1
|
Bakleh MZ, Al Haj Zen A. The Distinct Role of HIF-1α and HIF-2α in Hypoxia and Angiogenesis. Cells 2025; 14:673. [PMID: 40358197 PMCID: PMC12071368 DOI: 10.3390/cells14090673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 04/29/2025] [Accepted: 05/02/2025] [Indexed: 05/15/2025] Open
Abstract
Hypoxia results in a wide range of adaptive physiological responses, including metabolic reprogramming, erythropoiesis, and angiogenesis. The response to hypoxia at the cellular level is mainly regulated by hypoxia-inducible factors (HIFs): HIF1α and HIF2α isoforms. Although structurally similar and overlapping gene targets, both isoforms can exhibit distinct expression patterns and functions in some conditions of hypoxia. The interaction between these isoforms, known as the "HIF switch", determines their coordinated function under varying oxygen levels and exposure time. In angiogenesis, HIF-1α is rapidly stabilized under acute hypoxia, prompting a metabolic shift from oxidative phosphorylation to glycolysis and initiating angiogenesis by activating endothelial cells and extracellular matrix remodeling. Conversely, HIF-2α regulates cell responses to chronic hypoxia by sustaining genes critical for vascular remodeling and maturation. The current review highlights the different roles and regulatory mechanisms of HIF-1α and HIF-2α isoforms, focusing on their involvement in cell metabolism and the multi-step process of angiogenesis. Tuning the specific targeting of HIF isoforms and finding the right therapeutic window is essential to obtaining the best therapeutic effect in diseases such as cancer and vascular ischemic diseases.
Collapse
Affiliation(s)
| | - Ayman Al Haj Zen
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar
| |
Collapse
|
2
|
Chen Y, Zhang D, Wu Y, Jiang W, Guo L, Pan D, He Q, Yin Z, Sun L, Wang S. Chronic intermittent hypoxia alleviates alcohol-related liver injury via downregulation of hepatic hypoxia-inducible factor-2α. Am J Physiol Gastrointest Liver Physiol 2025; 328:G610-G623. [PMID: 40243734 DOI: 10.1152/ajpgi.00283.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/17/2024] [Accepted: 04/02/2025] [Indexed: 04/18/2025]
Abstract
Alcohol-related liver disease (ALD) is one of the leading causes of alcohol-related morbidity and mortality worldwide. Unfortunately, limited therapeutic options are currently available, due to the complex risk factors involved as well as the lack of information on the molecular mechanisms driving its progression. Interestingly, chronic, excessive alcohol intake has been reported to exacerbate the severity of obstructive sleep apnea (OSA), a respiratory disorder typically characterized by chronic intermittent hypoxia (CIH). However, this relationship between alcohol-enhanced OSA and ALD development/progression remains to be elucidated. As an approach to investigate this relationship, in vivo Gao-binge ALD and CIH mouse models were established. Alcohol-related liver injury, hepatic steatosis, inflammation, and oxidative stress were then assessed in these models. In addition, lipopolysaccharide (LPS) and ethanol-cotreated mouse normal hepatocyte cell line AML12 served as an in vitro model to investigate the mechanisms through which CIH affects ethanol-induced liver injury. CIH intervention ameliorated alcohol-related liver injury, reduced hepatic lipid accumulation and oxidative stress, and alleviated liver inflammation. Mechanistically, in the liver of these Gao-binge mice, CIH intervention inhibited alcohol-induced upregulation and activation of hypoxia-inducible factor 2α (HIF-2α), a protein which plays a key role in hepatic lipid metabolism and liver injury. Similar to these effects observed in response to CIH intervention, treatment of Gao-binge mice with the selective inhibitor of HIF-2α, PT2385, alleviated alcohol-related liver injury and steatosis while inhibiting oxidative stress and inflammation. Additional findings from our in vitro model revealed that CIH downregulated HIF-2α by promoting calpains protein expression, thereby reducing the accumulation of lipid droplets and decreasing reactiveoxygenspecies (ROS) production in AML12 cells co-challenged with LPS and ethanol. The above results provide important, new evidence that reconceptualizes the role of alcohol-enhanced OSA in ALD progression. Moreover, these findings can serve as the foundation for the development of HIF-2α inhibitors for use in the prevention and treatment of ALD.NEW & NOTEWORTHY Chronic intermittent hypoxia (CIH) intervention mitigated hepatic lipid accumulation and reduced hepatic injury, inflammation, and oxidative stress in alcohol-related liver disease (ALD) mice. CIH alleviates ALD and is likely linked to the downregulation of hypoxia-inducible factor 2α (HIF-2α) expression mediated by calpains. This study presents a new possibility for ALD treatment and lays a theoretical foundation for the clinical treatment of ALD.
Collapse
Affiliation(s)
- Yunling Chen
- Science and Technology Innovation Center, Shandong First Medical University, Jinan, People's Republic of China
- Medical School, Nankai University, Tianjin, People's Republic of China
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Shandong University, Jinan, People's Republic of China
| | - Dongyuan Zhang
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, People's Republic of China
| | - Yunxiao Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Shandong University, Jinan, People's Republic of China
| | - Wenshan Jiang
- Science and Technology Innovation Center, Shandong First Medical University, Jinan, People's Republic of China
| | - Luoting Guo
- Science and Technology Innovation Center, Shandong First Medical University, Jinan, People's Republic of China
| | - Di Pan
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Shandong University, Jinan, People's Republic of China
| | - Qiao He
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Shandong University, Jinan, People's Republic of China
| | - Zhaoqing Yin
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Shandong University, Jinan, People's Republic of China
| | - Lichao Sun
- Emergency Department, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Shuanglian Wang
- Science and Technology Innovation Center, Shandong First Medical University, Jinan, People's Republic of China
| |
Collapse
|
3
|
Kong F, Lei L, Cai L, Li J, Zhao C, Liu M, Qi D, Gao J, Li E, Gao W, Du X, Song Y, Liu G, Li X. Hypoxia-inducible factor 2α mediates nonesterified fatty acids and hypoxia-induced lipid accumulation in bovine hepatocytes. J Dairy Sci 2025; 108:4062-4078. [PMID: 39890076 DOI: 10.3168/jds.2024-25839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/23/2024] [Indexed: 02/03/2025]
Abstract
Ketosis is a metabolic disorder frequently occurring in the perinatal period, characterized by elevated circulating concentrations of nonesterified fatty acids (NEFA) due to negative energy balance, resulting in fatty liver in dairy cows. However, the mechanism of hepatic steatosis induced by high concentrations of NEFA in ketosis remains unclear. Hypoxia-inducible factor 2α (HIF-2α), which mediates adaptation to hypoxic stress, plays a critical role in regulating lipid metabolism. In this study, we investigate whether HIF-2α is involved in NEFA-driven hepatic lipid accumulation in dairy cows with ketosis. Liver and blood samples were collected from 10 healthy cows (blood BHB concentration <1.2 mM) and 10 ketotic cows (blood BHB concentration >3.0 mM with clinical symptoms) with similar lactation numbers (median = 3, range = 2-4) at 3 to 9 DIM (median = 6). In cows with ketosis, serum concentrations of NEFA and BHB were greater, but serum concentrations of glucose were lower. Moreover, hepatic triglyceride content increased significantly. In the liver of ketotic cows, which was accompanied by upregulated HIF-2α expression. To determine the potential association among hypoxia, HIF-2α, and the formation of hepatocellular steatosis in vitro, we isolated hepatocytes from healthy calves for the following experiments. First, hepatocytes were treated with 0, 0.6, 1.2, or 2.4 mM NEFA (52.7 mM stock NEFA solution was diluted in RPMI-1640 basic medium supplemented with 2% fatty acid-free BSA to achieve the specified concentrations) for 18 h, showing that HIF-2α expression and cellular hypoxia occurred in a dose-dependent manner. Next, hepatocytes were infected with HIF-2α (encoded by EPAS1) small interfering RNA (Si-HIF-2α) for 48 h and then treated with 1.2 mM NEFA for 18 h. Results indicated that silencing HIF-2α decreased NEFA-induced lipid accumulation in bovine hepatocytes. Subsequently, hepatocytes treated with or without NEFA were placed in an AnaeroPack System, mimicking a hypoxic condition, for 0, 12, 18, or 24 h. Results showed that hypoxia could induce and further exacerbate lipid accumulation in bovine hepatocytes. Meanwhile, normal or NEFA-treated hepatocytes were cocultured with or without PT2385, a specific HIF-2α inhibitor, showing that hypoxia promoted steatosis through HIF-2α. Activating transcription factor 4 (ATF4) is an endoplasmic reticulum (ER) stress and hypoxia-inducible transcription factor. Here, bovine hepatocytes were treated with NEFA or hypoxia following transfecting ATF4 small interfering RNA, which demonstrated that ATF4 knockdown alleviated the extent of lipid accumulation in bovine hepatocytes. In addition, we found that ATF4 expression was correlated with HIF-2α levels in both liver tissue and cultured hepatocyte models. Moreover, overexpression of ATF4 weakened the beneficial effects of HIF-2α inhibition. Overall, these data suggest that NEFA-induced hepatic hypoxia significantly contributes to the progression of hepatic steatosis which in turn, intensifies hypoxia and leads to a self-perpetuating cycle of reciprocal causation, further exacerbating hepatic lipid deposition. Additionally, accumulated HIF-2α plays a critical role in this complex-origin steatosis, potentially through ATF4.
Collapse
Affiliation(s)
- Fanrong Kong
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Lin Lei
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Lin Cai
- College of Food and Biology of Changchun Polytechnic, Changchun 130062, China
| | - Jinxia Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Chenchen Zhao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Menglin Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Dandan Qi
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jie Gao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Enzhu Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Wenwen Gao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xiliang Du
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yuxiang Song
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Guowen Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xinwei Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
4
|
Jiang M, Huang J, Guo X, Fu W, Peng L, Wang Y, Liu W, Liu J, Zhou L, Xiao Y. HIF-3α/PPAR-γ Regulates Hypoxia Tolerance by Altering Glycolysis and Lipid Synthesis in Blunt Snout Bream ( Megalobrama amblycephala). Int J Mol Sci 2025; 26:2613. [PMID: 40141255 PMCID: PMC11942064 DOI: 10.3390/ijms26062613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/04/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
Hypoxic stress causes cell damage and serious diseases in organisms, especially in aquatic animals. It is important to elucidate the changes in metabolic function caused by hypoxia and the mechanisms underlying these changes. This study focuses on the low oxygen tolerance feature of a new blunt snout bream strain (GBSBF1). Our data show that GBSBF1 has a different lipid and carbohydrate metabolism pattern than wild-type bream, with altering glycolysis and lipid synthesis. In GBSBF1, the expression levels of phd2 and vhl genes are significantly decreased, while the activation of HIF-3α protein is observed to have risen significantly. The results indicate that enhanced HIF-3α can positively regulate gpd1ab and gpam through PPAR-γ, which increases glucose metabolism and reduces lipolysis of GBSBF1. This research is beneficial for creating new aquaculture strains with low oxygen tolerance traits.
Collapse
Affiliation(s)
- Minggui Jiang
- College of Life Sciences, Hunan Normal University, Changsha 410081, China; (M.J.); (J.H.); (X.G.); (W.F.); (L.P.); (W.L.); (J.L.)
- Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Changsha 410081, China
| | - Jing Huang
- College of Life Sciences, Hunan Normal University, Changsha 410081, China; (M.J.); (J.H.); (X.G.); (W.F.); (L.P.); (W.L.); (J.L.)
| | - Xing Guo
- College of Life Sciences, Hunan Normal University, Changsha 410081, China; (M.J.); (J.H.); (X.G.); (W.F.); (L.P.); (W.L.); (J.L.)
| | - Wen Fu
- College of Life Sciences, Hunan Normal University, Changsha 410081, China; (M.J.); (J.H.); (X.G.); (W.F.); (L.P.); (W.L.); (J.L.)
- Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Changsha 410081, China
| | - Liangyue Peng
- College of Life Sciences, Hunan Normal University, Changsha 410081, China; (M.J.); (J.H.); (X.G.); (W.F.); (L.P.); (W.L.); (J.L.)
- Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Changsha 410081, China
| | - Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Y.W.); (L.Z.)
| | - Wenbin Liu
- College of Life Sciences, Hunan Normal University, Changsha 410081, China; (M.J.); (J.H.); (X.G.); (W.F.); (L.P.); (W.L.); (J.L.)
- Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Changsha 410081, China
| | - Jinhui Liu
- College of Life Sciences, Hunan Normal University, Changsha 410081, China; (M.J.); (J.H.); (X.G.); (W.F.); (L.P.); (W.L.); (J.L.)
- Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Changsha 410081, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Y.W.); (L.Z.)
| | - Yamei Xiao
- College of Life Sciences, Hunan Normal University, Changsha 410081, China; (M.J.); (J.H.); (X.G.); (W.F.); (L.P.); (W.L.); (J.L.)
- Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Changsha 410081, China
| |
Collapse
|
5
|
Luo S, Lu Z, Wang L, Li Y, Zeng Y, Lu H. Hepatocyte HIF-2α aggravates NAFLD by inducing ferroptosis through increasing extracellular iron. Am J Physiol Endocrinol Metab 2025; 328:E92-E104. [PMID: 39679942 DOI: 10.1152/ajpendo.00287.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 12/17/2024]
Abstract
Recent research has illuminated the pivotal role of the hypoxia-inducible factor-2α (HIF-2α)/peroxisome proliferator-activated receptor alpha (PPARα) pathway in the progression of nonalcoholic fatty liver disease (NAFLD). Meanwhile, it has been reported that HIF-2α is involved in iron regulation, and that aberrant iron distribution leads to liver lipogenesis. Therefore, we hypothesize that HIF-2α exacerbates fatty liver by affecting iron distribution. To substantiate this hypothesis, we utilized liver-specific HIF-2α knockout mice and the LO2 cell line with overexpressed HIF-2α. HIF-2α overexpression (OE) was induced via lentiviral infection, followed by exposure to free fatty acids (FFAs) and deferoxamine (DFO). In animal experiments, hepatic HIF-2α knockout resulted in lower liver lipid levels, lower liver weight, and higher serum iron levels. Enrichment in autophagy, ferroptosis, and the PI3K-AKT pathway was demonstrated through Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis in the liver of mice. In vitro experiments showed that HIF-2α increased supernatant iron. In the HIF-2α OE group, the addition of FFA led to decreased levels of reduced glutathione (GSH) and glutathione peroxidase 4 (GPX4) protein, along with increased lipid peroxidation (LPO), cellular lipid droplets, and triglyceride content. Impressively, DFO intervention decreased supernatant iron, reversed these changes by increasing GSH and GPX4 levels, and simultaneously reduced LPO levels, cellular lipid droplets, and triglyceride content. In addition, the expression of proteins related to β-oxidation increased, and lipid deposition in hepatocytes improved, which may be associated with the PI3K/AKT pathway. In summary, our findings suggest that HIF-2α-mediated iron flux enhances NAFLD cell susceptibility to ferroptosis, thereby impacting lipid metabolism-related genes and contributing to lipid accumulation.NEW & NOTEWORTHY The experiment demonstrated that HIF-2α increased extracellular iron. In LO2 cells overexpressing HIF-2α, FFAs not only increased cellular lipid and triglyceride levels but also induced key features of ferroptosis, such as reduced GSH and GPX4 levels and increased LPO, despite the absence of cellular iron overload. These effects were reversed by lowering extracellular iron with DFO. Furthermore, DFO treatment increased β-oxidation protein expression and improved lipid deposition in hepatocytes, potentially through the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Shunkui Luo
- Department of Endocrinology & Metabolism, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Zhanjin Lu
- Department of Endocrinology & Metabolism, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Lingling Wang
- Department of Gerontology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Yun Li
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Yingjuan Zeng
- Department of Endocrinology & Metabolism, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Hongyun Lu
- Department of Endocrinology & Metabolism, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| |
Collapse
|
6
|
Mooli RGR, Mukhi D, Watt M, Nagati V, Reed SM, Gandhi NK, Oertel M, Ramakrishnan SK. Hypoxia-Inducible Factor-2α Promotes Liver Fibrosis by Inducing Hepatocellular Death. Int J Mol Sci 2024; 25:13114. [PMID: 39684823 DOI: 10.3390/ijms252313114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
The activation of hypoxia-inducible factors (HIF)-1α and 2α in the liver is closely linked to the progression of fatty liver diseases. Prior studies indicated that disrupting hepatocyte HIF-2α attenuates diet-induced hepatic steatosis, subsequently decreasing fibrosis. However, the direct role of hepatocyte HIF-2α in liver fibrosis has not been addressed. Hepatic HIF-2α expression was examined in mouse model of carbon tetrachloride (CCl4)-induced liver fibrosis. Conditional hepatocyte Hif-2α knockout mice were employed to investigate the role of hepatocyte HIF-2α in fibrosis. Markers of apoptosis, proliferation, inflammation, and fibrosis were assessed through biochemical, molecular, and histological analyses. We found an induction of HIF-2α in CCL4-injected liver injury and fibrosis mouse models. Hepatocyte-specific deletion of HIF-2α attenuated stellate cell activation and fibrosis, with no significant difference in inflammation. Disrupting hepatocyte HIF-2α led to reduced injury-mediated hepatocellular apoptosis. Surviving hepatocytes exhibited hypertrophy, which was strongly associated with the activation of c-JUN signaling. Our study demonstrates a direct role of hepatocyte HIF-2α in liver fibrosis by promoting hepatocyte apoptosis. The reduction in apoptosis and induction of hepatocyte hypertrophy following HIF-2α disruption is closely linked to enhanced c-JUN signaling, a survival mechanism in response to liver injury. These findings highlight HIF-2α as a potential therapeutic target for liver fibrosis.
