1
|
Samant SA, Hyoju SK, Alverdy JC, Gupta MP. The multifaceted role of sirtuins in inflammatory bowel diseases. Am J Physiol Gastrointest Liver Physiol 2025; 329:G58-G68. [PMID: 40298096 PMCID: PMC12199837 DOI: 10.1152/ajpgi.00311.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/03/2024] [Accepted: 04/22/2025] [Indexed: 04/30/2025]
Abstract
Inflammatory bowel diseases (IBDs), mainly involving the disease states of ulcerative colitis (UC) and Crohn's disease (CD), are characterized by chronic, relapsing inflammation of the gastrointestinal tract. IBD has an unclear etiology and likely develops from a complex interaction between the host's genetic predisposition, the gut microbiota, the immune system, and elements within the environment. In the United States alone, the estimated health care cost for IBD, according to a recent study, exceeds $25 billion. More than 200 genetic loci have been identified to be associated with IBD, highlighting its complex pathophysiology. Although existing treatments for IBD are generally supportive, they are not curative, underscoring the need to identify the causative agents that drive disease pathogenesis. Several studies have reported metabolic alterations in the pathogenesis of IBD. In all living cells, the central action of nicotinamide adenine dinucleotide (NAD+) plays a pivotal role in the regulation of energy metabolism and cell signaling. Dysregulated NAD+ metabolism is reported in patients with IBD. Sirtuins, a protein family of posttranslational modifiers, need NAD+ as a cofactor to perform enzymatic reactions such as deacylation and ADP-ribosylation of not only histones, but also of various other key cellular proteins. Therefore, sirtuins play a vital and central role as stress-responsive metabolic sensors in cells. In this review, we address novel mechanisms by which sirtuins play a role in IBD pathogenesis, thus exposing a potential therapeutic role of this group of enzymes that might be useful in curtailing IBD and several other debilitating gastrointestinal inflammatory disorders.
Collapse
Affiliation(s)
- Sadhana A. Samant
- Department of Surgery, University of Chicago, Chicago, IL 60637, USA
| | - Sanjiv K. Hyoju
- Department of Surgery, University of Chicago, Chicago, IL 60637, USA
| | - John C. Alverdy
- Department of Surgery, University of Chicago, Chicago, IL 60637, USA
| | - Mahesh P. Gupta
- Department of Surgery, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
2
|
Xu M, Zhang W, Lin B, Lei Y, Zhang Y, Zhang Y, Chen B, Mao Q, Kim JJ, Cao Q. Efficacy of probiotic supplementation and impact on fecal microbiota in patients with inflammatory bowel disease: a systematic review and meta-analysis of randomized controlled trials. Nutr Rev 2025; 83:e65-e73. [PMID: 38553410 DOI: 10.1093/nutrit/nuae022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
Context: Research regarding the treatment of inflammatory bowel disease (IBD) with probiotics has not yielded consistent results. OBJECTIVE The aim of this meta-analysis was to evaluate the efficacy of probiotics supplementation in patients with IBD. DATA SOURCES Randomized controlled trials (RCTs) evaluating the efficacy of probiotics in patients with IBD were searched in PubMed, the Google Scholar database, Web of Science, and CrossRef for the period July 2003 to June 2023. DATA EXTRACTION The RCTs were extracted, independently by 2 authors, according to the PICOS criteria. DATA ANALYSIS Seven studies, including a total of 795 patients, met the study criteria. Five end points were selected to evaluate the efficacy. Of these, 3 indicators showed a statistically significant difference in efficacy: C-reactive protein (odds ratio [OR]: -2.45, 95% confidence interval [CI]: -3.16, -1.73, P < .01), the number of fecal Bifidobacterium (OR: 3.37, 95% CI: 3.28, 3.47, P < .01), and Lactobacillus(OR: 2.00, 95% CI: 1.91, 2.09, P < .01). The other 2 indicators (disease activity for Crohn's disease and for ulcerative colitis) showed no statistically significant difference, while the OR reflected a positive correlation. CONCLUSION Probiotics supplementation may have a positive effect on IBD by reducing clinical symptoms, reducing the serological inflammatory markers, and increasing favorable gut flora in patients with IBD. Additional RCTs are needed to evaluate the therapeutic effect of probiotics in IBD.
Collapse
Affiliation(s)
- Mengque Xu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Wenluo Zhang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Beibei Lin
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yue Lei
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Yu Zhang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yu Zhang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Binrui Chen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Qingyi Mao
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - John J Kim
- Division of Gastroenterology and Hepatology, Los Angles General Medical Center, Los Angeles, CA, USA
| | - Qian Cao
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Pan H, Yang S, Kulyar MF, Ma H, Li K, Zhang L, Mo Q, Li J. Lactobacillus fermentum 016 Alleviates Mice Colitis by Modulating Oxidative Stress, Gut Microbiota, and Microbial Metabolism. Nutrients 2025; 17:452. [PMID: 39940311 PMCID: PMC11820689 DOI: 10.3390/nu17030452] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/23/2025] [Accepted: 01/23/2025] [Indexed: 02/14/2025] Open
Abstract
Ulcerative colitis (UC) is a chronic and progressive inflammatory gastrointestinal disease closely associated with gut microbiota dysbiosis and metabolic homeostasis disruption. Although targeted microbial therapies are an emerging intervention strategy for inflammatory bowel disease (IBD), the mechanisms by which specific probiotics, such as Lactobacillus fermentum 016 (LF), alleviate UC remain unclear. The current study evaluated the effects of LF supplementation on gut health in a basal model using C57BL/6 mice. Subsequently, the preventive effects and mechanisms of LF supplementation on DSS-induced UC were systematically investigated. According to our findings, LF supplementation revealed immunoregulatory capabilities with significantly altered gut the composition of microbiota and metabolic activities, particularly enhancing tryptophan metabolism. In the UC model, LF supplementation effectively mitigated weight loss, increased the disease activity index (DAI), and alleviated diarrhea, rectal bleeding, and colon shortening. Moreover, it reduced colonic pathological damage and histological injury scores. LF intervention improved antioxidant markers and intestinal mucosal barrier function with the activation of the Nrf2-Keap1 signaling pathway and regulation of systemic inflammatory markers, i.e., IL-1β, IL-6, TNF-α, IFN-γ, IL-4, and IL-10. Importantly, LF supplementation reversed metabolic disturbances by significantly increasing the abundance of beneficial genera (e.g., g_Dubosiella, g_Faecalibaculum, g_Odoribacter, g_Candidatus_saccharimonas, g_Roseburia, and g_Eubacterium_xylanophilum_group) and elevating tryptophan metabolites (e.g., melatonin, kynurenic acid, 3-indoleacetic acid, 5-methoxytryptophan, and 5-hydroxyindoleacetic acid). In conclusion, Lactobacillus fermentum 016 exhibits potential for regulating gut microbiota homeostasis, enhancing tryptophan metabolism, and alleviating UC, providing critical insights for developing probiotic-based precision therapeutic strategies for IBD.
Collapse
Affiliation(s)
- Huachun Pan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.P.); (M.F.K.); (H.M.); (K.L.); (Q.M.)
| | - Shumin Yang
- National Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
| | - Md. F. Kulyar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.P.); (M.F.K.); (H.M.); (K.L.); (Q.M.)
| | - Hongwei Ma
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.P.); (M.F.K.); (H.M.); (K.L.); (Q.M.)
| | - Kewei Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.P.); (M.F.K.); (H.M.); (K.L.); (Q.M.)
| | - Lihong Zhang
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Quan Mo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.P.); (M.F.K.); (H.M.); (K.L.); (Q.M.)
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.P.); (M.F.K.); (H.M.); (K.L.); (Q.M.)
| |
Collapse
|
4
|
Vocca C, Abrego-Guandique DM, Cione E, Rania V, Marcianò G, Palleria C, Catarisano L, Colosimo M, La Cava G, Palumbo IM, De Sarro G, Ceccato T, Botti S, Cai T, Palmieri A, Gallelli L. Probiotics in the Management of Chronic Bacterial Prostatitis Patients: A Randomized, Double-Blind Trial to Evaluate a Possible Link Between Gut Microbiota Restoring and Symptom Relief. Microorganisms 2025; 13:130. [PMID: 39858898 PMCID: PMC11767496 DOI: 10.3390/microorganisms13010130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 12/22/2024] [Indexed: 01/27/2025] Open
Abstract
Several studies have suggested that probiotics could play a role in the management of patients with chronic bacterial prostatitis (CBP). In this randomized, placebo-controlled clinical study, we evaluated the efficacy and safety of consumption of probiotics containing human Lactobacillus casei DG® as an add-on treatment in patients with clinical recurrences of CBP, through gut microbiota modification analysis. Enrolled patients with CBP were randomized to receive for 3 months probiotics containing human Lactobacillus casei DG® or placebo following 1 month treatment with ciprofloxacin. During the enrollment and follow-ups, urological examinations analyzed symptoms and quality of life, while microbiological tests analyzed gut and seminal microbiota. During the study, the development of adverse drug reactions was evaluated through the Naranjo scale. Twenty-four patients with CBP were recruited and treated for 3 months with placebo (n. 12) or with Lactobacillus casei DG® (n. 12). Lactobacillus casei DG® induced a significantly (p < 0.01) faster recovery of symptoms than placebo (2 days vs. 8 days) and an increased time free from symptoms (86 days vs. 42 days) without the occurrence of adverse events. In the probiotic group, the appearance of Lactobacilli after 30 days (T1) was higher vs. the placebo group, and a significant reduction in Corynebacterium, Peptoniphilus, Pseudomonas, Veillonella, Staphylococcus, and Streptococcus was also observed. These preliminary data suggest that in patients with CBP, the use of Lactobacillus casei DG after an antimicrobial treatment improves the days free of symptoms and the quality of life, without the development of adverse drug reactions.
Collapse
Affiliation(s)
- Cristina Vocca
- Operative Unit of Clinical Pharmacology and Pharmacovigilance, Department of Health Science, AOU Dulbecco, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (C.V.); (D.M.A.-G.); (V.R.); (G.M.); (C.P.); (L.C.); (G.D.S.); (L.G.)
| | - Diana Marisol Abrego-Guandique
- Operative Unit of Clinical Pharmacology and Pharmacovigilance, Department of Health Science, AOU Dulbecco, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (C.V.); (D.M.A.-G.); (V.R.); (G.M.); (C.P.); (L.C.); (G.D.S.); (L.G.)
| | - Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| | - Vincenzo Rania
- Operative Unit of Clinical Pharmacology and Pharmacovigilance, Department of Health Science, AOU Dulbecco, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (C.V.); (D.M.A.-G.); (V.R.); (G.M.); (C.P.); (L.C.); (G.D.S.); (L.G.)
| | - Gianmarco Marcianò
- Operative Unit of Clinical Pharmacology and Pharmacovigilance, Department of Health Science, AOU Dulbecco, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (C.V.); (D.M.A.-G.); (V.R.); (G.M.); (C.P.); (L.C.); (G.D.S.); (L.G.)
| | - Caterina Palleria
- Operative Unit of Clinical Pharmacology and Pharmacovigilance, Department of Health Science, AOU Dulbecco, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (C.V.); (D.M.A.-G.); (V.R.); (G.M.); (C.P.); (L.C.); (G.D.S.); (L.G.)
| | - Luca Catarisano
- Operative Unit of Clinical Pharmacology and Pharmacovigilance, Department of Health Science, AOU Dulbecco, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (C.V.); (D.M.A.-G.); (V.R.); (G.M.); (C.P.); (L.C.); (G.D.S.); (L.G.)
| | - Manuela Colosimo
- Operative Unit of Microbiology and Virology, AOU Dulbecco, 88100 Catanzaro, Italy;
| | - Gregorio La Cava
- Urology Division Azienda Sanitaria Provinciale, Department of Primary Care, 88100 Catanzaro, Italy;
| | - Italo Michele Palumbo
- Department of Urology, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy;
| | - Giovambattista De Sarro
- Operative Unit of Clinical Pharmacology and Pharmacovigilance, Department of Health Science, AOU Dulbecco, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (C.V.); (D.M.A.-G.); (V.R.); (G.M.); (C.P.); (L.C.); (G.D.S.); (L.G.)
- Research Center FAS@UMG, Department of Health Science, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Tommaso Ceccato
- Department of Urology, Santa Chiara Regional Hospital, 38123 Trento, Italy; (T.C.); (S.B.)
| | - Simone Botti
- Department of Urology, Santa Chiara Regional Hospital, 38123 Trento, Italy; (T.C.); (S.B.)
| | - Tommaso Cai
- Department of Urology, Santa Chiara Regional Hospital, 38123 Trento, Italy; (T.C.); (S.B.)
- Institute of Clinical Medicine, University of Oslo, 0313 Oslo, Norway
| | - Alessandro Palmieri
- Department of Urology, Federico II University of Naples, 80138 Naples, Italy;
| | - Luca Gallelli
- Operative Unit of Clinical Pharmacology and Pharmacovigilance, Department of Health Science, AOU Dulbecco, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (C.V.); (D.M.A.-G.); (V.R.); (G.M.); (C.P.); (L.C.); (G.D.S.); (L.G.)
