1
|
Faith JJ. Assessing live microbial therapeutic transmission. Gut Microbes 2025; 17:2447836. [PMID: 39746875 DOI: 10.1080/19490976.2024.2447836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/09/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025] Open
Abstract
The development of fecal microbiota transplantation and defined live biotherapeutic products for the treatment of human disease has been an empirically driven process yielding a notable success of approved drugs for the treatment of recurrent Clostridioides difficile infection. Assessing the potential of this therapeutic modality in other indications with mixed clinical results would benefit from consistent quantitative frameworks to characterize drug potency and composition and to assess the impact of dose and composition on the frequency and duration of strain engraftment. Monitoring these drug properties and engraftment outcomes would help identify minimally sufficient sets of microbial strains to treat disease and provide insights into the intersection between microbial function and host physiology. Broad and correct usage of strain detection methods is essential to this advancement. This article describes strain detection approaches, where they are best applied, what data they require, and clinical trial designs that are best suited to their application.
Collapse
Affiliation(s)
- Jeremiah J Faith
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
2
|
Liu L, Zhao W, Zhang H, Shang Y, Huang W, Cheng Q. Relationship between pediatric asthma and respiratory microbiota, intestinal microbiota: a narrative review. Front Microbiol 2025; 16:1550783. [PMID: 40415934 PMCID: PMC12099452 DOI: 10.3389/fmicb.2025.1550783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 04/21/2025] [Indexed: 05/27/2025] Open
Abstract
Pediatric asthma is a common chronic airway inflammatory disease that begins in childhood and its impact persists throughout all age stages of patients. With the continuous progress of detection technologies, numerous studies have firmly demonstrated that gut microbiota and respiratory microbiota are closely related to the occurrence and development of asthma, and related research is increasing day by day. This article elaborates in detail on the characteristics, composition of normal gut microbiota and lung microbiota at different ages and in different sites, as well as the connection of the gut-lung axis. Subsequently, it deeply analyzes various factors influencing microbiota colonization, including host factor, delivery mode, maternal dietary and infant feeding patterns, environmental microbial exposure and pollutants, and the use of antibiotics in early life. These factors are highly likely to play a crucial role in the onset process and disease progression of asthma. Research shows that obvious changes have occurred in the respiratory and gut microbiota of asthma patients, and these microbiomes exhibit different characteristics according to the phenotypes and endotypes of asthma. Finally, the article summarizes the microbiota-related treatment approaches for asthma carried out in recent years, including the application of probiotics, nutritional interventions, and fecal microbiota transplantation. These treatment modalities are expected to become new directions for future asthma treatment and bring new hope for solving the problem of childhood asthma.
Collapse
Affiliation(s)
- Lian Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wenqi Zhao
- School of Clinical Medicine, Qilu Medical University, Zibo, China
| | - Han Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yunxiao Shang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wanjie Huang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qi Cheng
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
3
|
Berry P, Khanna S. The evolving landscape of live biotherapeutics in the treatment of Clostridioides difficile infection. Indian J Gastroenterol 2025; 44:129-141. [PMID: 39821715 DOI: 10.1007/s12664-024-01717-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/18/2024] [Indexed: 01/19/2025]
Abstract
Clostridioides difficile (C. difficile) infection (CDI) is common after antibiotic exposure and presents significant morbidity, mortality and healthcare costs worldwide. The rising incidence of recurrent CDI, driven by hypervirulent strains, widespread antibiotic use and increased community transmission, has led to an urgent need for novel therapeutic strategies. Conventional antibiotic treatments, although effective, face limitations due to rising antibiotic resistance and high recurrence rates, which can reach up to 60% after multiple infections. This has prompted exploration of alternative therapies such as fecal microbiota-based therapies, including fecal microbiota transplantation (FMT) and live biotherapeutics (LBPs), which demonstrate superior efficacy in preventing recurrence. They are aimed at restoring the gut microbiota. Fecal microbiota, live-jslm and fecal microbiota spores, live-brpk have been approved by the U.S. Food and Drug Administration in individuals aged 18 years or older for recurrent CDI after standard antimicrobial treatment. They have demonstrated high efficacy and a favorable safety profile in clinical trials. Another LBP under study includes VE-303, which is not derived from human donor stool. This review provides a comprehensive overview of the current therapeutic landscape for CDI, including its epidemiology, pathophysiology, risk factors, diagnostic modalities and treatment strategies. The review delves into the emerging role of live biotherapeutics, with a particular focus on fecal microbiota-based therapies. We explore their development, mechanisms of action, clinical applications and potential to revolutionize CDI management.
Collapse
Affiliation(s)
- Parul Berry
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Sahil Khanna
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
4
|
Liu Y, Li X, Chen Y, Yao Q, Zhou J, Wang X, Meng Q, Ji J, Yu Z, Chen X. Fecal microbiota transplantation: application scenarios, efficacy prediction, and factors impacting donor-recipient interplay. Front Microbiol 2025; 16:1556827. [PMID: 40201444 PMCID: PMC11975908 DOI: 10.3389/fmicb.2025.1556827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/07/2025] [Indexed: 04/10/2025] Open
Abstract
Fecal microbiota transplantation (FMT) represents a therapeutic approach that directly regulates the gut microbiota of recipients, normalizes its composition and reaping therapeutic rewards. Currently, in addition to its general application in treating Clostridium difficile (C. difficile) infection (CDI), FMT treatment has also been extended to the fields of other gastrointestinal diseases, infections, gut-liver or gut-brain axis disorders, metabolic diseases and cancer, etc. Prior to FMT, rigorous donor screening is essential to reduce the occurrence of adverse events. In addition, it is imperative to evaluate whether the recipient can safely and effectively undergo FMT treatment. However, the efficacy of FMT is influenced by the complex interactions between the gut microbiota of donor and recipient, the degree of donor microbiota engraftment is not necessarily positively related with the success rate of FMT. Furthermore, an increasing number of novel factors affecting FMT outcomes are being identified in recent clinical trials and animal experiments, broadening our understanding of FMT treatment. This article provides a comprehensive review of the application scenarios of FMT, the factors influencing the safety and efficacy of FMT from the aspects of both the donors and the recipients, and summarizes how these emerging novel regulatory factors can be combined to predict the clinical outcomes of patients undergoing FMT.
Collapse
Affiliation(s)
- Yaxin Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Xinru Li
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuchao Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Qinyan Yao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Jinjie Zhou
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaoxuan Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Qingguo Meng
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Jiaxuan Ji
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Zihan Yu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
5
|
Jans M, Vereecke L. A guide to germ-free and gnotobiotic mouse technology to study health and disease. FEBS J 2025; 292:1228-1251. [PMID: 38523409 DOI: 10.1111/febs.17124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/17/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024]
Abstract
The intestinal microbiota has major influence on human physiology and modulates health and disease. Complex host-microbe interactions regulate various homeostatic processes, including metabolism and immune function, while disturbances in microbiota composition (dysbiosis) are associated with a plethora of human diseases and are believed to modulate disease initiation, progression and therapy response. The vast complexity of the human microbiota and its metabolic output represents a great challenge in unraveling the molecular basis of host-microbe interactions in specific physiological contexts. To increase our understanding of these interactions, functional microbiota research using animal models in a reductionistic setting are essential. In the dynamic landscape of gut microbiota research, the use of germ-free and gnotobiotic mouse technology, in which causal disease-driving mechanisms can be dissected, represents a pivotal investigative tool for functional microbiota research in health and disease, in which causal disease-driving mechanisms can be dissected. A better understanding of the health-modulating functions of the microbiota opens perspectives for improved therapies in many diseases. In this review, we discuss practical considerations for the design and execution of germ-free and gnotobiotic experiments, including considerations around germ-free rederivation and housing conditions, route and timing of microbial administration, and dosing protocols. This comprehensive overview aims to provide researchers with valuable insights for improved experimental design in the field of functional microbiota research.
Collapse
Affiliation(s)
- Maude Jans
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Lars Vereecke
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Belgium
| |
Collapse
|
6
|
Moutsoglou D, Syal A, Lopez S, Nelson EC, Chen L, Kabage AJ, Fischer M, Khoruts A, Vaughn BP, Staley C. Novel Microbial Engraftment Trajectories Following Microbiota Transplant Therapy in Ulcerative Colitis. J Crohns Colitis 2025; 19:jjae142. [PMID: 39240145 DOI: 10.1093/ecco-jcc/jjae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND AND AIMS Microbiota transplant therapy (MTT) is an emerging treatment for ulcerative colitis (UC). One proposed mechanism for the benefit of MTT is through engraftment of donor microbiota; however, engraftment kinetics are unknown. We identified SourceTracker as an efficient method both to determine engraftment and for the kinetic study of engrafting donor taxa to aid in determining the mechanism of how this therapy may treat UC. METHODS Ulcerative colitis patients received either encapsulated (drug name MTP-101C) or placebo capsules daily for 8 weeks followed by a 4-week washout period. Amplicon sequence data from donors and patients were analyzed using the Bayesian algorithm SourceTracker. RESULTS Twenty-seven patients were enrolled, 14 to placebo and 13 to MTT. Baseline Shannon and Chao1 indices negatively correlated with week 12 donor engraftment for patients treated with active drug capsules but not for placebo patients. SourceTracker engraftment positively correlated with the week 12 distance from donors measured using the Bray-Curtis similarity metric in treated patients but not with placebo. Engraftment at week 12 was significantly higher in the MTT group than in the placebo group. We identified engrafting taxa from donors in our patients and quantified the proportion of donor similarity or engraftment during weeks 1 through 8 (active treatment) and week 12, 4 weeks after the last dose. CONCLUSION SourceTracker can be used as a simple and reliable method to quantify donor microbial community engraftment and donor taxa contribution in patients with UC and other inflammatory conditions treated with MTT.
Collapse
Affiliation(s)
- Daphne Moutsoglou
- Department of Gastroenterology, Minneapolis VA Health Care System, MN 55417, USA
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Aneesh Syal
- Division of Basic and Translational Research, Department of Surgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Sharon Lopez
- Division of Gastroenterology, Hepatology, and Nutrition, University of Minnesota, Minneapolis, MN 55355, USA
| | - Elizabeth C Nelson
- Division of Gastroenterology, Hepatology, and Nutrition, University of Minnesota, Minneapolis, MN 55355, USA
| | - Lulu Chen
- Division of Gastroenterology, Hepatology, and Nutrition, University of Minnesota, Minneapolis, MN 55355, USA
| | - Amanda J Kabage
- Division of Gastroenterology, Hepatology, and Nutrition, University of Minnesota, Minneapolis, MN 55355, USA
| | - Monika Fischer
- Division of Gastroenterology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Alexander Khoruts
- Division of Gastroenterology, Hepatology, and Nutrition, University of Minnesota, Minneapolis, MN 55355, USA
| | - Byron P Vaughn
- Division of Gastroenterology, Hepatology, and Nutrition, University of Minnesota, Minneapolis, MN 55355, USA
| | - Christopher Staley
- Division of Basic and Translational Research, Department of Surgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
7
|
Hemachandra S, Rathnayake SN, Jayamaha AA, Francis BS, Welmillage D, Kaur DN, Zaw HK, Zaw LT, Chandra HA, Abeysekera ME. Fecal Microbiota Transplantation as an Alternative Method in the Treatment of Obesity. Cureus 2025; 17:e76858. [PMID: 39901991 PMCID: PMC11788455 DOI: 10.7759/cureus.76858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2025] [Indexed: 02/05/2025] Open
Abstract
Fecal microbiota transplantation (FMT) has emerged as a promising therapeutic approach for various health conditions, particularly obesity and metabolic disorders. This review examines the mechanisms underlying FMT, including its role in restoring gut microbiota diversity and enhancing immunomodulatory functions, which are essential for maintaining overall health. Recent studies indicate that FMT can significantly improve body weight and metabolic parameters, suggesting its potential as an alternative or complementary treatment to current obesity therapies. However, the effectiveness of FMT depends on several factors, including the composition of the donor microbiota, recipient characteristics, and concomitant medications or dietary interventions. Despite its great promise, challenges such as standardized protocols, donor screening, and the need for a deeper understanding of gut microbiota dynamics remain key hurdles. Future research should focus on elucidating the specific microbial compositions necessary for optimal therapeutic outcomes and exploring personalized FMT approaches tailored to individual patient profiles. This evolving field presents exciting opportunities for innovative strategies in obesity treatment, warranting further investigation and clinical application.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hein K Zaw
- Gastroenterology, Nanjing Medical University, Nanjing, CHN
| | - Lin T Zaw
- Gastroenterology, Nanjing Medical University, Nanjing, CHN
| | | | | |
Collapse
|
8
|
Lian YQ, Li PF, Guo Y, Tao YL, Liu YN, Liang ZY, Zhu SF. Interaction between ischemia-reperfusion injury and intestinal microecology in organ transplantation and its therapeutic prospects. Front Immunol 2024; 15:1495394. [PMID: 39712022 PMCID: PMC11659223 DOI: 10.3389/fimmu.2024.1495394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/15/2024] [Indexed: 12/24/2024] Open
Abstract
Organ transplantation is a vital intervention for end-stage organ failure; however, ischemia-reperfusion injury is a complication of transplantation, affecting the prognosis and survival of transplant recipients. As a complex ecosystem, recent research has highlighted the role of the intestinal microecology in transplantation, revealing its significant interplay with ischemia-reperfusion injury. This review explores the interaction between ischemia-reperfusion injury and intestinal microecology, with a special focus on how ischemia-reperfusion injury affects intestinal microecology and how these microecological changes contribute to complications after organ transplantation, such as infection and rejection. Based on a comprehensive analysis of current research advances, this study proposes potential strategies to improve transplant outcomes, offering guidance for future research and clinical practice.
