1
|
Aziz K, Gilbert JA, Zaidi AH. Genomic and Phenotypic Insight into the Probiotic Potential of Lactic Acid Bacterial spp. Associated with the Human Gut Mucosa. Probiotics Antimicrob Proteins 2025; 17:1236-1264. [PMID: 38070037 DOI: 10.1007/s12602-023-10193-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2023] [Indexed: 05/07/2025]
Abstract
Commensal microbiome-based health support is gaining respect in the medical community and new human gut-associated Lactic Acid Bacteria (LAB) strains must be evaluated for their probiotic potential. Here we characterized the phenotype and genomes of human ileocecal mucosa-associated LAB strains using metagenomic sequencing and in vitro testing. The strains characterized belonged to the genus Enterococcus (Enterococcus lactis NPL1366, NPL1371, and Enterococcus mundtii NPL1379) and Lactobacillus (Lactobacillus paragasseri, NPL1369, NPL1370, and Lactiplantibacillus plantarum NPL1378). Genome annotation suggested bacterial adaptation to both human physiological and industrial manufacturing-related stressors. Genes for histidine kinases in enterococci and Na + /K + antiporters and F0F1 ATP synthases in Lactobacillus strains may support their tolerance to acid seen in vitro. The bile salt hydrolase (BSH) gene in Lp. plantarum and L. paragasseri may help explain their reported bile salt deconjugation and cholesterol-lowering behavior. Thioredoxin is the principal antioxidant system, and several oxidases and general stress-related proteins are found in lactobacilli, most notably in L. plantarum NPL1378. Multiple adhesion and biofilm-related genes were predicted in the LAB genomes. Adhesion and biofilm-related genes figured prominently in the genomes of enterococcal strains, especially E. lactis, corresponding to its biofilm formation capacity in vitro. Bacteriocin and secondary metabolite biosynthetic gene clusters in the sequenced genomes of E. lactis NPL1366 and Lp. plantarum NPL1378 may explain their in vitro pathogenic antagonism. Moreover, folate producing Lp. plantarum strain holds potential to be used in therapeutics or biofortification of food. All the strains were deemed safe through in vitro and in silico analysis. This basic genetic and phenotypic information supports their contention as probiotic adjuncts to conventional medical therapy.
Collapse
Affiliation(s)
- Kanwal Aziz
- National Probiotic Lab-National Institute for Biotechnology & Genetic Engineering-College (NIBGE-C), Jhang Road, Faisalabad, 38000, Punjab, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, 45650, Islamabad, Pakistan
| | - Jack A Gilbert
- Department of Paediatrics and Scripps Institution of Oceanography, UC San Diego School of Medicine, La Jolla, San Diego, CA, 92093, USA
| | - Arsalan Haseeb Zaidi
- National Probiotic Lab-National Institute for Biotechnology & Genetic Engineering-College (NIBGE-C), Jhang Road, Faisalabad, 38000, Punjab, Pakistan.
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, 45650, Islamabad, Pakistan.
| |
Collapse
|
2
|
Huo P, Deng L, Lu J, Kan P, Jing R, Luo LJ. The impact of Limosilactobacillus reuteri in combination with non-surgical periodontal therapy on periodontal clinical parameters and salivary and subgingival microbiota composition in individuals with stage III-IV periodontitis: a randomized controlled trial. BMC Oral Health 2025; 25:759. [PMID: 40405209 PMCID: PMC12096711 DOI: 10.1186/s12903-025-06084-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 04/29/2025] [Indexed: 05/24/2025] Open
Abstract
BACKGROUND The clinical and microbiological outcomes of probiotic-assisted periodontal therapy remain inconclusive in prior research. This ambiguity may stem from uncertainties regarding the duration, dosage, and administration route of probiotics. Additionally, earlier studies predominantly concentrated on the identification of individual bacterial species, thereby limiting the ability to thoroughly elucidate the intricate composition of microbial communities and the synergistic or antagonistic interactions among their constituents. The study aimed to investigate the effect of combining probiotics with non-surgical periodontal therapy on clinical and microbiota changes in patients with stage III-IV periodontitis. METHODS A total of 40 patients were randomized into two groups to receive non-surgical periodontal treatment. The test group received Limosilactobacillus reuteri for 21 days along with treatment. Periodontal indicators were examined at baseline and 1 and 6 months after treatment. Saliva and subgingival biofilm samples were collected for 16 S rRNA gene sequencing analysis. RESULTS After treatment, both groups showed significant improvements in clinical parameters. In the test group, attachment loss and the medium pocket were significantly reduced at 6 months compared to that at 1 month. The presence of Tannerella forsythia in subgingival biofilms decreased significantly in the test group after treatment. Among salivary microorganisms, the abundance of Prevotella nanceiensis significantly increased in both groups, while that of Streptococcussp. was significantly reduced in the control group. Linear discriminant analysis indicated that the most significant distinction between the groups was observed in the subgingival biofilm samples 1 month after treatment. CONCLUSIONS Combining L. reuteri with non-surgical periodontal therapy may not directly improve clinical indicators. The treatment showed potential benefits by changing the microbial composition of subgingival biofilm and enhancing treatment sensitivity. TRIAL REGISTRATION The trial was approved by the Chinese Clinical Trial Registry (ChiCTR) on March 25, 2021, with registration number ChiCTR2100044638.
Collapse
Affiliation(s)
- Pengcheng Huo
- Department of Periodontics, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Stomatological Hospital and Dental School of Tongji University, 399 Yanchangzhong Road, Jingan District, Shanghai, 200072, China
| | - Li Deng
- Department of Periodontics, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Stomatological Hospital and Dental School of Tongji University, 399 Yanchangzhong Road, Jingan District, Shanghai, 200072, China
| | - Jiawei Lu
- Department of Periodontics, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Stomatological Hospital and Dental School of Tongji University, 399 Yanchangzhong Road, Jingan District, Shanghai, 200072, China
| | - Powen Kan
- Department of Periodontics, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Stomatological Hospital and Dental School of Tongji University, 399 Yanchangzhong Road, Jingan District, Shanghai, 200072, China
| | - Rui Jing
- Department of Periodontics, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Stomatological Hospital and Dental School of Tongji University, 399 Yanchangzhong Road, Jingan District, Shanghai, 200072, China
| | - Li-Jun Luo
- Department of Periodontics, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Stomatological Hospital and Dental School of Tongji University, 399 Yanchangzhong Road, Jingan District, Shanghai, 200072, China.
| |
Collapse
|
3
|
Sabino YNV, Paiva AD, Fonseca BR, Medeiros JD, Machado ABF. Deciphering probiotic potential: a comprehensive guide to probiogenomic analyses. Future Microbiol 2025:1-12. [PMID: 40227157 DOI: 10.1080/17460913.2025.2492472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 04/09/2025] [Indexed: 04/15/2025] Open
Abstract
In recent years, the study of probiotics has advanced significantly, driven by growing interest in their potential health benefits and applications in the food and pharmaceutical industries. Probiotics are claimed to enhance gut health, modulate immune responses, improve digestion, synthesize beneficial compounds for the host, and even impact mental health through the gut-brain axis. However, traditional in vitro methods for identifying probiotics have limitations, such as low reproducibility in phenotypic screening, limited capacity to discover new strains, restricted evaluation of safety, and inefficiencies in fully understanding the biological properties responsible for health-promoting effects. Advancements in genomic analysis technology have provided a cost-effective approach to further explore probiotic strains and enhance understanding of the molecular mechanisms driving their beneficial effects in hosts. Here, we describe a comprehensive workflow for probiogenomic analysis aimed at establishing a gold-standard pipeline for screening probiotic potential based on genome sequencing. This pipeline encompasses steps from acquiring genomes to screening for safety-related features, genomic plasticity, and probiotic markers through whole-genome sequencing. In addition, this study outlines the respective methodological approaches and provides the most comprehensive database documented to date, comprising 243 genes potentially associated with probiotic function.
Collapse
Affiliation(s)
- Yasmin Neves Vieira Sabino
- Department of Parasitology, Microbiology and Immunology, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Aline Dias Paiva
- Department of Microbiology, Immunology and Parasitology, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Bárbara Ribeiro Fonseca
- Department of Parasitology, Microbiology and Immunology, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Julliane Dutra Medeiros
- Department of Biology, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | | |
Collapse
|
4
|
Tobias J, Heinl S, Dendinovic K, Ramić A, Schmid A, Daniel C, Wiedermann U. The benefits of Lactiplantibacillus plantarum: From immunomodulator to vaccine vector. Immunol Lett 2025; 272:106971. [PMID: 39765312 DOI: 10.1016/j.imlet.2025.106971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/23/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
Probiotics have been increasingly recognized for positively influencing many aspects of human health. Lactiplantibacillus plantarum (L. plantarum), a non-pathogenic bacterium, previously known as Lactobacillus plantarum, is one of the lactic acid bacteria commonly used in fermentation. The probiotic properties of L. plantarum have highlighted its health benefits to humans when consumed in adequate amounts. L. plantarum strains primarily enter the body orally and alter intestinal microflora and modulate the immune responses in their host; thereby benefiting human health. Furthermore, the use of L. plantarum as vaccine vectors delivering mucosal antigens has been shown to be a promising strategy. These aspects, from Immunomodulation to vaccine delivery by L. plantarum in preclinical settings, are highlighted in this review. Along these lines, construction of a recombinant L. plantarum strain expressing a B cell multi-peptide, as a future vaccine to modulate immunity and confer anti-tumor effect by targeting Her-2/neu-overexpressing cancers in local and distal sites, is also presented and discussed.
Collapse
Affiliation(s)
- Joshua Tobias
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| | - Stefan Heinl
- Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Kristina Dendinovic
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ajša Ramić
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Anna Schmid
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Catherine Daniel
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Ursula Wiedermann
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
5
|
Das S, Bhattacharjee MJ, Mukherjee AK, Khan MR. Insights Into the Role of Leuconostoc Mesenteroides SB1075 Fermentation in Enhancing the Shelf-Life of Soy Yogurt. J Food Sci 2025; 90:e70220. [PMID: 40285465 DOI: 10.1111/1750-3841.70220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/26/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025]
Abstract
Fermented foods with extended shelf life, free from synthetic preservatives, offer significant commercial and health advantages. With increasing consumer demand for plant-based alternatives, soy yogurt has gained substantial market interest. However, improving its shelf-life at ambient temperature without compromising quality remains challenging. This study investigates the application of Leuconostoc mesenteroides SB1075, a promising probiotic strain isolated from yellow-cultivar soybean seeds of Manipur (India), as a biopreservative starter culture for soy yogurt fermentation. Unlike conventional dairy-origin lactic acid bacteria, L. mesenteroides SB1075 demonstrated superior adaptability to soy fermentation. The resulting soy yogurt exhibited an impressive shelf-life of 40 days at room temperature (25°C), significantly outperforming the control (spontaneous fermentation without starter, <5 days) while maintaining its organoleptic and nutritional qualities. Sensory evaluation with a hedonic scale of 10 indicated that flavor, aroma, and taste consistently received a score >6, while color, firmness, consistency, syneresis, and overall acceptance were rated >7. Microscopic analysis, including atomic force and scanning electron microscopy, revealed that the flocculation behavior of L. mesenteroides SB1075 effectively inhibited spoilage microbes, thereby extending product stability. Genomic analysis highlighted its heterofermentative and biopreservative potential, while time-course metabolomics identified bioactive compounds, such as monobactam, organic acids, and neomycin, from the 5th day of storage. This study provides key insights into biopreservation strategies for plant-based fermented foods, offering a valuable alternative to chemical preservatives. The findings support the commercial development of naturally preserved soy yogurt, enhancing the sustainability and market expansion of plant-based dairy alternatives. PRACTICAL APPLICATION: Our research addresses a critical need in the food industry: prolonging the shelf life of soy yogurt without relying on preservatives, which is achieved using a plant-derived probiotic bacterium L. mesenteroides SB1075. The findings outlined in this manuscript propose an innovative and sustainable approach to improving the quality and shelf life of soy yogurt, meeting the increasing demand for vegan, healthier, and preservative-free food choices.
Collapse
Affiliation(s)
- Sushmita Das
- Division of Life Science, Institute of Advanced Study in Science and Technology, Guwahati, India
- Department of Biotechnology, Gauhati University, Guwahati, India
| | | | - Ashis K Mukherjee
- Division of Life Science, Institute of Advanced Study in Science and Technology, Guwahati, India
| | - Mojibur Rohman Khan
- Division of Life Science, Institute of Advanced Study in Science and Technology, Guwahati, India
| |
Collapse
|
6
|
Wu P, Zhang Y, Shan Q, Wang Z, Cheng S, Wang L, Liu B, Li W, Chen Z, Luo J, Liang Y. The investigation of the mechanism underlying variations in oxidative stress tolerance of Lacticaseibacillus paracasei resulting from fermentation methods through endogenous CRISPR-Cas9 editing methodology. Food Microbiol 2025; 127:104697. [PMID: 39667861 DOI: 10.1016/j.fm.2024.104697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 12/14/2024]
Abstract
The probiotic effects of lactic acid bacteria make them widely used in human and animal breeding industry. However, the presence of oxidative stress during the production and application process can cause bacterial damage or even death, significantly compromising the functionality of probiotics. Despite its potential for broader application scenarios that could provide a more comprehensive understanding of bacteria's internal adaptation strategies, there is a lack of research investigating oxidative stress from the perspective of culture methods. In this study, the tolerance to oxidative stress was compared between bacteria cultivated through solid-state fermentation (SSF) and liquid-state fermentation (LSF), and the physiological and transcriptional disparities between these two bacterial strains were investigated. Additionally, a novel and efficient gene editing method was developed to elucidate the genetic basis underlying these differences in tolerance. The results demonstrated a significantly higher tolerance to oxidative stress in SSF bacteria compared to LSF bacteria, along with a stronger capacity for maintaining intracellular microenvironment stability and the activity of key metabolic enzymes. It is noteworthy that the bacteria from SSF significantly enhance the transport of carbohydrate substances and facilitate intracellular metabolic flow. Gene editing experiments have confirmed the crucial role of genes glpF and glpO in regulating the glycerol metabolism pathway, which is essential for enhancing the tolerance of bacteria from SSF to oxidative stress. Based on these findings, the mechanism underlying the disparity in oxidative stress tolerance resulting from different culture methods has been summarized. Furthermore, investigation into different culture modes has revealed that moderate oxygen levels during cultivation significantly influence variation in bacterial tolerance to oxidative stress. Importantly, these variations are species-specific and depend on the ecological niche distribution of Lactobacilli. These findings elucidate a novel mechanism by which Lacticaseibacillus paracasei Zhang tolerates oxidative stress, and also suggest that distinct cultivation and processing methods should be tailored based on the specific Lactobacilli groups to achieve optimal application effects in production.
