1
|
Zhang Y, Yan F, Wang Q, Wang Y, Huang L. Pre-anesthetic brain network metrics as predictors of individual propofol sensitivity. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 257:108447. [PMID: 39366070 DOI: 10.1016/j.cmpb.2024.108447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/03/2024] [Accepted: 09/27/2024] [Indexed: 10/06/2024]
Abstract
BACKGROUND AND OBJECTIVE Numerous factors, including demographic characteristics, have been implicated in modulating individual sensitivity to propofol; however, substantial inter-individual differences persist even after accounting for these factors. This study thus aimed to explore whether pre-anesthesia brain functional network metrics correlate with an individual's sensitivity to propofol. METHODS A total of 54 subjects, including 30 patients and 24 healthy volunteers, were enrolled. Propofol was administered via a target-controlled infusion device, and anesthesia depth was monitored using a bispectral index monitor. Sensitivity to propofol was quantified using the induction time, measured from infusion onset to the bispectral index, which reached 60. Brain functional network metrics indicative of functional integration and segregation, centrality, and network resilience were computed from pre-anesthetic 60-channel EEG recordings. Linear regression analysis and machine learning predictive models were applied to evaluate the contribution of pre-anesthesia network metrics in predicting individual sensitivity to propofol. RESULTS Our analysis results revealed that subjects could be categorized into high- or low-sensitivity groups based on their induction time. Individuals with low sensitivity exhibited a greater network degree, clustering coefficient, global efficiency, and betweenness centrality, along with reduced modularity and assortativity coefficient in the alpha band. Furthermore, alpha band network metrics were significantly correlated with individual induction time. Leveraging these network metrics as features enabled the classification of individuals into high- or low-sensitivity groups with an accuracy of 94%. CONCLUSIONS Using a clinically relevant endpoint that signifies the level of anesthesia suitable for surgical procedures, this study underscored the robust correlation between pre-anesthesia alpha-band network metrics and individual sensitivity to propofol in a cohort that included both patients and healthy volunteers. Our findings offer preliminary insights into the potential utility of pre-anesthetic brain status assessment to predict propofol sensitivity on an individual basis, which may help to develop a more accurate personalized anesthesia plan.
Collapse
Affiliation(s)
- Yun Zhang
- School of Life Science and Technology, Xidian University, Xi'an, 710126, PR China
| | - Fei Yan
- Department of Anesthesiology & Center for Brain Science, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Qiang Wang
- Department of Anesthesiology & Center for Brain Science, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Yubo Wang
- School of Life Science and Technology, Xidian University, Xi'an, 710126, PR China.
| | - Liyu Huang
- School of Life Science and Technology, Xidian University, Xi'an, 710126, PR China.
| |
Collapse
|
2
|
Angarita-Rodríguez A, González-Giraldo Y, Rubio-Mesa JJ, Aristizábal AF, Pinzón A, González J. Control Theory and Systems Biology: Potential Applications in Neurodegeneration and Search for Therapeutic Targets. Int J Mol Sci 2023; 25:365. [PMID: 38203536 PMCID: PMC10778851 DOI: 10.3390/ijms25010365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/01/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Control theory, a well-established discipline in engineering and mathematics, has found novel applications in systems biology. This interdisciplinary approach leverages the principles of feedback control and regulation to gain insights into the complex dynamics of cellular and molecular networks underlying chronic diseases, including neurodegeneration. By modeling and analyzing these intricate systems, control theory provides a framework to understand the pathophysiology and identify potential therapeutic targets. Therefore, this review examines the most widely used control methods in conjunction with genomic-scale metabolic models in the steady state of the multi-omics type. According to our research, this approach involves integrating experimental data, mathematical modeling, and computational analyses to simulate and control complex biological systems. In this review, we find that the most significant application of this methodology is associated with cancer, leaving a lack of knowledge in neurodegenerative models. However, this methodology, mainly associated with the Minimal Dominant Set (MDS), has provided a starting point for identifying therapeutic targets for drug development and personalized treatment strategies, paving the way for more effective therapies.
Collapse
Affiliation(s)
- Andrea Angarita-Rodríguez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Edf. Carlos Ortiz, Oficina 107, Cra. 7 40-62, Bogotá 110231, Colombia; (A.A.-R.); (Y.G.-G.); (A.F.A.)
- Laboratorio de Bioinformática y Biología de Sistemas, Universidad Nacional de Colombia, Bogotá 111321, Colombia;
| | - Yeimy González-Giraldo
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Edf. Carlos Ortiz, Oficina 107, Cra. 7 40-62, Bogotá 110231, Colombia; (A.A.-R.); (Y.G.-G.); (A.F.A.)
| | - Juan J. Rubio-Mesa
- Departamento de Estadística, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá 111321, Colombia;
| | - Andrés Felipe Aristizábal
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Edf. Carlos Ortiz, Oficina 107, Cra. 7 40-62, Bogotá 110231, Colombia; (A.A.-R.); (Y.G.-G.); (A.F.A.)
| | - Andrés Pinzón
- Laboratorio de Bioinformática y Biología de Sistemas, Universidad Nacional de Colombia, Bogotá 111321, Colombia;
| | - Janneth González
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Edf. Carlos Ortiz, Oficina 107, Cra. 7 40-62, Bogotá 110231, Colombia; (A.A.-R.); (Y.G.-G.); (A.F.A.)
| |
Collapse
|
3
|
Sensing and Stimulation Applications of Carbon Nanomaterials in Implantable Brain-Computer Interface. Int J Mol Sci 2023; 24:ijms24065182. [PMID: 36982255 PMCID: PMC10048878 DOI: 10.3390/ijms24065182] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/11/2023] Open
Abstract
Implantable brain–computer interfaces (BCIs) are crucial tools for translating basic neuroscience concepts into clinical disease diagnosis and therapy. Among the various components of the technological chain that increases the sensing and stimulation functions of implanted BCI, the interface materials play a critical role. Carbon nanomaterials, with their superior electrical, structural, chemical, and biological capabilities, have become increasingly popular in this field. They have contributed significantly to advancing BCIs by improving the sensor signal quality of electrical and chemical signals, enhancing the impedance and stability of stimulating electrodes, and precisely modulating neural function or inhibiting inflammatory responses through drug release. This comprehensive review provides an overview of carbon nanomaterials’ contributions to the field of BCI and discusses their potential applications. The topic is broadened to include the use of such materials in the field of bioelectronic interfaces, as well as the potential challenges that may arise in future implantable BCI research and development. By exploring these issues, this review aims to provide insight into the exciting developments and opportunities that lie ahead in this rapidly evolving field.
