1
|
Zhao X, Ding L, Ye Q, Zhang H, Yin J, Li P, Gu Q, Han J. Highly Adhesive Lactiplantibacillus plantarum ZJ316: Structural Insights of Lipoteichoic Acid and Its Anti-Inflammatory Properties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7244-7255. [PMID: 40072263 DOI: 10.1021/acs.jafc.4c11788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Lactic acid bacteria are widely recognized for their probiotic properties, and their adhesion to the gastrointestinal tract is a prerequisite for their probiotic functions. This investigation aimed to screen a highly adherent Lactiplantibacillus plantarum (L. plantarum) strain and explore the impact of its surface lipoteichoic acid (LTA) on strain adhesion to intestinal epithelial cells and the immunomodulatory activity. Results demonstrated that L. plantarum ZJ316 exhibited remarkable surface properties and superior adhesion to enterocytes, and the fluorescent labeling revealed that L. plantarum ZJ316 predominantly adhered to the cecum in mice. After comparing four typical separation techniques, the most effective approaches for isolating L. plantarum ZJ316 LTA involved n-butanol extraction combined with ultrahigh pressure cell disruption. Additionally, the structure of purified LTA was characterized by multispectrometric analysis and confirmed as a typical type-I LTA. Furthermore, LTA from L. plantarum ZJ316 dose dependently impacted the adhesion to Caco-2 intestinal epithelial cells, as well as suppressed the expression of inflammatory factors in the LPS-induced RAW264.7 macrophage. Our findings validated that LTA derived from the highly adherent L. plantarum ZJ316 was one of the key adhesion factors and deserved further consideration as an important postbiotic for regulating various immunomodulatory actions.
Collapse
Affiliation(s)
- Xin Zhao
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Lina Ding
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Qiuqiu Ye
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Hangjia Zhang
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Jiaqi Yin
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Jiarun Han
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China
| |
Collapse
|
2
|
He W, Bertram HC, Yin JY, Nie SP. Lactobacilli and Their Fermented Foods as a Promising Strategy for Enhancing Bone Mineral Density: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17730-17745. [PMID: 39078823 DOI: 10.1021/acs.jafc.4c03218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Lactobacilli fermentation possesses special nutritional and health values to food, especially in improving diseases related to the gut microbiota such as osteoporosis risk. Previous research indicates that lactobacilli-fermented foods have the potential to enhance the bone mineral density (BMD), as suggested by some clinical studies. Nonetheless, there is currently a lack of comprehensive summaries of the effects and potential mechanisms of lactobacilli-fermented foods on BMD. This review summarizes findings from preclinical and clinical studies, revealing that lactobacilli possess the potential to mitigate age-related and secondary factor-induced bone loss. Furthermore, these findings imply that lactobacilli are likely mediated through the modulation of bone remodeling via gut inflammation-related pathways. Additionally, lactobacilli fermentation may augment calcium accessibility through directly promoting calcium absorption or modifying food constituents. Considering the escalating global health challenge of bone-related issues among the elderly population, this review may offer a valuable reference for the development of food strategies aimed at preventing osteoporosis.
Collapse
Affiliation(s)
- Weiwei He
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, Jiangxi, China
| | | | - Jun-Yi Yin
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, Jiangxi, China
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, Jiangxi, China
| |
Collapse
|
3
|
Han J, Zhao X, Zhao X, Li P, Gu Q. Insight into the structure, biosynthesis, isolation method and biological function of teichoic acid in different gram-positive microorganisms: A review. Int J Biol Macromol 2023; 253:126825. [PMID: 37696369 DOI: 10.1016/j.ijbiomac.2023.126825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023]
Abstract
Teichoic acid (TA) is a weakly anionic polymer present in the cell walls of Gram-positive bacteria. It can be classified into wall teichoic acid (WTA) and lipoteichoic acid (LTA) based on its localization in the cell wall. The structure and biosynthetic pathway of TAs are strain-specific and have a significant role in maintaining cell wall stability. TAs have various beneficial functions, such as immunomodulatory, anticancer and antioxidant activities. However, the purity and yield of TAs are generally not high, and different isolation methods may even affect their structural integrity, which limits the research progress on the probiotic functions of TA. This paper reviews an overview of the structure and biosynthetic pathway of TAs in different strains, as well as the research progress of the isolation and purification methods of TAs. Furthermore, this review also highlights the current research status on the biological functions of TAs. Through a comprehensive understanding of this review, it is expected to pave the way for advancements in isolating and purifying high-quality TAs and, in turn, lay a foundation for contributing to the development of targeted probiotic therapies.