Collapse
Affiliation(s)
- Pengyu Wu
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang, Henan, 473004, China; School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, 473004, China.
| | - Yutian Zhang
- Zhangzhongjing School of Traditional Chinese Medicine, Nanyang Institute of Technology, Nanyang, 473004, China
| | - Qiantong Shan
- School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, 473004, China
| | - Ziyang Wang
- School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, 473004, China
| | - Shuang Cheng
- School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, 473004, China
| | - Laiyou Wang
- School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, 473004, China
| | - Bingbing Liu
- School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, 473004, China
| | - Wenhuan Li
- School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, 473004, China
| | - Zhenmin Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiancheng Luo
- School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, 473004, China
| | - Yunxiang Liang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
7
|
Patra S, Pradhan B, Roychowdhury A. Complete genome sequence, metabolic profiling and functional studies reveal Ligilactobacillus salivarius LS-ARS2 is a promising biofilm-forming probiotic with significant antioxidant, antibacterial, and antibiofilm potential. Front Microbiol 2025; 16:1535388. [PMID: 40182284 PMCID: PMC11965632 DOI: 10.3389/fmicb.2025.1535388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/06/2025] [Indexed: 04/05/2025] Open
Abstract
Background Probiotics restore microbial balance and prevent gut-inflammation. Therefore, finding out novel probiotic strains is a demand. As gut-microbe, benefits of Ligilactobacillus salivarius (LS) are established. However, strain-specific detailed studies are limited. Here, we illustrate probiotic attributes of novel LS-ARS2 for its potential application as food-supplement and/or therapeutic to improve gut-health. Methods Whole genome sequencing (WGS) and phylogenetic analysis confirm the strain as LS. To establish probiotic properties, acid-bile tolerance, auto-aggregation, cell-surface-hydrophobicity, biofilm-formation, and adhesion-assays are performed. To ensure safety attributes, antibiotic-susceptibility, hemolytic, DNase, trypan-blue, and MTT assays are done. ABTS, DPPH, superoxide, hydroxyl free radical scavenging assays are used to determine anti-oxidant potential. Antibacterial assays, including co-culture assay with pathogen and pathogenic biofilm-inhibition assays, are performed to explore antibacterial efficacy. To characterize metabolic-profile of LS-ARS2-derived cell-free-supernatant (CFS), HRMS analysis are carried out. Consequently, WGS-analyses predict potential molecular associations related to functional outcomes. Results We find LS-ARS2 a remarkable fast-growing strain that shows acid and bile tolerance (>60% survival rate), indicating promising gut-sustainability. High auto-aggregation capacity (>80%), robust cell-surface hydrophobicity (>85%), and adhesion efficacy to Caco-2 cells illustrate significant potential of LS-ARS2 for gut colonization. Fascinatingly, LS-ARS2 is able to form biofilm within 24 h (p < 0.0001), rare among LS strains, indicating the potential of the strain for efficient stay in the gut. The strain ensures safety attributes. LS-ARS2-WGS analysis recognizes probiotic-specific determinants, predicts genomic stability, identifies orthologous-clusters for diverse functions, and predicts metabolites and bacteriocins. HRMS-studies with LS-ARS2-CFS further validate the presence of diverse beneficial metabolites with antimicrobial and immunomodulatory potential. LS-ARS2 shows significant antioxidant properties in ABTS (>60%), DPPH (>10 U/mL), superoxide (>70%), and hydroxyl free radical scavenging assays (>70%). Further, LS-ARS2 shows antimicrobial activities against Gram-positive Methicillin-resistant Staphylococcus aureus (MRSA) and Gram-negative multidrug-resistant clinical strains enterotoxigenic Escherichia coli, Vibrio cholerae, and Shigella flexneri. Anti-Salmonella effect of LS-ARS2 is prominent (p < 0.0001). Most interestingly, LS-ARS2-CFS inhibits MRSA-biofilm (p < 0.0001), again rare among LS strains. Conclusion LS-ARS2 is a novel, fast-growing, biofilm-forming probiotic with significant antioxidant, antibacterial, and anti-biofilm potentials, suggesting the promising applications of LS-ARS2 for combating pathogenic biofilms and improving gut-health. However, further in vivo studies would facilitate their potential applications.
Collapse
Affiliation(s)
- Sinjini Patra
- Biochemistry and Cell Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| | - Biswaranjan Pradhan
- S. K. Dash Center of Excellence of Biosciences and Engineering & Technology (SKBET), Indian Institute of Technology Bhubaneswar, Odisha, India
| | - Anasuya Roychowdhury
- Biochemistry and Cell Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| |
Collapse
|
8
|
Liao Y, Liu T, Zeng X, Xiao B, Xiao M, Zhu Y, Song Q. Influences of gestational diabetes mellitus on the changes in the vaginal microbiota from antepartum to postpartum. BMC Pregnancy Childbirth 2025; 25:290. [PMID: 40089657 PMCID: PMC11909838 DOI: 10.1186/s12884-025-07411-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 03/03/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND No consensus has yet been reached concerning whether there were significant differences in the vaginal microbiota according to maternal gestational diabetes mellitus (GDM) status. This study aimed to compare the vaginal microbiota of women with GDM and normal blood glucose before and after delivery and to prospectively evaluate the influence of GDM on the dynamic changes of vaginal microbiota from antepartum to postpartum. METHODS This study included 20 GDM patients and 31 average pregnant women who gave birth at the Shenzhen Baoan Women's and Children's Hospital. Vaginal secretions samples were collected one week before delivery (D0), on the first day of delivery (D1), and 42 days after delivery (D42). Vaginal microbiota was detected using 16S rRNA gene sequencing. RESULTS There was no significant difference in alpha and beta diversity between the GDM and non-GDM groups at each time point (all p > 0.05). However, the overall change patterns in Shannon and Pielou's evenness index from D0 to D1 to D42 significantly differed between the GDM and non-GDM groups (p = 0.046 and p = 0.032, respectively). The abundance of Lactobacillus decreased obviously after delivery, especially in the GDM group, showing a more severe imbalance of the vaginal microbiota. CONCLUSIONS We found that GDM affected the succession of vaginal microbiota in the perinatal period. Our findings provided additional evidence for regulating the vaginal microbiota during pregnancy and postpartum to reduce adverse pregnancy outcomes and achieve long-term vaginal health outcomes.
Collapse
Affiliation(s)
- Ying Liao
- Department of Obstetrics, Shenzhen Baoan Women's and Children's Hospital, No.56 Yulv Road, Shenzhen, Baoan, 518100, China
| | - Ting Liu
- Department of Obstetrics, Shenzhen Baoan Women's and Children's Hospital, No.56 Yulv Road, Shenzhen, Baoan, 518100, China
| | - Xinfang Zeng
- Department of Obstetrics, Shenzhen Baoan Women's and Children's Hospital, No.56 Yulv Road, Shenzhen, Baoan, 518100, China
- First Clinical Medical College, Jinan University, Guangzhou, 510000, China
| | - Bin Xiao
- Maternal-Fetal Medicine Institute, Shenzhen Baoan Women's and Children's Hospital, Shenzhen, 518100, China
| | - Meiqun Xiao
- Department of Obstetrics, Shenzhen Baoan Women's and Children's Hospital, No.56 Yulv Road, Shenzhen, Baoan, 518100, China
| | - Yuanfang Zhu
- Department of Obstetrics, Shenzhen Baoan Women's and Children's Hospital, No.56 Yulv Road, Shenzhen, Baoan, 518100, China.
- Maternal-Fetal Medicine Institute, Shenzhen Baoan Women's and Children's Hospital, Shenzhen, 518100, China.
| | - Qiying Song
- Department of Child Healthcare, Shenzhen Baoan Women's and Children's Hospital, Shenzhen, 518100, China.
- Center for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Health Science Center, Shenzhen University, Shenzhen, 518055, China.
| |
Collapse
|
9
|
Kim I, Park S, Kim J, Park SY, Seo J, Roh S. Treatment with Lactobacillus paracasei L30 extract induces osteogenic differentiation of human bone marrow mesenchymal stem cells in vitro. Biomed Pharmacother 2025; 184:117913. [PMID: 39955853 DOI: 10.1016/j.biopha.2025.117913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/22/2025] [Accepted: 02/07/2025] [Indexed: 02/18/2025] Open
Abstract
Bone-related diseases such as osteoporosis pose a significant health economic burden to countries around the world and, because current treatments are insufficient, more effective therapies are desperately needed. This study explored the potential of Lactobacillus paracasei L30 extract to influence the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBM-MSCs). Our results showed that L30 extract significantly enhanced the expression of osteogenic markers in hBM-MSCs, including alkaline phosphatase (ALP), runt-related transcription factor 2 (RUNX2), and collagen type I alpha 1 (COL1A1). Mechanistic studies revealed that L30 extract activated the p38 MAPK and AKT signaling pathways, leading to phosphorylation of Glycogen synthase kinase-3 beta (GSK3β) and subsequent nuclear translocation of β-catenin. Conversely, inhibition of p38 MAPK, AKT, or knockdown of β-catenin significantly attenuated the osteogenic effects of L30 extract on hBM-MSCs. Furthermore, we found that L30 extract promoted osteogenic differentiation in primary osteoblast precursors isolated from mouse calvaria and enhances bone formation in ex vivo calvarial organ cultures. Therefore, the application of Lactobacillus paracasei L30 extract in such contexts could serve as a therapeutic approach for promoting bone formation. Collectively, our findings suggest a novel approach for the clinical management of bone-related disorders, with possible applications for treating diseases such as osteoporosis.
Collapse
Affiliation(s)
- Inwook Kim
- Biomedical Research Institute, NeoRegen Biotech Co., Ltd., Seocho-gu 06663, Republic of Korea
| | - Sankyu Park
- Biomedical Research Institute, NeoRegen Biotech Co., Ltd., Seocho-gu 06663, Republic of Korea
| | - Jieun Kim
- Biomedical Research Institute, NeoRegen Biotech Co., Ltd., Seocho-gu 06663, Republic of Korea
| | - So Young Park
- Biomedical Research Institute, NeoRegen Biotech Co., Ltd., Seocho-gu 06663, Republic of Korea
| | - Jeongmin Seo
- Biomedical Research Institute, NeoRegen Biotech Co., Ltd., Seocho-gu 06663, Republic of Korea; Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, Seoul National University School of Dentistry, Seoul 08826, Republic of Korea.
| | - Sangho Roh
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, Seoul National University School of Dentistry, Seoul 08826, Republic of Korea.
| |
Collapse
|
10
|
Bashir HH, Hasnain MA, Abbas A, Lee JH, Moon GS. The Impact of Fermented Dairy Products and Probiotics on Bone Health Improvement. Food Sci Anim Resour 2025; 45:449-467. [PMID: 40093630 PMCID: PMC11907416 DOI: 10.5851/kosfa.2025.e7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/12/2025] [Accepted: 02/03/2025] [Indexed: 03/19/2025] Open
Abstract
The bone is an important body organ due to its role in locomotion, protection and mineral homeostasis. Bone health is affected by various intrinsic and extrinsic factors like genetics, diet, environment and immune status of an individual. Being a dynamic organ, bones are continuously being remodeled and the remodeling is mediated by an intricate balance of bone formation and resorption which, in turn, are regulated by environmental, genetic, hormonal and neural factors. Lack of balance in any of these factors leads to bone disorders such as osteoporosis. Fermented dairy products along with their probiotics content play a significant role in bone remodeling process ensuring the maintenance of intricate balance in bone forming cells (osteoblasts) and bone resorbing cells (osteoclasts). Proteins and various minerals are important constituents of bone. Dairy products, especially fermented ones, are significant because of being a good source of proteins and minerals required to make and maintain a healthy bone. In addition, these provide the body with probiotics which are involved in bone health improvement by enhancing the bioavailability of dietary constituents, production of short chain fatty acids and reducing the inflammatory components. Hence, fermented dairy products should be a regular part of our diet to keep our bone healthy.
Collapse
Affiliation(s)
- Hafiza Hira Bashir
- Department of Biotechnology, Korea National University of Transportation, Jeungpyeong 27909, Korea
| | - Muhammad Adeel Hasnain
- Major in IT·Biohealth Convergence, Department of IT·Energy Convergence, Graduate School, Korea National University of Transportation, Chungju 27469, Korea
| | - Aoun Abbas
- Department of Biotechnology, Korea National University of Transportation, Jeungpyeong 27909, Korea
| | - Jae-Hyuk Lee
- Department of Biotechnology, Korea National University of Transportation, Jeungpyeong 27909, Korea
| | - Gi-Seong Moon
- Department of Biotechnology, Korea National University of Transportation, Jeungpyeong 27909, Korea
- Major in IT·Biohealth Convergence, Department of IT·Energy Convergence, Graduate School, Korea National University of Transportation, Chungju 27469, Korea
- 4D Convergence Technology Institute, Korea National University of Transportation, Jeungpyeong 27909, Korea
| |
Collapse
|
11
|
Hale OF, Yin M, Behringer MG. Elevated rates and biased spectra of mutations in anaerobically cultured lactic acid bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.28.639667. [PMID: 40060621 PMCID: PMC11888475 DOI: 10.1101/2025.02.28.639667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
The rate, spectrum, and biases of mutations represent a fundamental force shaping biological evolution. Convention often attributes oxidative DNA damage as a major driver of spontaneous mutations. Yet, despite the contribution of oxygen to mutagenesis and the ecological, industrial, and biomedical importance of anaerobic organisms, relatively little is known about the mutation rates and spectra of anaerobic species. Here, we present the rates and spectra of spontaneous mutations assessed anaerobically over 1000 generations for three fermentative lactic acid bacteria species with varying levels of aerotolerance: Lactobacillus acidophilus, Lactobacillus crispatus, and Lactococcus lactis. Our findings reveal highly elevated mutation rates compared to the average rates observed in aerobically respiring bacteria with mutations strongly biased towards transitions, emphasizing the prevalence of spontaneous deamination in these anaerobic species and highlighting the inherent fragility of purines even under conditions that minimize oxidative stress. Beyond these overarching patterns, we identify several novel mutation dynamics: positional mutation bias around the origin of replication in Lb. acidophilus, a significant disparity between observed and equilibrium GC content in Lc. lactis, and repeated independent deletions of spacer sequences from within the CRISPR locus in Lb. crispatus providing mechanistic insights into the evolution of bacterial adaptive immunity. Overall, our study provides new insights into the mutational landscape of anaerobes, revealing how non-oxygenic factors shape mutation rates and influence genome evolution.
Collapse
Affiliation(s)
- Owen F. Hale
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| | - Michelle Yin
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- School of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Megan G. Behringer
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
12
|
Yaikhan T, Wonglapsuwan M, Pahumunto N, Nokchan N, Teanpaisan R, Surachat K. Probiogenomic analysis of Limosilactobacillus fermentum SD7, a probiotic candidate with remarkable aggregation abilities. Heliyon 2025; 11:e42451. [PMID: 40007772 PMCID: PMC11850171 DOI: 10.1016/j.heliyon.2025.e42451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 02/02/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
Limosilactobacillus fermentum has gained recognition as a probiotic due to its immunomodulatory properties. In this study, we characterized L. fermentum SD7, which was isolated from the human oral cavity. The genome of L. fermentum SD7 was approximately 2.27 Mb in size, with a 51.1 % GC content. Using comprehensive genome analysis, we compared the genome of L. fermentum SD7 with 153 available genome sequences of L. fermentum strains and categorized the 154 strains into six distinct clades based on core gene single nucleotide polymorphisms. Among the 12,598 orthologous proteins, we identified 910 core genes and 10,169 accessory genes. Our analysis revealed a close similarity between L. fermentum SD7, FS-10, and L13. In addition, L. fermentum SD7 genome contains four strain-specific putative CRISPR-associated genes and lacks antimicrobial resistance and virulence genes. Importantly, we identified 27 genes in L. fermentum SD7 genome that are linked to aggregation ability, which is supported by our probiogenomic analysis. This aggregation ability is considered crucial for the probiotic efficacy of L. fermentum SD7. These findings provide a comprehensive understanding of the genetic composition of L. fermentum and its potential probiotic properties, identifying L. fermentum SD7 as a promising probiotic candidate for use in the food and healthcare industries.
