1
|
Li H, Shan C, Zhu Y, Yao X, Lin L, Zhang X, Qian Y, Wang Y, Xu J, Zhang Y, Li H, Zhao L, Chen K. Helminth-induced immune modulation in colorectal cancer: exploring therapeutic applications. Front Immunol 2025; 16:1484686. [PMID: 40297577 PMCID: PMC12034720 DOI: 10.3389/fimmu.2025.1484686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 03/24/2025] [Indexed: 04/30/2025] Open
Abstract
Colorectal cancer is one of the most lethal tumors, posing a financial and healthcare burden. This study investigates how helminths and pre-existing diseases such as colitis, obesity, diabetes, and gut microbiota issues influence colon cancer development and prognosis. The immune system's protective immunosuppressive response to helminth invasion minimizes inflammation-induced cell damage and DNA mutations, lowering the risk of colorectal cancer precursor lesions. Helminth infection-mediated immunosuppression can hasten colorectal cancer growth and metastasis, which is detrimental to patient outcomes. Some helminth derivatives can activate immune cells to attack cancer cells, making them potentially useful as colorectal cancer vaccines or therapies. This review also covers gene editing approaches. We discovered that using CRISPR/Cas9 to inhibit live helminths modulates miRNA, which limits tumor growth. We propose more multicenter studies into helminth therapy's long-term effects and immune regulation pathways. We hope to treat colorectal cancer patients with helminth therapy and conventional cancer treatments in an integrative setting.
Collapse
Affiliation(s)
- Hongyu Li
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- Ocean College, Beibu Gulf University, Qinzhou, China
| | - Chaojun Shan
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Yunhuan Zhu
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Xiaodong Yao
- School of Marxism, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lijun Lin
- School of Basic Medicine and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Xiaofen Zhang
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Yuncheng Qian
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Yuqing Wang
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jialu Xu
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Yijie Zhang
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Hairun Li
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Ling Zhao
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Keda Chen
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| |
Collapse
|
2
|
Neurath MF, Sands BE, Rieder F. Cellular immunotherapies and immune cell depleting therapies in inflammatory bowel diseases: the next magic bullet? Gut 2024; 74:9-14. [PMID: 39025492 PMCID: PMC11671923 DOI: 10.1136/gutjnl-2024-332919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/08/2024] [Indexed: 07/20/2024]
Abstract
Despite significant advances in biologic and small molecule treatments and the emergence of combination therapies to treat inflammatory bowel diseases (IBD) a large unmet need remains to control intestinal inflammation. New approaches targeting several pathways simultaneously with a favorable safety profile and agents that trigger anti-inflammatory pathways to drive durable resolution of inflammation are needed. This article discusses novel cellular immunotherapies and immune cell depleting therapies in IBD, including CAR-T cell approaches, Tr1 and T regulatory (Treg) cells and cell depleting antibodies such as rosnilimab. These novel approaches have the potential to overcome current therapeutic limitations in the treatment of IBD.
Collapse
Affiliation(s)
- Markus Friedrich Neurath
- Department of Medicine 1, Kussmaul Research Campus & Ludwig Demling Endoscopy Center of Excellence, Deutsches Zentrum Immuntherapie DZI, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Bruce Eric Sands
- Dr Henry D Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Florian Rieder
- Department of Gastroenterology, Hepatology & Nutrition, Digestive Diseases Institute; Department of Inflammation and Immunity, Lerner Research Institute, Center for Global Translational Inflammatory Bowel Disease Research, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| |
Collapse
|
3
|
Alvarez-Salazar EK, Cortés-Hernández A, Arteaga-Cruz S, Soldevila G. Induced regulatory T cells as immunotherapy in allotransplantation and autoimmunity: challenges and opportunities. J Leukoc Biol 2024; 116:947-965. [PMID: 38630873 DOI: 10.1093/jleuko/qiae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/14/2024] [Accepted: 02/21/2024] [Indexed: 04/19/2024] Open
Abstract
Regulatory T cells play a crucial role in the homeostasis of the immune response. Regulatory T cells are mainly generated in the thymus and are characterized by the expression of Foxp3, which is considered the regulatory T-cell master transcription factor. In addition, regulatory T cells can be induced from naive CD4+ T cells to express Foxp3 under specific conditions both in vivo (peripheral regulatory T cells) and in vitro (induced regulatory T cells). Both subsets of thymic regulatory T cells and peripheral regulatory T cells are necessary for the establishment of immune tolerance to self and non-self antigens. Although it has been postulated that induced regulatory T cells may be less stable compared to regulatory T cells, mainly due to epigenetic differences, accumulating evidence in animal models shows that induced regulatory T cells are stable in vivo and can be used for the treatment of inflammatory disorders, including autoimmune diseases and allogeneic transplant rejection. In this review, we describe the biological characteristics of induced regulatory T cells, as well as the key factors involved in induced regulatory T-cell transcriptional, metabolic, and epigenetic regulation, and discuss recent advances for de novo generation of stable regulatory T cells and their use as immunotherapeutic tools in different experimental models. Moreover, we discuss the challenges and considerations for the application of induced regulatory T cells in clinical trials and describe the new approaches proposed to achieve in vivo stability, including functional or metabolic reprogramming and epigenetic editing.
Collapse
Affiliation(s)
- Evelyn Katy Alvarez-Salazar
- Department of Immunology and National Laboratory of Flow Cytometry, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Escolar s/n, Ciudad Universitaria, Colonia Copilco, Delegación Coyoacan, Apartado Postal 70228, CP 04510 Mexico City, Mexico
| | - Arimelek Cortés-Hernández
- Department of Immunology and National Laboratory of Flow Cytometry, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Escolar s/n, Ciudad Universitaria, Colonia Copilco, Delegación Coyoacan, Apartado Postal 70228, CP 04510 Mexico City, Mexico
| | - Saúl Arteaga-Cruz
- Department of Immunology and National Laboratory of Flow Cytometry, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Escolar s/n, Ciudad Universitaria, Colonia Copilco, Delegación Coyoacan, Apartado Postal 70228, CP 04510 Mexico City, Mexico
| | - Gloria Soldevila
- Department of Immunology and National Laboratory of Flow Cytometry, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Escolar s/n, Ciudad Universitaria, Colonia Copilco, Delegación Coyoacan, Apartado Postal 70228, CP 04510 Mexico City, Mexico
| |
Collapse
|
4
|
Bromfield JJ. Interaction of semen with female reproductive tract tissues: what we know, what we guess and what we need to do. Anim Reprod 2024; 21:e20240042. [PMID: 39176000 PMCID: PMC11340795 DOI: 10.1590/1984-3143-ar2024-0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/20/2024] [Indexed: 08/24/2024] Open
Abstract
For nearly 100 years the postcoital inflammatory response has been described in the female reproductive tract of rodents. Since the 1950's this observation has been made in a number of animals including humans and domestic species. Yet pregnancy can be initiated and maintained by using embryo transfer which bypasses insemination and the related postcoital inflammatory response. Thus, the role of semen exposure beyond sperm transport and subsequent postcoital inflammatory response in female reproductive tissues has yet to be given a true physiological purpose. Historically the postcoital inflammatory response of female tissues was suggested to remove spermatozoa and male derived pathogens from the female reproductive tract. More recently, semen exposure and the postcoital inflammatory response have been suggested to play a role in long-term preparation of the maternal immune system to the semi-allogeneic pregnancy, ancillary support of the preimplantation embryo, and potentially fetal programing that improves pregnancy outcomes, while the absence or inappropriate postcoital inflammation has been suggested to contribute to pregnancy complications. Although the postcoital inflammatory response has been robustly characterized, the evidence for its role in promoting positive pregnancy outcomes or reducing pregnancy complications remains tenuous. This manuscript is designed to balance the information we know regarding semen exposure and postcoital inflammation in various animal systems, with the information we perceive to be factual but perhaps not yet fully tested, along with the data we have yet to generate if we intend to postulate a physiological purpose of the postcoital inflammatory response to pregnancy outcomes.
Collapse
|
5
|
Schulz-Kuhnt A, Rühle K, Javidmehr A, Döbrönti M, Biwank J, Knittel S, Neidlinger P, Leupold J, Liu LJ, Dedden M, Taudte RV, Gessner A, Fromm MF, Mielenz D, Kreiss L, Waldner MJ, Schürmann S, Friedrich O, Dietel B, López-Posadas R, Plattner C, Zundler S, Becker C, Atreya R, Neurath MF, Atreya I. ATP citrate lyase (ACLY)-dependent immunometabolism in mucosal T cells drives experimental colitis in vivo. Gut 2024; 73:601-612. [PMID: 38176897 DOI: 10.1136/gutjnl-2023-330543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/12/2023] [Indexed: 01/06/2024]
Abstract
OBJECTIVE Mucosal T cells play a major role in inflammatory bowel disease (IBD). However, their immunometabolism during intestinal inflammation is poorly understood. Due to its impact on cellular metabolism and proinflammatory immune cell function, we here focus on the enzyme ATP citrate lyase (ACLY) in mucosal T cell immunometabolism and its relevance for IBD. DESIGN ACLY expression and its immunometabolic impact on colitogenic T cell function were analysed in mucosal T cells from patients with IBD and in two experimental colitis models. RESULTS ACLY was markedly expressed in colon tissue under steady-state conditions but was significantly downregulated in lamina propria mononuclear cells in experimental dextran sodium sulfate-induced colitis and in CD4+ and to a lesser extent in CD8+ T cells infiltrating the inflamed gut in patients with IBD. ACLY-deficient CD4+ T cells showed an impaired capacity to induce intestinal inflammation in a transfer colitis model as compared with wild-type T cells. Assessment of T cell immunometabolism revealed that ACLY deficiency dampened the production of IBD-relevant cytokines and impaired glycolytic ATP production but enriched metabolites involved in the biosynthesis of phospholipids and phosphatidylcholine. Interestingly, the short-chain fatty acid butyrate was identified as a potent suppressor of ACLY expression in T cells, while IL-36α and resolvin E1 induced ACLY levels. In a translational approach, in vivo administration of the butyrate prodrug tributyrin downregulated mucosal infiltration of ACLYhigh CD4+ T cells and ameliorated chronic colitis. CONCLUSION ACLY controls mucosal T cell immunometabolism and experimental colitis. Therapeutic modulation of ACLY expression in T cells emerges as a novel strategy to promote the resolution of intestinal inflammation.
Collapse
Affiliation(s)
- Anja Schulz-Kuhnt
- Department of Medicine 1, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Current address: Bionorica SE, Neumarkt in der Oberpfalz, Germany
| | - Katharina Rühle
- Department of Medicine 1, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Asal Javidmehr
- Department of Medicine 1, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Döbrönti
- Department of Medicine 1, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jana Biwank
- Department of Medicine 1, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Selina Knittel
- Department of Medicine 1, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Peter Neidlinger
- Department of Medicine 1, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jannik Leupold
- Department of Medicine 1, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Li-Juan Liu
- Department of Medicine 1, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Mark Dedden
- Department of Medicine 1, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Regina Verena Taudte
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Core Facility for Metabolomics, Department of Medicine, Philipps-Universität Marburg, Marburg, Germany
| | - Arne Gessner
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Martin F Fromm
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Dirk Mielenz
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lucas Kreiss
- Department of Medicine 1, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Institute of Medical Biotechnology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Maximilian J Waldner
- Department of Medicine 1, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sebastian Schürmann
- Institute of Medical Biotechnology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Barbara Dietel
- Department of Medicine 2 - Cardiology and Angiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Rocío López-Posadas
- Department of Medicine 1, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie DZI, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christina Plattner
- Institute for Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Sebastian Zundler
- Department of Medicine 1, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Becker
- Department of Medicine 1, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Raja Atreya
- Department of Medicine 1, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie DZI, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Imke Atreya
- Department of Medicine 1, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie DZI, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
6
|
Abstract
Numerous animal models of colitis have provided important insights into the pathogenesis of inflammatory bowel disease (IBD), contributing to a better understanding of the underlying mechanisms for IBD. As aberrant CD4+ T cell responses play a critical role in the pathogenesis and development of IBD, T cell adoptive transfer models of colitis have become a valuable tool in investigating the immunopathogenesis of intestinal inflammation. While the adoptive transfer of CD4+ CD45RBhi T cells into immunedeficient recipient mice was the first discovered and is currently the most widely used model, several variations of the T cell transfer model have also been developed with distinct features. Here, we describe the history, principle, and characteristics of adoptive transfer colitis models and discuss their strengths, limitations, and applications.