Collapse
Affiliation(s)
- Jiarun Han
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Xin Zhao
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Xilian Zhao
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China.
| |
Collapse
|
4
|
Gurunathan S, Thangaraj P, Kim JH. Postbiotics: Functional Food Materials and Therapeutic Agents for Cancer, Diabetes, and Inflammatory Diseases. Foods 2023; 13:89. [PMID: 38201117 PMCID: PMC10778838 DOI: 10.3390/foods13010089] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Postbiotics are (i) "soluble factors secreted by live bacteria, or released after bacterial lysis, such as enzymes, peptides, teichoic acids, peptidoglycan-derived muropeptides, polysaccharides, cell-surface proteins and organic acids"; (ii) "non-viable metabolites produced by microorganisms that exert biological effects on the hosts"; and (iii) "compounds produced by microorganisms, released from food components or microbial constituents, including non-viable cells that, when administered in adequate amounts, promote health and wellbeing". A probiotic- and prebiotic-rich diet ensures an adequate supply of these vital nutrients. During the anaerobic fermentation of organic nutrients, such as prebiotics, postbiotics act as a benevolent bioactive molecule matrix. Postbiotics can be used as functional components in the food industry by offering a number of advantages, such as being added to foods that are harmful to probiotic survival. Postbiotic supplements have grown in popularity in the food, cosmetic, and healthcare industries because of their numerous health advantages. Their classification depends on various factors, including the type of microorganism, structural composition, and physiological functions. This review offers a succinct introduction to postbiotics while discussing their salient features and classification, production, purification, characterization, biological functions, and applications in the food industry. Furthermore, their therapeutic mechanisms as antibacterial, antiviral, antioxidant, anticancer, anti-diabetic, and anti-inflammatory agents are elucidated.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Biotechnology, Rathinam College of Arts and Science, Eachanari, Coimbatore 641021, Tamil Nadu, India;
| | - Pratheep Thangaraj
- Department of Biotechnology, Rathinam College of Arts and Science, Eachanari, Coimbatore 641021, Tamil Nadu, India;
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
5
|
Domínguez-Díaz C, Avila-Arrezola KE, Rodríguez JA, del-Toro-Arreola S, Delgado-Rizo V, Fafutis-Morris M. Recombinant p40 Protein Promotes Expression of Occludin in HaCaT Keratinocytes: A Brief Communication. Microorganisms 2023; 11:2913. [PMID: 38138057 PMCID: PMC10745755 DOI: 10.3390/microorganisms11122913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
The ability of epithelial barriers to perform as the first defense line against external damage derives from tight junctions, protein complexes that block microorganisms through the paracellular space. Indeed, disturbances of barrier permeability caused by bacterial metabolites and other inflammatory stimuli are the consequence of changes in protein expression in these complexes. Postbiotics, molecules derived from bacteria with beneficial effects on the host, improve barrier function through the activation of survival pathways in epithelial cells. Lacticaseibacillus rhamnosus GG secretes the muramidase p40, which protects intestinal barriers through an EGFR-dependent pathway. In this work, we cloned, expressed, and purified the recombinant p40 protein from L. rhamnosus GR-1 to evaluate its effect on cell viability, cell cytotoxicity, TEER, and protein levels of tight junctions, as well as EGFR activation via Western blot on HaCaT keratinocytes subjected to LPS. We found a novel mutation at residue 368 that does not change the structure of p40. Our protein also reduces the LPS-induced increase in cell cytotoxicity when it is added prior to this stimulus. Furthermore, although LPS did not cause changes in barrier function, p40 increased TEER and occludin expression in HaCaT, but unlike previous work with p40 from LGG, we found that recombinant p40 did not activate EGFR. This suggests that recombinant p40 enhances epithelial barrier function through distinct signaling pathways.