Collapse
|
4
|
George VK, Gupta A, Silva GA. Identifying Steady State in the Network Dynamics of Spiking Neural Networks. Heliyon 2023; 9:e13913. [PMID: 36967881 PMCID: PMC10036509 DOI: 10.1016/j.heliyon.2023.e13913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 12/15/2022] [Accepted: 02/15/2023] [Indexed: 03/04/2023] Open
Abstract
Analysis of the dynamics of complex networks can provide valuable information. For example, the dynamics can be used to characterize and differentiate between different network inputs and configurations. However, without quantitatively delineating the network's dynamic regimes, analysis of the network's dynamics is based on heuristics and qualitative signatures of transient or steady-state regimes. This is not ideal because interesting phenomena can occur during the transient regime, steady-state regime, or at the transition between the two dynamic regimes. Moreover, for simulated and observed systems, precise knowledge of the network's dynamical regime is imperative when considering metrics on minimal mathematical descriptions of the dynamics, otherwise either too much or too little data is analyzed. Here, we develop quantitative methods to ascertain the starting point and period of steady-state network activity. Using the precise knowledge of the network's dynamic regimes, we build minimal representations of the network dynamics that form the basis for future work. We show applications of our techniques on idealized signals and on the dynamics of a biologically inspired spiking neural network.
Collapse
|
5
|
Srivastava P, Fotiadis P, Parkes L, Bassett DS. The expanding horizons of network neuroscience: From description to prediction and control. Neuroimage 2022; 258:119250. [PMID: 35659996 PMCID: PMC11164099 DOI: 10.1016/j.neuroimage.2022.119250] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 04/15/2022] [Accepted: 04/25/2022] [Indexed: 01/11/2023] Open
Abstract
The field of network neuroscience has emerged as a natural framework for the study of the brain and has been increasingly applied across divergent problems in neuroscience. From a disciplinary perspective, network neuroscience originally emerged as a formal integration of graph theory (from mathematics) and neuroscience (from biology). This early integration afforded marked utility in describing the interconnected nature of neural units, both structurally and functionally, and underscored the relevance of that interconnection for cognition and behavior. But since its inception, the field has not remained static in its methodological composition. Instead, it has grown to use increasingly advanced graph-theoretic tools and to bring in several other disciplinary perspectives-including machine learning and systems engineering-that have proven complementary. In doing so, the problem space amenable to the discipline has expanded markedly. In this review, we discuss three distinct flavors of investigation in state-of-the-art network neuroscience: (i) descriptive network neuroscience, (ii) predictive network neuroscience, and (iii) a perturbative network neuroscience that draws on recent advances in network control theory. In considering each area, we provide a brief summary of the approaches, discuss the nature of the insights obtained, and highlight future directions.
Collapse
Affiliation(s)
- Pragya Srivastava
- Department of Bioengineering, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Panagiotis Fotiadis
- Department of Bioengineering, University of Pennsylvania, Philadelphia PA 19104, USA; Department of Neuroscience, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Linden Parkes
- Department of Bioengineering, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Dani S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia PA 19104, USA; Department of Physics & Astronomy, University of Pennsylvania, Philadelphia PA 19104, USA; Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia PA 19104, USA; Department of Neurology, University of Pennsylvania, Philadelphia PA 19104, USA; Department of Psychiatry, University of Pennsylvania, Philadelphia PA 19104, USA; Santa Fe Institute, Santa Fe NM 87501, USA.
| |
Collapse
|
6
|
A Riemannian approach to predicting brain function from the structural connectome. Neuroimage 2022; 257:119299. [PMID: 35636736 DOI: 10.1016/j.neuroimage.2022.119299] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/29/2022] [Accepted: 05/09/2022] [Indexed: 11/21/2022] Open
Abstract
Ongoing brain function is largely determined by the underlying wiring of the brain, but the specific rules governing this relationship remain unknown. Emerging literature has suggested that functional interactions between brain regions emerge from the structural connections through mono- as well as polysynaptic mechanisms. Here, we propose a novel approach based on diffusion maps and Riemannian optimization to emulate this dynamic mechanism in the form of random walks on the structural connectome and predict functional interactions as a weighted combination of these random walks. Our proposed approach was evaluated in two different cohorts of healthy adults (Human Connectome Project, HCP; Microstructure-Informed Connectomics, MICs). Our approach outperformed existing approaches and showed that performance plateaus approximately around the third random walk. At macroscale, we found that the largest number of walks was required in nodes of the default mode and frontoparietal networks, underscoring an increasing relevance of polysynaptic communication mechanisms in transmodal cortical networks compared to primary and unimodal systems.
Collapse
|
7
|
Drug-resistant focal epilepsy in children is associated with increased modal controllability of the whole brain and epileptogenic regions. Commun Biol 2022; 5:394. [PMID: 35484213 PMCID: PMC9050895 DOI: 10.1038/s42003-022-03342-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 04/06/2022] [Indexed: 02/06/2023] Open
Abstract
Network control theory provides a framework by which neurophysiological dynamics of the brain can be modelled as a function of the structural connectome constructed from diffusion MRI. Average controllability describes the ability of a region to drive the brain to easy-to-reach neurophysiological states whilst modal controllability describes the ability of a region to drive the brain to difficult-to-reach states. In this study, we identify increases in mean average and modal controllability in children with drug-resistant epilepsy compared to healthy controls. Using simulations, we purport that these changes may be a result of increased thalamocortical connectivity. At the node level, we demonstrate decreased modal controllability in the thalamus and posterior cingulate regions. In those undergoing resective surgery, we also demonstrate increased modal controllability of the resected parcels, a finding specific to patients who were rendered seizure free following surgery. Changes in controllability are a manifestation of brain network dysfunction in epilepsy and may be a useful construct to understand the pathophysiology of this archetypical network disease. Understanding the mechanisms underlying these controllability changes may also facilitate the design of network-focussed interventions that seek to normalise network structure and function.