- Research Center FAS@UMG, Department of Health Science, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
- Medifarmagen, University of Catanzaro and Renato Dulbecco Hospital, 88100 Catanzaro, Italy
| |
Collapse
|
5
|
Layadi I, Laiche AT, Tlili ML, Messaoudi M, Ghemam Amara D, Mezghani‐Khemakhem M, Naccache C, Sawicka B, Atanassova M, Zahnit W, Ahmad SF. Effect of Juniperus communis extract on probiotic properties of Bacillus safensis isolated from camel milk in the region of El Oued (Algeria). Food Sci Nutr 2024; 12:6509-6520. [PMID: 39554354 PMCID: PMC11561853 DOI: 10.1002/fsn3.4262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 11/19/2024] Open
Abstract
The current study focuses on the effect of Juniperus communis extract on the probiotic properties of lactic acid bacteria isolated from camel milk in the region of El Oued (Algeria). Chromatographic analysis by HPLC was carried out to detect the most important compounds extracted from the plant. The total phenolic and flavonoid contents were determined using the colorimetric procedures Folin-Ciocalteu and aluminum chloride. The probiotic properties were studied and evaluated in vivo with Juniperus communis extracts after isolating strains from camel's milk and identifying them using 16S rRNA gene sequencing. Chromatographic profiles of the phenolic compounds revealed that Juniperus communis extract is rich in quercetin. After conducting chemical analyses of polyphenols and flavonoids, the results demonstrated a high content of phenolic compounds in Juniperus communis extracts (polyphenols: 103.80 ± 0.30 mg GAE/g E. flavonoids: 15.85 ± 0.80 mg QE/g E). Sequencing and phylogenetic analysis showed that the isolates belong to Bacillus pumilus and Bacillus safensis strains. The combination of Juniperus communis and Bacillus safensis restored the healthy intestine wall structure and returned the blood biochemical parameters to normal values. It was found that the mixture enhanced anti-inflammatory effectiveness by reducing erythrocyte sedimentation rate and C-reactive protein values. Juniperus communis has a high polyphenol and flavonoid content which can have a considerable impact on Bacillus safensis probiotic properties.
Collapse
Affiliation(s)
- Ikram Layadi
- Laboratory of Biodiversity and Application of Biotechnology in the Agricultural Field, Faculty of the Sciences of Nature and LifeUniversity of El OuedEl OuedAlgeria
- Department of Biology, Faculty of Sciences of Nature and LifeUniversity of El‐OuedEl OuedAlgeria
| | - Ammar Touhami Laiche
- Laboratory of Biodiversity and Application of Biotechnology in the Agricultural Field, Faculty of the Sciences of Nature and LifeUniversity of El OuedEl OuedAlgeria
- Department of Biology, Faculty of Sciences of Nature and LifeUniversity of El‐OuedEl OuedAlgeria
| | - Mohammed Laid Tlili
- Laboratory of Biogeochemistry of Desert Environments LaboratoryUniversity of OuarglaOuarglaAlgeria
- Department of Cellular and Molecular Biology, Faculty of Sciences of Nature and LifeUniversity of El‐OuedEl OuedAlgeria
| | | | - Djilani Ghemam Amara
- Department of Biology, Faculty of Sciences of Nature and LifeUniversity of El‐OuedEl OuedAlgeria
- Laboratory of Biology, Environment and Health, Department of Biology, Faculty of Life and Natural SciencesUniversity of El OuedEl OuedAlgeria
| | - Maha Mezghani‐Khemakhem
- Laboratory of Biochemistry and Biotechnology (LR01ES05), Department of Biology, Faculty of Sciences of TunisUniversity of Tunis El ManarTunisTunisia
| | - Chahnez Naccache
- Laboratory of Biochemistry and Biotechnology (LR01ES05), Department of Biology, Faculty of Sciences of TunisUniversity of Tunis El ManarTunisTunisia
| | - Barbara Sawicka
- Department of Plant Production Technology and Commodities ScienceUniversity of Life Sciences in LublinLublinPoland
| | - Maria Atanassova
- Scientific Consulting, Chemical EngineeringUniversity of Chemical Technology and MetallurgySofiaBulgaria
| | - Wafa Zahnit
- Laboratory of Valorization and Promotion of Saharan Resource (VPRS), Faculty of Mathematics and Matter SciencesUniversity of OuarglaOuarglaAlgeria
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of PharmacyKing Saud UniversityRiyadhSaudi Arabia
| |
Collapse
|
6
|
Wang X, Dong F, Liu G, Ye L, Xiao F, Li X, Zhang T, Wang Y. Probiotic properties and the ameliorative effect on DSS-induced colitis of human milk-derived Lactobacillus gasseri SHMB 0001. J Food Sci 2024; 89:3078-3093. [PMID: 38605580 DOI: 10.1111/1750-3841.17057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/09/2024] [Accepted: 03/15/2024] [Indexed: 04/13/2024]
Abstract
Human milk contains a variety of microorganisms that exert benefit for human health. In the current study, we isolated a novel Lactobacillus gasseri strain named Lactobacillus gasseri (L. gasseri) SHMB 0001 from human milk and aimed to evaluate the probiotic characteristics and protective effects on murine colitis of the strain. The results showed that L. gasseri SHMB 0001 possessed promising potential probiotic characteristics, including good tolerance against artificial gastric and intestinal fluids, adhesion to Caco-2 cells, susceptibility to antibiotic, no hemolytic activity, and without signs of toxicity or infection in mice. Administration of L. gasseri SHMB 0001 (1 × 108 CFU per gram of mouse weight per day) reduced weight loss, the disease activity index, and colon shortening in mice during murine colitis conditions. Histopathological analysis revealed that L. gasseri SHMB 0001 treatment attenuated epithelial damage and inflammatory infiltration in the colon. L. gasseri SHMB 0001 treatment increased the expression of colonic occludin and claudin-1 while decreasing the expression of pro-inflammatory cytokine genes. L. gasseri SHMB 0001 modified the composition and structure of the gut microbiota community and partially recovered the Clusters of Orthologous Groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways altered by dextran sulfate sodium (DSS). Overall, our results indicated that the human breast milk-derived L. gasseri SHMB 0001 exhibited promising probiotic properties and ameliorative effect on DSS-induced colitis in mice. L. gasseri SHMB 0001 may be applied as a promising probiotic against intestinal inflammation in the future. PRACTICAL APPLICATION: L. gasseri SHMB 0001 isolated from human breast milk showed good tolerance to gastrointestinal environment, safety, and protective effect against DSS-induced mice colitis via enforcing gut barrier, downregulating pro-inflammatory cytokines, and modulating gut microbiota. L. gasseri SHMB 0001 may be a promising probiotic candidate for the treatment of intestinal inflammation.
Collapse
Affiliation(s)
- Xufei Wang
- Department of Gastroenterology, Hepatology, and Nutrition, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Gut Microbiota and Metabolic Research Center, Institute of Pediatric Infection, Immunity and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang Dong
- Department of Gastroenterology, Hepatology, and Nutrition, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Gut Microbiota and Metabolic Research Center, Institute of Pediatric Infection, Immunity and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gaojie Liu
- Department of Gastroenterology, Hepatology, and Nutrition, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Gut Microbiota and Metabolic Research Center, Institute of Pediatric Infection, Immunity and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Ye
- Department of Gastroenterology, Hepatology, and Nutrition, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Gut Microbiota and Metabolic Research Center, Institute of Pediatric Infection, Immunity and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangfei Xiao
- Department of Gastroenterology, Hepatology, and Nutrition, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Gut Microbiota and Metabolic Research Center, Institute of Pediatric Infection, Immunity and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaolu Li
- Department of Gastroenterology, Hepatology, and Nutrition, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Gut Microbiota and Metabolic Research Center, Institute of Pediatric Infection, Immunity and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting Zhang
- Department of Gastroenterology, Hepatology, and Nutrition, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Gut Microbiota and Metabolic Research Center, Institute of Pediatric Infection, Immunity and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Donor Human Milk Bank, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yizhong Wang
- Department of Gastroenterology, Hepatology, and Nutrition, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Gut Microbiota and Metabolic Research Center, Institute of Pediatric Infection, Immunity and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Donor Human Milk Bank, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Kumar S, Ahmad MF, Nath P, Roy R, Bhattacharjee R, Shama E, Gahatraj I, Sehrawat M, Dasriya V, Dhillon HS, Puniya M, Samtiya M, Dhewa T, Aluko RE, Khedkar GD, Raposo A, Puniya AK. Controlling Intestinal Infections and Digestive Disorders Using Probiotics. J Med Food 2023; 26:705-720. [PMID: 37646629 DOI: 10.1089/jmf.2023.0062] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
After consumption, probiotics provide health benefits to the host. Probiotics and their metabolites have therapeutic and nutritional properties that help to alleviate gastrointestinal, neurological, and cardiovascular problems. Probiotics strengthen host immunity through various mechanisms, including improved gut barrier function, receptor site blocking, competitive exclusion of pathogens, and the production of bioactive molecules. Emerging evidence suggests that intestinal bowel diseases can be fatal, but regular probiotic consumption can alleviate disease symptoms. The use and detailed description of the health benefits of probiotics to consumers in terms of reducing intestinal infection, inflammation, and digestive disorders are discussed in this review. The well-designed and controlled studies that examined the use of probiotics to reduce life-threatening activities caused by intestinal bowel diseases are also covered. This review discussed the active principles and potency of probiotics as evidenced by the known effects on host health, in addition to providing information on the mechanism of action.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department of Life Science and Bioinformatics, Assam University, Silchar, India
| | - Md Faruque Ahmad
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Priyakshi Nath
- Department of Life Science and Bioinformatics, Assam University, Silchar, India
| | - Rubina Roy
- Department of Life Science and Bioinformatics, Assam University, Silchar, India
| | - Rudrarup Bhattacharjee
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
| | - Eman Shama
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Indira Gahatraj
- Department of Life Science and Bioinformatics, Assam University, Silchar, India
| | | | - Vaishali Dasriya
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | | | - Monica Puniya
- Science and Standards Division, Food Safety and Standards Authority of India, New Delhi, India
| | - Mrinal Samtiya
- Department of Nutrition Biology, Central University of Haryana, Mahendergarh, India
| | - Tejpal Dhewa
- Department of Nutrition Biology, Central University of Haryana, Mahendergarh, India
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada
| | - Gulab D Khedkar
- Paul Hebert Centre for DNA Barcoding and Biodiversity Studies, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Lisboa, Portugal
| | - Anil Kumar Puniya
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| |
Collapse
|
8
|
Gayathiri E, Prakash P, Pratheep T, Ramasubburayan R, Thirumalaivasan N, Gaur A, Govindasamy R, Rengasamy KRR. Bio surfactants from lactic acid bacteria: an in-depth analysis of therapeutic properties and food formulation. Crit Rev Food Sci Nutr 2023; 64:10925-10949. [PMID: 37401803 DOI: 10.1080/10408398.2023.2230491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Healthy humans and animals commonly harbor lactic acid bacteria (LAB) on their mucosal surfaces, which are often associated with food fermentation. These microorganisms can produce amphiphilic compounds, known as microbial surface-active agents, that exhibit remarkable emulsifying activity. However, the exact functions of these microbial surfactants within the producer cells remain unclear. Consequently, there is a growing urgency to develop biosurfactant production from nonpathogenic microbes, particularly those derived from LAB. This approach aims to harness the benefits of biosurfactants while ensuring their safety and applicability. This review encompasses a comprehensive analysis of native and genetically modified LAB biosurfactants, shedding light on microbial interactions, cell signaling, pathogenicity, and biofilm development. It aims to provide valuable insights into the applications of these active substances in therapeutic use and food formulation as well as their potential biological and other benefits. By synthesizing the latest knowledge and advancements, this review contributes to the understanding and utilization of LAB biosurfactants in the food and nutritional areas.
Collapse
Affiliation(s)
- Ekambaram Gayathiri
- Department of Plant Biology and Plant Biotechnology, Guru Nanak College (Autonomous), Chennai, Tamil Nadu, India
| | | | - Thangaraj Pratheep
- Department of Biotechnology, Rathinam College of Arts and Science, Coimbatore, Tamil Nadu, India
| | - Ramasamy Ramasubburayan
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Natesan Thirumalaivasan
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Arti Gaur
- Department of Applied Sciences, Parul University, Vadodara, Gujarat, India
| | - Rajakumar Govindasamy
- Department of Orthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Kannan R R Rengasamy
- Laboratory of Natural Products and Medicinal Chemistry (LNPMC), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, India
| |
Collapse
|
9
|
Jin W, Ai H, Huang Q, Li C, He X, Jin Z, Zuo Y. Preclinical evidence of probiotics in ulcerative colitis: a systematic review and network meta-analysis. Front Pharmacol 2023; 14:1187911. [PMID: 37361217 PMCID: PMC10288114 DOI: 10.3389/fphar.2023.1187911] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
The imbalance of gastrointestinal microbial composition has been identified as the main factor of chronic inflammatory diseases. At present, probiotics have a beneficial effect on the microbial composition of the human gastrointestinal tract, but it is still controversial and the specific mechanism is unknown. The purpose of this network meta-analysis is to compare the mechanism of different probiotics on ulcerative colitis. PubMed, Embase, and Web of Science were searched till 16 November 2022. The SYRCLE risk bias assessment tool was used to assess the quality of the research studies. A total of 42 studies, 839 ulcerative colitis models, and 24 kinds of probiotics were finally included. The results showed that L. rhamnosus has the best effect in relieving weight loss and improving the Shannon index in the ulcerative colitis model. E. faecium has the best effect in reducing colon injury; L. reuteri has the best effect in reducing the DAI; L. acidophilus has the best effect in reducing the HIS index and increasing the expression of tight junction protein ZO-1; and L. coryniformis has the best effect in reducing the content of serum pro-inflammatory factor TNF-α. It indicated that probiotics can improve ulcerative colitis by improving histopathological manifestations, reducing inflammatory reaction, and repairing the mucosal barrier, and different probiotics showed different effects. However, considering the limitations of this study, preclinical studies that require more large samples and high-quality and more reliable and rigorous experimental designs and reports need to be conducted in the future. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/#record details, identifier CRD42022383383.