Collapse
Affiliation(s)
- Carolina Domínguez-Díaz
- Doctoral Program in Biomedical Sciences, Physiology Department, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
- Immunology and Dermatology Research Center (CIINDE), Zapopan 45190, Mexico;
| | | | - Jorge A. Rodríguez
- Department of Industrial Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Zapopan 45019, Mexico;
| | - Susana del-Toro-Arreola
- Physiology Department, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (S.d.-T.-A.); (V.D.-R.)
| | - Vidal Delgado-Rizo
- Physiology Department, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (S.d.-T.-A.); (V.D.-R.)
| | - Mary Fafutis-Morris
- Immunology and Dermatology Research Center (CIINDE), Zapopan 45190, Mexico;
- Physiology Department, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (S.d.-T.-A.); (V.D.-R.)
| |
Collapse
|
6
|
Saeed M, Afzal Z, Afzal F, Khan RU, Elnesr SS, Alagawany M, Chen H. Use of Postbiotic as Growth Promoter in Poultry Industry: A Review of Current Knowledge and Future Prospects. Food Sci Anim Resour 2023; 43:1111-1127. [PMID: 37969321 PMCID: PMC10636223 DOI: 10.5851/kosfa.2023.e52] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/23/2023] [Accepted: 09/07/2023] [Indexed: 11/17/2023] Open
Abstract
Health-promoting preparations of inanimate microorganisms or their components are postbiotics. Since probiotics are sensitive to heat and oxygen, postbiotics are stable during industrial processing and storage. Postbiotics boost poultry growth, feed efficiency, intestinal pathogen reduction, and health, making them acceptable drivers of sustainable poultry production. It contains many important biological properties, such as immunomodulatory, antioxidant, and anti-inflammatory responses. Postbiotics revealed promising antioxidant effects due to higher concentrations of uronic acid and due to some enzyme's production of antioxidants, e.g., superoxide dismutase, glutathione peroxidase, and nicotinamide adenine dinucleotide oxidases and peroxidases. Postbiotics improve intestinal villi, increase lactic acid production, and reduce Enterobacteriaceae and fecal pH, all of which lead to a better immune reaction and health of the gut, as well as better growth performance. P13K/AKT as a potential target pathway for postbiotics-improved intestinal barrier functions. Similarly, postbiotics reduce yolk and plasma cholesterol levels in layers and improve egg quality. It was revealed that favorable outcomes were obtained with various inclusion levels at 1 kg and 0.5 kg. According to several studies, postbiotic compounds significantly increased poultry performance. This review article presents the most recent research investigating the beneficial results of postbiotics in poultry.
