mTOR, and decreased the level of cytotoxicity against MDA-MB-231 cells. Meanwhile, rapamycin enhanced the effect of CLE-10 on the expression of autophagy-related protein and its cytotoxicity, with the IC50 value of CLE-10 decreasing from 4.07 µM to 2.38 µM. CONCLUSION CLE-10 induced pro-death autophagy and apoptosis in MDA-MB-231 cells by upregulating the protein expressions of LC3-II, p-ULK1, Bax, and Bad and downregulating p-PI3K, p-Akt, p-mTOR, p62, Bcl-2, and Bcl-xl.
Collapse
Affiliation(s)
- Li Tian
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang 443002, China.
| | - Fan Cheng
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang 443002, China.
| | - Lei Wang
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang 443002, China.
| | - Wen Qin
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang 443002, China.
| | - Kun Zou
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang 443002, China.
| | - Jianfeng Chen
- Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University, Yichang 443002, China.
| |
Collapse
|
38
|
Moura J, Madureira P, Leal EC, Fonseca AC, Carvalho E. Immune aging in diabetes and its implications in wound healing. Clin Immunol 2019; 200:43-54. [PMID: 30735729 PMCID: PMC7322932 DOI: 10.1016/j.clim.2019.02.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/04/2019] [Accepted: 02/04/2019] [Indexed: 02/06/2023]
Abstract
Immune systems have evolved to recognize and eliminate pathogens and damaged cells. In humans, it is estimated to recognize 109 epitopes and natural selection ensures that clonally expanded cells replace unstimulated cells and overall immune cell numbers remain stationary. But, with age, it faces continuous repertoire restriction and concomitant accumulation of primed cells. Changes shaping the aging immune system have bitter consequences because, as inflammatory responses gain intensity and duration, tissue-damaging immunity and inflammatory disease arise. During inflammation, the glycolytic flux cannot cope with increasing ATP demands, limiting the immune response's extent. In diabetes, higher glucose availability stretches the glycolytic limit, dysregulating proteostasis and increasing T-cell expansion. Long-term hyperglycemia exerts an accumulating effect, leading to higher inflammatory cytokine levels and increased cytotoxic mediator secretion upon infection, a phenomenon known as diabetic chronic inflammation. Here we review the etiology of diabetic chronic inflammation and its consequences on wound healing.
Collapse
Affiliation(s)
- J Moura
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, University of Porto, Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal.
| | - P Madureira
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal; IBMC - Instituto de Biologia Celular e Molecular, University of Porto, Porto, Portugal; Immunethep, Biocant Park, Cantanhede, Portugal
| | - E C Leal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - A C Fonseca
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - E Carvalho
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Instituto de Investigação Interdisciplinar, University of Coimbra, Coimbra, Portugal; Department of Geriatrics, University of Arkansas for Medical Sciences and Arkansas Children's Research Institute, Little Rock, AR, United States
| |
Collapse
|
39
|
Das LM, Binko AM, Traylor ZP, Peng H, Lu KQ. Vitamin D improves sunburns by increasing autophagy in M2 macrophages. Autophagy 2019; 15:813-826. [PMID: 30661440 PMCID: PMC6526871 DOI: 10.1080/15548627.2019.1569298] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cutaneous inflammation from UV radiation exposure causes epidermal damage, cellular infiltration, and secretion of pro-inflammatory mediators that exacerbate tissue destruction. Recovery is mediated chiefly by anti-inflammatory M2 macrophages that suppress inflammation and augment epidermal regeneration. Vitamin D enables anti-inflammation to promote tissue repair in response to injury. Since vitamin D enhances cellular macroautophagy/autophagy, we investigated the role of autophagy in vitamin D protection of UV-mediated sunburn and inflammation. Using a UV-mediated acute skin injury mouse model, we demonstrate that a single dose of vitamin D resolves injury with sustained