Collapse
Affiliation(s)
- Yong-qi Lian
- Department of Critical Care Medicine, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Peng-fei Li
- Department of Orthopaedics, Inner Mongolia Autonomous Region People’s Hospital, Hohhot, Inner Mongolia Autonomous Region, China
| | - Yan Guo
- Pathology Department, Inner Mongolia Autonomous Region People’s Hospital, Hohhot, Inner Mongolia Autonomous Region, China
| | - Yan-lin Tao
- Department of Surgery ICU, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Ya-nan Liu
- Department of Surgery ICU, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Zhao-yu Liang
- Department of Critical Care Medicine, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Shu-fen Zhu
- Physical Examination Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| |
Collapse
|
9
|
Seo H, Kim S, Beck S, Song HY. Perspectives on Microbiome Therapeutics in Infectious Diseases: A Comprehensive Approach Beyond Immunology and Microbiology. Cells 2024; 13:2003. [PMID: 39682751 PMCID: PMC11640688 DOI: 10.3390/cells13232003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Although global life expectancy has increased over the past 20 years due to advancements in managing infectious diseases, one-fifth of people still die from infections. In response to this ongoing threat, significant efforts are underway to develop vaccines and antimicrobial agents. However, pathogens evolve resistance mechanisms, complicating their control. The COVID-19 pandemic has underscored the limitations of focusing solely on the pathogen-killing strategies of immunology and microbiology to address complex, multisystemic infectious diseases. This highlights the urgent need for practical advancements, such as microbiome therapeutics, that address these limitations while complementing traditional approaches. Our review emphasizes key outcomes in the field, including evidence of probiotics reducing disease severity and insights into host-microbiome crosstalk that have informed novel therapeutic strategies. These findings underscore the potential of microbiome-based interventions to promote physiological function alongside existing strategies aimed at enhancing host immune responses and pathogen destruction. This narrative review explores microbiome therapeutics as next-generation treatments for infectious diseases, focusing on the application of probiotics and their role in host-microbiome interactions. While offering a novel perspective grounded in a cooperative defense system, this review also addresses the practical challenges and limitations in translating these advancements into clinical settings.
Collapse
Affiliation(s)
- Hoonhee Seo
- Human Microbiome Medical Research Center (HM·MRC), School of Medicine, Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si 31538, Chungnam-do, Republic of Korea
| | - Sukyung Kim
- Human Microbiome Medical Research Center (HM·MRC), School of Medicine, Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si 31538, Chungnam-do, Republic of Korea
| | - Samuel Beck
- Center for Aging Research, Department of Dermatology, Chobanian & Avedisian School of Medicine, Boston University, J-607, 609 Albany, Boston, MA 02118, USA
| | - Ho-Yeon Song
- Human Microbiome Medical Research Center (HM·MRC), School of Medicine, Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si 31538, Chungnam-do, Republic of Korea
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, 31, Suncheonhyang 6-gil, Cheonan-si 31151, Chungnam-do, Republic of Korea
| |
Collapse
|
10
|
Cantón R, De Lucas Ramos P, García-Botella A, García-Lledó A, Hernández-Sampelayo T, Gómez-Pavón J, González Del Castillo J, Martín-Delgado MC, Martín Sánchez FJ, Martínez-Sellés M, Molero García JM, Moreno Guillén S, Rodríguez-Artalejo FJ, Reigadas E, Del Campo R, Serrano S, Ruiz-Galiana J, Bouza E. Human intestinal microbiome: Role in health and disease. REVISTA ESPANOLA DE QUIMIOTERAPIA : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE QUIMIOTERAPIA 2024; 37:438-453. [PMID: 38978509 PMCID: PMC11578434 DOI: 10.37201/req/056.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
The study of the microbiota and the microbiome, and specifically the intestinal one, has determined great interest due to the possible association of their alterations with numerous diseases. These include entities as diverse as Crohn's disease, autism, diabetes, cancer or situations as prevalent today as obesity. In view of this situation, different recommendations have been performed regarding the use of probiotics, prebiotics, and postbiotics as modulators of the microbiota and the microbiome, seeking both preventive and therapeutic effects, and faecal material transfer (FMT) is proposed as an alternative. The latter has emerged as the only proven beneficial intervention on the intestinal microbiome, specifically in the treatment of recurrent colitis associated with Clostridioides difficile (R-CDI). In the rest of the entities, the lowering of laboratory costs has favored the study of the microbiome, which is resolved by delivering reports with catalogs of microorganisms, metabolites or supposed biomarkers without consensus on their composition associated with healthy or diseased microbiota and the disease. There is still insufficient evidence in any disease for interventions on the microbiome beyond FMT and R-CDI. Multi- and multi-disciplinary work with extensive research and the application of artificial intelligence in this field may shed light on the questions raised currently. Ethical issues must also be resolved in light of possible interventions within the umbrella of personalized medicine.
Collapse
Affiliation(s)
- R Cantón
- Rafael Cantón. Servicio de Microbiología. Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria. CIBER de Enfermedades Infecciosas (CIBERINFEC). Madrid, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Ebrahimi R, Masouri MM, Salehi Amniyeh Khozani AA, Ramadhan Hussein D, Nejadghaderi SA. Safety and efficacy of fecal microbiota transplantation for viral diseases: A systematic review of clinical trials. PLoS One 2024; 19:e0311731. [PMID: 39432486 PMCID: PMC11493255 DOI: 10.1371/journal.pone.0311731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 09/21/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Gut microbiota play important roles in several diseases like viral infections. In this systematic review, our objective was to assess the efficacy and safety of fecal microbiota transplantation (FMT) in treating various viral diseases. METHODS We conducted searches on databases including PubMed, Web of Science, Scopus, and Google Scholar until November 2023. Clinical trials reported outcomes related to safety of FMT or its efficacy in patients with viral diseases were included. We excluded other types of studies that enrolled healthy individuals or patients with other disorders and did not use FMT. The assessment of bias risk was conducted using the National Institutes of Health (NIH) study quality evaluation tool. RESULTS Eight studies with total 196 participants were included. Viral diseases were human immunodeficiency virus (HIV), hepatitis B, COVID-19 and Clostridioides difficile coinfection, and cytomegalovirus colitis. In hepatitis B cases, HBeAg clearance was significant in those received FMT (p<0.01), while it was not significant in another one (p = 0.19). A clinical response was noted in 37.5% of patients with cytomegalovirus colitis, with an equal percentage achieving clinical remission post-FMT. There was a significant reduction in Clostridioides difficile relapse rate in FMT group than controls in coinfection of Clostridioides difficile and COVID-19 (2.17% vs. 42.5%, p<0.05). In patients with HIV, partial engraftment of the donor microbiome and increases in alpha diversity were observed after FMT. No severe adverse events were reported. Most studies had fair or good qualities. CONCLUSIONS Our findings revealed FMT as a promising, safe treatment for some viral diseases. It improved viral clearance, clinical outcomes, and inflammation. However, the varying responses and small sample sizes call for more trials on FMT in viral diseases.
Collapse
Affiliation(s)
- Rasoul Ebrahimi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | | | - Seyed Aria Nejadghaderi
- HIV/STI Surveillance Research Center, and WHO Collaborating Center for HIV Surveillance, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
12
|
Duo H, Yang Y, Zhang G, Chen Y, Cao Y, Luo L, Pan H, Ye Q. Comparative effectiveness of treatments for recurrent Clostridioides difficile infection: a network meta-analysis of randomized controlled trials. Front Pharmacol 2024; 15:1430724. [PMID: 39484168 PMCID: PMC11525118 DOI: 10.3389/fphar.2024.1430724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/07/2024] [Indexed: 11/03/2024] Open
Abstract
Background Clostridioides difficile infection (CDI) is the most common cause of healthcare-associated infectious diarrhea. A major clinical challenge is recurrent CDI (rCDI) without effective standard drug-based therapy. Additionally, a comprehensive comparison of various therapy effectiveness in rCDI patients is still under investigation. Methods A Bayesian network meta-analysis (NMA) of randomized control trials up to March 2024 was performed to investigate the efficacy of rCDI interventions. Results Seventeen trials were included, comprising 4,148 CDI patients with ten interventions, including fecal microbiota transplantation (FMT) by lower gastrointestinal (LGI), FMT by upper gastrointestinal (UGI), Autologous FMT (AFMT), vancomycin + FMT, vancomycin, placebo, fidaxomicin, Vowst (SER109), Rebyota (RBX2660), and monoclonal antibody. NMA showed that FMT by LGI had the highest efficacy in treating rCDIs with an odds ratio (95% confidence interval) of 32.33 (4.03, 248.69) compared with placebo. FMT by UGI also showed high efficacy, whereas the efficacy comparison between FMT by LGI and UGI was not statistically significant (ORs) (95% CI), 1.72 (0.65, 5.21). The rankogram and surface under the cumulative ranking curve (SUCRA) also showed FMT by LGI ranked at the top and FMT by UGI ranked second in the curative effect. Conclusion NMA demonstrates FMT's significant efficacy in rCDI management, regardless of administration route (lower or upper gastrointestinal). Despite its significant benefits, FMT's safety is a concern due to the lack of standardized FDAcompliant manufacturing and oversight. Microbiota-based therapies also exhibit potential. However, limited research mandates further clinical exploration. Antibiotics, in contrast, display comparatively reduced efficacy in rCDI, potentially linked to disruptions in native gut microflora balance. Systematic Review https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=368435, Identifier CRD42022368435.
Collapse
Affiliation(s)
- Hong Duo
- Hubei Key Laboratory of Medical Technology on Transplantation, National Quality Control Center for Donated Organ Procurement, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-Based Medical Materials, Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan, Hubei, China
| | - Yanwei Yang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
| | - Guqing Zhang
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yingxin Chen
- Global Health Institute, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Yumeng Cao
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Linjie Luo
- Department of Experimental Radiation Oncology and Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, United States
| | - Huaqin Pan
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplantation Intensive Care Unit, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, China
| | - Qifa Ye
- Hubei Key Laboratory of Medical Technology on Transplantation, National Quality Control Center for Donated Organ Procurement, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-Based Medical Materials, Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
13
|
Spigaglia P. Clostridioides difficile and Gut Microbiota: From Colonization to Infection and Treatment. Pathogens 2024; 13:646. [PMID: 39204246 PMCID: PMC11357127 DOI: 10.3390/pathogens13080646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 09/03/2024] Open
Abstract
Clostridioides difficile is the main causative agent of antibiotic-associated diarrhea (AAD) in hospitals in the developed world. Both infected patients and asymptomatic colonized individuals represent important transmission sources of C. difficile. C. difficile infection (CDI) shows a large range of symptoms, from mild diarrhea to severe manifestations such as pseudomembranous colitis. Epidemiological changes in CDIs have been observed in the last two decades, with the emergence of highly virulent types and more numerous and severe CDI cases in the community. C. difficile interacts with the gut microbiota throughout its entire life cycle, and the C. difficile's role as colonizer or invader largely depends on alterations in the gut microbiota, which C. difficile itself can promote and maintain. The restoration of the gut microbiota to a healthy state is considered potentially effective for the prevention and treatment of CDI. Besides a fecal microbiota transplantation (FMT), many other approaches to re-establishing intestinal eubiosis are currently under investigation. This review aims to explore current data on C. difficile and gut microbiota changes in colonized individuals and infected patients with a consideration of the recent emergence of highly virulent C. difficile types, with an overview of the microbial interventions used to restore the human gut microbiota.
Collapse
Affiliation(s)
- Patrizia Spigaglia
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Roma, Italy
| |
Collapse
|
14
|
Wang L, Cao Y, Lou E, Zhao X, Chen X. The role of gut fungi in Clostridioides difficile infection. Biomed J 2024; 47:100686. [PMID: 38086471 PMCID: PMC11220531 DOI: 10.1016/j.bj.2023.100686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 06/10/2024] Open
Abstract
Clostridioides difficile, the etiological agent of C. difficile infection (CDI), elicits a spectrum of diarrheal symptoms with varying severity and the potential to result in severe complications such as colonic perforation, pseudomembranous colitis, and toxic megacolon. The perturbation of gut microbiome, often triggered by antibiotic usage, represents the primary factor augmenting the risk of CDI. This underscores the significance of interactions between C. difficile and the microbiome in determining pathogen adaptability. In recent years, researchers have increasingly recognized the pivotal role played by intestinal microbiota in host health and its therapeutic potential as a target for medical interventions. While extensive evidence has been established regarding the involvement of gut bacteria in CDI, our understanding of symbiotic interactions between hosts and fungi within intestinal microbiota remains limited. Herein, we aim to comprehensively elucidate both composition and key characteristics of gut fungal communities that significantly contribute to CDI, thereby enhancing our comprehension from pharmacological and biomarker perspectives while exploring their prospective therapeutic applications for CDI.
Collapse
Affiliation(s)
- Lamei Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China; Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yangchun Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China; Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Eddie Lou
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Xuanyin Zhao
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Xinhua Chen
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
15
|
Algavi YM, Borenstein E. Relative dispersion ratios following fecal microbiota transplant elucidate principles governing microbial migration dynamics. Nat Commun 2024; 15:4447. [PMID: 38789466 PMCID: PMC11126695 DOI: 10.1038/s41467-024-48717-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Microorganisms frequently migrate from one ecosystem to another. Yet, despite the potential importance of this process in modulating the environment and the microbial ecosystem, our understanding of the fundamental forces that govern microbial dispersion is still lacking. Moreover, while theoretical models and in-vitro experiments have highlighted the contribution of species interactions to community assembly, identifying such interactions in vivo, specifically in communities as complex as the human gut, remains challenging. To address this gap, here we introduce a robust and rigorous computational framework, termed Relative Dispersion Ratio (RDR) analysis, and leverage data from well-characterized fecal microbiota transplant trials, to rigorously pinpoint dependencies between taxa during the colonization of human gastrointestinal tract. Our analysis identifies numerous pairwise dependencies between co-colonizing microbes during migration between gastrointestinal environments. We further demonstrate that identified dependencies agree with previously reported findings from in-vitro experiments and population-wide distribution patterns. Finally, we explore metabolic dependencies between these taxa and characterize the functional properties that facilitate effective dispersion. Collectively, our findings provide insights into the principles and determinants of community dynamics following ecological translocation, informing potential opportunities for precise community design.