Collapse
Affiliation(s)
- Wenjing Yang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Sealy Center for Microbiome Research, University of Texas Medical Branch, Galveston, TX, USA
| | - Yingzi Cong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Sealy Center for Microbiome Research, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
7
|
Garcia-Rosa M, Abraham A, Bertaina A, Bhoopalan SV, Bonfim C, Cohen S, DeZern A, Louis C, Oved J, Pavel-Dinu M, Purtill D, Ruggeri A, Russell A, Sharma A, Wynn R, Boelens JJ, Prockop S. International society for cell & gene therapy stem cell engineering committee: Cellular therapies for the treatment of graft-versus-host-disease after hematopoietic stem cell transplant. Cytotherapy 2023; 25:578-589. [PMID: 36941149 DOI: 10.1016/j.jcyt.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/16/2023] [Accepted: 02/15/2023] [Indexed: 03/23/2023]
Abstract
BACKGROUND AIMS Allogeneic hematopoietic stem cell transplant is a curative approach for many malignant and non-malignant hematologic conditions. Despite advances in its prevention and treatment, the morbidity and mortality related to graft-versus-host disease (GVHD) remains. The mechanisms by which currently used pharmacologic agents impair the activation and proliferation of potentially alloreactive T cells reveal pathways essential for the detrimental activities of these cell populations. Importantly, these same pathways can be important in mediating the graft-versus-leukemia effect in recipients transplanted for malignant disease. This knowledge informs potential roles for cellular therapies such as mesenchymal stromal cells and regulatory T cells in preventing or treating GVHD. This article reviews the current state of adoptive cellular therapies focused on GVHD treatment. METHODS We conducted a search for scientific literature in PubMed® and ongoing clinical trials in clinicaltrial.gov with the keywords "Graft-versus-Host Disease (GVHD)," "Cellular Therapies," "Regulatory T cells (Tregs)," "Mesenchymal Stromal (Stem) Cells (MSCs)," "Natural Killer (NK) Cells," "Myeloid-derived suppressor cells (MDSCs)," and "Regulatory B-Cells (B-regs)." All the published and available clinical studies were included. RESULTS Although most of the existing clinical data focus on cellular therapies for GVHD prevention, there are observational and interventional clinical studies that explore the potential for cellular therapies to be safe modalities for GVHD treatment while maintaining the graft-versus-leukemia effect in the context of malignant diseases. However, there are multiple challenges that limit the broader use of these approaches in the clinical scenario. CONCLUSIONS There are many ongoing clinical trials to date with the promise to expand our actual knowledge on the role of cellular therapies for GVHD treatment in an attempt to improve GVHD-related outcomes in the near future.
Collapse
Affiliation(s)
- Moises Garcia-Rosa
- Pediatric Hematology-Oncology Fellow, Memorial Sloan Kettering Cancer Center, and Department of Pediatrics, Weill Cornell Medical College of Cornell University, New York, New York, USA.
| | - Allistair Abraham
- Center for Cancer and Immunology Research, CETI, Children's National Hospital, Washington, District of Columbia, USA
| | - Alice Bertaina
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Senthil Velan Bhoopalan
- Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Carmem Bonfim
- Pediatric Blood and Marrow Transplantation Division and Pele Pequeno Principe Research Institute, Hospital Pequeno Principe, Curitiba, Brazil
| | - Sandra Cohen
- Universite de Montreal and Maisonneuve Rosemont Hospital, Montreal, Quebec, Canada
| | - Amy DeZern
- Bone Marrow Failure and MDS Program, John Hopkins Medicine Baltimore, Maryland, USA
| | | | - Joseph Oved
- Stem Cell Transplantation and Cellular Therapies, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Mara Pavel-Dinu
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Redwood City, California, USA
| | - Duncan Purtill
- Department of Haematology, Fiona Stanley Hospital, Perth, Western Australia, Australia
| | | | - Athena Russell
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Akshay Sharma
- Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Robert Wynn
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Jaap Jan Boelens
- Stem Cell Transplantation and Cellular Therapies, Memorial Sloan Kettering Cancer Center, and Department of Pediatrics, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Susan Prockop
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts USA
| |
Collapse
|
8
|
Voskens C, Stoica D, Rosenberg M, Vitali F, Zundler S, Ganslmayer M, Knott H, Wiesinger M, Wunder J, Kummer M, Siegmund B, Schnoy E, Rath T, Hartmann A, Hackstein H, Schuler-Thurner B, Berking C, Schuler G, Atreya R, Neurath MF. Autologous regulatory T-cell transfer in refractory ulcerative colitis with concomitant primary sclerosing cholangitis. Gut 2023; 72:49-53. [PMID: 35428657 PMCID: PMC9763232 DOI: 10.1136/gutjnl-2022-327075] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/17/2022] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Ulcerative colitis (UC) is a chronic, debilitating immune-mediated disease driven by disturbed mucosal homeostasis, with an excess of intestinal effector T cells and an insufficient expansion of mucosal regulatory T cells (Tregs). We here report on the successful adoptive transfer of autologous, ex vivo expanded Tregs in a patient with refractory UC and associated primary sclerosing cholangitis (PSC), for which effective therapy is currently not available. DESIGN The patient received a single infusion of 1×106 autologous, ex vivo expanded, polyclonal Tregs per kilogram of body weight, and the clinical, biochemical, endoscopic and histological responses were assessed 4 and 12 weeks after adoptive Treg transfer. RESULTS The patient showed clinical, biochemical, endoscopic and histological signs of response until week 12 after adoptive Treg transfer, which was associated with an enrichment of intestinal CD3+/FoxP3+ and CD3+/IL-10+ T cells and increased mucosal transforming growth factor beta and amphiregulin levels. Moreover, there was marked improvement of PSC with reduction of liver enzymes. This pronounced effect lasted for 4 weeks before values started to increase again. CONCLUSION These findings suggest that adoptive Treg therapy might be effective in refractory UC and might open new avenues for clinical trials in PSC. TRIAL REGISTRATION NUMBER NCT04691232.
Collapse
Affiliation(s)
- Caroline Voskens
- Department of Dermatology, Erlangen University Hospital, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
| | - Diane Stoica
- Department of Dermatology, Erlangen University Hospital, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
| | - Marita Rosenberg
- Department of Dermatology, Erlangen University Hospital, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
| | - Francesco Vitali
- Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, Erlangen University Hospital, Erlangen, Germany
| | - Sebastian Zundler
- Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, Erlangen University Hospital, Erlangen, Germany
| | - Marion Ganslmayer
- Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, Erlangen University Hospital, Erlangen, Germany
| | - Heike Knott
- Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, Erlangen University Hospital, Erlangen, Germany
| | - Manuel Wiesinger
- Department of Dermatology, Erlangen University Hospital, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
| | - Jutta Wunder
- Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, Erlangen University Hospital, Erlangen, Germany
| | - Mirko Kummer
- Department of Dermatology, Erlangen University Hospital, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
| | - Britta Siegmund
- Medical Department, Division of Gastroenterology, Infectious Diseases and Rheumatology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Elisabeth Schnoy
- Department of Gastroenterology, University Hospital Augsburg, Augsburg, Germany
| | - Timo Rath
- Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, Erlangen University Hospital, Erlangen, Germany
| | - Arndt Hartmann
- Institute of Pathology, Erlangen University Hospital, Erlangen, Germany
| | - Holger Hackstein
- Department of Transfusion Medicine, Erlangen University Hospital, Erlangen, Germany
| | - Beatrice Schuler-Thurner
- Department of Dermatology, Erlangen University Hospital, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
| | - Carola Berking
- Department of Dermatology, Erlangen University Hospital, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
| | - Gerold Schuler
- Department of Dermatology, Erlangen University Hospital, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
| | - Raja Atreya
- Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, Erlangen University Hospital, Erlangen, Germany
| | - Markus F Neurath
- Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
- Department of Medicine 1, Gastroenterology, Endocrinology and Pneumology, Erlangen University Hospital, Erlangen, Germany
| |
Collapse
|
9
|
Atreya I, Neurath MF. How the Tumor Micromilieu Modulates the Recruitment and Activation of Colorectal Cancer-Infiltrating Lymphocytes. Biomedicines 2022; 10:biomedicines10112940. [PMID: 36428508 PMCID: PMC9687992 DOI: 10.3390/biomedicines10112940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
The successful treatment of advanced colorectal cancer disease still represents an insufficiently solved clinical challenge, which is further complicated by the fact that the majority of malignant colon tumors show only relatively low immunogenicity and therefore have only limited responsiveness to immunotherapeutic approaches, such as, for instance, the use of checkpoint inhibitors. As it has been well established over the past two decades that the local tumor microenvironment and, in particular, the quantity, quality, and activation status of intratumoral immune cells critically influence the clinical prognosis of patients diagnosed with colorectal cancer and their individual benefits from immunotherapy, the enhancement of the intratumoral accumulation of cytolytic effector T lymphocytes and other cellular mediators of the antitumor immune response has emerged as a targeted objective. For the future identification and clinical validation of novel therapeutic target structures, it will thus be essential to further decipher the molecular mechanisms and cellular interactions in the intestinal tumor microenvironment, which are crucially involved in immune cell recruitment and activation. In this context, our review article aims at providing an overview of the key chemokines and cytokines whose presence in the tumor micromilieu relevantly modulates the numeric composition and antitumor capacity of tumor-infiltrating lymphocytes.
Collapse
Affiliation(s)
- Imke Atreya
- Department of Medicine 1, Erlangen University Hospital, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen University Hospital, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Markus F. Neurath
- Department of Medicine 1, Erlangen University Hospital, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen University Hospital, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Correspondence: ; Tel.: +49-9131-8535204; Fax: +49-9131-8535209
| |
Collapse
|
10
|
Chen Z, Xu J, Zha B, Li J, Li Y, Ouyang H. A construction and comprehensive analysis of the immune-related core ceRNA network and infiltrating immune cells in peripheral arterial occlusive disease. Front Genet 2022; 13:951537. [PMID: 36186432 PMCID: PMC9521039 DOI: 10.3389/fgene.2022.951537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Peripheral arterial occlusive disease (PAOD) is a peripheral artery disorder that increases with age and often leads to an elevated risk of cardiovascular events. The purposes of this study were to explore the underlying competing endogenous RNA (ceRNA)-related mechanism of PAOD and identify the corresponding immune cell infiltration patterns.Methods: An available gene expression profile (GSE57691 datasets) was downloaded from the GEO database. Differentially expressed (DE) mRNAs and lncRNAs were screened between 9 PAOD and 10 control samples. Then, the lncRNA-miRNA-mRNA ceRNA network was constructed on the basis of the interactions generated from the miRcode, TargetScan, miRDB, and miRTarBase databases. The functional enrichment and protein–protein interaction analyses of mRNAs in the ceRNA network were performed. Immune-related core mRNAs were screened out through the Venn method. The compositional patterns of the 22 types of immune cell fraction in PAOD were estimated through the CIBERSORT algorithm. The final ceRNA network and immune infiltration were validated using clinical tissue samples. Finally, the correlation between immune cells and mRNAs in the final ceRNA network was analyzed.Results: Totally, 67 DE_lncRNAs and 1197 DE_mRNAs were identified, of which 130 DE_mRNAs (91 downregulated and 39 upregulated) were lncRNA-related. The gene ontology enrichment analysis showed that those down- and upregulated genes were involved in dephosphorylation and regulation of translation, respectively. The final immune-related core ceRNA network included one lncRNA (LINC00221), two miRNAs (miR-17-5p and miR-20b-5p), and one mRNA (CREB1). Meanwhile, we found that monocytes and M1 macrophages were the main immune cell subpopulations in PAOD. After verification, these predictions were consistent with experimental results. Moreover, CREB1 was positively correlated with naive B cells (R = 0.55, p = 0.035) and monocytes (R = 0.52, p = 0.049) and negatively correlated with M1 macrophages (R = −0.72, p = 0.004), resting mast cells (R = −0.66, p = 0.009), memory B cells (R = −0.55, p = 0.035), and plasma cells (R = −0.52, p = 0.047).Conclusion: In general, we proposed that the immune-related core ceRNA network (LINC00221, miR-17-5p, miR-20b-5p, and CREB1) and infiltrating immune cells (monocytes and M1 macrophages) could help further explore the molecular mechanisms of PAOD.
Collapse
Affiliation(s)
- Zhiyong Chen
- Department of Vascular and Thyroid Surgery, Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jiahui Xu
- Department of General Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Binshan Zha
- Department of Vascular and Thyroid Surgery, Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jun Li
- Department of Vascular and Thyroid Surgery, Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yongxiang Li
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Huan Ouyang, ; Yongxiang Li,
| | - Huan Ouyang
- Department of Vascular and Thyroid Surgery, Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Huan Ouyang, ; Yongxiang Li,
| |
Collapse
|
11
|
Zhou Z, Yu S, Cui L, Shao K, Pang H, Wang Z, He N, Li S. Isomaltulose alleviates acute colitis via modulating gut microbiota and the Treg/Th17 balance in mice. Food Funct 2022; 13:8572-8584. [PMID: 35894244 DOI: 10.1039/d2fo01157c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Food-grade isomaltulose exhibits significant modulation of gut microbiota and its metabolites in healthy populations. This study further explored the preventive therapeutic effect and anti-colitis potential of isomaltulose on dextran sulfate sodium-induced colitis in mice. Our results suggested that isomaltulose played a significant role in preventing colon shortening, reducing intestinal epithelial destruction and inhibiting inflammatory cell infiltration. Meanwhile, the isomaltulose supplement greatly reduced the production of pro-inflammatory cytokines and restored the balance between T helper type 17 (Th17) cells and regulatory T (Treg) cells. Pathway enrichment analysis for differentially expressed genes (DEGs) also indicated that the anti-inflammatory effect of isomaltulose was closely related to intestinal immunity. Moreover, the disturbed gut microbiota in ulcerative colitis (UC) was partially restored after treatment with isomaltulose. These results suggest that isomaltulose is a promising therapeutic agent for the prevention and adjunctive treatment of UC by maintaining intestinal immune homeostasis and remodeling the gut microbiota.