inhibition of inflammatory cytokines associated with enhanced autophagy in myeloid anti-inflammatory M2 macs. Increased MAP1LC3B/LC3 expression corroborated with complete autolysosome formation detected by electron microscopy and correlated with degradation of SQSTM1/p62 in the skin following vitamin D treatment. Specifically, pharmacological inhibition of autophagy increased UV-induced apoptosis, suppressed M2 macs recruitment, and prevented vitamin D downregulation of Tnf and Mmp9 in the skin. Furthermore, selective deletion of autophagy in myeloid cells of atg7 cKO mice abrogated vitamin D-mediated protection and recapitulated UV-induced inflammation. Mechanistically, vitamin D signaling activated M2-autophagy regulators Klf4, Pparg, and Arg1. Lastly, analysis of UV-exposed human skin biopsies detected a similar increase in macrophage autophagy following vitamin D intervention, identifying an essential role for autophagy in vitamin D-mediated protection of skin from UV damage. Abbreviations: ARG1: arginase 1; ATG7 cKO: autophagy related 7 conditional knockout; HPF: high powered field; KLF4: Kruppel like factor 4; MAP1LC3B/LC3: microtubule-associated protein 1 light chain 3 beta; macs: macrophage; 3-MA: 3-methyladenine; MMP9: matrix metallopeptidase 9; NOS2: nitric oxide synthase 2, inducible; PPARG: peroxisome proliferator activated receptor gamma; SQSTM1/p62: sequestosome 1; TNF: tumor necrosis factor; UV: ultraviolet; VD: vitamin D, 25-hydroxy vitamin D3; 1,25-VD: 1, 25-dihydroxy vitamin D3
Collapse
Affiliation(s)
- Lopa M Das
- a Department of Dermatology , Case Western Reserve University School of Medicine , Cleveland , OH , USA
| | - Amy M Binko
- a Department of Dermatology , Case Western Reserve University School of Medicine , Cleveland , OH , USA
| | - Zachary P Traylor
- a Department of Dermatology , Case Western Reserve University School of Medicine , Cleveland , OH , USA
| | - Han Peng
- b Department of Dermatology , Northwestern University , Chicago , IL , USA
| | - Kurt Q Lu
- a Department of Dermatology , Case Western Reserve University School of Medicine , Cleveland , OH , USA.,b Department of Dermatology , Northwestern University , Chicago , IL , USA.,c Department of Dermatology , University Hospitals Cleveland Medical Center , Cleveland , OH , USA
| |
Collapse
|
40
|
Wang L, Wu W, Chen J, Li Y, Xu M, Cai Y. miR‑122 and miR‑199 synergistically promote autophagy in oral lichen planus by targeting the Akt/mTOR pathway. Int J Mol Med 2019; 43:1373-1381. [PMID: 30664152 PMCID: PMC6365087 DOI: 10.3892/ijmm.2019.4068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 12/31/2018] [Indexed: 01/19/2023] Open
Abstract
The aim of the present study was to characterize the roles of two microRNAs (miRNAs), miR-122 and miR-199, in oral lichen planus (OLP). miRNA microarray analysis was performed to detect potential miRNAs involved in OLP, while in-silicon analysis, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), western blot and immunohistochemistry (IHC) analyses were utilized to explore the molecular mechanisms underlying the roles of miR-199 and miR-122 in OLP. The results from the microarray and RT-qPCR analyses demonstrated that the expression levels of miR-122 and miR-199 were significantly decreased in the peripheral blood mononuclear cells (PBMCs) collected from the OLP group compared with the control group. In addition, miR-122 and miR-199 directly targeted AKT serine/threonine kinase 1 (AKT1) and mammalian target of rapamycin (mTOR), respectively, by binding to their 3′ UTRs. AKT1 and mTOR were highly expressed in PBMCs derived from OLP patients. In fact, a negative regulatory relationship was observed between miR-122 and AKT1, and between miR-199 and mTOR, with negative correlation coefficients of −0.41 and −0.51, respectively. Furthermore, the protein levels of AKT1, mTOR and microtubule associated protein 1 light chain 3β (LC3B) were upregulated in the OLP group compared with the control group. Finally, overexpression of miR-122 inhibited the expression of AKT1 and LC3B, while overexpression of miR-199 reduced the levels of mTOR and LC3B. In conclusion, the present study demonstrated that miR-199 and miR-122 are implicated in the pathogenesis of OLP by regulating the expression of mTOR and AKT1.