Collapse
|
8
|
Hillestad EMR, van der Meeren A, Nagaraja BH, Bjørsvik BR, Haleem N, Benitez-Paez A, Sanz Y, Hausken T, Lied GA, Lundervold A, Berentsen B. Gut bless you: The microbiota-gut-brain axis in irritable bowel syndrome. World J Gastroenterol 2022; 28:412-431. [PMID: 35125827 PMCID: PMC8790555 DOI: 10.3748/wjg.v28.i4.412] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/24/2021] [Accepted: 01/13/2022] [Indexed: 12/16/2022] Open
Abstract
Irritable bowel syndrome (IBS) is a common clinical label for medically unexplained gastrointestinal symptoms, recently described as a disturbance of the microbiota-gut-brain axis. Despite decades of research, the pathophysiology of this highly heterogeneous disorder remains elusive. However, a dramatic change in the understanding of the underlying pathophysiological mechanisms surfaced when the importance of gut microbiota protruded the scientific picture. Are we getting any closer to understanding IBS' etiology, or are we drowning in unspecific, conflicting data because we possess limited tools to unravel the cluster of secrets our gut microbiota is concealing? In this comprehensive review we are discussing some of the major important features of IBS and their interaction with gut microbiota, clinical microbiota-altering treatment such as the low FODMAP diet and fecal microbiota transplantation, neuroimaging and methods in microbiota analyses, and current and future challenges with big data analysis in IBS.
Collapse
Affiliation(s)
- Eline Margrete Randulff Hillestad
- Department of Clinical Medicine, University of Bergen, Bergen 5021, Norway
- National Center for Functional Gastrointestinal Disorders, Department of Medicine, Haukeland University Hospital, Bergen 5021, Norway
| | - Aina van der Meeren
- National Center for Functional Gastrointestinal Disorders, Department of Medicine, Haukeland University Hospital, Bergen 5021, Norway
| | - Bharat Halandur Nagaraja
- Mohn Medical Imaging and Visualization Center, Department of Radiology, Haukeland University Hospital, Bergen 5021, Norway
| | - Ben René Bjørsvik
- National Center for Functional Gastrointestinal Disorders, Department of Medicine, Haukeland University Hospital, Bergen 5021, Norway
- Mohn Medical Imaging and Visualization Center, Department of Radiology, Haukeland University Hospital, Bergen 5021, Norway
| | - Noman Haleem
- National Center for Functional Gastrointestinal Disorders, Department of Medicine, Haukeland University Hospital, Bergen 5021, Norway
- Mohn Medical Imaging and Visualization Center, Department of Radiology, Haukeland University Hospital, Bergen 5021, Norway
| | - Alfonso Benitez-Paez
- Host-Microbe Interactions in Metabolic Health Laboratory, Principe Felipe Research Center, Valencia 46012, Spain
| | - Yolanda Sanz
- Microbial Ecology, Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology, National Research Council, Paterna-Valencia 46980, Spain
| | - Trygve Hausken
- Department of Clinical Medicine, University of Bergen, Bergen 5021, Norway
- National Center for Functional Gastrointestinal Disorders, Department of Medicine, Haukeland University Hospital, Bergen 5021, Norway
| | - Gülen Arslan Lied
- National Center for Functional Gastrointestinal Disorders, Department of Medicine, Haukeland University Hospital, Bergen 5021, Norway
- Center for Nutrition, Department of Clinical Medicine, University of Bergen, Bergen 5021, Norway
| | - Arvid Lundervold
- Mohn Medical Imaging and Visualization Center, Department of Radiology, Haukeland University Hospital, Bergen 5021, Norway
- Department of Biomedicine, University of Bergen, Bergen 5021, Norway
| | - Birgitte Berentsen
- Department of Clinical Medicine, University of Bergen, Bergen 5021, Norway
- National Center for Functional Gastrointestinal Disorders, Department of Medicine, Haukeland University Hospital, Bergen 5021, Norway
| |
Collapse
|
9
|
Kline JE, Yuan W, Harpster K, Altaye M, Parikh NA. Association between brain structural network efficiency at term-equivalent age and early development of cerebral palsy in very preterm infants. Neuroimage 2021; 245:118688. [PMID: 34758381 PMCID: PMC9264481 DOI: 10.1016/j.neuroimage.2021.118688] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/01/2022] Open
Abstract
Very preterm infants (born at less than 32 weeks gestational age) are at high risk for serious motor impairments, including cerebral palsy (CP). The brain network changes that antecede the early development of CP in infants are not well characterized, and a better understanding may suggest new strategies for risk-stratification at term, which could lead to earlier access to therapies. Graph theoretical methods applied to diffusion MRI-derived brain connectomes may help quantify the organization and information transfer capacity of the preterm brain with greater nuance than overt structural or regional microstructural changes. Our aim was to shed light on the pathophysiology of early CP development, before the occurrence of early intervention therapies and other environmental confounders, to help identify the best early biomarkers of CP risk in VPT infants. In a cohort of 395 very preterm infants, we extracted cortical morphometrics and brain volumes from structural MRI and also applied graph theoretical methods to diffusion MRI connectomes, both acquired at term-equivalent age. Metrics from graph network analysis, especially global efficiency, strength values of the major sensorimotor tracts, and local efficiency of the motor nodes and novel non-motor regions were strongly inversely related to early CP diagnosis. These measures remained significantly associated with CP after correction for common risk factors of motor development, suggesting that metrics of brain network efficiency at term may be sensitive biomarkers for early CP detection. We demonstrate for the first time that in VPT infants, early CP diagnosis is anteceded by decreased brain network segregation in numerous nodes, including motor regions commonly-associated with CP and also novel regions that may partially explain the high rate of cognitive impairments concomitant with CP diagnosis. These advanced MRI biomarkers may help identify the highest risk infants by term-equivalent age, facilitating earlier interventions that are informed by early pathophysiological changes.