Collapse
Affiliation(s)
- Zihan Zhou
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, 266071, China.
| | - Shengnan Yu
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, 266071, China.
| | - Luwen Cui
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, 266071, China.
| | - Kaidi Shao
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, 266071, China.
| | - Hao Pang
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, 266071, China.
| | - Zhipeng Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Ningning He
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, 266071, China.
| | - Shangyong Li
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
12
|
Hou J, Wang X, Su C, Ma W, Zheng X, Ge X, Duan X. Reduced frequencies of Foxp3 +GARP + regulatory T cells in COPD patients are associated with multi-organ loss of tissue phenotype. Respir Res 2022; 23:176. [PMID: 35780120 PMCID: PMC9250745 DOI: 10.1186/s12931-022-02099-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/23/2022] [Indexed: 11/23/2022] Open
Abstract
Background Expression of glycoprotein A dominant repeat (GARP) has been reported to occur only in activated human naturally occurring regulatory T cells (Tregs) and their clones, and not in activated effector T cells, indicating that GARP is a marker for bona fide Tregs. A different phenotype of chronic obstructive pulmonary disease (COPD) may have a different immunologic mechanism. Objective To investigate whether the distribution of Tregs defined by GARP is related to the multi-organ loss of tissue phenotype in COPD. Methods GARP expression on T cells from peripheral blood and bronchoalveolar lavage (BAL) collected from patients with COPD was examined by flow cytometry. The correlation of GARP expression to clinical outcomes and clinical phenotype, including the body mass index, lung function and quantitative computed tomography (CT) scoring of emphysema, was analyzed. Results Patients with more baseline emphysema had lower forced expiratory volume, body mass index (BMI), worse functional capacity, and more osteoporosis, thus, resembling the multiple organ loss of tissue (MOLT) phenotype. Peripheral Foxp3+GARP+ Tregs are reduced in COPD patients, and this reduction reversely correlates with quartiles of CT emphysema severity in COPD. Meanwhile, the frequencies of Foxp3+GARP− Tregs, which are characteristic of pro-inflammatory cytokine production, are significantly increased in COPD patients, and correlated with increasing quartiles of CT emphysema severity in COPD. Tregs in BAL show a similar pattern of variation in peripheral blood. Conclusion Decreased GARP expression reflects more advanced disease in MOLT phenotype of COPD. Our results have potential implications for better understanding of the immunological nature of COPD and the pathogenic events leading to lung damage. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-02099-2.
Collapse
Affiliation(s)
- Jia Hou
- Department of Respiratory and Critical Care Medicine, General Hospital of Ningxia Medical University, Ningxia, China.
| | - Xia Wang
- Ningxia Medical University, Ningxia, China
| | - Chunxia Su
- Department of Pathogen Biology and Immunology, School of Basic Medical Science, Ningxia Medical University, Ningxia, China
| | - Weirong Ma
- Department of Respiratory and Critical Care Medicine, General Hospital of Ningxia Medical University, Ningxia, China
| | - Xiwei Zheng
- Department of Respiratory and Critical Care Medicine, General Hospital of Ningxia Medical University, Ningxia, China
| | - Xiahui Ge
- Department of Respiratory Medicine, Seventh People's Hospital of Shanghai University of TCM, Shanghai, China.
| | - Xiangguo Duan
- College of Clinical Medicine, Ningxia Medical University, Ningxia, China.
| |
Collapse
|
13
|
Abstract
Inflammatory bowel diseases (IBD), namely, Crohn's disease (CD) and ulcerative colitis (UC), are lifelong and incurable chronic inflammatory diseases affecting 6.8 million people worldwide. By 2030, the prevalence of IBD is estimated to reach 1% of the population in Western countries, and thus there is an urgent need to develop effective therapies to reduce the burden of this disease. Microbiome dysbiosis is at the heart of the IBD pathophysiology, and current research and development efforts for IBD treatments have been focused on gut microbiome regulation. Diet can shape the intestinal microbiome. Diet is also preferred over medication, is safe, and has been proven to be an effective strategy for the management of IBD. Therefore, although often overlooked, dietary interventions targeting the microbiome represent ideal treatments for IBD. Here, I summarize the latest research on diet as a treatment for IBD from infancy to adulthood, compile evidence of the mechanisms of action behind diet as treatment, and, lastly, provide insights into future research focusing on culturally tailored diets for ethnic minority groups with increased incidence of IBD yet underrepresented in nutrition research.
Collapse
Affiliation(s)
- Ana Maldonado-Contreras
- University of Massachusetts Chan Medical School, Department of Microbiology and Physiological Systems, Program of Microbiome Dynamics, Worcester, Massachusetts, USA
| |
Collapse
|
14
|
Tamburini B, La Manna MP, La Barbera L, Mohammadnezhad L, Badami GD, Shekarkar Azgomi M, Dieli F, Caccamo N. Immunity and Nutrition: The Right Balance in Inflammatory Bowel Disease. Cells 2022; 11:cells11030455. [PMID: 35159265 PMCID: PMC8834599 DOI: 10.3390/cells11030455] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD) is an increasingly urgent medical problem that strongly impairs quality of life for patients. A global rise in incidence has been observed over the last few decades, with the highest incidence rates recorded in North America and Europe. Still, an increased incidence has been reported in the last ten years in newly industrialized countries in Asia, including China and India, both with more than one billion inhabitants. These data underline that IBD is an urgent global health problem. In addition, it is estimated that between 20% and 30% of IBD patients will develop colorectal cancer (CRC) within their lifetime and CRC mortality is approximately 50% amongst IBD patients. Although the exact etiology of IBD is still being defined, it is thought to be due to a complex interaction between many factors, including defects in the innate and adaptive immune system; microbial dysbiosis, i.e., abnormal levels of, or abnormal response to, the gastrointestinal microbiome; a genetic predisposition; and several environmental factors. At present, however, it is not fully understood which of these factors are the initiators of inflammation and which are compounders. The purpose of this review is to analyze the complex balance that exists between these elements to maintain intestinal homeostasis and prevent IBD or limit adverse effects on people’s health.
Collapse
Affiliation(s)
- Bartolo Tamburini
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, 90127 Palermo, Italy; (B.T.); (L.M.); (G.D.B.); (M.S.A.); (F.D.); (N.C.)
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, via del Vespro 129, 90127 Palermo, Italy
| | - Marco Pio La Manna
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, 90127 Palermo, Italy; (B.T.); (L.M.); (G.D.B.); (M.S.A.); (F.D.); (N.C.)
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, via del Vespro 129, 90127 Palermo, Italy
- Correspondence:
| | - Lidia La Barbera
- Rheumatology Section, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Piazza delle Cliniche, 2, 90110 Palermo, Italy;
| | - Leila Mohammadnezhad
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, 90127 Palermo, Italy; (B.T.); (L.M.); (G.D.B.); (M.S.A.); (F.D.); (N.C.)
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, via del Vespro 129, 90127 Palermo, Italy
| | - Giusto Davide Badami
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, 90127 Palermo, Italy; (B.T.); (L.M.); (G.D.B.); (M.S.A.); (F.D.); (N.C.)
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, via del Vespro 129, 90127 Palermo, Italy
| | - Mojtaba Shekarkar Azgomi
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, 90127 Palermo, Italy; (B.T.); (L.M.); (G.D.B.); (M.S.A.); (F.D.); (N.C.)
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, via del Vespro 129, 90127 Palermo, Italy
| | - Francesco Dieli
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, 90127 Palermo, Italy; (B.T.); (L.M.); (G.D.B.); (M.S.A.); (F.D.); (N.C.)
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, via del Vespro 129, 90127 Palermo, Italy
| | - Nadia Caccamo
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, 90127 Palermo, Italy; (B.T.); (L.M.); (G.D.B.); (M.S.A.); (F.D.); (N.C.)
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, via del Vespro 129, 90127 Palermo, Italy
| |
Collapse
|
15
|
The Effects of Sishen Wan on T Cell Responses in Mice Models of Ulcerative Colitis Induced by Dextran Sodium Sulfate. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9957709. [PMID: 34956391 PMCID: PMC8702314 DOI: 10.1155/2021/9957709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 12/24/2022]
Abstract
Currently, it is unclear whether Sishen Wan (SSW) could modulate the balance of Th1 cells, Th17 cells, and Tregs and we evaluated the effects of SSW on T cell responses in mice models of ulcerative colitis (UC). The mice models of acute UC (4% dextran sodium sulfate (DSS), 8 days) and chronic UC (3% DSS, 16 days) with SSW were assayed. Colon tissues were collected for immunohistochemical analysis, enzyme linked immunosorbent assay (ELISA), and flow cytometry (FCM). The expressions of cytokines associated with Tregs, transcription factors of Th17 cells, the frequencies of Th1 cells, Th17 cells, and Tregs, and the functional plasticity of Th17 cells were detected. The frequency of IFN-γ+ T cells was not changed significantly with SSW treatment in acute DSS. In chronic models, the frequency of IFN-γ+ T cells was downregulated with SSW. Meanwhile, the levels of RORγt and the frequency of IL-17A+ Th17 cells showed no significant differences after SSW treatment. Despite no significant effect on the transdifferentiation of Th17 cells in chronic UC models, SSW transdifferentiated Th17 cells into IL-10+ Th17 cells and downregulated IFN-γ+ Th17 cells/IL-10+ Th17 cells in acute DSS. Moreover, there were no significant changes of cytokines secreted by Tregs in acute DSS after SSW treatment, but SSW facilitated the expressions of IL-10 and IL-35, as well as development of IL-10+ Tregs in chronic DSS. SSW showed depressive effects on the immunoreaction of Th17 cells and might promote the conversion of Th17 cells into IL-10+ Th17 cells in acute UC, while it inhibited the excessive reaction of Th1 cells, facilitated the development of Tregs, and enhanced the anti-inflammatory effects in chronic UC.
Collapse
|
16
|
Gao J, Shi L, Gu J, Zhang D, Wang W, Zhu X, Liu J. Difference of immune cell infiltration between stable and unstable carotid artery atherosclerosis. J Cell Mol Med 2021; 25:10973-10979. [PMID: 34729909 PMCID: PMC8642673 DOI: 10.1111/jcmm.17018] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/17/2021] [Accepted: 10/11/2021] [Indexed: 12/16/2022] Open
Abstract
Atherosclerotic plaque instability contributes to ischaemic stroke and myocardial infarction. This study is to compare the abundance and difference of immune cell subtypes within unstable atherosclerotic tissues. CIBERSORT was used to speculate the proportions of 22 immune cell types based on a microarray of atherosclerotic carotid artery samples. R software was utilized to illustrate the bar plot, heat map and vioplot. The immune cell landscape in atherosclerosis was diverse, dominated by M2 macrophages, M0 macrophages, resting CD4 memory T cells and CD8 T cells. There was a significant difference in resting CD4 memory T cells (p = 0.032), T cells follicular helper (p = 0.033), M0 (p = 0.047) and M2 macrophages (p = 0.012) between stable and unstable atherosclerotic plaques. Compared with stable atherosclerotic plaques, unstable atherosclerotic plaques had a higher percentage of M2 macrophages. Moreover, correlation analysis indicated that the percentage of naïve CD4 T cells was strongly correlated with that of gamma delta T cells (r = 0.93, p < 0.001), while memory B cells were correlated with plasma cells (r = 0.85, p < 0.001). In summary, our study explored the abundance and difference of specific immune cell subgroups at unstable plaques, which would aid new immunotherapies for atherosclerosis.