Collapse
Affiliation(s)
- Liang Wang
- Department of Stomatology, Ningbo No. 2 Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Wei Wu
- Department of Stomatology, Ningbo No. 2 Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Jijun Chen
- Department of Stomatology, Ningbo No. 2 Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Youhua Li
- Department of Stomatology, Ningbo No. 2 Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Ming Xu
- Department of Stomatology, Ningbo No. 2 Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Yawei Cai
- Department of Geriatrics, Ningbo No. 2 Hospital, Ningbo, Zhejiang 315010, P.R. China
| |
Collapse
|
41
|
Ren S, Rehman ZU, Shi M, Yang B, Qu Y, Yang XF, Shao Q, Meng C, Yang Z, Gao X, Sun Y, Ding C. Syncytia generated by hemagglutinin-neuraminidase and fusion proteins of virulent Newcastle disease virus induce complete autophagy by activating AMPK-mTORC1-ULK1 signaling>. Vet Microbiol 2019; 230:283-290. [PMID: 30658866 DOI: 10.1016/j.vetmic.2019.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 01/02/2019] [Accepted: 01/03/2019] [Indexed: 02/04/2023]
Abstract
Autophagy triggered by glycoprotein-mediated membrane fusion has been reported for several paramyxoviruses. However, the function of HN and F glycoproteins of NDV and their role in autophagy induction have not been studied. Here, we found that co-transfection of HN and F of virulent NDV rapidly induced syncytium formation and triggered a steady state autophagy flux in adenocarcinomic human alveolar basal epithelial (A549) cells and chicken embryo fibroblast (DF-1) cells. Furthermore, we clearly identified that F and HN synergistically induced autophagosome fusion with lysosomes for subsequent degradation. The seven cleavage site mutations of F significantly decreased the autophagy induction, compared with those of wildtype virulent F. RNAi and pharmacological experiments suggested that autophagy benefitted membrane fusion and syncytium formation induced by F and HN of NDV. Activated F1 co-operated with HN to stimulate AMPK kinase and downstream ULK1 activation to suppress mTORC1 signaling. Our data described the synergistic role of HN and F in the induction of completed autophagic flux through the activation of AMPK- mTORC1- ULK1 pathway.
Collapse
Affiliation(s)
- Shanhui Ren
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, 200241, PR China
| | - Zaib Ur Rehman
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, 200241, PR China
| | - Mengyu Shi
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, 200241, PR China
| | - Bin Yang
- College of Veterinary Medicine, Xinjiang Agricultural University, Wulumuqi, 830052, Xinjiang, PR China
| | - Yurong Qu
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, 200241, PR China
| | - Xiao Feng Yang
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, 200241, PR China
| | - Qi Shao
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, 200241, PR China
| | - Chunchun Meng
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, 200241, PR China
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Xiaolong Gao
- College of Agriculture and Animal Husbandary, Qinghai University, Xining, Qinghai 810016, PR China
| | - Yingjie Sun
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, 200241, PR China.
| | - Chan Ding
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, 200241, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yang Zhou, 225009, PR China.
| |
Collapse
|
42
|
Zhu Y, Deng J, Nan ML, Zhang J, Okekunle A, Li JY, Yu XQ, Wang PH. The Interplay Between Pattern Recognition Receptors and Autophagy in Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1209:79-108. [PMID: 31728866 DOI: 10.1007/978-981-15-0606-2_6] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pattern recognition receptors (PRRs) are sensors of exogenous and endogenous "danger" signals from pathogen-associated molecular patterns (PAMPs), and damage associated molecular patterns (DAMPs), while autophagy can respond to these signals to control homeostasis. Almost all PRRs can induce autophagy directly or indirectly. Toll-like receptors (TLRs), Nod-like receptors (NLRs), retinoic acid-inducible gene-I-like receptors (RLRs), and cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) pathway can induce autophagy directly through Beclin-1 or LC3-dependent pathway, while the interactions with the receptor for advanced glycation end products (RAGE)/high mobility group box 1 (HMGB1), CD91/Calreticulin, and TLRs/HSPs are achieved by protein, Ca2+, and mitochondrial homeostasis. Autophagy presents antigens to PRRs and helps to clean the pathogens. In addition, the induced autophagy can form a negative feedback regulation of PRRs-mediated inflammation in cell/disease-specific manner to maintain homeostasis and prevent excessive inflammation. Understanding the interaction between PRRs and autophagy in a specific disease will promote drug development for immunotherapy. Here, we focus on the interactions between PRRs and autophagy and how they affect the inflammatory response.