Collapse
Affiliation(s)
- Raja Gopal Reddy Mooli
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Dhanunjay Mukhi
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Mikayla Watt
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Veerababu Nagati
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Sara M Reed
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Nikita K Gandhi
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Michael Oertel
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Sadeesh K Ramakrishnan
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
7
|
Reid MV, Fredickson G, Mashek DG. Mechanisms coupling lipid droplets to MASLD pathophysiology. Hepatology 2024:01515467-990000000-01067. [PMID: 39475114 DOI: 10.1097/hep.0000000000001141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/17/2024] [Indexed: 01/03/2025]
Abstract
Hepatic steatosis, the buildup of neutral lipids in lipid droplets (LDs), is commonly referred to as metabolic dysfunction-associated steatotic liver disease when alcohol or viral infections are not involved. Metabolic dysfunction-associated steatotic liver disease encompasses simple steatosis and the more severe metabolic dysfunction-associated steatohepatitis, characterized by inflammation, hepatocyte injury, and fibrosis. Previously viewed as inert markers of disease, LDs are now understood to play active roles in disease etiology and have significant nonpathological and pathological functions in cell signaling and function. These dynamic properties of LDs are tightly regulated by hundreds of proteins that coat the LD surface, controlling lipid metabolism, trafficking, and signaling. The following review highlights various facets of LD biology with the primary goal of discussing key mechanisms through which LDs promote the development of advanced liver diseases, including metabolic dysfunction-associated steatohepatitis.
Collapse
Affiliation(s)
- Mari V Reid
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Gavin Fredickson
- Department of Integrated Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Douglas G Mashek
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, University of Minnesota, Minneapolis, Minnesota, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
8
|
Pirri D, Tian S, Tardajos-Ayllon B, Irving SE, Donati F, Allen SP, Mammoto T, Vilahur G, Kabir L, Bennett J, Rasool Y, Pericleous C, Mazzei G, McAllan L, Scott WR, Koestler T, Zingg U, Birdsey GM, Miller CL, Schenkel T, Chambers EV, Dunning MJ, Serbanovic-Canic J, Botrè F, Mammoto A, Xu S, Osto E, Han W, Fragiadaki M, Evans PC. EPAS1 Attenuates Atherosclerosis Initiation at Disturbed Flow Sites Through Endothelial Fatty Acid Uptake. Circ Res 2024; 135:822-837. [PMID: 39234692 PMCID: PMC11424061 DOI: 10.1161/circresaha.123.324054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Atherosclerotic plaques form unevenly due to disturbed blood flow, causing localized endothelial cell (EC) dysfunction. Obesity exacerbates this process, but the underlying molecular mechanisms are unclear. The transcription factor EPAS1 (HIF2A) has regulatory roles in endothelium, but its involvement in atherosclerosis remains unexplored. This study investigates the potential interplay between EPAS1, obesity, and atherosclerosis. METHODS Responses to shear stress were analyzed using cultured porcine aortic EC exposed to flow in vitro coupled with metabolic and molecular analyses and by en face immunostaining of murine aortic EC exposed to disturbed flow in vivo. Obesity and dyslipidemia were induced in mice via exposure to a high-fat diet or through Leptin gene deletion. The role of Epas1 in atherosclerosis was evaluated by inducible endothelial Epas1 deletion, followed by hypercholesterolemia induction (adeno-associated virus-PCSK9 [proprotein convertase subtilisin/kexin type 9]; high-fat diet). RESULTS En face staining revealed EPAS1 enrichment at sites of disturbed blood flow that are prone to atherosclerosis initiation. Obese mice exhibited substantial reduction in endothelial EPAS1 expression. Sulforaphane, a compound with known atheroprotective effects, restored EPAS1 expression and concurrently reduced plasma triglyceride levels in obese mice. Consistently, triglyceride derivatives (free fatty acids) suppressed EPAS1 in cultured EC by upregulating the negative regulator PHD2. Clinical observations revealed that reduced serum EPAS1 correlated with increased endothelial PHD2 and PHD3 in obese individuals. Functionally, endothelial EPAS1 deletion increased lesion formation in hypercholesterolemic mice, indicating an atheroprotective function. Mechanistic insights revealed that EPAS1 protects arteries by maintaining endothelial proliferation by positively regulating the expression of the fatty acid-handling molecules CD36 (cluster of differentiation 36) and LIPG (endothelial type lipase G) to increase fatty acid beta-oxidation. CONCLUSIONS Endothelial EPAS1 attenuates atherosclerosis at sites of disturbed flow by maintaining EC proliferation via fatty acid uptake and metabolism. This endothelial repair pathway is inhibited in obesity, suggesting a novel triglyceride-PHD2 modulation pathway suppressing EPAS1 expression. These findings have implications for therapeutic strategies addressing vascular dysfunction in obesity.
Collapse
Affiliation(s)
- Daniela Pirri
- School of Medicine and Population Health, INSIGNEO Institute, and the Bateson Centre (D.P., S.T., S.E.I., J.S.-C.), University of Sheffield, United Kingdom
- National Heart and Lung Institute (D.P., G.M.B.), Imperial College London, United Kingdom
| | - Siyu Tian
- School of Medicine and Population Health, INSIGNEO Institute, and the Bateson Centre (D.P., S.T., S.E.I., J.S.-C.), University of Sheffield, United Kingdom
- Centre for Biochemical Pharmacology (S.T., B.T.-A., P.C.E.), William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Blanca Tardajos-Ayllon
- Centre for Biochemical Pharmacology (S.T., B.T.-A., P.C.E.), William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Sophie E. Irving
- School of Medicine and Population Health, INSIGNEO Institute, and the Bateson Centre (D.P., S.T., S.E.I., J.S.-C.), University of Sheffield, United Kingdom
| | - Francesco Donati
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Rome, Italy (F.D., F.B.)
| | - Scott P. Allen
- School of Medicine and Population Health, Sheffield Institute for Translational Neuroscience (S.P.A.), University of Sheffield, United Kingdom
| | - Tadanori Mammoto
- Department of Pediatrics, Department of Pharmacology and Toxicology (T.M.), Medical College of Wisconsin, Milwaukee
| | - Gemma Vilahur
- Institut de Recerca Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, and CIBERCV (Centro de Investigación en Red de Enfermedades Cardiovasculares)-Instituto de Salud Carlos III, Barcelona, Spain (G.V.)
| | - Lida Kabir
- Medical Research Council (MRC) Laboratory of Medical Sciences, London, United Kingdom (L.K., J.B., Y.R., G.M., L.M., W.R.S.)
| | - Jane Bennett
- Medical Research Council (MRC) Laboratory of Medical Sciences, London, United Kingdom (L.K., J.B., Y.R., G.M., L.M., W.R.S.)
| | - Yasmin Rasool
- Medical Research Council (MRC) Laboratory of Medical Sciences, London, United Kingdom (L.K., J.B., Y.R., G.M., L.M., W.R.S.)
- Institute of Clinical Sciences, Faculty of Medicine (Y.R., G.M., L.M., W.R.S.), Imperial College London, United Kingdom
| | - Charis Pericleous
- Department of Surgery, Bariatric Center, Limmattal Hospital, Schlieren, Switzerland (C.P., T.K., U.Z.)
| | - Guianfranco Mazzei
- Medical Research Council (MRC) Laboratory of Medical Sciences, London, United Kingdom (L.K., J.B., Y.R., G.M., L.M., W.R.S.)
- Institute of Clinical Sciences, Faculty of Medicine (Y.R., G.M., L.M., W.R.S.), Imperial College London, United Kingdom
| | - Liam McAllan
- Medical Research Council (MRC) Laboratory of Medical Sciences, London, United Kingdom (L.K., J.B., Y.R., G.M., L.M., W.R.S.)
- Institute of Clinical Sciences, Faculty of Medicine (Y.R., G.M., L.M., W.R.S.), Imperial College London, United Kingdom
| | - William R. Scott
- Medical Research Council (MRC) Laboratory of Medical Sciences, London, United Kingdom (L.K., J.B., Y.R., G.M., L.M., W.R.S.)
- Institute of Clinical Sciences, Faculty of Medicine (Y.R., G.M., L.M., W.R.S.), Imperial College London, United Kingdom
| | - Thomas Koestler
- Department of Surgery, Bariatric Center, Limmattal Hospital, Schlieren, Switzerland (C.P., T.K., U.Z.)
| | - Urs Zingg
- Department of Surgery, Bariatric Center, Limmattal Hospital, Schlieren, Switzerland (C.P., T.K., U.Z.)
| | - Graeme M. Birdsey
- National Heart and Lung Institute (D.P., G.M.B.), Imperial College London, United Kingdom
| | - Clint L. Miller
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville (C.L.M.)
| | - Torsten Schenkel
- Department of Engineering and Mathematics, Sheffield Hallam University, United Kingdom (T.S.)
| | - Emily V. Chambers
- Sheffield Bioinformatics Core, School of Medicine and Population Health (E.V.C., M.J.D.), University of Sheffield, United Kingdom
| | - Mark J. Dunning
- Sheffield Bioinformatics Core, School of Medicine and Population Health (E.V.C., M.J.D.), University of Sheffield, United Kingdom
| | - Jovana Serbanovic-Canic
- School of Medicine and Population Health, INSIGNEO Institute, and the Bateson Centre (D.P., S.T., S.E.I., J.S.-C.), University of Sheffield, United Kingdom
| | - Francesco Botrè
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Rome, Italy (F.D., F.B.)
| | - Akiko Mammoto
- Department of Pediatrics and Department of Cell Biology, Neurobiology and Anatomy (A.M.), Medical College of Wisconsin, Milwaukee
| | - Suowen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Disease, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China (S.X.)
| | - Elena Osto
- Institute of Clinical Chemistry University Hospital and University of Zurich, Switzerland (E.O.)
- Division of Physiology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Austria (E.O.)
| | - Weiping Han
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore (W.H.)
| | - Maria Fragiadaki
- Centre for Translational Medicine and Therapeutics (M.F.), William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Paul C. Evans
- Centre for Biochemical Pharmacology (S.T., B.T.-A., P.C.E.), William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| |
Collapse
|
9
|
Jeelani I, Moon JS, da Cunha FF, Nasamran CA, Jeon S, Zhang X, Bandyopadhyay GK, Dobaczewska K, Mikulski Z, Hosseini M, Liu X, Kisseleva T, Brenner D, Singh S, Loomba R, Kim M, Lee YS. HIF-2α drives hepatic Kupffer cell death and proinflammatory recruited macrophage activation in nonalcoholic steatohepatitis. Sci Transl Med 2024; 16:eadi0284. [PMID: 39259813 PMCID: PMC11665927 DOI: 10.1126/scitranslmed.adi0284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 01/12/2024] [Accepted: 08/16/2024] [Indexed: 09/13/2024]
Abstract
Proinflammatory hepatic macrophage activation plays a key role in the development of nonalcoholic steatohepatitis (NASH). This involves increased embryonic hepatic Kupffer cell (KC) death, facilitating the replacement of KCs with bone marrow-derived recruited hepatic macrophages (RHMs) that highly express proinflammatory genes. Moreover, phago/efferocytic activity of KCs is diminished in NASH, enhancing liver inflammation. However, the molecular mechanisms underlying these changes in KCs are not known. Here, we show that hypoxia-inducible factor 2α (HIF-2α) mediates NASH-associated decreased KC growth and efferocytosis by enhancing lysosomal stress. At the molecular level, HIF-2α stimulated mammalian target of rapamycin (mTOR)- and extracellular signal-regulated kinase-dependent inhibitory transcription factor EB (TFEB) phosphorylation, leading to decreased lysosomal and phagocytic gene expression. With increased metabolic stress and phago/efferocytic burden in NASH, these changes were sufficient to increase lysosomal stress, causing decreased efferocytosis and lysosomal cell death. Of interest, HIF-2α-dependent TFEB regulation only occurred in KCs but not RHMs. Instead, in RHMs, HIF-2α promoted mitochondrial reactive oxygen species production and proinflammatory activation by increasing ANT2 expression and mitochondrial permeability transition. Consequently, myeloid lineage-specific or KC-specific HIF-2α depletion or the inhibition of mTOR-dependent TFEB inhibition using antisense oligonucleotide treatment protected against the development of NASH in mice. Moreover, treatment with an HIF-2α-specific inhibitor reduced inflammatory and fibrogenic gene expression in human liver spheroids cultured under a NASH-like condition. Together, our results suggest that macrophage subtype-specific effects of HIF-2α collectively contribute to the proinflammatory activation of liver macrophages, leading to the development of NASH.
Collapse
Affiliation(s)
- Ishtiaq Jeelani
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, California, 92093, USA
| | - Jae-Su Moon
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, California, 92093, USA
| | - Flavia Franco da Cunha
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, California, 92093, USA
| | - Chanond A. Nasamran
- Center for Computational Biology & Bioinformatics, Department of Medicine, University of California San Diego, La Jolla, California, 92093, USA
| | - Seokhyun Jeon
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, California, 92093, USA
| | - Xinhang Zhang
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, California, 92093, USA
| | - Gautam K. Bandyopadhyay
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, California, 92093, USA
| | - Katarzyna Dobaczewska
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, California, 92037, USA
| | - Zbigniew Mikulski
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, California, 92037, USA
| | - Mojgan Hosseini
- Department of Pathology, University of California San Diego School of Medicine, La Jolla, California, 92093, USA
| | - Xiao Liu
- Department of Surgery, University of California San Diego, La Jolla, California, 92093, USA
| | - Tatiana Kisseleva
- Department of Surgery, University of California San Diego, La Jolla, California, 92093, USA
| | - David Brenner
- Department of Medicine, University of California San Diego, La Jolla, California, 92093, USA
| | - Seema Singh
- Division of Gastroenterology, University of California San Diego, La Jolla, California, 92093, USA
| | - Rohit Loomba
- Division of Gastroenterology, University of California San Diego, La Jolla, California, 92093, USA
- Division of Epidemiology Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, California, 92093, USA
- NAFLD Research Center University of California, San Diego, La Jolla, California, 92093, USA
| | - Minkyu Kim
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, Texas, 78229, USA
| | - Yun Sok Lee
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, California, 92093, USA
| |
Collapse
|
10
|
Wyant GA, Jiang Q, Singh M, Qayyum S, Levrero C, Maron BA, Kaelin WG. Induction of DEPP1 by HIF Mediates Multiple Hallmarks of Ischemic Cardiomyopathy. Circulation 2024; 150:770-786. [PMID: 38881449 PMCID: PMC11361356 DOI: 10.1161/circulationaha.123.066628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 05/22/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND HIF (hypoxia inducible factor) regulates many aspects of cardiac function. We and others previously showed that chronic HIF activation in the heart in mouse models phenocopies multiple features of ischemic cardiomyopathy in humans, including mitochondrial loss, lipid accumulation, and systolic cardiac dysfunction. In some settings, HIF also causes the loss of peroxisomes. How, mechanistically, HIF promotes cardiac dysfunction is an open question. METHODS We used mice lacking cardiac pVHL (von Hippel-Lindau protein) to investigate how chronic HIF activation causes multiple features of ischemic cardiomyopathy, such as autophagy induction and lipid accumulation. We performed immunoblot assays, RNA sequencing, mitochondrial and peroxisomal autophagy flux measurements, and live cell imaging on isolated cardiomyocytes. We used CRISPR-Cas9 gene editing in mice to validate a novel mediator of cardiac dysfunction in the setting of chronic HIF activation. RESULTS We identify a previously unknown pathway by which cardiac HIF activation promotes the loss of mitochondria and peroxisomes. We found that DEPP1 (decidual protein induced by progesterone 1) is induced under hypoxia in a HIF-dependent manner and localizes inside mitochondria. DEPP1 is both necessary and sufficient for hypoxia-induced autophagy and triglyceride accumulation in cardiomyocytes ex vivo. DEPP1 loss increases cardiomyocyte survival in the setting of chronic HIF activation ex vivo, and whole-body Depp1 loss decreases cardiac dysfunction in hearts with chronic HIF activation caused by VHL loss in vivo. CONCLUSIONS Our findings identify DEPP1 as a key component in the cardiac remodeling that occurs with chronic ischemia.