Collapse
Affiliation(s)
- Thunchanok Yaikhan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Monwadee Wonglapsuwan
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Nuntiya Pahumunto
- Research Center of Excellence for Oral Health, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Department of Oral Diagnostic Sciences, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Natakorn Nokchan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Rawee Teanpaisan
- Research Center of Excellence for Oral Health, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Medical Science Research and Innovation Institute, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Komwit Surachat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| |
Collapse
|
13
|
Basharat S, Zhai L, Jiang F, Asjad T, Khan A, Liao X. Screening and Comparative Genomics of Probiotic Lactic Acid Bacteria from Bee Bread of Apis Cerana: Influence of Stevia and Stevioside on Bacterial Cell Growth and the Potential of Fermented Stevia as an Antidiabetic, Antioxidant, and Antifungal Agent. Microorganisms 2025; 13:216. [PMID: 40005583 PMCID: PMC11857352 DOI: 10.3390/microorganisms13020216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 02/27/2025] Open
Abstract
The purpose of this research is to identify and characterize lactic acid bacteria (LAB) species in bee bread produced by honey bees (Apis Cerana) in the east mountain area of Suzhou, China. We isolated three strains, Apilactobacillus kunkeei (S1), Lactiplantibacillus plantarum (S2), and Lacticaseibacillus pentosus (S3), with S2 producing the highest amount of lactic acid. Phylogenetic analysis indicated that these isolates, along with the type strain, formed a distinct sub-cluster within the LAB group. The strains exhibited non-hemolytic activity, lacked functional virulence factors, demonstrated high acid and bile tolerance, strong adhesion to intestinal cells, and antimicrobial activity against pathogens, collectively indicating their safety and high probiotic potential for therapeutic applications. Our studies demonstrated that S2 and S3 grew well in the presence of stevia leaf powder and steviosides, while S1 showed reduced growth and inhibitory effects. Importantly, the stevia-fermented strains exhibited strong probiotic potential along with significant antidiabetic, antioxidant, and antifungal properties in vitro. These findings highlight their potential applications in the food, feed, and pharmaceutical industries. Future research should focus on in vivo experiments to validate these results and evaluate compatibility among the strains before their application in functional foods.
Collapse
Affiliation(s)
- Samra Basharat
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; (S.B.); (F.J.); (T.A.); (A.K.)
| | - Lixin Zhai
- Henan Key Laboratory of Biomarker Based Rapid-Detection Technology for Food Safety, Institute of Molecular Detection Technology and Equipment, Xuchang University, Xuchang 461000, China;
| | - Fuyao Jiang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; (S.B.); (F.J.); (T.A.); (A.K.)
| | - Tanzila Asjad
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; (S.B.); (F.J.); (T.A.); (A.K.)
| | - Adil Khan
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; (S.B.); (F.J.); (T.A.); (A.K.)
| | - Xiangru Liao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; (S.B.); (F.J.); (T.A.); (A.K.)
| |
Collapse
|
14
|
Valentino V, De Filippis F, Marotta R, Pasolli E, Ercolini D. Genomic features and prevalence of Ruminococcus species in humans are associated with age, lifestyle, and disease. Cell Rep 2024; 43:115018. [PMID: 39615045 DOI: 10.1016/j.celrep.2024.115018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/23/2024] [Accepted: 11/11/2024] [Indexed: 12/28/2024] Open
Abstract
The genus Ruminococcus is dominant in the human gut, but higher levels of some species, such as R. gnavus, R. torques, and R. bromii, have been linked to health or disease. In this study, we analyzed >9,000 Ruminococcus metagenome-assembled genomes (MAGs) reconstructed from >5,000 subjects and revealed significant links between the prevalence of some species/subspecies and geographic origin, age, lifestyle, and disease, with subspecies prevalent in specific subpopulations showing divergent metabolic potential. Furthermore, Ruminococcus species from Lachnospiraceae encoded for carbohydrate-active enzymes (CAZy) potentially involved in the metabolism of human N- and O-glycans, whereas those from Oscillospiraceae appear to be more adapted toward fiber metabolism. These new findings contribute to elucidating the potential functional role of Ruminococcus in specific lifestyles and diseases and to decipher the diversity and the adaptation of members of this genus to the human gut.
Collapse
Affiliation(s)
- Vincenzo Valentino
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone 1, Portici, 80055 Naples, Italy
| | - Francesca De Filippis
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone 1, Portici, 80055 Naples, Italy; Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Roberto Marotta
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone 1, Portici, 80055 Naples, Italy
| | - Edoardo Pasolli
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone 1, Portici, 80055 Naples, Italy
| | - Danilo Ercolini
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone 1, Portici, 80055 Naples, Italy; Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
15
|
Rocha BMDO, Sabino YNV, de Almeida TC, Palacio FB, Rotta IS, Dias VC, da Silva VL, Diniz CG, Azevedo VADC, Brenig B, Soares SDC, Paiva AD, Medeiros JD, Machado ABF. Unlocking Probiotic Potential: Genomic Insights into Weissella paramesenteroides UFTM 2.6.1. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10409-x. [PMID: 39633035 DOI: 10.1007/s12602-024-10409-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2024] [Indexed: 12/07/2024]
Abstract
Weissella, a genus of lactic acid bacteria, has diverse beneficial attributes including probiotic activity and biotechnological applications. Therefore, the investigation of the Weissella genus has garnered growing interest. In this study, we sequenced the complete genome of Weissella paramesenteroides UFTM 2.6.1 isolated from unpasteurized cow's milk from the Triângulo Mineiro region and performed probiogenomic analyses. Taxonomic characterization confirmed the identity of W. paramesenteroides. The genome comprises 1926 protein-coding genes, mainly related to cell metabolism, information storage and processing, and cellular processes and signaling. Ninety-nine unique genes associated with probiotic functions were identified in the genome of W. paramesenteroides UFTM 2.6.1, including genes involved in stress response, bacterial persistence in the gastrointestinal tract, and biosynthesis of vitamins. In silico analysis of bacteriocin-related genes identified Pediocin, and subsequent in vitro testing confirmed that W. paramesenteroides UFTM 2.6.1 exhibits antimicrobial activity against Listeria spp. Genomic characterization revealed the presence of the replicon pLCK4 and four prophage regions, one of which was intact. Moreover, no CRISPR-Cas array or associated Cas proteins were found, along with an absence of resistance and virulence genes, suggesting a safety aspect of the evaluated strain. Pan-genome analysis unveiled 204 exclusive genes in the genome of W. paramesenteroides UFTM 2.6.1, which includes metabolism and stress-associated genes. In general, the results indicate probiotic potential of W. paramesenteroides UFTM 2.6.1. Further studies are required to ensure the safety and beneficial effects of this bacterium in vivo, aiming for future applications in the food industry and animal and human medicine.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Aline Dias Paiva
- Universidade Federal Do Triângulo Mineiro (UFTM), Uberaba, Brazil
| | | | | |
Collapse
|
16
|
Eilers T, Legein M, Temmermans J, Dillen J, Vandendriessche I, Sandra K, Bron PA, Wittouck S, Lebeer S. Distribution of C30 carotenoid biosynthesis genes suggests habitat adaptation function in insect-adapted and nomadic Lactobacillaceae. Commun Biol 2024; 7:1610. [PMID: 39627396 PMCID: PMC11615344 DOI: 10.1038/s42003-024-07291-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/19/2024] [Indexed: 12/06/2024] Open
Abstract
Carotenoids are membrane-bound pigments that are essential for photosynthesizing plants and algae, widely applied in food, feed and cosmetics due to their antioxidant and anti-inflammatory properties. The production of carotenoids, particularly C30 forms, has been documented in some non-photosynthetic prokaryotes. However, their function, distribution and ecology beyond photosynthesizing organisms remains understudied. In this study, we performed an eco-evolutionary analysis of terpenoid biosynthetic gene clusters in the Lactobacillaceae family, screening 4203 dereplicated genomes for terpenoid biosynthesis genes, and detected crtMN genes in 28/361 (7.7%) species across 14/34 (41.2%) genera. These genes encode key enzymes for producing the C30 carotenoid 4,4'-diaponeurosporene. crtMN genes appeared to be convergently gained within Fructilactobacillus and horizontally transferred across species and genera, including Lactiplantibacillus to Levilactobacillus. The phenotype was confirmed in 87% of the predicted crtMN gene carriers (27/31). Nomadic and insect-adapted species, particularly those isolated from vegetable fermentations, e.g., Lactiplantibacillus, and floral habitats, e.g., Fructilactobacillus, contained crtMN genes, while vertebrate-associated species, including vaginal associated species, lacked this trait. This habitat association aligned with the observations that C30 carotenoid-producing strains were more resistant to UV-stress. In summary, C30 carotenoid biosynthesis plays a role in habitat adaptation and is scattered across Lactobacillaceae in line with this habitat adaptation.
Collapse
Affiliation(s)
- Tom Eilers
- University of Antwerp, Department of Bioscience Engineering, Lab of Applied Microbiology and Biotechnology, Groenenborgerlaan 171, 2020, Antwerpen, Belgium
| | - Marie Legein
- University of Antwerp, Department of Bioscience Engineering, Lab of Applied Microbiology and Biotechnology, Groenenborgerlaan 171, 2020, Antwerpen, Belgium
| | - Jari Temmermans
- University of Antwerp, Department of Bioscience Engineering, Lab of Applied Microbiology and Biotechnology, Groenenborgerlaan 171, 2020, Antwerpen, Belgium
| | - Jelle Dillen
- University of Antwerp, Department of Bioscience Engineering, Lab of Applied Microbiology and Biotechnology, Groenenborgerlaan 171, 2020, Antwerpen, Belgium
| | | | - Koen Sandra
- RIC BV, President Kennedypark 6, 8500, Kortrijk, Belgium
| | - Peter A Bron
- University of Antwerp, Department of Bioscience Engineering, Lab of Applied Microbiology and Biotechnology, Groenenborgerlaan 171, 2020, Antwerpen, Belgium
| | - Stijn Wittouck
- University of Antwerp, Department of Bioscience Engineering, Lab of Applied Microbiology and Biotechnology, Groenenborgerlaan 171, 2020, Antwerpen, Belgium
| | - Sarah Lebeer
- University of Antwerp, Department of Bioscience Engineering, Lab of Applied Microbiology and Biotechnology, Groenenborgerlaan 171, 2020, Antwerpen, Belgium.
| |
Collapse
|
17
|
Gizachew S, Engidawork E. Genomic Characterization of Lactiplantibacillus plantarum Strains: Potential Probiotics from Ethiopian Traditional Fermented Cottage Cheese. Genes (Basel) 2024; 15:1389. [PMID: 39596588 PMCID: PMC11593849 DOI: 10.3390/genes15111389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Lactiplantibacillus plantarum is a species found in a wide range of ecological niches, including vegetables and dairy products, and it may occur naturally in the human gastrointestinal tract. The precise mechanisms underlying the beneficial properties of these microbes to their host remain obscure. Although Lactic acid bacteria are generally regarded as safe, there are rare cases of the emergence of infections and antibiotic resistance by certain probiotics. OBJECTIVE An in silico whole genome sequence analysis of putative probiotic bacteria was set up to identify strains, predict desirable functional properties, and identify potentially detrimental antibiotic resistance and virulence genes. METHODS We characterized the genomes of three L. plantarum strains (54B, 54C, and 55A) isolated from Ethiopian traditional cottage cheese. Whole-genome sequencing was performed using Illumina MiSeq sequencing. The completeness and quality of the genome of L. plantarum strains were assessed through CheckM. RESULTS Analyses results showed that L. plantarum 54B and 54C are closely related but different strains. The genomes studied did not harbor resistance and virulence factors. They had five classes of carbohydrate-active enzymes with several important functions. Cyclic lactone autoinducer, terpenes, Type III polyketide synthases, ribosomally synthesized and post-translationally modified peptides-like gene clusters, sactipeptides, and all genes required for riboflavin biosynthesis were identified, evidencing their promising probiotic properties. Six bacteriocin-like structures encoding genes were found in the genome of L. plantarum 55A. CONCLUSIONS The lack of resistome and virulome and their previous functional capabilities suggest the potential applicability of these strains in food industries as bio-preservatives and in the prevention and/or treatment of infectious diseases. The results also provide insights into the probiotic potential and safety of these three strains and indicate avenues for further mechanistic studies using these isolates.
Collapse
Affiliation(s)
- Seyoum Gizachew
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa P.O. Box 9086, Ethiopia;
- Department of Bioscience Engineering, Faculty of Sciences, University of Antwerp, 2000 Antwerp, Belgium
| | - Ephrem Engidawork
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa P.O. Box 9086, Ethiopia;
| |
Collapse
|
18
|
Dricot CEMK, Erreygers I, Cauwenberghs E, De Paz J, Spacova I, Verhoeven V, Ahannach S, Lebeer S. Riboflavin for women's health and emerging microbiome strategies. NPJ Biofilms Microbiomes 2024; 10:107. [PMID: 39420006 PMCID: PMC11486906 DOI: 10.1038/s41522-024-00579-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/06/2024] [Indexed: 10/19/2024] Open
Abstract
Riboflavin (vitamin B2) is an essential water-soluble vitamin that serves as a precursor of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). FMN and FAD are coenzymes involved in key enzymatic reactions in energy metabolism, biosynthesis, detoxification and electron scavenging pathways. Riboflavin deficiency is prevalent worldwide and impacts women's health due to riboflavin demands linked to urogenital and reproductive health, hormonal fluctuations during the menstrual cycle, pregnancy, and breastfeeding. Innovative functional foods and nutraceuticals are increasingly developed to meet women's riboflavin needs to supplement dietary sources. An emerging and particularly promising strategy is the administration of riboflavin-producing lactic acid bacteria, combining the health benefits of riboflavin with those of probiotics and in situ riboflavin production. Specific taxa of lactobacilli are of particular interest for women, because of the crucial role of Lactobacillus species in the vagina and the documented health effects of other Lactobacillaceae taxa in the gut and on the skin. In this narrative review, we synthesize the underlying molecular mechanisms and clinical benefits of riboflavin intake for women's health, and evaluate the synergistic potential of riboflavin-producing lactobacilli and other microbiota.
Collapse
Affiliation(s)
- Caroline E M K Dricot
- Laboratory of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Isabel Erreygers
- Laboratory of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Eline Cauwenberghs
- Laboratory of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Jocelyn De Paz
- Laboratory of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Irina Spacova
- Laboratory of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Veronique Verhoeven
- Department of Family Medicine and Population Health, University of Antwerp, Antwerp, Belgium
- U-MaMi Excellence Centre, University of Antwerp, Antwerp, Belgium
| | - Sarah Ahannach
- Laboratory of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Sarah Lebeer
- Laboratory of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium.