Collapse
Affiliation(s)
- Muhammad Saeed
- School of Life Sciences, Jiangsu
University, Zhenjiang 212013, China
| | - Zoya Afzal
- Department of Poultry Science, Faculty of
Animal Production and Technology, The Cholistan University of Veterinary and
Animal Sciences, Bahawalpur 63100, Pakistan
| | - Fatima Afzal
- Department of Life Sciences, Sogang
University, Seoul 04107, Korea
| | - Rifat Ullah Khan
- College of Veterinary Sciences, Faculty of
Animal Husbandry and Veterinary Sciences, The University of Agriculture
Peshawar, Peshawar 25120, Pakistan
| | - Shaaban S. Elnesr
- Department of Poultry Production, Faculty
of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Mahmoud Alagawany
- Department of Poultry, Faculty of
Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Huayou Chen
- School of Life Sciences, Jiangsu
University, Zhenjiang 212013, China
| |
Collapse
|
7
|
Fan X, Mai C, Zuo L, Huang J, Xie C, Jiang Z, Li R, Yao X, Fan X, Wu Q, Yan P, Liu L, Chen J, Xie Y, Leung ELH. Herbal formula BaWeiBaiDuSan alleviates polymicrobial sepsis-induced liver injury via increasing the gut microbiota Lactobacillus johnsonii and regulating macrophage anti-inflammatory activity in mice. Acta Pharm Sin B 2023; 13:1164-1179. [PMID: 36970196 PMCID: PMC10031256 DOI: 10.1016/j.apsb.2022.10.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/19/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Sepsis-induced liver injury (SILI) is an important cause of septicemia deaths. BaWeiBaiDuSan (BWBDS) was extracted from a formula of Panax ginseng C. A. Meyer, Lilium brownie F. E. Brown ex Miellez var. viridulum Baker, Polygonatum sibiricum Delar. ex Redoute, Lonicera japonica Thunb., Hippophae rhamnoides Linn., Amygdalus Communis Vas, Platycodon grandiflorus (Jacq.) A. DC., and Cortex Phelloderdri. Herein, we investigated whether the BWBDS treatment could reverse SILI by the mechanism of modulating gut microbiota. BWBDS protected mice against SILI, which was associated with promoting macrophage anti-inflammatory activity and enhancing intestinal integrity. BWBDS selectively promoted the growth of Lactobacillus johnsonii (L. johnsonii) in cecal ligation and puncture treated mice. Fecal microbiota transplantation treatment indicated that gut bacteria correlated with sepsis and was required for BWBDS anti-sepsis effects. Notably, L. johnsonii significantly reduced SILI by promoting macrophage anti-inflammatory activity, increasing interleukin-10+ M2 macrophage production and enhancing intestinal integrity. Furthermore, heat inactivation L. johnsonii (HI-L. johnsonii) treatment promoted macrophage anti-inflammatory activity and alleviated SILI. Our findings revealed BWBDS and gut microbiota L. johnsonii as novel prebiotic and probiotic that may be used to treat SILI. The potential underlying mechanism was at least in part, via L. johnsonii-dependent immune regulation and interleukin-10+ M2 macrophage production.
Collapse
Affiliation(s)
- Xiaoqing Fan
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Chutian Mai
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Ling Zuo
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jumin Huang
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Chun Xie
- Cancer Center, Faculty of Health Science; MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau 999078, China
| | - Zebo Jiang
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Runze Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou 510120, China
| | - Xiaojun Yao
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Xingxing Fan
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Qibiao Wu
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Peiyu Yan
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Liang Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou 510120, China
| | - Jianxin Chen
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ying Xie
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou 510120, China
| | - Elaine Lai-Han Leung
- Cancer Center, Faculty of Health Science; MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau 999078, China
| |
Collapse
|
8
|
Das S, Bhattacharjee MJ, Mukherjee AK, Khan MR. Recent advances in understanding of multifaceted changes in the vaginal microenvironment: implications in vaginal health and therapeutics. Crit Rev Microbiol 2023; 49:256-282. [PMID: 35312419 DOI: 10.1080/1040841x.2022.2049696] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The vagina endures multifaceted changes from neonatal to menopausal phases due to hormonal flux, metabolite deposition, and microbial colonization. These features have important implications in women's health. Several pre-factors show dynamic characteristics according to the phases that shift the vaginal microbiota from anaerobes to aerobes which is a hallmark of healthy vaginal environment. These factors include oestrogen levels, glycogen deposition, and vaginal microstructure. In the adult phase, Lactobacillus is highly dominant and regulates pH, adherence, aggregation, immune modulation, synthesis of bacteriocins, and biosurfactants (BSs) which are antagonistic to pathogens. Maternal factors are protective by favouring the colonization of lactobacilli in the vagina in the neonatal phase, which diminishes with age. The dominance of lactobacilli and dysbiosis in the adult phase depends on intrinsic and extrinsic factors in women, which vary between ethnicities. Recent developments in probiotics used against vaginal microbiome dysbiosis have shown great promise in restoring the normal microbiota including preventing the loss of beneficial bacteria. However, further in-depth studies are warranted to ensure long-term protection by probiotics. This review highlights various aspects of the vaginal microenvironment in different phases of growth and diverse ethnicities. Furthermore, it discusses future trends for formulating more effective population-specific probiotics and implications of paraprobiotics and postbiotics as effective therapeutics.