Collapse
Affiliation(s)
- Gregory A. Wyant
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA (G.A.W., Q.J., C.L., W.G.K.)
- Cardiovascular Research Center, Cardiology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA (G.A.W., M.S., S.Q.)
| | - Qinqin Jiang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA (G.A.W., Q.J., C.L., W.G.K.)
| | - Madhu Singh
- Cardiovascular Research Center, Cardiology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA (G.A.W., M.S., S.Q.)
| | - Shariq Qayyum
- Cardiovascular Research Center, Cardiology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA (G.A.W., M.S., S.Q.)
| | - Clara Levrero
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA (G.A.W., Q.J., C.L., W.G.K.)
| | - Bradley A. Maron
- Department of Cardiovascular Medicine (B.A.M.), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - William G. Kaelin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA (G.A.W., Q.J., C.L., W.G.K.)
- Department of Medicine (W.G.K.), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Howard Hughes Medical Institute, Chevy Chase, MD (W.G.K.)
| |
Collapse
|
11
|
Bartnicki P. Hypoxia-Inducible Factor Prolyl Hydroxylase Inhibitors as a New Treatment Option for Anemia in Chronic Kidney Disease. Biomedicines 2024; 12:1884. [PMID: 39200348 PMCID: PMC11351863 DOI: 10.3390/biomedicines12081884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/30/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
Anemia plays an important role in chronic kidney disease (CKD) progression because it worsens the quality of life and increases the risk of cardiovascular complications in CKD patients. In such cases, anemia is mainly caused by endogenous erythropoietin (EPO) and iron deficiencies. Therefore, KDIGO and ERBP guidelines for anemia treatment in CKD patients focus on recombinant EPO and iron supplementation. A recent new treatment option for anemia in CKD patients involves blocking the hypoxia-inducible factor (HIF) system with prolyl hydroxylase inhibitors (PHIs), what causes increasing endogenous EPO production and optimizing the use of iron. Clinical studies have shown that the hypoxia-inducible factor prolyl hydroxylase inhibitors (HIF-PHIs) covered in this manuscript-roxadustat, vadadustat, daprodustat, and molidustat-effectively increase hemoglobin (Hb) levels in both non-dialyzed and dialyzed CKD patients. Moreover, these medicines reduce blood lipid levels and do not accelerate CKD progression. However, blockage of the HIF system by HIF-PHIs may be associated with adverse effects such as cardiovascular complications, tumorogenesis, hyperkalemia. and retinopathy. More extensive and long-term clinical trials of HIF-PHIs-based anemia treatment in CKD patients are needed, and their results will indicate whether HIF-PHIs represent an effective and safe alternative to EPO and iron supplementation for anemia treatment in CKD patients.
Collapse
Affiliation(s)
- Piotr Bartnicki
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland
| |
Collapse
|
12
|
Cagnin S, Pontisso P, Martini A. SerpinB3: A Multifaceted Player in Health and Disease-Review and Future Perspectives. Cancers (Basel) 2024; 16:2579. [PMID: 39061218 PMCID: PMC11274807 DOI: 10.3390/cancers16142579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
SerpinB3, a member of the serine-protease inhibitor family, has emerged as a crucial player in various physiological and pathological processes. Initially identified as an oncogenic factor in squamous cell carcinomas, SerpinB3's intricate involvement extends from fibrosis progression and cancer to cell protection in acute oxidative stress conditions. This review explores the multifaceted roles of SerpinB3, focusing on its implications in fibrosis, metabolic syndrome, carcinogenesis and immune system impairment. Furthermore, its involvement in tissue protection from oxidative stress and wound healing underscores its potential as diagnostic and therapeutic tool. Recent studies have described the therapeutic potential of targeting SerpinB3 through its upstream regulators, offering novel strategies for cancer treatment development. Overall, this review underscores the importance of further research to fully elucidate the mechanisms of action of SerpinB3 and to exploit its therapeutic potential across various medical conditions.
Collapse
Affiliation(s)
| | - Patrizia Pontisso
- Department of Medicine, University of Padova, 35123 Padova, Italy; (S.C.); (A.M.)
| | | |
Collapse
|
13
|
Villano G, Novo E, Turato C, Quarta S, Ruvoletto M, Biasiolo A, Protopapa F, Chinellato M, Martini A, Trevellin E, Granzotto M, Cannito S, Cendron L, De Siervi S, Guido M, Parola M, Vettor R, Pontisso P. The protease activated receptor 2 - CCAAT/enhancer-binding protein beta - SerpinB3 axis inhibition as a novel strategy for the treatment of non-alcoholic steatohepatitis. Mol Metab 2024; 81:101889. [PMID: 38307387 PMCID: PMC10864841 DOI: 10.1016/j.molmet.2024.101889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/11/2024] [Accepted: 01/26/2024] [Indexed: 02/04/2024] Open
Abstract
OBJECTIVE The serine protease inhibitor SerpinB3 has been described as critical mediator of liver fibrosis and it has been recently proposed as an additional hepatokine involved in NASH development and insulin resistance. Protease Activated Receptor 2 has been identified as a novel regulator of hepatic metabolism. A targeted therapeutic strategy for NASH has been investigated, using 1-Piperidine Propionic Acid (1-PPA), since this compound has been recently proposed as both Protease Activated Receptor 2 and SerpinB3 inhibitor. METHODS The effect of SerpinB3 on inflammation and fibrosis genes was assessed in human macrophage and stellate cell lines. Transgenic mice, either overexpressing SerpinB3 or carrying Serpinb3 deletion and their relative wild type strains, were used in experimental NASH models. Subgroups of SerpinB3 transgenic mice and their controls were also injected with 1-PPA to assess the efficacy of this compound in NASH inhibition. RESULTS 1-PPA did not present significant cell and organ toxicity and was able to inhibit SerpinB3 and PAR2 in a dose-dependent manner. This effect was associated to a parallel reduction of the synthesis of the molecules induced by endogenous SerpinB3 or by its paracrine effects both in vitro and in vivo, leading to inhibition of lipid accumulation, inflammation and fibrosis in experimental NASH. At mechanistic level, the antiprotease activity of SerpinB3 was found essential for PAR2 activation, determining upregulation of the CCAAT Enhancer Binding Protein beta (C/EBP-β), another pivotal regulator of metabolism, inflammation and fibrosis, which in turn determined SerpinB3 synthesis. CONCLUSIONS 1-PPA treatment was able to inhibit the PAR2 - C/EBP-β - SerpinB3 axis and to protect from NASH development and progression, supporting the potential use of a similar approach for a targeted therapy of NASH.
Collapse
Affiliation(s)
- Gianmarco Villano
- Dept. of Surgical, Oncological and Gastroenterological Sciences, University of Padova, Italy
| | - Erica Novo
- Dept. of Clinical and Biological Sciences, University of Torino, Italy
| | | | | | | | | | | | | | | | | | | | - Stefania Cannito
- Dept. of Clinical and Biological Sciences, University of Torino, Italy
| | | | | | - Maria Guido
- Dept. of Medicine, University of Padova, Italy
| | - Maurizio Parola
- Dept. of Clinical and Biological Sciences, University of Torino, Italy
| | | | | |
Collapse
|
14
|
Ma Q, Xu H, Wei Y, Liang M. Effects of acute hypoxia on nutrient metabolism and physiological function in turbot, Scophthalmus maximus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:367-383. [PMID: 36609890 DOI: 10.1007/s10695-022-01154-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Acute hypoxia is a common stress in aquaculture, and causes energy deficiency, oxidative damage and death in fish. Many studies have confirmed that acute hypoxia activated hif1α expression, anaerobic glycolysis and antioxidant system in fish, but the effects of acute hypoxia on lipid and protein metabolism, organelle damage, and the functions of hif2α and hif3α in economic fishes have not been well evaluated. In the present study, turbot was exposed to acute hypoxia (2.0 ± 0.5 mg/L) for 6 h, 12 h, and 24 h, respectively. Then, the contents of hemoglobin (HB), metabolite, gene expressions of hifα isoforms, energy homeostasis, endoplasmic reticulum (ER) stress, and apoptosis were measured. The results suggested that turbot is intolerant to acute hypoxia and the asphyxiation point is about 1.5 mg/L. Acute hypoxia induced perk-mediated ER stress, and increased lipid peroxidation and liver injury in turbot. The blood HB level and liver vegfab expression were increased under hypoxia, which enhances oxygen transport. At hypoxia stress, hif3α, anaerobic glycolysis-related genes expression, and lactate content were increased in the liver, and glycogen was broken down to ensure ATP supply. Meanwhile, hif2α, lipid synthesis-related genes expression, and TG content were increased in the liver, but the lipid catabolism and protein synthesis were suppressed during hypoxia, which reduced the oxygen consumption and ROS generation. Our results systematically illustrate the metabolic and physiological changes under acute hypoxia in turbot, and provide important guidance to improve hypoxia tolerance in fish.
Collapse
Affiliation(s)
- Qiang Ma
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071, China
| | - Houguo Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266237, China
| | - Yuliang Wei
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266237, China
| | - Mengqing Liang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266237, China.
| |
Collapse
|
15
|
Solanki S, Shah YM. Hypoxia-Induced Signaling in Gut and Liver Pathobiology. ANNUAL REVIEW OF PATHOLOGY 2024; 19:291-317. [PMID: 37832943 DOI: 10.1146/annurev-pathmechdis-051122-094743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Oxygen (O2) is essential for cellular metabolism and biochemical reactions. When the demand for O2 exceeds the supply, hypoxia occurs. Hypoxia-inducible factors (HIFs) are essential to activate adaptive and survival responses following hypoxic stress. In the gut (intestines) and liver, the presence of oxygen gradients or physiologic hypoxia is necessary to maintain normal homeostasis. While physiologic hypoxia is beneficial and aids in normal functions, pathological hypoxia is harmful as it exacerbates inflammatory responses and tissue dysfunction and is a hallmark of many cancers. In this review, we discuss the role of gut and liver hypoxia-induced signaling, primarily focusing on HIFs, in the physiology and pathobiology of gut and liver diseases. Additionally, we examine the function of HIFs in various cell types during gut and liver diseases, beyond intestinal epithelial and hepatocyte HIFs. This review highlights the importance of understanding hypoxia-induced signaling in the pathogenesis of gut and liver diseases and emphasizes the potential of HIFs as therapeutic targets.
Collapse
Affiliation(s)
- Sumeet Solanki
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA;
| | - Yatrik M Shah
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA;
- University of Michigan Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
16
|
Driessen S, Francque SM, Anker SD, Castro Cabezas M, Grobbee DE, Tushuizen ME, Holleboom AG. Metabolic dysfunction-associated steatotic liver disease and the heart. Hepatology 2023:01515467-990000000-00699. [PMID: 38147315 DOI: 10.1097/hep.0000000000000735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/13/2023] [Indexed: 12/27/2023]
Abstract
The prevalence and severity of metabolic dysfunction-associated steatotic liver disease (MASLD) are increasing. Physicians who treat patients with MASLD may acknowledge the strong coincidence with cardiometabolic disease, including atherosclerotic cardiovascular disease (asCVD). This raises questions on co-occurrence, causality, and the need for screening and multidisciplinary care for MASLD in patients with asCVD, and vice versa. Here, we review the interrelations of MASLD and heart disease and formulate answers to these matters. Epidemiological studies scoring proxies for atherosclerosis and actual cardiovascular events indicate increased atherosclerosis in patients with MASLD, yet no increased risk of asCVD mortality. MASLD and asCVD share common drivers: obesity, insulin resistance and type 2 diabetes mellitus (T2DM), smoking, hypertension, and sleep apnea syndrome. In addition, Mendelian randomization studies support that MASLD may cause atherosclerosis through mixed hyperlipidemia, while such evidence is lacking for liver-derived procoagulant factors. In the more advanced fibrotic stages, MASLD may contribute to heart failure with preserved ejection fraction by reduced filling of the right ventricle, which may induce fatigue upon exertion, often mentioned by patients with MASLD. Some evidence points to an association between MASLD and cardiac arrhythmias. Regarding treatment and given the strong co-occurrence of MASLD and asCVD, pharmacotherapy in development for advanced stages of MASLD would ideally also reduce cardiovascular events, as has been demonstrated for T2DM treatments. Given the common drivers, potential causal factors and especially given the increased rate of cardiovascular events, comprehensive cardiometabolic risk management is warranted in patients with MASLD, preferably in a multidisciplinary approach.
Collapse
Affiliation(s)
- Stan Driessen
- Department of Vascular Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Sven M Francque
- Department of Gastroenterology and Hepatology, University Hospital Antwerp, Antwerp, Belgium
| | - Stefan D Anker
- Department of Cardiology (CVK) of German Heart Center Charité, Institute of Health Center for Regenerative Therapies (BCRT), German Centre for Cardiovascular Research (DZHK) partner site Berlin, Charité Universitätsmedizin, Berlin, Germany
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Manuel Castro Cabezas
- Julius Clinical, Zeist, The Netherlands
- Department of Internal Medicine, Franciscus Gasthuis and Vlietland, Rotterdam, The Netherlands
- Department of Internal Medicine and Endocrinology, Erasmus MC, Rotterdam, The Netherlands
| | - Diederick E Grobbee
- Julius Clinical, Zeist, The Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maarten E Tushuizen
- Department of Gastroenterology and Hepatology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Adriaan G Holleboom
- Department of Vascular Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Zhao Y, Xiong W, Li C, Zhao R, Lu H, Song S, Zhou Y, Hu Y, Shi B, Ge J. Hypoxia-induced signaling in the cardiovascular system: pathogenesis and therapeutic targets. Signal Transduct Target Ther 2023; 8:431. [PMID: 37981648 PMCID: PMC10658171 DOI: 10.1038/s41392-023-01652-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 11/21/2023] Open
Abstract
Hypoxia, characterized by reduced oxygen concentration, is a significant stressor that affects the survival of aerobic species and plays a prominent role in cardiovascular diseases. From the research history and milestone events related to hypoxia in cardiovascular development and diseases, The "hypoxia-inducible factors (HIFs) switch" can be observed from both temporal and spatial perspectives, encompassing the occurrence and progression of hypoxia (gradual decline in oxygen concentration), the acute and chronic manifestations of hypoxia, and the geographical characteristics of hypoxia (natural selection at high altitudes). Furthermore, hypoxia signaling pathways are associated with natural rhythms, such as diurnal and hibernation processes. In addition to innate factors and natural selection, it has been found that epigenetics, as a postnatal factor, profoundly influences the hypoxic response and progression within the cardiovascular system. Within this intricate process, interactions between different tissues and organs within the cardiovascular system and other systems in the context of hypoxia signaling pathways have been established. Thus, it is the time to summarize and to construct a multi-level regulatory framework of hypoxia signaling and mechanisms in cardiovascular diseases for developing more therapeutic targets and make reasonable advancements in clinical research, including FDA-approved drugs and ongoing clinical trials, to guide future clinical practice in the field of hypoxia signaling in cardiovascular diseases.