- U-MaMi Excellence Centre, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
19
|
Nenciarini S, Rivero D, Ciccione A, Amoriello R, Cerasuolo B, Pallecchi M, Bartolucci GL, Ballerini C, Cavalieri D. Impact of cooperative or competitive dynamics between the yeast Saccharomyces cerevisiae and lactobacilli on the immune response of the host. Front Immunol 2024; 15:1399842. [PMID: 39450162 PMCID: PMC11499123 DOI: 10.3389/fimmu.2024.1399842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Fungi and bacteria can be found coexisting in a wide variety of environments. The combination of their physical and molecular interactions can result in a broad range of outcomes for each partner, from competition to cooperative relationships. Most of these interactions can also be found in the human gastrointestinal tract. The gut microbiota is essential for humans, helping the assimilation of food components as well as the prevention of pathogen invasions through host immune system modulation and the production of beneficial metabolites such as short-chain fatty acids (SCFAs). Several factors, including changes in diet habits due to the progressive Westernization of the lifestyle, are linked to the onset of dysbiosis statuses that impair the correct balance of the gut environment. It is therefore crucial to explore the interactions between commensal and diet-derived microorganisms and their influence on host health. Investigating these interactions through co-cultures between human- and fermented food-derived lactobacilli and yeasts led us to understand how the strains' growth yield and their metabolic products rely on the nature and concentration of the species involved, producing either cooperative or competitive dynamics. Moreover, single cultures of yeasts and lactobacilli proved to be ideal candidates for developing immune-enhancing products, given their ability to induce trained immunity in blood-derived human monocytes in vitro. Conversely, co-cultures as well as mixtures of yeasts and lactobacilli have been shown to induce an anti-inflammatory response on the same immune cells in terms of cytokine profiles and activation surface markers, opening new possibilities in the design of probiotic and dietary therapies.
Collapse
Affiliation(s)
| | - Damariz Rivero
- Department of Biology, University of Florence, Firenze, Italy
| | | | - Roberta Amoriello
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Marco Pallecchi
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Gian Luca Bartolucci
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Clara Ballerini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Duccio Cavalieri
- Department of Biology, University of Florence, Firenze, Italy
- Interuniversity Consortium for Biotechnologies, Trieste, Italy
| |
Collapse
|
20
|
Kiššová Z, Schusterová P, Mudroňová D, Novotný J, Tkáčiková Ľ. Exopolysaccharides from Limosilactobacillus reuteri: their influence on in vitro activation of porcine monocyte-derived dendritic cells - brief report. Vet Res Commun 2024; 48:3315-3321. [PMID: 38963469 PMCID: PMC11442659 DOI: 10.1007/s11259-024-10445-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/18/2024] [Indexed: 07/05/2024]
Abstract
The aim of this study was to evaluate the immunomodulatory potential of two α-D-glucans from Limosilactobacillus reuteri L26 Biocenol™ (EPS-L26) and L. reuteri DSM17938 (EPS-DSM17938), with respect to their influence on in vitro activation of porcine dendritic cells (DCs). We used immature DCs differentiated from porcine blood monocytes under in vitro conditions. Based on the surface expression of MHC II and costimulatory CD80/86 molecules, we showed that both used EPSs favour the maturation of monocyte-derived DCs (MoDCs) similarly to the commonly used stimulant tumour necrosis factor α (TNF-α). In contrast to TNF-α stimulation, MoDCs treated with both used EPSs significantly up-regulated the mRNA levels not only for interleukin (IL)-10 (P < 0.0001 for EPS-DSM17938; P = 0.0037 for EPS-L26), but also for IL-12 (P = 0.0176 for EPS-DSM17938; P = 0.0019 for EPS-L26). These cytokines are known to regulate T-cell kinetics and play a key role in maintaining immune homeostasis. Interestingly, only relatively linear α-D-glucan (EPS-DSM17938) significantly increased gene expression of the major pro-inflammatory cytokine IL-1β (P = 0.0011) and the "SOS" cytokine IL-6 (P = 0.0127). However, it is important to highlight the need for further studies aimed at cytokine kinetics in DCs, as well as a co-culture study with allogenic T-lymphocytes.
Collapse
Affiliation(s)
- Zuzana Kiššová
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Kosice, Komenského 73, 041 81, Košice, Slovakia
| | - Petra Schusterová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, Komenského 73, 041 81, Košice, Slovakia.
| | - Dagmar Mudroňová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, Komenského 73, 041 81, Košice, Slovakia
| | - Jaroslav Novotný
- Clinic of Swine, University Veterinary Hospital, University of Veterinary Medicine and Pharmacy in Kosice, Komenského 73, 041 81, Košice, Slovakia
| | - Ľudmila Tkáčiková
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, Komenského 73, 041 81, Košice, Slovakia
| |
Collapse
|
21
|
Tsao SP, Yeh TH, Lin YT, Pan CH, Lee YK, Wu CH, Huang HY. Supplementation with Bifidobacterium animalis subsp. lactis MH-022 for remission of motor impairments in a 6-OHDA-induced Parkinson's disease rat model by reducing inflammation, reshaping the gut microbiome, and fostering specific microbial taxa. Food Funct 2024; 15:9368-9389. [PMID: 39189385 DOI: 10.1039/d4fo02039a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Inflammation significantly influences the degeneration of dopaminergic neurons in Parkinson's disease (PD), which is potentially intensified by associated gut dysbiosis. The therapeutic potential of probiotics, due to their antioxidant, anti-inflammatory, and gut microbiota modulatory properties, is explored herein as a means to improve gut health and influence the gut-brain-microbiota axis in the context of PD. In this study, we investigated the role and possible mechanism of Bifidobacterium animalis subsp. lactis MH-022 (B. lactis MH-022) supplementation in a 6-hydroxydopamine (6-OHDA)-induced rat model of PD. Findings demonstrated that B. lactis MH-022 supplementation markedly ameliorated motor deficits, preserved dopaminergic neurons, enhanced the antioxidant capacity, and mitigated inflammation through restoring mitochondrial function. Furthermore, B. lactis MH-022 supplementation significantly altered the gut microbiota composition, augmenting the production of short-chain fatty acids and promoting the proliferation of beneficial bacterial taxa, thereby reinforcing their anti-inflammatory properties. Correlation analyses established strong associations between specific bacterial taxa and improvements in motor function, antioxidant levels, and reductions in inflammation markers. These insights emphasize the therapeutic potential of B. lactis MH-022 in modulating diverse aspects of PD, particularly highlighting its role in reducing inflammation, restoring mitochondrial function, enhancing antioxidant capacity, and reshaping the gut microbiota. This multifaceted approach underscores the probiotic's potential in reducing neuroinflammation and protecting dopaminergic neurons, thus offering a promising avenue for PD treatment.
Collapse
Affiliation(s)
- Shu-Ping Tsao
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan.
| | - Tu-Hsueh Yeh
- Department of Neurology, Taipei Medical University Hospital, Taipei 11031, Taiwan
- School of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ya-Tin Lin
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Chun-Hsu Pan
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan.
- School of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Yuan-Kun Lee
- Department of Microbiology & Immunology, National University of Singapore, 22, Singapore 117597
| | - Chieh-Hsi Wu
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan.
- School of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Hui-Yu Huang
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan.
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Research Center for Digestive Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Neuroscience Research Center, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
22
|
Goel A, Halami PM. Safety assessment of probiotic Lactiplantibacillus plantarum MCC5231 and its persistence in gastrointestinal tract. Microb Pathog 2024; 194:106824. [PMID: 39067492 DOI: 10.1016/j.micpath.2024.106824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Probiotics are the health beneficial microorganisms and suitable for food industry if found fit for human consumption. In the present study, Lactiplantibacillus plantarum MCC5231, a probiotic bacterium included in vegetable-based beverages, was evaluated for its safety characteristics and gastrointestinal survival using a combined in silico and in vitro approach. The strain was found to be devoid of hemolytic, lecithinase and gelatinase activities. Additionally, it does not consist any transferable antibiotic resistance genes. Further, whole genome sequence analysis revealed the presence of three intact prophages and 14 virulence-associated genes, however, none of them posed a pathogenic threat. Importantly, MCC5231 do not possess any gene associated with toxin production. The strain harbored a CRISPR system, enhancing defense against prophages. Survival assays under simulated gastric and intestinal fluid conditions demonstrated viability rates of 71.4 % and 83.3 %, respectively. Genetic analysis of the mucin binding protein indicated possession of a type II mucin binding domain, suggesting moderate adhesion to intestinal cells. Furthermore, L. plantarum MCC5231 exhibited the ability to produce exopolysaccharides and form biofilms, which may confer additional protection in the gastrointestinal tract. Based on these findings, L. plantarum MCC5231 appears to be a safe probiotic candidate suitable for commercial use in the food industry.
Collapse
Affiliation(s)
- Aditi Goel
- Microbiology and Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysuru, 570020, Karnataka, India.
| | - Prakash M Halami
- Microbiology and Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysuru, 570020, Karnataka, India.
| |
Collapse
|
23
|
Ye Z, Ji B, Peng Y, Song J, Zhao T, Wang Z. Screening and Characterization of Probiotics Isolated from Traditional Fermented Products of Ethnic-Minorities in Northwest China and Evaluation Replacing Antibiotics Breeding Effect in Broiler. Pol J Microbiol 2024; 73:275-295. [PMID: 39213263 PMCID: PMC11398283 DOI: 10.33073/pjm-2024-025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/25/2024] [Indexed: 09/04/2024] Open
Abstract
In this study, Lactobacillus fermentum DM7-6 (DM7-6), Lactobacillus plantarum DM9-7 (DM9-7), and Bacillus subtilis YF9-4 (YF9-4) were isolated from traditional fermented products. The survival rate of DM7-6, DM9-7, and YF9-4 in simulated intestinal gastric fluid reached 61.29%, 44.82%, and 55.26%, respectively. These strains had inhibition ability against common pathogens, and the inhibition zone diameters were more than 7 mm. Antioxidant tests showed these strains had good scavenging capacity for superoxide anion, hydroxyl radical and DPPH, and the total reduction capacity reached 65%. Then DM7-6, DM9-7 and YF9-4 were fed to broilers to study the effects on antioxidant capacity, immune response, biochemical indices, tissue morphology, and gut microbiota. 180 healthy broilers were allocated randomly into six experimental groups. SOD, GSH-Px, and T-AOC in broilers serum were detected, and the results showed probiotics significantly improve antioxidant capacity compared to CK group, while antibiotics showed the opposite result. Besides, IgA, IgM, IgG, TNF-α, and IL-2 indicated it could significantly improve immunity by adding probiotics in broilers diets. However, antibiotics reduced immunoglobulin levels and enhanced inflammation index. Biochemical indicators and tissue morphology showed probiotics had a protective effect on metabolic organs. Gut microbiota analysis proved antibiotics could significantly decrease microbial community diversity and increase the proportion of opportunistic pathogens, while probiotics could improve the diversity of gut microbiota and promote the colonization of beneficial microorganisms. In summary, probiotics DM7-6, DM9-7, and YF9-4 can improve the broiler's health by improving antioxidant capacity and immune function, regulating gut microbiota, and can be used as alternative probiotics for antibiotics-free breeding of broilers.
Collapse
Affiliation(s)
- Ze Ye
- Key Laboratory of Microbial Resources Exploitation and Application of Gansu Province, Institute of Biology, Gansu Academy of Sciences, Lanzhou, China
| | - Bin Ji
- Key Laboratory of Microbial Resources Exploitation and Application of Gansu Province, Institute of Biology, Gansu Academy of Sciences, Lanzhou, China
| | - Yinan Peng
- Key Laboratory of Microbial Resources Exploitation and Application of Gansu Province, Institute of Biology, Gansu Academy of Sciences, Lanzhou, China
| | - Jie Song
- Key Laboratory of Microbial Resources Exploitation and Application of Gansu Province, Institute of Biology, Gansu Academy of Sciences, Lanzhou, China
| | - Tingwei Zhao
- Key Laboratory of Microbial Resources Exploitation and Application of Gansu Province, Institute of Biology, Gansu Academy of Sciences, Lanzhou, China
| | - Zhiye Wang
- Key Laboratory of Microbial Resources Exploitation and Application of Gansu Province, Institute of Biology, Gansu Academy of Sciences, Lanzhou, China
- School of Life Science, Lanzhou University of Technology, Lanzhou, China
| |
Collapse
|
24
|
De Filippis F, Valentino V, Yap M, Cabrera-Rubio R, Barcenilla C, Carlino N, Cobo-Díaz JF, Quijada NM, Calvete-Torre I, Ruas-Madiedo P, Sabater C, Sequino G, Pasolli E, Wagner M, Margolles A, Segata N, Álvarez-Ordóñez A, Cotter PD, Ercolini D. Microbiome mapping in dairy industry reveals new species and genes for probiotic and bioprotective activities. NPJ Biofilms Microbiomes 2024; 10:67. [PMID: 39095404 PMCID: PMC11297241 DOI: 10.1038/s41522-024-00541-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
The resident microbiome in food industries may impact on food quality and safety. In particular, microbes residing on surfaces in dairy industries may actively participate in cheese fermentation and ripening and contribute to the typical flavor and texture. In this work, we carried out an extensive microbiome mapping in 73 cheese-making industries producing different types of cheeses (fresh, medium and long ripened) and located in 4 European countries. We sequenced and analyzed metagenomes from cheese samples, raw materials and environmental swabs collected from both food contact and non-food contact surfaces, as well as operators' hands and aprons. Dairy plants were shown to harbor a very complex microbiome, characterized by high prevalence of genes potentially involved in flavor development, probiotic activities, and resistance to gastro-intestinal transit, suggesting that these microbes may potentially be transferred to the human gut microbiome. More than 6100 high-quality Metagenome Assembled Genomes (MAGs) were reconstructed, including MAGs from several Lactic Acid Bacteria species and putative new species. Although microbial pathogens were not prevalent, we found several MAGs harboring genes related to antibiotic resistance, highlighting that dairy industry surfaces represent a potential hotspot for antimicrobial resistance (AR) spreading along the food chain. Finally, we identified facility-specific strains that can represent clear microbial signatures of different cheesemaking facilities, suggesting an interesting potential of microbiome tracking for the traceability of cheese origin.
Collapse
Affiliation(s)
- Francesca De Filippis
- Dept. of Agricultural Sciences, University of Naples Federico II, Portici, NA, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Napoli, NA, Italy
| | - Vincenzo Valentino
- Dept. of Agricultural Sciences, University of Naples Federico II, Portici, NA, Italy
| | - Min Yap
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Raul Cabrera-Rubio
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
- Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Paterna, Spain
| | - Coral Barcenilla
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, Universidad de León, León, Spain
| | | | - José F Cobo-Díaz
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Narciso Martín Quijada
- Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, FFoQSI GmbH, Tulln an der Donau, Austria
- Department for Farm Animals and Veterinary Public Health, Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
- Department of Microbiology and Genetics, Institute for Agribiotechnology Research (CIALE), University of Salamanca, Salamanca, Spain
| | - Inés Calvete-Torre
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain
- Microhealth Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Patricia Ruas-Madiedo
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain
- Microhealth Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Carlos Sabater
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain
- Microhealth Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Giuseppina Sequino
- Dept. of Agricultural Sciences, University of Naples Federico II, Portici, NA, Italy
| | - Edoardo Pasolli
- Dept. of Agricultural Sciences, University of Naples Federico II, Portici, NA, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Napoli, NA, Italy
| | - Martin Wagner
- Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, FFoQSI GmbH, Tulln an der Donau, Austria
- Department for Farm Animals and Veterinary Public Health, Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Abelardo Margolles
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain
- Microhealth Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy
| | - Avelino Álvarez-Ordóñez
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Danilo Ercolini
- Dept. of Agricultural Sciences, University of Naples Federico II, Portici, NA, Italy.