Collapse
Affiliation(s)
- Yun Zhu
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China.,School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Jian Deng
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Mei-Ling Nan
- Advanced Medical Research Institute, Shandong University, Jinan, 250012, Shandong, China
| | - Jing Zhang
- Advanced Medical Research Institute, Shandong University, Jinan, 250012, Shandong, China
| | - Akinkunmi Okekunle
- The Postgraduate College, University of Ibadan, Ibadan, 200284, Nigeria.,Department of Epidemiology and Medical Statistics, College of Medicine, University of Ibadan, Ibadan, 200284, Nigeria
| | - Jiang-Yuan Li
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Xiao-Qiang Yu
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO, 64110-2499, USA
| | - Pei-Hui Wang
- Advanced Medical Research Institute, Shandong University, Jinan, 250012, Shandong, China. .,School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
| |
Collapse
|
43
|
Ke PY. The Multifaceted Roles of Autophagy in Flavivirus-Host Interactions. Int J Mol Sci 2018; 19:ijms19123940. [PMID: 30544615 PMCID: PMC6321027 DOI: 10.3390/ijms19123940] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/05/2018] [Accepted: 12/05/2018] [Indexed: 02/06/2023] Open
Abstract
Autophagy is an evolutionarily conserved cellular process in which intracellular components are eliminated via lysosomal degradation to supply nutrients for organelle biogenesis and metabolic homeostasis. Flavivirus infections underlie multiple human diseases and thus exert an immense burden on public health worldwide. Mounting evidence indicates that host autophagy is subverted to modulate the life cycles of flaviviruses, such as hepatitis C virus, dengue virus, Japanese encephalitis virus, West Nile virus and Zika virus. The diverse interplay between autophagy and flavivirus infection not only regulates viral growth in host cells but also counteracts host stress responses induced by viral infection. In this review, we summarize the current knowledge on the role of autophagy in the flavivirus life cycle. We also discuss the impacts of virus-induced autophagy on the pathogeneses of flavivirus-associated diseases and the potential use of autophagy as a therapeutic target for curing flavivirus infections and related human diseases.
Collapse
Affiliation(s)
- Po-Yuan Ke
- Department of Biochemistry & Molecular Biology and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan.
- Division of Allergy, Immunology and Rheumatology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan.
| |
Collapse
|
44
|
Colomer-Lluch M, Ruiz A, Moris A, Prado JG. Restriction Factors: From Intrinsic Viral Restriction to Shaping Cellular Immunity Against HIV-1. Front Immunol 2018; 9:2876. [PMID: 30574147 PMCID: PMC6291751 DOI: 10.3389/fimmu.2018.02876] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/22/2018] [Indexed: 01/20/2023] Open
Abstract
Antiviral restriction factors are host cellular proteins that constitute a first line of defense blocking viral replication and propagation. In addition to interfering at critical steps of the viral replication cycle, some restriction factors also act as innate sensors triggering innate responses against infections. Accumulating evidence suggests an additional role for restriction factors in promoting antiviral cellular immunity to combat viruses. Here, we review the recent progress in our understanding on how restriction factors, particularly APOBEC3G, SAMHD1, Tetherin, and TRIM5α have the cell-autonomous potential to induce cellular resistance against HIV-1 while promoting antiviral innate and adaptive immune responses. Also, we provide an overview of how these restriction factors may connect with protein degradation pathways to modulate anti-HIV-1 cellular immune responses, and we summarize the potential of restriction factors-based therapeutics. This review brings a global perspective on the influence of restrictions factors in intrinsic, innate, and also adaptive antiviral immunity opening up novel research avenues for therapeutic strategies in the fields of drug discovery, gene therapy, and vaccines to control viral infections.