Collapse
Affiliation(s)
- Yongchao Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - Weidong Xiong
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, 200032, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, China
| | - Chaofu Li
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - Ranzun Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Hao Lu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Shuai Song
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - You Zhou
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Yiqing Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
| | - Bei Shi
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
| | - Junbo Ge
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, 200032, China.
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
18
|
Sousa Da Silva RX, Bautista Borrego L, Lenggenhager D, Huwyler F, Binz J, Mancina L, Breuer E, Wernlé K, Hefti M, Mueller M, Cunningham L, De Oliveira ML, Petrowsky H, Weber A, Dutkowski P, Hoffmann W, Gupta A, Tibbitt MW, Humar B, Clavien PA. Defatting of Human Livers During Long-Term e x situ Normothermic Perfusion: Novel Strategy to Rescue Discarded Organs for Transplantation. Ann Surg 2023; 278:669-675. [PMID: 37497663 DOI: 10.1097/sla.0000000000006047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
OBJECTIVE To develop a protocol for the defatting of steatotic liver grafts during long-term ex situ normothermic machine perfusion. BACKGROUND Despite the alarming increase in donor organ shortage, the highly prevalent fatty liver grafts are often discarded due to the risk of primary nonfunction. Effective strategies preventing such outcomes are currently lacking. An exciting new avenue is the introduction of ex situ normothermic machine perfusion (NMP), enabling a liver to remain fully functional for up to 2 weeks and providing a unique window of opportunity for defatting before transplantation. METHODS Over a 5-year period, 23 discarded liver grafts and 28 partial livers from our resection program were tested during ex situ normothermic machine perfusion. The steatosis degree was determined on serial biopsies by expert pathologists, and triglyceride contents were measured simultaneously. RESULTS Of 51 liver grafts, 20 were steatotic, with up to 85% macrovesicular steatosis, and were perfused for up to 12 days. Ten livers displayed marked (5 of which almost complete) loss of fat, while the other 10 did not respond to long-term perfusion. Successful defatting was related to prolonged perfusion, automated glucose control, circadian nutrition, and L-carnitine/fenofibrate supplementation. Pseudopeliotic steatosis and the associated activation of Kupffer/stellate cells were unexpected processes that might contribute to defatting. Synthetic and metabolic functions remained preserved for most grafts until perfusion ended. CONCLUSION Ex situ long-term perfusion effectively reduces steatosis while preserving organ viability and may in the future allow transplantation of primarily unusable high-risk grafts, significantly increasing the number of organs available for transplantation.
Collapse
Affiliation(s)
- Richard X Sousa Da Silva
- Department of Surgery and Transplantation, Swiss HPB and Transplant Center Zurich, University Hospital Zurich, Zurich, Switzerland
- Wyss Zurich Translational Center, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Lucia Bautista Borrego
- Department of Surgery and Transplantation, Swiss HPB and Transplant Center Zurich, University Hospital Zurich, Zurich, Switzerland
- Wyss Zurich Translational Center, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Daniela Lenggenhager
- Department of Pathology and Molecular Pathology, University Hospital Zurich and University Zurich, Zurich, Switzerland
| | - Florian Huwyler
- Wyss Zurich Translational Center, ETH Zurich and University of Zurich, Zurich, Switzerland
- Department of Mechanical and Process Engineering, Macromolecular Engineering Laboratory, ETH Zurich
| | - Jonas Binz
- Wyss Zurich Translational Center, ETH Zurich and University of Zurich, Zurich, Switzerland
- Department of Mechanical and Process Engineering, Macromolecular Engineering Laboratory, ETH Zurich
| | - Leandro Mancina
- Department of Surgery and Transplantation, Swiss HPB and Transplant Center Zurich, University Hospital Zurich, Zurich, Switzerland
- Wyss Zurich Translational Center, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Eva Breuer
- Department of Surgery and Transplantation, Swiss HPB and Transplant Center Zurich, University Hospital Zurich, Zurich, Switzerland
| | - Kendra Wernlé
- Department of Surgery and Transplantation, Swiss HPB and Transplant Center Zurich, University Hospital Zurich, Zurich, Switzerland
- Wyss Zurich Translational Center, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Max Hefti
- Wyss Zurich Translational Center, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Matteo Mueller
- Department of Surgery and Transplantation, Swiss HPB and Transplant Center Zurich, University Hospital Zurich, Zurich, Switzerland
- Wyss Zurich Translational Center, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Leslie Cunningham
- Wyss Zurich Translational Center, ETH Zurich and University of Zurich, Zurich, Switzerland
- Department of Mechanical and Process Engineering, Macromolecular Engineering Laboratory, ETH Zurich
| | - Michelle L De Oliveira
- Department of Surgery and Transplantation, Swiss HPB and Transplant Center Zurich, University Hospital Zurich, Zurich, Switzerland
| | - Henrik Petrowsky
- Department of Surgery and Transplantation, Swiss HPB and Transplant Center Zurich, University Hospital Zurich, Zurich, Switzerland
| | - Achim Weber
- Department of Pathology and Molecular Pathology, University Hospital Zurich and University Zurich, Zurich, Switzerland
- Institute of Molecular Cancer Research, University Hospital Zurich and University Zurich, Zurich, Switzerland
| | - Philipp Dutkowski
- Department of Surgery and Transplantation, Swiss HPB and Transplant Center Zurich, University Hospital Zurich, Zurich, Switzerland
- Wyss Zurich Translational Center, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Waldemar Hoffmann
- Wyss Zurich Translational Center, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Anurag Gupta
- Department of Surgery and Transplantation, Swiss HPB and Transplant Center Zurich, University Hospital Zurich, Zurich, Switzerland
| | - Mark W Tibbitt
- Wyss Zurich Translational Center, ETH Zurich and University of Zurich, Zurich, Switzerland
- Department of Mechanical and Process Engineering, Macromolecular Engineering Laboratory, ETH Zurich
| | - Bostjan Humar
- Department of Surgery and Transplantation, Swiss HPB and Transplant Center Zurich, University Hospital Zurich, Zurich, Switzerland
| | - Pierre-Alain Clavien
- Department of Surgery and Transplantation, Swiss HPB and Transplant Center Zurich, University Hospital Zurich, Zurich, Switzerland
- Wyss Zurich Translational Center, ETH Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
19
|
Fernandes JL, Martins FO, Olea E, Prieto-Lloret J, Braga PC, Sacramento JF, Sequeira CO, Negrinho AP, Pereira SA, Alves MG, Rocher A, Conde SV. Chronic Intermittent Hypoxia-Induced Dysmetabolism Is Associated with Hepatic Oxidative Stress, Mitochondrial Dysfunction and Inflammation. Antioxidants (Basel) 2023; 12:1910. [PMID: 38001763 PMCID: PMC10669005 DOI: 10.3390/antiox12111910] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/13/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
The association between obstructive sleep apnea (OSA) and metabolic disorders is well-established; however, the underlying mechanisms that elucidate this relationship remain incompletely understood. Since the liver is a major organ in the maintenance of metabolic homeostasis, we hypothesize that liver dysfunction plays a crucial role in the pathogenesis of metabolic dysfunction associated with obstructive sleep apnea (OSA). Herein, we explored the underlying mechanisms of this association within the liver. Experiments were performed in male Wistar rats fed with a control or high fat (HF) diet (60% lipid-rich) for 12 weeks. Half of the groups were exposed to chronic intermittent hypoxia (CIH) (30 hypoxic (5% O2) cycles, 8 h/day) that mimics OSA, in the last 15 days. Insulin sensitivity and glucose tolerance were assessed. Liver samples were collected for evaluation of lipid deposition, insulin signaling, glucose homeostasis, hypoxia, oxidative stress, antioxidant defenses, mitochondrial biogenesis and inflammation. Both the CIH and HF diet induced dysmetabolism, a state not aggravated in animals submitted to HF plus CIH. CIH aggravates hepatic lipid deposition in obese animals. Hypoxia-inducible factors levels were altered by these stimuli. CIH decreased the levels of oxidative phosphorylation complexes in both groups and the levels of SOD-1. The HF diet reduced mitochondrial density and hepatic antioxidant capacity. The CIH and HF diet produced alterations in cysteine-related thiols and pro-inflammatory markers. The results obtained suggest that hepatic mitochondrial dysfunction and oxidative stress, leading to inflammation, may be significant factors contributing to the development of dysmetabolism associated with OSA.
Collapse
Affiliation(s)
- Joana L. Fernandes
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-069 Lisboa, Portugal; (J.L.F.); (F.O.M.); (J.F.S.); (C.O.S.); (A.P.N.); (S.A.P.)
| | - Fátima O. Martins
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-069 Lisboa, Portugal; (J.L.F.); (F.O.M.); (J.F.S.); (C.O.S.); (A.P.N.); (S.A.P.)
| | - Elena Olea
- Departamento de Enfermeria, Universidad de Valladolid, 47005 Valladolid, Spain;
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM), Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, 47005 Valladolid, Spain; (J.P.-L.); (A.R.)
| | - Jesus Prieto-Lloret
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM), Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, 47005 Valladolid, Spain; (J.P.-L.); (A.R.)
- Departamento de Bioquímica, Biologia Molecular y Fisiologia, Universidad de Valladolid, 47005 Valladolid, Spain
| | - Patrícia C. Braga
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal; (P.C.B.); (M.G.A.)
- ITR-Laboratory for Integrative and Translational Research in Population Health, 4050-313 Porto, Portugal
- Institute of Biomedicine—iBiMED and Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Joana F. Sacramento
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-069 Lisboa, Portugal; (J.L.F.); (F.O.M.); (J.F.S.); (C.O.S.); (A.P.N.); (S.A.P.)
| | - Catarina O. Sequeira
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-069 Lisboa, Portugal; (J.L.F.); (F.O.M.); (J.F.S.); (C.O.S.); (A.P.N.); (S.A.P.)
| | - Ana P. Negrinho
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-069 Lisboa, Portugal; (J.L.F.); (F.O.M.); (J.F.S.); (C.O.S.); (A.P.N.); (S.A.P.)
| | - Sofia A. Pereira
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-069 Lisboa, Portugal; (J.L.F.); (F.O.M.); (J.F.S.); (C.O.S.); (A.P.N.); (S.A.P.)
| | - Marco G. Alves
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal; (P.C.B.); (M.G.A.)
- ITR-Laboratory for Integrative and Translational Research in Population Health, 4050-313 Porto, Portugal
- Institute of Biomedicine—iBiMED and Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Asunción Rocher
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM), Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, 47005 Valladolid, Spain; (J.P.-L.); (A.R.)
- Departamento de Bioquímica, Biologia Molecular y Fisiologia, Universidad de Valladolid, 47005 Valladolid, Spain
| | - Silvia V. Conde
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-069 Lisboa, Portugal; (J.L.F.); (F.O.M.); (J.F.S.); (C.O.S.); (A.P.N.); (S.A.P.)
| |
Collapse
|
20
|
Tang H, Lv F, Zhang P, Liu J, Mao J. The impact of obstructive sleep apnea on nonalcoholic fatty liver disease. Front Endocrinol (Lausanne) 2023; 14:1254459. [PMID: 37850091 PMCID: PMC10577417 DOI: 10.3389/fendo.2023.1254459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/15/2023] [Indexed: 10/19/2023] Open
Abstract
Obstructive sleep apnea (OSA) is characterized by episodic sleep state-dependent collapse of the upper airway, with consequent hypoxia, hypercapnia, and arousal from sleep. OSA contributes to multisystem damage; in severe cases, sudden cardiac death might occur. In addition to causing respiratory, cardiovascular and endocrine metabolic diseases, OSA is also closely associated with nonalcoholic fatty liver disease (NAFLD). As the prevalence of OSA and NAFLD increases rapidly, they significantly exert adverse effects on the health of human beings. The authors retrieved relevant documents on OSA and NAFLD from PubMed and Medline. This narrative review elaborates on the current knowledge of OSA and NAFLD, demonstrates the impact of OSA on NAFLD, and clarifies the underlying mechanisms of OSA in the progression of NAFLD. Although there is a lack of sufficient high-quality clinical studies to prove the causal or concomitant relationship between OSA and NAFLD, existing evidence has confirmed the effect of OSA on NAFLD. Elucidating the underlying mechanisms through which OSA impacts NAFLD would hold considerable importance in terms of both prevention and the identification of potential therapeutic targets for NAFLD.
Collapse
Affiliation(s)
- Haiying Tang
- Department of Respiratory and Critical Disease, Respiratory Sleep Disorder Center, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Furong Lv
- Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Peng Zhang
- Department of Medical Information Engineering, Zhongshan College of Dalian Medical University, Dalian, Liaoning, China
| | - Jia Liu
- Department of Respiratory and Critical Disease, Respiratory Sleep Disorder Center, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jingwei Mao
- Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
21
|
Thorp EB. Cardiac macrophages and emerging roles for their metabolism after myocardial infarction. J Clin Invest 2023; 133:e171953. [PMID: 37712418 PMCID: PMC10503791 DOI: 10.1172/jci171953] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023] Open
Abstract
Interest in cardioimmunology has reached new heights as the experimental cardiology field works to tap the unrealized potential of immunotherapy for clinical care. Within this space is the cardiac macrophage, a key modulator of cardiac function in health and disease. After a myocardial infarction, myeloid macrophages both protect and harm the heart. To varying degrees, such outcomes are a function of myeloid ontogeny and heterogeneity, as well as functional cellular plasticity. Diversity is further shaped by the extracellular milieu, which fluctuates considerably after coronary occlusion. Ischemic limitation of nutrients constrains the metabolic potential of immune cells, and accumulating evidence supports a paradigm whereby macrophage metabolism is coupled to divergent inflammatory consequences, although experimental evidence for this in the heart is just emerging. Herein we examine the heterogeneous cardiac macrophage response following ischemic injury, with a focus on integrating putative contributions of immunometabolism and implications for therapeutically relevant cardiac injury versus cardiac repair.
Collapse
|
22
|
Gao F, Yao Q, Zhu J, Chen W, Feng X, Feng B, Wu J, Pacak K, Rosenblum J, Yu J, Zhuang Z, Cao H, Li L. A novel HIF2A mutation causes dyslipidemia and promotes hepatic lipid accumulation. Pharmacol Res 2023; 194:106851. [PMID: 37453673 PMCID: PMC10735172 DOI: 10.1016/j.phrs.2023.106851] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Hypoxia-inducible factor-2α (HIF-2α) is a transcription factor responsible for regulating genes related to angiogenesis and metabolism. This study aims to explore the effect of a previously unreported mutation c.C2473T (p.R825S) in the C-terminal transactivation domain (CTAD) of HIF-2α that we detected in tissue of patients with liver disease. We sequenced available liver and matched blood samples obtained during partial liver resection or liver transplantation performed for clinical indications including hepatocellular carcinoma and liver failure. In tandem, we constructed cell lines and a transgenic mouse model bearing the corresponding identified mutation in HIF-2α from which we extracted primary hepatocytes. Lipid accumulation was evaluated in these cells and liver tissue from the mouse model using Oil Red O staining and biochemical measurements. We identified a mutation in the CTAD of HIF-2α (c.C2473T; p.R825S) in 5 of 356 liver samples obtained from patients with hepatopathy and dyslipidemia. We found that introduction of this mutation into the mouse model led to an elevated triglyceride level, lipid droplet accumulation in liver of the mutant mice and in their extracted primary hepatocytes, and increased transcription of genes related to hepatic fatty acid transport and synthesis in the mutant compared to the control groups. In mutant mice and cells, the protein levels of nuclear HIF-2α and its target perilipin-2 (PLIN2), a lipid droplet-related gene, were also elevated. Decreased lipophagy was observed in mutant groups. Our study defines a subpopulation of dyslipidemia that is caused by this HIF-2α mutation. This may have implications for personalized treatment.