Collapse
Affiliation(s)
- Julia E Kline
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 7009, Cincinnati, OH 45229, United States
| | - Weihong Yuan
- Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Radiology, Division of Occupational Therapy and Physical Therapy, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Karen Harpster
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Rehabilitation, Exercise, and Nutrition Sciences, College of Allied Health Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Mekibib Altaye
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Nehal A Parikh
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 7009, Cincinnati, OH 45229, United States; Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| |
Collapse
|
10
|
Qin L, Zhang Y. A reference spike train-based neurocomputing method for enhanced tactile discrimination of surface roughness. Neural Comput Appl 2021. [DOI: 10.1007/s00521-021-06119-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Kline JE, Illapani VSP, Li H, He L, Yuan W, Parikh NA. Diffuse white matter abnormality in very preterm infants at term reflects reduced brain network efficiency. NEUROIMAGE-CLINICAL 2021; 31:102739. [PMID: 34237685 PMCID: PMC8378797 DOI: 10.1016/j.nicl.2021.102739] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/28/2021] [Accepted: 06/21/2021] [Indexed: 01/23/2023]
Abstract
Most preterm infants exhibit regions of high signal
intensity on T2 MRI at term. Debate remains as to whether this signal (DWMA) is
pathological. We quantified DWMA and used graph theory to measure
brain network efficiency. Whole-brain and regional network efficiency at term
decreased with greater DWMA. DWMA in very preterm infants is associated with
reduced brain efficiency at term. Between 50 and 80% of very preterm infants (<32 weeks
gestational age) exhibit increased white matter signal intensity on T2-weighted
MRI at term-equivalent age, known as diffuse white matter abnormality (DWMA). A
few studies have linked DWMA with microstructural abnormalities, but the exact
relationship remains poorly understood. We related DWMA extent to graph theory
measures of network efficiency at term in a representative cohort of 343 very
preterm infants. We performed anatomic and diffusion MRI at term and quantified
DWMA volume with our novel, semi-automated algorithm. From diffusion-weighted
structural connectomes, we calculated the graph theory metrics local efficiency
and clustering coefficient, which measure the ability of groups of nodes to
perform specialized processing, and global efficiency, which assesses the
ability of brain regions to efficiently combine information. We computed partial
correlations between these measures and DWMA volume, adjusted for confounders.
Increasing DWMA volume was associated with decreased global efficiency of the
entire very preterm brain and decreased local efficiency and clustering
coefficient in a variety of regions supporting cognitive, linguistic, and motor
function. We show that DWMA is associated with widespread decreased brain
network efficiency, suggesting that it is pathologic and likely has adverse
developmental consequences.
Collapse
Affiliation(s)
- Julia E Kline
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | | | - Hailong Li
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Lili He
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Weihong Yuan
- Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Nehal A Parikh
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.
| |
Collapse
|
12
|
Feng M, Zhang Y, Liu Y, Wu Z, Song Z, Ma M, Wang Y, Dai H. White Matter Structural Network Analysis to Differentiate Alzheimer's Disease and Subcortical Ischemic Vascular Dementia. Front Aging Neurosci 2021; 13:650377. [PMID: 33867969 PMCID: PMC8044349 DOI: 10.3389/fnagi.2021.650377] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/25/2021] [Indexed: 12/16/2022] Open
Abstract
To explore the evaluation of white matter structural network analysis in the differentiation of Alzheimer's disease (AD) and subcortical ischemic vascular dementia (SIVD), 67 participants [31 AD patients, 19 SIVD patients, and 19 normal control (NC)] were enrolled in this study. Each participant underwent 3.0T MRI scanning. Diffusion tensor imaging (DTI) data were analyzed by graph theory (GRETNA toolbox). Statistical analyses of global parameters [gamma, sigma, lambda, global shortest path length (Lp), global efficiency (Eg), and local efficiency (Eloc)] and nodal parameters [betweenness centrality (BC)] were obtained. Network-based statistical analysis (NBS) was employed to analyze the group differences of structural connections. The diagnosis efficiency of nodal BC in identifying different types of dementia was assessed by receiver operating characteristic (ROC) analysis. There were no significant differences of gender and years of education among the groups. There were no significant differences of sigma and gamma in AD vs. NC and SIVD vs. NC, whereas the Eg values of AD and SIVD were statistically decreased, and the lambda values were increased. The BC of the frontal cortex, left superior parietal gyrus, and left precuneus in AD patients were obviously reduced, while the BC of the prefrontal and subcortical regions were decreased in SIVD patients, compared with NC. SIVD patients had decreased structural connections in the frontal, prefrontal, and subcortical regions, while AD patients had decreased structural connections in the temporal and occipital regions and increased structural connections in the frontal and prefrontal regions. The highest area under curve (AUC) of BC was 0.946 in the right putamen for AD vs. SIVD. White matter structural network analysis may be a potential and promising method, and the topological changes of the network, especially the BC change in the right putamen, were valuable in differentiating AD and SIVD patients.
Collapse
Affiliation(s)
- Mengmeng Feng
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou City, China
| | - Yue Zhang
- Department of Geratology, The First Affiliated Hospital of Soochow University, Suzhou City, China
| | - Yuanqing Liu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou City, China
| | - Zhiwei Wu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou City, China
| | - Ziyang Song
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou City, China
| | - Mengya Ma
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou City, China
| | - Yueju Wang
- Department of Geratology, The First Affiliated Hospital of Soochow University, Suzhou City, China
| | - Hui Dai
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou City, China
- Institute of Medical Imaging, Soochow University, Suzhou City, China
| |
Collapse
|
13
|
George VK, Puppo F, Silva GA. Computing Temporal Sequences Associated With Dynamic Patterns on the C. elegans Connectome. Front Syst Neurosci 2021; 15:564124. [PMID: 33767613 PMCID: PMC7985353 DOI: 10.3389/fnsys.2021.564124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 02/04/2021] [Indexed: 12/03/2022] Open
Abstract
Understanding how the structural connectivity and spatial geometry of a network constrains the dynamics it is able to support is an active and open area of research. We simulated the plausible dynamics resulting from the known C. elegans connectome using a recent model and theoretical analysis that computes the dynamics of neurobiological networks by focusing on how local interactions among connected neurons give rise to the global dynamics in an emergent way. We studied the dynamics which resulted from stimulating a chemosensory neuron (ASEL) in a known feeding circuit, both in isolation and embedded in the full connectome. We show that contralateral motorneuron activations in ventral (VB) and dorsal (DB) classes of motorneurons emerged from the simulations, which are qualitatively similar to rhythmic motorneuron firing pattern associated with locomotion of the worm. One interpretation of these results is that there is an inherent-and we propose-purposeful structural wiring to the C. elegans connectome that has evolved to serve specific behavioral functions. To study network signaling pathways responsible for the dynamics we developed an analytic framework that constructs Temporal Sequences (TSeq), time-ordered walks of signals on graphs. We found that only 5% of TSeq are preserved between the isolated feeding network relative to its embedded counterpart. The remaining 95% of signaling pathways computed in the isolated network are not present in the embedded network. This suggests a cautionary note for computational studies of isolated neurobiological circuits and networks.