Collapse
Affiliation(s)
- Yadid M Algavi
- Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Elhanan Borenstein
- Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel.
- The Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel.
- Santa Fe Institute, Santa Fe, NM, USA.
| |
Collapse
|
16
|
Reygner J, Delannoy J, Barba-Goudiaby MT, Gasc C, Levast B, Gaschet E, Ferraris L, Paul S, Kapel N, Waligora-Dupriet AJ, Barbut F, Thomas M, Schwintner C, Laperrousaz B, Corvaïa N. Reduction of product composition variability using pooled microbiome ecosystem therapy and consequence in two infectious murine models. Appl Environ Microbiol 2024; 90:e0001624. [PMID: 38651930 PMCID: PMC11107171 DOI: 10.1128/aem.00016-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/27/2024] [Indexed: 04/25/2024] Open
Abstract
Growing evidence demonstrates the key role of the gut microbiota in human health and disease. The recent success of microbiotherapy products to treat recurrent Clostridioides difficile infection has shed light on its potential in conditions associated with gut dysbiosis, such as acute graft-versus-host disease, intestinal bowel diseases, neurodegenerative diseases, or even cancer. However, the difficulty in defining a "good" donor as well as the intrinsic variability of donor-derived products' taxonomic composition limits the translatability and reproducibility of these studies. Thus, the pooling of donors' feces has been proposed to homogenize product composition and achieve higher taxonomic richness and diversity. In this study, we compared the metagenomic profile of pooled products to corresponding single donor-derived products. We demonstrated that pooled products are more homogeneous, diverse, and enriched in beneficial bacteria known to produce anti-inflammatory short chain fatty acids compared to single donor-derived products. We then evaluated pooled products' efficacy compared to corresponding single donor-derived products in Salmonella and C. difficile infectious mouse models. We were able to demonstrate that pooled products decreased pathogenicity by inducing a structural change in the intestinal microbiota composition. Single donor-derived product efficacy was variable, with some products failing to control disease progression. We further performed in vitro growth inhibition assays of two extremely drug-resistant bacteria, Enterococcus faecium vanA and Klebsiella pneumoniae oxa48, supporting the use of pooled microbiotherapies. Altogether, these results demonstrate that the heterogeneity of donor-derived products is corrected by pooled fecal microbiotherapies in several infectious preclinical models.IMPORTANCEGrowing evidence demonstrates the key role of the gut microbiota in human health and disease. Recent Food and Drug Administration approval of fecal microbiotherapy products to treat recurrent Clostridioides difficile infection has shed light on their potential to treat pathological conditions associated with gut dysbiosis. In this study, we combined metagenomic analysis with in vitro and in vivo studies to compare the efficacy of pooled microbiotherapy products to corresponding single donor-derived products. We demonstrate that pooled products are more homogeneous, diverse, and enriched in beneficial bacteria compared to single donor-derived products. We further reveal that pooled products decreased Salmonella and Clostridioides difficile pathogenicity in mice, while single donor-derived product efficacy was variable, with some products failing to control disease progression. Altogether, these findings support the development of pooled microbiotherapies to overcome donor-dependent treatment efficacy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Stéphane Paul
- Team GIMAP, Centre International de Recherche en Infectiologie, Université Jean Monnet, Saint-Etienne, France
- Inserm, Université Claude Bernard Lyon, Lyon, France
- CIC 1408 Inserm Vaccinology, University Hospital of Saint-Etienne, Saint-Etienne, France
- Immunology Department, iBiothera Reference Center, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Nathalie Kapel
- UMR-S 1139, INSERM, Université Paris Cite, Paris, France
- Service de Coprologie fonctionnelle, Hôpital de la Pitié-Salpêtrière-Charles Foix, AP-HP, Paris, France
| | | | - Frederic Barbut
- UMR-S 1139, INSERM, Université Paris Cite, Paris, France
- National Reference Laboratory for Clostridioides difficile, Saint-Antoine Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- The European Society of Clinical Microbiology and Infectious Diseases Study Group for Clostridioides difficile, Basel, Switzerland
| | - Muriel Thomas
- UMR1319, Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | | | | | | |
Collapse
|
17
|
Aroniadis OC, Grinspan AM. The Gut Microbiome: A Primer for the Clinician. Am J Gastroenterol 2024; 119:S2-S6. [PMID: 38153219 DOI: 10.14309/ajg.0000000000002583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/23/2023] [Indexed: 12/29/2023]
Affiliation(s)
- Olga C Aroniadis
- Division of Gastroenterology and Hepatology, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA
| | - Ari M Grinspan
- The Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
18
|
Chowdhury M, Raj Chaudhary N, Kaur P, Goyal A, Sahu SK. Different Strategies Targeting Gut Microbiota for the Management of Several Disorders: A Sustainable Approach. Infect Disord Drug Targets 2024; 24:e160124225675. [PMID: 38317473 DOI: 10.2174/0118715265267536231121095634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/25/2023] [Accepted: 10/06/2023] [Indexed: 02/07/2024]
Abstract
BACKGROUND A potential limelight is flashed on the Gut Microbiota (GM) in the human body, which confers additional psychological as well as physiological attributes to health. Other than just occupying a wide portion of the gastrointestinal tract, it also plays numerous functions in the systems of the body. Gut Microbiota is largely responsible for a considerably vast array of conditions such as obesity, diabetes ,other metabolic disorders, and cardiovascular disorders. Strategies targeting the gut microbiota have been proposed as a promising approach for the management of these disorders. OBJECTIVE This review aims to summarize the different strategies targeting the gut microbiota for the management of several disorders and to highlight the importance of a sustainable approach. METHODS A comprehensive literature search was conducted using various databases between 2008 and 2022 that focused on the use of prebiotics, probiotics, synbiotics, postbiotics, fecal microbiota transplantation, dietary interventions, and antibiotics. RESULTS Different strategies targeting the gut microbiota for the management of several disorders were identified, including probiotics, prebiotics, synbiotics, postbiotics, fecal microbiota transplantation, and dietary interventions. Modification in diet and lifestyle, allowing favorable microbiota growth in the stomach, intake of prebiotics and probiotics, and fecal microbiota transplantation are amongst the widely accepted recent approaches allowing the application of GM in the field of treatment. CONCLUSION Although considerable steps in enhancing and understanding the mechanism of treatment with the help of gut microbiota are under progress, much diversified and elaborate research must be conducted in order to enhance and implement the use of GM with high effectiveness.
Collapse
Affiliation(s)
- Mahima Chowdhury
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara (Punjab) 144411, India
| | - Neil Raj Chaudhary
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara (Punjab) 144411, India
| | - Paranjeet Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Anju Goyal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sanjeev Kumar Sahu
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara (Punjab) 144411, India
| |
Collapse
|
19
|
Wu R, Xiong R, Li Y, Chen J, Yan R. Gut microbiome, metabolome, host immunity associated with inflammatory bowel disease and intervention of fecal microbiota transplantation. J Autoimmun 2023; 141:103062. [PMID: 37246133 DOI: 10.1016/j.jaut.2023.103062] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/30/2023]
Abstract
Gut dysbiosis has been associated with inflammatory bowel disease (IBD), one of the most common gastrointestinal diseases. The microbial communities play essential roles in host physiology, with profound effects on immune homeostasis, directly or via their metabolites and/or components. There are increasing clinical trials applying fecal microbiota transplantation (FMT) with Crohn's disease (CD) and ulcerative colitis (UC). The restoration of dysbiotic gut microbiome is considered as one of the mechanisms of FMT therapy. In this work, latest advances in the alterations in gut microbiome and metabolome features in IBD patients and experimental mechanistic understanding on their contribution to the immune dysfunction were reviewed. Then, the therapeutic outcomes of FMT on IBD were summarized based on clinical remission, endoscopic remission and histological remission of 27 clinical trials retrieved from PubMed which have been registered on ClinicalTrials.gov with the results been published in the past 10 years. Although FMT is established as an effective therapy for both subtypes of IBD, the promising outcomes are not always achieved. Among the 27 studies, only 11 studies performed gut microbiome profiling, 5 reported immune response alterations and 3 carried out metabolome analysis. Generally, FMT partially restored typical changes in IBD, resulted in increased α-diversity and species richness in responders and similar but less pronounced shifts of patient microbial and metabolomics profiles toward donor profiles. Measurements of immune responses to FMT mainly focused on T cells and revealed divergent effects on pro-/anti-inflammatory functions. The very limited information and the extremely confounding factors in the designs of the FMT trials significantly hindered a reasonable conclusion on the mechanistic involvement of gut microbiota and metabolites in clinical outcomes and an analysis of the inconsistencies.
Collapse
Affiliation(s)
- Rongrong Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China.
| | - Rui Xiong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China.
| | - Yan Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China.
| | - Junru Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China.
| | - Ru Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China.
| |
Collapse
|
20
|
Oliva-Hemker M, Kahn SA, Steinbach WJ. Fecal Microbiota Transplantation: Information for the Pediatrician. Pediatrics 2023; 152:e2023062922. [PMID: 37981872 DOI: 10.1542/peds.2023-062922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/25/2023] [Indexed: 11/21/2023] Open
Abstract
Fecal microbiota transplantation (FMT) involves the delivery of an entire microbial community from a healthy donor to a recipient with the intention of ameliorating or curing a specific disease. Current evidence strongly supports a role for FMT in the treatment of Clostridiodes difficile infection, with cure rates of approximately 80% to 90%. This success has led to increasing attention for FMT as a potential therapeutic intervention for other conditions associated with disturbances of the intestinal microbiome, including inflammatory bowel diseases, autism spectrum disorder, and obesity. This clinical report endorses the joint society statement by the North American Society for Pediatric Gastroenterology, Hepatology and Nutrition, and the European Society for Pediatric Gastroenterology, Hepatology and Nutrition and is meant to provide the general pediatrician with a broad overview to enable appropriate guidance to families seeking FMT as treatment of a child's condition.
Collapse
Affiliation(s)
- Maria Oliva-Hemker
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Stacy A Kahn
- FMT and Microbial Therapeutics Program, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Cambridge, Massachusetts
| | - William J Steinbach
- Department of Pediatrics, University of Arkansas for Medical Sciences and Arkansas Children's, Fayetteville, Arkansas
| |
Collapse
|
21
|
Liu S, He Y, Zhang Y, Zhang Z, Huang K, Deng L, Liao B, Zhong Y, Feng J. Targeting gut microbiota in aging-related cardiovascular dysfunction: focus on the mechanisms. Gut Microbes 2023; 15:2290331. [PMID: 38073096 PMCID: PMC10730151 DOI: 10.1080/19490976.2023.2290331] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
The global population is aging and age-related cardiovascular disease is increasing. Even after controlling for cardiovascular risk factors, readmission and mortality rates remain high. In recent years, more and more in-depth studies have found that the composition of the gut microbiota and its metabolites, such as trimethylamine N-oxide (TMAO), bile acids (BAs), and short-chain fatty acids (SCFAs), affect the occurrence and development of age-related cardiovascular diseases through a variety of molecular pathways, providing a new target for therapy. In this review, we discuss the relationship between the gut microbiota and age-related cardiovascular diseases, and propose that the gut microbiota could be a new therapeutic target for preventing and treating cardiovascular diseases.
Collapse
Affiliation(s)
- Siqi Liu
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Yufeng He
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Yali Zhang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Zhaolun Zhang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Keming Huang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Li Deng
- Department of Rheumatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Bin Liao
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Yi Zhong
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Jian Feng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| |
Collapse
|
22
|
Kolba N, Tako E. Effective alternatives for dietary interventions for necrotizing enterocolitis: a systematic review of in vivo studies. Crit Rev Food Sci Nutr 2023; 65:811-831. [PMID: 37971890 DOI: 10.1080/10408398.2023.2281623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Necrotizing enterocolitis (NEC) is a significant cause of morbidity and mortality among neonates and low birth weight children in the United States. Current treatment options, such as antibiotics and intestinal resections, often result in complications related to pediatric nutrition and development. This systematic review aimed to identify alternative dietary bioactive compounds that have shown promising outcomes in ameliorating NEC in vivo studies conducted within the past six years. Following PRISMA guidelines and registering in PROSPERO (CRD42023330617), we conducted a comprehensive search of PubMed, Scopus, and Web of Science. Our analysis included 19 studies, predominantly involving in vivo models of rats (Rattus norvegicus) and mice (Mus musculus). The findings revealed that various types of compounds have demonstrated successful amelioration of NEC symptoms. Specifically, six studies employed plant phenolics, seven utilized plant metabolites/cytotoxic chemicals, three explored the efficacy of vitamins, and three investigated the potential of whole food extracts. Importantly, all administered compounds exhibited positive effects in mitigating the disease. These results highlight the potential of natural cytotoxic chemicals derived from medicinal plants in identifying and implementing powerful alternative drugs and therapies for NEC. Such approaches have the capacity to impact multiple pathways involved in the development and progression of NEC symptoms.