Collapse
Affiliation(s)
- Jia Gao
- Department of Respiratory Medicine, Geriatric Hospital of Nanjing Medical University, Nanjing, China
| | - Licheng Shi
- Department of Respiratory Medicine, Geriatric Hospital of Nanjing Medical University, Nanjing, China
| | - Jianhua Gu
- Department of Respiratory Medicine, Geriatric Hospital of Nanjing Medical University, Nanjing, China
| | - Dandan Zhang
- Department of Respiratory Medicine, Geriatric Hospital of Nanjing Medical University, Nanjing, China
| | - Wenjun Wang
- Department of Respiratory Medicine, Geriatric Hospital of Nanjing Medical University, Nanjing, China
| | - Xuanfeng Zhu
- Department of Respiratory Medicine, Geriatric Hospital of Nanjing Medical University, Nanjing, China
| | - Jiannan Liu
- Department of Respiratory Medicine, Geriatric Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
17
|
Tong L, Hao H, Zhang Z, Lv Y, Liang X, Liu Q, Liu T, Gong P, Zhang L, Cao F, Pastorin G, Lee CN, Chen X, Wang JW, Yi H. Milk-derived extracellular vesicles alleviate ulcerative colitis by regulating the gut immunity and reshaping the gut microbiota. Theranostics 2021; 11:8570-8586. [PMID: 34373759 PMCID: PMC8344018 DOI: 10.7150/thno.62046] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/13/2021] [Indexed: 12/14/2022] Open
Abstract
Rationale: Bovine milk constitutes an essential part of human diet, especially for children, due to its enrichment of various nutrients. We recently developed an effective protocol for the isolation of extracellular vesicles from milk (mEVs) and discovered that mEVs contained large amounts of immune-active proteins and modulated the gut immunity and microbiota in healthy mice. Here, we aimed to explore the therapeutic effects of mEVs on inflammatory bowel disease. Methods: MicroRNAs and protein content in mEVs were analyzed by RNA sequencing and proteomics, respectively, followed by functional annotation. Ulcerative colitis (UC) was induced by feeding mice with dextran sulfate sodium. Intestinal immune cell populations were phenotyped by flow cytometry, and the gut microbiota was analyzed via 16S rRNA sequencing. Results: We showed that abundant proteins and microRNAs in mEVs were involved in the regulation of immune and inflammatory pathways and that oral administration of mEVs prevented colon shortening, reduced intestinal epithelium disruption, inhibited infiltration of inflammatory cells and tissue fibrosis in a mouse UC model. Mechanistically, mEVs attenuated inflammatory response via inhibiting TLR4-NF-κB signaling pathway and NLRP3 inflammasome activation. Furthermore, mEVs were able to correct cytokine production disorder and restore the balance between T helper type 17 (Th17) cells and interleukin-10+Foxp3+ regulatory T (Treg) cells in the inflamed colon. The disturbed gut microbiota in UC was also partially recovered upon treatment with mEVs. The correlation between the gut microbiota and cytokines suggests that mEVs may modulate intestinal immunity via influencing the gut microbiota. Conclusions: These findings reveal that mEVs alleviate colitis by regulating intestinal immune homeostasis via inhibiting TLR4-NF-κB and NLRP3 signaling pathways, restoring Treg/Th17 cell balance, and reshaping the gut microbiota.
Collapse
Affiliation(s)
- Lingjun Tong
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, P. R. China
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117609, Singapore
| | - Haining Hao
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, P. R. China
| | - Zhe Zhang
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, P. R. China
| | - Youyou Lv
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, P. R. China
| | - Xi Liang
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, P. R. China
| | - Qiqi Liu
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, P. R. China
| | - Tongjie Liu
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, P. R. China
| | - Pimin Gong
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, P. R. China
| | - Lanwei Zhang
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, P. R. China
| | - Fangfang Cao
- Departments of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
| | - Giorgia Pastorin
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Chuen Neng Lee
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117609, Singapore
| | - Xiaoyuan Chen
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117609, Singapore
- Departments of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
- Department of Chemical and Biomolecular Engineering, and Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117575, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Jiong-Wei Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117609, Singapore
- Cardiovascular Research Institute (CVRI), National University Heart Centre Singapore (NUHCS), 14 Medical Drive, Singapore 117599, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, Singapore 117593, Singapore
| | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, P. R. China
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| |
Collapse
|
18
|
Phytochemicals Targeting JAK-STAT Pathways in Inflammatory Bowel Disease: Insights from Animal Models. Molecules 2021; 26:molecules26092824. [PMID: 34068714 PMCID: PMC8126249 DOI: 10.3390/molecules26092824] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 12/18/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of the gastrointestinal tract that consists of Crohn’s disease (CD) and ulcerative colitis (UC). Cytokines are thought to be key mediators of inflammation-mediated pathological processes of IBD. These cytokines play a crucial role through the Janus kinase (JAK) and signal transducer and activator of transcription (STAT) signaling pathways. Several small molecules inhibiting JAK have been used in clinical trials, and one of them has been approved for IBD treatment. Many anti-inflammatory phytochemicals have been shown to have potential as new drugs for IBD treatment. This review describes the significance of the JAK–STAT pathway as a current therapeutic target for IBD and discusses the recent findings that phytochemicals can ameliorate disease symptoms by affecting the JAK–STAT pathway in vivo in IBD disease models. Thus, we suggest that phytochemicals modulating JAK–STAT pathways are potential candidates for developing new therapeutic drugs, alternative medicines, and nutraceutical agents for the treatment of IBD.
Collapse
|
19
|
Leite CA, Mota JM, de Lima KA, Wanderley CW, Nascimento LA, Ferreira MD, Silva CMS, Colon DF, Sakita JY, Kannen V, Viacava PR, Begnami MD, Lima-Junior RCP, Cordeiro de Lima VC, Alves-Filho JC, Cunha FQ, Ribeiro RA. Paradoxical interaction between cancer and long-term postsepsis disorder: impairment of de novo carcinogenesis versus favoring the growth of established tumors. J Immunother Cancer 2021; 8:jitc-2019-000129. [PMID: 32376720 PMCID: PMC7223471 DOI: 10.1136/jitc-2019-000129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2020] [Indexed: 02/06/2023] Open
Abstract
Background Previous data have reported that the growth of established tumors may be facilitated by postsepsis disorder through changes in the microenvironment and immune dysfunction. However, the influence of postsepsis disorder in initial carcinogenesis remains elusive. Methods In the present work, the effect of postsepsis on inflammation-induced early carcinogenesis was evaluated in an experimental model of colitis-associated colorectal cancer (CAC). We also analyzed the frequency and role of intestinal T regulatory cells (Treg) in CAC carcinogenesis. Results The colitis grade and the tumor development rate were evaluated postmortem or in vivo through serial colonoscopies. Sepsis-surviving mice (SSM) presented with a lower colonic DNA damage, polyp incidence, reduced tumor load, and milder colitis than their sham-operated counterparts. Ablating Treg led to restoration of the ability to develop colitis and tumor polyps in the SSM, in a similar fashion to that in the sham-operated mice. On the other hand, the growth of subcutaneously inoculated MC38luc colorectal cancer cells or previously established chemical CAC tumors was increased in SSM. Conclusion Our results provide evidence that postsepsis disorder has a dual effect in cancer development, inhibiting inflammation-induced early carcinogenesis in a Treg-dependent manner, while increasing the growth of previously established tumors.
Collapse
Affiliation(s)
- Caio Abner Leite
- A.C. Camargo Cancer Center, Sao Paulo, Brazil.,Center for Research in Inflammatory Diseases (CRID), University of Sao Paulo, Ribeirao Preto, Brazil.,Cancer Institute of Ceara, Fortaleza, Brazil
| | - Jose Mauricio Mota
- Instituto do Cancer do Estado de Sao Paulo, University of Sao Paulo, Sao Paulo, Brazil
| | - Kalil Alves de Lima
- Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | | | | | | | | | | | - Juliana Yumi Sakita
- Department of Toxicology, Bromatology, and Clinical Analysis, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Vinicius Kannen
- Department of Toxicology, Bromatology, and Clinical Analysis, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Paula Ramos Viacava
- Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | | | | | | | | | - Fernando Queiroz Cunha
- Center for Research in Inflammatory Diseases (CRID), University of Sao Paulo, Ribeirao Preto, Brazil .,Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Ronaldo Albuquerque Ribeiro
- Cancer Institute of Ceara, Fortaleza, Brazil.,Federal University of Ceara, Faculty of Medicine, Fortaleza, Brazil
| |
Collapse
|
20
|
Xie Z, Wang Y, Yang G, Han J, Zhu L, Li L, Zhang S. The role of the Hippo pathway in the pathogenesis of inflammatory bowel disease. Cell Death Dis 2021; 12:79. [PMID: 33436549 PMCID: PMC7804279 DOI: 10.1038/s41419-021-03395-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 01/29/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic and recurrent inflammatory disorder that primarily comprises Crohn's disease (CD) and ulcerative colitis (UC). Owing to its increasing prevalence in Eastern countries and the intractable challenges faced during IBD treatment, extensive research on IBD has been carried out over the last few years. Although the precise aetiology of IBD is undefined, the currently accepted hypothesis for IBD pathogenesis considers it to be a combination of environment, genetic predisposition, gut microbiota, and abnormal immunity. A recently emerged signalling pathway, the Hippo pathway, acts as a key regulator of cell growth, tissue homoeostasis, organ size, and has been implicated in several human cancers. In the past few years, studies have revealed the importance of the Hippo pathway in gastrointestinal tract physiology and gastrointestinal diseases, such as colorectal cancer and IBD. However, the role of the Hippo pathway and its exact impact in IBD remains to be elucidated. This review summarises the latest scientific literature on the involvement of this pathway in IBD from the following perspectives that account for the IBD pathogenesis: intestinal epithelial cell regeneration, immune regulation, gut microbiota, and angiogenesis. A comprehensive understanding of the specific role of the Hippo pathway in IBD will provide novel insights into future research directions and clinical implications of the Hippo pathway.
Collapse
Affiliation(s)
- Zhuo Xie
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Ying Wang
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Guang Yang
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jing Han
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Liguo Zhu
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Li Li
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Shenghong Zhang
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.
| |
Collapse
|
21
|
Cordes F, Foell D, Ding JN, Varga G, Bettenworth D. Differential regulation of JAK/STAT-signaling in patients with ulcerative colitis and Crohn's disease. World J Gastroenterol 2020; 26:4055-4075. [PMID: 32821070 PMCID: PMC7403801 DOI: 10.3748/wjg.v26.i28.4055] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/24/2020] [Accepted: 06/18/2020] [Indexed: 02/06/2023] Open
Abstract
In 2018, the pan-Janus kinase (JAK) inhibitor tofacitinib was launched for the treatment of ulcerative colitis (UC). Although tofacitinib has proven efficacious in patients with active UC, it failed in patients with Crohn's disease (CD). This finding strongly hints at a different contribution of JAK signaling in both entities. Here, we review the current knowledge on the interplay between the JAK/signal transducer and activator of transcription (STAT) pathway and inflammatory bowel diseases (IBD). In particular, we provide a detailed overview of the differences and similarities of JAK/STAT-signaling in UC and CD, highlight the impact of the JAK/STAT pathway in experimental colitis models and summarize the published evidence on JAK/STAT-signaling in immune cells of IBD as well as the genetic association between the JAK/STAT pathway and IBD. Finally, we describe novel treatment strategies targeting JAK/STAT inhibition in UC and CD and comment on the limitations and challenges of the new drug class.
Collapse
Affiliation(s)
- Friederike Cordes
- Department of Medicine B, Gastroenterology and Hepatology, University Hospital Münster, Münster D-48149, Germany
| | - Dirk Foell
- Department of Pediatric Rheumatology and Immunology, University Children’s Hospital Münster, Münster D-48149, Germany
| | - John Nik Ding
- Department of Gastroenterology, St. Vincent’s Hospital, Melbourne 3002, Australia
- Department of Medicine, University of Melbourne, East Melbourne 3002, Australia
| | - Georg Varga
- Department of Pediatric Rheumatology and Immunology, University Children’s Hospital Münster, Münster D-48149, Germany
| | - Dominik Bettenworth
- Department of Medicine B, Gastroenterology and Hepatology, University Hospital Münster, Münster D-48149, Germany
| |
Collapse
|
22
|
Honaker Y, Hubbard N, Xiang Y, Fisher L, Hagin D, Sommer K, Song Y, Yang SJ, Lopez C, Tappen T, Dam EM, Khan I, Hale M, Buckner JH, Scharenberg AM, Torgerson TR, Rawlings DJ. Gene editing to induce FOXP3 expression in human CD4+ T cells leads to a stable regulatory phenotype and function. Sci Transl Med 2020; 12:12/546/eaay6422. [DOI: 10.1126/scitranslmed.aay6422] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 12/09/2019] [Accepted: 04/13/2020] [Indexed: 12/21/2022]
Abstract
Thymic regulatory T cells (tTregs) are potent inhibitors of autoreactive immune responses, and loss of tTreg function results in fatal autoimmune disease. Defects in tTreg number or function are also implicated in multiple autoimmune diseases, leading to growing interest in use of Treg as cell therapies to establish immune tolerance. Because tTregs are present at low numbers in circulating blood and may be challenging to purify and expand and also inherently defective in some subjects, we designed an alternative strategy to create autologous Treg-like cells from bulk CD4+ T cells. We used homology-directed repair (HDR)–based gene editing to enforce expression of FOXP3, the master transcription factor for tTreg. Targeted insertion of a robust enhancer/promoter proximal to the first coding exon bypassed epigenetic silencing, permitting stable and robust expression of endogenous FOXP3. HDR-edited T cells, edTregs, manifested a transcriptional program leading to sustained expression of canonical markers and suppressive activity of tTreg. Both human and murine edTregs mediated immunosuppression in vivo in models of inflammatory disease. Further, this engineering strategy permitted generation of antigen-specific edTreg with robust in vitro and in vivo functional activity. Last, edTreg could be enriched and expanded at scale using clinically relevant methods. Together, these findings suggest that edTreg production may permit broad future clinical application.