Collapse
Affiliation(s)
- Feiqiong Gao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China; National Clinical Research Center for Infectious Diseases, Hangzhou City 310003, China
| | - Qigu Yao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China; National Clinical Research Center for Infectious Diseases, Hangzhou City 310003, China
| | - Jiaqi Zhu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China; National Clinical Research Center for Infectious Diseases, Hangzhou City 310003, China
| | - Wenyi Chen
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China; National Clinical Research Center for Infectious Diseases, Hangzhou City 310003, China
| | - Xudong Feng
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China; National Clinical Research Center for Infectious Diseases, Hangzhou City 310003, China
| | - Bing Feng
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China; National Clinical Research Center for Infectious Diseases, Hangzhou City 310003, China
| | - Jian Wu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China; National Clinical Research Center for Infectious Diseases, Hangzhou City 310003, China
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Building 10, Room 1-3140, 10 Center Drive, Bethesda, MD 20892, USA
| | - Jared Rosenblum
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Building 37 Room 100, 37 Convent Drive, Bethesda, MD 20892, USA
| | - Jiong Yu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China; National Clinical Research Center for Infectious Diseases, Hangzhou City 310003, China.
| | - Zhengping Zhuang
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Building 37 Room 100, 37 Convent Drive, Bethesda, MD 20892, USA.
| | - Hongcui Cao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China; Key Laboratory of Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, 79 Qingchun Rd, Hangzhou City 310003, China; National Clinical Research Center for Infectious Diseases, Hangzhou City 310003, China.
| | - Lanjuan Li
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China; National Clinical Research Center for Infectious Diseases, Hangzhou City 310003, China; Jinan Microecological Biomedicine Shandong Laboratory, Jinan City 250117, China
| |
Collapse
|
23
|
Zhang T, Xu D, Liu J, Wang M, Duan LJ, Liu M, Meng H, Zhuang Y, Wang H, Wang Y, Lv M, Zhang Z, Hu J, Shi L, Guo R, Xie X, Liu H, Erickson E, Wang Y, Yu W, Dang F, Guan D, Jiang C, Dai X, Inuzuka H, Yan P, Wang J, Babuta M, Lian G, Tu Z, Miao J, Szabo G, Fong GH, Karnoub AE, Lee YR, Pan L, Kaelin WG, Yuan J, Wei W. Prolonged hypoxia alleviates prolyl hydroxylation-mediated suppression of RIPK1 to promote necroptosis and inflammation. Nat Cell Biol 2023; 25:950-962. [PMID: 37400498 PMCID: PMC10617019 DOI: 10.1038/s41556-023-01170-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 05/21/2023] [Indexed: 07/05/2023]
Abstract
The prolyl hydroxylation of hypoxia-inducible factor 1α (HIF-1α) mediated by the EGLN-pVHL pathway represents a classic signalling mechanism that mediates cellular adaptation under hypoxia. Here we identify RIPK1, a known regulator of cell death mediated by tumour necrosis factor receptor 1 (TNFR1), as a target of EGLN1-pVHL. Prolyl hydroxylation of RIPK1 mediated by EGLN1 promotes the binding of RIPK1 with pVHL to suppress its activation under normoxic conditions. Prolonged hypoxia promotes the activation of RIPK1 kinase by modulating its proline hydroxylation, independent of the TNFα-TNFR1 pathway. As such, inhibiting proline hydroxylation of RIPK1 promotes RIPK1 activation to trigger cell death and inflammation. Hepatocyte-specific Vhl deficiency promoted RIPK1-dependent apoptosis to mediate liver pathology. Our findings illustrate a key role of the EGLN-pVHL pathway in suppressing RIPK1 activation under normoxic conditions to promote cell survival and a model by which hypoxia promotes RIPK1 activation through modulating its proline hydroxylation to mediate cell death and inflammation in human diseases, independent of TNFR1.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Daichao Xu
- Interdisciplinary Center of Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| | - Jianping Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Min Wang
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li-Juan Duan
- Center for Vascular Biology, Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Min Liu
- Transfusion Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Huyan Meng
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Yuan Zhuang
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Huibing Wang
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Yingnan Wang
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Mingming Lv
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
| | - Zhengyi Zhang
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jia Hu
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Linyu Shi
- Interdisciplinary Center of Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Rui Guo
- Interdisciplinary Center of Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Xingxing Xie
- Interdisciplinary Center of Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Hui Liu
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Emily Erickson
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yaru Wang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wenyu Yu
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Fabin Dang
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Dongxian Guan
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Cong Jiang
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Xiaoming Dai
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Hiroyuki Inuzuka
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Peiqiang Yan
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jingchao Wang
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Mrigya Babuta
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Gewei Lian
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Zhenbo Tu
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ji Miao
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gyongyi Szabo
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Guo-Hua Fong
- Center for Vascular Biology, Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Antoine E Karnoub
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yu-Ru Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Lifeng Pan
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - William G Kaelin
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Junying Yuan
- Interdisciplinary Center of Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| | - Wenyi Wei
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
24
|
Luo M, Li T, Sang H. The role of hypoxia-inducible factor 1α in hepatic lipid metabolism. J Mol Med (Berl) 2023; 101:487-500. [PMID: 36973503 DOI: 10.1007/s00109-023-02308-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 02/06/2023] [Accepted: 03/06/2023] [Indexed: 03/29/2023]
Abstract
Chronic liver disease is a major public health problem with a high and increasing prevalence worldwide. In the progression of chronic liver disease, steatosis drives the progression of the disease to cirrhosis or even liver cancer. Hypoxia-inducible factor 1α (HIF-1α) is central to the regulation of hepatic lipid metabolism. HIF-1α upregulates the expression of genes related to lipid uptake and synthesis in the liver and downregulates the expression of lipid oxidation genes. Thus, it promotes intrahepatic lipid deposition. In addition, HIF-1α is expressed in white adipose tissue, where lipolysis releases free fatty acids (FFAs) into the blood. These circulating FFAs are taken up by the liver and accumulate in the liver. The expression of HIF-1α in the liver condenses bile and makes it easier to form gallstones. Contrary to the role of hepatic HIF-1α, intestinal HIF-1α expression can maintain a healthy microbiota and intestinal barrier. Thus, it plays a protective role against hepatic steatosis. This article aims to provide an overview of the current understanding of the role of HIF-1α in hepatic steatosis and to encourage the development of therapeutic agents associated with HIF-1α pathways. KEY MESSAGES: • Hepatic HIF-1α expression promotes lipid uptake and synthesis and reduces lipid oxidation leading to hepatic steatosis. • The expression of HIF-1α in the liver condenses bile and makes it easier to form gallstones. • Intestinal HIF-1α expression can maintain a healthy microbiota and intestinal barrier.
Collapse
Affiliation(s)
- Mingxiao Luo
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Tingting Li
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Haiquan Sang
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
25
|
Vanderhaeghen T, Timmermans S, Eggermont M, Watts D, Vandewalle J, Wallaeys C, Nuyttens L, De Temmerman J, Hochepied T, Dewaele S, Berghe JV, Sanders N, Wielockx B, Beyaert R, Libert C. The impact of hepatocyte-specific deletion of hypoxia-inducible factors on the development of polymicrobial sepsis with focus on GR and PPARα function. Front Immunol 2023; 14:1124011. [PMID: 37006237 PMCID: PMC10060827 DOI: 10.3389/fimmu.2023.1124011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
IntroductionPolymicrobial sepsis causes acute anorexia (loss of appetite), leading to lipolysis in white adipose tissue and proteolysis in muscle, and thus release of free fatty acids (FFAs), glycerol and gluconeogenic amino acids. Since hepatic peroxisome proliferator-activated receptor alpha (PPARα) and glucocorticoid receptor (GR) quickly lose function in sepsis, these metabolites accumulate (causing toxicity) and fail to yield energy-rich molecules such as ketone bodies (KBs) and glucose. The mechanism of PPARα and GR dysfunction is not known.Methods & resultsWe investigated the hypothesis that hypoxia and/or activation of hypoxia inducible factors (HIFs) might play a role in these issues with PPARα and GR. After cecal ligation and puncture (CLP) in mice, leading to lethal polymicrobial sepsis, bulk liver RNA sequencing illustrated the induction of the genes encoding HIF1α and HIF2α, and an enrichment of HIF-dependent gene signatures. Therefore, we generated hepatocyte-specific knock-out mice for HIF1α, HIF2α or both, and a new HRE-luciferase reporter mouse line. After CLP, these HRE-luciferase reporter mice show signals in several tissues, including the liver. Hydrodynamic injection of an HRE-luciferase reporter plasmid also led to (liver-specific) signals in hypoxia and CLP. Despite these encouraging data, however, hepatocyte-specific HIF1α and/or HIF2α knock-out mice suggest that survival after CLP was not dependent on the hepatocyte-specific presence of HIF proteins, which was supported by measuring blood levels of glucose, FFAs, and KBs. The HIF proteins were also irrelevant in the CLP-induced glucocorticoid resistance, but we found indications that the absence of HIF1α in hepatocytes causes less inactivation of PPARα transcriptional function.ConclusionWe conclude that HIF1α and HIF2α are activated in hepatocytes in sepsis, but their contribution to the mechanisms leading to lethality are minimal.
Collapse
Affiliation(s)
- Tineke Vanderhaeghen
- Flanders Institute for Biotechnology (VIB) Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Steven Timmermans
- Flanders Institute for Biotechnology (VIB) Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Melanie Eggermont
- Flanders Institute for Biotechnology (VIB) Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Deepika Watts
- Department of Clinical Pathobiochemistry, Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
- Deutsche Forschungsgemeinschaft (DFG) Research Centre and Cluster of Excellence for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Jolien Vandewalle
- Flanders Institute for Biotechnology (VIB) Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Charlotte Wallaeys
- Flanders Institute for Biotechnology (VIB) Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Louise Nuyttens
- Flanders Institute for Biotechnology (VIB) Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Joyca De Temmerman
- Department of Nutrition, Genetics, and Ethology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
- Department of Pathology, Bacteriology, and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Tino Hochepied
- Flanders Institute for Biotechnology (VIB) Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Sylviane Dewaele
- Flanders Institute for Biotechnology (VIB) Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Joke Vanden Berghe
- Flanders Institute for Biotechnology (VIB) Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Niek Sanders
- Department of Nutrition, Genetics, and Ethology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
- Department of Pathology, Bacteriology, and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Ben Wielockx
- Department of Clinical Pathobiochemistry, Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
- Deutsche Forschungsgemeinschaft (DFG) Research Centre and Cluster of Excellence for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Rudi Beyaert
- Flanders Institute for Biotechnology (VIB) Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Claude Libert
- Flanders Institute for Biotechnology (VIB) Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- *Correspondence: Claude Libert,
| |
Collapse
|
26
|
Diagnosis of asphyxiation in advanced decomposed corpses by using Oil-Red-O Stain and immunohistochemical technology. Leg Med (Tokyo) 2023; 62:102214. [PMID: 36905850 DOI: 10.1016/j.legalmed.2023.102214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/21/2023] [Accepted: 01/30/2023] [Indexed: 02/17/2023]
Abstract
BACKGROUND The unambiguous diagnosis of asphyxiation is still a major challenge for the forensic pathologist, especially in terms of highly advanced decomposed corps. METHODOLOGY In order to demonstrate asphyxiation particularly in profoundly putrid bodies we hypothesized that hypoxic stress is basically responsible for generalized fatty degeneration of visceral organs which can be detected by histological examination using a special staining technique referred to as Oil-Red-O Stain (Sudan III-red-B-stain). To test this hypothesis we examined different tissues (myocardium, liver, lung and kidney) of 107 people divided into 5 groups. These are: (i) 71 case-victims who were found in a truck and died most likely due to asphyxiation, whereby any other violent or natural cause of death was ruled out by postmortem examination; (ii) 10 barely decomposed positive-control-victims; (iii) 6 non-decomposed positive-control-victims; iv) 10 drowning non-decomposed positive-control victims, and v) 10 negative-control-victims. Apart from general histological special staining methods, an immunohistochemically approach as a case-control-study on lung tissues of same individuals was carried out by means of using two polyclonal rabbit-antibodies against (i) HIF-1-α (Hypoxia Inducing Factor-1 alpha) and (ii) SP-A (pulmonary surfactant-associated protein A) to detect both the transcription factor and pulmonary surfactants. The positive proof of already either of them gives evidence of death caused by hypoxia. RESULTS Histological examination of myocardium, liver and kidney of the 71 case-victims and the 10 positive-control-victims using Oil-Red-O Stain showed a fatty degeneration of small droplet type; there was no evidence for fatty degeneration in tissues of the 10 negative-control-victims. These findings strongly indicate a causal association between oxygen deficiency and generalized fatty degeneration of viscera due to insufficient oxygen supply. In terms of methodology, this special staining technique seems to be very informative, even applicable on decomposed corps. Results of immunohistochemistry indicate that on the one hand the detection of HIF-1α is not possible to perform on (advanced) putrid bodies, whereas the verification of SP-A is still feasible on the other. CONCLUSION Positive Oil-Red-O staining and the immunohistochemical detection of SP-A can serve as a serious hint for the diagnosis of asphyxia on putrid corpses, considering other circumstances of death that have been determined.
Collapse
|
27
|
Investigation of the Potential Mechanism of Alpinia officinarum Hance in Improving Type 2 Diabetes Mellitus Based on Network Pharmacology and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:4934711. [PMID: 36818229 PMCID: PMC9935802 DOI: 10.1155/2023/4934711] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 02/11/2023]
Abstract
Objective We used network pharmacology, molecular docking, and cellular analysis to explore the pharmacodynamic components and action mechanism of Alpinia officinarum Hance (A. officinarum) in improving type 2 diabetes mellitus (T2DM). Methods The protein-protein interaction (PPI) network, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to predict the potential targets and mechanism of A. officinarum toward improving T2DM. The first 9 core targets and potential active compounds were docked using Discovery Studio 2019. Finally, IR-HepG2 cells and qPCR were applied to determine the mRNA expression of the top 6 core targets of the PPI network. Results A total of 29 active ingredients and 607 targets of A. officinarum were obtained. T2DM-related targets overlapped with 176 targets. The core targets of the PPI network were identified as AKT serine/threonine kinase 1 (AKT1), an activator of transcription 3 (STAT3), tumor necrosis factor (TNF), tumor protein p53 (TP53), SRC proto-oncogene, nonreceptor tyrosine kinase (SRC), epidermal growth factor receptor (EGFR), albumin (ALB), mitogen-activated protein kinase 1 (MAPK1), and peroxisome proliferator-activated receptor gamma (PPARG). A. officinarum performs an antidiabetic role via the AGE-RAGE signaling pathway, the HIF-1 signaling pathway, the PI3K-AKT signaling pathway, and others, according to GO and KEGG enrichment analyses. Molecular docking revealed that the binding ability of diarylheptanoid active components in A. officinarum to core target protein was higher than that of flavonoids. The cell experiments confirmed that the A. officinarum extracts improved the glucose uptake of IR-HepG2 cells and AKT expression while inhibiting the STAT3, TNF, TP53, SRC, and EGFR mRNA expression. Conclusion A. officinarum Hance improves T2DM by acting on numerous components, multiple targets, and several pathways. Our results lay the groundwork for the subsequent research and broaden the clinical application of A. officinarum Hance.
Collapse
|
28
|
Nguyen TTM, Nguyen TH, Kim HS, Dao TTP, Moon Y, Seo M, Kang S, Mai VH, An YJ, Jung CR, Kim JM, Park S. GPX8 regulates clear cell renal cell carcinoma tumorigenesis through promoting lipogenesis by NNMT. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2023; 42:42. [PMID: 36750850 PMCID: PMC9903620 DOI: 10.1186/s13046-023-02607-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/19/2023] [Indexed: 02/09/2023]
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC), with its hallmark phenotype of high cytosolic lipid content, is considered a metabolic cancer. Despite the implication of this lipid-rich phenotype in ccRCC tumorigenesis, the roles and regulators of de novo lipid synthesis (DNL) in ccRCC remain largely unexplained. METHODS Our bioinformatic screening focused on ccRCC-lipid phenotypes identified glutathione peroxidase 8 (GPX8), as a clinically relevant upstream regulator of DNL. GPX8 genetic silencing was performed with CRISPR-Cas9 or shRNA in ccRCC cell lines to dissect its roles. Untargeted metabolomics, RNA-seq analyses, and other biochemical assays (e.g., lipid droplets staining, fatty acid uptake, cell proliferation, xenograft, etc.) were carried out to investigate the GPX8's involvement in lipid metabolism and tumorigenesis in ccRCC. The lipid metabolic function of GPX8 and its downstream were also measured by isotope-tracing-based DNL flux measurement. RESULTS GPX8 knockout or downregulation substantially reduced lipid droplet levels (independent of lipid uptake), fatty acid de novo synthesis, triglyceride esterification in vitro, and tumor growth in vivo. The downstream regulator was identified as nicotinamide N-methyltransferase (NNMT): its knockdown phenocopied, and its expression rescued, GPX8 silencing both in vitro and in vivo. Mechanically, GPX8 regulated NNMT via IL6-STAT3 signaling, and blocking this axis suppressed ccRCC survival by activating AMPK. Notably, neither the GPX8-NNMT axis nor the DNL flux was affected by the von Hippel Lindau (VHL) status, the conventional regulator of ccRCC high lipid content. CONCLUSIONS Taken together, our findings unravel the roles of the VHL-independent GPX8-NNMT axis in ccRCC lipid metabolism as related to the phenotypes and growth of ccRCC, which may be targeted for therapeutic purposes.