Collapse
Affiliation(s)
- Vivek Kurien George
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
- Center for Engineered Natural Intelligence, University of California, San Diego, San Diego, CA, United States
| | - Francesca Puppo
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
- Center for Engineered Natural Intelligence, University of California, San Diego, San Diego, CA, United States
- BioCircuits Institute, University of California, San Diego, San Diego, CA, United States
| | - Gabriel A. Silva
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
- Center for Engineered Natural Intelligence, University of California, San Diego, San Diego, CA, United States
- BioCircuits Institute, University of California, San Diego, San Diego, CA, United States
- Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
14
|
Lin F, Cheng SQ, Qi DQ, Jiang YE, Lyu QQ, Zhong LJ, Jiang ZL. Brain hothubs and dark functional networks: correlation analysis between amplitude and connectivity for Broca's aphasia. PeerJ 2020; 8:e10057. [PMID: 33062446 PMCID: PMC7533062 DOI: 10.7717/peerj.10057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/07/2020] [Indexed: 12/04/2022] Open
Abstract
Source localization and functional brain network modeling are methods of identifying critical regions during cognitive tasks. The first activity estimates the relative differences of the signal amplitudes in regions of interest (ROI) and the second activity measures the statistical dependence among signal fluctuations. We hypothesized that the source amplitude–functional connectivity relationship decouples or reverses in persons having brain impairments. Five Broca’s aphasics with five matched cognitively healthy controls underwent overt picture-naming magnetoencephalography scans. The gamma-band (30–45 Hz) phase-locking values were calculated as connections among the ROIs. We calculated the partial correlation coefficients between the amplitudes and network measures and detected four node types, including hothubs with high amplitude and high connectivity, coldhubs with high connectivity but lower amplitude, non-hub hotspots, and non-hub coldspots. The results indicate that the high-amplitude regions are not necessarily highly connected hubs. Furthermore, the Broca aphasics utilized different hothub sets for the naming task. Both groups had dark functional networks composed of coldhubs. Thus, source amplitude–functional connectivity relationships could help reveal functional reorganizations in patients. The amplitude–connectivity combination provides a new perspective for pathological studies of the brain’s dark functional networks.
Collapse
Affiliation(s)
- Feng Lin
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Rehabilitation Medicine, The Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shao-Qiang Cheng
- Department of Neurology, The First People's Hospital of Xianyang, Xianyang, Shananxi, China
| | - Dong-Qing Qi
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yu-Er Jiang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qian-Qian Lyu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Li-Juan Zhong
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhong-Li Jiang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Rehabilitation Medicine, The Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
15
|
Sanchez-Rodriguez LM, Iturria-Medina Y, Mouches P, Sotero RC. Detecting brain network communities: Considering the role of information flow and its different temporal scales. Neuroimage 2020; 225:117431. [PMID: 33045336 DOI: 10.1016/j.neuroimage.2020.117431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 09/22/2020] [Accepted: 09/29/2020] [Indexed: 12/16/2022] Open
Abstract
The identification of community structure in graphs continues to attract great interest in several fields. Network neuroscience is particularly concerned with this problem considering the key roles communities play in brain processes and functionality. Most methods used for community detection in brain graphs are based on the maximization of a parameter-dependent modularity function that often obscures the physical meaning and hierarchical organization of the partitions of network nodes. In this work, we present a new method able to detect communities at different scales in a natural, unrestricted way. First, to obtain an estimation of the information flow in the network we release random walkers to freely move over it. The activity of the walkers is separated into oscillatory modes by using empirical mode decomposition. After grouping nodes by their co-occurrence at each time scale, k-modes clustering returns the desired partitions. Our algorithm was first tested on benchmark graphs with favorable performance. Next, it was applied to real and simulated anatomical and/or functional connectomes in the macaque and human brains. We found a clear hierarchical repertoire of community structures in both the anatomical and the functional networks. The observed partitions range from the evident division in two hemispheres -in which all processes are managed globally- to specialized communities seemingly shaped by physical proximity and shared function. Additionally, the spatial scales of a network's community structure (characterized by a measure we term within-communities path length) appear inversely proportional to the oscillatory modes' average frequencies. The proportionality constant may constitute a network-specific propagation velocity for the information flow. Our results stimulate the research of hierarchical community organization in terms of temporal scales of information flow in the brain network.
Collapse
Affiliation(s)
- Lazaro M Sanchez-Rodriguez
- Department of Radiology and Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill Univ., Montreal, Canada; McConnel Brain Imaging Center, Montreal Neurological Institute, McGill Univ., Montreal, Canada; Ludmer Centre for Neuroinformatics and Mental Health, McGill Univ., Montreal, Canada.
| | - Yasser Iturria-Medina
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill Univ., Montreal, Canada; McConnel Brain Imaging Center, Montreal Neurological Institute, McGill Univ., Montreal, Canada; Ludmer Centre for Neuroinformatics and Mental Health, McGill Univ., Montreal, Canada
| | - Pauline Mouches
- Department of Radiology and Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, Canada
| | - Roberto C Sotero
- Department of Radiology and Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
16
|
Mhiri I, Khalifa AB, Mahjoub MA, Rekik I. Brain graph super-resolution for boosting neurological disorder diagnosis using unsupervised multi-topology connectional brain template learning. Med Image Anal 2020; 65:101768. [DOI: 10.1016/j.media.2020.101768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 04/12/2020] [Accepted: 06/23/2020] [Indexed: 10/24/2022]
|
17
|
Ereifej ES, Shell CE, Schofield JS, Charkhkar H, Cuberovic I, Dorval AD, Graczyk EL, Kozai TDY, Otto KJ, Tyler DJ, Welle CG, Widge AS, Zariffa J, Moritz CT, Bourbeau DJ, Marasco PD. Neural engineering: the process, applications, and its role in the future of medicine. J Neural Eng 2019; 16:063002. [PMID: 31557730 DOI: 10.1088/1741-2552/ab4869] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Recent advances in neural engineering have restored mobility to people with paralysis, relieved symptoms of movement disorders, reduced chronic pain, restored the sense of hearing, and provided sensory perception to individuals with sensory deficits. APPROACH This progress was enabled by the team-based, interdisciplinary approaches used by neural engineers. Neural engineers have advanced clinical frontiers by leveraging tools and discoveries in quantitative and biological sciences and through collaborations between engineering, science, and medicine. The movement toward bioelectronic medicines, where neuromodulation aims to supplement or replace pharmaceuticals to treat chronic medical conditions such as high blood pressure, diabetes and psychiatric disorders is a prime example of a new frontier made possible by neural engineering. Although one of the major goals in neural engineering is to develop technology for clinical applications, this technology may also offer unique opportunities to gain insight into how biological systems operate. MAIN RESULTS Despite significant technological progress, a number of ethical and strategic questions remain unexplored. Addressing these questions will accelerate technology development to address unmet needs. The future of these devices extends far beyond treatment of neurological impairments, including potential human augmentation applications. Our task, as neural engineers, is to push technology forward at the intersection of disciplines, while responsibly considering the readiness to transition this technology outside of the laboratory to consumer products. SIGNIFICANCE This article aims to highlight the current state of the neural engineering field, its links with other engineering and science disciplines, and the challenges and opportunities ahead. The goal of this article is to foster new ideas for innovative applications in neurotechnology.