Collapse
Affiliation(s)
- Wenqin Jin
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huangping Ai
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qingqing Huang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuncai Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiang He
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhao Jin
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuling Zuo
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
10
|
Ju X, Wu X, Chen Y, Cui S, Cai Z, Zhao L, Hao Y, Zhou F, Chen F, Yu Z, Yang D. Mucin Binding Protein of Lactobacillus casei Inhibits HT-29 Colorectal Cancer Cell Proliferation. Nutrients 2023; 15:nu15102314. [PMID: 37242197 DOI: 10.3390/nu15102314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Many Lactobacillus casei strains are reported to exhibit anti-proliferative effects on colorectal cancer cells; however, the mechanism remains largely unknown. While there has been considerable interest in bacterial small metabolites such as short chain fatty acids, prior reports suggested that larger-sized molecules mediate the anti-proliferative effect of L. casei. Here, other possible ways of communication between gut bacteria and its host are investigated. LevH1 is a protein displayed on the surface of L. casei, and its mucin binding domain is highly conserved. Based on previous reports that the cell-free supernatant fractions decreased colorectal cell proliferation, we cloned the mucin binding domain of the LevH1 protein, expressed and purified this mucin binding protein (MucBP). It has a molecular weight of 10 kDa, is encoded by a 250 bp gene, and is composed primarily of a β-strand, β-turns, and random coils. The amino acid sequence is conserved while the 36th amino acid residue is arginine in L. casei CAUH35 and serine in L. casei IAM1045, LOCK919, 12A, and Zhang. MucBP36R exhibited dose-dependent anti-proliferative effects against HT-29 cells while a mutation of 36S abolished this activity. Predicted structures suggest that this mutation slightly altered the protein structure, thus possibly affecting subsequent communication with HT-29 cells. Our study identified a novel mode of communication between gut bacteria and their host.
Collapse
Affiliation(s)
- Xuan Ju
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xi Wu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yukun Chen
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Shanshan Cui
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Zixuan Cai
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Liang Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Yanling Hao
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Feng Zhou
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Zhengquan Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Dong Yang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
11
|
Mazziotta C, Tognon M, Martini F, Torreggiani E, Rotondo JC. Probiotics Mechanism of Action on Immune Cells and Beneficial Effects on Human Health. Cells 2023; 12:184. [PMID: 36611977 PMCID: PMC9818925 DOI: 10.3390/cells12010184] [Citation(s) in RCA: 274] [Impact Index Per Article: 137.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/12/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
Immune cells and commensal microbes in the human intestine constantly communicate with and react to each other in a stable environment in order to maintain healthy immune activities. Immune system-microbiota cross-talk relies on a complex network of pathways that sustain the balance between immune tolerance and immunogenicity. Probiotic bacteria can interact and stimulate intestinal immune cells and commensal microflora to modulate specific immune functions and immune homeostasis. Growing evidence shows that probiotic bacteria present important health-promoting and immunomodulatory properties. Thus, the use of probiotics might represent a promising approach for improving immune system activities. So far, few studies have been reported on the beneficial immune modulatory effect of probiotics. However, many others, which are mainly focused on their metabolic/nutritional properties, have been published. Therefore, the mechanisms behind the interaction between host immune cells and probiotics have only been partially described. The present review aims to collect and summarize the most recent scientific results and the resulting implications of how probiotic bacteria and immune cells interact to improve immune functions. Hence, a description of the currently known immunomodulatory mechanisms of probiotic bacteria in improving the host immune system is provided.
Collapse
Affiliation(s)
- Chiara Mazziotta
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Elena Torreggiani
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - John Charles Rotondo
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy
| |
Collapse
|
12
|
Lactobacillus gasseri JM1 Isolated from Infant Feces Alleviates Colitis in Mice via Protecting the Intestinal Barrier. Nutrients 2022; 15:nu15010139. [PMID: 36615796 PMCID: PMC9823819 DOI: 10.3390/nu15010139] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic and recurrent inflammatory bowel disease, and the intestinal barrier is an important line of defense against intestinal disease. Herein, we investigated the effect of Lactobacillus gasseri JM1 at different doses (1 × 106, 1 × 107, 1 × 108 CFU/day) on colitis mice and explored the possible mechanism. The results showed that L. gasseri JM1 alleviated DSS-induced colitis in mice, with reductions in disease activity index (DAI), histological scores and myeloperoxidase activity as well as alleviation of colonic shortening. Furthermore, L. gasseri JM1 regulated the levels of inflammatory cytokines TNF-α, IL-6, IL-1β, and IL-10; restored the expression of Claudin-3, Occludin, ZO-1, and MUC2; and increased the number of goblet cells and acidic mucin. The 16S rDNA sequencing results indicated that intervention with L. gasseri JM1 balanced the gut microbiota structure by elevating the abundance of beneficial bacteria (Oscillospira, Clostridium and Ruminococcus) and decreasing that of harmful bacteria (Shigella and Turicibacter). Meanwhile, the contents of short-chain fatty acids (SCFAs) increased. In conclusion, L. gasseri JM1 could alleviate intestinal barrier damage in colitis mice by modulating the tight junction structures, intestinal mucus layer, inflammatory cytokines, gut microbiota, and SCFAs. It can be considered a potential preventive strategy to alleviate colitis injury.
Collapse
|
13
|
Wahab S, Almaghaslah D, Mahmood SE, Ahmad MF, Alsayegh AA, Abu Haddash YM, Rahman MA, Ahamd I, Ahmad W, Khalid M, Usmani S, Ahmad MP, Hani U. Pharmacological Efficacy of Probiotics in Respiratory Viral Infections: A Comprehensive Review. J Pers Med 2022; 12:1292. [PMID: 36013241 PMCID: PMC9409792 DOI: 10.3390/jpm12081292] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/25/2022] [Accepted: 08/01/2022] [Indexed: 01/30/2023] Open
Abstract
Mortality and morbidity from influenza and other respiratory viruses are significant causes of concern worldwide. Infections in the respiratory tract are often underappreciated because they tend to be mild and incapacitated. On the other hand, these infections are regarded as a common concern in clinical practice. Antibiotics are used to treat bacterial infections, albeit this is becoming more challenging since many of the more prevalent infection causes have acquired a wide range of antimicrobial resistance. Resistance to frontline treatment medications is constantly rising, necessitating the development of new antiviral agents. Probiotics are one of several medications explored to treat respiratory viral infection (RVI). As a result, certain probiotics effectively prevent gastrointestinal dysbiosis and decrease the likelihood of secondary infections. Various probiotic bacterias and their metabolites have shown immunomodulating and antiviral properties. Unfortunately, the mechanisms by which probiotics are effective in the fight against viral infections are sometimes unclear. This comprehensive review has addressed probiotic strains, dosage regimens, production procedures, delivery systems, and pre-clinical and clinical research. In particular, novel probiotics' fight against RVIs is the impetus for this study. Finally, this review may explore the potential of probiotic bacterias and their metabolites to treat RVIs. It is expected that probiotic-based antiviral research would be benefitted from this review's findings.
Collapse
Affiliation(s)
- Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Dalia Almaghaslah
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Syed Esam Mahmood
- Department of Family and Community Medicine, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Md Faruque Ahmad
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Abdulrahman A. Alsayegh
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Yahya M. Abu Haddash
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Mohammad Akhlaquer Rahman
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif 21974, Saudi Arabia
| | - Irfan Ahamd
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Wasim Ahmad
- Department of Pharmacy, Mohammed Al-Mana College for Medical Sciences, Safaa, Dammam 34222, Saudi Arabia
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Shazia Usmani
- Herbal Bioactive Research Laboratory, Faculty of Pharmacy, Integral University, Dasauli, Kursi Road, Lucknow 226026, Uttar Pradesh, India
| | - Md Parwez Ahmad
- Department of Pharmacology, School of Medicine, Maldives National University, Male 20402, Maldives
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| |
Collapse
|
14
|
Fuloria S, Mehta J, Talukdar MP, Sekar M, Gan SH, Subramaniyan V, Rani NNIM, Begum MY, Chidambaram K, Nordin R, Maziz MNH, Sathasivam KV, Lum PT, Fuloria NK. Synbiotic Effects of Fermented Rice on Human Health and Wellness: A Natural Beverage That Boosts Immunity. Front Microbiol 2022; 13:950913. [PMID: 35910609 PMCID: PMC9325588 DOI: 10.3389/fmicb.2022.950913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/23/2022] [Indexed: 12/26/2022] Open
Abstract
Fermented foods have been an important component of the human diet from the time immemorial. It contains a high amount of probiotics that have been associated to a wide range of health benefits, including improved digestion and immunity. This review focuses on the indigenously prepared prebiotic- and probiotic-containing functional fermented rice (named Xaj-pani) by the Ahom Community from Assam, in Northeast India, including all the beneficial and potential effects on human health. Literature was searched from scientific databases such as PubMed, ScienceDirect and Google Scholar. Glutinous rice (commonly known as bora rice of sali variety) is primarily employed to prepare beverages that are recovered through the filtration process. The beer is normally consumed during religious rites, festivals and ritual practices, as well as being used as a refreshing healthy drink. Traditionally, it is prepared by incorporating a variety of medicinal herbs into their starter culture (Xaj-pitha) inoculum which is rich in yeasts, molds and lactic acid bacteria (LAB) and then incorporated in alcoholic beverage fermentation. The Ahom communities routinely consume this traditionally prepared alcoholic drink with no understanding of its quality and shelf life. Additionally, a finally produced dried cake, known as vekur pitha act as a source of Saccharomyces cerevisiae and can be stored for future use. Despite the rampant use in this community, the relationship between Xaj-pani's consumption, immunological response, infectious and inflammatory processes remains unknown in the presence of factors unrelated or indirectly connected to immune function. Overall, this review provides the guidelines to promote the development of prebiotic- and probiotic-containing functional fermented rice that could significantly have an impact on the health of the consumers.
Collapse
Affiliation(s)
| | - Jyoti Mehta
- Department of Applied Sciences and Biotechnology, Shoolini University, Solan, India
| | | | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Malaysia
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
| | | | - Nur Najihah Izzati Mat Rani
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Malaysia
| | - M. Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Kumarappan Chidambaram
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Rusli Nordin
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Malaysia
| | | | | | - Pei Teng Lum
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Malaysia
| | - Neeraj Kumar Fuloria
- Faculty of Pharmacy, AIMST University, Bedong, Malaysia
- Centre for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| |
Collapse
|
15
|
Montazeri-Najafabady N, Kazemi K, Gholami A. Recent advances in antiviral effects of probiotics: potential mechanism study in prevention and treatment of SARS-CoV-2. Biologia (Bratisl) 2022; 77:3211-3228. [PMID: 35789756 PMCID: PMC9244507 DOI: 10.1007/s11756-022-01147-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 06/07/2022] [Indexed: 12/14/2022]
Abstract
SARS-CoV-2 is responsible for coronavirus disease 2019 (COVID-19), progressively extended worldwide countries on an epidemic scale. Along with all the drug treatments suggested to date, currently, there are no approved management protocols and treatment regimens for SARS-CoV-2. The unavailability of optimal medication and effective vaccines against SARS-CoV-2 indicates the requirement for alternative therapies. Probiotics are living organisms that deliberate beneficial effects on the host when used sufficiently and in adequate amounts, and fermented food is their rich source. Probiotics affect viruses by antiviral mechanisms and reduce diarrhea and respiratory tract infection. At this point, we comprehensively evaluated the antiviral effects of probiotics and their mechanism with a particular focus on SARS-CoV-2. In this review, we suggested the conceptual and potential mechanisms of probiotics by which they could exhibit antiviral properties against SARS-CoV-2, according to the previous evidence concerning the mechanism of antiviral effects of probiotics. This study reviewed recent studies that speculate about the role of probiotics in the prevention of the SARS-CoV-2-induced cytokine storm through the mechanisms such as induction of anti-inflammatory cytokines (IL-10), downregulation of pro-inflammatory cytokines (TNF-α, IL-2, IL-6), inhibition of JAK signaling pathway, and act as HDAC inhibitor. Also, the recent clinical trials and their outcome have been reviewed.
Collapse
Affiliation(s)
- Nima Montazeri-Najafabady
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Science Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kimia Kazemi
- Pharmaceutical Science Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Gholami
- Pharmaceutical Science Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
16
|
Dempsey E, Corr SC. Lactobacillus spp. for Gastrointestinal Health: Current and Future Perspectives. Front Immunol 2022; 13:840245. [PMID: 35464397 PMCID: PMC9019120 DOI: 10.3389/fimmu.2022.840245] [Citation(s) in RCA: 208] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
In recent decades, probiotic bacteria have become increasingly popular as a result of mounting scientific evidence to indicate their beneficial role in modulating human health. Although there is strong evidence associating various Lactobacillus probiotics to various health benefits, further research is needed, in particular to determine the various mechanisms by which probiotics may exert these effects and indeed to gauge inter-individual value one can expect from consuming these products. One must take into consideration the differences in individual and combination strains, and conditions which create difficulty in making direct comparisons. The aim of this paper is to review the current understanding of the means by which Lactobacillus species stand to benefit our gastrointestinal health.
Collapse
Affiliation(s)
- Elaine Dempsey
- Trinity Biomedical Science Institute, School of Biochemistry and Immunology, Trinity College, Dublin, Ireland.,Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College, Dublin, Ireland
| | - Sinéad C Corr
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College, Dublin, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
17
|
Kazempour A, Kazempoor R. The effect of Lacticaseibacillus casei on inflammatory cytokine (IL-8) gene expression induced by exposure to Shigella sonnei in Zebrafish (Danio rerio). ARQ BRAS MED VET ZOO 2022. [DOI: 10.1590/1678-4162-12513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT This study aimed to evaluate the protective function of probiotics against Shigella sonnei pathogenicity. For this purpose, 400 zebrafish were divided into four groups with two replications: (T1): receiving Lacticaseibacillus casei for 27 days, (T2): receiving L. casei for 27 days followed by 72 hr exposure to S. sonnei, (T3): receiving basal diet for 27 days followed by 72 hr exposure to S. sonnei, and control group (C): receiving basal diet without exposure to the pathogen. According to the results, feeding with L. casei for 27 days reduced the interleukin-8 (IL-8) expression significantly (P<0.05). The results showed a decrease in IL-8 expression in the group exposed to the pathogen and fed with the probiotic compared to the group only fed with the basal diet (P<0.05). Considering the role of IL-8 as a pro-inflammatory cytokine, our results indicated that feeding with L. casei could modulate inflammatory responses.