- Task Force on Microbiome Studies, University of Naples Federico II, Napoli, NA, Italy.
| |
Collapse
|
25
|
Sonets IV, Solovyev MA, Ivanova VA, Vasiluev PA, Kachalkin AV, Ochkalova SD, Korobeynikov AI, Razin SV, Ulianov SV, Tyakht AV. Hi-C metagenomics facilitate comparative genome analysis of bacteria and yeast from spontaneous beer and cider. Food Microbiol 2024; 121:104520. [PMID: 38637082 DOI: 10.1016/j.fm.2024.104520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/06/2024] [Accepted: 03/13/2024] [Indexed: 04/20/2024]
Abstract
Sequence-based analysis of fermented foods and beverages' microbiomes offers insights into their impact on taste and consumer health. High-throughput metagenomics provide detailed taxonomic and functional community profiling, but bacterial and yeast genome reconstruction and mobile genetic elements tracking are to be improved. We established a pipeline for exploring fermented foods microbiomes using metagenomics coupled with chromosome conformation capture (Hi-C metagenomics). The approach was applied to analyze a collection of spontaneously fermented beers and ciders (n = 12). The Hi-C reads were used to reconstruct the metagenome-assembled genomes (MAGs) of bacteria and yeasts facilitating subsequent comparative genomic analysis, assembly scaffolding and exploration of "plasmid-bacteria" links. For a subset of beverages, yeasts were isolated and characterized phenotypically. The reconstructed Hi-C MAGs primarily belonged to the Lactobacillaceae family in beers, along with Acetobacteraceae and Enterobacteriaceae in ciders, exhibiting improved quality compared to conventional metagenomic MAGs. Comparative genomic analysis of Lactobacillaceae Hi-C MAGs revealed clustering by niche and suggested genetic determinants of survival and probiotic potential. For Pediococcus damnosus, Hi-C-based networks of contigs enabled linking bacteria with plasmids. Analyzing phylogeny and accessory genes in the context of known reference genomes offered insights into the niche specialization of beer lactobacilli. The subspecies-level diversity of cider Tatumella spp. was disentangled using a Hi-C-based graph. We obtained highly complete yeast Hi-C MAGs primarily represented by Brettanomyces and Saccharomyces, with Hi-C-facilitated chromosome-level genome assembly for the former. Utilizing Hi-C metagenomics to unravel the genomic content of individual species can provide a deeper understanding of the ecological interactions within the food microbiome, aid in bioprospecting beneficial microorganisms, improving quality control and improving innovative fermented products.
Collapse
Affiliation(s)
- Ignat V Sonets
- Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia.
| | - Mikhail A Solovyev
- Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia; Lomonosov Moscow State University, Moscow, Russia
| | | | - Petr A Vasiluev
- Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia; Research Center for Medical Genetics, Moscow, Russia
| | - Aleksey V Kachalkin
- Department of Soil Biology, Faculty of Soil Science, Lomonosov Moscow State University, Moscow, Russia; G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of RAS, Pushchino, Russia
| | - Sofia D Ochkalova
- Applied Genomics Laboratory, SCAMT Institute, ITMO University, Saint Petersburg, 197101, Russia; Center for Algorithmic Biotechnology, Saint Petersburg State University, Saint Petersburg, 199004, Russia
| | - Anton I Korobeynikov
- Center for Algorithmic Biotechnology, Saint Petersburg State University, Saint Petersburg, 199004, Russia; Department of Statistical Modelling, Saint Petersburg State University, Saint Petersburg, 199004, Russia
| | - Sergey V Razin
- Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia; Lomonosov Moscow State University, Moscow, Russia
| | - Sergey V Ulianov
- Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia; Lomonosov Moscow State University, Moscow, Russia
| | - Alexander V Tyakht
- Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
26
|
Rangasamy P, Foo HL, Yusof BNM, Chew SY, Jamil AAM, Than LTL. Probiotic Strain Limosilactobacillus reuteri 29B is Proven Safe and Exhibits Potential Probiotic Traits in a Murine Vaginal Model. Probiotics Antimicrob Proteins 2024; 16:1172-1189. [PMID: 37314695 DOI: 10.1007/s12602-023-10094-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2023] [Indexed: 06/15/2023]
Abstract
Lactobacilli, the most common group of bacteria found in a healthy vaginal microbiota, have been demonstrated to act as a defence against colonisation and overgrowth of vaginal pathogens. These groups of bacteria have sparked interests in incorporating them as probiotics aimed at re-establishing balance within the urogenital ecosystem. In this study, the safety characteristics of Limosilactobacillus reuteri 29B (L29B) strain were evaluated through whole genome sequencing (WGS) and animal study. Cell culture assay and 16S rDNA analysis were done to evaluate the ability of the strain to colonise and adhere to the mouse vaginal tract, and RAST analysis was performed to screen for potential genes associated with probiotic trait. The histological study on the mice organs and blood analysis of the mice showed there was no incidence of inflammation. We also found no evidence of bacterial translocation. The cell culture assay on HeLa cells showed 85% of adhesion, and there was a significant reduction of Candida strain viability in displacement assay. As for the 16S rDNA analysis, there was a significant amount of L29B colonisation of the vaginal microflora. Taken together, the intravaginal administration of L29B significantly reduced the number Enterobacteriaceae and Staphylococcaceae that were present in mouse vaginal tract. It also improved and promoted a balanced vaginal microflora environment without causing any harm or irritation to mice. Limosilactobacillus 29B (L29B) is safe to be administered intravaginally.
Collapse
Affiliation(s)
- Premmala Rangasamy
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Hooi Ling Foo
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Research Laboratory of Probiotics and Cancer Therapeutics, UPM-MAKNA Cancer Research Laboratory (CANRES), Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Barakatun Nisak Mohd Yusof
- Department of Dietetic, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Shu Yih Chew
- School of Medicine, International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Amilia Afzan Mohd Jamil
- Department of Obstetrics and Gynaecology (O&G), Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Leslie Thian Lung Than
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| |
Collapse
|
27
|
Li C, Wang ZX, Xiao H, Wu FG. Intestinal Delivery of Probiotics: Materials, Strategies, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310174. [PMID: 38245861 DOI: 10.1002/adma.202310174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/04/2024] [Indexed: 01/22/2024]
Abstract
Probiotics with diverse and crucial properties and functions have attracted broad interest from many researchers, who adopt intestinal delivery of probiotics to modulate the gut microbiota. However, the major problems faced for the therapeutic applications of probiotics are the viability and colonization of probiotics during their processing, oral intake, and subsequent delivery to the gut. The challenges of simple oral delivery (stability, controllability, targeting, etc.) have greatly limited the use of probiotics in clinical therapies. Nanotechnology can endow the probiotics to be delivered to the intestine with improved survival rate and increased resistance to the adverse environment. Additionally, the progress in synthetic biology has created new opportunities for efficiently and purposefully designing and manipulating the probiotics. In this article, a brief overview of the types of probiotics for intestinal delivery, the current progress of different probiotic encapsulation strategies, including the chemical, physical, and genetic strategies and their combinations, and the emerging single-cell encapsulation strategies using nanocoating methods, is presented. The action mechanisms of probiotics that are responsible for eliciting beneficial effects are also briefly discussed. Finally, the therapeutic applications of engineered probiotics are discussed, and the future trends toward developing engineered probiotics with advanced features and improved health benefits are proposed.
Collapse
Affiliation(s)
- Chengcheng Li
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Zi-Xi Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Fu-Gen Wu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
28
|
Chintakovid N, Singkhamanan K, Yaikhan T, Nokchan N, Wonglapsuwan M, Jitpakdee J, Kantachote D, Surachat K. Probiogenomic analysis of Lactiplantibacillus plantarum SPS109: A potential GABA-producing and cholesterol-lowering probiotic strain. Heliyon 2024; 10:e33823. [PMID: 39044985 PMCID: PMC11263657 DOI: 10.1016/j.heliyon.2024.e33823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/25/2024] Open
Abstract
Lactiplantibacillus plantarum SPS109, an isolated strain of lactic acid bacteria (LAB) from fermented foods, showed remarkable potential as a probiotic with dual capabilities in γ-aminobutyric acid (GABA) production and cholesterol reduction. This study employs genomic and comparative analyses to search into the strain's genetic profile, safety features, and probiotic attributes. The safety assessment reveals the absence of virulence factors and antimicrobial resistance genes, while the genome uncovers bacteriocin-related elements, including sactipeptides and a cluster for putative plantaricins, strengthening its ability to combat diverse pathogens. Pangenome analysis revealed unique bacteriocin-related genes, specifically lcnD and bcrA, distinguishing SPS109 from four other L. plantarum strains producing GABA. In addition, genomic study emphasizes SPS109 strain distinctive features, two GABA-related genes responsible for GABA production and a bile tolerance gene (cbh) crucial for cholesterol reduction. Additionally, the analysis highlights several genes of potential probiotic properties, including stress tolerance, vitamin production, and antioxidant activity. In summary, L. plantarum SPS109 emerges as a promising probiotic candidate with versatile applications in the food and beverage industries, supported by its unique genomic features and safety profile.
Collapse
Affiliation(s)
- Nutwadee Chintakovid
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Kamonnut Singkhamanan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Thunchanok Yaikhan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Natakorn Nokchan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Monwadee Wonglapsuwan
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Jirayu Jitpakdee
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Duangporn Kantachote
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Komwit Surachat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| |
Collapse
|
29
|
Bodnar TS, Ainsworth-Cruickshank G, Billy V, Wegener Parfrey L, Weinberg J, Raineki C. Alcohol consumption during pregnancy differentially affects the fecal microbiota of dams and offspring. Sci Rep 2024; 14:16121. [PMID: 38997303 PMCID: PMC11245617 DOI: 10.1038/s41598-024-64313-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/07/2024] [Indexed: 07/14/2024] Open
Abstract
Microbiota imbalances are linked to inflammation and disease, as well as neurodevelopmental conditions where they may contribute to behavioral, physiological, and central nervous system dysfunction. By contrast, the role of the microbiota in Fetal Alcohol Spectrum Disorder (FASD), the group of neurodevelopmental conditions that can occur following prenatal alcohol exposure (PAE), has not received similar attention. Here we utilized a rodent model of alcohol consumption during pregnancy to characterize the impact of alcohol on the microbiota of dam-offspring dyads. Overall, bacterial diversity decreased in alcohol-consuming dams and community composition differed from that of controls in alcohol-consuming dams and their offspring. Bacterial taxa and predicted biochemical pathway composition were also altered with alcohol consumption/exposure; however, there was minimal overlap between the changes in dams and offspring. These findings illuminate the potential importance of the microbiota in the pathophysiology of FASD and support investigation into novel microbiota-based interventions.
Collapse
Affiliation(s)
- Tamara S Bodnar
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada.
- Department of Biological Sciences, University of Calgary, 2500 University Dr NW, Calgary, AB, T2N 1N4, Canada.
| | | | - Vincent Billy
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Laura Wegener Parfrey
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Joanne Weinberg
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Charlis Raineki
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
- Department of Psychology, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
30
|
Guhanraj R, Dhanasekaran D. Probiotic functional gene explorations in the genome of Limosilactobacillus fermentum GD5MG. Microb Pathog 2024; 192:106686. [PMID: 38750775 DOI: 10.1016/j.micpath.2024.106686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 05/19/2024]
Abstract
Limosilactobacillus fermentum is an isolate obtained from oral gingival samples of healthy human individuals. The whole genome of Lb. fermentum GD5MG is composed of a circular DNA molecule containing 1,834,134 bp and exhibits a GC content of 52.80 %. The sequencing effort produced 38.6 million reads, each 150 bp in length, resulting in a sequencing depth of 2912.48x. Our examination unveiled a total of 1961 protein-coding genes, 27 rRNA genes, 24 tRNA genes, 3 non-coding RNA genes, and 63 pseudogenes with the use of gene annotations in NCBI Prokaryotic Genome Annotation tool. RAST revealed 1863 coding genes distributed across 209 subsystems, with a predominant involvement in amino acid, carbohydrate, and protein metabolism. Phylogenetic analysis infers that the Lb. fermentum GD5MG shares 281 gene clusters. Furthermore, the genome features showed a single CRISPR locus of 45 bp in length. Three genes associated with adhesion ability (strA, dltD, and dltA) and 26 genes related to acid tolerance, digestive enzyme secretion, and bile salt resistance were identified. Numerous genes associated with oral probiotic properties, comprising adhesion, acid and bile salt tolerance, oxidative stress tolerance, and sugar metabolism, were identified in the genome. Our findings shed light on the genomic characteristics of Lb. fermentum GD5MG, which are probable probiotics with functional benefits in humans.
Collapse
Affiliation(s)
- Radhamanalan Guhanraj
- Department of Microbiology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Dharumadurai Dhanasekaran
- Department of Microbiology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India; National Repository for Microalgae and Cyanobacteria, Freshwater (NRMC-F), Bharathidasan University, Tiruchirappalli, Tamil Nadu, India.
| |
Collapse
|
31
|
ERVINA WF, MADYAWATI SP, SAPUTRO ID, SAFARI D, PUTRI RE, ZULQAIDA S. A Meta-analysis of the Effect of Probiotic Lactobacillus sp. as Immunomodulating Inflammatory Responses. Medeni Med J 2024; 39:122-131. [PMID: 38940492 PMCID: PMC11572271 DOI: 10.4274/mmj.galenos.2024.53822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024] Open
Abstract
Lactobacillus sp. is considered an indispensable probiotic, and this probiotic has an effective role in maintaining the immune system. We evaluated the effect of the probiotic Lactobacillus sp. on modulating inflammation in several cases. In collecting the literature, we used databases from the Web of Science, the Cochrane Central Register of Controlled Trials, PubMed, and Embase. Studies that met the inclusion criteria were analyzed using Review Manager (version 5.4). A p-value of <0.05 of the total effect is considered statistically significant. Finally, 1895 references were retrieved and 20 were included in the meta-analysis. This meta-analysis suggested that most cases in this study were healthy elderly who received treatment with Lactobacillus sp. Lactobacillus sp. has a positive effect on B cells, eosinophils, IgE, NK cells, TNF-α, and IL-10. Lactobacillus could regulate the immune system by modulating inflammation in the healthy elderly.