Collapse
Affiliation(s)
- Yuchi Honaker
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Nicholas Hubbard
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Yufei Xiang
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Logan Fisher
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - David Hagin
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Karen Sommer
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Yumei Song
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | | | - Christina Lopez
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Tori Tappen
- Benaroya Research Institute, Seattle, WA 98101, USA
| | | | - Iram Khan
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Malika Hale
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Jane H. Buckner
- Benaroya Research Institute, Seattle, WA 98101, USA
- Department of Medicine, University of Washington, Seattle, WA 98101, USA
- Department of Immunology, University of Washington, Seattle, WA 98101, USA
| | - Andrew M. Scharenberg
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, Seattle, WA 98101, USA
- Department of Immunology, University of Washington, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington, Seattle, WA 98101, USA
| | - Troy R. Torgerson
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, Seattle, WA 98101, USA
- Department of Immunology, University of Washington, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington, Seattle, WA 98101, USA
| | - David J. Rawlings
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children’s Research Institute, Seattle, WA 98101, USA
- Department of Immunology, University of Washington, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington, Seattle, WA 98101, USA
| |
Collapse
|
23
|
Leppkes M, Neurath MF. Cytokines in inflammatory bowel diseases - Update 2020. Pharmacol Res 2020; 158:104835. [PMID: 32416212 DOI: 10.1016/j.phrs.2020.104835] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 02/06/2023]
Abstract
Inflammatory Bowel Diseases (IBD), namely Crohn's Disease and Ulcerative Colitis, cause a significant disease burden in modern civilization. Ever since the introduction of anti-TNF-directed therapies 20 years ago, cytokines have attracted a lot of research attention and several cytokine-directed therapies have been implemented in the clinical treatment of these diseases. The research progress in these past years has underlined the importance of both myeloid and lymphoid elements of the immune system in the pathogenesis of IBD and their cytokine-mediated interplay. The conceptual framework of the mucosal cytokine network has shifted during these years from a T helper (Th) dichotomy (Th1/Th2) to the effector/regulatory T cell balance, while nowadays, the importance of myeloid cell instruction of lymphocytes, namely by IL-12 and IL-23, is increasingly recognized. Anti-IL-12p40 agents, like ustekinumab, groundbreakingly changed patient care, and anti-IL23p19-directed approaches are on the verge of grand success. In this review we present a modular approach to understand the cytokine network and put it into the context of the pathogenesis of IBD with a special focus on publications since 2014.
Collapse
Affiliation(s)
- M Leppkes
- Department of Medicine, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Germany.
| | - M F Neurath
- Department of Medicine, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| |
Collapse
|
24
|
Lee BC, Lee JY, Kim J, Yoo JM, Kang I, Kim JJ, Shin N, Kim DJ, Choi SW, Kim D, Hong BH, Kang KS. Graphene quantum dots as anti-inflammatory therapy for colitis. SCIENCE ADVANCES 2020; 6:eaaz2630. [PMID: 32494673 PMCID: PMC7190325 DOI: 10.1126/sciadv.aaz2630] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 02/10/2020] [Indexed: 05/18/2023]
Abstract
While graphene and its derivatives have been suggested as a potential nanomedicine in several biomimetic models, their specific roles in immunological disorders still remain elusive. Graphene quantum dots (GQDs) may be suitable for treating intestinal bowel diseases (IBDs) because of their low toxicity in vivo and ease of clearance. Here, GQDs are intraperitoneally injected to dextran sulfate sodium (DSS)-induced chronic and acute colitis model, and its efficacy has been confirmed. In particular, GQDs effectively prevent tissue degeneration and ameliorate intestinal inflammation by inhibiting TH1/TH17 polarization. Moreover, GQDs switch the polarization of macrophages from classically activated M1 to M2 and enhance intestinal infiltration of regulatory T cells (Tregs). Therefore, GQDs effectively attenuate excessive inflammation by regulating immune cells, indicating that they can be used as promising alternative therapeutic agents for the treatment of autoimmune disorders, including IBDs.
Collapse
Affiliation(s)
- Byung-Chul Lee
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin Young Lee
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Juhee Kim
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Je Min Yoo
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Insung Kang
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Jae-Jun Kim
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Nari Shin
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong Jin Kim
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Soon Won Choi
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Donghoon Kim
- Biographene Inc., Advanced Institute of Convergence Technology, Suwon 16229, Republic of Korea
| | - Byung Hee Hong
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Biographene Inc., Advanced Institute of Convergence Technology, Suwon 16229, Republic of Korea
- Graphene Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon 16229, Republic of Korea
- Corresponding author. (K.-S.K.); (B.H.H.)
| | - Kyung-Sun Kang
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
- Corresponding author. (K.-S.K.); (B.H.H.)
| |
Collapse
|
25
|
Gorczynski RM, Hoffmann G. Combined IMIG and immune Ig attenuates inflammatory colitis in mice. Int Immunopharmacol 2020; 83:106464. [PMID: 32278130 DOI: 10.1016/j.intimp.2020.106464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/13/2020] [Accepted: 03/29/2020] [Indexed: 11/27/2022]
Abstract
BACKGROUND Using a combination of homologous and heterologous (mouse/human) polyclonal anti-idiotypic Igs and immune Igs in BALB/c mice we have previously reported attenuation of allergic type responses following OVA immunization. We have now investigated attenuation of an inflammatory colitis in C57BL/6 mice receiving dextran sodium sulfate (DSS) in their drinking water, using additional treatment of DSS-exposed mice with combined human Igs, commercial IVIG (given IM, hence hereafter IMIG) as a source of pooled anti-idiotype Ig, and human anti-Tet as immune Ig. METHODS Acute or chronic colitis was induced by DSS in groups of C57BL/6 mice. Mice also received weekly immunotherapy with im injections of polyclonal immune Ig, polyclonal anti-idiotype Ig, or the combined Igs, for a total of 5 injections, beginning with DSS treatment or after 2 cycles of DSS. Weight loss and mortality were monitored daily, and the extent of colitis was determined further using colonic length measurement, and by ELISA measurement of inflammatory cytokines in supernatants from colonic explant cultures. RESULTS Mice developed colitis in both the acute and chronic models with loss of body weight, shortened colon lengths, and increased expression of inflammatory cytokines in colonic tissue. Loss of body weight, and inflammatory cytokine production, was attenuated only in chronic colitis, and only after combined IMIG and immune Ig treatment, and not in groups receiving only IMIG or immune Ig alone. CONCLUSION Heterologous combinations of polyclonal IMIG and immune Ig can attenuate inflammatory colitis in mice. Given the described efficacy of this treatment for allergic desensitization, we hypothesize this methodology may have widespread clinic utility.
Collapse
Affiliation(s)
- R M Gorczynski
- Universityof Toronto, ON, Canada; Network Immunology, Vancouver, BC, Canada.
| | - G Hoffmann
- Network Immunology, Vancouver, BC, Canada
| |
Collapse
|
26
|
Eberhardson M, Tarnawski L, Centa M, Olofsson PS. Neural Control of Inflammation: Bioelectronic Medicine in Treatment of Chronic Inflammatory Disease. Cold Spring Harb Perspect Med 2020; 10:a034181. [PMID: 31358521 PMCID: PMC7050580 DOI: 10.1101/cshperspect.a034181] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Inflammation is important for antimicrobial defense and for tissue repair after trauma. The inflammatory response and its resolution are both active processes that must be tightly regulated to maintain homeostasis. Excessive inflammation and nonresolving inflammation cause tissue damage and chronic disease, including autoinflammatory and cardiovascular diseases. An improved understanding of the cellular and molecular mechanisms that regulate inflammation has supported development of novel therapies for several inflammatory diseases, including rheumatoid arthritis and inflammatory bowel disease. Many of the specific anticytokine therapies carry a risk for excessive immunosuppression and serious side effects. The discovery of the inflammatory reflex and the increasingly detailed understanding of the molecular interactions between homeostatic neural reflexes and the immune system have laid the foundation for bioelectronic medicine in the field of inflammatory diseases. Neural interfaces and nerve stimulators are now being tested in human clinical trials and may, as the technology develops further, have advantages over conventional drugs in terms of better compliance, continuously adaptable control of dosing, better monitoring, and reduced risks for unwanted side effects. Here, we review the current mechanistic understanding of common autoinflammatory conditions, consider available therapies, and discuss the potential use of increasingly capable devices in the treatment of inflammatory disease.
Collapse
Affiliation(s)
- Michael Eberhardson
- Laboratory of Immunobiology, Center for Bioelectronic Medicine, Department of Medicine, Solna, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Laura Tarnawski
- Laboratory of Immunobiology, Center for Bioelectronic Medicine, Department of Medicine, Solna, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Monica Centa
- Laboratory of Immunobiology, Center for Bioelectronic Medicine, Department of Medicine, Solna, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Peder S Olofsson
- Laboratory of Immunobiology, Center for Bioelectronic Medicine, Department of Medicine, Solna, Karolinska Institutet, 17177 Stockholm, Sweden
- Center for Biomedical Science, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York 11030
| |
Collapse
|
27
|
Fu Y, Lin Q, Zhang Z, Zhang L. Therapeutic strategies for the costimulatory molecule OX40 in T-cell-mediated immunity. Acta Pharm Sin B 2020; 10:414-433. [PMID: 32140389 PMCID: PMC7049610 DOI: 10.1016/j.apsb.2019.08.010] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 12/11/2022] Open
Abstract
The T cell co-stimulatory molecule OX40 and its cognate ligand OX40L have attracted broad research interest as a therapeutic target in T cell-mediated diseases. Accumulating preclinical evidence highlights the therapeutic efficacy of both agonist and blockade of the OX40-OX40L interaction. Despite this progress, many questions about the immuno-modulator roles of OX40 on T cell function remain unanswered. In this review we summarize the impact of the OX40-OX40L interaction on T cell subsets, including Th1, Th2, Th9, Th17, Th22, Treg, Tfh, and CD8+ T cells, to gain a comprehensive understanding of anti-OX40 mAb-based therapies. The potential therapeutic application of the OX40-OX40L interaction in autoimmunity diseases and cancer immunotherapy are further discussed; OX40-OX40L blockade may ameliorate autoantigen-specific T cell responses and reduce immune activity in autoimmunity diseases. We also explore the rationale of targeting OX40-OX40L interactions in cancer immunotherapy. Ligation of OX40 with targeted agonist anti-OX40 mAbs conveys activating signals to T cells. When combined with other therapeutic treatments, such as anti-PD-1 or anti-CTLA-4 blockade, cytokines, chemotherapy, or radiotherapy, the anti-tumor activity of agonist anti-OX40 treatment will be further enhanced. These data collectively suggest great potential for OX40-mediated therapies.
Collapse
Affiliation(s)
- Yu Fu
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, College of Polymer Science and Engineering, West China School of Pharmacy, Sichuan University, Chengdu 610064, China
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Qing Lin
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, College of Polymer Science and Engineering, West China School of Pharmacy, Sichuan University, Chengdu 610064, China
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, College of Polymer Science and Engineering, West China School of Pharmacy, Sichuan University, Chengdu 610064, China
| | - Ling Zhang
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, College of Polymer Science and Engineering, West China School of Pharmacy, Sichuan University, Chengdu 610064, China
| |
Collapse
|
28
|
Zhu K, He C, Liu SQ, Qu M, Xie T, Yang X, Lei L, Zhou X, Shi L, Zhang D, Cheng Y, Sun Y, Zheng H, Shen X, Li Q, Jiang N, Zhang B. Lineage Tracking the Generation of T Regulatory Cells From Microbial Activated T Effector Cells in Naïve Mice. Front Immunol 2020; 10:3109. [PMID: 32010147 PMCID: PMC6978744 DOI: 10.3389/fimmu.2019.03109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 12/20/2019] [Indexed: 12/11/2022] Open
Abstract
Regulatory T cells (Tregs) are essential for the maintenance of gut homeostasis by suppressing conventional CD4+ helper T cells (Tconvs) that are activated by microbial antigens. Although thymus is the major source of the peripheral Tregs, peripheral conversion from Tconvs to Tregs have also been shown to occur under various experimental conditions. It remains less clear about the frequency of lineage conversion from Tconvs to Tregs in naïve animals. Here we used a newly established reporter system to track a group of post expansion Tregs (eTregs), which exhibited a stronger suppressive ability than the non-lineage marked Tregs. Notably, microbial antigens are the primary driver for the formation of eTregs. TCR repertoire analysis of Peyer's patch T cells revealed that eTregs are clonally related to Tconvs, but not to the non-lineage tracked Tregs. Adoptive transfer of Tconvs into lymphopenic hosts demonstrated a conversion from Tconvs to eTregs. Thus, our lineage tracking method was able to capture the lineage conversion from microbial activated effector T cells to Tregs in naïve animals. This study suggests that a fraction of clonally activated T cells from the natural T cell repertoire exhibits lineage conversion to Tregs in response to commensal microbes under homeostatic conditions.