Collapse
Affiliation(s)
- Nikolai Kolba
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Elad Tako
- Department of Food Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
23
|
Vendrik KE, Chernova VO, Kuijper EJ, Terveer EM, van Hilten JJ, Contarino MF. Safety and feasibility of faecal microbiota transplantation for patients with Parkinson's disease: a protocol for a self-controlled interventional donor-FMT pilot study. BMJ Open 2023; 13:e071766. [PMID: 37798034 PMCID: PMC10565159 DOI: 10.1136/bmjopen-2023-071766] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/30/2023] [Indexed: 10/07/2023] Open
Abstract
INTRODUCTION Experimental studies suggest a role of gut microbiota in the pathophysiology of Parkinson's disease (PD) via the gut-brain axis. The gut microbiota can also influence the metabolism of levodopa, which is the mainstay of treatment of PD. Therefore, modifying the gut microbiota by faecal microbiota transplantation (FMT) could be a supportive treatment strategy. METHODS AND ANALYSIS We have developed a study protocol for a single-centre, prospective, self-controlled, interventional, safety and feasibility donor-FMT pilot study with randomisation and double-blinded allocation of donor faeces. The primary objectives are feasibility and safety of FMT in patients with PD. Secondary objectives include exploring whether FMT leads to alterations in motor complications (fluctuations and dyskinesias) and PD motor and non-motor symptoms (including constipation), determining alterations in gut microbiota composition, assessing donor-recipient microbiota similarities and their association with PD symptoms and motor complications, evaluating the ease of the study protocol and examining FMT-related adverse events in patients with PD. The study population will consist of 16 patients with idiopathic PD that use levodopa and experience motor complications. They will receive FMT with faeces from one of two selected healthy human donors. FMT will be administered via a gastroscope into the duodenum, after treatment with oral vancomycin, bowel lavage and domperidone. There will be seven follow-up moments during 12 months. ETHICS AND DISSEMINATION This study was approved by the Medical Ethical Committee Leiden Den Haag Delft (ref. P20.087). Study results will be disseminated through publication in peer-reviewed journals and international conferences. TRIAL REGISTRATION NUMBER International Clinical Trial Registry Platform: NL9438.
Collapse
Affiliation(s)
- Karuna Ew Vendrik
- Department of Medical Microbiology, Centre for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Vlada O Chernova
- Department of Medical Microbiology, Centre for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ed J Kuijper
- Department of Medical Microbiology, Centre for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Elisabeth M Terveer
- Department of Medical Microbiology, Centre for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Jacobus J van Hilten
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maria Fiorella Contarino
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Neurology, Haga Teaching hospital, The Hague, The Netherlands
| |
Collapse
|
24
|
Shao T, Hsu R, Hacein-Bey C, Zhang W, Gao L, Kurth MJ, Zhao H, Shuai Z, Leung PSC. The Evolving Landscape of Fecal Microbial Transplantation. Clin Rev Allergy Immunol 2023; 65:101-120. [PMID: 36757537 PMCID: PMC9909675 DOI: 10.1007/s12016-023-08958-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2023] [Indexed: 02/10/2023]
Abstract
The human gastrointestinal tract houses an enormous microbial ecosystem. Recent studies have shown that the gut microbiota plays significant physiological roles and maintains immune homeostasis in the human body. Dysbiosis, an imbalanced gut microbiome, can be associated with various disease states, as observed in infectious diseases, inflammatory diseases, autoimmune diseases, and cancer. Modulation of the gut microbiome has become a therapeutic target in treating these disorders. Fecal microbiota transplantation (FMT) from a healthy donor restores the normal gut microbiota homeostasis in the diseased host. Ample evidence has demonstrated the efficacy of FMT in recurrent Clostridioides difficile infection (rCDI). The application of FMT in other human diseases is gaining attention. This review aims to increase our understanding of the mechanisms of FMT and its efficacies in human diseases. We discuss the application, route of administration, limitations, safety, efficacies, and suggested mechanisms of FMT in rCDI, autoimmune diseases, and cancer. Finally, we address the future perspectives of FMT in human medicine.
Collapse
Affiliation(s)
- Tihong Shao
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis School of Medicine, Davis, CA, 95616, USA
| | - Ronald Hsu
- Division of Gastroenterology, University of California Davis School of Medicine, Davis, CA, 95616, USA
| | - Camelia Hacein-Bey
- Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis School of Medicine, Davis, CA, 95616, USA
| | - Weici Zhang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Lixia Gao
- Department of Rheumatology and Immunology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Mark J Kurth
- Department of Chemistry, University of California Davis, Davis, CA, 95616, USA
| | - Huanhuan Zhao
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Zongwen Shuai
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Patrick S C Leung
- Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis School of Medicine, Davis, CA, 95616, USA.
| |
Collapse
|
25
|
Koo H, Morrow CD. Identification of donor Bacteroides vulgatus genes encoding proteins that correlate with early colonization following fecal transplant of patients with recurrent Clostridium difficile. Sci Rep 2023; 13:14112. [PMID: 37644161 PMCID: PMC10465488 DOI: 10.1038/s41598-023-41128-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023] Open
Abstract
Due to suppressive antibiotics, patients with recurrent Clostridium difficile have gut microbial communities that are devoid of most commensal microbes. Studies have shown that most of the failures using fecal microbe transplantation (FMT) for recurrent C. difficile occur during the first 4 weeks following transplantation. To identify features of donor Bacteroides vulgatus that lead to early colonization, we used two data sets that collected fecal samples from recipients at early times points post FMT. The first analysis used the shotgun metagenomic DNA sequencing data set from Aggarwala et al. consisting of 7 FMT donors and 13 patients with recurrent C. difficile with fecal samples taken as early as 24 h post FMT. We identified 2 FMT donors in which colonization of recipients by donor B. vulgatus was detected as early as 24 h post FMT. We examined a second data set from Hourigan et al. that collected fecal samples from C. difficile infected children and identified 1 of 3 FMT that also had early colonization of the donor B. vulgatus. We found 19 genes out of 4911 encoding proteins were unique to the 3 donors that had early colonization. A gene encoding a putative chitobiase was identified that was in a gene complex that had been previously identified to enhance colonization in mice. A gene encoding a unique fimbrillin (i.e., pili) family protein and 17 genes encoding hypothetical proteins were also specific for early colonizing donors. Most of the genes encoding hypothetical proteins had neighboring genes that encoded proteins involved in mobilization or transposition. Finally, analysis of 42 paired fecal samples from the human microbiome project (HMP) found no individuals had all 19 genes while 2 individuals had none of the 19 genes. Based on the results from our study, consideration should be given to the screening of FMT donors for these B. vulgatus genes found to enhance early colonization that would be of benefit to promote colonization following FMT.
Collapse
Affiliation(s)
- Hyunmin Koo
- Department of Genetics, Hugh Kaul Precision Medicine Institute, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Casey D Morrow
- Department of Cell, Developmental and Integrative Biology, Hugh Kaul Precision Medicine Institute, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
26
|
Chen LA, Oliva-Hemker M, Radin A, Weidner M, O’Laughlin BD, Sears CL, Javitt NB, Hourigan SK. Longitudinal Bile Acid Composition Changes Following Faecal Microbiota Transplantation for Clostridioides difficile Infection in Children With and Without Underlying Inflammatory Bowel Disease. J Crohns Colitis 2023; 17:1364-1368. [PMID: 36988432 PMCID: PMC10441560 DOI: 10.1093/ecco-jcc/jjad057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Indexed: 03/30/2023]
Abstract
BACKGROUND AND AIMS Faecal microbiota transplant [FMT] is effective in treating recurrent Clostridioides difficile infection [CDI] and restores gut microbiota composition. This is unlikely to account for its entire mechanism of efficacy, as studies have shown that factors such as bile acids influence the risk of infection by affecting Clostridioides difficile germination. We therefore aimed to investigate longitudinal changes in the gut bile acid composition after FMT performed for recurrent CDI, in children with and without inflammatory bowel disease [IBD]. METHODS Eight children received FMT; five had underlying IBD. Primary and secondary faecal bile acids were measured by liquid chromatography-mass spectrometry in recipients [pre-FMT and longitudinally post-FMT for up to 6 months] and donors. RESULTS Pre-FMT, recipients had higher primary and lower secondary bile acid proportions compared with donors. Post-FMT, there was a gradual increase of secondary and decrease of primary bile acids. Whereas gut bacterial diversity had been shown to be restored in all children shortly after FMT, normalisation of bile acids to donor levels occurred only by 6 months. In children with IBD, although microbiota diversity returned to pre-FMT levels within 6 months, secondary bile acids remained at donor levels. CONCLUSIONS The differences in bile acid profiles compared with gut bacterial diversity post-FMT suggests that interactions between the two may be more complex than previously appreciated and may contribute to FMT efficacy in different ways. This initial finding demonstrates the need to further investigate gut metabolites in larger cohorts, with longitudinal sampling to understand the mechanisms of FMT effectiveness.
Collapse
Affiliation(s)
- Lea Ann Chen
- Division of Gastroenterology and Hepatology, New York University Grossman School of Medicine, New York, NY, USA
| | - Maria Oliva-Hemker
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Arielle Radin
- Division of Gastroenterology and Hepatology, New York University Grossman School of Medicine, New York, NY, USA
| | - Melissa Weidner
- Division of Pediatric Gastroenterology, Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Brynn D O’Laughlin
- Division of Pediatric Gastroenterology, Department of Pediatrics, Children’s National Medical Center, Washington, DC, USA
| | - Cynthia L Sears
- Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Norman B Javitt
- Division of Gastroenterology and Hepatology,New York University Grossman School of Medicine, New York, NY, USA
| | - Suchitra K Hourigan
- Clinical Microbiome Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
27
|
Shtossel O, Turjeman S, Riumin A, Goldberg MR, Elizur A, Bekor Y, Mor H, Koren O, Louzoun Y. Recipient-independent, high-accuracy FMT-response prediction and optimization in mice and humans. MICROBIOME 2023; 11:181. [PMID: 37580821 PMCID: PMC10424414 DOI: 10.1186/s40168-023-01623-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 07/14/2023] [Indexed: 08/16/2023]
Abstract
BACKGROUND Some microbiota compositions are associated with negative outcomes, including among others, obesity, allergies, and the failure to respond to treatment. Microbiota manipulation or supplementation can restore a community associated with a healthy condition. Such interventions are typically probiotics or fecal microbiota transplantation (FMT). FMT donor selection is currently based on donor phenotype, rather than the anticipated microbiota composition in the recipient and associated health benefits. However, the donor and post-transplant recipient conditions differ drastically. We here propose an algorithm to identify ideal donors and predict the expected outcome of FMT based on donor microbiome alone. We also demonstrate how to optimize FMT for different required outcomes. RESULTS We show, using multiple microbiome properties, that donor and post-transplant recipient microbiota differ widely and propose a tool to predict the recipient post-transplant condition (engraftment success and clinical outcome), using only the donors' microbiome and, when available, demographics for transplantations from humans to either mice or other humans (with or without antibiotic pre-treatment). We validated the predictor using a de novo FMT experiment highlighting the possibility of choosing transplants that optimize an array of required goals. We then extend the method to characterize a best-planned transplant (bacterial cocktail) by combining the predictor and a generative genetic algorithm (GA). We further show that a limited number of taxa is enough for an FMT to produce a desired microbiome or phenotype. CONCLUSIONS Off-the-shelf FMT requires recipient-independent optimized FMT selection. Such a transplant can be from an optimal donor or from a cultured set of microbes. We have here shown the feasibility of both types of manipulations in mouse and human recipients. Video Abstract.
Collapse
Affiliation(s)
- Oshrit Shtossel
- Department of Mathematics, Bar-Ilan University, Ramat Gan, 52900, Israel.
| | - Sondra Turjeman
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Alona Riumin
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Michael R Goldberg
- Yitzhak Shamir Medical Center (Assaf Harofeh), Zerifin, Israel
- Department of Pediatrics, Sackler Faculty of Medicine, Tel Aviv, Israel
| | - Arnon Elizur
- Yitzhak Shamir Medical Center (Assaf Harofeh), Zerifin, Israel
- Department of Pediatrics, Sackler Faculty of Medicine, Tel Aviv, Israel
| | - Yarin Bekor
- Department of Mathematics, Bar-Ilan University, Ramat Gan, 52900, Israel
| | - Hadar Mor
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Omry Koren
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Yoram Louzoun
- Department of Mathematics, Bar-Ilan University, Ramat Gan, 52900, Israel.
| |
Collapse
|
28
|
Wu Q, Boonma P, Badu S, Yalcinkaya N, So SY, Garey KW, Williams K, Arnold LE, Shulman RJ, Kellermayer R, Savidge TC. Donor-recipient specificity and age-dependency in fecal microbiota therapy and probiotic resolution of gastrointestinal symptoms. NPJ Biofilms Microbiomes 2023; 9:54. [PMID: 37537181 PMCID: PMC10400536 DOI: 10.1038/s41522-023-00421-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023] Open
Abstract
Fecal microbiota transplantation (FMT) has proven to be an effective treatment for recurrent Clostridioides difficile infection (rCDI) in both adult and pediatric patients. However, as microbiome development is a critical factor in children, it remains unclear whether adult fecal donors can provide age-appropriate functional restoration in pediatric patients. To address this issue, we conducted an integrated systems approach and found that concordant donor strain engraftment, along with metabolite restoration, are associated with FMT outcomes in both adult and pediatric rCDI patients. Although functional restoration after FMT is not strain-specific, specialized metabolic functions are retained in pediatric patients when adult fecal donors are used. Furthermore, we demonstrated broad utility of high-resolution variant-calling by linking probiotic-strain engraftment with improved gastrointestinal symptoms in adults with irritable bowel syndrome and in children with autism spectrum disorder. Our findings emphasize the importance of strain-level identification when assessing the efficacy of probiotics and microbiota-based therapeutics.