Collapse
Affiliation(s)
- Waode Fifin ERVINA
- Postgraduate School of Universitas Airlangga, Master of Immunology Program, Surabaya, Indonesia
- National Research and Innovation Agency, Cibinong, Indonesia
| | | | | | - Dodi SAFARI
- National Research and Innovation Agency, Cibinong, Indonesia
| | - Rury Eryna PUTRI
- Postgraduate School of Universitas Airlangga, Master of Forensic Program, Surabaya, Indonesia
| | - Salma ZULQAIDA
- Postgraduate School of Universitas Airlangga, Master of Immunology Program, Surabaya, Indonesia
| |
Collapse
|
32
|
Sagmeister T, Gubensäk N, Buhlheller C, Grininger C, Eder M, Ðordić A, Millán C, Medina A, Murcia PAS, Berni F, Hynönen U, Vejzović D, Damisch E, Kulminskaya N, Petrowitsch L, Oberer M, Palva A, Malanović N, Codée J, Keller W, Usón I, Pavkov-Keller T. The molecular architecture of Lactobacillus S-layer: Assembly and attachment to teichoic acids. Proc Natl Acad Sci U S A 2024; 121:e2401686121. [PMID: 38838019 PMCID: PMC11181022 DOI: 10.1073/pnas.2401686121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/26/2024] [Indexed: 06/07/2024] Open
Abstract
S-layers are crystalline arrays found on bacterial and archaeal cells. Lactobacillus is a diverse family of bacteria known especially for potential gut health benefits. This study focuses on the S-layer proteins from Lactobacillus acidophilus and Lactobacillus amylovorus common in the mammalian gut. Atomic resolution structures of Lactobacillus S-layer proteins SlpA and SlpX exhibit domain swapping, and the obtained assembly model of the main S-layer protein SlpA aligns well with prior electron microscopy and mutagenesis data. The S-layer's pore size suggests a protective role, with charged areas aiding adhesion. A highly similar domain organization and interaction network are observed across the Lactobacillus genus. Interaction studies revealed conserved binding areas specific for attachment to teichoic acids. The structure of the SlpA S-layer and the suggested incorporation of SlpX as well as its interaction with teichoic acids lay the foundation for deciphering its role in immune responses and for developing effective treatments for a variety of infectious and bacteria-mediated inflammation processes, opening opportunities for targeted engineering of the S-layer or lactobacilli bacteria in general.
Collapse
Affiliation(s)
- Theo Sagmeister
- Institute of Molecular Biosciences, University of Graz, Graz, Austria8010
| | - Nina Gubensäk
- Institute of Molecular Biosciences, University of Graz, Graz, Austria8010
| | | | | | - Markus Eder
- Institute of Molecular Biosciences, University of Graz, Graz, Austria8010
| | - Anđela Ðordić
- Institute of Molecular Biosciences, University of Graz, Graz, Austria8010
| | - Claudia Millán
- Structural Biology Unit, Institute of Molecular Biology of Barcelona, Spanish National Research Council, Barcelona08028, Spain
| | - Ana Medina
- Structural Biology Unit, Institute of Molecular Biology of Barcelona, Spanish National Research Council, Barcelona08028, Spain
| | - Pedro Alejandro Sánchez Murcia
- Laboratory of Computer-Aided Molecular Design, Division of Medicinal Chemistry, Otto-Loewi Research Center, Medical University of Graz, Graz, Austria8010
| | - Francesca Berni
- Department of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden2333, The Netherlands
| | - Ulla Hynönen
- Department of Basic Veterinary Sciences, Division of Microbiology and Epidemiology, University of Helsinki, Helsinki00100, Finland
| | - Djenana Vejzović
- Institute of Molecular Biosciences, University of Graz, Graz, Austria8010
| | - Elisabeth Damisch
- Institute of Molecular Biosciences, University of Graz, Graz, Austria8010
| | | | - Lukas Petrowitsch
- Institute of Molecular Biosciences, University of Graz, Graz, Austria8010
| | - Monika Oberer
- Institute of Molecular Biosciences, University of Graz, Graz, Austria8010
- Field of Excellence BioHealth, University of Graz, Graz8010, Austria
- BioTechMed-Graz, University of Graz, Graz8010, Austria
| | - Airi Palva
- Department of Basic Veterinary Sciences, Division of Microbiology and Epidemiology, University of Helsinki, Helsinki00100, Finland
| | - Nermina Malanović
- Institute of Molecular Biosciences, University of Graz, Graz, Austria8010
- Field of Excellence BioHealth, University of Graz, Graz8010, Austria
- BioTechMed-Graz, University of Graz, Graz8010, Austria
| | - Jeroen Codée
- Department of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden2333, The Netherlands
| | - Walter Keller
- Institute of Molecular Biosciences, University of Graz, Graz, Austria8010
- Field of Excellence BioHealth, University of Graz, Graz8010, Austria
- BioTechMed-Graz, University of Graz, Graz8010, Austria
| | - Isabel Usón
- Structural Biology Unit, Institute of Molecular Biology of Barcelona, Spanish National Research Council, Barcelona08028, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona08003, Spain
| | - Tea Pavkov-Keller
- Institute of Molecular Biosciences, University of Graz, Graz, Austria8010
- Field of Excellence BioHealth, University of Graz, Graz8010, Austria
- BioTechMed-Graz, University of Graz, Graz8010, Austria
| |
Collapse
|
33
|
Isaac SL, Abdul Malek AZ, Hazif NS, Roslan FS, Mohd Hashim A, Song AAL, Abdul Rahim R, Wan Nur Ismah WAK. Genome mining of Lactiplantibacillus plantarum PA21: insights into its antimicrobial potential. BMC Genomics 2024; 25:571. [PMID: 38844835 PMCID: PMC11157852 DOI: 10.1186/s12864-024-10451-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 05/24/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND The dramatic increase of antimicrobial resistance in the healthcare realm has become inexorably linked to the abuse of antibiotics over the years. Therefore, this study seeks to identify potential postbiotic metabolites derived from lactic acid bacteria such as Lactiplantibacillus plantarum that could exhibit antimicrobial properties against multi-drug resistant pathogens. RESULTS In the present work, the genome sequence of Lactiplantibacillus plantarum PA21 consisting of three contigs was assembled to a size of 3,218,706 bp. Phylogenomic analysis and average nucleotide identity (ANI) revealed L. plantarum PA21 is closely related to genomes isolated from diverse niches such as dairy products, food, and animals. Genome mining through the BAGEL4 and antiSMASH database revealed four bacteriocins in a single cluster and four regions of biosynthetic gene clusters responsible for the production of bioactive compounds. The potential probiotic genes indirectly responsible for postbiotic metabolites production were also identified. Additionally, in vitro studies showed that the L. plantarum PA21 cell-free supernatant exhibited antimicrobial activity against all nine methicillin-resistant Staphylococcus aureus (MRSA) and three out of 13 Klebsiella pneumoniae clinical isolates tested. CONCLUSION Results in this study demonstrates that L. plantarum PA21 postbiotic metabolites is a prolific source of antimicrobials against multi-drug resistant pathogens with potential antimicrobial properties.
Collapse
Affiliation(s)
- Sharleen Livina Isaac
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), Serdang, 43400, Selangor, Malaysia
| | - Ahmad Zuhairi Abdul Malek
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), Serdang, 43400, Selangor, Malaysia
- Halal Products Research Institute, Universiti Putra Malaysia (UPM), Serdang, 43400, Selangor, Malaysia
| | - Nurul Syafika Hazif
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), Serdang, 43400, Selangor, Malaysia
| | - Farah Syahrain Roslan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), Serdang, 43400, Selangor, Malaysia
| | - Amalia Mohd Hashim
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), Serdang, 43400, Selangor, Malaysia
- Halal Products Research Institute, Universiti Putra Malaysia (UPM), Serdang, 43400, Selangor, Malaysia
| | - Adelene Ai-Lian Song
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), Serdang, 43400, Selangor, Malaysia
| | - Raha Abdul Rahim
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), Serdang, 43400, Selangor, Malaysia
- National Institutes of Biotechnology Malaysia (NIBM), Serdang, 43400, Selangor, Malaysia
| | - Wan Ahmad Kamil Wan Nur Ismah
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), Serdang, 43400, Selangor, Malaysia.
| |
Collapse
|
34
|
Junker R, Valence F, Mistou MY, Chaillou S, Chiapello H. Integration of metataxonomic data sets into microbial association networks highlights shared bacterial community dynamics in fermented vegetables. Microbiol Spectr 2024; 12:e0031224. [PMID: 38747598 PMCID: PMC11237590 DOI: 10.1128/spectrum.00312-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/26/2024] [Indexed: 06/06/2024] Open
Abstract
The management of food fermentation is still largely based on empirical knowledge, as the dynamics of microbial communities and the underlying metabolic networks that produce safe and nutritious products remain beyond our understanding. Although these closed ecosystems contain relatively few taxa, they have not yet been thoroughly characterized with respect to how their microbial communities interact and dynamically evolve. However, with the increased availability of metataxonomic data sets on different fermented vegetables, it is now possible to gain a comprehensive understanding of the microbial relationships that structure plant fermentation. In this study, we applied a network-based approach to the integration of public metataxonomic 16S data sets targeting different fermented vegetables throughout time. Specifically, we aimed to explore, compare, and combine public 16S data sets to identify shared associations between amplicon sequence variants (ASVs) obtained from independent studies. The workflow includes steps for searching and selecting public time-series data sets and constructing association networks of ASVs based on co-abundance metrics. Networks for individual data sets are then integrated into a core network, highlighting significant associations. Microbial communities are identified based on the comparison and clustering of ASV networks using the "stochastic block model" method. When we applied this method to 10 public data sets (including a total of 931 samples) targeting five varieties of vegetables with different sampling times, we found that it was able to shed light on the dynamics of vegetable fermentation by characterizing the processes of community succession among different bacterial assemblages. IMPORTANCE Within the growing body of research on the bacterial communities involved in the fermentation of vegetables, there is particular interest in discovering the species or consortia that drive different fermentation steps. This integrative analysis demonstrates that the reuse and integration of public microbiome data sets can provide new insights into a little-known biotope. Our most important finding is the recurrent but transient appearance, at the beginning of vegetable fermentation, of amplicon sequence variants (ASVs) belonging to Enterobacterales and their associations with ASVs belonging to Lactobacillales. These findings could be applied to the design of new fermented products.
Collapse
Affiliation(s)
- Romane Junker
- MaIAGE, INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | | | | | | | | |
Collapse
|
35
|
Lafioniatis A, Samara AA, Makaritsis PK, Dafopoulos S, Sotiriou S, Dafopoulos K. Understanding the Role of Female Genital Tract Microbiome in Recurrent Implantation Failure. J Clin Med 2024; 13:3173. [PMID: 38892884 PMCID: PMC11172434 DOI: 10.3390/jcm13113173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
The realization of the role of the microbiome of the female reproductive tract in health and disease has opened numerous possibilities for the scientific examination of the intertwining role between the human host and its microbiota. The imbalance in the composition of the microbial communities of the vagina and uterus is now recognized as a risk factor for many complications in pregnancy and according to the data from numerous studies, it is possible for this imbalance to play a crucial role in creating a hostile endometrial environment, and therefore, contributing to the etiology of recurrent implantation failure. Nevertheless, our current understanding of these complicated biological phenomena is far from complete, and in the future, there needs to be a systematic and thorough investigation of the diagnosis and therapy of this condition. This will enable scientists who engage in the field of assisted reproduction technologies to accurately identify and cure women in whom dysbiosis hinders the achievement of a healthy pregnancy.
Collapse
Affiliation(s)
- Anastasios Lafioniatis
- Department of Obstetrics and Gynecology, University Hospital of Larissa, 41110 Larissa, Greece; (A.L.); (P.K.M.); (S.D.); (K.D.)
| | - Athina A. Samara
- Department of Obstetrics and Gynecology, University Hospital of Larissa, 41110 Larissa, Greece; (A.L.); (P.K.M.); (S.D.); (K.D.)
- Department of Embryology, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece;
| | - Peter K. Makaritsis
- Department of Obstetrics and Gynecology, University Hospital of Larissa, 41110 Larissa, Greece; (A.L.); (P.K.M.); (S.D.); (K.D.)
| | - Stefanos Dafopoulos
- Department of Obstetrics and Gynecology, University Hospital of Larissa, 41110 Larissa, Greece; (A.L.); (P.K.M.); (S.D.); (K.D.)
| | - Sotirios Sotiriou
- Department of Embryology, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece;
| | - Konstantinos Dafopoulos
- Department of Obstetrics and Gynecology, University Hospital of Larissa, 41110 Larissa, Greece; (A.L.); (P.K.M.); (S.D.); (K.D.)
| |
Collapse
|
36
|
Shaw C, Weimer BC, Gann R, Desai PT, Shah JD. The Yin and Yang of pathogens and probiotics: interplay between Salmonella enterica sv. Typhimurium and Bifidobacterium infantis during co-infection. Front Microbiol 2024; 15:1387498. [PMID: 38812689 PMCID: PMC11133690 DOI: 10.3389/fmicb.2024.1387498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/12/2024] [Indexed: 05/31/2024] Open
Abstract
Probiotic bacteria have been proposed as an alternative to antibiotics for the control of antimicrobial resistant enteric pathogens. The mechanistic details of this approach remain unclear, in part because pathogen reduction appears to be both strain and ecology dependent. Here we tested the ability of five probiotic strains, including some from common probiotic genera Lactobacillus and Bifidobacterium, to reduce binding of Salmonella enterica sv. Typhimurium to epithelial cells in vitro. Bifidobacterium longum subsp. infantis emerged as a promising strain; however, S. Typhimurium infection outcome in epithelial cells was dependent on inoculation order, with B. infantis unable to rescue host cells from preceding or concurrent infection. We further investigated the complex mechanisms underlying this interaction between B. infantis, S. Typhimurium, and epithelial cells using a multi-omics approach that included gene expression and altered metabolism via metabolomics. Incubation with B. infantis repressed apoptotic pathways and induced anti-inflammatory cascades in epithelial cells. In contrast, co-incubation with B. infantis increased in S. Typhimurium the expression of virulence factors, induced anaerobic metabolism, and repressed components of arginine metabolism as well as altering the metabolic profile. Concurrent application of the probiotic and pathogen notably generated metabolic profiles more similar to that of the probiotic alone than to the pathogen, indicating a central role for metabolism in modulating probiotic-pathogen-host interactions. Together these data imply crosstalk via small molecules between the epithelial cells, pathogen and probiotic that consistently demonstrated unique molecular mechanisms specific probiotic/pathogen the individual associations.
Collapse
Affiliation(s)
| | - Bart C. Weimer
- Department of Population Health and Reproduction, School of Veterinary Medicine, 100K Pathogen Genome Project, University of California, Davis, Davis, CA, United States
| | | | | | | |
Collapse
|
37
|
Murali SK, Mansell TJ. Next generation probiotics: Engineering live biotherapeutics. Biotechnol Adv 2024; 72:108336. [PMID: 38432422 DOI: 10.1016/j.biotechadv.2024.108336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/10/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
The population dynamics of the human microbiome have been associated with inflammatory bowel disease, cancer, obesity, autoimmune diseases, and many other human disease states. An emerging paradigm in treatment is the administration of live engineered organisms, also called next-generation probiotics. However, the efficacy of these microbial therapies can be limited by the organism's overall performance in the harsh and nutrient-limited environment of the gut. In this review, we summarize the current state of the art use of bacterial and yeast strains as probiotics, highlight the recent development of genetic tools for engineering new therapeutic functions in these organisms, and report on the latest therapeutic applications of engineered probiotics, including recent clinical trials. We also discuss the supplementation of prebiotics as a method of manipulating the microbiome and improving the overall performance of engineered live biotherapeutics.