Collapse
Affiliation(s)
- Evon S Ereifej
- Veteran Affairs Ann Arbor Healthcare System, Ann Arbor, MI, United States of America. Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America. Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America. Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Liao W, Li J, Ji GJ, Wu GR, Long Z, Xu Q, Duan X, Cui Q, Biswal BB, Chen H. Endless Fluctuations: Temporal Dynamics of the Amplitude of Low Frequency Fluctuations. IEEE TRANSACTIONS ON MEDICAL IMAGING 2019; 38:2523-2532. [PMID: 30872224 DOI: 10.1109/tmi.2019.2904555] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Intrinsic neural activity ubiquitously persists in all physiological states. However, how intrinsic brain activity (iBA) changes over a short time remains unknown. To uncover the brain dynamics' theoretic underpinning, electrophysiological relevance, and neuromodulation, we identified iBA dynamics on simulated data, electroencephalogram-functional magnetic resonance imaging (EEG-fMRI) data, and repetitive transcranial magnetic stimulation (rTMS) fMRI data using sliding-window analysis. The temporal variability (dynamics) of iBA were quantified using the variance of the amplitude of low-frequency fluctuations (ALFF) over time. We first used simulated fMRI data to examine the effects of various parameters including window length, and step size on dynamic ALFF. Second, using EEG-fMRI data, we found that the heteromodal association cortex had the most variable dynamics while the limbic regions had the least, consistent with previous findings. In addition, the temporal variability of dynamic ALFF depended on EEG power fluctuations. Moreover, using rTMS fMRI data, we found that the temporal variability of dynamic ALFF could be modulated by rTMS. Taken together, these results provide evidence about the theory, relevance, and adjustability of iBA dynamics.
Collapse
|
19
|
Cullen DK, Gordián-Vélez WJ, Struzyna LA, Jgamadze D, Lim J, Wofford KL, Browne KD, Chen HI. Bundled Three-Dimensional Human Axon Tracts Derived from Brain Organoids. iScience 2019; 21:57-67. [PMID: 31654854 PMCID: PMC6820245 DOI: 10.1016/j.isci.2019.10.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 06/27/2019] [Accepted: 09/30/2019] [Indexed: 12/20/2022] Open
Abstract
Reestablishing cerebral connectivity is a critical part of restoring neuronal network integrity and brain function after trauma, stroke, and neurodegenerative diseases. Creating transplantable axon tracts in the laboratory is an unexplored strategy for overcoming the common barriers limiting axon regeneration in vivo, including growth-inhibiting factors and the limited outgrowth capacity of mature neurons in the brain. We describe the generation, phenotype, and connectivity of constrained three-dimensional human axon tracts derived from brain organoids. These centimeter-long constructs are encased in an agarose shell that permits physical manipulation and are composed of discrete cellular regions spanned by axon tracts, mirroring the separation of cerebral gray and white matter. Features of cerebral cortex also are emulated, as evidenced by the presence of neurons with different cortical layer phenotypes. This engineered neural tissue represents a first step toward potentially reconstructing brain circuits by physically replacing neuronal populations and long-range axon tracts in the brain.
Transplantable 3D axon tracts are tissue engineered from human brain organoids Growth of organoid axons in a hydrogel column is enhanced compared with planar culture Organoids within engineered columns can maintain a laminar cortical architecture Functional connectivity across the construct is demonstrated using calcium imaging
Collapse
Affiliation(s)
- D Kacy Cullen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 105E Hayden Hall/3320 Smith Walk, 3rd Floor, Silverstein Pavilion/3400 Spruce Street, Philadelphia, PA 19104, USA; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Wisberty J Gordián-Vélez
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 105E Hayden Hall/3320 Smith Walk, 3rd Floor, Silverstein Pavilion/3400 Spruce Street, Philadelphia, PA 19104, USA; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Laura A Struzyna
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 105E Hayden Hall/3320 Smith Walk, 3rd Floor, Silverstein Pavilion/3400 Spruce Street, Philadelphia, PA 19104, USA; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dennis Jgamadze
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 105E Hayden Hall/3320 Smith Walk, 3rd Floor, Silverstein Pavilion/3400 Spruce Street, Philadelphia, PA 19104, USA; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - James Lim
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 105E Hayden Hall/3320 Smith Walk, 3rd Floor, Silverstein Pavilion/3400 Spruce Street, Philadelphia, PA 19104, USA; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - Kathryn L Wofford
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 105E Hayden Hall/3320 Smith Walk, 3rd Floor, Silverstein Pavilion/3400 Spruce Street, Philadelphia, PA 19104, USA; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - Kevin D Browne
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 105E Hayden Hall/3320 Smith Walk, 3rd Floor, Silverstein Pavilion/3400 Spruce Street, Philadelphia, PA 19104, USA; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - H Isaac Chen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 105E Hayden Hall/3320 Smith Walk, 3rd Floor, Silverstein Pavilion/3400 Spruce Street, Philadelphia, PA 19104, USA; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA.