Collapse
Affiliation(s)
- Tin Tin Manh Nguyen
- grid.31501.360000 0004 0470 5905Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826 Republic of Korea
| | - Thi Ha Nguyen
- grid.31501.360000 0004 0470 5905Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826 Republic of Korea
| | - Han Sun Kim
- grid.31501.360000 0004 0470 5905Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826 Republic of Korea
| | - Thien T. P. Dao
- grid.31501.360000 0004 0470 5905Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826 Republic of Korea
| | - Yechan Moon
- grid.31501.360000 0004 0470 5905Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826 Republic of Korea
| | - Munjun Seo
- grid.31501.360000 0004 0470 5905Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826 Republic of Korea
| | - Sunmi Kang
- grid.31501.360000 0004 0470 5905Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826 Republic of Korea
| | - Van-Hieu Mai
- grid.31501.360000 0004 0470 5905Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826 Republic of Korea ,grid.444808.40000 0001 2037 434XMolecular Biology Department, School of Medicine, Vietnam National University, Ho Chi Minh City, 70000 Vietnam
| | - Yong Jin An
- grid.31501.360000 0004 0470 5905Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826 Republic of Korea
| | - Cho-Rok Jung
- grid.249967.70000 0004 0636 3099Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141 Republic of Korea ,grid.412786.e0000 0004 1791 8264Department of Functional Genomics, Korea University of Science and Technology (UST), Daejeon, 34113 Republic of Korea
| | - Jin-Mo Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Sunghyouk Park
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
29
|
Birrer DL, Kachaylo E, Breuer E, Linecker M, Kron P, Ungethüm U, Hagedorn C, Steiner R, Kälin C, Borrego LB, Dufour JF, Foti M, Hornemann T, Clavien PA, Humar B. Normalization of lipid oxidation defects arising from hypoxia early posthepatectomy prevents liver failure in mouse. Am J Transplant 2023; 23:190-201. [PMID: 36804129 DOI: 10.1016/j.ajt.2022.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/10/2022] [Accepted: 10/23/2022] [Indexed: 01/13/2023]
Abstract
Surgical liver failure (SLF) develops when a marginal amount of hepatic mass is left after surgery, such as following excessive resection. SLF is the commonest cause of death due to liver surgery; however, its etiology remains obscure. Using mouse models of standard hepatectomy (sHx) (68%, resulting in full regeneration) or extended hepatectomy (eHx) (86%/91%, causing SLF), we explored the causes of early SLF related to portal hyperafflux. Assessing the levels of HIF2A with or without oxygenating agent inositol trispyrophosphate (ITPP) indicated hypoxia early after eHx. Subsequently, lipid oxidation (PPARA/PGC1α) was downregulated and associated with persisting steatosis. Mild oxidation with low-dose ITPP reduced the levels of HIF2A, restored downstream PPARA/PGC1α expression along with lipid oxidation activities (LOAs), and normalized steatosis and other metabolic or regenerative SLF deficiencies. Promotion of LOA with L-carnitine likewise normalized the SLF phenotype, and both ITPP and L-carnitine markedly raised survival in lethal SLF. In patients who underwent hepatectomy, pronounced increases in serum carnitine levels (reflecting LOA) were associated with better recovery. Lipid oxidation thus provides a link between the hyperafflux of O2-poor portal blood, the metabolic/regenerative deficits, and the increased mortality typifying SLF. Stimulation of lipid oxidation-the prime regenerative energy source-particularly through L-carnitine may offer a safe and feasible way to reduce SLF risks in the clinic.
Collapse
Affiliation(s)
- Dominique Lisa Birrer
- Department of Visceral and Transplantation Surgery, University Hospital Zürich, Zürich, Switzerland
| | - Ekaterina Kachaylo
- Department of Visceral and Transplantation Surgery, University Hospital Zürich, Zürich, Switzerland
| | - Eva Breuer
- Department of Visceral and Transplantation Surgery, University Hospital Zürich, Zürich, Switzerland
| | - Michael Linecker
- Department of Visceral and Transplantation Surgery, University Hospital Zürich, Zürich, Switzerland
| | - Philipp Kron
- Department of Visceral and Transplantation Surgery, University Hospital Zürich, Zürich, Switzerland
| | - Udo Ungethüm
- Department of Visceral and Transplantation Surgery, University Hospital Zürich, Zürich, Switzerland
| | - Catherine Hagedorn
- Department of Visceral and Transplantation Surgery, University Hospital Zürich, Zürich, Switzerland
| | - Regula Steiner
- Institute for Clinical Chemistry, University Hospital Zürich, Zürich, Switzerland
| | - Carola Kälin
- Institute for Clinical Chemistry, University Hospital Zürich, Zürich, Switzerland
| | - Lucia Bautista Borrego
- Department of Visceral and Transplantation Surgery, University Hospital Zürich, Zürich, Switzerland
| | - Jean-Francois Dufour
- University Clinic for Visceral Surgery and Medicine and Hepatology, Department of BioMedical Research, University of Berne, Berne, Switzerland
| | - Michelangelo Foti
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Thorsten Hornemann
- Institute for Clinical Chemistry, University Hospital Zürich, Zürich, Switzerland
| | - Pierre-Alain Clavien
- Department of Visceral and Transplantation Surgery, University Hospital Zürich, Zürich, Switzerland
| | - Bostjan Humar
- Department of Visceral and Transplantation Surgery, University Hospital Zürich, Zürich, Switzerland.
| |
Collapse
|
30
|
A Bidirectional Association Between Obstructive Sleep Apnea and Metabolic-Associated Fatty Liver Disease. Endocrinol Metab Clin North Am 2023. [PMID: 37495341 DOI: 10.1016/j.ecl.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
Obesity is considered a twentieth-century epidemic and is a growing concern among health professionals. Obesity and its complications contribute to multiple chronic illnesses, such as type 2 diabetes (T2D), metabolic syndrome, obstructive sleep apnea (OSA), malignancy, and cardiovascular and liver diseases. In the last two decades, a bidirectional association between OSA and metabolic-associated fatty liver disease (MAFLD), independent of obesity, has been established. Both conditions have similar risk factors and metabolic comorbidities that may imply a common disease pathway. This review compiles the evidence and delineates the relationship between OSA and MAFLD from a clinical and diagnostic aspect.
Collapse
|
31
|
Cannito S, Dianzani U, Parola M, Albano E, Sutti S. Inflammatory processes involved in NASH-related hepatocellular carcinoma. Biosci Rep 2023; 43:BSR20221271. [PMID: 36691794 PMCID: PMC9874450 DOI: 10.1042/bsr20221271] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/09/2022] [Accepted: 01/05/2023] [Indexed: 01/25/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related death worldwide. In the recent years nonalcoholic fatty liver disease (NAFLD) is becoming a growing cause of HCCs and the incidence of NAFLD-related HCCs is expected to further dramatically increase by the next decade. Chronic inflammation is regarded as the driving force of NAFLD progression and a key factor in hepatic carcinogenesis. Hepatic inflammation in NAFLD results from the persistent stimulation of innate immunity in response to hepatocellular injury and gut dysbiosis as well as by the activation of adaptive immunity. However, the relative roles of innate and adaptive immunity in the processes leading to HCC are still incompletely characterized. This is due to the complex interplay between different liver cell populations, which is also strongly influenced by gut-derived bacterial products, metabolic/nutritional signals. Furthermore, carcinogenic mechanisms in NAFLD/NASH appear to involve the activation of signals mediated by hypoxia inducible factors. This review discusses recent data regarding the contribution of different inflammatory cells to NAFLD-related HCC and their possible impact on patient response to current treatments.
Collapse
Affiliation(s)
- Stefania Cannito
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine and Clinical Pathology, University of Turin, Turin, Italy
| | - Umberto Dianzani
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of East Piedmont, Novara, Italy
| | - Maurizio Parola
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine and Clinical Pathology, University of Turin, Turin, Italy
| | - Emanuele Albano
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of East Piedmont, Novara, Italy
| | - Salvatore Sutti
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of East Piedmont, Novara, Italy
| |
Collapse
|
32
|
Wang N, Hua J, Fu Y, An J, Chen X, Wang C, Zheng Y, Wang F, Ji Y, Li Q. Updated perspective of EPAS1 and the role in pulmonary hypertension. Front Cell Dev Biol 2023; 11:1125723. [PMID: 36923253 PMCID: PMC10008962 DOI: 10.3389/fcell.2023.1125723] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/14/2023] [Indexed: 03/03/2023] Open
Abstract
Pulmonary hypertension (PH) is a group of syndromes characterized by irreversible vascular remodeling and persistent elevation of pulmonary vascular resistance and pressure, leading to ultimately right heart failure and even death. Current therapeutic strategies mainly focus on symptoms alleviation by stimulating pulmonary vessel dilation. Unfortunately, the mechanism and interventional management of vascular remodeling are still yet unrevealed. Hypoxia plays a central role in the pathogenesis of PH and numerous studies have shown the relationship between PH and hypoxia-inducible factors family. EPAS1, known as hypoxia-inducible factor-2 alpha (HIF-2α), functions as a transcription factor participating in various cellular pathways. However, the detailed mechanism of EPAS1 has not been fully and systematically described. This article exhibited a comprehensive summary of EPAS1 including the molecular structure, biological function and regulatory network in PH and other relevant cardiovascular diseases, and furthermore, provided theoretical reference for the potential novel target for future PH intervention.
Collapse
Affiliation(s)
- Na Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital Affiliated by Tongji University, Shanghai, China
| | - Jing Hua
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital Affiliated by Tongji University, Shanghai, China
| | - Yuhua Fu
- Department of Pulmonary and Critical Care Medicine, Central Hospital of Jiading District, Shanghai, China
| | - Jun An
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiangyu Chen
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital Affiliated by Tongji University, Shanghai, China
| | - Chuancui Wang
- Department of Pulmonary and Critical Care Medicine, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai, China
| | - Yanghong Zheng
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital Affiliated by Tongji University, Shanghai, China
| | - Feilong Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital Affiliated by Tongji University, Shanghai, China
| | - Yingqun Ji
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital Affiliated by Tongji University, Shanghai, China
| | - Qiang Li
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital Affiliated by Tongji University, Shanghai, China
| |
Collapse
|
33
|
Wu MF, Zhang GD, Liu TT, Shen JH, Cheng JL, Shen J, Yang TY, Huang C, Zhang L. Hif-2α regulates lipid metabolism in alcoholic fatty liver disease through mitophagy. Cell Biosci 2022; 12:198. [PMID: 36476627 PMCID: PMC9730692 DOI: 10.1186/s13578-022-00889-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 08/24/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Disordered lipid metabolism plays an essential role in both the initiation and progression of alcoholic fatty liver disease (AFLD), and fatty acid β-oxidation is increasingly considered as a crucial factor for controlling lipid metabolism. Hif-2α is a member of the Hif family of nuclear receptors, which take part in regulating hepatic fatty acid β-oxidation. However, its functional role in AFLD and the underlying mechanisms remain unclear. RESULTS Hif-2α was upregulated in EtOH-fed mice and EtOH-treated AML-12 cells. Inhibition or silencing of Hif-2α led to increased fatty acid β-oxidation and BNIP3-dependent mitophagy. Downregulation of Hif-2α activates the PPAR-α/PGC-1α signaling pathway, which is involved in hepatic fatty acid β-oxidation, by mediating BNIP3-dependent mitophagy, ultimately delaying the progression of AFLD. CONCLUSIONS Hif-2α induces liver steatosis, which promotes the progression of AFLD. Here, we have described a novel Hif-2α-BNIP3-dependent mitophagy regulatory pathway interconnected with EtOH-induced lipid accumulation, which could be a potential therapeutic target for the prevention and treatment of AFLD.
Collapse
Affiliation(s)
- Mei-fei Wu
- grid.186775.a0000 0000 9490 772XSchool of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032 China ,grid.16821.3c0000 0004 0368 8293Sixth People’s Hospital South Campus, Shanghai Jiaotong University, Shanghai, 201400 China
| | - Guo-dong Zhang
- grid.186775.a0000 0000 9490 772XSchool of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032 China ,grid.186775.a0000 0000 9490 772XThe Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, 230032 China
| | - Tong-tong Liu
- grid.186775.a0000 0000 9490 772XSchool of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032 China ,grid.186775.a0000 0000 9490 772XThe Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, 230032 China
| | - Jun-hao Shen
- grid.186775.a0000 0000 9490 772XSchool of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032 China ,grid.186775.a0000 0000 9490 772XThe Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, 230032 China
| | - Jie-ling Cheng
- grid.186775.a0000 0000 9490 772XSchool of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032 China ,grid.186775.a0000 0000 9490 772XThe Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, 230032 China
| | - Jie Shen
- grid.186775.a0000 0000 9490 772XSchool of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032 China ,grid.186775.a0000 0000 9490 772XThe Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, 230032 China
| | - Tian-yu Yang
- grid.186775.a0000 0000 9490 772XSchool of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032 China ,grid.186775.a0000 0000 9490 772XThe Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, 230032 China
| | - Cheng Huang
- grid.186775.a0000 0000 9490 772XSchool of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032 China ,grid.186775.a0000 0000 9490 772XThe Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, 230032 China
| | - Lei Zhang
- grid.186775.a0000 0000 9490 772XSchool of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032 China ,grid.186775.a0000 0000 9490 772XThe Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, 230032 China
| |
Collapse
|
34
|
Maeda K, Hagimori S, Sugimoto M, Sakai Y, Nishikawa M. Simulation of the crosstalk between glucose and acetaminophen metabolism in a liver zonation model. Front Pharmacol 2022; 13:995597. [PMID: 36210818 PMCID: PMC9537759 DOI: 10.3389/fphar.2022.995597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
The liver metabolizes a variety of substances that sometimes interact and regulate each other. The modeling of a single cell or a single metabolic pathway does not represent the complexity of the organ, including metabolic zonation (heterogeneity of functions) along with liver sinusoids. Here, we integrated multiple metabolic pathways into a single numerical liver zonation model, including drug and glucose metabolism. The model simulated the time-course of metabolite concentrations by the combination of dynamic simulation and metabolic flux analysis and successfully reproduced metabolic zonation and localized hepatotoxicity induced by acetaminophen (APAP). Drug metabolism was affected by nutritional status as the glucuronidation reaction rate changed. Moreover, sensitivity analysis suggested that the reported metabolic characteristics of obese adults and healthy infants in glucose metabolism could be associated with the metabolic features of those in drug metabolism. High activities of phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphate phosphatase in obese adults led to increased APAP oxidation by cytochrome P450 2E1. In contrast, the high activity of glycogen synthase and low activities of PEPCK and glycogen phosphorylase in healthy infants led to low glucuronidation and high sulfation rates of APAP. In summary, this model showed the effects of glucose metabolism on drug metabolism by integrating multiple pathways into a single liver metabolic zonation model.