Collapse
Affiliation(s)
- Sanjeeva Kumar Murali
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA.
| | - Thomas J Mansell
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA; Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
38
|
Abriouel H, Caballero Gómez N, Manetsberger J, Benomar N. Dual effects of a bacteriocin-producing Lactiplantibacillus pentosus CF-6HA, isolated from fermented aloreña table olives, as potential probiotic and antimicrobial agent. Heliyon 2024; 10:e28408. [PMID: 38560111 PMCID: PMC10981101 DOI: 10.1016/j.heliyon.2024.e28408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
The probiotic potential of Lactiplantibacillus pentosus CF-6HA isolated from traditionally fermented Aloreña table olives was analyzed in vitro and in silico. Results obtained suggested that this strain can be catalogued as "talented" bacterium exhibiting bacteriocin production with antimicrobial activity against human/animal and plant pathogens, such as Pseudomonas syringae and Verticillium dahliae. The robustness, safety and probiotic potential of L. pentosus CF-6HA was confirmed by in silico analysis. In addition, a plethora of coding genes for defense and adaptability to different life styles besides functional properties were identified. In this sense, defense mechanisms of L. pentosus CF-6HA consist of 17 ISI elements, 98 transposases and 13 temperate phage regions as well as a CRISPR (clustered regularly interspaced short palindromic repeats)/cas system. Moreover, the functionality of this strain was confirmed by the presence of genes coding for secondary metabolites, exopolysaccharides and other bioactive molecules. Finally, we demonstrated the ability of L. pentosus CF-6HA to biotransform selenite to nanoparticles (SeNPs) highlighting its potential role in selenium bioremediation to be exploited in foods, agriculture and the environment; but also for the bio-enrichment of fermented foods with selenium.
Collapse
Affiliation(s)
- Hikmate Abriouel
- Área de Microbiología, Departamento de Ciencias de La Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071-Jaén, Spain
| | - Natacha Caballero Gómez
- Área de Microbiología, Departamento de Ciencias de La Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071-Jaén, Spain
| | - Julia Manetsberger
- Área de Microbiología, Departamento de Ciencias de La Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071-Jaén, Spain
| | - Nabil Benomar
- Área de Microbiología, Departamento de Ciencias de La Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071-Jaén, Spain
| |
Collapse
|
39
|
Zhang S, Wang Z, Jiang J, Feng G, Fan S. Lactobacillus reuteri's multifaceted role in mitigating ionizing radiation-induced injury in Drosophila melanogaster. Food Funct 2024; 15:3522-3538. [PMID: 38465872 DOI: 10.1039/d3fo05422e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The numerous beneficial probiotic properties of Lactobacillus reuteri (L. reuteri) include decreasing metabolic syndrome, preventing disorders linked to oxidative stress, improving gut flora imbalances, controlling immunological function, and extending life span. Exposure to ionizing radiation is closely associated with several disorders. We examined the protective and salvaging effects of L. reuteri on ionizing radiation-induced injury to the intestinal tract, reproductive system, and nervous system of Drosophila melanogaster. We also examined its effects on lifespan, antioxidant capacity, progeny development, and behavioral aspects to assess the interaction between L. reuteri and ionizing radiation-induced injury. The findings demonstrated that L. reuteri improved the median survival time following irradiation and greatly extended its lifespan. In addition, it raised SOD activity, reduced ROS levels in intestinal epithelial cells, and increased the quantity of intestinal stem cells. Furthermore, L. reuteri enhanced the adult male flies' capacity to move. It also successfully safeguarded the generations' growth and development. L. reuteri dramatically enhanced expression of the AMPKα gene and regulated expression of its pathway-related gene, mTOR, as well as the autophagy-related genes Atg1 and Atg5 in female Drosophila exposed to irradiation. Notably, no prior reports have been made on the possible effects of L. reuteri on injuries caused by irradiation. As a result, our research offers important new information regarding L. reuteri's possible role as a shield against ionizing radiation-induced injury.
Collapse
Affiliation(s)
- Songling Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P.R. China.
| | - Zhaoyu Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P.R. China.
| | - Jin Jiang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P.R. China.
| | - Guoxing Feng
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P.R. China.
| | - Saijun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P.R. China.
| |
Collapse
|
40
|
Mukherjee A, Breselge S, Dimidi E, Marco ML, Cotter PD. Fermented foods and gastrointestinal health: underlying mechanisms. Nat Rev Gastroenterol Hepatol 2024; 21:248-266. [PMID: 38081933 DOI: 10.1038/s41575-023-00869-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/01/2023] [Indexed: 12/20/2023]
Abstract
Although fermentation probably originally developed as a means of preserving food substrates, many fermented foods (FFs), and components therein, are thought to have a beneficial effect on various aspects of human health, and gastrointestinal health in particular. It is important that any such perceived benefits are underpinned by rigorous scientific research to understand the associated mechanisms of action. Here, we review in vitro, ex vivo and in vivo studies that have provided insights into the ways in which the specific food components, including FF microorganisms and a variety of bioactives, can contribute to health-promoting activities. More specifically, we draw on representative examples of FFs to discuss the mechanisms through which functional components are produced or enriched during fermentation (such as bioactive peptides and exopolysaccharides), potentially toxic or harmful compounds (such as phytic acid, mycotoxins and lactose) are removed from the food substrate, and how the introduction of fermentation-associated live or dead microorganisms, or components thereof, to the gut can convey health benefits. These studies, combined with a deeper understanding of the microbial composition of a wider variety of modern and traditional FFs, can facilitate the future optimization of FFs, and associated microorganisms, to retain and maximize beneficial effects in the gut.
Collapse
Affiliation(s)
| | - Samuel Breselge
- Teagasc Food Research Centre, Moorepark, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Eirini Dimidi
- Department of Nutritional Sciences, King's College London, London, UK
| | - Maria L Marco
- Department of Food Science & Technology, University of California, Davis, CA, USA
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Cork, Ireland.
- APC Microbiome Ireland, Cork, Ireland.
- VistaMilk, Cork, Ireland.
| |
Collapse
|
41
|
Kahraman-Ilıkkan Ö. Comparative genomics of four lactic acid bacteria identified with Vitek MS (MALDI-TOF) and whole-genome sequencing. Mol Genet Genomics 2024; 299:31. [PMID: 38472540 DOI: 10.1007/s00438-024-02129-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 02/20/2024] [Indexed: 03/14/2024]
Abstract
Lactic acid bacteria (LAB) can be used as a probiotic or starter culture in dairy, meat, and vegetable fermentation. Therefore, their isolation and identification are essential. Recent advances in omics technologies and high-throughput sequencing have made the identification and characterization of bacteria. This study firstly aimed to demonstrate the sensitivity of the Vitek MS (MALDI-TOF) system in the identification of lactic acid bacteria and, secondly, to characterize bacteria using various bioinformatics approaches. Probiotic potency-related genes and secondary metabolite biosynthesis gene clusters were examined. The Vitek MS (MALDI-TOF) system was able to identify all of the bacteria at the genus level. According to whole genome sequencing, the bacteria were confirmed to be Lentilactobacillus buchneri, Levilactobacillus brevis, Lactiplantibacillus plantarum, Levilactobacillus namurensis. Bacteria had most of the probiotic potency-related genes, and different toxin-antitoxin systems such as PemIK/MazEF, Hig A/B, YdcE/YdcD, YefM/YoeB. Also, some of the secondary metabolite biosynthesis gene clusters, some toxic metabolite-related genes, and antibiotic resistance-related genes were detected. In addition, Lentilactobacillus buchneri Egmn17 had a type II-A CRISPR/Cas system. Lactiplantibacillus plantarum Gmze16 had a bacteriocin, plantaricin E/F.
Collapse
|
42
|
Kapse N, Pisu V, Dhakephalkar T, Margale P, Shetty D, Wagh S, Dagar S, Dhakephalkar PK. Unveiling the Probiotic Potential of Streptococcus thermophilus MCC0200: Insights from In Vitro Studies Corroborated with Genome Analysis. Microorganisms 2024; 12:347. [PMID: 38399752 PMCID: PMC10891967 DOI: 10.3390/microorganisms12020347] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/22/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Streptococcus thermophilus is widely used as a starter culture in the dairy industry and has garnered attention as a beneficial bacterium owing to its health-promoting functionalities in humans. In this study, the probiotic potential of S. thermophilus MCC0200 isolated from a dairy product was investigated through a combinatorial approach of in vitro and in silico studies. MCC0200 demonstrated the ability to survive harsh gastrointestinal (GI) transit, adhere to intestinal mucosa and exert health-promoting traits in in vitro studies. These findings were corroborated with in silico evidence, wherein, MCC0200 genome harboured genes associated with tolerance to GI conditions, intestinal adhesion and colonization. Genome mapping also highlighted the ability of MCC0200 to produce compounds advantageous for the host (folate, bacteriocins), to release antioxidant enzymes that can quench the free radicals (superoxide dismutase, NADH peroxidase), and to metabolize food components that can be harmful to sensitive people (lactose). MCC0200 also demonstrated a positive effect on reducing cholesterol levels, proving to be a potential candidate for food and pharmaceutical applications. The absence of transmissible antibiotic resistance genes and virulence genes underscored the generally regarded as safe (GRAS) nature of MCC0200. This study explored the potential of Streptococcus thermophilus for its probable applications as a probiotic beyond the dairy industry.
Collapse
Affiliation(s)
- Neelam Kapse
- Bioenergy Group, MACS-Agharkar Research Institute, Gopal Ganesh Agarkar Road, Pune 411004, Maharashtra, India; (N.K.); (V.P.); (D.S.)
| | - Vaidehi Pisu
- Bioenergy Group, MACS-Agharkar Research Institute, Gopal Ganesh Agarkar Road, Pune 411004, Maharashtra, India; (N.K.); (V.P.); (D.S.)
- Department of Microbiology, Savitribai Phule Pune University, Ganeshkhind Rd., Aundh, Pune 411007, Maharashtra, India
| | - Tanisha Dhakephalkar
- Department of Microbiology, Savitribai Phule Pune University, Ganeshkhind Rd., Aundh, Pune 411007, Maharashtra, India
- Hi Tech BioSciences India Ltd., Research & Development Centre, Plot No. 6 & 8, Ambadvet Industrial Estate, PO Paud, Pune 412108, Maharashtra, India
| | - Prajakta Margale
- Bioenergy Group, MACS-Agharkar Research Institute, Gopal Ganesh Agarkar Road, Pune 411004, Maharashtra, India; (N.K.); (V.P.); (D.S.)
- Department of Microbiology, Savitribai Phule Pune University, Ganeshkhind Rd., Aundh, Pune 411007, Maharashtra, India
| | - Deepa Shetty
- Bioenergy Group, MACS-Agharkar Research Institute, Gopal Ganesh Agarkar Road, Pune 411004, Maharashtra, India; (N.K.); (V.P.); (D.S.)
| | - Shilpa Wagh
- Hi Tech BioSciences India Ltd., Research & Development Centre, Plot No. 6 & 8, Ambadvet Industrial Estate, PO Paud, Pune 412108, Maharashtra, India
| | - Sumit Dagar
- Bioenergy Group, MACS-Agharkar Research Institute, Gopal Ganesh Agarkar Road, Pune 411004, Maharashtra, India; (N.K.); (V.P.); (D.S.)
- Department of Microbiology, Savitribai Phule Pune University, Ganeshkhind Rd., Aundh, Pune 411007, Maharashtra, India
| | - Prashant K. Dhakephalkar
- Bioenergy Group, MACS-Agharkar Research Institute, Gopal Ganesh Agarkar Road, Pune 411004, Maharashtra, India; (N.K.); (V.P.); (D.S.)
- Department of Microbiology, Savitribai Phule Pune University, Ganeshkhind Rd., Aundh, Pune 411007, Maharashtra, India
| |
Collapse
|
43
|
Dorosky RJ, Schreier JE, Lola SL, Sava RL, Coryell MP, Akue A, KuKuruga M, Carlson PE, Dreher-Lesnick SM, Stibitz S. Nanobodies as potential tools for microbiological testing of live biotherapeutic products. AMB Express 2024; 14:9. [PMID: 38245586 PMCID: PMC10799837 DOI: 10.1186/s13568-023-01659-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 12/23/2023] [Indexed: 01/22/2024] Open
Abstract
Nanobodies are highly specific binding domains derived from naturally occurring single chain camelid antibodies. Live biotherapeutic products (LBPs) are biological products containing preparations of live organisms, such as Lactobacillus, that are intended for use as drugs, i.e. to address a specific disease or condition. Demonstrating potency of multi-strain LBPs can be challenging. The approach investigated here is to use strain-specific nanobody reagents in LBP potency assays. Llamas were immunized with radiation-killed Lactobacillus jensenii or L. crispatus whole cell preparations. A nanobody phage-display library was constructed and panned against bacterial preparations to identify nanobodies specific for each species. Nanobody-encoding DNA sequences were subcloned and the nanobodies were expressed, purified, and characterized. Colony immunoblots and flow cytometry showed that binding by Lj75 and Lj94 nanobodies were limited to a subset of L. jensenii strains while binding by Lc38 and Lc58 nanobodies were limited to L. crispatus strains. Mass spectrometry was used to demonstrate that Lj75 specifically bound a peptidase of L. jensenii, and that Lc58 bound an S-layer protein of L. crispatus. The utility of fluorescent nanobodies in evaluating multi-strain LBP potency assays was assessed by evaluating a L. crispatus and L. jensenii mixture by fluorescence microscopy, flow cytometry, and colony immunoblots. Our results showed that the fluorescent nanobody labelling enabled differentiation and quantitation of the strains in mixture by these methods. Development of these nanobody reagents represents a potential advance in LBP testing, informing the advancement of future LBP potency assays and, thereby, facilitation of clinical investigation of LBPs.