Collapse
Affiliation(s)
- Qinglong Wu
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Microbiome Center, Department of Pathology, Texas Children's Hospital, Houston, TX, USA
| | - Prapaporn Boonma
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Microbiome Center, Department of Pathology, Texas Children's Hospital, Houston, TX, USA
- Faculty of Medicine, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Shyam Badu
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Microbiome Center, Department of Pathology, Texas Children's Hospital, Houston, TX, USA
| | - Nazli Yalcinkaya
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Microbiome Center, Department of Pathology, Texas Children's Hospital, Houston, TX, USA
| | - Sik Yu So
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Microbiome Center, Department of Pathology, Texas Children's Hospital, Houston, TX, USA
| | - Kevin W Garey
- Department of Pharmacy Practice and Translational Research, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Kent Williams
- Department of Pediatrics, Ohio State University & Nationwide Children's Hospital, Columbus, OH, USA
| | - L Eugene Arnold
- Department of Psychiatry and Behavioral Health, Ohio State University, Columbus, OH, USA
| | - Robert J Shulman
- Department of Pediatrics, Baylor College of Medicine & Texas Children's Hospital, Houston, TX, USA
| | - Richard Kellermayer
- Department of Pediatrics, Baylor College of Medicine & Texas Children's Hospital, Houston, TX, USA
| | - Tor C Savidge
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA.
- Texas Children's Microbiome Center, Department of Pathology, Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
29
|
Contarino MF, van Hilten JJ, Kuijper EJ. Targeting the Gut-Brain Axis with Fecal Microbiota Transplantation: Considerations on a Potential Novel Treatment for Parkinson's Disease. Mov Disord Clin Pract 2023; 10:S21-S25. [PMID: 37637989 PMCID: PMC10448131 DOI: 10.1002/mdc3.13621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/26/2022] [Accepted: 09/24/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Maria Fiorella Contarino
- Department of NeurologyLeiden University Medical CenterLeidenThe Netherlands
- Department of NeurologyHaga Teaching HospitalThe HagueThe Netherlands
| | | | - Ed J. Kuijper
- Department of Medical MicrobiologyLeiden University Medical CenterLeidenThe Netherlands
- Center for Infectious Disease ControlNational Institute for Public Health and the Environment (Rijksinstituut voor Volksgezondheid en Milieu)BilthovenThe Netherlands
| |
Collapse
|
30
|
Yadegar A, Pakpoor S, Ibrahim FF, Nabavi-Rad A, Cook L, Walter J, Seekatz AM, Wong K, Monaghan TM, Kao D. Beneficial effects of fecal microbiota transplantation in recurrent Clostridioides difficile infection. Cell Host Microbe 2023; 31:695-711. [PMID: 37167952 PMCID: PMC10966711 DOI: 10.1016/j.chom.2023.03.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Fecal microbiota transplantation (FMT) is highly effective in preventing recurrent Clostridioides difficile infection (rCDI). However, the mechanisms underpinning its clinical efficacy are incompletely understood. Herein, we provide an overview of rCDI pathogenesis followed by a discussion of potential mechanisms of action focusing on the current understanding of trans-kingdom microbial, metabolic, immunological, and epigenetic mechanisms. We then outline the current research gaps and offer methodological recommendations for future studies to elevate the quality of research and advance knowledge translation. By combining interventional trials with multiomics technology and host and environmental factors, analyzing longitudinally collected biospecimens will generate results that can be validated with animal and other models. Collectively, this will confirm causality and improve translation, ultimately to develop targeted therapies to replace FMT.
Collapse
Affiliation(s)
- Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepideh Pakpoor
- School of Engineering, University of British Columbia, Kelowna, BC, Canada
| | - Fathima F Ibrahim
- National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK; Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Ali Nabavi-Rad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Laura Cook
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Jens Walter
- School of Microbiology, Department of Medicine and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Anna M Seekatz
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | - Karen Wong
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Tanya M Monaghan
- National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK; Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK.
| | - Dina Kao
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
31
|
Ohkusa T, Nishikawa Y, Sato N. Gastrointestinal disorders and intestinal bacteria: Advances in research and applications in therapy. Front Med (Lausanne) 2023; 9:935676. [PMID: 36825261 PMCID: PMC9941163 DOI: 10.3389/fmed.2022.935676] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 12/27/2022] [Indexed: 02/09/2023] Open
Abstract
Intestinal bacteria coexist with humans and play a role in suppressing the invasion of pathogens, producing short-chain fatty acids, producing vitamins, and controlling the immune system. Studies have been carried out on culturable bacterial species using bacterial culture methods for many years. However, as metagenomic analysis of bacterial genes has been developed since the 1990s, it has recently revealed that many bacteria in the intestine cannot be cultured and that approximately 1,000 species and 40 trillion bacteria are present in the gut microbiota. Furthermore, the composition of the microbiota is different in each disease state compared with the healthy state, and dysbiosis has received much attention as a cause of various diseases. Regarding gastrointestinal diseases, dysbiosis has been reported to be involved in inflammatory bowel disease, irritable bowel syndrome, and non-alcoholic steatohepatitis. Recent findings have also suggested that dysbiosis is involved in colon cancer, liver cancer, pancreatic cancer, esophageal cancer, and so on. This review focuses on the relationship between the gut microbiota and gastrointestinal/hepatobiliary diseases and also discusses new therapies targeting the gut microbiota.
Collapse
Affiliation(s)
| | - Yuriko Nishikawa
- Department of Microbiota Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Nobuhiro Sato
- Department of Microbiota Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
32
|
Xu QQ, Su ZR, Yang W, Zhong M, Xian YF, Lin ZX. Patchouli alcohol attenuates the cognitive deficits in a transgenic mouse model of Alzheimer's disease via modulating neuropathology and gut microbiota through suppressing C/EBPβ/AEP pathway. J Neuroinflammation 2023; 20:19. [PMID: 36717922 PMCID: PMC9887791 DOI: 10.1186/s12974-023-02704-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/22/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a chronic neurodegenerative disease characterized by progressive cognitive dysfunctions and behavioral impairments. Patchouli alcohol (PA), isolated from Pogostemonis Herba, exhibits multiple pharmacological properties, including neuroprotective effects. This study aimed to investigate the therapeutic effects of PA against AD using the TgCRND8 transgenic AD mouse model, and to explore the underlying mechanisms targeting CCAAT/enhancer-binding protein β/asparagine endopeptidase (C/EBPβ/AEP) signaling pathway. METHODS After genotyping to confirm the transgenicity, drug treatments were administered intragastrically once daily to 3-month-old TgCRND8 mice for 4 consecutive months. Several behavioral tests were applied to assess different aspects of neurological functions. Then the brain and colon tissues were harvested for in-depth mechanistic studies. To further verify whether PA exerts anti-AD effects via modulating C/EBPβ/AEP signaling pathway in TgCRND8 mice, adeno-associated virus (AAV) vectors encoding CEBP/β were bilaterally injected into the hippocampal CA1 region in TgCRND8 mice to overexpress C/EBPβ. Additionally, the fecal microbiota transplantation (FMT) experiment was performed to verify the potential role of gut microbiota on the anti-AD effects of PA. RESULTS Our results showed that PA treatment significantly improved activities of daily living (ADL), ameliorated the anxiety-related behavioral deficits and cognitive impairments in TgCRND8 mice. PA modulated the amyloid precursor protein (APP) processing. PA also markedly reduced the levels of beta-amyloid (Aβ) 40 and Aβ42, suppressed Aβ plaque burdens, inhibited tau protein hyperphosphorylation at several sites and relieved neuroinflammation in the brains of TgCRND8 mice. Moreover, PA restored gut dysbiosis and inhibited the activation of the C/EBPβ/AEP signaling pathway in the brain and colon tissues of TgCRND8 mice. Interestingly, PA strikingly alleviated the AD-like pathologies induced by the overexpression of C/EBPβ in TgCRND8 mice. Additionally, the FMT of fecal microbiota from the PA-treated TgCRND8 mice significantly alleviated the cognitive impairments and AD-like pathologies in the germ-free TgCRND8 mice. CONCLUSION All these findings amply demonstrated that PA could ameliorate the cognitive deficits in TgCRND8 mice via suppressing Aβ plaques deposition, hyperphosphorylation of tau protein, neuroinflammation and gut dysbiosis through inhibiting the activation of C/EBPβ/AEP pathway, suggesting that PA is a promising naturally occurring chemical worthy of further development into the pharmaceutical treatment of AD.
Collapse
Affiliation(s)
- Qing-Qing Xu
- grid.10784.3a0000 0004 1937 0482School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, People’s Republic of China
| | - Zi-Ren Su
- grid.411866.c0000 0000 8848 7685Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
| | - Wen Yang
- grid.10784.3a0000 0004 1937 0482School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, People’s Republic of China
| | - Mei Zhong
- grid.10784.3a0000 0004 1937 0482School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, People’s Republic of China
| | - Yan-Fang Xian
- grid.10784.3a0000 0004 1937 0482School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, People’s Republic of China
| | - Zhi-Xiu Lin
- grid.10784.3a0000 0004 1937 0482School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, People’s Republic of China ,grid.10784.3a0000 0004 1937 0482Hong Kong Institute of Integrative Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, People’s Republic of China ,grid.10784.3a0000 0004 1937 0482Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, People’s Republic of China
| |
Collapse
|
33
|
Liu J, Lin H, Cao M, Lin T, Lin A, Xu W, Wang H, He J, Li Y, Tang H, Zhang B. Shifts and importance of viable bacteria in treatment of DSS-induced ulcerative colitis mice with FMT. Front Cell Infect Microbiol 2023; 13:1124256. [PMID: 36814445 PMCID: PMC9939747 DOI: 10.3389/fcimb.2023.1124256] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/16/2023] [Indexed: 02/09/2023] Open
Abstract
Background and Aims Ulcerative colitis (UC) has become a global public health concern, and is in urgent need of novel therapies. Fecal microbiota transplantation (FMT) targeting gut microbiota has recently been applied to the treatment of UC. Despite its recent successes, it is still largely unknown how FMT functionally modulates the gut microbiota and improves the disease. Methods We prospectively collected fecal samples from the 40 mice (30 mice for dextran sulfate sodium (DSS)-induced, 10 for controls), followed by Propidium monoazide treatment for 16S rRNA gene sequencing. These 30 mice were divided equally into 3 groups, which were transplanted with original donor microbiota (DO), inactivated donor microbiota (DI) and saline, respectively. Subsequently, we used 16S rRNA gene sequencing to analyze the viable gut bacteria of ulcerative colitis (UC) mice and histological analysis to evaluate the effects of fecal microbiota transplantation (FMT) with viable microbiota. Results We demonstrated that the community structure of viable bacteria was significantly different from fecal bacteria based on total DNA. Furthermore, the intestinal viable microbiota and colonic mucosal structure of mice were significantly changed by DSS induction. The histological analysis showed that only the mice treated with original donor microbiota group (HF) achieved a significant improvement. Compared with inactivated donor microbiota group (IF) and saline (NF), Lactobacillus and Halomonas were significantly enriched in the HF group. Conclusion We inferred that only live bacteria from human donor reversed the histopathology and symptoms of UC in mice and altered the gut microbiota. The activity of gut microbiota in donor samples should be considered in FMT and that detailed analysis of viable microbiota is essential to understand the mechanisms by which FMT produces therapeutic effects in the future.
Collapse
Affiliation(s)
- Jinglong Liu
- Department of Gastroenterology, Shanxi Provincial People’s Hospital, Taiyuan, China
| | - Hao Lin
- Center for Microecological Medical Technology, Xiamen Institute of Union Respiratory Health, Xiamen, China
| | - Man Cao
- Center for Research and Development, Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Tan Lin
- Center for Microecological Medical Technology, Xiamen Institute of Union Respiratory Health, Xiamen, China
| | - Aiqiang Lin
- Center for Research and Development, Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
| | - Wei Xu
- Center for Microecological Medical Technology, Xiamen Institute of Union Respiratory Health, Xiamen, China
- Center for Research and Development, Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
| | - Han Wang
- Center for Research and Development, Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
| | - Jianquan He
- Center for Research and Development, Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
| | - Yuantao Li
- Center for Research and Development, Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
- *Correspondence: Yuantao Li, ; Hailing Tang, ; Bangzhou Zhang,
| | - Hailing Tang
- Division of Gastroenterology, Xi’an Central Hospital, Xi’an, China
- *Correspondence: Yuantao Li, ; Hailing Tang, ; Bangzhou Zhang,
| | - Bangzhou Zhang
- Center for Research and Development, Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- *Correspondence: Yuantao Li, ; Hailing Tang, ; Bangzhou Zhang,
| |
Collapse
|
34
|
Gonzales-Luna AJ, Carlson TJ, Garey KW. Gut microbiota changes associated with Clostridioides difficile infection and its various treatment strategies. Gut Microbes 2023; 15:2223345. [PMID: 37318134 DOI: 10.1080/19490976.2023.2223345] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023] Open
Abstract
Human gut microbiota are critical to both the development of and recovery from Clostridioides difficile infection (CDI). Antibiotics are the mainstay of CDI treatment, yet inherently cause further imbalances in the gut microbiota, termed dysbiosis, complicating recovery. A variety of microbiota-based therapeutic approaches are in use or in development to limit disease- and treatment-associated dysbiosis and improve rates of sustained cure. These include the recently FDA-approved fecal microbiota, live-jslm (formerly RBX2660) and fecal microbiota spores, live-brpk (formerly SER-109), which represent a new class of live biotherapeutic products (LBPs), traditional fecal microbiota transplantation (FMT), and ultra-narrow-spectrum antibiotics. Here, we aim to review the microbiome changes associated with CDI as well as a variety of microbiota-based treatment approaches.