Collapse
|
18
|
Zhao J, Yan T, Wang Y, Yang Y, Geng W, Wang J, Jia L, Wang Y. Lactobacillus plantarum
BC299 can alleviate dextran sulphate sodium‐induced colitis by regulating immune response and modulating gut microbiota. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jingqi Zhao
- College of Food Science and Engineering Tianjin University of Science & Technology Tianjin 300457 China
| | - Ting Yan
- College of Food Science and Engineering Tianjin University of Science & Technology Tianjin 300457 China
| | - Yaqi Wang
- College of Food Science and Engineering Tianjin University of Science & Technology Tianjin 300457 China
| | - Yanrui Yang
- College of Food Science and Engineering Tianjin University of Science & Technology Tianjin 300457 China
| | - Weitao Geng
- College of Food Science and Engineering Tianjin University of Science & Technology Tianjin 300457 China
| | - Jinju Wang
- College of Food Science and Engineering Tianjin University of Science & Technology Tianjin 300457 China
| | - Longgang Jia
- College of Food Science and Engineering Tianjin University of Science & Technology Tianjin 300457 China
| | - Yanping Wang
- College of Food Science and Engineering Tianjin University of Science & Technology Tianjin 300457 China
| |
Collapse
|
19
|
Tan W, Zhou Z, Li W, Lu H, Qiu Z. Lactobacillus rhamnosus GG for Cow's Milk Allergy in Children: A Systematic Review and Meta-Analysis. Front Pediatr 2021; 9:727127. [PMID: 34746056 PMCID: PMC8569903 DOI: 10.3389/fped.2021.727127] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/20/2021] [Indexed: 12/13/2022] Open
Abstract
Objective: Cow's milk allergy (CMA) is a common allergic disease. Probiotics have been suggested as a treatment for CMA, with Lactobacillus rhamnosus GG (LGG) being one of the important predominant choices. Despite reports on this topic, the effectiveness of application in CMA remains to be firmly established. Methods: To assess the effects of LGG on CMA in children, the PubMed/Medline, Embase, Cochrane Library, and Web of Science databases were searched for studies on LGG in treatment of CMA, which were published in the English language. Results: Ten studies were finally included. Significantly higher tolerability rates favoring LGG over controls were observed [risk ratio (RR), 2.22; 95% confidence interval (CI), 1.86-2.66; I 2 = 0.00; moderate-quality evidence]. There were no significant differences in SCORAD values favoring LGG over the placebo (mean difference, 1.41; 95% CI, -4.99-7.82; p = 0.67; very low-quality evidence), and LGG may have improved fecal occult blood (risk ratio, 0.36; 95% CI, 0.14-0.92; p = 0.03; low-quality evidence). Conclusion: We found that LGG may have moderate-quality evidence to promote oral tolerance in children with CMA and may facilitate recovery from intestinal symptoms. However, this finding must be treated with caution, and more gpowerful RCTs are needed to evaluate the most effective dose and treatment time for children with CMA. Registration number: CRD42021237221.
Collapse
Affiliation(s)
- Weifu Tan
- Department of Pediatrics, Dongguan Binhaiwan Central Hospital, Jinan University, Dongguan, China
| | - Zhicong Zhou
- Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Wei Li
- Department of Pediatrics, Dongguan Binhaiwan Central Hospital, Jinan University, Dongguan, China
| | - Han Lu
- Department of Obstotrics and Gynocology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Zemin Qiu
- Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
20
|
Wang IK, Yen TH, Hsieh PS, Ho HH, Kuo YW, Huang YY, Kuo YL, Li CY, Lin HC, Wang JY. Effect of a Probiotic Combination in an Experimental Mouse Model and Clinical Patients With Chronic Kidney Disease: A Pilot Study. Front Nutr 2021; 8:661794. [PMID: 34136518 PMCID: PMC8200566 DOI: 10.3389/fnut.2021.661794] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/06/2021] [Indexed: 12/26/2022] Open
Abstract
The aim of the present study was to evaluate whether probiotic administration could slow declining renal function. C57BL/6 mice (6-8 weeks of age, male) were fed a diet supplemented with adenine to induce chronic kidney disease (CKD). The experimental groups were additionally supplemented with 109 colony-forming units (CFU)/day (high-dose) and 107 CFU/day (low-dose) probiotics containing Lactobacillus acidophilus (TYCA06), Bifidobacterium longum subspecies infantis (BLI-02), and B. bifidum (VDD088). Renal function and histology were examined. Patients with stage 3-5 CKD and not on dialysis were recruited from July 2017 to January 2019. Two capsules of probiotics containing 2.5 × 109 CFU with the same composition were administered twice daily for 6 months. The decline in the estimated glomerular filtration rate (eGFR) was measured before and after the intervention. In addition, changes in the serum endotoxin and cytokine levels, gastrointestinal symptom scores, and the stool microbiota were measured. Probiotics could attenuate renal fibrosis and improve renal function in CKD mice. Thirty-eight patients completed the 6-month study. The mean baseline eGFR was 30.16 ± 16.52 ml/min/1.73 m2. The rate of decline in the eGFR was significantly slower, from -0.54 (-0.18, -0.91) to 0.00 (0.48, -0.36) ml/min/1.73 m2/month (P = 0.001) after 6 months of treatment. The serum levels of TNF-α, IL-6, IL-18, and endotoxin were significantly decreased after probiotic administration. Borborygmus and flatulence scores, as well as stool formation improved significantly. The abundance of B. bifidum and B. breve in the stool microbiota increased significantly. In conclusion, a combination of probiotics might attenuate renal function deterioration in CKD mice and human patients.
Collapse
Affiliation(s)
- I-Kuan Wang
- Division of Nephrology, China Medical University Hospital, Taichung, Taiwan
- Department of Internal Medicine, China Medical University College of Medicine, Taichung, Taiwan
| | - Tzung-Hai Yen
- Division of Nephrology, Chang Gung Memorial Hospital, Taipei, Taiwan
- Department of Internal Medicine, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | | | | | | | | | - Yu-Lun Kuo
- Biotools Co., Ltd., New Taipei City, Taiwan
| | - Chi-Yuan Li
- Department of Anesthesiology, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Biological Science, China Medical University College of Medicine, Taichung, Taiwan
| | - Hung-Chih Lin
- Division of Neonatology, China Medical University Children's Hospital, China Medical University, Taichung, Taiwan
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Asia University Hospital, Asia University, Taichung, Taiwan
| | - Jiu-Yao Wang
- Department of Pediatrics, National Cheng Kung University Hospital, Tainan, Taiwan
- Children's Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
21
|
Diez-Echave P, Martín-Cabrejas I, Garrido-Mesa J, Langa S, Vezza T, Landete JM, Hidalgo-García L, Algieri F, Mayer MJ, Narbad A, García-Lafuente A, Medina M, Rodríguez-Nogales A, Rodríguez-Cabezas ME, Gálvez J, Arqués JL. Probiotic and Functional Properties of Limosilactobacillus reuteri INIA P572. Nutrients 2021; 13:1860. [PMID: 34072532 PMCID: PMC8228662 DOI: 10.3390/nu13061860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022] Open
Abstract
Limosilactobacillus reuteri INIA P572 is a strain able to produce the antimicrobial compound reuterin in dairy products, exhibiting a protective effect against some food-borne pathogens. In this study, we investigated some probiotic properties of this strain such as resistance to gastrointestinal passage or to colonic conditions, reuterin production in a colonic environment, and immunomodulatory activity, using different in vitro and in vivo models. The results showed a high resistance of this strain to gastrointestinal conditions, as well as capacity to grow and produce reuterin in a human colonic model. Although the in vitro assays using the RAW 264.7 macrophage cell line did not demonstrate direct immunomodulatory properties, the in vivo assays using a Dextran Sulphate Sodium (DSS)-induced colitic mice model showed clear immunomodulatory and protective effects of this strain.
Collapse
Affiliation(s)
- Patricia Diez-Echave
- Centro de Investigaciones Biomédicas en Red–Enfermedades Hepáticas y Digestivas (CIBER-EHD), Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n, 18100 Granada, Spain; (P.D.-E.); (T.V.); (L.H.-G.); (F.A.); (A.R.-N.); (M.E.R.-C.); (J.G.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - Izaskun Martín-Cabrejas
- Departamento Tecnología de Alimentos, INIA-CSIC, Carretera de La Coruña Km 7, 28040 Madrid, Spain; (I.M.-C.); (S.L.); (J.M.L.); (M.M.); (J.L.A.)
| | - José Garrido-Mesa
- Centro de Investigaciones Biomédicas en Red–Enfermedades Hepáticas y Digestivas (CIBER-EHD), Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n, 18100 Granada, Spain; (P.D.-E.); (T.V.); (L.H.-G.); (F.A.); (A.R.-N.); (M.E.R.-C.); (J.G.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - Susana Langa
- Departamento Tecnología de Alimentos, INIA-CSIC, Carretera de La Coruña Km 7, 28040 Madrid, Spain; (I.M.-C.); (S.L.); (J.M.L.); (M.M.); (J.L.A.)
| | - Teresa Vezza
- Centro de Investigaciones Biomédicas en Red–Enfermedades Hepáticas y Digestivas (CIBER-EHD), Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n, 18100 Granada, Spain; (P.D.-E.); (T.V.); (L.H.-G.); (F.A.); (A.R.-N.); (M.E.R.-C.); (J.G.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - José M. Landete
- Departamento Tecnología de Alimentos, INIA-CSIC, Carretera de La Coruña Km 7, 28040 Madrid, Spain; (I.M.-C.); (S.L.); (J.M.L.); (M.M.); (J.L.A.)
| | - Laura Hidalgo-García
- Centro de Investigaciones Biomédicas en Red–Enfermedades Hepáticas y Digestivas (CIBER-EHD), Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n, 18100 Granada, Spain; (P.D.-E.); (T.V.); (L.H.-G.); (F.A.); (A.R.-N.); (M.E.R.-C.); (J.G.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - Francesca Algieri
- Centro de Investigaciones Biomédicas en Red–Enfermedades Hepáticas y Digestivas (CIBER-EHD), Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n, 18100 Granada, Spain; (P.D.-E.); (T.V.); (L.H.-G.); (F.A.); (A.R.-N.); (M.E.R.-C.); (J.G.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - Melinda J. Mayer
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich NR4-7UZ, UK; (A.N.); (M.J.M.)
| | - Arjan Narbad
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich NR4-7UZ, UK; (A.N.); (M.J.M.)
| | - Ana García-Lafuente
- Centro para la Calidad de los Alimentos, INIA-CISC, c/José Tudela s/n, 42004 Soria, Spain;
| | - Margarita Medina
- Departamento Tecnología de Alimentos, INIA-CSIC, Carretera de La Coruña Km 7, 28040 Madrid, Spain; (I.M.-C.); (S.L.); (J.M.L.); (M.M.); (J.L.A.)
| | - Alba Rodríguez-Nogales
- Centro de Investigaciones Biomédicas en Red–Enfermedades Hepáticas y Digestivas (CIBER-EHD), Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n, 18100 Granada, Spain; (P.D.-E.); (T.V.); (L.H.-G.); (F.A.); (A.R.-N.); (M.E.R.-C.); (J.G.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - María Elena Rodríguez-Cabezas
- Centro de Investigaciones Biomédicas en Red–Enfermedades Hepáticas y Digestivas (CIBER-EHD), Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n, 18100 Granada, Spain; (P.D.-E.); (T.V.); (L.H.-G.); (F.A.); (A.R.-N.); (M.E.R.-C.); (J.G.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - Julio Gálvez
- Centro de Investigaciones Biomédicas en Red–Enfermedades Hepáticas y Digestivas (CIBER-EHD), Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, Avenida del Conocimiento s/n, 18100 Granada, Spain; (P.D.-E.); (T.V.); (L.H.-G.); (F.A.); (A.R.-N.); (M.E.R.-C.); (J.G.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - Juan L. Arqués
- Departamento Tecnología de Alimentos, INIA-CSIC, Carretera de La Coruña Km 7, 28040 Madrid, Spain; (I.M.-C.); (S.L.); (J.M.L.); (M.M.); (J.L.A.)
| |
Collapse
|
22
|
In vivo evidence: Repression of mucosal immune responses in mice with colon cancer following sustained administration of Streptococcus thermophiles. Saudi J Biol Sci 2021; 28:4751-4761. [PMID: 34354463 PMCID: PMC8324971 DOI: 10.1016/j.sjbs.2021.04.090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/20/2022] Open
Abstract
Probiotics have attracted considerable attention because of their ability to ameliorate disease and prevent cancer. In this study, we examined the immunomodulatory effects of a Streptococcus thermophilus probiotic on the intestinal mucosa azoxymethane-induced colon cancer. Sixty female mice were divided into four groups (n = 15 each). One group of untreated mice was used as a control (C group). Another mouse group was injected with azoxymethane once weekly for 8 weeks to induce colon cancer (CC group). Finally, two groups of mice were continuously treated twice per week from week 2 to 16 with either the Lactobacillus plantarum (Lac CC group) or S. thermophilus (Strep CC group) bacterial strain pre-and post-treatment as performed for the CC group. Remarkably, Tlr2, Ifng, Il4, Il13, Il10, and Tp53 transcription were significantly downregulated in the Strep CC intestinal mucosa group. Additionally, IL2 expression was decreased significantly in the Strep CC mouse serum, whereas TNFα was remarkably elevated compared to that in the CC, Lac CC, and untreated groups. This study suggested that Streptococcus thermophilus did not interrupt or hinder colon cancer development in mice when administered as a prophylactic.
Collapse
|
23
|
Notararigo S, Varela E, Otal A, Cristobo I, Antolín M, Guarner F, Prieto A, López P. Evaluation of an O2-Substituted (1-3)-β-D-Glucan, Produced by Pediococcus parvulus 2.6, in ex vivo Models of Crohn's Disease. Front Microbiol 2021; 12:621280. [PMID: 33613490 PMCID: PMC7893136 DOI: 10.3389/fmicb.2021.621280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 01/11/2021] [Indexed: 12/19/2022] Open
Abstract
1,3-β-glucans are extracellular polysaccharides synthesized by microorganisms and plants, with therapeutic potential. Among them, the O2-substituted-(1–3)-β-D-glucan, synthesized by some lactic acid bacteria (LAB), has a prebiotic effect on probiotic strains, an immunomodulatory effect on monocyte-derived macrophages, and potentiates the ability of the producer strain to adhere to Caco-2 cells differentiated to enterocytes. In this work, the O2-substituted-(1–3)-β-D-glucan polymers produced by GTF glycoyltransferase in the natural host Pediococcus parvulus 2.6 and in the recombinant strain Lactococcus lactis NZ9000[pNGTF] were tested. Their immunomodulatory activity was investigated in an ex vivo model using human biopsies from patients affected by Crohn’s disease (CD). Both polymers had an anti-inflammatory effect including, a reduction of Interleukine 8 both at the level of its gene expression and its secreted levels. The overall data indicate that the O2-substituted-(1–3)-β-D-glucan have a potential role in ameliorating inflammation via the gut immune system cell modulation.