Collapse
Affiliation(s)
- Marta Colomer-Lluch
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute, Universitat Autonoma de Barcelona, Badalona, Spain
| | - Alba Ruiz
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute, Universitat Autonoma de Barcelona, Badalona, Spain
| | - Arnaud Moris
- Sorbonne Université, INSERM U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Julia G Prado
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute, Universitat Autonoma de Barcelona, Badalona, Spain
| |
Collapse
|
45
|
Hagio-Izaki K, Yasunaga M, Yamaguchi M, Kajiya H, Morita H, Yoneda M, Hirofuji T, Ohno J. Lipopolysaccharide induces bacterial autophagy in epithelial keratinocytes of the gingival sulcus. BMC Cell Biol 2018; 19:18. [PMID: 30165815 PMCID: PMC6117973 DOI: 10.1186/s12860-018-0168-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 08/13/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Interactions of resident bacteria and/or their producing lipopolysaccharide (LPS) with sulcular epithelial keratinocytes may be regulated by autophagy in the gingival sulcus. In this study, we investigated an induction of bacterial autophagy in exfoliative sulcular keratinocytes of the gingival sulcus and cultured keratinocytes treated with Porphyromonas gingivalis-originated LPS (PgLPS). RESULTS Exfoliative sulcular keratinocytes showed an induction of autophagy, in addition to increased expression of LPS-mediated factors including lipopolysaccharide-binding protein and toll-like receptors (TLRs), leading to co-localization of bacteria with autophagosomes. In contrast, exfoliative keratinocytes from the free gingiva did not show similar autophagy. Autophagy activity in human cultured keratinocyte cells (HaCaT) was induced by PgLPS, which was dependent partially on the AMP-activated protein kinase (AMPK) pathway via increased intracellular reactive oxygen species (ROS) and was in association with an activation of TLR4 signaling. After incubation of cultured keratinocytes with E.coli BioParticles following PgLPS stimulation, co-localization of bioparticles with autophagosomes was enhanced. Conversely, blockage of autophagy with 3-methyladenin and LPS-binding with polymyxin B led to significant reduction of co-localization of particles with autophagosomes. CONCLUSION These findings indicate that PgLPS-induced autophagy is at least partially responsible for interaction between bacteria and sulcular keratinocytes in the gingival sulcus.
Collapse
Affiliation(s)
- Kanako Hagio-Izaki
- Section of General Dentistry, Department of General Dentistry, Fukuoka Dental College, Fukuoka, Japan.,Research Center for Regenerative Medicine, Fukuoka Dental College, Fukuoka, Japan
| | - Madoka Yasunaga
- Research Center for Regenerative Medicine, Fukuoka Dental College, Fukuoka, Japan.,Section of Orthodontics, Department of Oral Growth and Development, Fukuoka Dental College, Fukuoka, Japan
| | - Masahiro Yamaguchi
- Research Center for Regenerative Medicine, Fukuoka Dental College, Fukuoka, Japan.,Section of Geriatric Dentistry, Department of General Dentistry, Fukuoka Dental College, Fukuoka, Japan
| | - Hiroshi Kajiya
- Research Center for Regenerative Medicine, Fukuoka Dental College, Fukuoka, Japan.,Section of Cellular Physiology, Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan
| | - Hiromitsu Morita
- Section of General Dentistry, Department of General Dentistry, Fukuoka Dental College, Fukuoka, Japan
| | - Masahiro Yoneda
- Section of General Dentistry, Department of General Dentistry, Fukuoka Dental College, Fukuoka, Japan
| | - Takao Hirofuji
- Section of General Dentistry, Department of General Dentistry, Fukuoka Dental College, Fukuoka, Japan
| | - Jun Ohno
- Research Center for Regenerative Medicine, Fukuoka Dental College, Fukuoka, Japan.