Collapse
Affiliation(s)
- Anne J Gonzales-Luna
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, TX, USA
| | - Travis J Carlson
- Department of Clinical Sciences, High Point University Fred Wilson School of Pharmacy, High Point, NC, USA
| | - Kevin W Garey
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, TX, USA
| |
Collapse
|
35
|
Gomez-Simmonds A, Annavajhala MK, Nunez MP, Macesic N, Park H, Uhlemann AC. Intestinal Dysbiosis and Risk of Posttransplant Clostridioides difficile Infection in a Longitudinal Cohort of Liver Transplant Recipients. mSphere 2022; 7:e0036122. [PMID: 36135360 PMCID: PMC9599498 DOI: 10.1128/msphere.00361-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/07/2022] [Indexed: 01/21/2023] Open
Abstract
Clostridioides difficile infection (CDI) has a higher incidence in solid organ transplant recipients than other hospitalized patients and can lead to poor outcomes. Perturbations to the intestinal microbiome are common in patients undergoing liver transplant (LT); however, the impacts of microbial diversity and composition on risk of CDI in this patient population is incompletely understood. Here, we assessed patients in an established, longitudinal LT cohort for development of CDI within 1 year of transplant. Clinical data were compared for patients with and without CDI using univariable models. 16S rRNA sequencing of fecal samples was performed at multiple pre- and posttransplant time points to compare microbiome α- and β-diversity and enrichment of specific taxa in patients with and without CDI. Of 197 patients who underwent LT, 18 (9.1%) developed CDI within 1 year. Pre-LT Child-Pugh class C liver disease, postoperative biliary leak, and use of broad-spectrum antibiotics were significantly associated with CDI. Patients who developed CDI had significantly lower α-diversity than patients without CDI overall and in samples collected at months 1, 3, and 6. Microbial composition (β-diversity) differed between patients with and without CDI and across sampling time points, particularly later in their posttransplant course. We also identified 15 (8%) patients with toxigenic C. difficile colonization who did not develop CDI and may have had additional protective factors. In summary, clinical and microbiome factors are likely to converge to impart CDI risk. Along with enhanced preventive measures, there may be a role for microbiome modulation to restore microbial diversity in high-risk LT patients. IMPORTANCE Liver transplant (LT) recipients have high rates of Clostridioides difficile infection (CDI), which has been associated with poor outcomes, including graft-related complications and mortality, in prior studies. Susceptibility to CDI is known to increase following perturbations in intestinal commensal bacteria that enable germination of C. difficile spores and bacterial overgrowth. In LT patients, changes in the intestinal microbiome resulting from advanced liver disease, surgery, and other clinical factors is common and most pronounced during the early posttransplant period. However, the relationship between microbiome changes and CDI risk after LT remains unclear. In this study, we investigated clinical and microbiome factors associated with development of CDI within the first year after LT. The importance of this work is to identify patients with high-risk features that should receive enhanced preventive measures and may benefit from the study of novel strategies to reconstitute the intestinal microbiome after LT.
Collapse
Affiliation(s)
- Angela Gomez-Simmonds
- Division of Infectious Diseases, Columbia University Irving Medical Center, New York, New York, USA
| | - Medini K. Annavajhala
- Division of Infectious Diseases, Columbia University Irving Medical Center, New York, New York, USA
| | - Maria Patricia Nunez
- Department of Microbiology & Immunology, Columbia University, New York, New York, USA
| | - Nenad Macesic
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Centre to Impact AMR, Monash University, Melbourne, Victoria, Australia
| | - Heekuk Park
- Division of Infectious Diseases, Columbia University Irving Medical Center, New York, New York, USA
| | - Anne-Catrin Uhlemann
- Division of Infectious Diseases, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
36
|
Koo H, Morrow CD. Time series strain tracking analysis post fecal transplantation identifies individual specific patterns of fecal dominant donor, recipient, and unrelated microbial strains. PLoS One 2022; 17:e0274633. [PMID: 36107983 PMCID: PMC9477264 DOI: 10.1371/journal.pone.0274633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 08/31/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Fecal microbial transplantation (FMT) has been used with the therapeutic intent to change the functions of the gut microbial community in metabolism and host immunity. For most of these therapies, the recipients are not given antibiotics to eliminate the microbial community prior to transplant with donor fecal microbes resulting in the initial gut microbial community following FMT consisting of a consortium of donor and recipient microbes. The detailed analysis of the fecal samples from these FMT over time provides a unique opportunity to study the changes in the gut microbial strain community that occurs following the introduction of new microbial strains (donor) into an established community (recipient). METHODS In this study, we have metagenomic data set consisting of 5 FMT that contained donor, recipient and recipient post FMT taken multiple times for periods up to 535 days after the FMT. We used two established strain tracking methods, Window-based Single Nucleotide Variant (SNV) Similarity (WSS) and StrainPhlAn, to determine the presence of donor and recipient microbial strains following FMT. To assess recombination between donor and recipient strains of Bacteroides vulgatus post FMT, we used BLAST+ to analyze the data sets for Bacteroidales-specific antimicrobial proteins (BSAP-3) that have known functions to restrict species specific replication. RESULTS We found that Alistipes onderdonkii, Alistipes shahii, Alistipes putredinis, and Parabacteroides merdae, all had patterns post FMT consisting of either dominant donor or recipient microbial strains in the feces. In contrast, the analysis of Bacteroides spp. in five FMT pairs revealed inter-individual oscillation over time with the appearance of either donor or recipient fecal strain dominance. In some instances, B. vulgatus and B. uniformis were also identified after FMT that were not related to either the donor or recipient. Finally, in one of the FMT, we identified a distinct B. vulgatus strain post-FMT that matched the pre-FMT strain but was BSAP-3 positive, suggesting a possible recombination event between the donor and recipient strains. CONCLUSION The complex oscillating patterns of the appearance of fecal dominant donor, recipient or unrelated strains following extended times post FMT provide new insights into the dynamics of the microbial community interactions with the recipients following FMT. The result from our analysis has implications for the use of FMT to predictably change the biological functions of the gut community in metabolism and host immunity.
Collapse
Affiliation(s)
- Hyunmin Koo
- Department of Genetics, Hugh Kaul Precision Medicine Institute, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Casey D. Morrow
- Department of Cell, Developmental and Integrative Biology, Hugh Kaul Precision Medicine Institute, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
37
|
Wang S, Kang X, Alenius H, Wong SH, Karisola P, El-Nezami H. Oral exposure to Ag or TiO 2 nanoparticles perturbed gut transcriptome and microbiota in a mouse model of ulcerative colitis. Food Chem Toxicol 2022; 169:113368. [PMID: 36087619 DOI: 10.1016/j.fct.2022.113368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 11/28/2022]
Abstract
Silver (nAg) and titanium dioxide (nTiO2) nanoparticles improve texture, flavour or anti-microbial properties of various food products and packaging materials. Despite their increased oral exposure, their potential toxicities in the dysfunctional intestine are unclear. Here, the effects of ingested nAg or nTiO2 on inflamed colon were revealed in a mouse model of chemical-induced acute ulcerative colitis. Mice (eight/group) were exposed to nAg or nTiO2 by oral gavage for 10 consecutive days. We characterized disease phenotypes, histology, and alterations in colonic transcriptome (RNA sequencing) and gut microbiome (16S sequencing). Oral exposure to nAg caused only minor changes in phenotypic hallmarks of colitic mice but induced extensive responses in gene expression enriching processes of apoptotic cell death and RNA metabolism. Instead, ingested nTiO2 yielded shorter colon, aggravated epithelial hyperplasia and deeper infiltration of inflammatory cells. Both nanoparticles significantly changed the gut microbiota composition, resulting in loss of diversity and increase of potential pathobionts. They also increased colonic mucus and abundance of Akkermansia muciniphila. Overall, nAg and nTiO2 induce dissimilar immunotoxicological changes at the molecular and microbiome level in the context of colon inflammation. The results provide valuable information for evaluation of utilizing metallic nanoparticles in food products for the vulnerable population.
Collapse
Affiliation(s)
- Shuyuan Wang
- School of Biological Sciences, University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region of China.
| | - Xing Kang
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China; State Key Laboratory of Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China.
| | - Harri Alenius
- Human Microbiome Research Program, University of Helsinki, Haartmaninkatu 3, 00290, Helsinki, Finland; Institute of Environmental Medicine (IMM), Karolinska Institutet, Stockholm, 171 77, Sweden.
| | - Sunny Hei Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.
| | - Piia Karisola
- Human Microbiome Research Program, University of Helsinki, Haartmaninkatu 3, 00290, Helsinki, Finland.
| | - Hani El-Nezami
- School of Biological Sciences, University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region of China; Nutrition and Health, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| |
Collapse
|
38
|
Theriot C, Thanissery R, O'Flaherty S, Barrangou R. Probiotic colonization dynamics after oral consumption of VSL#3 ® by antibiotic-treated mice. MICROBIOME RESEARCH REPORTS 2022; 1:21. [PMID: 38046906 PMCID: PMC10688816 DOI: 10.20517/mrr.2022.07] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/13/2022] [Accepted: 07/06/2022] [Indexed: 12/05/2023]
Abstract
Background: The ability of probiotic strains to provide health benefits to the host partially hinges on the survival of gastrointestinal passage and temporary colonization of the digestive tract. This study aims to investigate the colonization profile of individual probiotic strains comprising the commercial product VSL#3® and determine their impact on the host intestinal microbiota. Methods: Using a cefoperazone-treated mouse model of antibiotic treatment, we investigated the impact of oral gavage with ~108 CFU commercial VSL#3® product on the intestinal microbiota using 16S-based amplicon sequencing over 7 days. Results: Results showed that probiotic strains in the formulation were detected in treated murine fecal samples, with early colonization by Streptococcus thermophilus and Lactiplantibacillus plantarum subsp. plantarum, and late colonization by Lacticaseibacillus paracasei subsp. paracasei, Bifidobacterium breve and Bifidobacterium animalis subsp. lactis. Overall, VSL#3® consumption is associated with increased alpha diversity in the cecal microbial community, which is important in the context of antibiotic consumption. Probiotic supplementation resulted in an expansion of Proteobacteria, Bacteroidetes, and Actinobacteria, especially Bifidobacteriaceae and Lachnospiraceae, which are associated with Clostridioides difficile resistance in the murine gut. Conclusion: This study illustrates the need for determining the ability of probiotics to colonize the host and impact the gut microbiota, and suggests that multiple doses may be warranted for extended transient colonization. In addition, follow-up studies should determine whether VSL#3® can provide resistance against C. difficile colonization and disease in a mouse model.
Collapse
Affiliation(s)
- Casey Theriot
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27695, USA
| | - Rajani Thanissery
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27695, USA
| | - Sarah O'Flaherty
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Rodolphe Barrangou
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
39
|
Hamazaki M, Sawada T, Yamamura T, Maeda K, Mizutani Y, Ishikawa E, Furune S, Yamamoto K, Ishikawa T, Kakushima N, Furukawa K, Ohno E, Honda T, Kawashima H, Ishigami M, Nakamura M, Fujishiro M. Fecal microbiota transplantation in the treatment of irritable bowel syndrome: a single-center prospective study in Japan. BMC Gastroenterol 2022; 22:342. [PMID: 35836115 PMCID: PMC9284895 DOI: 10.1186/s12876-022-02408-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 06/29/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Fecal microbiota transplantation (FMT) is a potential treatment for irritable bowel syndrome (IBS), but its efficacy in Japanese IBS patients is unknown. This study aimed to evaluate the efficacy, side effects, and microbiome changes following FMT in Japanese IBS patients. METHODS Seventeen Japanese patients with refractory IBS received FMT (4 donors) under colonoscopy. Responders were defined by an improvement in the IBS severity index (IBS-SI) of 50 points or more after 12 weeks. We evaluated the IBS-SI and Bristol Stool Form Scale (BSFS) and compared the diversity and microbiome before and 12 weeks after FMT. For the microbiome, we analyzed the V3-V4 region of the 16S rRNA gene. RESULTS IBS-SI decreased an average of 115.58 points after 12 weeks, and 10 patients (58.8%) were considered responders. Eight patients with diarrhea (66.7%) and three patients with constipation (60.0%) showed improvement in the BSFS. Two patients complained of mild abdominal pain, but there were no cases with severe side-effects. α-diversity was increased only in the responder group (p = 0.017). Patients who closely paralleled the donor microbiome had a higher rate of IBS-SI improvement. The relative abundance of Neisseria and Akkermansia increased and Desulfovibrio and Delftia were decreased in the responder group after FMT. CONCLUSIONS Following FMT, about 60% of Japanese patients with IBS showed improvement in both the IBS-SI and BSFS, without severe side effects. Increased α-diversity and similarity to the donor microbiome after FMT may be associated with better treatment effects. TRIAL REGISTRATION This study was registered in the University Hospital Medical Information Network Clinical Trial Registration (UMIN000026363). Registered 31 May 2017, https://rctportal.niph.go.jp/s/detail/um?trial_id=UMIN000026363 . The study was registered prospectively.
Collapse
Affiliation(s)
- Motonobu Hamazaki
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Japan
| | - Tsunaki Sawada
- Department of Endoscopy, Nagoya University Hospital, 65 Tsurumai-cho, Showa-ku, Nagoya, Japan
| | - Takeshi Yamamura
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Japan.
| | - Keiko Maeda
- Department of Endoscopy, Nagoya University Hospital, 65 Tsurumai-cho, Showa-ku, Nagoya, Japan
| | - Yasuyuki Mizutani
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Japan
| | - Eri Ishikawa
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Japan
| | - Satoshi Furune
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Japan
| | - Kenta Yamamoto
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Japan
| | - Takuya Ishikawa
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Japan
| | - Naomi Kakushima
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Japan
| | - Kazuhiro Furukawa
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Japan
| | - Eizaburo Ohno
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Japan
| | - Takashi Honda
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Japan
| | - Hiroki Kawashima
- Department of Endoscopy, Nagoya University Hospital, 65 Tsurumai-cho, Showa-ku, Nagoya, Japan
| | - Masatoshi Ishigami
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Japan
| | - Masanao Nakamura
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Japan
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Japan
| |
Collapse
|
40
|
Gao Y, Ma L, Su J. Host and microbial-derived metabolites for Clostridioides difficile infection: Contributions, mechanisms and potential applications. Microbiol Res 2022; 263:127113. [PMID: 35841835 DOI: 10.1016/j.micres.2022.127113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 12/23/2022]
Abstract
Clostridioides difficile infection (CDI), which mostly occurs in hospitalized patients, is the most common and costly health care-associated disease. However, the biology of C. difficile remains incompletely understood. Current therapeutics are still challenged by the frequent recurrence of CDI. Advances in metabolomics facilitate our understanding of the etiology of CDI, which is not merely an alteration in the structure of the gut microbial community but also a dysbiosis metabolic setting promoting the germination, expansion and virulence of C. difficile. Therefore, we summarized the gut microbial and metabolic profiles for CDI under different conditions, such as those of postantibiotic treatment and postfecal microbiota transplantation. The current understanding of the role of host and gut microbial-derived metabolites as well as other nutrients in preventing or alleviating the disease symptoms of CDI will also be provided in this review. We hope that a specific nutrient-centric dietary strategy or the administration of certain nutrients to the colon could serve as an alternate line of investigation for the prophylaxis and mitigation of CDI in the future. Nevertheless, rigorously designed basic studies and randomized controlled trials need to be conducted to assess the functional mechanisms and effects of such therapeutics.