Collapse
Affiliation(s)
- Kazuhiro Maeda
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka, Japan
| | - Shuta Hagimori
- Department of Chemical System Engineering, University of Tokyo, Tokyo, Japan
| | - Masahiro Sugimoto
- Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
- *Correspondence: Masahiro Sugimoto,
| | - Yasuyuki Sakai
- Department of Chemical System Engineering, University of Tokyo, Tokyo, Japan
| | - Masaki Nishikawa
- Department of Chemical System Engineering, University of Tokyo, Tokyo, Japan
| |
Collapse
|
35
|
Wen B, Zheng Z, Wang L, Qian X, Wang X, Chen Y, Bao J, Jiang Y, Ji K, Liu H. HIF-1α is essential for the augmentation of myometrial contractility during labor†. Biol Reprod 2022; 107:1540-1550. [PMID: 36094838 PMCID: PMC9752684 DOI: 10.1093/biolre/ioac174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/29/2022] [Accepted: 09/09/2022] [Indexed: 12/24/2022] Open
Abstract
Uterine contraction is crucial for a successful labor and the prevention of postpartum hemorrhage. It is enhanced by hypoxia; however, its underlying mechanisms are yet to be elucidated. In this study, transcriptomes revealed that hypoxia-inducible factor-1alpha was upregulated in laboring myometrial biopsies, while blockade of hypoxia-inducible factor-1alpha decreased the contractility of the myometrium and myocytes in vitro via small interfering RNA and the inhibitor, 2-methoxyestradiol. Chromatin immunoprecipitation sequencing revealed that hypoxia-inducible factor-1alpha directly binds to the genome of contraction-associated proteins: the promoter of Gja1 and Ptgs2, and the intron of Oxtr. Silencing the hypoxia-inducible factor-1alpha reduced the expression of Ptgs2, Gja1, and Oxtr. Furthermore, blockade of Gja1 or Ptgs2 led to a significant decrease in myometrial contractions in the hypoxic tissue model, whereas atosiban did not remarkably influence contractility. Our study demonstrates that hypoxia-inducible factor-1alpha is essential for promoting myometrial contractility under hypoxia by directly targeting Gja1 and Ptgs2, but not Oxtr. These findings help us to better understand the regulation of myometrial contractions under hypoxia and provide a promising strategy for labor management and postpartum hemorrhage treatment.
Collapse
Affiliation(s)
| | | | - Lele Wang
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xueya Qian
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiaodi Wang
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yunshan Chen
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Junjie Bao
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yanmin Jiang
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Kaiyuan Ji
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huishu Liu
- Correspondence: Guangzhou Key Laboratory of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, No.9 Jinsui Road, Guangzhou, China. E-mail:
| |
Collapse
|
36
|
Hypoxia signaling in human health and diseases: implications and prospects for therapeutics. Signal Transduct Target Ther 2022; 7:218. [PMID: 35798726 PMCID: PMC9261907 DOI: 10.1038/s41392-022-01080-1] [Citation(s) in RCA: 183] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 02/07/2023] Open
Abstract
Molecular oxygen (O2) is essential for most biological reactions in mammalian cells. When the intracellular oxygen content decreases, it is called hypoxia. The process of hypoxia is linked to several biological processes, including pathogenic microbe infection, metabolic adaptation, cancer, acute and chronic diseases, and other stress responses. The mechanism underlying cells respond to oxygen changes to mediate subsequent signal response is the central question during hypoxia. Hypoxia-inducible factors (HIFs) sense hypoxia to regulate the expressions of a series of downstream genes expression, which participate in multiple processes including cell metabolism, cell growth/death, cell proliferation, glycolysis, immune response, microbe infection, tumorigenesis, and metastasis. Importantly, hypoxia signaling also interacts with other cellular pathways, such as phosphoinositide 3-kinase (PI3K)-mammalian target of rapamycin (mTOR) signaling, nuclear factor kappa-B (NF-κB) pathway, extracellular signal-regulated kinases (ERK) signaling, and endoplasmic reticulum (ER) stress. This paper systematically reviews the mechanisms of hypoxia signaling activation, the control of HIF signaling, and the function of HIF signaling in human health and diseases. In addition, the therapeutic targets involved in HIF signaling to balance health and diseases are summarized and highlighted, which would provide novel strategies for the design and development of therapeutic drugs.
Collapse
|
37
|
Han B, Meng Y, Tian H, Li C, Li Y, Gongbao C, Fan W, Ma R. Effects of Acute Hypoxic Stress on Physiological and Hepatic Metabolic Responses of Triploid Rainbow Trout (Oncorhynchus mykiss). Front Physiol 2022; 13:921709. [PMID: 35812328 PMCID: PMC9263268 DOI: 10.3389/fphys.2022.921709] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/08/2022] [Indexed: 11/26/2022] Open
Abstract
This experiment simulated the hypoxic environment caused by actual production operations in fish farming (i.e., catching, gathering, transferring, and weighting) to study the effects of acute hypoxic conditions on the physiological and metabolic responses of triploid rainbow trout (O. mykiss). Two groups of fish weighting 590 g were sampled in the normoxia group (dissolved oxygen above 7 mg/L) and hypoxia group (dissolved oxygen ranged from 2 to 5 mg/L for 10 min). The results showed that 1) regarding stress response, hypoxia increased plasma levels of cortisol, heat shock protein 70 (HSP-70), lysozyme, alanine aminotransferase (ALT), aspartate aminotransferase (AST) and creatine phosphokinase (CPK); induced the expression of hepatic genes encoding nuclear factor erythroid 2 related factor 2 (Nrf2), interferon γ (IFN-γ) and interleukin-1β (IL-1β). 2) Regarding metabolism response, hypoxia increased plasma levels of globulin (GLOB), glucose (GLU), triglyceride (TG) and lactate dehydrogenase (LDH); upregulated the hepatic gene expression of phosphoenolpyruvate carboxykinase, (PEPCK), pyruvate dehydrogenase kinase (PDK1), acetyl-CoA carboxylase (ACC) and acetyl-CoA oxidase (ACO); downregulated the hepatic gene expression of carnitine palmitoyl transferase 1 (CPT1); and unchanged the expression of hepatic genes in glycolysis and autophagy. 3) In response to hypoxia-inducible factors (HIFs), the hepatic HIF-2α gene was activated in the hypoxia group, but HIF-1α gene expression remained unchanged. Thus, during acute hypoxic stress, triploid rainbow trout were in a defensive state, with an enhanced immune response and altered antioxidant status. Additionally, the hepatic mitochondrial oxidation of glucose- and lipid-derived carbon in trout was suppressed, and hepatic gluconeogenesis and lipid synthesis were activated, which might be regulated by the HIF-2α pathway.
Collapse
Affiliation(s)
- Buying Han
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- College of Eco-Environmental Engineering, Qinghai University, Xining, China
| | - Yuqiong Meng
- College of Eco-Environmental Engineering, Qinghai University, Xining, China
| | - Haining Tian
- College of Eco-Environmental Engineering, Qinghai University, Xining, China
| | - Changzhong Li
- College of Eco-Environmental Engineering, Qinghai University, Xining, China
| | - Yaopeng Li
- Qinghai Minze Longyangxia Ecological Aquaculture Co., Ltd., Longyangxia, China
| | - Caidan Gongbao
- Qinghai Minze Longyangxia Ecological Aquaculture Co., Ltd., Longyangxia, China
| | - Wenyan Fan
- Qinghai Minze Longyangxia Ecological Aquaculture Co., Ltd., Longyangxia, China
| | - Rui Ma
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- *Correspondence: Rui Ma,
| |
Collapse
|
38
|
Adipocyte HIF2α functions as a thermostat via PKA Cα regulation in beige adipocytes. Nat Commun 2022; 13:3268. [PMID: 35672324 PMCID: PMC9174489 DOI: 10.1038/s41467-022-30925-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 05/24/2022] [Indexed: 12/14/2022] Open
Abstract
Thermogenic adipocytes generate heat to maintain body temperature against hypothermia in response to cold. Although tight regulation of thermogenesis is required to prevent energy sources depletion, the molecular details that tune thermogenesis are not thoroughly understood. Here, we demonstrate that adipocyte hypoxia-inducible factor α (HIFα) plays a key role in calibrating thermogenic function upon cold and re-warming. In beige adipocytes, HIFα attenuates protein kinase A (PKA) activity, leading to suppression of thermogenic activity. Mechanistically, HIF2α suppresses PKA activity by inducing miR-3085-3p expression to downregulate PKA catalytic subunit α (PKA Cα). Ablation of adipocyte HIF2α stimulates retention of beige adipocytes, accompanied by increased PKA Cα during re-warming after cold stimuli. Moreover, administration of miR-3085-3p promotes beige-to-white transition via downregulation of PKA Cα and mitochondrial abundance in adipocyte HIF2α deficient mice. Collectively, these findings suggest that HIF2α-dependent PKA regulation plays an important role as a thermostat through dynamic remodeling of beige adipocytes. Thermogenic adipocytes maintain body temperature in response to cold, but how this is tuned during cold and re-warming is unclear. Here, the authors show HIF2α inhibits beige adipocyte retention, regulating PKA catalysis to control dynamic adipocyte remodelling.
Collapse
|
39
|
Hazlehurst JM, Lim TR, Charlton C, Miller JJ, Gathercole LL, Cornfield T, Nikolaou N, Harris SE, Moolla A, Othonos N, Heather LC, Marjot T, Tyler DJ, Carr C, Hodson L, McKeating J, Tomlinson JW. Acute intermittent hypoxia drives hepatic de novo lipogenesis in humans and rodents. Metabol Open 2022; 14:100177. [PMID: 35313531 PMCID: PMC8933516 DOI: 10.1016/j.metop.2022.100177] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/12/2022] [Indexed: 02/09/2023] Open
Abstract
Background and aims Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver condition. It is tightly associated with an adverse metabolic phenotype (including obesity and type 2 diabetes) as well as with obstructive sleep apnoea (OSA) of which intermittent hypoxia is a critical component. Hepatic de novo lipogenesis (DNL) is a significant contributor to hepatic lipid content and the pathogenesis of NAFLD and has been proposed as a key pathway to target in the development of pharmacotherapies to treat NAFLD. Our aim is to use experimental models to investigate the impact of hypoxia on hepatic lipid metabolism independent of obesity and metabolic disease. Methods Human and rodent studies incorporating stable isotopes and hyperinsulinaemic euglycaemic clamp studies were performed to assess the regulation of DNL and broader metabolic phenotype by intermittent hypoxia. Cell-based studies, including pharmacological and genetic manipulation of hypoxia-inducible factors (HIF), were used to examine the underlying mechanisms. Results Hepatic DNL increased in response to acute intermittent hypoxia in humans, without alteration in glucose production or disposal. These observations were endorsed in a prolonged model of intermittent hypoxia in rodents using stable isotopic assessment of lipid metabolism. Changes in DNL were paralleled by increases in hepatic gene expression of acetyl CoA carboxylase 1 and fatty acid synthase. In human hepatoma cell lines, hypoxia increased both DNL and fatty acid uptake through HIF-1α and -2α dependent mechanisms. Conclusions These studies provide robust evidence linking intermittent hypoxia and the regulation of DNL in both acute and sustained in vivo models of intermittent hypoxia, providing an important mechanistic link between hypoxia and NAFLD.
Collapse
Affiliation(s)
- Jonathan M. Hazlehurst
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, B15 2TT, UK
- Department of Diabetes and Endocrinology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Teegan Reina Lim
- Department of Gastro & Hepatology, Singapore General Hospital, Outram Road, 544894, Singapore
| | - Catriona Charlton
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Jack J. Miller
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
- Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, University of Oxford, Oxford, OX1 3PT, UK
- Department of Physics, Clarendon Laboratory, Parks Road, OX1 3PUT, Oxford, UK
| | - Laura L. Gathercole
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Thomas Cornfield
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Nikolaos Nikolaou
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Shelley E. Harris
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Ahmad Moolla
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Nantia Othonos
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Lisa C. Heather
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Thomas Marjot
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Damian J. Tyler
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
- Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, University of Oxford, Oxford, OX1 3PT, UK
| | - Carolyn Carr
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
- Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, University of Oxford, Oxford, OX1 3PT, UK
| | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Jane McKeating
- Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Jeremy W. Tomlinson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK
| |
Collapse
|
40
|
Xia QS, Wu F, Wu WB, Dong H, Huang ZY, Xu L, Lu FE, Gong J. Berberine reduces hepatic ceramide levels to improve insulin resistance in HFD-fed mice by inhibiting HIF-2α. Biomed Pharmacother 2022; 150:112955. [PMID: 35429745 DOI: 10.1016/j.biopha.2022.112955] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 11/24/2022] Open
Abstract
Several studies have documented the effects of hypoxia and ceramides on lipid and glucose metabolism, resulting in insulin resistance. However, the roles of ceramide in hepatic hypoxia and hepatic insulin resistance remain to be clarified. This study aimed to explore the relationship between hypoxia, ceramide synthesis, and hepatic insulin resistance in high-fat diet (HFD)-fed mice. Given the interaction of hypoxia-inducible factors 2α(HIF-2α) and berberine determined using molecular docking, this study also assessed the pharmacological effects of berberine on the HIF-2α-ceramide-insulin resistance pathway. In the preliminary phase of the study, gradually aggravated hepatic hypoxia and varying levels of ceramides were observed with the development of type 2 diabetes mellitus (T2DM) due to increasing HIF-2α accumulation. Lipidomic analyses of animal and cell models revealed that berberine reduced hypoxia-induced ceramide production and attenuated ceramide-induced insulin resistance. This research provides timely and necessary evidence for the role of ceramide in hypoxia and insulin resistance in the liver. It also contributes to a better understanding of the pharmacological effects of berberine on ameliorating hypoxia and insulin resistance in T2DM therapy.
Collapse
Affiliation(s)
- Qing-Song Xia
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Fan Wu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Wen-Bin Wu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Hui Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Zhao-Yi Huang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Lijun Xu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Fu-Er Lu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China.
| | - Jing Gong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China.
| |
Collapse
|
41
|
Li W, Xiang Z, Xing Y, Li S, Shi S. Mitochondria bridge HIF signaling and ferroptosis blockage in acute kidney injury. Cell Death Dis 2022; 13:308. [PMID: 35387983 PMCID: PMC8986825 DOI: 10.1038/s41419-022-04770-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/15/2022] [Accepted: 03/25/2022] [Indexed: 11/09/2022]
Abstract
AbstractFerroptosis, a form of regulated cell death, plays an important role in acute kidney injury (AKI). Previous studies have shown that prolyl hydroxylase domain protein (PHD) inhibitors that activate HIF signaling provide strong protection against AKI, which is characterized by marked cell death. However, the relationship between PHD inhibition/HIF signaling and ferroptosis in AKI has not been elucidated. Here, we review recent studies to explore the issue. First, we will review the literature concerning the functions of HIF in promoting mitophagy, suppressing mitochondrial respiration and modulating redox homeostasis. Second, we will describe the current understanding of ferroptosis and its role in AKI, particularly from the perspective of mitochondrial dysfunction. Finally, we will discuss the possibility that mitochondria link PHD inhibition/HIF signaling and ferroptosis in AKI. In conclusion, we propose that HIF may protect renal cells against ferroptosis in AKI by reducing mitochondrial oxidative stress and damage.
Collapse
|
42
|
Ji Y, Liang Y, Mak JC, Ip MS. Obstructive sleep apnea, intermittent hypoxia and non-alcoholic fatty liver disease. Sleep Med 2022; 95:16-28. [DOI: 10.1016/j.sleep.2022.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 12/15/2022]
|
43
|
Mihajlovic M, Vinken M. Mitochondria as the Target of Hepatotoxicity and Drug-Induced Liver Injury: Molecular Mechanisms and Detection Methods. Int J Mol Sci 2022; 23:ijms23063315. [PMID: 35328737 PMCID: PMC8951158 DOI: 10.3390/ijms23063315] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
One of the major mechanisms of drug-induced liver injury includes mitochondrial perturbation and dysfunction. This is not a surprise, given that mitochondria are essential organelles in most cells, which are responsible for energy homeostasis and the regulation of cellular metabolism. Drug-induced mitochondrial dysfunction can be influenced by various factors and conditions, such as genetic predisposition, the presence of metabolic disorders and obesity, viral infections, as well as drugs. Despite the fact that many methods have been developed for studying mitochondrial function, there is still a need for advanced and integrative models and approaches more closely resembling liver physiology, which would take into account predisposing factors. This could reduce the costs of drug development by the early prediction of potential mitochondrial toxicity during pre-clinical tests and, especially, prevent serious complications observed in clinical settings.