Collapse
Affiliation(s)
- Sara Notararigo
- Department of Microbial: and Plant Biotechnology, Margarita Salas Biological Research Centre (CIB-Margarita Salas-CSIC), Madrid, Spain.,Department of Gastroenterology, Digestive System Research Unit, Institut de Recerca Vall d'Hebron (VHIR), University Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.,Foundation Health Research Institute of Santiago de Compostela (FIDIS), Santiago de Compostela, Spain
| | - Encarnación Varela
- Department of Gastroenterology, Digestive System Research Unit, Institut de Recerca Vall d'Hebron (VHIR), University Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Anna Otal
- Department of Gastroenterology, Digestive System Research Unit, Institut de Recerca Vall d'Hebron (VHIR), University Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Iván Cristobo
- Department of Microbial: and Plant Biotechnology, Margarita Salas Biological Research Centre (CIB-Margarita Salas-CSIC), Madrid, Spain
| | - María Antolín
- Department of Gastroenterology, Digestive System Research Unit, Institut de Recerca Vall d'Hebron (VHIR), University Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Francisco Guarner
- Department of Gastroenterology, Digestive System Research Unit, Institut de Recerca Vall d'Hebron (VHIR), University Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alicia Prieto
- Department of Microbial: and Plant Biotechnology, Margarita Salas Biological Research Centre (CIB-Margarita Salas-CSIC), Madrid, Spain
| | - Paloma López
- Department of Microbial: and Plant Biotechnology, Margarita Salas Biological Research Centre (CIB-Margarita Salas-CSIC), Madrid, Spain
| |
Collapse
|
24
|
Heo G, Lee Y, Im E. Interplay between the Gut Microbiota and Inflammatory Mediators in the Development of Colorectal Cancer. Cancers (Basel) 2021; 13:734. [PMID: 33578830 PMCID: PMC7916585 DOI: 10.3390/cancers13040734] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 02/08/2023] Open
Abstract
Inflammatory mediators modulate inflammatory pathways during the development of colorectal cancer. Inflammatory mediators secreted by both immune and tumor cells can influence carcinogenesis, progression, and tumor metastasis. The gut microbiota, which colonize the entire intestinal tract, especially the colon, are closely linked to colorectal cancer through an association with inflammatory mediators such as tumor necrosis factor, nuclear factor kappa B, interleukins, and interferons. This association may be a potential therapeutic target, since therapeutic interventions targeting the gut microbiota have been actively investigated in both the laboratory and in clinics and include fecal microbiota transplantation and probiotics.
Collapse
Affiliation(s)
| | | | - Eunok Im
- College of Pharmacy, Pusan National University, Busan 46241, Korea; (G.H.); (Y.L.)
| |
Collapse
|
25
|
Sanchis-Artero L, Martínez-Blanch JF, Manresa-Vera S, Cortés-Castell E, Rodriguez-Morales J, Cortés-Rizo X. Evaluation of Changes in Gut Microbiota in Patients with Crohn's Disease after Anti-Tnfα Treatment: Prospective Multicenter Observational Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E5120. [PMID: 32679874 PMCID: PMC7399935 DOI: 10.3390/ijerph17145120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/10/2020] [Accepted: 07/10/2020] [Indexed: 12/21/2022]
Abstract
Background: Crohn's disease is believed to result from the interaction between genetic susceptibility, environmental factors and gut microbiota, leading to an aberrant immune response. The objectives of this study are to evaluate the qualitative and quantitative changes in the microbiota of patients with Crohn's disease after six months of anti-tumor-necrosis factor (anti-TNFα) (infliximab or adalimumab) treatment and to determine whether these changes lead to the recovery of normal microbiota when compared to a control group of healthy subjects. In addition, we will evaluate the potential role of the Faecalibacterium prausnitzii/Escherichia coli and Faecalibacterium prausnitzii/Clostridium coccoides ratios as indicators of therapeutic response to anti-TNFα drugs. Methods/Design: This prospective multicenter observational study will comprise a total of 88 subjects: 44 patients with Crohn's disease scheduled to start anti-TNFα treatment as described in the drug specifications to control the disease and 44 healthy individuals who share the same lifestyle and eating habits. The presence of inflammatory activity will be determined by the Harvey-Bradshaw index, analytical parameters in blood, including C-reactive protein, and fecal calprotectin levels at commencement of the study, at three months and at six months, allowing the classification of patients into responders and non-responders. Microbiota composition and the quantitative relationship between Faecalibacterium prausnitzii and Escherichia coli and between Faecalibacterium prausnitzii and Clostridium coccoidesgroup as indicators of dysbiosis will be studied at inclusion and six months after initiation of treatment using ultra sequencing with Illumina technology and comparative bioinformatics analysis for the former relationship, and digital droplet PCR using stool samples for the latter. Upon inclusion, patients will complete a survey of dietary intake for the three days prior to stool collection, which will be repeated six months later in a second collection to minimize dietary bias. Discussion: In this study, massive sequencing, a reliable new tool, will be applied to identify early biomarkers of response to anti-TNF treatment in patients with Crohn's disease to improve clinical management of these patients, reduce morbidity rates and improve efficiency.
Collapse
Affiliation(s)
- Laura Sanchis-Artero
- Inflammatory Bowel Disease Unit. Department of Digestive Diseases, Hospital of Sagunto, Av. Ramón y Cajal s/n, 46520 Sagunto, Valencia, Spain; (L.S.-A.); (J.R.-M.); (X.C.-R.)
| | - Juan Francisco Martínez-Blanch
- Genomics Laboratory. ADM-Lifesequencing. Parque Científico Universidad de Valencia. Catedrático Agustín Escardino Benlloch, 9. Edificio 2, 46980 Paterna, Valencia, Spain;
| | - Sergio Manresa-Vera
- Genomics Laboratory. ADM-Lifesequencing. Parque Científico Universidad de Valencia. Catedrático Agustín Escardino Benlloch, 9. Edificio 2, 46980 Paterna, Valencia, Spain;
| | - Ernesto Cortés-Castell
- Department of Pharmacology, Pediatrics and Organic Chemistry Miguel Hernández University, Carretera de Valencia—Alicante S/N, 03550 San Juan de Alicante, Alicante, Spain;
| | - Josefa Rodriguez-Morales
- Inflammatory Bowel Disease Unit. Department of Digestive Diseases, Hospital of Sagunto, Av. Ramón y Cajal s/n, 46520 Sagunto, Valencia, Spain; (L.S.-A.); (J.R.-M.); (X.C.-R.)
| | - Xavier Cortés-Rizo
- Inflammatory Bowel Disease Unit. Department of Digestive Diseases, Hospital of Sagunto, Av. Ramón y Cajal s/n, 46520 Sagunto, Valencia, Spain; (L.S.-A.); (J.R.-M.); (X.C.-R.)
| |
Collapse
|
26
|
Picardo S, Altuwaijri M, Devlin SM, Seow CH. Complementary and alternative medications in the management of inflammatory bowel disease. Therap Adv Gastroenterol 2020; 13:1756284820927550. [PMID: 32523629 PMCID: PMC7257842 DOI: 10.1177/1756284820927550] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 04/23/2020] [Indexed: 02/04/2023] Open
Abstract
The use of complementary and alternative medications (CAM), products, and therapies not considered to be part of conventional medicine is common among patients with inflammatory bowel disease (IBD). Patients often turn to these therapies as they are considered natural and safe, with significant benefit reported beyond disease control. There is emerging evidence that some of these therapies may have anti-inflammatory activity; however, robust evidence for their efficacy in modulating disease activity is currently lacking. Patients often avoid discussing the use of CAM with their physicians, which may lead to drug interactions and/or reduced adherence with conventional therapy. It is important for physicians to be aware of the commonly used CAM and current evidence behind these therapies in order to better counsel their patients about their use in the management of IBD. This narrative review provides an overview of the evidence of the more commonly used CAM in patients with IBD.
Collapse
Affiliation(s)
| | | | - Shane M. Devlin
- Inflammatory Bowel Disease Unit, Department of
Gastroenterology, Cumming School of Medicine, University of Calgary, AB,
Canada
| | | |
Collapse
|
27
|
Rossi G, Cerquetella M, Gavazza A, Galosi L, Berardi S, Mangiaterra S, Mari S, Suchodolski JS, Lidbury JA, Steiner JM, Pengo G. Rapid Resolution of Large Bowel Diarrhea after the Administration of a Combination of a High-Fiber Diet and a Probiotic Mixture in 30 Dogs. Vet Sci 2020; 7:vetsci7010021. [PMID: 32050688 PMCID: PMC7158687 DOI: 10.3390/vetsci7010021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 12/13/2022] Open
Abstract
Canine fiber responsive diarrhea is a form of chronic colitis that improves clinically after adding fiber to the diet. In the present study, we investigated the effect of a combination of a high-fiber, highly digestible, hypoallergenic diet with a probiotic mixture in 30 dogs with chronic colitis that were unresponsive to various dietary and/or pharmacological interventions. Fecal scores, canine chronic enteropathy clinical activity index (CCECAI) scores, the dysbiosis index (DI), and histologic images of colonic biopsies were evaluated. At baseline (day 0; T0) and after 30 days of treatment (T1), all variables evaluated in our patients (i.e., fecal and CCECAI scores and histopathology) improved significantly at T1, with the exception of DI. However, there was a numerical shift from a state of dysbiosis to one of normobiosis. The combination of the diet and the probiotic used in the present study induced the resolution of clinical signs in a mean of 8.5 days (maximum 15 days) and did not necessitate any other treatments or the further addition of alimentary fiber.
Collapse
Affiliation(s)
- Giacomo Rossi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Matelica (MC), Italy; (G.R.); (M.C.); (L.G.); (S.B.); (S.M.); (S.M.)
| | - Matteo Cerquetella
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Matelica (MC), Italy; (G.R.); (M.C.); (L.G.); (S.B.); (S.M.); (S.M.)
| | - Alessandra Gavazza
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Matelica (MC), Italy; (G.R.); (M.C.); (L.G.); (S.B.); (S.M.); (S.M.)
- Correspondence: ; Tel.: +39-0737-403-458
| | - Livio Galosi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Matelica (MC), Italy; (G.R.); (M.C.); (L.G.); (S.B.); (S.M.); (S.M.)
| | - Sara Berardi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Matelica (MC), Italy; (G.R.); (M.C.); (L.G.); (S.B.); (S.M.); (S.M.)
| | - Sara Mangiaterra
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Matelica (MC), Italy; (G.R.); (M.C.); (L.G.); (S.B.); (S.M.); (S.M.)
| | - Subeide Mari
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Matelica (MC), Italy; (G.R.); (M.C.); (L.G.); (S.B.); (S.M.); (S.M.)
| | - Jan S. Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX 77843, USA; (J.S.S.); (J.A.L.); (J.M.S.)
| | - Jonathan A. Lidbury
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX 77843, USA; (J.S.S.); (J.A.L.); (J.M.S.)
| | - Joerg M. Steiner
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX 77843, USA; (J.S.S.); (J.A.L.); (J.M.S.)
| | - Graziano Pengo
- St. Antonio Veterinary Clinic, S.S. 415 Paullese 6, 26020 Madignano (CR), Italy;
| |
Collapse
|
28
|
Lactobacillus delbrueckii Ameliorates Intestinal Integrity and Antioxidant Ability in Weaned Piglets after a Lipopolysaccharide Challenge. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6028606. [PMID: 32104535 PMCID: PMC7035547 DOI: 10.1155/2020/6028606] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/24/2020] [Indexed: 12/24/2022]
Abstract
This study was conducted to evaluate the effect of dietary supplementation with Lactobacillus delbrueckii (LAB) on intestinal morphology, barrier function, immune response, and antioxidant capacity in weaned piglets challenged with lipopolysaccharide (LPS). A total of 36 two-line crossbred (Landrace × large Yorkshire) weaned piglets (28 days old) were divided into three groups: (1) nonchallenged control (CON); (2) LPS-challenged control (LPS); and (3) LAB+LPS treatment (0.2% LAB+LPS). Compared to the LPS piglets, the LAB+LPS piglets improved intestinal morphology, indicated by greater (P < 0.05) villus height in the duodenum and ileum; villus height : crypt depth ratio in the duodenum, jejunum, and ileum, as well as decreased (P < 0.05) crypt depth in the jejunum and ileum; and better intestinal barrier function, indicated by upregulated (P < 0.05) mRNA expression of tight junction proteins in the intestinal mucosa. Moreover, compared to the LPS piglets, LAB significantly decreased (P < 0.05) concentrations of TNF-α and IL-1β in the small intestine and increased (P < 0.05) IL-10 levels in the jejunum and ileum. Additionally, LAB increased (P < 0.05) T-AOC activities of the colon, GSH concentrations of the jejunum, and mRNA expression of CAT and Cu/Zn-SOD, while reduced (P < 0.05) MDA concentrations in the jejunum and ileum in LPS-changed piglets. Collectively, our results indicate that supplementation of LAB improved intestinal integrity and immune response and alleviated intestinal oxidative damage in LPS-challenged piglets.