Collapse
Affiliation(s)
- Yan Gao
- Department of Clinical Laboratory Diagnostics, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Liyan Ma
- Department of Clinical Laboratory Diagnostics, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Jianrong Su
- Department of Clinical Laboratory Diagnostics, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| |
Collapse
|
41
|
Rakotonirina A, Galperine T, Allémann E. Fecal microbiota transplantation: a review on current formulations in Clostridioides difficile infection and future outlooks. Expert Opin Biol Ther 2022; 22:929-944. [PMID: 35763604 DOI: 10.1080/14712598.2022.2095901] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The role of the gut microbiota in health and the pathogenesis of several diseases has been highlighted in recent years. Even though the precise mechanisms involving the microbiome in these ailments are still unclear, microbiota-modulating therapies have been developed. Fecal microbiota transplantation (FMT) has shown significant results against Clostridioides difficile infection (CDI), and its potential has been investigated for other diseases. Unfortunately, the technical aspects of the treatment make it difficult to implement. Pharmaceutical technology approaches to encapsulate microorganisms could play an important role in providing this treatment and render the treatment modalities easier to handle. AREAS COVERED After an overview of CDI, this narrative review aims to discuss the current formulations for FMT and specifically addresses the technical aspects of the treatment. This review also distinguishes itself by focusing on the hurdles and emphasizing the possible improvements using pharmaceutical technologies. EXPERT OPINION FMT is an efficient treatment for recurrent CDI. However, its standardization is overlooked. The approach of industrial and hospital preparations of FMT are different, but both show promise in their respective methodologies. Novel FMT formulations could enable further research on dysbiotic diseases in the future.
Collapse
Affiliation(s)
- Adèle Rakotonirina
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Tatiana Galperine
- Infectious Diseases Service, Department of Medicine, University Hospital and University of Lausanne, Lausanne, Switzerland.,French Group of Faecal Microbiota Transplantation
| | - Eric Allémann
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| |
Collapse
|
42
|
Segura Munoz RR, Mantz S, Martínez I, Li F, Schmaltz RJ, Pudlo NA, Urs K, Martens EC, Walter J, Ramer-Tait AE. Experimental evaluation of ecological principles to understand and modulate the outcome of bacterial strain competition in gut microbiomes. THE ISME JOURNAL 2022; 16:1594-1604. [PMID: 35210551 PMCID: PMC9122919 DOI: 10.1038/s41396-022-01208-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 12/03/2021] [Accepted: 02/01/2022] [Indexed: 01/07/2023]
Abstract
It is unclear if coexistence theory can be applied to gut microbiomes to understand their characteristics and modulate their composition. Through experiments in gnotobiotic mice with complex microbiomes, we demonstrated that strains of Akkermansia muciniphila and Bacteroides vulgatus could only be established if microbiomes were devoid of these species. Strains of A. muciniphila showed strict competitive exclusion, while B. vulgatus strains coexisted but populations were still influenced by competitive interactions. These differences in competitive behavior were reflective of genomic variation within the two species, indicating considerable niche overlap for A. muciniphila strains and a broader niche space for B. vulgatus strains. Priority effects were detected for both species as strains’ competitive fitness increased when colonizing first, which resulted in stable persistence of the A. muciniphila strain colonizing first and competitive exclusion of the strain arriving second. Based on these observations, we devised a subtractive strategy for A. muciniphila using antibiotics and showed that a strain from an assembled community can be stably replaced by another strain. By demonstrating that competitive outcomes in gut ecosystems depend on niche differences and are historically contingent, our study provides novel information to explain the ecological characteristics of gut microbiomes and a basis for their modulation.
Collapse
Affiliation(s)
- Rafael R Segura Munoz
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.,Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Sara Mantz
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Ines Martínez
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada.,Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Fuyong Li
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada.,Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Robert J Schmaltz
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Nicholas A Pudlo
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Karthik Urs
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Eric C Martens
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Jens Walter
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada. .,Department of Biological Sciences, University of Alberta, Edmonton, Canada. .,APC Microbiome Ireland, School of Microbiology, and Department of Medicine, University College Cork, Cork, Ireland.
| | - Amanda E Ramer-Tait
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA. .,Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.
| |
Collapse
|
43
|
Fathima S, Shanmugasundaram R, Adams D, Selvaraj RK. Gastrointestinal Microbiota and Their Manipulation for Improved Growth and Performance in Chickens. Foods 2022; 11:1401. [PMID: 35626971 PMCID: PMC9140538 DOI: 10.3390/foods11101401] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/01/2022] [Accepted: 05/09/2022] [Indexed: 12/17/2022] Open
Abstract
The gut of warm-blooded animals is colonized by microbes possibly constituting at least 100 times more genetic material of microbial cells than that of the somatic cells of the host. These microbes have a profound effect on several physiological functions ranging from energy metabolism to the immune response of the host, particularly those associated with the gut immune system. The gut of a newly hatched chick is typically sterile but is rapidly colonized by microbes in the environment, undergoing cycles of development. Several factors such as diet, region of the gastrointestinal tract, housing, environment, and genetics can influence the microbial composition of an individual bird and can confer a distinctive microbiome signature to the individual bird. The microbial composition can be modified by the supplementation of probiotics, prebiotics, or synbiotics. Supplementing these additives can prevent dysbiosis caused by stress factors such as infection, heat stress, and toxins that cause dysbiosis. The mechanism of action and beneficial effects of probiotics vary depending on the strains used. However, it is difficult to establish a relationship between the gut microbiome and host health and productivity due to high variability between flocks due to environmental, nutritional, and host factors. This review compiles information on the gut microbiota, dysbiosis, and additives such as probiotics, postbiotics, prebiotics, and synbiotics, which are capable of modifying gut microbiota and elaborates on the interaction of these additives with chicken gut commensals, immune system, and their consequent effects on health and productivity. Factors to be considered and the unexplored potential of genetic engineering of poultry probiotics in addressing public health concerns and zoonosis associated with the poultry industry are discussed.
Collapse
Affiliation(s)
- Shahna Fathima
- Department of Poultry Science, The University of Georgia, Athens, GA 30605, USA; (S.F.); (D.A.); (R.K.S.)
| | - Revathi Shanmugasundaram
- Toxicology and Mycotoxin Research Unit, US National Poultry Research Center, Athens, GA 30605, USA
| | - Daniel Adams
- Department of Poultry Science, The University of Georgia, Athens, GA 30605, USA; (S.F.); (D.A.); (R.K.S.)
| | - Ramesh K. Selvaraj
- Department of Poultry Science, The University of Georgia, Athens, GA 30605, USA; (S.F.); (D.A.); (R.K.S.)
| |
Collapse
|
44
|
Li Y, Cao W, Gao NL, Zhao XM, Chen WH. Consistent Alterations of Human Fecal Microbes After Transplantation into Germ-free Mice. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:382-393. [PMID: 34118462 PMCID: PMC9684084 DOI: 10.1016/j.gpb.2020.06.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 04/21/2020] [Accepted: 09/08/2020] [Indexed: 01/05/2023]
Abstract
Fecal microbiota transplantation (FMT) of human fecal samples into germ-free (GF) mice is useful for establishing causal relationships between the gut microbiota and human phenotypes. However, due to the intrinsic differences between human and mouse intestines and the different diets of the two organisms, it may not be possible to replicate human phenotypes in mice through FMT; similarly, treatments that are effective in mouse models may not be effective in humans. In this study, we aimed to identify human gut microbes that undergo significant and consistent changes (i.e., in relative abundances) after transplantation into GF mice in multiple experimental settings. We collected 16S rDNA-seq data from four published studies and analyzed the gut microbiota profiles from 1713 human-mouse pairs. Strikingly, on average, we found that only 47% of the human gut microbes could be re-established in mice at the species level, among which more than 1/3 underwent significant changes (referred to as "variable taxa"). Most of the human gut microbes that underwent significant changes were consistent across multiple human-mouse pairs and experimental settings. Consequently, about 1/3 of human samples changed their enterotypes, i.e., significant changes in their leading species after FMT. Mice fed with a controlled diet showed a lower enterotype change rate (23.5%) than those fed with a noncontrolled diet (49.0%), suggesting a possible solution for rescue. Most of the variable taxa have been reported to be implicated in human diseases, with some recognized as the causative species. Our results highlight the challenges of using a mouse model to replicate human gut microbiota-associated phenotypes, provide useful information for researchers using mice in gut microbiota studies, and call for additional validations after FMT. An online database named FMT-DB is publicly available at http://fmt2mice.humangut.info/#/.
Collapse
Affiliation(s)
- Yanze Li
- MOE Key Laboratory of Molecular Biophysics, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wenming Cao
- MOE Key Laboratory of Molecular Biophysics, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Na L Gao
- MOE Key Laboratory of Molecular Biophysics, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xing-Ming Zhao
- Institute of Science and Technology for Brain-Inspired Intelligence (ISTBI), Fudan University, Shanghai 200433, China,Corresponding authors.
| | - Wei-Hua Chen
- MOE Key Laboratory of Molecular Biophysics, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China,College of Life Science, Henan Normal University, Xinxiang 453007, China,Corresponding authors.
| |
Collapse
|
45
|
Orenstein R, Dubberke ER, Khanna S, Lee CH, Yoho D, Johnson S, Hecht G, DuPont HL, Gerding DN, Blount KF, Mische S, Harvey A. Durable reduction of Clostridioides difficile infection recurrence and microbiome restoration after treatment with RBX2660: results from an open-label phase 2 clinical trial. BMC Infect Dis 2022; 22:245. [PMID: 35279084 PMCID: PMC8917640 DOI: 10.1186/s12879-022-07256-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/14/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Effective treatment options for recurrent Clostridioides difficile infection (rCDI) are limited, with high recurrence rates associated with the current standard of care. Herein we report results from an open-label Phase 2 trial to evaluate the safety, efficacy, and durability of RBX2660-a standardized microbiota-based investigational live biotherapeutic-and a closely-matched historical control cohort. METHODS This prospective, multicenter, open-label Phase 2 study enrolled patients who had experienced either ≥ 2 recurrences of CDI, treated by standard-of-care antibiotic therapy, after a primary CDI episode, or ≥ 2 episodes of severe CDI requiring hospitalization. Participants received up to 2 doses of RBX2660 rectally administered with doses 7 days apart. Treatment success was defined as the absence of CDI diarrhea without the need for retreatment for 8 weeks after completing study treatment. A historical control group with matched inclusion and exclusion criteria was identified from a retrospective chart review of participants treated with standard-of-care antibiotics for recurrent CDI who matched key criteria for the study. The primary objective was to compare treatment success of RBX2660 to the historical control group. A key secondary outcome was the safety profile of RBX2660, including adverse events and CDI occurrence through 24 months after treatment. In addition, fecal samples from RBX2660-treated participants were sequenced to evaluate microbiome composition and functional changes from before to after treatment. RESULTS In this Phase 2 open-label clinical trial, RBX2660 demonstrated a 78.9% (112/142) treatment success rate compared to a 30.7% (23/75) for the historical control group (p < 0.0001; Chi-square test). Post-hoc analysis indicated that 91% (88/97) of evaluable RBX2660 responders remained CDI occurrence-free to 24 months after treatment demonstrating durability. RBX2660 was well-tolerated with mostly mild to moderate adverse events. The composition and diversity of RBX2660 responders' fecal microbiome significantly changed from before to after treatment to become more similar to RBX2660, and these changes were durable to 24 months after treatment. CONCLUSIONS In this Phase 2 trial, RBX2660 was safe and effective for reducing rCDI recurrence as compared to a historical control group. Microbiome changes are consistent with restorative changes implicated in resisting C. difficile recurrence. Clinical Trials Registration NCT02589847 (10/28/2015).