Collapse
|
44
|
Vanderhaeghen T, Timmermans S, Watts D, Paakinaho V, Eggermont M, Vandewalle J, Wallaeys C, Van Wyngene L, Van Looveren K, Nuyttens L, Dewaele S, Vanden Berghe J, Lemeire K, De Backer J, Dirkx L, Vanden Berghe W, Caljon G, Ghesquière B, De Bosscher K, Wielockx B, Palvimo JJ, Beyaert R, Libert C. Reprogramming of glucocorticoid receptor function by hypoxia. EMBO Rep 2022; 23:e53083. [PMID: 34699114 PMCID: PMC8728616 DOI: 10.15252/embr.202153083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 01/07/2023] Open
Abstract
Here, we investigate the impact of hypoxia on the hepatic response of glucocorticoid receptor (GR) to dexamethasone (DEX) in mice via RNA-sequencing. Hypoxia causes three types of reprogramming of GR: (i) much weaker induction of classical GR-responsive genes by DEX in hypoxia, (ii) a number of genes is induced by DEX specifically in hypoxia, and (iii) hypoxia induces a group of genes via activation of the hypothalamic-pituitary-adrenal (HPA) axis. Transcriptional profiles are reflected by changed GR DNA-binding as measured by ChIP sequencing. The HPA axis is induced by hypothalamic HIF1α and HIF2α activation and leads to GR-dependent lipolysis and ketogenesis. Acute inflammation, induced by lipopolysaccharide, is prevented by DEX in normoxia but not during hypoxia, and this is attributed to HPA axis activation by hypoxia. We unfold new physiological pathways that have consequences for patients suffering from GC resistance.
Collapse
|
45
|
O'Brien KA, McNally BD, Sowton AP, Murgia A, Armitage J, Thomas LW, Krause FN, Maddalena LA, Francis I, Kavanagh S, Williams DP, Ashcroft M, Griffin JL, Lyon JJ, Murray AJ. Enhanced hepatic respiratory capacity and altered lipid metabolism support metabolic homeostasis during short-term hypoxic stress. BMC Biol 2021; 19:265. [PMID: 34911556 PMCID: PMC8675474 DOI: 10.1186/s12915-021-01192-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 11/12/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Tissue hypoxia is a key feature of several endemic hepatic diseases, including alcoholic and non-alcoholic fatty liver disease, and organ failure. Hypoxia imposes a severe metabolic challenge on the liver, potentially disrupting its capacity to carry out essential functions including fuel storage and the integration of lipid metabolism at the whole-body level. Mitochondrial respiratory function is understood to be critical in mediating the hepatic hypoxic response, yet the time-dependent nature of this response and the role of the respiratory chain in this remain unclear. RESULTS Here, we report that hepatic respiratory capacity is enhanced following short-term exposure to hypoxia (2 days, 10% O2) and is associated with increased abundance of the respiratory chain supercomplex III2+IV and increased cardiolipin levels. Suppression of this enhanced respiratory capacity, achieved via mild inhibition of mitochondrial complex III, disrupted metabolic homeostasis. Hypoxic exposure for 2 days led to accumulation of plasma and hepatic long chain acyl-carnitines. This was observed alongside depletion of hepatic triacylglycerol species with total chain lengths of 39-53 carbons, containing palmitic, palmitoleic, stearic, and oleic acids, which are associated with de novo lipogenesis. The changes to hepatic respiratory capacity and lipid metabolism following 2 days hypoxic exposure were transient, becoming resolved after 14 days in line with systemic acclimation to hypoxia and elevated circulating haemoglobin concentrations. CONCLUSIONS The liver maintains metabolic homeostasis in response to shorter term hypoxic exposure through transient enhancement of respiratory chain capacity and alterations to lipid metabolism. These findings may have implications in understanding and treating hepatic pathologies associated with hypoxia.
Collapse
Affiliation(s)
- Katie A O'Brien
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK.
| | - Ben D McNally
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Sanger Building Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Alice P Sowton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - Antonio Murgia
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Sanger Building Tennis Court Road, Cambridge, CB2 1GA, UK
| | - James Armitage
- Global Investigative Safety, GlaxoSmithKline R&D, Park Road, Ware, Hertfordshire, SG12 0DP, UK
| | - Luke W Thomas
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0QQ, UK
| | - Fynn N Krause
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Sanger Building Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Lucas A Maddalena
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0QQ, UK
| | - Ian Francis
- Ultrastructure and Cellular Bioimaging, GlaxoSmithKline R&D, Park Road, Ware, Hertfordshire, SG12 0DP, UK
| | - Stefan Kavanagh
- Oncology Safety Sciences, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, CB2 OAA, Cambridge, UK
| | - Dominic P Williams
- Functional and Mechanistic Safety, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, CB2 OAA, Cambridge, UK
| | - Margaret Ashcroft
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0QQ, UK
| | - Julian L Griffin
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Sanger Building Tennis Court Road, Cambridge, CB2 1GA, UK
- Section of Biomolecular Medicine, Department of Digestion, Metabolism and Reproduction, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Jonathan J Lyon
- Global Investigative Safety, GlaxoSmithKline R&D, Park Road, Ware, Hertfordshire, SG12 0DP, UK
| | - Andrew J Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK.
| |
Collapse
|
46
|
Rios RS, Zheng KI, Zheng MH. Non-alcoholic steatohepatitis and risk of hepatocellular carcinoma. Chin Med J (Engl) 2021; 134:2911-2921. [PMID: 34855640 PMCID: PMC8710331 DOI: 10.1097/cm9.0000000000001888] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Indexed: 12/18/2022] Open
Abstract
The emergence of non-alcoholic fatty liver disease (NAFLD) as the leading chronic liver disease worldwide raises some concerns. In particular, NAFLD is closely tied to sedentary lifestyle habits and associated with other metabolic diseases, such as obesity and diabetes. At the end of the disease spectrum, non-alcoholic steatohepatitis (NASH) may progress to cirrhosis and hepatocellular carcinoma (HCC), representing a serious health problem to modern society. Recently, an increasing number of HCC cases originating from this progressive disease spectrum have been identified, with different levels of severity and complications. Updating the current guidelines by placing a bigger focus on this emerging cause and highlighting some of its unique features is necessary. Since, the drivers of the disease are complex and multifactorial, in order to improve future outcomes, having a better understanding of NASH progression into HCC may be helpful. The risks that can promote disease progression and currently available management strategies employed to monitor and treat NASH-related HCC make up the bulk of this review.
Collapse
Affiliation(s)
- Rafael S. Rios
- NAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Kenneth I. Zheng
- NAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Ming-Hua Zheng
- NAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
- Institute of Hepatology, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
- Key Laboratory of Diagnosis and Treatment for The Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, Zhejiang 325000, China
| |
Collapse
|
47
|
Priming, Triggering, Adaptation and Senescence (PTAS): A Hypothesis for a Common Damage Mechanism of Steatohepatitis. Int J Mol Sci 2021; 22:ijms222212545. [PMID: 34830427 PMCID: PMC8624051 DOI: 10.3390/ijms222212545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/17/2022] Open
Abstract
Understanding the pathomechanism of steatohepatitis (SH) is hampered by the difficulty of distinguishing between causes and consequences, by the broad spectrum of aetiologies that can produce the phenotype, and by the long time-span during which SH develops, often without clinical symptoms. We propose that SH develops in four phases with transitions: (i) priming lowers stress defence; (ii) triggering leads to acute damage; (iii) adaptation, possibly associated with cellular senescence, mitigates tissue damage, leads to the phenotype, and preserves liver function at a lower level; (iv) finally, senescence prevents neoplastic transformation but favours fibrosis (cirrhosis) and inflammation and further reduction in liver function. Escape from senescence eventually leads to hepatocellular carcinoma. This hypothesis for a pathomechanism of SH is supported by clinical and experimental observations. It allows organizing the various findings to uncover remaining gaps in our knowledge and, finally, to provide possible diagnostic and intervention strategies for each stage of SH development.
Collapse
|
48
|
Foglia B, Sutti S, Cannito S, Rosso C, Maggiora M, Autelli R, Novo E, Bocca C, Villano G, Ramavath NN, Younes R, Tusa I, Rovida E, Pontisso P, Bugianesi E, Albano E, Parola M. Hepatocyte-Specific Deletion of HIF2α Prevents NASH-Related Liver Carcinogenesis by Decreasing Cancer Cell Proliferation. Cell Mol Gastroenterol Hepatol 2021; 13:459-482. [PMID: 34655812 PMCID: PMC8688724 DOI: 10.1016/j.jcmgh.2021.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/06/2021] [Accepted: 10/06/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND & AIMS Hypoxia and hypoxia-inducible factors (HIFs) are involved in chronic liver disease progression. We previously showed that hepatocyte HIF-2α activation contributed significantly to nonalcoholic fatty liver disease progression in experimental animals and human patients. In this study, using an appropriate genetic murine model, we mechanistically investigated the involvement of hepatocyte HIF-2α in experimental nonalcoholic steatohepatitis (NASH)-related carcinogenesis. METHODS The role of HIF-2α was investigated by morphologic, cellular, and molecular biology approaches in the following: (1) mice carrying hepatocyte-specific deletion of HIF-2α (HIF-2α-/- mice) undergoing a NASH-related protocol of hepatocarcinogenesis; (2) HepG2 cells stably transfected to overexpress HIF-2α; and (3) liver specimens from NASH patients with hepatocellular carcinoma. RESULTS Mice carrying hepatocyte-specific deletion of HIF-2α (hHIF-2α-/-) showed a significant decrease in the volume and number of liver tumors compared with wild-type littermates. These effects did not involve HIF-1α changes and were associated with a decrease of cell proliferation markers proliferating cell nuclear antigen and Ki67. In both human and rodent nonalcoholic fatty liver disease-related tumors, HIF-2α levels were strictly associated with hepatocyte production of SerpinB3, a mediator previously shown to stimulate liver cancer cell proliferation through the Hippo/Yes-associated protein (YAP)/c-Myc pathway. Consistently, we observed positive correlations between the transcripts of HIF-2α, YAP, and c-Myc in individual hepatocellular carcinoma tumor masses, while HIF-2α deletion down-modulated c-Myc and YAP expression without affecting extracellular signal-regulated kinase 1/2, c-Jun N-terminal kinase, and AKT-dependent signaling. In vitro data confirmed that HIF-2α overexpression induced HepG2 cell proliferation through YAP-mediated mechanisms. CONCLUSIONS These results indicate that the activation of HIF-2α in hepatocytes has a critical role in liver carcinogenesis during NASH progression, suggesting that HIF-2α-blocking agents may serve as novel putative therapeutic tools.
Collapse
Affiliation(s)
- Beatrice Foglia
- Unit of Experimental Medicine and Clinical Pathology, Department of Clinical and Biological Sciences, University of Turin, Italy
| | - Salvatore Sutti
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University Amedeo Avogadro of East Piedmont, Novara, Italy
| | - Stefania Cannito
- Unit of Experimental Medicine and Clinical Pathology, Department of Clinical and Biological Sciences, University of Turin, Italy
| | - Chiara Rosso
- Department of Medical Sciences, University of Turin, Torino, Italy; Division of Gastroenterology, San Giovanni Hospital, Torino, Italy
| | - Marina Maggiora
- Unit of Experimental Medicine and Clinical Pathology, Department of Clinical and Biological Sciences, University of Turin, Italy
| | - Riccardo Autelli
- Unit of Experimental Medicine and Clinical Pathology, Department of Clinical and Biological Sciences, University of Turin, Italy
| | - Erica Novo
- Unit of Experimental Medicine and Clinical Pathology, Department of Clinical and Biological Sciences, University of Turin, Italy
| | - Claudia Bocca
- Unit of Experimental Medicine and Clinical Pathology, Department of Clinical and Biological Sciences, University of Turin, Italy
| | | | - Naresh Naik Ramavath
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University Amedeo Avogadro of East Piedmont, Novara, Italy
| | - Ramy Younes
- Department of Medical Sciences, University of Turin, Torino, Italy; Division of Gastroenterology, San Giovanni Hospital, Torino, Italy
| | - Ignazia Tusa
- Unit of Experimental Oncology and Pathology, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Elisabetta Rovida
- Unit of Experimental Oncology and Pathology, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | | | - Elisabetta Bugianesi
- Department of Medical Sciences, University of Turin, Torino, Italy; Division of Gastroenterology, San Giovanni Hospital, Torino, Italy
| | - Emanuele Albano
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University Amedeo Avogadro of East Piedmont, Novara, Italy
| | - Maurizio Parola
- Unit of Experimental Medicine and Clinical Pathology, Department of Clinical and Biological Sciences, University of Turin, Italy.
| |
Collapse
|
49
|
Holzner LMW, Murray AJ. Hypoxia-Inducible Factors as Key Players in the Pathogenesis of Non-alcoholic Fatty Liver Disease and Non-alcoholic Steatohepatitis. Front Med (Lausanne) 2021; 8:753268. [PMID: 34692739 PMCID: PMC8526542 DOI: 10.3389/fmed.2021.753268] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/10/2021] [Indexed: 12/20/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and its more severe form non-alcoholic steatohepatitis (NASH) are a major public health concern with high and increasing global prevalence, and a significant disease burden owing to its progression to more severe forms of liver disease and the associated risk of cardiovascular disease. Treatment options, however, remain scarce, and a better understanding of the pathological and physiological processes involved could enable the development of new therapeutic strategies. One process implicated in the pathology of NAFLD and NASH is cellular oxygen sensing, coordinated largely by the hypoxia-inducible factor (HIF) family of transcription factors. Activation of HIFs has been demonstrated in patients and mouse models of NAFLD and NASH and studies of activation and inhibition of HIFs using pharmacological and genetic tools point toward important roles for these transcription factors in modulating central aspects of the disease. HIFs appear to act in several cell types in the liver to worsen steatosis, inflammation, and fibrosis, but may nevertheless improve insulin sensitivity. Moreover, in liver and other tissues, HIF activation alters mitochondrial respiratory function and metabolism, having an impact on energetic and redox homeostasis. This article aims to provide an overview of current understanding of the roles of HIFs in NAFLD, highlighting areas where further research is needed.
Collapse
Affiliation(s)
| | - Andrew J. Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
50
|
Han M, Böhlke M, Maher T, Kim J. Alcohol exposure increases manganese accumulation in the brain and exacerbates manganese-induced neurotoxicity in mice. Arch Toxicol 2021; 95:3665-3679. [PMID: 34590183 DOI: 10.1007/s00204-021-03166-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022]
Abstract
Environmental and occupational exposure to heavy metals remains one of the major concerns in public health. Increased levels of manganese (Mn) pollution are associated with profound neurotoxic effects, including neurobehavioral deficits and disturbances resembling Parkinson's disease. While Mn absorption is in part mediated by iron transporters, recent studies have shown that the levels of iron transporters are modified by alcohol and that chronic alcohol consumption increases body iron stores. However, it is largely unexplored whether alcohol exposure influences the transport and neurotoxicity of Mn. To address this question, we exposed mice to ethanol (10%; v/v) by drinking water for 4 weeks, during which period MnCl2 (5 mg/kg) or saline solutions were administered daily by intranasal instillation. Ethanol consumption in mice increased brain Mn levels in a dose-dependent manner after Mn instillation, determined by inductively-coupled plasma mass spectrometry, which was accompanied by up-regulation of iron transporters, as assessed by western blotting and qPCR. In addition, alcohol drinking increased hypoxic response and decreased hepcidin expression, providing the molecular mechanism of increased iron transporters and Mn uptake upon alcohol consumption. Moreover, brain dopamine levels, analyzed by HPLC, were decreased after intranasal Mn instillation, which was worsened by alcohol. Likewise, alcohol-Mn co-exposure synergistically altered dopaminergic protein expression. Finally, alcohol binge-drinking, which resembles alcohol drinking manner in humans, increased brain Mn content along with upregulation of iron transporters. Our study suggests that individuals who consume alcohol may have a higher risk of Mn neurotoxicity upon Mn exposure.
Collapse
Affiliation(s)
- Murui Han
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Mark Böhlke
- Department of Pharmaceutical Sciences, MCPHS University, Boston, MA, USA
| | - Timothy Maher
- Department of Pharmaceutical Sciences, MCPHS University, Boston, MA, USA
| | - Jonghan Kim
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA. .,Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, 3 Solomont Way, Suite 4, Lowell, MA, 01854, USA.
| |
Collapse
|