| |
Collapse
|
20
|
Neuro-Advancements and the Role of Nurses as Stated in Academic Literature and Canadian Newspapers. SOCIETIES 2019. [DOI: 10.3390/soc9030061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Neurosciences and neurotechnologies (from now on called neuro-advancements) constantly evolve and influence all facets of society. Neuroethics and neuro-governance discourses focus on the impact of neuro-advancements on individuals and society, and stakeholder involvement is identified as an important aspect of being able to deal with such an impact. Nurses engage with neuro-advancements within their occupation, including neuro-linked assistive technologies, such as brain-computer interfaces, cochlear implants, and virtual reality. The role of nurses is multifaceted and includes being providers of clinical and other health services, educators, advocates for their field and their clients, including disabled people, researchers, and influencers of policy discourses. Nurses have a stake in how neuro-advancements are governed, therefore, being influencers of neuroethics and neuro-governance discourses should be one of these roles. Lifelong learning and professional development could be one mechanism to increase the knowledge of nurses about ethical, social, and legal issues linked to neuro-advancements, which in turn, would allow nurses to provide meaningful input towards neuro-advancement discussions. Disabled people are often the recipients of neuro-advancements and are clients of nurses, therefore, they have a stake in the way nurses interact with neuro-advancements and influence the sociotechnical context of neuro-advancements, which include neuro-linked assistive devices. We performed a scoping review to investigate the role of narrative around nurses in relation to neuro-advancements within academic literature and newspapers. We found minimal engagement with the role of nurses outside of clinical services. No article raised the issue of nurses having to be involved in neuro-ethics and neuro-governance discussions or how lifelong learning could be used to gain that competency. Few articles used the term assistive technology or assistive device and no article covered the engagement of nurses with disabled people within a socio-technical context. We submit that the role narrative falls short of what is expected from nurses and shows shortcomings at the intersection of nurses, socio-technical approaches to neuro-assistive technologies and other neuro-advancements and people with disabilities. Neuro-governance and neuroethic discourses could be a useful way for nurses and disabled people to co-shape the socio-technical context of neuro-advancements, including neuro-assistive technologies. Lifelong learning initiatives should be put in place to provide the knowledge necessary for nurses to take part in the neuroethics and neuro-governance discussion.
Collapse
|
21
|
Papo D. Neurofeedback: Principles, appraisal, and outstanding issues. Eur J Neurosci 2019; 49:1454-1469. [PMID: 30570194 DOI: 10.1111/ejn.14312] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 11/21/2018] [Accepted: 11/27/2018] [Indexed: 12/16/2022]
Abstract
Neurofeedback is a form of brain training in which subjects are fed back information about some measure of their brain activity which they are instructed to modify in a way thought to be functionally advantageous. Over the last 20 years, neurofeedback has been used to treat various neurological and psychiatric conditions, and to improve cognitive function in various contexts. However, in spite of a growing popularity, neurofeedback protocols typically make (often covert) assumptions on what aspects of brain activity to target, where in the brain to act and how, which have far-reaching implications for the assessment of its potential and efficacy. Here we critically examine some conceptual and methodological issues associated with the way neurofeedback's general objectives and neural targets are defined. The neural mechanisms through which neurofeedback may act at various spatial and temporal scales, and the way its efficacy is appraised are reviewed, and the extent to which neurofeedback may be used to control functional brain activity discussed. Finally, it is proposed that gauging neurofeedback's potential, as well as assessing and improving its efficacy will require better understanding of various fundamental aspects of brain dynamics and a more precise definition of functional brain activity and brain-behaviour relationships.
Collapse
Affiliation(s)
- David Papo
- SCALab, CNRS, Université de Lille, Villeneuve d'Ascq, France
| |
Collapse
|
22
|
Sanchez-Rodriguez LM, Iturria-Medina Y, Baines EA, Mallo SC, Dousty M, Sotero RC, on behalf of The Alzheimer’s Disease Neuroimaging Initiative. Design of optimal nonlinear network controllers for Alzheimer's disease. PLoS Comput Biol 2018; 14:e1006136. [PMID: 29795548 PMCID: PMC5967700 DOI: 10.1371/journal.pcbi.1006136] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 04/12/2018] [Indexed: 12/26/2022] Open
Abstract
Brain stimulation can modulate the activity of neural circuits impaired by Alzheimer’s disease (AD), having promising clinical benefit. However, all individuals with the same condition currently receive identical brain stimulation, with limited theoretical basis for this generic approach. In this study, we introduce a control theory framework for obtaining exogenous signals that revert pathological electroencephalographic activity in AD at a minimal energetic cost, while reflecting patients’ biological variability. We used anatomical networks obtained from diffusion magnetic resonance images acquired by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) as mediators for the interaction between Duffing oscillators. The nonlinear nature of the brain dynamics is preserved, given that we extend the so-called state-dependent Riccati equation control to reflect the stimulation objective in the high-dimensional neural system. By considering nonlinearities in our model, we identified regions for which control inputs fail to correct abnormal activity. There are changes to the way stimulated regions are ranked in terms of the energetic cost of controlling the entire network, from a linear to a nonlinear approach. We also found that limbic system and basal ganglia structures constitute the top target locations for stimulation in AD. Patients with highly integrated anatomical networks–namely, networks having low average shortest path length, high global efficiency–are the most suitable candidates for the propagation of stimuli and consequent success on the control task. Other diseases associated with alterations in brain dynamics and the self-control mechanisms of the brain can be addressed through our framework. This work aims to close the knowledge gap between theory and experiment in brain stimulation. Previous modeling approaches for stimulation have overlooked the nonlinear dynamical nature of the brain and failed to shed light on efficient mechanisms for the exogenous control of the brain. Amid the current efforts for developing personalized medicine, we introduce a framework for producing tailored stimulation signals, based on individual neuroimaging data and innovative modeling. This is the first time, to our knowledge, that brain stimulation for the most common cause of dementia, Alzheimer’s disease, is theoretically addressed. Our approach leads to the identification of potential target regions and subjects to successfully respond to brain stimulation therapies and yields various disease-reverting signals. Although focused on Alzheimer’s in this study, our methodology could be applied to other clinical conditions characterized by abnormalities in brain dynamics, like epilepsy and Parkinson’s, the treatment of which can benefit from the use of optimal control strategies.