Collapse
|
29
|
Xu T, Chen Y, Yu L, Wang J, Huang M, Zhu N. Effects of Lactobacillus plantarum on intestinal integrity and immune responses of egg-laying chickens infected with Clostridium perfringens under the free-range or the specific pathogen free environment. BMC Vet Res 2020; 16:47. [PMID: 32028947 PMCID: PMC7006139 DOI: 10.1186/s12917-020-2264-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/24/2020] [Indexed: 12/28/2022] Open
Abstract
Background Necrotic enteritis, which is caused by Clostridium perfringens, has resulted in more than $2 billion losses in the poultry industry every year. Due to the ban of antibiotics in feed industry, alternatives like environment improvement and probiotics have been found to be effective as well. In our study, we aim to explore the protective effect of Lactobacillus plantarum supplementation on CP infected chickens in two environments. Results The results showed that the Clostridium perfringens administration led to visible and histomorphological gut lesions. In the specific pathogen free or free-range system environment, dietary supplementation with LP obvious increased the ratio of intestinal villus height to crypt depth and the expression of MUC2 mRNA in ileum mucosa, then reduced the mRNA expression level of TNF-α gene in the ileum mucosa. LP treatment significantly reduced the contents of total protein, total superoxide dismutase and glutamic oxaloacetic transaminase in serum of the chickens. Conclusions The specific pathogen free environment contributed to the recovery of pre-inflammation of the chickens, and free-range system environment contributed to the repair of damage in the later stages of chicken inflammation. Supplementation of LP in FRS environment was more conducive to the recovery of CP infected in chickens.
Collapse
Affiliation(s)
- Tianyue Xu
- Present address: Jiangxi Province Key Laboratory of Animal Nutrition, College of animal science and technology, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, People's Republic of China
| | - Yan Chen
- Present address: Jiangxi Province Key Laboratory of Animal Nutrition, College of animal science and technology, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, People's Republic of China
| | - Longfei Yu
- Present address: Jiangxi Province Key Laboratory of Animal Nutrition, College of animal science and technology, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, People's Republic of China
| | - Jun Wang
- Present address: Jiangxi Province Key Laboratory of Animal Nutrition, College of animal science and technology, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, People's Republic of China
| | - Mingxing Huang
- Present address: Jiangxi Province Key Laboratory of Animal Nutrition, College of animal science and technology, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, People's Republic of China
| | - Nianhua Zhu
- Present address: Jiangxi Province Key Laboratory of Animal Nutrition, College of animal science and technology, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, People's Republic of China.
| |
Collapse
|
30
|
Cornide-Petronio ME, Álvarez-Mercado AI, Jiménez-Castro MB, Peralta C. Current Knowledge about the Effect of Nutritional Status, Supplemented Nutrition Diet, and Gut Microbiota on Hepatic Ischemia-Reperfusion and Regeneration in Liver Surgery. Nutrients 2020; 12:284. [PMID: 31973190 PMCID: PMC7071361 DOI: 10.3390/nu12020284] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 02/06/2023] Open
Abstract
Ischemia-reperfusion (I/R) injury is an unresolved problem in liver resection and transplantation. The preexisting nutritional status related to the gut microbial profile might contribute to primary non-function after surgery. Clinical studies evaluating artificial nutrition in liver resection are limited. The optimal nutritional regimen to support regeneration has not yet been exactly defined. However, overnutrition and specific diet factors are crucial for the nonalcoholic or nonalcoholic steatohepatitis liver diseases. Gut-derived microbial products and the activation of innate immunity system and inflammatory response, leading to exacerbation of I/R injury or impaired regeneration after resection. This review summarizes the role of starvation, supplemented nutrition diet, nutritional status, and alterations in microbiota on hepatic I/R and regeneration. We discuss the most updated effects of nutritional interventions, their ability to alter microbiota, some of the controversies, and the suitability of these interventions as potential therapeutic strategies in hepatic resection and transplantation, overall highlighting the relevance of considering the extended criteria liver grafts in the translational liver surgery.
Collapse
Affiliation(s)
| | - Ana Isabel Álvarez-Mercado
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain;
- Institute of Nutrition and Food Technology “José Mataix,” Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n, 18016 Armilla, Granada, Spain
- Instituto de Investigación Biosanitaria ibs, GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
| | - Mónica B. Jiménez-Castro
- Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.E.C.-P.); (M.B.J.-C.)
| | - Carmen Peralta
- Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.E.C.-P.); (M.B.J.-C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain
| |
Collapse
|
31
|
Integrating omics for a better understanding of Inflammatory Bowel Disease: a step towards personalized medicine. J Transl Med 2019; 17:419. [PMID: 31836022 PMCID: PMC6909475 DOI: 10.1186/s12967-019-02174-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/08/2019] [Indexed: 02/06/2023] Open
Abstract
Background Inflammatory Bowel Disease (IBD) is a multifactorial chronic disease. Understanding only one aspect of IBD pathogenesis does not reflect the complex nature of IBD nor will it improve its clinical management. Therefore, it is vital to dissect the interactions between the different players in IBD pathogenesis in order to understand the biology of the disease and enhance its clinical outcomes. Aims To provide an overview of the available omics data used to assess the potential mechanisms through which various players are contributing to IBD pathogenesis and propose a precision medicine model to fill the current knowledge gap in IBD. Results Several studies have reported microbial dysbiosis, immune and metabolic dysregulation in IBD patients, however, this data is not sufficient to create signatures that can differentiate between the disease subtypes or between disease relapse and remission. Conclusions We summarized the current knowledge in the application of omics in IBD patients, and we showed that the current knowledge gap in IBD hinders the improvements of clinical decision for treatment as well as the prediction of disease relapse. We propose one way to fill this gap by implementing integrative analysis of various omics datasets generated from one patient at a single time point.
Collapse
|
32
|
Fehlbaum S, Chassard C, Schwab C, Voolaid M, Fourmestraux C, Derrien M, Lacroix C. In vitro Study of Lactobacillus paracasei CNCM I-1518 in Healthy and Clostridioides difficile Colonized Elderly Gut Microbiota. Front Nutr 2019; 6:184. [PMID: 31921877 PMCID: PMC6914822 DOI: 10.3389/fnut.2019.00184] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/22/2019] [Indexed: 12/16/2022] Open
Abstract
Consumption of probiotic bacteria can result in a transient colonization of the human gut and thereby in potential interactions with the commensal microbiota. In this study, we used novel PolyFermS continuous fermentation models to investigate interactions of the candidate probiotic strain Lactobacillus paracasei CNCM I-1518 (L. paracasei) with colonic microbiota from healthy elderly subjects using 16S rRNA gene amplicon sequencing and metatranscriptomics, or with microbiota in vitro-colonized with Clostridioides difficile (C. difficile NCTC 13307 and C. difficile DSM 1296)—an enteropathogen prevalent in the elderly population. Small changes in microbiota composition were detected upon daily addition of L. paracasei, including increased abundances of closely related genera Lactobacillus and Enterococcus, and of the butyrate producer Faecalibacterium. Microbiota gene expression was also modulated by L. paracasei with distinct response of the Faecalibacterium transcriptome and an increase in carbohydrate utilization. However, no inhibitory effect of L. paracasei was observed on C. difficile colonization in the intestinal models under the tested conditions. Our data suggest that, in the in vitro experimental conditions tested and independent of the host, L. paracasei has modulatory effects on both the composition and function of elderly gut microbiota without affecting C. difficile growth and toxin production.
Collapse
Affiliation(s)
- Sophie Fehlbaum
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Christophe Chassard
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Clarissa Schwab
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Maarja Voolaid
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | | | | | - Christophe Lacroix
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
33
|
Sprockett D, Fischer N, Boneh RS, Turner D, Kierkus J, Sladek M, Escher JC, Wine E, Yerushalmi B, Dias JA, Shaoul R, Kori M, Snapper SB, Holmes S, Bousvaros A, Levine A, Relman DA. Treatment-Specific Composition of the Gut Microbiota Is Associated With Disease Remission in a Pediatric Crohn's Disease Cohort. Inflamm Bowel Dis 2019; 25:1927-1938. [PMID: 31276165 PMCID: PMC7185687 DOI: 10.1093/ibd/izz130] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND The beneficial effects of antibiotics in Crohn's disease (CD) depend in part on the gut microbiota but are inadequately understood. We investigated the impact of metronidazole (MET) and metronidazole plus azithromycin (MET+AZ) on the microbiota in pediatric CD and the use of microbiota features as classifiers or predictors of disease remission. METHODS 16S rRNA-based microbiota profiling was performed on stool samples from 67 patients in a multinational, randomized, controlled, longitudinal, 12-week trial of MET vs MET+AZ in children with mild to moderate CD. Profiles were analyzed together with disease activity, and then used to construct random forest models to classify remission or predict treatment response. RESULTS Both MET and MET+AZ significantly decreased diversity of the microbiota and caused large treatment-specific shifts in microbiota structure at week 4. Disease remission was associated with a treatment-specific microbiota configuration. Random forest models constructed from microbiota profiles before and during antibiotic treatment with metronidazole accurately classified disease remission in this treatment group (area under the curve [AUC], 0.879; 95% confidence interval, 0.683-0.9877; sensitivity, 0.7778; specificity, 1.000; P < 0.001). A random forest model trained on pre-antibiotic microbiota profiles predicted disease remission at week 4 with modest accuracy (AUC, 0.8; P = 0.24). CONCLUSIONS MET and MET+AZ antibiotic regimens in pediatric CD lead to distinct gut microbiota structures at remission. It may be possible to classify and predict remission based in part on microbiota profiles, but larger cohorts will be needed to realize this goal.
Collapse
Affiliation(s)
- Daniel Sprockett
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Natalie Fischer
- Division of Infectious Diseases & Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Rotem Sigall Boneh
- Pediatric Gastroenterology and Nutrition Unit, Wolfson Medical Center, Holon, Israel
| | - Dan Turner
- The Juliet Keidan Institute of Pediatric Gastroenterology & Nutrition, Shaare Zedek Medical Center, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jarek Kierkus
- Department of Gastroenterology, Hepatology, Feeding Disorders and Pediatrics, The Children’s Memorial Health Institute, Warsaw, Poland
| | - Malgorzata Sladek
- Department of Pediatrics, Gastroenterology and Nutrition, Jagiellonian University Medical College, Cracow, Poland
| | - Johanna C Escher
- Department of Pediatric Gastroenterology, Erasmus MC-Sophia Children’s Hospital, Rotterdam, the Netherlands
| | - Eytan Wine
- Division of Pediatric Gastroenterology and Nutrition, Department of Pediatrics, University of Alberta, Edmonton, Canada
| | - Baruch Yerushalmi
- Pediatric Gastroenterology Unit, Soroka University Medical Center, and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Jorge Amil Dias
- Department of Pediatrics, Hospital de Sao Joao, Porto, Portugal
| | - Ron Shaoul
- Pediatric Gastroenterology Unit, Ruth Children’s Hospital, Rambam Medical Center, Haifa, Israel
| | - Michal Kori
- Pediatric Day Care Unit, Kaplan Medical Center, Rehovot, Israel
| | - Scott B Snapper
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital, Boston, Massachusetts, USA
- Division of Gastroenterology, Brigham and Women’s Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| | - Susan Holmes
- Department of Statistics, Stanford University, Stanford, California, USA
| | - Athos Bousvaros
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Arie Levine
- Pediatric Gastroenterology and Nutrition Unit, Wolfson Medical Center, Holon, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - David A Relman
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, USA
- Division of Infectious Diseases & Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
- Infectious Diseases Section, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| |
Collapse
|
34
|
Probiotic characterization of indigenous Bacillus velezensis strain DU14 isolated from Apong, a traditionally fermented rice beer of Assam. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.01.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Sarin SK, Pande A, Schnabl B. Microbiome as a therapeutic target in alcohol-related liver disease. J Hepatol 2019; 70:260-272. [PMID: 30658727 DOI: 10.1016/j.jhep.2018.10.019] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 10/23/2018] [Indexed: 02/08/2023]
Abstract
Alcohol-related liver disease is associated with significant changes in gut microbial composition. The transmissibility of ethanol-induced liver disease has been demonstrated using faecal microbiota transfer in preclinical models. This technique has also led to improved survival in patients with severe alcoholic hepatitis, suggesting that changes in the composition and function of the gut microbiota are causatively linked to alcohol-related liver disease. A major mechanism by which gut microbiota influence the development of alcohol-related liver disease is through a leaky intestinal barrier. This permits translocation of viable bacteria and microbial products to the liver, where they induce and promote inflammation, as well as contribute to hepatocyte death and the fibrotic response. In addition, gut dysbiosis is associated with changes in the metabolic function of the intestinal microbiota, bile acid composition and circulation, immune dysregulation during onset and progression of alcohol-related liver disease. Findings from preclinical and human studies will be used to demonstrate how alcohol causes intestinal pathology and contributes to alcohol-related liver disease and how the latter is self-perpetuating. Additionally, we summarise the effects of untargeted treatment approaches on the gut microbiota, such as diet, probiotics, antibiotics and faecal microbial transplantation in alcohol-related liver disease. We further discuss how targeted approaches can restore intestinal homeostasis and improve alcohol-related liver disease. These approaches are likely to add to the therapeutic options for alcohol-related liver disease independently or in conjunction with steroids.
Collapse
Affiliation(s)
- Shiv K Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India.
| | - Apurva Pande
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA; Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
36
|
Vass P, Démuth B, Hirsch E, Nagy B, Andersen SK, Vigh T, Verreck G, Csontos I, Nagy ZK, Marosi G. Drying technology strategies for colon-targeted oral delivery of biopharmaceuticals. J Control Release 2019; 296:162-178. [PMID: 30677436 DOI: 10.1016/j.jconrel.2019.01.023] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 12/12/2022]
Abstract
In chronic intestinal diseases like inflammatory bowel disease, parenteral administration of biopharmaceuticals is associated with numerous disadvantages including immune reactions, infections, low patient compliance, and toxicity caused by high systemic bioavailability. One alternative that can potentially overcome these limitations is oral administration of biopharmaceuticals, where the local delivery will reduce the systemic exposure and furthermore the manufacturing costs will be lower. However, the development of oral dosage forms that deliver the biologically active form to the intestines is one of the greatest challenges for pharmaceutical technologists due to the sensitive nature of biopharmaceuticals. The present article discusses the various drug delivery technologies used to produce orally administered solid dosage forms of biopharmaceuticals with an emphasis on colon-targeted delivery. Solid oral dosage compositions containing different types of colon-targeting biopharmaceuticals are compiled followed by a review of currently applied and emerging drying technologies for biopharmaceuticals. The different drying technologies are compared in terms of their advantages, limitations, costs and their effect on product stability.