Collapse
Affiliation(s)
- Kun Zhu
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Chenfeng He
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Si-Qi Liu
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
| | - Mingjuan Qu
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States.,College of Life Sciences, Ludong University, Yantai, China
| | - Tao Xie
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Xiaofeng Yang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Lei Lei
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Xiaobo Zhou
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Lin Shi
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Dan Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Yanbin Cheng
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Yae Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Huiqiang Zheng
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Xiaonan Shen
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Qijing Li
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
| | - Ning Jiang
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
29
|
Lee KH, Ahn BS, Cha D, Jang WW, Choi E, Park S, Park JH, Oh J, Jung DE, Park H, Park JH, Suh Y, Jin D, Lee S, Jang YH, Yoon T, Park MK, Seong Y, Pyo J, Yang S, Kwon Y, Jung H, Lim CK, Hong JB, Park Y, Choi E, Shin JI, Kronbichler A. Understanding the immunopathogenesis of autoimmune diseases by animal studies using gene modulation: A comprehensive review. Autoimmun Rev 2020; 19:102469. [PMID: 31918027 DOI: 10.1016/j.autrev.2020.102469] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 09/20/2019] [Indexed: 12/21/2022]
Abstract
Autoimmune diseases are clinical syndromes that result from pathogenic inflammatory responses driven by inadequate immune activation by T- and B-cells. Although the exact mechanisms of autoimmune diseases are still elusive, genetic factors also play an important role in the pathogenesis. Recently, with the advancement of understanding of the immunological and molecular basis of autoimmune diseases, gene modulation has become a potential approach for the tailored treatment of autoimmune disorders. Gene modulation can be applied to regulate the levels of interleukins (IL), tumor necrosis factor (TNF), cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), interferon-γ and other inflammatory cytokines by inhibiting these cytokine expressions using short interfering ribonucleic acid (siRNA) or by inhibiting cytokine signaling using small molecules. In addition, gene modulation delivering anti-inflammatory cytokines or cytokine antagonists showed effectiveness in regulating autoimmunity. In this review, we summarize the potential target genes for gene or immunomodulation in autoimmune diseases including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), inflammatory bowel diseases (IBD) and multiple sclerosis (MS). This article will give a new perspective on understanding immunopathogenesis of autoimmune diseases not only in animals but also in human. Emerging approaches to investigate cytokine regulation through gene modulation may be a potential approach for the tailored immunomodulation of some autoimmune diseases near in the future.
Collapse
Affiliation(s)
- Keum Hwa Lee
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Byung Soo Ahn
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Dohyeon Cha
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Won Woo Jang
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eugene Choi
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Soohyun Park
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jun Hyeong Park
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Junseok Oh
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Da Eun Jung
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Heeryun Park
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ju Ha Park
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Youngsong Suh
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Dongwan Jin
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Siyeon Lee
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong-Hwan Jang
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Tehwook Yoon
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min-Kyu Park
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yoonje Seong
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jihoon Pyo
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sunmo Yang
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Youngin Kwon
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyunjean Jung
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chae Kwang Lim
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jun Beom Hong
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yeoeun Park
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eunjin Choi
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Andreas Kronbichler
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
30
|
Zhou W, Deng J, Chen Q, Li R, Xu X, Guan Y, Li W, Xiong X, Li H, Li J, Cai X. Expression of CD4+CD25+CD127 Low regulatory T cells and cytokines in peripheral blood of patients with primary liver carcinoma. Int J Med Sci 2020; 17:712-719. [PMID: 32218692 PMCID: PMC7085268 DOI: 10.7150/ijms.44088] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 02/16/2020] [Indexed: 12/26/2022] Open
Abstract
Objective: To assess the clinical utility of the ratio of CD4+CD25+CD127low regulatory T cells (Tregs) in subjects at high risk of HCC, investigate the relationship between the percentage of Tregs and the expression of transforming growth factor (TGF)-β1 and interleukin (IL)-10 in patients with hepatocellular carcinoma before and after treatment. Methods: Peripheral venous blood was collected from patients with liver cancer before and after treatment. The proportion of CD4+CD25+CD127low Tregs was detected by flow cytometry. The levels of TGF-β1 and IL-10 in serum were detected by enzyme-linked immunosorbent assay, and were compared with healthy subjects as a control group. Results: The proportion of CD4+CD25+CD127low to CD4+T lymphocytes in patients with hepatocellular carcinoma was significantly higher than that in healthy controls (P<0.01). The proportion of CD4+CD25+CD127lowTregs, whose AUC of ROC curve was 0.917, could effectively separate the HCC patients from the healthy subjects with a diagnostic sensitivity of 90%, specificity of 80%. The proportion of CD4+CD25+CD127low to CD4+T lymphocytes and the levels of TGF-β1 and IL-10 in patients with hepatocellular carcinoma after the operation and chemotherapy were significantly lower than those before treatment (P<0.05).The proportion of CD4+CD25+CD127lowTregs was positively correlated with the concentrations of TGF-β1 and IL-10 before and after treatment of primary liver cancer (P<0.05). Conclusion: CD4+CD25+CD127lowTregs may be a significant predictor of HCC biopsy outcome and play an inhibitory role on effector T cells by regulating cytokines.
Collapse
Affiliation(s)
- Wenchao Zhou
- Clinical laboratory, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Jianxin Deng
- Department of Endocrinology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center of Shenzhen University, Shenzhen 518035, People's Republic of China
| | - Qianmei Chen
- Clinical laboratory, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Ruiying Li
- Clinical laboratory, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Xiaosong Xu
- Clinical laboratory, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Yubin Guan
- Clinical laboratory, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Wei Li
- Clinical laboratory, Guangzhou Military Area Inspection Center, the General Hospital of Guangzhou Military Region, Guangzhou 510010, China
| | - Xiaomin Xiong
- Clinical laboratory, the Hospital of Dongguan Renkang, Dongguan 523952, China
| | - Hongwei Li
- Institute of Biotherapy, Southern Medical University Guangzhou 510515, China
| | - Jianpei Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Clinical Laboratory Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
- ✉ Corresponding authors: Jianpei Li, or Xiangsheng Cai,
| | - Xiangsheng Cai
- Clinical laboratory, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
- ✉ Corresponding authors: Jianpei Li, or Xiangsheng Cai,
| |
Collapse
|
31
|
Guo D, Liu X, Zeng C, Cheng L, Song G, Hou X, Zhu L, Zou K. Estrogen receptor β activation ameliorates DSS-induced chronic colitis by inhibiting inflammation and promoting Treg differentiation. Int Immunopharmacol 2019; 77:105971. [PMID: 31678865 DOI: 10.1016/j.intimp.2019.105971] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/09/2019] [Accepted: 10/09/2019] [Indexed: 12/18/2022]
Abstract
Estrogen receptor (ER) β activation has anti-inflammatory activity. However, its effect on the development of inflammatory bowel disease (IBD) and the underlying mechanism have not been clarified. This study aimed to assess the clinical value of ERβ+CD4+ T cells in IBD patients and examine the anti-inflammatory role of ERβ activation in dextran sulfate sodium (DSS)-induced chronic colitis in mice. We investigated the effects of ERB041 (an ERβ-specific agonist) on inflammatory cytokines and pro-inflammatory T-cell and regulatory T-cell (Treg) responses in murine colitis. We tested the role of ERβ activation on Treg differentiation and its activity to suppress T-cell proliferation in vitro. We found that reduced frequency of circulating ERβ+CD4+ T cells in IBD patients was negatively correlated with inflammation and disease severity. ERβ and FoxP3 expression co-localized in the intestinal tissues of IBD patients. Treatment with ERB041 significantly mitigated colitis-induced weight loss, inflammation, and disease severity. It also restored the ERβ+CD4+ T cell population in the spleen and colon lamina propria of these mice. ERB041 treatment inhibited CD4+CD25- and CD8+ T cell infiltration and restored Tregs and activated T-cell immunoreceptor with Ig and ITIM domains (TIGIT)+ Tregs in the colon lamina propria. In vitro, we found that ERβ activation enhanced Treg differentiation, immunosuppression, and TGF-β1/Smad signaling in CD4+ T cells. Our data suggest that ERβ+CD4+ T cells represent a potential biomarker for evaluating IBD disease severity, and ERβ activation may be valuable for the treatment of IBD by enhancing the Treg response.
Collapse
Affiliation(s)
- Di Guo
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaojing Liu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Cui Zeng
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ling Cheng
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Gengqing Song
- Department of Gastroenterology, Hepatology & Nutrition, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Xiaohua Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Liangru Zhu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Kaifang Zou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
32
|
|
33
|
Targeting immune cell circuits and trafficking in inflammatory bowel disease. Nat Immunol 2019; 20:970-979. [PMID: 31235952 DOI: 10.1038/s41590-019-0415-0] [Citation(s) in RCA: 447] [Impact Index Per Article: 74.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/01/2019] [Indexed: 12/20/2022]
Abstract
Inflammatory bowel diseases (IBDs) such as Crohn's disease and ulcerative colitis are characterized by uncontrolled activation of intestinal immune cells in a genetically susceptible host. Due to the progressive and destructive nature of the inflammatory process in IBD, complications such as fibrosis, stenosis or cancer are frequently observed, which highlights the need for effective anti-inflammatory therapy. Studies have identified altered trafficking of immune cells and pathogenic immune cell circuits as crucial drivers of mucosal inflammation and tissue destruction in IBD. A defective gut barrier and microbial dysbiosis induce such accumulation and local activation of immune cells, which results in a pro-inflammatory cytokine loop that overrides anti-inflammatory signals and causes chronic intestinal inflammation. This Review discusses pathogenic cytokine responses of immune cells as well as immune cell trafficking as a rational basis for new translational therapies in IBD.
Collapse
|
34
|
Dotan I, Allez M, Danese S, Keir M, Tole S, McBride J. The role of integrins in the pathogenesis of inflammatory bowel disease: Approved and investigational anti-integrin therapies. Med Res Rev 2019; 40:245-262. [PMID: 31215680 PMCID: PMC6973243 DOI: 10.1002/med.21601] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/12/2019] [Accepted: 05/13/2019] [Indexed: 12/12/2022]
Abstract
Inflammatory bowel disease (IBD) is characterized by uncontrolled inflammation in the gastrointestinal tract. The underlying pathobiology of IBD includes an increase in infiltrating gut-homing lymphocytes. Although lymphocyte homing is typically a tightly regulated and stepwise process involving multiple integrins and adhesion molecules expressed on endothelial cells, the distinct roles of integrin-expressing immune cells is not fully understood in the pathology of IBD. In this review, we detail the involvement of integrins expressed on specific lymphocyte subsets in the pathogenesis of IBD and discuss the current status of approved and investigational integrin-targeted therapies.
Collapse
Affiliation(s)
- Iris Dotan
- Division of Gastroenterology, Rabin Medical Center, Petah Tikva, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Matthieu Allez
- Department of Gastroenterology, Hôpital Saint-Louis, AP-HP, INSERM U1160, University Denis Diderot, Paris, France
| | - Silvio Danese
- Gastrointestinal Immunopathology Laboratory and IBD Unit, Humanitas Clinical and Research Center, Milan, Italy
| | - Mary Keir
- Department of Research and Early Development, Genentech, South San Francisco, California
| | - Swati Tole
- Department of Product Development, Genentech, South San Francisco, California
| | - Jacqueline McBride
- Department of Research and Early Development, Genentech, South San Francisco, California
| |
Collapse
|
35
|
Pang C, Zhu C, Zhang Y, Ge Y, Li S, Huo S, Xu T, Stauber RH, Zhao B. 2,3,7,8-Tetrachloodibenzo-p-dioxin affects the differentiation of CD4 helper T cell. Toxicol Lett 2019; 311:49-57. [PMID: 31014974 DOI: 10.1016/j.toxlet.2019.04.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 03/20/2019] [Accepted: 04/11/2019] [Indexed: 12/22/2022]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), the most toxic congener of dioxins, is a persistent and ubiquitous environmental contaminant. Although the immunotoxic effects of TCDD have been reported, the mechanisms underlying these effects are still unclear. In this study, we have determined the toxic effects of TCDD on thymocytes and splenic T cells with in vitro cell culture systems. Magnetically isolated mouse splenic Th cells, Treg cells and the mixed spleen lymphocytes (SLC) were cultured and treated with TCDD and the differentiation of CD4 Th cells was determined by flow cytometery. Our results showed that different concentrations of TCDD caused immunotoxic effects through different toxicological mechanisms in both the purified mouse splenic Th cells and the mixed SLC. The low dose exposure to TCDD triggered regulatory effects in the immune system, while the high dose TCDD exposure resulted in severe immune toxicity. Notably, a decline of Treg subset was observed, suggesting an imbalanced immune regulation by TCDD treatment, as well as a possible decrease of TCDD's indirect effects on bystander immune cells. Our CD4 Th subset co-culture experiments showed that TCDD-induced pathobiology depended on immune cell balance, suggesting that cytokine-induced microenvironments further modulated toxic effects associated with TCDD exposure.