| |
Collapse
|
46
|
Autophagic cell death participates in POMC-induced melanoma suppression. Cell Death Discov 2018; 4:11. [PMID: 30062060 PMCID: PMC6060113 DOI: 10.1038/s41420-018-0070-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/02/2017] [Accepted: 12/13/2017] [Indexed: 12/18/2022] Open
Abstract
Hypoxia in tumors is known to trigger the pro-survival pathways such as autophagy. Systemic proopiomelanocortin (POMC) gene therapy suppresses melanoma through apoptosis induction and neovascularization blockage. In this study, we investigated the crosstalk between autophagic and apoptotic signaling in POMC-mediated melanoma suppression. By histological and immunoblot analysis, it was shown that POMC-treated melanoma tissues exhibited the prominent LC3 immunostaining, which was correlated with reduced CD31-positive tumor vascularization. Such autophagy induction could be recapitulated in melanoma cells receiving POMC gene delivery and hypoxia-mimicking agent cobalt chloride (CoCl2). We then utilized the POMC-derived peptide α-MSH with CoCl2 to elicit the autophagy as well as apoptosis in cultured melanoma cells. To delineate the role of autophagy during cell death, application of autophagy-inducer rapamycin enhanced, whereas autophagy inhibitor 3-MA attenuated, the α-MSH-induced apoptosis in melanoma cells. Genetic silencing of ATG5, an autophagy regulator, by RNA interference perturbed the α-MSH-induced apoptosis in melanoma cells. Finally, it was delineated that α-MSH stimulated the HIF-1α signaling as well as the expression of BNIP3/BNIP3L, thereby promoting the autophagy and apoptosis in melanoma cells. Therefore, the present study unveiled a unique function of autophagy in promoting cell death during POMC-mediated melanoma suppression via α-MSH/HIF-1α/BNIP3/BNIP3L signaling pathway.
Collapse
|
47
|
Abhimanyu, Coussens AK. The role of UV radiation and vitamin D in the seasonality and outcomes of infectious disease. Photochem Photobiol Sci 2018; 16:314-338. [PMID: 28078341 DOI: 10.1039/c6pp00355a] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The seasonality of infectious disease outbreaks suggests that environmental conditions have a significant effect on disease risk. One of the major environmental factors that can affect this is solar radiation, primarily acting through ultraviolet radiation (UVR), and its subsequent control of vitamin D production. Here we show how UVR and vitamin D, which are modified by latitude and season, can affect host and pathogen fitness and relate them to the outcomes of bacterial, viral and vector-borne infections. We conducted a thorough comparison of the molecular and cellular mechanisms of action of UVR and vitamin D on pathogen fitness and host immunity and related these to the effects observed in animal models and clinical trials to understand their independent and complementary effects on infectious disease outcome. UVR and vitamin D share common pathways of innate immune activation primarily via antimicrobial peptide production, and adaptive immune suppression. Whilst UVR can induce vitamin D-independent effects in the skin, such as the generation of photoproducts activating interferon signaling, vitamin D has a larger systemic effect due to its autocrine and paracrine modulation of cellular responses in a range of tissues. However, the seasonal patterns in infectious disease prevalence are not solely driven by variation in UVR and vitamin D levels across latitudes. Vector-borne pathogens show a strong seasonality of infection correlated to climatic conditions favoring their replication. Conversely, pathogens, such as influenza A virus, Mycobacterium tuberculosis and human immunodeficiency virus type 1, have strong evidence to support their interaction with vitamin D. Thus, UVR has both vitamin D-dependent and independent effects on infectious diseases; these effects vary depending on the pathogen of interest and the effects can be complementary or antagonistic.
Collapse
Affiliation(s)
- Abhimanyu
- Clinical Infectious Diseases Research Initiative, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Rd, Observatory, 7925, Western Cape, South Africa.