Collapse
Affiliation(s)
- Lazaro M. Sanchez-Rodriguez
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, Canada
- Department of Radiology and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- * E-mail: (LMSR); (RCS)
| | - Yasser Iturria-Medina
- Department of Neurology & Neurosurgery, McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Quebec, Canada
- Ludmer Centre for NeuroInformatics and Mental Health, Montreal, Quebec, Canada
| | - Erica A. Baines
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Sabela C. Mallo
- Departament of Developmental Psychology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Mehdy Dousty
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, Canada
- Department of Radiology and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Roberto C. Sotero
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, Canada
- Department of Radiology and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- * E-mail: (LMSR); (RCS)
| | | |
Collapse
|
23
|
Yu Q, Du Y, Chen J, Sui J, Adali T, Pearlson G, Calhoun VD. Application of Graph Theory to Assess Static and Dynamic Brain Connectivity: Approaches for Building Brain Graphs. PROCEEDINGS OF THE IEEE. INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS 2018; 106:886-906. [PMID: 30364630 PMCID: PMC6197492 DOI: 10.1109/jproc.2018.2825200] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Human brain connectivity is complex. Graph theory based analysis has become a powerful and popular approach for analyzing brain imaging data, largely because of its potential to quantitatively illuminate the networks, the static architecture in structure and function, the organization of dynamic behavior over time, and disease related brain changes. The first step in creating brain graphs is to define the nodes and edges connecting them. We review a number of approaches for defining brain nodes including fixed versus data-driven nodes. Expanding the narrow view of most studies which focus on static and/or single modality brain connectivity, we also survey advanced approaches and their performances in building dynamic and multi-modal brain graphs. We show results from both simulated and real data from healthy controls and patients with mental illnesse. We outline the advantages and challenges of these various techniques. By summarizing and inspecting recent studies which analyzed brain imaging data based on graph theory, this article provides a guide for developing new powerful tools to explore complex brain networks.
Collapse
Affiliation(s)
- Qingbao Yu
- Mind Research Network, Albuquerque NM 87106 USA
| | - Yuhui Du
- Mind Research Network, Albuquerque NM 87106 USA. And also with School of Computer & Information Technology, Shanxi University, Taiyuan, 030006, China
| | - Jiayu Chen
- Mind Research Network, Albuquerque NM 87106 USA
| | - Jing Sui
- University of Chinese Academy of Sciences, Beijing 100049 China. And also with CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Science (CAS), University of CAS, Beijing 100190 China
| | - Tulay Adali
- Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Godfrey Pearlson
- Olin Neuropsychiatry Research Center, Hartford, CT 06106, USA. And also with Departments of Psychiatry and Neurobiology, Yale University, New Haven, CT 06520, USA
| | - Vince D Calhoun
- Mind Research Network, Albuquerque NM 87106 USA. And also with Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
24
|
Gosak M, Markovič R, Dolenšek J, Slak Rupnik M, Marhl M, Stožer A, Perc M. Network science of biological systems at different scales: A review. Phys Life Rev 2018; 24:118-135. [DOI: 10.1016/j.plrev.2017.11.003] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/13/2017] [Accepted: 10/15/2017] [Indexed: 12/20/2022]
|
25
|
Kim JZ, Soffer JM, Kahn AE, Vettel JM, Pasqualetti F, Bassett DS. Role of Graph Architecture in Controlling Dynamical Networks with Applications to Neural Systems. NATURE PHYSICS 2017; 14:91-98. [PMID: 29422941 PMCID: PMC5798649 DOI: 10.1038/nphys4268] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 08/18/2017] [Indexed: 05/25/2023]
Abstract
Networked systems display complex patterns of interactions between components. In physical networks, these interactions often occur along structural connections that link components in a hard-wired connection topology, supporting a variety of system-wide dynamical behaviors such as synchronization. While descriptions of these behaviors are important, they are only a first step towards understanding and harnessing the relationship between network topology and system behavior. Here, we use linear network control theory to derive accurate closed-form expressions that relate the connectivity of a subset of structural connections (those linking driver nodes to non-driver nodes) to the minimum energy required to control networked systems. To illustrate the utility of the mathematics, we apply this approach to high-resolution connectomes recently reconstructed from Drosophila, mouse, and human brains. We use these principles to suggest an advantage of the human brain in supporting diverse network dynamics with small energetic costs while remaining robust to perturbations, and to perform clinically accessible targeted manipulation of the brain's control performance by removing single edges in the network. Generally, our results ground the expectation of a control system's behavior in its network architecture, and directly inspire new directions in network analysis and design via distributed control.
Collapse
Affiliation(s)
- Jason Z Kim
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104
| | - Jonathan M Soffer
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104
| | - Ari E Kahn
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, 19104 and U.S. Army Research Laboratory, Aberdeen, MD 21001
| | - Jean M Vettel
- Human Research & Engineering Directorate, U.S. Army Research Laboratory, Aberdeen, MD 21001, Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104
| | - Fabio Pasqualetti
- Department of Mechanical Engineering, University of California, Riverside, Riverside, CA, 92521
| | - Danielle S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104
| |
Collapse
|
26
|
Falk EB, Bassett DS. Brain and Social Networks: Fundamental Building Blocks of Human Experience. Trends Cogn Sci 2017; 21:674-690. [PMID: 28735708 PMCID: PMC8590886 DOI: 10.1016/j.tics.2017.06.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/16/2017] [Accepted: 06/20/2017] [Indexed: 01/10/2023]
Abstract
How do brains shape social networks, and how do social ties shape the brain? Social networks are complex webs by which ideas spread among people. Brains comprise webs by which information is processed and transmitted among neural units. While brain activity and structure offer biological mechanisms for human behaviors, social networks offer external inducers or modulators of those behaviors. Together, these two axes represent fundamental contributors to human experience. Integrating foundational knowledge from social and developmental psychology and sociology on how individuals function within dyads, groups, and societies with recent advances in network neuroscience can offer new insights into both domains. Here, we use the example of how ideas and behaviors spread to illustrate the potential of multilayer network models.
Collapse
Affiliation(s)
- Emily B Falk
- Annenberg School of Communication, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Marketing, Wharton School, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Danielle S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
27
|
Bassett DS, Khambhati AN. A network engineering perspective on probing and perturbing cognition with neurofeedback. Ann N Y Acad Sci 2017; 1396:126-143. [PMID: 28445589 PMCID: PMC5446287 DOI: 10.1111/nyas.13338] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Network science and engineering provide a flexible and generalizable tool set to describe and manipulate complex systems characterized by heterogeneous interaction patterns among component parts. While classically applied to social systems, these tools have recently proven to be particularly useful in the study of the brain. In this review, we describe the nascent use of these tools to understand human cognition, and we discuss their utility in informing the meaningful and predictable perturbation of cognition in combination with the emerging capabilities of neurofeedback. To blend these disparate strands of research, we build on emerging conceptualizations of how the brain functions (as a complex network) and how we can develop and target interventions or modulations (as a form of network control). We close with an outline of current frontiers that bridge neurofeedback, connectomics, and network control theory to better understand human cognition.
Collapse
Affiliation(s)
- Danielle S. Bassett
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvania
- Department of Electrical and Systems EngineeringUniversity of PennsylvaniaPhiladelphiaPennsylvania
| | - Ankit N. Khambhati
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvania
| |
Collapse
|