Collapse
Affiliation(s)
- Panna Vass
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111 Budapest, Műegyetem rakpart 3, Hungary
| | - Balázs Démuth
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111 Budapest, Műegyetem rakpart 3, Hungary
| | - Edit Hirsch
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111 Budapest, Műegyetem rakpart 3, Hungary
| | - Brigitta Nagy
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111 Budapest, Műegyetem rakpart 3, Hungary
| | - Sune K Andersen
- Oral Solids Development, Janssen R&D, B-2340 Beerse, Turnhoutseweg 30, Belgium.
| | - Tamás Vigh
- Oral Solids Development, Janssen R&D, B-2340 Beerse, Turnhoutseweg 30, Belgium
| | - Geert Verreck
- Oral Solids Development, Janssen R&D, B-2340 Beerse, Turnhoutseweg 30, Belgium
| | - István Csontos
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111 Budapest, Műegyetem rakpart 3, Hungary
| | - Zsombor K Nagy
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111 Budapest, Műegyetem rakpart 3, Hungary.
| | - György Marosi
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111 Budapest, Műegyetem rakpart 3, Hungary
| |
Collapse
|
37
|
Zhai Q, Chen W. Functional Evaluation Model for Lactic Acid Bacteria. LACTIC ACID BACTERIA 2019:183-237. [DOI: 10.1007/978-981-13-7832-4_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
38
|
Fernández-Tomé S, Montalban-Arques A, Díaz-Guerra A, Galvan-Roman JM, Marin AC, Mora-Gutiérrez I, Ortega Moreno L, Santander C, Sánchez B, Chaparro M, Gisbert JP, Bernardo D. Peptides encrypted in the human intestinal microbial-exoproteome as novel biomarkers and immunomodulatory compounds in the gastrointestinal tract. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.11.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
39
|
Chervinets Y, Chervinets V, Shenderov B, Belyaeva E, Troshin A, Lebedev S, Danilenko V. Adaptation and Probiotic Potential of Lactobacilli, Isolated from the Oral Cavity and Intestines of Healthy People. Probiotics Antimicrob Proteins 2018; 10:22-33. [PMID: 29164486 DOI: 10.1007/s12602-017-9348-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The present study shows that, from 300 Lactobacillus strains isolated from the oral cavity and large intestine of 600 healthy people, only 9 had high antagonistic activity against pathogens and opportunistic pathogens. All antagonistic strains of lactobacilli have been identified by 16S rRNA sequencing and assigned to four species: Lactobacillus fermentum, Lactobacillus rhamnosus, Lactobacillus plantarum, and Lactobacillus casei. In addition, these lactobacilli appeared to be nonpathogenic and had some probiotic potential: the strains produced lactic acid and bacteriocins, showed high sensitivity to broad-spectrum antibiotics, and were capable of forming biofilms in vitro. With the help of PCR and specific primers, the presence of genes for prebacteriocins in L. plantarum (plnEF, plnJ, plnN) and L. rhamnosus (LGG_02380 and LGG_02400) has been revealed. It was found that intestinal strains of lactobacilli were resistant to hydrochloric acid and bile. Lactobacilli isolated from the oral cavity were characterized by a high degree of adhesion, whereas intestinal strains were characterized by average adhesion. Both types of lactobacilli had medium to high rates of auto-aggregation and hydrophobicity and could coaggregate with pathogens and opportunistic pathogens. Additionally, the ability of the lactobacilli strains to produce gasotransmitters, CH4, CO2, C2H6, CO, and NH3, has been revealed.
Collapse
Affiliation(s)
- Yulia Chervinets
- Department of Microbiology and Virusology with Immunology course, Tver State Medical University, Tver, Russia.
| | - Vyacheslav Chervinets
- Department of Microbiology and Virusology with Immunology course, Tver State Medical University, Tver, Russia
| | - Boris Shenderov
- Laboratory of Biology of Bifidobacteria, Moscow Research Institute of Epidemiology and Microbiology named by G. N. Gabrichevsky, Moscow, Russia
| | - Ekaterina Belyaeva
- Department of Microbiology and Virusology with Immunology course, Tver State Medical University, Tver, Russia
| | - Andrey Troshin
- Department of Microbiology and Virusology with Immunology course, Tver State Medical University, Tver, Russia
| | - Sergey Lebedev
- Department of Microbiology and Virusology with Immunology course, Tver State Medical University, Tver, Russia
| | - Valery Danilenko
- Laboratory of Genetics of Microorganisms, Institute of General Genetics named by N. I. Vavilov of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
40
|
Azad MAK, Sarker M, Wan D. Immunomodulatory Effects of Probiotics on Cytokine Profiles. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8063647. [PMID: 30426014 PMCID: PMC6218795 DOI: 10.1155/2018/8063647] [Citation(s) in RCA: 273] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 10/08/2018] [Indexed: 12/15/2022]
Abstract
Probiotics confer immunological protection to the host through the regulation, stimulation, and modulation of immune responses. Researchers have shifted their attention to better understand the immunomodulatory effects of probiotics, which have the potential to prevent or alleviate certain pathologies for which proper medical treatment is as yet unavailable. It has been scientifically established that immune cells (T- and B-cells) mediate adaptive immunity and confer immunological protection by developing pathogen-specific memory. However, this review is intended to present the recent studies on immunomodulatory effects of probiotics. In the early section of this review, concepts of probiotics and common probiotic strains are focused on. On a priority basis, the immune system, along with mucosal immunity in the human body, is discussed in this study. It has been summarized that a number of species of Lactobacillus and Bifidobacterium exert vital roles in innate immunity by increasing the cytotoxicity of natural killer cells and phagocytosis of macrophages and mediate adaptive immunity by interacting with enterocytes and dendritic, Th1, Th2, and Treg cells. Finally, immunomodulatory effects of probiotics on proinflammatory and anti-inflammatory cytokine production in different animal models have been extensively reviewed in this paper. Therefore, isolating new probiotic strains and investigating their immunomodulatory effects on cytokine profiles in humans remain a topical issue.
Collapse
Affiliation(s)
- Md. Abul Kalam Azad
- Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Manobendro Sarker
- Biomass Energy Engineering Research Centre, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, 800 Dongchuan Road, Shanghai 200240, China
- Department of Food Engineering and Technology, State University of Bangladesh, Dhaka 1205, Bangladesh
| | - Dan Wan
- Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, China
- Academician Workstation of Hunan Baodong Farming Co., Ltd., Hunan 422001, China
| |
Collapse
|
41
|
Takada K, Komine-Aizawa S, Kuramochi T, Ito S, Trinh QD, Pham NTK, Sasano M, Hayakawa S. Lactobacillus crispatus accelerates re-epithelialization in vaginal epithelial cell line MS74. Am J Reprod Immunol 2018; 80:e13027. [PMID: 30144195 DOI: 10.1111/aji.13027] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 07/11/2018] [Indexed: 12/16/2022] Open
Abstract
PROBLEM The functions of vaginal lactobacilli in susceptibility to infectious diseases as regards epithelial barrier integrity and wound healing remain incompletely understood. METHOD OF STUDY Lactobacillus crispatus, one of the most common Lactobacillus species in the vagina and among the most protective against sexually transmitted infections, was cocultured with an immortalized human vaginal epithelial cell line (MS74), and a scratch assay was performed to evaluate re-epithelialization. The concentration of vascular endothelial growth factor A (VEGF) was measured using enzyme-linked immunosorbent assay (ELISA). An immunofluorescence assay was performed to locate the expression of VEGF and VEGF receptor (VEGFR) 1 and 2. The effects of the bacterial supernatant of L. crispatus were also evaluated. RESULTS Lactobacillus crispatus significantly accelerated re-epithelialization of MS74 cells, accompanied by an increase in VEGF concentration. In contrast, heat-killed L. crispatus did not show this effect. The bacterial supernatant of L. crispatus also induced re-epithelialization. The immunoreactivity of VEGF was higher at the scratched edge, whereas VEGFR1 and 2 stained site-independently. Recombinant VEGF induced cell migration in a dose-dependent manner. The bacterial supernatant of L. crispatus also significantly accelerated re-epithelialization in MS74 cells and increased the concentration of VEGF in the culture 24 hours after the scratch. CONCLUSION These results may enhance our knowledge of the importance of L. crispatus in the healing of damaged vaginal epithelium and protection against the consequent risk of pathogenic infections, such as human immunodeficiency virus (HIV), and improve our understanding of vaginal epithelial barrier integrity maintenance by this bacterium.
Collapse
Affiliation(s)
- Kazuhide Takada
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Shihoko Komine-Aizawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | | | - Shun Ito
- Nihon University School of Medicine, Tokyo, Japan
| | - Quang Duy Trinh
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Ngan Thi Kim Pham
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Mari Sasano
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan.,Department of Neurological Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Satoshi Hayakawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
42
|
Nwamaioha NO, Ibrahim SA. A selective medium for the enumeration and differentiation of Lactobacillus delbrueckii ssp. bulgaricus. J Dairy Sci 2018; 101:4953-4961. [DOI: 10.3168/jds.2017-14155] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 02/12/2018] [Indexed: 11/19/2022]
|
43
|
Carlson JL, Erickson JM, Lloyd BB, Slavin JL. Health Effects and Sources of Prebiotic Dietary Fiber. Curr Dev Nutr 2018; 2:nzy005. [PMID: 30019028 PMCID: PMC6041804 DOI: 10.1093/cdn/nzy005] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/04/2017] [Accepted: 01/14/2018] [Indexed: 12/21/2022] Open
Abstract
Prebiotic dietary fibers act as carbon sources for primary and secondary fermentation pathways in the colon, and support digestive health in many ways. Fructooligosaccharides, inulin, and galactooligosaccharides are universally agreed-upon prebiotics. The objective of this paper is to summarize the 8 most prominent health benefits of prebiotic dietary fibers that are due to their fermentability by colonic microbiota, as well as summarize the 8 categories of prebiotic dietary fibers that support these health benefits. Although not all categories exhibit similar effects in human studies, all of these categories promote digestive health due to their fermentability. Scientific and regulatory definitions of prebiotics differ greatly, although health benefits of these compounds are uniformly agreed upon to be due to their fermentability by gut microbiota. Scientific evidence suggests that 8 categories of compounds all exhibit health benefits related to their metabolism by colonic taxa.
Collapse
Affiliation(s)
- Justin L Carlson
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN
| | - Jennifer M Erickson
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN
| | - Beate B Lloyd
- Global Scientific & Regulatory Affairs, The Coca-Cola Company, Atlanta, GA
| | - Joanne L Slavin
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN
| |
Collapse
|
44
|
Protease-Mediated Suppression of DRG Neuron Excitability by Commensal Bacteria. J Neurosci 2017; 37:11758-11768. [PMID: 29089436 DOI: 10.1523/jneurosci.1672-17.2017] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/23/2017] [Indexed: 12/27/2022] Open
Abstract
Peripheral pain signaling reflects a balance of pronociceptive and antinociceptive influences; the contribution by the gastrointestinal microbiota to this balance has received little attention. Disorders, such as inflammatory bowel disease and irritable bowel syndrome, are associated with exaggerated visceral nociceptive actions that may involve altered microbial signaling, particularly given the evidence for bacterial dysbiosis. Thus, we tested whether a community of commensal gastrointestinal bacteria derived from a healthy human donor (microbial ecosystem therapeutics; MET-1) can affect the excitability of male mouse DRG neurons. MET-1 reduced the excitability of DRG neurons by significantly increasing rheobase, decreasing responses to capsaicin (2 μm) and reducing action potential discharge from colonic afferent nerves. The increase in rheobase was accompanied by an increase in the amplitude of voltage-gated K+ currents. A mixture of bacterial protease inhibitors abrogated the effect of MET-1 effects on DRG neuron rheobase. A serine protease inhibitor but not inhibitors of cysteine proteases, acid proteases, metalloproteases, or aminopeptidases abolished the effects of MET-1. The serine protease cathepsin G recapitulated the effects of MET-1 on DRG neurons. Inhibition of protease-activated receptor-4 (PAR-4), but not PAR-2, blocked the effects of MET-1. Furthermore, Faecalibacterium prausnitzii recapitulated the effects of MET-1 on excitability of DRG neurons. We conclude that serine proteases derived from commensal bacteria can directly impact the excitability of DRG neurons, through PAR-4 activation. The ability of microbiota-neuronal interactions to modulate afferent signaling suggests that therapies that induce or correct microbial dysbiosis may impact visceral pain.SIGNIFICANCE STATEMENT Commercially available probiotics have the potential to modify visceral pain. Here we show that secretory products from gastrointestinal microbiota derived from a human donor signal to DRG neurons. Their secretory products contain serine proteases that suppress excitability via activation of protease-activated receptor-4. Moreover, from this community of commensal microbes, Faecalibacterium prausnitzii strain 16-6-I 40 fastidious anaerobe agar had the greatest effect. Our study suggests that therapies that induce or correct microbial dysbiosis may affect the excitability of primary afferent neurons, many of which are nociceptive. Furthermore, identification of the bacterial strains capable of suppressing sensory neuron excitability, and their mechanisms of action, may allow therapeutic relief for patients with gastrointestinal diseases associated with pain.