Collapse
Affiliation(s)
- Chengfang Pang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Department of Environment Engineering, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Conghui Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Yuanyuan Zhang
- Department of Endocrinology, Linyi People's Hospital, Linyi, 276003, China
| | - Ying Ge
- The Finsen Laboratory, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Denmark; Biotech Research and Innovation Centre, University of Copenhagen, 2200, Denmark
| | - Shujuan Li
- Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Shouliang Huo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Tuan Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Roland H Stauber
- Department of Nanobiomedicine/ENT, University Medical Center of Mainz, Langenbeckstrasse 1, 55101, Mainz, Germany
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
36
|
Onali S, Favale A, Fantini MC. The Resolution of Intestinal Inflammation: The Peace-Keeper's Perspective. Cells 2019; 8:cells8040344. [PMID: 30979024 PMCID: PMC6523641 DOI: 10.3390/cells8040344] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 02/06/2023] Open
Abstract
The uncontrolled activation of the immune system toward antigens contained in the gut lumen in genetically predisposed subjects is believed to be the leading cause of inflammatory bowel disease (IBD). Two not mutually exclusive hypotheses can explain the pathogenic process leading to IBD. The first and mostly explored hypothesis states that the loss of tolerance toward gut microbiota antigens generates an aberrant inflammatory response that is perpetuated by continuous and unavoidable exposure to the triggering antigens. However, the discovery that the resolution of inflammation is not the mere consequence of clearing inflammatory triggers and diluting pro-inflammatory factors, but rather an active process in which molecular and cellular elements are involved, implies that a defect in the pro-resolving mechanisms might cause chronic inflammation in different immune-mediated diseases, including IBD. Here we review data on pro-resolving and counter-regulatory mechanisms involved in the resolution of inflammation, aiming to identify their possible involvement in the pathogenesis of IBD.
Collapse
Affiliation(s)
- Sara Onali
- Dep. of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| | - Agnese Favale
- Dep. of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| | - Massimo C Fantini
- Dep. of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| |
Collapse
|
37
|
Zhang L, Wu TT. Inflammatory Bowel Disease. SURGICAL PATHOLOGY OF NON-NEOPLASTIC GASTROINTESTINAL DISEASES 2019:373-424. [DOI: 10.1007/978-3-030-15573-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
38
|
Heterogeneity in FoxP3- and GARP/LAP-Expressing T Regulatory Cells in an HLA Class II Transgenic Murine Model of Necrotizing Soft Tissue Infections by Group A Streptococcus. Infect Immun 2018; 86:IAI.00432-18. [PMID: 30224551 DOI: 10.1128/iai.00432-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/03/2018] [Indexed: 11/20/2022] Open
Abstract
Invasive group A streptococcus (GAS) infections include necrotizing soft tissue infections (NSTI) and streptococcal toxic shock syndrome (STSS). We have previously shown that host HLA class II allelic variations determine the risk for necrotizing fasciitis (NF), a dominant subgroup of NSTI, and STSS by modulating responses to GAS superantigens (SAgs). SAgs are pivotal mediators of uncontrolled T-cell activation, triggering a proinflammatory cytokine storm in the host. FoxP3-expressing CD4+ CD25+ T regulatory cells (Tregs) comprise phenotypically and functionally heterogeneous subsets with a profound ability to suppress inflammatory responses. Specifically, activated Tregs, which express glycoprotein A repetitions predominant (GARP) and display latent transforming growth factor β1 (TGF-β1) complexes (latency-associated peptide [LAP]), exhibit strong immunosuppressive functions. The significance of Tregs that may participate in suppressing inflammatory responses during NSTI is unknown. Here, we phenotypically characterized FoxP3/GARP/LAP-expressing Tregs in GAS-infected or SAg (SmeZ)-stimulated splenocytes from transgenic (tg) mice expressing human HLA-II DRB1*15 (DR15 allele associated with nonsevere NF/STSS-protective responses) or DRB1*0402/DQB1*0302 (DR4/DQ8 alleles associated with neutral risk for combined NF/STSS). We demonstrated both in vivo and in vitro that the neutral-risk allele upregulates expression of CD4+ CD25+ activated effector T cells, with a significantly lower frequency of Foxp3+/GARP+ LAP- but higher frequency of Foxp3- LAP+ Tregs than seen with the protective allele. Additional in vitro studies revealed that the presentation of SmeZ by the neutral-risk allele significantly increases proliferation and expression of effector cytokines gamma interferon (IFN-γ) and interleukin-2 (IL-2) and upregulates CD4+ CD25+ T cell receptors (TCRs) carrying specific Vβ 11 chain (TCRVβ11+) T cells and Th1 transcription factor Tbx21 mRNA levels. Our data suggest that neutral-risk alleles may drive Th1 differentiation while attenuating the induction of Tregs associated with suppressive function.
Collapse
|
39
|
Ghosh S, Roy-Chowdhuri S, Kang K, Im SH, Rudra D. The transcription factor Foxp1 preserves integrity of an active Foxp3 locus in extrathymic Treg cells. Nat Commun 2018; 9:4473. [PMID: 30367168 PMCID: PMC6203760 DOI: 10.1038/s41467-018-07018-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 10/11/2018] [Indexed: 02/08/2023] Open
Abstract
Regulatory T (Treg) cells, which are broadly classified as thymically derived (tTreg) or extrathymically induced (iTreg), suppress immune responses and display stringent dependence to the transcription factor Foxp3. However precise understanding of molecular events that promote and preserve Foxp3 expression in Treg cells is still evolving. Here we show that Foxp1, a forkhead transcription factor and a sibling family member of Foxp3, is essential for sustaining optimal expression of Foxp3 specifically in iTreg cells. Deletion of Foxp1 renders iTreg cells to gradually lose Foxp3, resulting in dramatically reduced Nrp1-Helios- iTreg compartment as well as augmented intestinal inflammation in aged mice. Our finding underscores a mechanistic module in which evolutionarily related transcription factors establish a molecular program to ensure efficient immune homeostasis. Furthermore, it provides a novel target that can be potentially modulated to exclusively reinforce iTreg stability keeping their thymic counterpart unperturbed.
Collapse
Affiliation(s)
- Sayantani Ghosh
- Academy of Immunology and Microbiology, Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Sinchita Roy-Chowdhuri
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Keunsoo Kang
- Department of Microbiology, College of Natural Sciences, Dankook University, Cheonan, 31116, Republic of Korea
| | - Sin-Hyeog Im
- Academy of Immunology and Microbiology, Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Dipayan Rudra
- Academy of Immunology and Microbiology, Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea.
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.
| |
Collapse
|
40
|
Shen Y, Xie Y, Zhao Y, Long Y, Li L, Zeng Y. Pim-1 inhibitor attenuates trinitrobenzene sulphonic acid induced colitis in the mice. Clin Res Hepatol Gastroenterol 2018; 42:382-386. [PMID: 29551611 DOI: 10.1016/j.clinre.2018.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 12/28/2017] [Accepted: 01/02/2018] [Indexed: 02/04/2023]
Abstract
Pim-1 kinase has been implicated in inflammatory bowel disease (IBD). This study aimed to evaluate the application of Pim-1 inhibitor (PIM-Inh) for the treatment of IBD. Mouse model of IBD was established by the treatment with trinitrobenzene sulphonic acid (TNBS). The results showed that disease activity index score was significantly decreased, colon length was significantly increased while Wallace score and pathological score were significantly decreased after PIM-Inh treatment compared to TNBS model group. In addition, GATA3 and ROR-γt mRNA and protein levels significantly increased but Foxp3 mRNA and protein levels significantly decreased in mice with TNBS treatment compared to mice without TNBS treatment. Administration of PIM-Inh caused significant decreases in GATA3, T-bet and ROR-γt mRNA and protein levels as well as significant increases in FOXP3 mRNA and protein levels. In conclusion, our data suggest that Pim-1 kinase inhibitor could attenuate IBD by promoting T-cell differentiation into Foxp3+ regulatory T-cells and is a promising agent for IBD therapy.
Collapse
Affiliation(s)
- Yueming Shen
- Department of Digestive Diseases, Changsha Central Hospital, No. 163, Shaoshan Nanlu, Changsha 410004, China
| | - Yuanhong Xie
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, No. 145, Shandong Zhonglu, Shanghai 200001, China
| | - Yan Zhao
- Department of Digestive Diseases, Changsha Central Hospital, No. 163, Shaoshan Nanlu, Changsha 410004, China.
| | - Yan Long
- Department of Digestive Diseases, Changsha Central Hospital, No. 163, Shaoshan Nanlu, Changsha 410004, China
| | - Lingqian Li
- Department of Digestive Diseases, Changsha Central Hospital, No. 163, Shaoshan Nanlu, Changsha 410004, China
| | - Ya Zeng
- Department of Digestive Diseases, Changsha Central Hospital, No. 163, Shaoshan Nanlu, Changsha 410004, China
| |
Collapse
|
41
|
Resolution of chronic inflammatory disease: universal and tissue-specific concepts. Nat Commun 2018; 9:3261. [PMID: 30111884 PMCID: PMC6093916 DOI: 10.1038/s41467-018-05800-6] [Citation(s) in RCA: 265] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/22/2018] [Indexed: 12/21/2022] Open
Abstract
Inflammation and its resolution is under-studied in medicine despite being essential for understanding the development of chronic inflammatory disease. In this review article, we discuss the resolution of inflammation in both a biological and translational context. We introduce the concept of impaired resolution leading to diseases like rheumatoid arthritis, Crohn's disease, and asthma, as well as the cellular and molecular components that contribute to resolution of joint, gut, and lung inflammation, respectively. Finally, we discuss potential intervention strategies for fostering the resolution process, and their implications for the therapy of inflammatory diseases.
Collapse
|
42
|
Leppkes M, Siegmund B, Becker C. Editorial: Immune-Epithelial Crosstalk in Inflammatory Bowel Diseases and Mucosal Wound Healing. Front Immunol 2018; 9:1171. [PMID: 29899742 PMCID: PMC5988842 DOI: 10.3389/fimmu.2018.01171] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/11/2018] [Indexed: 12/25/2022] Open
Affiliation(s)
- Moritz Leppkes
- Department of Internal Medicine 1, Gastroenterology, Pneumology and Endocrinology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Britta Siegmund
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christoph Becker
- Department of Internal Medicine 1, Gastroenterology, Pneumology and Endocrinology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
43
|
Nakanishi Y, Ikebuchi R, Chtanova T, Kusumoto Y, Okuyama H, Moriya T, Honda T, Kabashima K, Watanabe T, Sakai Y, Tomura M. Regulatory T cells with superior immunosuppressive capacity emigrate from the inflamed colon to draining lymph nodes. Mucosal Immunol 2018; 11:437-448. [PMID: 28766553 DOI: 10.1038/mi.2017.64] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 06/03/2017] [Indexed: 02/04/2023]
Abstract
Foxp3+ Regulatory T cells (Tregs) play a critical role in the maintenance of colon homeostasis. Here we utilized photoconvertible KikGR mice to track immune cells from the caecum and ascending (proximal) colon in the steady state and DSS-induced colitis. We found that Tregs from the proximal colon (colonic migratory Tregs) migrated exclusively to the distal part of mesenteric lymph nodes (dMLN) in an S1PR1-dependent process. In the steady state, colonic migratory CD25+ Tregs expressed higher levels of CD103, ICOS, LAG3 and CTLA-4 in comparison with pre-existing LN Tregs. Intestinal inflammation led to accelerated Treg replacement in the colon, bidirectional Treg migration from the colon to dMLN and vice versa, as well as increases in Treg number, proliferation and expression of immunosuppressive molecules. This was especially apparent for CD25 very high Tregs induced in colitis. Furthermore, colonic migratory Tregs from the inflamed colon included more interleukin (IL)-10 producing cells, and demonstrated greater inhibition of T-cell proliferation in comparison with pre-existing LN Tregs. Thus, our results suggest that Tregs with superior immunosuppressive capacity are increased both in the colon and dMLN upon inflammation. These Tregs recirculate between the colon and dMLN, and are likely to contribute to the downregulation of intestinal inflammation.