| | - Anna K Coussens
- Clinical Infectious Diseases Research Initiative, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Rd, Observatory, 7925, Western Cape, South Africa. and Division of Medical Microbiology, Department of Pathology, University of Cape Town, Anzio Rd, Observatory, 7925, Western Cape, South Africa
| |
Collapse
|
48
|
Arroyo DS, Gaviglio EA, Peralta Ramos JM, Bussi C, Avalos MP, Cancela LM, Iribarren P. Phosphatidyl-Inositol-3 Kinase Inhibitors Regulate Peptidoglycan-Induced Myeloid Leukocyte Recruitment, Inflammation, and Neurotoxicity in Mouse Brain. Front Immunol 2018; 9:770. [PMID: 29719536 PMCID: PMC5914281 DOI: 10.3389/fimmu.2018.00770] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 03/28/2018] [Indexed: 12/14/2022] Open
Abstract
Acute brain injury leads to the recruitment and activation of immune cells including resident microglia and infiltrating peripheral myeloid cells (MC), which contribute to the inflammatory response involved in neuronal damage. We previously reported that TLR2 stimulation by peptidoglycan (PGN) from Staphylococcus aureus, in vitro and in vivo, induced microglial cell activation followed by autophagy induction. In this report, we evaluated if phosphatidyl-inositol-3 kinase (PI3K) pharmacological inhibitors LY294200 and 3-methyladenine (3-MA) can modulate the innate immune response to PGN in the central nervous system. We found that injection of PGN into the mouse brain parenchyma (caudate putamen) triggered an inflammatory reaction, which involved activation of microglial cells, recruitment of infiltrating MC to injection site, production of pro-inflammatory mediators, and neuronal injury. In addition, we observed the accumulation of LC3B+ CD45+ cells and colocalization of LC3B and lysosomal-associated membrane protein 1 in brain cells. Besides, we found that pharmacological inhibitors of PI3K, including the classical autophagy inhibitor 3-MA, reduced the recruitment of MC, microglial cell activation, and neurotoxicity induced by brain PGN injection. Collectively, our results suggest that PI3K pathways and autophagic response may participate in the PGN-induced microglial activation and MC recruitment to the brain. Thus, inhibition of these pathways could be therapeutically targeted to control acute brain inflammatory conditions.
Collapse
Affiliation(s)
- Daniela S Arroyo
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Emilia A Gaviglio
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Javier M Peralta Ramos
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Claudio Bussi
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Maria P Avalos
- Departamento de Farmacología (IFEC-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Liliana M Cancela
- Departamento de Farmacología (IFEC-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Pablo Iribarren
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
49
|
Agod Z, Pazmandi K, Bencze D, Vereb G, Biro T, Szabo A, Rajnavolgyi E, Bacsi A, Engel P, Lanyi A. Signaling Lymphocyte Activation Molecule Family 5 Enhances Autophagy and Fine-Tunes Cytokine Response in Monocyte-Derived Dendritic Cells via Stabilization of Interferon Regulatory Factor 8. Front Immunol 2018; 9:62. [PMID: 29434592 PMCID: PMC5790988 DOI: 10.3389/fimmu.2018.00062] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 01/10/2018] [Indexed: 12/20/2022] Open
Abstract
Signaling lymphocyte activation molecule family (SLAMF) receptors are essential regulators of innate and adaptive immune responses. The function of SLAMF5/CD84, a family member with almost ubiquitous expression within the hematopoietic lineage is poorly defined. In this article, we provide evidence that in human monocyte-derived dendritic cells (moDCs) SLAMF5 increases autophagy, a degradative pathway, which is highly active in dendritic cells (DCs) and plays a critical role in orchestration of the immune response. While investigating the underlying mechanism, we found that SLAMF5 inhibited proteolytic degradation of interferon regulatory factor 8 (IRF8) a master regulator of the autophagy process by a mechanism dependent on the E3-ubiquitin ligase tripartite motif-containing protein 21 (TRIM21). Furthermore, we demonstrate that SLAMF5 influences the ratio of CD1a+ cells in differentiating DCs and partakes in the regulation of IL-1β, IL-23, and IL-12 production in LPS/IFNγ-activated moDCs in a manner that is consistent with its effect on IRF8 stability. In summary, our experiments identified SLAMF5 as a novel cell surface receptor modulator of autophagy and revealed an unexpected link between the SLAMF and IRF8 signaling pathways, both implicated in multiple human pathologies.
Collapse
Affiliation(s)
- Zsofia Agod
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Kitti Pazmandi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Dora Bencze
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gyorgy Vereb
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamas Biro
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Szabo
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Department of Bioengineering, Sapientia Hungarian University of Transylvania, Cluj-Napoca, Romania
| | - Eva Rajnavolgyi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Department of Bioengineering, Sapientia Hungarian University of Transylvania, Cluj-Napoca, Romania
| | - Attila Bacsi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Department of Bioengineering, Sapientia Hungarian University of Transylvania, Cluj-Napoca, Romania
| | - Pablo Engel
- Department of Biomedical Sciences, Medical School, University of Barcelona, Barcelona, Spain
| | - Arpad Lanyi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Department of Bioengineering, Sapientia Hungarian University of Transylvania, Cluj-Napoca, Romania
| |
Collapse
|
50
|
|