Collapse
Affiliation(s)
- Robert J Dorosky
- Office of Vaccines Research and Review, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA.
| | - Jeremy E Schreier
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| | - Stephanie L Lola
- Office of Vaccines Research and Review, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Rosa L Sava
- Office of Vaccines Research and Review, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Michael P Coryell
- Office of Vaccines Research and Review, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Adovi Akue
- Office of Vaccines Research and Review, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Mark KuKuruga
- Office of Vaccines Research and Review, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Paul E Carlson
- Office of Vaccines Research and Review, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Sheila M Dreher-Lesnick
- Office of Vaccines Research and Review, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Scott Stibitz
- Office of Vaccines Research and Review, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
44
|
Saviano A, Petruzziello C, Cancro C, Macerola N, Petti A, Nuzzo E, Migneco A, Ojetti V. The Efficacy of a Mix of Probiotics ( Limosilactobacillus reuteri LMG P-27481 and Lacticaseibacillus rhamnosus GG ATCC 53103) in Preventing Antibiotic-Associated Diarrhea and Clostridium difficile Infection in Hospitalized Patients: Single-Center, Open-Label, Randomized Trial. Microorganisms 2024; 12:198. [PMID: 38258024 PMCID: PMC10819176 DOI: 10.3390/microorganisms12010198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Antibiotic-associated diarrhea is a condition reported in 5-35% of patients treated with antibiotics, especially in older patients with comorbidities. In most cases, antibiotic-associated diarrhea is not associated with serious complications, but it can prolong hospitalization and provoke Clostridium difficile infection. An important role in the prevention of antibiotic-associated diarrhea is carried out by some probiotic strains such as Lactobacillus GG or the yeast Saccharomyces boulardii that showed good efficacy and a significant reduction in antibiotic-associated diarrhea. Similarly, the Limosilactobacillus reuteri DSM 17938 showed significant benefits in acute diarrhea, reducing its duration and abdominal pain. AIM The aim of this study was to test the efficacy of a mix of two probiotic strains (Limosilactobacillus reuteri LMG P-27481 and Lacticaseibacillus rhamnosus GG ATCC 53103; Reuterin GG®, NOOS, Italy), in association with antibiotics (compared to antibiotics used alone), in reducing antibiotic-associated diarrhea, clostridium difficile infection, and other gastrointestinal symptoms in adult hospitalized patients. PATIENTS AND METHODS We enrolled 113 (49M/64F, mean age 69.58 ± 21.28 years) adult patients treated with antibiotics who were hospitalized at the Internal Medicine Department of the San Carlo di Nancy Hospital in Rome from January 2023 to September 2023. Patients were randomized to receive probiotics 1.4 g twice/day in addition with antibiotics (Reuterin GG® group, total: 56 patients, 37F/19M, 67.16 ± 20.5 years old) or antibiotics only (control group, total: 57 patients, 27F/30 M, 71 ± 22 years old). RESULTS Patients treated with Reuterin GG® showed a significant reduction in diarrhea and clostridium difficile infection. In particular, 28% (16/57) of patients in the control group presented with diarrhea during treatment, compared with 11% (6/56) in the probiotic group (p < 0.05). Interestingly, 7/57 (11%) of patients treated only with antibiotics developed clostridium difficile infection compared to 0% in the probiotic group (p < 0.01). Finally, 9% (5/57) of patients in the control group presented with vomiting compared with 2% (1/56) in the probiotic group (p < 0.05). CONCLUSIONS Our study showed, for the first time, the efficacy of these two specific probiotic strains in preventing antibiotic-associated diarrhea and clostridium difficile infection in adult hospitalized patients treated with antibiotic therapy. This result allows us to hypothesize that the use of specific probiotic strains during antibiotic therapy can prevent dysbiosis and subsequent antibiotic-associated diarrhea and clostridium difficile infection, thus resulting in both patient and economic health care benefits.
Collapse
Affiliation(s)
- Angela Saviano
- Emergency Medicine Department, Polyclinic A. Gemelli Hospital, 00168 Rome, Italy; (A.S.); (A.M.)
- Internal and Emergency Medicine Department, Catholic University of the Sacred Heart, 00168 Rome, Italy;
| | - Carmine Petruzziello
- Internal Medicine Department, San Carlo di Nancy Hospital, 00165 Rome, Italy; (C.P.); (N.M.); (A.P.); (E.N.)
| | - Clelia Cancro
- Internal and Emergency Medicine Department, Catholic University of the Sacred Heart, 00168 Rome, Italy;
| | - Noemi Macerola
- Internal Medicine Department, San Carlo di Nancy Hospital, 00165 Rome, Italy; (C.P.); (N.M.); (A.P.); (E.N.)
| | - Anna Petti
- Internal Medicine Department, San Carlo di Nancy Hospital, 00165 Rome, Italy; (C.P.); (N.M.); (A.P.); (E.N.)
| | - Eugenia Nuzzo
- Internal Medicine Department, San Carlo di Nancy Hospital, 00165 Rome, Italy; (C.P.); (N.M.); (A.P.); (E.N.)
| | - Alessio Migneco
- Emergency Medicine Department, Polyclinic A. Gemelli Hospital, 00168 Rome, Italy; (A.S.); (A.M.)
| | - Veronica Ojetti
- Internal and Emergency Medicine Department, Catholic University of the Sacred Heart, 00168 Rome, Italy;
- Internal Medicine Department, San Carlo di Nancy Hospital, 00165 Rome, Italy; (C.P.); (N.M.); (A.P.); (E.N.)
| |
Collapse
|
45
|
Shaposhnikov LA, Tishkov VI, Pometun AA. Lactobacilli and Klebsiella: Two Opposites in the Fight for Human Health. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:S71-S89. [PMID: 38621745 DOI: 10.1134/s0006297924140050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 04/17/2024]
Abstract
The problem of antibiotic resistance is currently very acute. Numerous research and development of new antibacterial drugs are being carried out that could help cope with various infectious agents. One of the promising directions for the search for new antibacterial drugs is the search among the probiotic strains present in the human gastrointestinal tract. This review is devoted to characteristics of one of these probiotic strains that have been studied to date: Limosilactobacillus reuteri. The review discusses its properties, synthesis of various compounds, as well as role of this strain in modulating various systems of the human body. The review also examines key characteristics of one of the most harmful among the currently known pathogenic organisms, Klebsiella, which is significantly resistant to antibiotics existing in medical practice, and also poses a great threat of nosocomial infections. Discussion of characteristics of the two strains, which have opposite effects on human health, may help in creation of new effective antibacterial drugs without significant side effects.
Collapse
Affiliation(s)
- Leonid A Shaposhnikov
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, 119071, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Vladimir I Tishkov
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, 119071, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Anastasia A Pometun
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, 119071, Russia.
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
- Institute of Medicine, Peoples' Friendship University of Russia (RUDN University), Moscow, 117198, Russia
| |
Collapse
|
46
|
El-Salhy M, Gilja OH, Hatlebakk JG. Factors affecting the outcome of fecal microbiota transplantation for patients with irritable bowel syndrome. Neurogastroenterol Motil 2024; 36:e14641. [PMID: 37427566 DOI: 10.1111/nmo.14641] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/30/2023] [Accepted: 06/24/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND A previous study that introduced a Fecal microbiota transplantation (FMT) protocol with a high efficacy applied a combination of favorable factors. AIMS The present study aimed to evaluate some of these factors. METHODS This study included 186 patients with IBS randomized 1:1:1 into transplant administered to the colon (single LI), to the duodenum (single SI), or to the duodenum twice with a 1-week interval (repeated SI). The patients provided a fecal sample and were asked to complete five questionnaires at baseline and at 3, 6, and 12 months after FMT. The fecal bacteria composition and dysbiosis index (DI) were analyzed using 16S rRNA gene PCR DNA amplification/probe hybridization covering regions V3-V9. RESULTS The response rate was significantly higher in single SI than in single LI at 12 months after FMT. Symptoms and quality of life improved in all the treated groups at all time intervals after FMT. The abdominal symptoms were significantly reduced and the quality of life improved for repeated SI compared with for single SI. DI significantly decreased in all the treated groups at all observation times after FMT. The bacterial profiles changed in all groups at all observation intervals. However, these changes differed between single LI and single SI/repeated SI. CONCLUSION Administrating transplant to the small intestine had a long-term higher response rate than that administrated to the large intestine, and led to long-term colonization of beneficial bacteria. Repeating FMT had more effect on symptoms and quality of life than a single FMT. (www. CLINICALTRIALS gov: NCT04236843).
Collapse
Affiliation(s)
- Magdy El-Salhy
- Department of Research and Innovation, Helse Fonna, Stord, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- National Centre for Functional Gastrointestinal Disorders, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Odd Helge Gilja
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- National Centre for Functional Gastrointestinal Disorders, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Jan Gunnar Hatlebakk
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- National Centre for Functional Gastrointestinal Disorders, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
47
|
Tyagi AM. Mechanism of action of gut microbiota and probiotic Lactobacillus rhamnosus GG on skeletal remodeling in mice. Endocrinol Diabetes Metab 2024; 7:e440. [PMID: 37505196 PMCID: PMC10782069 DOI: 10.1002/edm2.440] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/29/2023] Open
Abstract
INTRODUCTION Gut microbiota (GM) is the collection of small organisms such as bacteria, fungi, bacteriophages and protozoans living in the intestine in symbiotics relation within their host. GM regulates host metabolism by various mechanisms. METHODS This review aims to consolidate current information for physicians on the effect of GM on bone health. For this, an online search of the literature was conducted using the keywords gut microbiota, bone mass, osteoporosis, Lactobacillus and sex steroid. RESULTS AND CONCLUSIONS There is a considerable degree of variation in bone mineral density (BMD) within populations, and it is estimated that a significant component of BMD variability is due to genetics. However, the remaining causes of bone mass variance within populations remain largely unknown. A well-recognized cause of phenotypic variation in bone mass is the composition of the microbiome. Studies have shown that germ-free (GF) mice have higher bone mass compared to conventionally raised (CR) mice. Furthermore, GM dysbiosis, also called dysbacteriosis, is defined as any alteration in the composition of the microbial community that has been colonized in the host intestine and associated with the development of bone diseases. For instance, postmenopausal osteoporosis (PMO) and diabetes. GM can be modulated by several factors such as genetics, age, drugs, food habits and probiotics. Probiotics are defined as viable bacteria that confer health benefits by modulating GM when administered in adequate quantity. Lactobacillus rhamnosus GG (LGG) is a great example of such a probiotic. LGG has been shown to regulate bone mass in healthy mice as well as ovariectomized (OVX) mice via two different mechanisms. This review will focus on the literature regarding the mechanism by which GM and probiotic LGG regulate bone mass in healthy mice as well as in OVX mice, a model of PMO.
Collapse
|
48
|
Aziz G, Zaidi A, Sullivan DJO'. Insights from metagenome-assembled genomes on the genetic stability and safety of over-the-counter probiotic products. Curr Genet 2023; 69:213-234. [PMID: 37237157 DOI: 10.1007/s00294-023-01271-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/04/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023]
Abstract
The demand for and acceptance of probiotics is determined by their quality and safety. Illumina NGS sequencing and analytics were used to examine eight marketed probiotics. Up to the species level, sequenced DNA was taxonomically identified, and relative abundances were determined using Kaiju. The genomes were constructed using GTDB and validated through PATRICK and TYGS. A FastTree 2 phylogenetic tree was constructed using several type strain sequences from relevant species. Bacteriocin and ribosomally synthesized polypeptide (RiPP) genes were discovered, and a safety check was performed to test for toxins, antibiotic resistance, and genetic drift genes. Except for two products with unclaimed species, the labeling was taxonomically correct. In three product formulations, Lactobacillus acidophilus, Limosilactobacillus reuteri, Lacticaseibacillus paracasei, and Bifidobacterium animalis exhibited two to three genomic alterations, while Streptococcus equinus was found in one. TYGS and GDTB discovered E. faecium and L. paracasei in distinctly different ways. All the bacteria tested had the genetic repertoire to tolerate GIT transit, although some exhibited antibiotic resistance, and one strain had two virulence genes. Except for Bifidobacterium strains, the others revealed a variety of bacteriocins and ribosomally synthesized polypeptides (RiPP), 92% of which were unique and non-homologous to known ones. Plasmids and mobile genetic elements are present in strains of L. reuteri (NPLps01.et_L.r and NPLps02.uf_L.r), Lactobacillus delbrueckii (NPLps01.et_L.d), Streptococcus thermophilus (NPLps06.ab_S.t), and E. faecium (NPLps07.nf_E.f). Our findings support the use of metagenomics to build better and efficient production and post-production practices for probiotic quality and safety assessment.
Collapse
Affiliation(s)
- Ghazal Aziz
- National Probiotic Laboratory, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Punjab, 38000, Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, 45650, Islamabad (ICT), Pakistan
- Department of Food Science and Nutrition, Center for Microbial and Plant Genomics, University of Minnesota, 1500 Gortner Ave, St. Paul, MN, 55108, USA
| | - Arsalan Zaidi
- National Probiotic Laboratory, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Punjab, 38000, Faisalabad, Pakistan.
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, 45650, Islamabad (ICT), Pakistan.
| | - Daniel J O ' Sullivan
- Department of Food Science and Nutrition, Center for Microbial and Plant Genomics, University of Minnesota, 1500 Gortner Ave, St. Paul, MN, 55108, USA
| |
Collapse
|
49
|
Lapaquette P, Boucard AS, Chain F, Grégoire S, Bermúdez-Humarán LG, Acar N, Bringer MA. Time-Restricted Feeding Potentiates the Ability of Lacticaseibacillus casei to Enrich the Retina in Omega-3 Fatty Acids. Aging Dis 2023; 14:1945-1949. [PMID: 37199582 PMCID: PMC10676782 DOI: 10.14336/ad.2023.0324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 03/24/2023] [Indexed: 05/19/2023] Open
Affiliation(s)
- Pierre Lapaquette
- Univ. Bourgogne Franche-Comté, Agrosup Dijon, UMR PAM A 02.102, Dijon, France.
| | - Anne-Sophie Boucard
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
| | - Florian Chain
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
| | - Stéphane Grégoire
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne Franche-Comté, Dijon, France.
| | | | - Niyazi Acar
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne Franche-Comté, Dijon, France.
| | - Marie-Agnès Bringer
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne Franche-Comté, Dijon, France.
| |
Collapse
|
50
|
Boahen A, Chew SY, Neela VK, Than LTL. Limosilactobacillus reuteri 29A Cell-Free Supernatant Antibiofilm and Antagonistic Effects in Murine Model of Vulvovaginal Candidiasis. Probiotics Antimicrob Proteins 2023; 15:1681-1699. [PMID: 36881331 DOI: 10.1007/s12602-023-10050-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2023] [Indexed: 03/08/2023]
Abstract
Vaginal dysbiosis advocates burgeoning of devious human vaginal pathobionts like Candida species that possess multiple virulence properties and metabolic flexibility to cause infections. Inevitably, antifungal resistance may emerge due to their innate nature (e.g., biofilm formation), which assists in their virulence as well as the formation of persister cells after dispersal. In consequence, the phenomenon of biofilm involvement in vulvovaginal candidiasis (VVC) and its recurrence is becoming paramount. Lactic acid bacteria and their derivatives have proven to be hostile to Candida species. Here, we throw more light on the potency of the derivatives, i.e., cell-free supernatant (CFS) produced by an indigenously isolated vaginal Lactobacillus strain, Limosilactobacillus reuteri 29A. In the present study, we investigated the antibiofilm and antagonistic effects of L. reuteri 29A CFS, against biofilms of Candida species and in murine model of vulvovaginal candidiasis. In our in vitro biofilm study, the CFS disrupted and inhibited preformed biofilms of C. albicans and C. glabrata. Scanning electron microscopy displayed the destruction of preformed biofilms and impediment of C. albicans morphogenesis by the CFS. Gas chromatography-mass spectrometry analysis showed multiple key compounds that may act singly or synergistically. In vivo, the CFS showed no collateral damage to uninfected mice; the integrity of infected vaginal tissues was restored by the administration of the CFS as seen from the cytological, histopathological, and electron microscopical analyses. The results of this study document the potential use of CFS as an adjuvant or prophylactic option in addressing vaginal fungal infections.
Collapse
Affiliation(s)
- Angela Boahen
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, 43400 UPM, Malaysia
| | - Shu Yih Chew
- Department of Microbiology and Immunology, Pathology Division, School of Medicine, International Medical University, Kuala Lumpur, Selangor, 57000, Malaysia
| | - Vasantha Kumari Neela
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, 43400 UPM, Malaysia
| | - Leslie Thian Lung Than
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, 43400 UPM, Malaysia.
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia.
| |
Collapse
|