Collapse
Affiliation(s)
- Y Nakanishi
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan.,Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - R Ikebuchi
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan.,Research Fellow of Japan Society for the Promotion of Science, Japan
| | - T Chtanova
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Darlinghurst, New South Wales, Australia
| | - Y Kusumoto
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan
| | - H Okuyama
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan
| | - T Moriya
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan
| | - T Honda
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - K Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - T Watanabe
- The Tazuke-Kofukai Medical Research Institute/Kitano Hospital, Kita-ku, Osaka, Japan
| | - Y Sakai
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - M Tomura
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan
| |
Collapse
|
44
|
Review: The potential of seminal fluid mediated paternal-maternal communication to optimise pregnancy success. Animal 2018; 12:s104-s109. [PMID: 29455706 DOI: 10.1017/s1751731118000083] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Artificial insemination has been a landmark procedure in improving animal agriculture over the past 150 years. The utility of artificial insemination has facilitated a rapid improvement in animal genetics across agricultural species, leading to improvements of growth, health and productivity in poultry, swine, equine and cattle species. The utility of artificial insemination, as with all assisted reproductive technologies side-steps thousands of years of evolution that has led to the development of physiological systems to ensure the transmission of genetics from generation to generation. The perceived manipulation of these physiological systems as a consequence of assisted reproduction are points of interest in which research could potentially improve the success of these technologies. Indeed, seminal fluid is either removed or substantially diluted when semen is prepared for artificial insemination in domestic species. Although seminal fluid is not a requirement for pregnancy, could the removal of seminal fluid from the ejaculate have negative consequences on reproductive outcomes that could be improved to further the economic benefit of artificial insemination? One such potential influence of seminal fluid on reproduction stems from the question; how does the allogeneic foetus survive gestation in the face of the maternal immune system? Observation of the maternal immune system during pregnancy has noted maternal immune tolerance to paternal-specific antigens; a mechanism by which the maternal immune system tolerates specific paternal antigens expressed on the foetus. In species like human or rodent, implantation occurs days after fertilisation and as such the mechanisms to establish antigen-specific tolerance must be initiated very early during pregnancy. We and others propose that these mechanisms are initiated at the time of insemination when paternal antigens are first introduced to the maternal immune system. It is unclear whether such mechanisms would also be involved in domestic species, such as cattle, where implantation occurs weeks later in gestation. A new paradigm detailing the importance of paternal-maternal communication at the time of insemination is becoming evident as it relates to maternal tolerance to foetal antigen and ultimately pregnancy success.
Collapse
|
45
|
Song K, Cai H, Zhang D, Huang R, Sun D, He Y. Effects of human adipose-derived mesenchymal stem cells combined with estrogen on regulatory T cells in patients with premature ovarian insufficiency. Int Immunopharmacol 2018; 55:257-262. [DOI: 10.1016/j.intimp.2017.12.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/09/2017] [Accepted: 12/21/2017] [Indexed: 01/14/2023]
|
46
|
Brawner KM, Kumar R, Serrano CA, Ptacek T, Lefkowitz E, Morrow CD, Zhi D, Baig KRKK, Smythies LE, Harris PR, Smith PD. Helicobacter pylori infection is associated with an altered gastric microbiota in children. Mucosal Immunol 2017; 10:1169-1177. [PMID: 28120843 PMCID: PMC5526746 DOI: 10.1038/mi.2016.131] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/29/2016] [Indexed: 02/07/2023]
Abstract
The intestinal microbiome in early life influences development of the mucosal immune system and predisposition to certain diseases. Because less is known about the microbiome in the stomach and its relationship to disease, we characterized the microbiota in the stomachs of 86 children and adults and the impact of Helicobacter pylori infection on the bacterial communities. The overall composition of the gastric microbiota in children and adults without H. pylori infection was similar, with minor differences in only low abundance taxa. However, the gastric microbiota in H. pylori-infected children, but not infected adults, differed significantly in the proportions of multiple high abundance taxa compared with their non-infected peers. The stomachs of H. pylori-infected children also harbored more diverse microbiota, smaller abundance of Firmicutes, and larger abundance of non-Helicobacter Proteobacteria and several lower taxonomic groups than stomachs of H. pylori-infected adults. Children with restructured gastric microbiota had higher levels of FOXP3, IL10, and TGFβ expression, consistent with increased T-regulatory cell responses, compared with non-infected children and H. pylori-infected adults. The gastric commensal bacteria in children are altered during H. pylori infection in parallel with more tolerogenic gastric mucosae, potentially contributing to the reduced gastric disease characteristic of H. pylori-infected children.
Collapse
Affiliation(s)
- KM Brawner
- Department of Medicine (Gastroenterology), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - R Kumar
- Center for Clinical and Translational Science (Biomedical Informatics), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - CA Serrano
- Department of Pediatric Gastroenterology and Nutrition, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - T Ptacek
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - E Lefkowitz
- Center for Clinical and Translational Science (Biomedical Informatics), Pontificia Universidad Católica de Chile, Santiago, Chile,Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - CD Morrow
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - D Zhi
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL 35294
| | - KR Kyanam Kabir Baig
- Department of Medicine (Gastroenterology), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - LE Smythies
- Department of Medicine (Gastroenterology), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - PR Harris
- Department of Pediatric Gastroenterology and Nutrition, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Phillip D. Smith
- Department of Medicine (Gastroenterology), Pontificia Universidad Católica de Chile, Santiago, Chile,Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294,VA Medical Center Research Service, Birmingham, AL
| |
Collapse
|
47
|
Characterization and Expansion of Autologous GMP-ready Regulatory T Cells for TREG-based Cell Therapy in Patients with Ulcerative Colitis. Inflamm Bowel Dis 2017; 23:1348-1359. [PMID: 28708802 DOI: 10.1097/mib.0000000000001192] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND A local imbalance between regulatory (Treg) and effector T cells is believed to play a major role in gut-specific inflammation, including ulcerative colitis (UC). Restoration of this balance through an adoptive Treg transfer is an attractive new treatment approach in patients who are refractory to current standard therapies. It was our goal to develop a Good Manufacturing Practices (GMP)-conform protocol for expansion of UC Treg cells as a rational backbone for future studies on Treg therapy in UC. METHODS CD25 blood T cells derived from patients with UC were ex vivo expanded in the presence of IL-2, rapamycin, and anti-CD3/anti-CD28 expander beads using a GMP-conform protocol. Cells were subsequently assessed for stability and function. RESULTS Patient-derived ex vivo rapamycin-expanded GMP-ready CD25 cells were polyclonal, hypomethylated at intron 1 of the FoxP3 locus, and suppressive in carboxyfluorescein succinimidyl ester-dilution assays against autologous peripheral blood-derived and allogeneic colon-derived responder cells. Function was mediated by soluble factors, including toxic granules. In addition to CD4 T cells, suppressive hypermethylated CD8 T-cell subsets were also induced during the expansion process. CONCLUSIONS Patient-derived rapamycin-expanded CD25 cells are stable and functional, and as such, ready to serve in a phase I dose-escalation safety study in UC.
Collapse
|
48
|
Steinmeyer S, Howsmon DP, Alaniz RC, Hahn J, Jayaraman A. Empirical modeling of T cell activation predicts interplay of host cytokines and bacterial indole. Biotechnol Bioeng 2017; 114:2660-2667. [PMID: 28667749 DOI: 10.1002/bit.26371] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 06/21/2017] [Accepted: 06/30/2017] [Indexed: 12/24/2022]
Abstract
Adoptive transfer of anti-inflammatory FOXP3+ Tregs has gained attention as a new therapeutic strategy for auto-inflammatory disorders such as Inflammatory Bowel Disease. The isolated cells are conditioned in vitro to obtain a sufficient number of anti-inflammatory FOXP3+ Tregs that can be reintroduced into the patient to potentially reduce the pathologic inflammatory response. Previous evidence suggests that microbiota metabolites can potentially condition cells during the in vitro expansion/differentiation step. However, the number of combinations of cytokines and metabolites that can be varied is large, preventing a purely experimental investigation which would determine optimal cell therapeutic outcomes. To address this problem, a combined experimental and modeling approached is investigated here: an artificial neural network model was trained to predict the steady-state T cell population phenotype after differentiation with a variety of host cytokines and the microbial metabolite indole. This artificial neural network model was able to both reliably predict the phenotype of these T cell populations and also uncover unexpected conditions for optimal Treg differentiation that were subsequently verified experimentally. Biotechnol. Bioeng. 2017;114: 2660-2667. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Shelby Steinmeyer
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, College Station, Texas
| | - Daniel P Howsmon
- Department of Chemical & Biological Engineering, Rensselaer Polytechnic Institute, 110 Eighth St., CBIS # 4213, Troy, New York, 12180.,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
| | - Robert C Alaniz
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, College Station, Texas
| | - Juergen Hahn
- Department of Chemical & Biological Engineering, Rensselaer Polytechnic Institute, 110 Eighth St., CBIS # 4213, Troy, New York, 12180.,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York.,Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | - Arul Jayaraman
- Department of Chemical Engineering, Texas A&M University, 3122 TAMU Room 200, College Station, Texas, 77843
| |
Collapse
|
49
|
Chiriac MT, Buchen B, Wandersee A, Hundorfean G, Günther C, Bourjau Y, Doyle SE, Frey B, Ekici AB, Büttner C, Weigmann B, Atreya R, Wirtz S, Becker C, Siebler J, Neurath MF. Activation of Epithelial Signal Transducer and Activator of Transcription 1 by Interleukin 28 Controls Mucosal Healing in Mice With Colitis and Is Increased in Mucosa of Patients With Inflammatory Bowel Disease. Gastroenterology 2017; 153:123-138.e8. [PMID: 28342759 DOI: 10.1053/j.gastro.2017.03.015] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 03/09/2017] [Accepted: 03/10/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND & AIMS We investigated the roles of interleukin 28A (also called IL28A or interferon λ2) in intestinal epithelial cell (IEC) activation, studying its effects in mouse models of inflammatory bowel diseases (IBD) and intestinal mucosal healing. METHODS Colitis was induced in C57BL/6JCrl mice (controls), mice with IEC-specific disruption of Stat1 (Stat1IEC-KO), mice with disruption of the interferon λ receptor 1 gene (Il28ra-/-), and mice with disruption of the interferon regulatory factor 3 gene (Irf3-/-), with or without disruption of Irf7 (Irf7-/-). We used high-resolution mini-endoscopy and in vivo imaging methods to assess colitis progression. We used 3-dimensional small intestine and colon organoids, along with RNA-Seq and gene ontology methods, to characterize the effects of IL28 on primary IECs. We studied the effects of IL28 on the human intestinal cancer cell line Caco-2 in a wound-healing assay, and in mice colon wounds. Colonic biopsies and resected tissue from patients with IBD (n = 62) and patients without colon inflammation (controls, n = 23) were analyzed by quantitative polymerase chain rection to measure expression of IL28A, IL28RA, and other related cytokines; biopsy samples were also analyzed by immunofluorescence to identify sources of IL28 production. IECs were isolated from patient tissues and incubated with IL28; signal transducer and activator of transcription 1 (STAT1) phosphorylation was measured by immunoblots and confocal imaging. RESULTS Lamina propria cells in colon tissues of patients with IBD, and mice with colitis, had increased expression of IL28 compared with controls; levels of IL28R were increased in the colonic epithelium of patients with IBD and mice with colitis. Administration of IL28 induced phosphorylation of STAT1 in primary human and mouse IECs, increasing with dose. Il28ra-/-, Irf3-/-, Irf3-/-Irf7-/-, as well as Stat1IEC-KO mice, developed more severe colitis after administration of dextran sulfate sodium than control mice, with reduced epithelial restitution. Il28ra-/- and Stat1IEC-KO mice also developed more severe colitis in response to oxazolone than control mice. We found IL28 to induce phosphorylation (activation) of STAT1 in epithelial cells, leading to their proliferation in organoid culture. Administration of IL28 to mice with induced colonic wounds promoted mucosal healing. CONCLUSIONS IL28 controls proliferation of IECs in mice with colitis and accelerates mucosal healing by activating STAT1. IL28 might be developed as a therapeutic agent for patients with IBD.
Collapse
Affiliation(s)
- Mircea T Chiriac
- Medical Clinic 1, Department of Medicine, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany.
| | - Barbara Buchen
- Medical Clinic 1, Department of Medicine, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Alexandra Wandersee
- Medical Clinic 1, Department of Medicine, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Gheorghe Hundorfean
- Medical Clinic 1, Department of Medicine, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Claudia Günther
- Medical Clinic 1, Department of Medicine, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Yvonne Bourjau
- Medical Clinic 1, Department of Medicine, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | - Benjamin Frey
- Department of Radiation Oncology, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Arif B Ekici
- Core Unit Genomics, Institute of Human Genetics, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Christian Büttner
- Core Unit Genomics, Institute of Human Genetics, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Benno Weigmann
- Medical Clinic 1, Department of Medicine, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Raja Atreya
- Medical Clinic 1, Department of Medicine, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany; Ludwig Demling Endoscopy Center of Excellence, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Stefan Wirtz
- Medical Clinic 1, Department of Medicine, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Christoph Becker
- Medical Clinic 1, Department of Medicine, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Jürgen Siebler
- Medical Clinic 1, Department of Medicine, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Markus F Neurath
- Medical Clinic 1, Department of Medicine, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany; Ludwig Demling Endoscopy Center of Excellence, University of Erlangen-Nuremberg, Erlangen, Germany.
| |
Collapse
|
50
|
Zundler S, Neurath MF. Pathogenic T cell subsets in allergic and chronic inflammatory bowel disorders. Immunol Rev 2017; 278:263-276. [DOI: 10.1111/imr.12544] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sebastian Zundler
- Department of Medicine 1; University of Erlangen-Nuremberg; Kussmaul Campus for Medical Research & Translational Research Center; Erlangen Germany
| | - Markus F. Neurath
- Department of Medicine 1; University of Erlangen-Nuremberg; Kussmaul Campus for Medical Research & Translational Research Center; Erlangen Germany
| |
Collapse
|