Collapse
Affiliation(s)
- Robert Orenstein
- Division of Infectious Diseases, Mayo Clinic in Arizona, 5777 e Mayo Blvd, Phoenix, AZ, 85054, USA.
| | - Erik R Dubberke
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Sahil Khanna
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Christine H Lee
- Hamilton Regional Laboratory Medicine Program, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Vancouver Island Health Authority, Victoria, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - David Yoho
- Infectious Diseases, Mid-Atlantic Permanente Medical Group, Springfield, VA, USA
| | - Stuart Johnson
- Infectious Disease, Loyola University Medical Center, Chicago, IL, USA
- Edward Hines Jr. VA Hospital, Hines, IL, USA
| | - Gail Hecht
- Division of Gastroenterology, Hepatology and Nutrition, Loyola University Medical Center, Maywood, IL, USA
| | - Herbert L DuPont
- University of Texas Health Science Center and Kelsey Research Foundation, Houston, TX, USA
| | | | - Ken F Blount
- Rebiotix Inc., a Ferring Company, Roseville, MN, USA
| | - Sarah Mische
- Rebiotix Inc., a Ferring Company, Roseville, MN, USA
| | - Adam Harvey
- Rebiotix Inc., a Ferring Company, Roseville, MN, USA
| |
Collapse
|
46
|
Kellermayer R, Wu Q, Nagy-Szakal D, Queliza K, Ihekweazu FD, Bocchini CE, Magee AR, Oezguen N, Spinler JK, Hollister EB, Shulman RJ, Versalovic J, Luna RA, Savidge TC. Fecal Microbiota Transplantation Commonly Failed in Children With Co-Morbidities. J Pediatr Gastroenterol Nutr 2022; 74:227-235. [PMID: 34724447 PMCID: PMC8799498 DOI: 10.1097/mpg.0000000000003336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVES Fecal microbiota transplantation (FMT) is arguably the most effective treatment for recurrent Clostridioides difficile infection (rCDI). Clinical reports on pediatric FMT have not systematically evaluated microbiome restoration in patients with co-morbidities. Here, we determined whether FMT recipient age and underlying co-morbidity influenced clinical outcomes and microbiome restoration when treated from shared fecal donor sources. METHODS Eighteen rCDI patients participating in a single-center, open-label prospective cohort study received fecal preparation from a self-designated (single case) or two universal donors. Twelve age-matched healthy children and four pediatric ulcerative colitis (UC) cases from an independent serial FMT trial, but with a shared fecal donor were examined as controls for microbiome restoration using 16S rRNA gene sequencing of longitudinal fecal specimens. RESULTS FMT was significantly more effective in rCDI recipients without underlying chronic co-morbidities where fecal microbiome composition in post-transplant responders was restored to levels of healthy children. Microbiome reconstitution was not associated with symptomatic resolution in some rCDI patients who had co-morbidities. Significant elevation in Bacteroidaceae, Bifidobacteriaceae, Lachnospiraceae, Ruminococcaceae, and Erysipelotrichaceae was consistently observed in pediatric rCDI responders, while Enterobacteriaceae decreased, correlating with augmented complex carbohydrate degradation capacity. CONCLUSION Recipient background disease was a significant risk factor influencing FMT outcomes. Special attention should be taken when considering FMT for pediatric rCDI patients with underlying co-morbidities.
Collapse
Affiliation(s)
- Richard Kellermayer
- Gastroenterology, Hepatology & Nutrition, Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, Texas, USA
- USDA/ARS Children’s Nutrition Research Center, Houston, Texas, USA
| | - Qinglong Wu
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Microbiome Center, Department of Pathology, Texas Children’s Hospital, Houston, Texas, USA
| | - Dorottya Nagy-Szakal
- Gastroenterology, Hepatology & Nutrition, Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, Texas, USA
| | - Karen Queliza
- Gastroenterology, Hepatology & Nutrition, Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, Texas, USA
| | - Faith D. Ihekweazu
- Gastroenterology, Hepatology & Nutrition, Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, Texas, USA
| | - Claire E. Bocchini
- Pediatric Infectious Diseases, Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, Texas, USA
| | - Abria R. Magee
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Microbiome Center, Department of Pathology, Texas Children’s Hospital, Houston, Texas, USA
| | - Numan Oezguen
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Microbiome Center, Department of Pathology, Texas Children’s Hospital, Houston, Texas, USA
| | - Jennifer K. Spinler
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Microbiome Center, Department of Pathology, Texas Children’s Hospital, Houston, Texas, USA
| | - Emily B. Hollister
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Microbiome Center, Department of Pathology, Texas Children’s Hospital, Houston, Texas, USA
| | - Robert J. Shulman
- Gastroenterology, Hepatology & Nutrition, Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, Texas, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
| | - James Versalovic
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Microbiome Center, Department of Pathology, Texas Children’s Hospital, Houston, Texas, USA
| | - Ruth Ann Luna
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Microbiome Center, Department of Pathology, Texas Children’s Hospital, Houston, Texas, USA
| | - Tor C. Savidge
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Microbiome Center, Department of Pathology, Texas Children’s Hospital, Houston, Texas, USA
| |
Collapse
|
47
|
Azimirad M, Jo Y, Kim MS, Jeong M, Shahrokh S, Asadzadeh Aghdaei H, Zali MR, Lee S, Yadegar A, Shin JH. Alterations and Prediction of Functional Profiles of Gut Microbiota After Fecal Microbiota Transplantation for Iranian Recurrent Clostridioides difficile Infection with Underlying Inflammatory Bowel Disease: A Pilot Study. J Inflamm Res 2022; 15:105-116. [PMID: 35023946 PMCID: PMC8747792 DOI: 10.2147/jir.s338212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/28/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE Fecal microbiota transplantation (FMT) has emerged for the therapeutic treatment of recurrent Clostridioides difficile infection (rCDI) with concurrent inflammatory bowel disease (IBD). As the first Iranian population cohort, we examined how gut microbiota and their functional profiles change in Iranian rCDI patients with underlying IBD before and after FMT. PATIENTS AND METHODS FMT was performed to eight IBD patients via colonoscopy. Profiles of gut microbiota from donors and recipients were investigated using 16S rRNA gene sequence analysis. RESULTS Patients experienced no IBD flare-ups or other adverse effects, and all recovered to full health. Moreover, all rCDI patients lacked the Bacteroidetes present in donor samples. After FMT, the proportion of Bacteroidetes increased until a normal range was achieved. More specifically, the relative abundance of Prevotella was found to increase significantly following FMT. Prevotella was also found to correlate negatively with inflammation metrics, suggesting that Prevotella may be a key factor for resolving CDI and IBD. Gut microbiota diversity was found to increase following FMT, while dysbiosis decreased. However, the similarity of microbial communities of host and recipients did not increase, and wide variation in the extent of donor stool engraftment indicated that the gut bacterial communities of recipients do not shift towards those of donors. CONCLUSION FMT leads to significant alterations of the community structure of gut bacteria in rCDI patients with IBD. The change in relative abundance of Proteobacteria and bacterial diversity indicated that FMT promotes recovery from intestinal permeability and inflammation in rCDI patients. Moreover, strong negative correlation between Prevotella and inflammation index, and decreased dysbiosis index advocate that the improvement of CDI is possibly due to gut microbiome alteration. Collectively, our findings show that FMT would be a promising therapy to help reprogram the gut microbiome of Iranian rCDI patients with IBD.
Collapse
Affiliation(s)
- Masoumeh Azimirad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - YoungJae Jo
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Min-Sueng Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Minsoo Jeong
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Shabnam Shahrokh
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seungjun Lee
- Department of Food Science and Nutrition, College of Fisheries Science, Pukyong National University, Busan, Republic of Korea
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jae-Ho Shin
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| |
Collapse
|
48
|
He R, Li P, Wang J, Cui B, Zhang F, Zhao F. The interplay of gut microbiota between donors and recipients determines the efficacy of fecal microbiota transplantation. Gut Microbes 2022; 14:2100197. [PMID: 35854629 PMCID: PMC9302524 DOI: 10.1080/19490976.2022.2100197] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 06/02/2022] [Accepted: 07/01/2022] [Indexed: 02/04/2023] Open
Abstract
Fecal microbiota transplantation (FMT) is a promising treatment for microbiota dysbiosis associated diseases, such as Clostridioides difficile infection (CDI) and inflammatory bowel disease (IBD). The engraftment of donor bacteria is essential for the effectiveness of FMT, which to some extent depends on the matching of donors and recipients. However, how different types of donor-derived bacteria affect FMT efficacy has not been fully dissected. We recruited two longitudinal IBD cohorts of 103 FMT recipients and further analyzed 1,280 microbiota datasets from 14 public CDI and IBD studies to uncover the effect of donor-derived microbiota in recipients. We found that two enterotypes, RCPT/E and RCPT/B (dominated by Enterobacteriaceae and Bacteroides, respectively), consistently exist in both CDI and IBD patients. Based on a time-course-based multi-cohort analysis of FMT fecal samples, we observed the interplay between recipient and donor-derived microbiota during FMT, in which the FMT outcome was significantly associated with the enterotype and microbiota distance between donor and recipient after FMT. We proposed a new measurement, the ratio of colonizers to residents after FMT (C2R), to quantify the engraftment of donor-derived bacteria in the recipients, and then constructed an enterotype-based statistical model for donor-recipient matching, which was validated by both cross-validation and an additional IBD FMT cohort (n = 42). We believe that with the accumulation of FMT multi-omics datasets, machine learning-based methods will be helpful for rational donor selection for improving efficacy and precision FMT practices.
Collapse
Affiliation(s)
- Ruiqiao He
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pan Li
- Medical Center for Digestive Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory of Holistic Integrative Enterology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jinfeng Wang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Bota Cui
- Medical Center for Digestive Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory of Holistic Integrative Enterology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Faming Zhang
- Medical Center for Digestive Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory of Holistic Integrative Enterology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Fangqing Zhao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
49
|
Gut Microbiota Implications for Health and Welfare in Farm Animals: A Review. Animals (Basel) 2021; 12:ani12010093. [PMID: 35011199 PMCID: PMC8749645 DOI: 10.3390/ani12010093] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Farm animal health and welfare have been paid increasing concern in the world, which is generally assessed by the measurements of physical health, immune response, behavior, and physiological indicators, such as stress-related hormone, cortisone, and norepinephrine. Gut microbiota as a “forgotten organ” has been reported for its great influence on the host phenotypes through the immune, neural, and endocrine pathways to affect the host health and behavior. In addition, fecal microbiota transplantation as a novel approach is applied to regulating the composition and function of the recipient farm animals. In this review, we summarized recent studies that gut microbiota influenced health, immunity, behavior, and stress response, as well as the progress of fecal microbiota transplantation in farm animals. The review will provide new insights into the measurement of farm animal health and welfare concerning gut microbiota, and the implication of fecal microbiota transplantation to improve productivity, health, and welfare. Above all, this review suggests that gut microbiota is a promising field to evaluate and improve animal welfare. Abstract In the past few decades, farm animal health and welfare have been paid increasing concern worldwide. Farm animal health and welfare are generally assessed by the measurements of physical health, immune response, behavior, and physiological indicators. The gut microbiota has been reported to have a great influence on host phenotypes, possibly via the immune processes, neural functions, and endocrine pathways, thereby influencing host phenotypes. However, there are few reviews regarding farm animals’ health and welfare status concerning the gut microbiota. In this point of view, (1) we reviewed recent studies showing that gut microbiota (higher alpha diversity, beneficial composition, and positive functions) effectively influenced health characteristics, immunity, behaviors, and stress response in farm animals (such as pigs, chickens, and cows), which would provide a novel approach to measure and evaluate the health status and welfare of farm animals. In addition, fecal microbiota transplantation (FMT) as one of the methods can modulate the recipient individual’s gut microbiota to realize the expected phenotype. Further, (2) we highlighted the application of FMT on the improvement of the production performance, the reduction in disease and abnormal behavior, as well as the attenuation of stress in farm animals. It is concluded that the gut microbiota can be scientifically used to assess and improve the welfare of farm animals. Moreover, FMT may be a helpful strategy to reduce abnormal behavior and improve stress adaption, as well as the treatment of disease for farm animals. This review suggests that gut microbiota is a promising field to evaluate and improve animal welfare.
Collapse
|
50
|
Connell S, Kawashima M, Nakamura S, Imada T, Yamamoto H, Tsubota K, Fukuda S. Lactoferrin Ameliorates Dry Eye Disease Potentially through Enhancement of Short-Chain Fatty Acid Production by Gut Microbiota in Mice. Int J Mol Sci 2021; 22:ijms222212384. [PMID: 34830266 PMCID: PMC8624394 DOI: 10.3390/ijms222212384] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/01/2021] [Accepted: 11/06/2021] [Indexed: 12/27/2022] Open
Abstract
Lactoferrin is a glycoprotein found at high concentrations within exocrine secretions, including tears. Low levels of lactoferrin have been implicated in the loss of tear secretion and ageing. Furthermore, lactoferrin possesses a range of functionalities, including anti-inflammatory properties and the ability to modulate the gut microbiota. Expanding evidence demonstrates a crucial role of the gut microbiota in immune regulation and development. The specific composition of bacterial species of the gut has a profound influence on local and systemic inflammation, leading to a protective capacity against a number of inflammatory diseases, potentially by the induction of regulatory immune cells. In this study, we demonstrated that oral administration of lactoferrin maintains tear secretion in a restraint and desiccating stress induced mouse model of dry eye disease. Furthermore, we revealed that lactoferrin induces the reduction of inflammatory cytokines, modulates gut microbiota, and induces short-chain fatty acid production. Whereas, the antibiotic vancomycin abrogates the effects of lactoferrin on dry eye disease and significantly reduces short-chain fatty acid concentrations. Therefore, this protective effect of LF against a mice model of DED may be explained by our observations of an altered gut microbiota and an enhanced production of immunomodulatory short-chain fatty acids.
Collapse
Affiliation(s)
- Samuel Connell
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan; (S.C.); (M.K.); (S.N.); (T.I.)
| | - Motoko Kawashima
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan; (S.C.); (M.K.); (S.N.); (T.I.)
| | - Shigeru Nakamura
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan; (S.C.); (M.K.); (S.N.); (T.I.)
| | - Toshihiro Imada
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan; (S.C.); (M.K.); (S.N.); (T.I.)
| | - Hiromitsu Yamamoto
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0052, Yamagata, Japan;
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan; (S.C.); (M.K.); (S.N.); (T.I.)
- Tsubota Laboratory, Inc., Tokyo 160-0016, Japan
- Correspondence: (K.T.); (S.F.)
| | - Shinji Fukuda
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0052, Yamagata, Japan;
- Transborder Medical Research Center, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
- Gut Environmental Design Group, Kanagawa Institute of Industrial Science and Technology, Kawasaki 210-0821, Kanagawa, Japan
- Correspondence: (K.T.); (S.F.)
| |
Collapse
|