Collapse
|
45
|
Wellman AS, Metukuri MR, Kazgan N, Xu X, Xu Q, Ren NSX, Czopik A, Shanahan MT, Kang A, Chen W, Azcarate-Peril MA, Gulati AS, Fargo DC, Guarente L, Li X. Intestinal Epithelial Sirtuin 1 Regulates Intestinal Inflammation During Aging in Mice by Altering the Intestinal Microbiota. Gastroenterology 2017; 153:772-786. [PMID: 28552621 PMCID: PMC5581719 DOI: 10.1053/j.gastro.2017.05.022] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 05/05/2017] [Accepted: 05/19/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Intestinal epithelial homeostasis is maintained by complex interactions among epithelial cells, commensal gut microorganisms, and immune cells. Disruption of this homeostasis is associated with disorders such as inflammatory bowel disease (IBD), but the mechanisms of this process are not clear. We investigated how Sirtuin 1 (SIRT1), a conserved mammalian NAD+-dependent protein deacetylase, senses environmental stress to alter intestinal integrity. METHODS We performed studies of mice with disruption of Sirt1 specifically in the intestinal epithelium (SIRT1 iKO, villin-Cre+, Sirt1flox/flox mice) and control mice (villin-Cre-, Sirt1flox/flox) on a C57BL/6 background. Acute colitis was induced in some mice by addition of 2.5% dextran sodium sulfate to drinking water for 5-9 consecutive days. Some mice were given antibiotics via their drinking water for 4 weeks to deplete their microbiota. Some mice were fed with a cholestyramine-containing diet for 7 days to sequester their bile acids. Feces were collected and proportions of microbiota were analyzed by 16S rRNA amplicon sequencing and quantitative PCR. Intestines were collected from mice and gene expression profiles were compared by microarray and quantitative PCR analyses. We compared levels of specific mRNAs between colon tissues from age-matched patients with ulcerative colitis (n=10) vs without IBD (n=8, controls). RESULTS Mice with intestinal deletion of SIRT1 (SIRT1 iKO) had abnormal activation of Paneth cells starting at the age of 5-8 months, with increased activation of NF-κB, stress pathways, and spontaneous inflammation at 22-24 months of age, compared with control mice. SIRT1 iKO mice also had altered fecal microbiota starting at 4-6 months of age compared with control mice, in part because of altered bile acid metabolism. Moreover, SIRT1 iKO mice with defective gut microbiota developed more severe colitis than control mice. Intestinal tissues from patients with ulcerative colitis expressed significantly lower levels of SIRT1 mRNA than controls. Intestinal tissues from SIRT1 iKO mice given antibiotics, however, did not have signs of inflammation at 22-24 months of age, and did not develop more severe colitis than control mice at 4-6 months. CONCLUSIONS In analyses of intestinal tissues, colitis induction, and gut microbiota in mice with intestinal epithelial disruption of SIRT1, we found this protein to prevent intestinal inflammation by regulating the gut microbiota. SIRT1 might therefore be an important mediator of host-microbiome interactions. Agents designed to activate SIRT1 might be developed as treatments for IBDs.
Collapse
Affiliation(s)
- Alicia S Wellman
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Mallikarjuna R Metukuri
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Nevzat Kazgan
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Xiaojiang Xu
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Qing Xu
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Natalie S X Ren
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Agnieszka Czopik
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Michael T Shanahan
- Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Ashley Kang
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina; NIEHS Scholars Connect Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Willa Chen
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - M Andrea Azcarate-Peril
- Department of Medicine, Division of Gastroenterology and Hepatology and Microbiome Core Facility, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Ajay S Gulati
- Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - David C Fargo
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Leonard Guarente
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Xiaoling Li
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina.
| |
Collapse
|
46
|
Chang YC, Ching YH, Chiu CC, Liu JY, Hung SW, Huang WC, Huang YT, Chuang HL. TLR2 and interleukin-10 are involved in Bacteroides fragilis-mediated prevention of DSS-induced colitis in gnotobiotic mice. PLoS One 2017; 12:e0180025. [PMID: 28683149 PMCID: PMC5500315 DOI: 10.1371/journal.pone.0180025] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 06/08/2017] [Indexed: 02/07/2023] Open
Abstract
Background and aims Bacteroides fragilis (BF) are Gram-negative anaerobe symbionts present in the colon. Recent studies have reported the beneficial role of BF in maintaining intestinal homeostasis, stimulating host immunologic development, and preventing infectious colitis caused by pathogenic bacteria. Our previous studies showed that monocolonization of germ-free mice with BF significantly reduced colon inflammations and damage. Methods In order to investigate the Toll-like receptor-2 (TLR2), TLR4, and interleukin 10 (IL-10) molecular signaling pathways involved in BF-mediated prevention of dextran sulfate sodium (DSS)-induced colitis. The wild-type (WT), TLR4, TLR2, and IL-10 knockout (-/-) germ-free mice grown were with or without BF colonization for 28 days, and then administered 1% DSS in drinking water for 7 day to induce acute ulcerative colitis. Results We compared phenotypes such as weight loss, disease activity, intestinal histological scores, and immunohistochemistry for inflammatory cells. Unlike WT and TLR4-/- mice, the severity of DSS-colitis did not improve in TLR2-/- animals after BF colonization. The BF enhanced anti-inflammatory cytokines IL-10 expression and inhibited pro-inflammatory-related tumor necrosis factor (TNF-α) and IL-6 mRNA expression in both WT and TLR4-/- mice. In contrast, the failed to up-regulated IL-10 and down-regulated the TNF-α and IL-6 in BF colonization TLR2-/- mice. In addition, we further perform IL-10-/- mice to clarify whether the BF through TLR2 /IL-10 pathway to alleviate DSS-colitis. There were no significant differences in colitis severity and pro-inflammatory related genes expression in the IL-10-/- mice with or without BF colonization. Conclusions These results indicate the disease-preventing effects of BF in acute DSS-induced colitis may occur through the TLR2/IL-10 signal pathway.
Collapse
Affiliation(s)
- Yi-Chih Chang
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Yung-Hao Ching
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Chien-Chao Chiu
- Division of Animal Resources, Animal Technology Laboratories, Agricultural Technology Research Institute, Hsinchu, Taiwan
| | - Ju-Yun Liu
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, Taiwan
| | - Shao-Wen Hung
- Division of Animal Resources, Animal Technology Laboratories, Agricultural Technology Research Institute, Hsinchu, Taiwan
| | - Wen-Ching Huang
- Department of Exercise and Health Science, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Yen-Te Huang
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, Taiwan
| | - Hsiao-Li Chuang
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
47
|
Shukla A, Gaur P, Aggarwal A. Effect of probiotics on clinical and immune parameters in enthesitis-related arthritis category of juvenile idiopathic arthritis. Clin Exp Immunol 2017; 185:301-8. [PMID: 27238895 DOI: 10.1111/cei.12818] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 05/21/2016] [Accepted: 05/24/2016] [Indexed: 01/01/2023] Open
Abstract
Gut microflora and dysbiosis as an environmental factor has been linked to the pathogenesis of enthesitis-related arthritis (JIA-ERA); thus, we performed a proof-of-concept study of probiotics to modulate the gut-flora and study the effects on immune and clinical parameters of children having JIA-ERA. Forty-six children with active JIA-ERA were randomized to placebo or probiotic therapy along with non-steroidal anti-inflammatory drugs (NSAIDs) for 12 weeks. Patients were assessed using a six-point composite disease activity index (mJSpADA) based on morning stiffness, joint count, enthesitis count, sacroiliitis/inflammatory back pain, uveitis and erythrocyte sedimentation rate/C-reactive protein (ESR/CRP). Frequencies of T helper type 1 (Th1), Th2, Th17 and regulatory T cells in blood were measured using flow cytometry. Serum cytokines interferon (IFN)-γ, interleukin (IL)-4, IL-17, IL-10, tumour necrosis factor (TNF)-α and IL-6 were measured by cytokine bead array using flow cytometer. The average age of 46 children (44 boys) was 15 ± 2.5 years and duration of disease was 3.5 ± 3 years. There was no significant difference in improvement in mJSpADA between the two groups (P = 0·16). Serum IL-6 levels showed a decrease (P < 0·05) in the probiotic-group. Th2 cell frequency (P < 0·05) and serum IL-10 levels (P < 0·01) showed an increase in the placebo group, but again the probiotic use did not show a significant change in immune parameters when compared to the placebo. Adverse effects among the probiotic and placebo groups were diarrhea (36 versus 45%), abdominal pain (9 versus 20%), minor infections (4·5 versus 20%) and flatulence (23 versus 15%), respectively. Thus, we can conclude that probiotic therapy in JIA-ERA children is well tolerated, but failed to show any significant immune or clinical effects over NSAID therapy.
Collapse
Affiliation(s)
- A Shukla
- Department of Clinical Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - P Gaur
- Department of Clinical Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - A Aggarwal
- Department of Clinical Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
48
|
Alhagamhmad MH, Lemberg DA, Day AS, Tan LZ, Ooi CY, Krishnan U, Gupta N, Munday JS, Leach ST. Advancing nutritional therapy: A novel polymeric formulation attenuates intestinal inflammation in a murine colitis model and suppresses pro-inflammatory cytokine production in ex-vivo cultured inflamed colonic biopsies. Clin Nutr 2017; 36:497-505. [PMID: 26833290 DOI: 10.1016/j.clnu.2016.01.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 10/21/2015] [Accepted: 01/13/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS Nutritional therapy is a viable therapeutic option for the treatment of Crohn disease (CD). Therefore improving nutritional therapy would greatly benefit CD patients. The aim of this study was to define the anti-inflammatory properties of a novel nutritional polymeric formula (PF) in comparison to a currently available standard PF. METHODS Dextran sodium sulfate (DSS) was utilized to induce colitis in C57BL/6 mice with mice randomized to receive either standard PF or novel PF in addition to control groups. Changes in body weight were recorded and colonic damage was assessed histologically and biochemically. Additional experiments were also included where the cytokine response of colonic biopsies from pediatric CD patients was measured following exposure to standard PF or novel PF. RESULTS DSS induced significant body weight loss, morphological changes in the colon, increased myeloperoxidase (MPO) activity and up-regulated colonic mRNA expression of tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-12 and monocyte chemoattractant protein (MCP)-1, as well as associated histological changes. Other than histological damage, these inflammatory changes were reversed by both novel and standard PF. However, the novel PF, but not standard PF, completely suppressed TNF-α, IL-6 and IL-8 levels from cultured biopsies. CONCLUSIONS Newly developed nutritional formula reproducibly ameliorated DSS-induced colitis in a murine model, although this response was not measurably different to standard PF. However, the novel PF was significantly superior in suppressing inflammatory cytokine release from cultured colonic biopsies. Collectively, these findings support a possible role for novel PF in advancing nutritional therapy for CD patients.
Collapse
Affiliation(s)
- Moftah H Alhagamhmad
- Discipline of Paediatrics, School of Women's and Children's Health, Medicine, University of New South Wales Sydney, NSW, Australia
| | - Daniel A Lemberg
- Discipline of Paediatrics, School of Women's and Children's Health, Medicine, University of New South Wales Sydney, NSW, Australia; Department of Gastroenterology, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Andrew S Day
- Discipline of Paediatrics, School of Women's and Children's Health, Medicine, University of New South Wales Sydney, NSW, Australia; Paediatrics, University of Otago, Christchurch, New Zealand
| | - Li-Zsa Tan
- Department of Gastroenterology, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Chee Y Ooi
- Discipline of Paediatrics, School of Women's and Children's Health, Medicine, University of New South Wales Sydney, NSW, Australia; Department of Gastroenterology, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Usha Krishnan
- Discipline of Paediatrics, School of Women's and Children's Health, Medicine, University of New South Wales Sydney, NSW, Australia; Department of Gastroenterology, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Nitin Gupta
- Department of Gastroenterology, Sydney Children's Hospital, Randwick, NSW, Australia
| | - John S Munday
- Department of Pathology, Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Steven T Leach
- Discipline of Paediatrics, School of Women's and Children's Health, Medicine, University of New South Wales Sydney, NSW, Australia.
| |
Collapse
|
49
|
Park JH, Peyrin-Biroulet L, Eisenhut M, Shin JI. IBD immunopathogenesis: A comprehensive review of inflammatory molecules. Autoimmun Rev 2017; 16:416-426. [PMID: 28212924 DOI: 10.1016/j.autrev.2017.02.013] [Citation(s) in RCA: 211] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 01/19/2017] [Indexed: 02/06/2023]
Abstract
Inflammatory molecules play a crucial role in the pathogenesis of inflammatory bowel disease (IBD) such as ulcerative colitis and Crohn's disease, both of which are chronic inflammatory conditions of the gastrointestinal tract. Abnormal expressions of pro- and anti-inflammatory molecules have been described to cause an imbalance to the gut innate and adaptive immunity, and recently a large portion of research in IBD has been geared towards identifying novel molecules that may be used as potential therapeutic targets. Understanding of these inflammatory molecules has suggested that although ulcerative colitis and Crohn's disease share many common clinical symptoms and signs, they are in fact two separate clinical entities characterized by different immunopathogenesis. In this review, we comprehensively discuss the roles of numerous inflammatory molecules including but not limited to cytokines, chemokines, inflammasomes, microRNAs and neuropeptides and their expression status in ulcerative colitis and Crohn's disease in relation to their effects on the overall intestinal inflammatory process.
Collapse
Affiliation(s)
- Jae Hyon Park
- Yonsei University College of Medicine, Severance Hospital, Seoul, Republic of Korea
| | - Laurent Peyrin-Biroulet
- Inserm U954 and Department of Gastroenterology, Nancy University Hospital, Université de Lorraine, France
| | - Michael Eisenhut
- Department of Paediatrics, Luton & Dunstable University Hospital NHS Foundation Trust, Lewsey Road, Luton, LU40DZ, United Kingdom
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Severance Children's Hospital, Seoul, Republic of Korea.
| |
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW The microorganisms that colonise our bodies, the commensal 'microbiota', respond to changes in our behaviour and environment, and can also profoundly affect our health. We can now investigate these organisms with unprecedented depth and precision, revealing that they may contribute to the pathogenesis of diseases including arthritis. Here we discuss the changes occurring in the microbiota in people with arthritis, and how manipulation of the microbiota may provide an additional pathway for therapy. RECENT FINDINGS We highlight two important aspects of the recent literature. First we describe changes in the microbiota identified in people with arthritis; these correlations give insights into the microbial changes that may contribute to symptoms of arthritis. We then discuss attempts to ameliorate arthritis by manipulating the microbiota. This is a rapidly developing area of research. There are tantalising hints that interventions targeting the microbiota may become therapeutically viable for some types of inflammatory arthritis. SUMMARY Our commensal microbial communities respond to changes in our health, and are altered in people with arthritis. Understanding the complex relationships between the microbiota and the body may enable us to deliberately manipulate these organisms and provide additional therapeutic options for people with arthritis.
Collapse
|