Collapse
Affiliation(s)
- Sushmita Das
- Division of Life Science, Institute of Advanced Study in Science and Technology, Guwahati, India
| | | | - Ashis K Mukherjee
- Division of Life Science, Institute of Advanced Study in Science and Technology, Guwahati, India.,Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
| | - Mojibur Rohman Khan
- Division of Life Science, Institute of Advanced Study in Science and Technology, Guwahati, India
| |
Collapse
|
9
|
Viswanathan K, Muthusamy S. Review on the current trends and future perspectives of postbiotics for developing healtheir foods. EFOOD 2022. [DOI: 10.1002/efd2.47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
10
|
Saha UB, Saroj SD. Lactic acid bacteria: prominent player in the fight against human pathogens. Expert Rev Anti Infect Ther 2022; 20:1435-1453. [PMID: 36154442 DOI: 10.1080/14787210.2022.2128765] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The human microbiome is a unique repository of diverse bacteria. Over 1000 microbial species reside in the human gut, which predominantly influences the host's internal environment and plays a significant role in host health. Lactic acid bacteria have long been employed for multiple purposes, ranging from food to medicines. Lactobacilli, which are often used in commercial food fermentation, have improved to the point that they might be helpful in medical applications. AREAS COVERED This review summarises various clinical and experimental evidence on efficacy of lactobacilli in treating a wide range of infections. Both laboratory based and clinical studies have been discussed. EXPERT OPINION Lactobacilli are widely accepted as safe biological treatments and host immune modulators (GRAS- Generally regarded as safe) by the US Food and Drug Administration and Qualified Presumption of Safety. Understanding the molecular mechanisms of lactobacilli in the treatment and pathogenicity of bacterial infections can help with the prediction and development of innovative therapeutics aimed at pathogens which have gained resistance to antimicrobials. To formulate effective lactobacilli based therapy significant research on the effectiveness of different lactobacilli strains and its association with demographic distribution is required. Also, the side effects of such therapy needs to be evaluated.
Collapse
Affiliation(s)
- Ujjayni B Saha
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Symbiosis Knowledge Village, Lavale, Pune, India
| | - Sunil D Saroj
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Symbiosis Knowledge Village, Lavale, Pune, India
| |
Collapse
|
11
|
Thorakkattu P, Khanashyam AC, Shah K, Babu KS, Mundanat AS, Deliephan A, Deokar GS, Santivarangkna C, Nirmal NP. Postbiotics: Current Trends in Food and Pharmaceutical Industry. Foods 2022; 11:3094. [PMID: 36230169 PMCID: PMC9564201 DOI: 10.3390/foods11193094] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
Postbiotics are non-viable bacterial products or metabolic byproducts produced by probiotic microorganisms that have biologic activity in the host. Postbiotics are functional bioactive compounds, generated in a matrix during anaerobic fermentation of organic nutrients like prebiotics, for the generation of energy in the form of adenosine triphosphate. The byproducts of this metabolic sequence are called postbiotics, these are low molecular weight soluble compounds either secreted by live microflora or released after microbial cell lysis. A few examples of widely studied postbiotics are short-chain fatty acids, microbial cell fragments, extracellular polysaccharides, cell lysates, teichoic acid, vitamins, etc. Presently, prebiotics and probiotics are the products on the market; however, postbiotics are also gaining a great deal of attention. The numerous health advantages of postbiotic components may soon lead to an increase in consumer demand for postbiotic supplements. The most recent research aspects of postbiotics in the food and pharmaceutical industries are included in this review. The review encompasses a brief introduction, classification, production technologies, characterization, biological activities, and potential applications of postbiotics.
Collapse
Affiliation(s)
- Priyamvada Thorakkattu
- Department of Animal Sciences and Industry, Food Science Institute, Kansas State University, Manhattan, KS 66506, USA
| | | | - Kartik Shah
- Sargento Foods, 305 Pine Street, Elkhart Lake, WI 53020, USA
| | - Karthik Sajith Babu
- Department of Animal Sciences and Industry, Food Science Institute, Kansas State University, Manhattan, KS 66506, USA
| | - Anjaly Shanker Mundanat
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonipat 131028, India
| | | | - Gitanjali S. Deokar
- Department of Quality Assurance, MET’s Institute of Pharmacy, Bhujbal Knowledge City, Nashik 422003, India
| | - Chalat Santivarangkna
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| | - Nilesh Prakash Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| |
Collapse
|
12
|
Abd El-Ghany WA, Fouad H, Quesnell R, Sakai L. The effect of a postbiotic produced by stabilized non-viable Lactobacilli on the health, growth performance, immunity, and gut status of colisepticaemic broiler chickens. Trop Anim Health Prod 2022; 54:286. [PMID: 36083376 PMCID: PMC9463281 DOI: 10.1007/s11250-022-03300-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 08/31/2022] [Indexed: 12/03/2022]
Abstract
This work was designed to evaluate the efficacy of a postbiotic compound produced by stabilized non-viable Lactobacilli on the health, growth performance, immunity, and gut status against Escherichia coli (E. coli) challenge of broiler chickens. A total of 400, day-old broiler chicks were allocated into 4 equal groups (1–4) consisting of 100; each assigned into 2 equal replicates (50 each). Chickens in the 1st group were received the dry form of the compound at doses of 1 kg and 0.5 kg/ton feed for starter and grower, and the finisher diets, respectively. Chickens in the 2nd group were given the aqueous form of the compound in a dose of 4 mL/L of the drinking water during the first 3 days of life and at a day before and after each vaccination. Feed and water treatment regimens were administered to chickens in the 3rd group. Group 4 was kept without treatment. Each bird in the 1st, 2nd, 3rd, and 4th group was challenged with E. coli (O78) at 1-week-old. All groups were kept under observation till 5-week-old. Statistical analysis included one-way ANOVA and other methods as described with significant differences at P ≤ 0.05. The results indicated that feed and water treatments with the postbiotic compound induced more significant (P ≤ 0.05) amelioration of a disease picture, enhancement of growth performance, boosting of immune response, improvement of bursa of Fabricius/body weight ratio, and reduction of intestinal coliform count in challenged chickens when compared with challenged non-treated chickens. In conclusion, the postbiotic compound either in a dry and/or an aqueous form is recommended for improving the health, performance, and immunity of colisepticaemic broiler chickens.
Collapse
Affiliation(s)
- Wafaa A Abd El-Ghany
- Poultry Diseases Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - H Fouad
- Promovet Egypt Trade, Cairo, Egypt
| | - R Quesnell
- Transagra International Inc., Storm Lake, USA
| | - L Sakai
- Transagra International Inc., Storm Lake, USA
| |
Collapse
|
13
|
Duarte M, Oliveira AL, Oliveira C, Pintado M, Amaro A, Madureira AR. Current postbiotics in the cosmetic market-an update and development opportunities. Appl Microbiol Biotechnol 2022; 106:5879-5891. [PMID: 36008565 DOI: 10.1007/s00253-022-12116-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/28/2022]
Abstract
Postbiotics are a new class of health-promoting molecules that derive from probiotics. These new cosmetic and dermatological ingredients are defined as a 'preparation of inanimate microorganisms and/or their components that confers a health benefit on the host'. This review focuses on what is presently known of these compounds, the benefits of using them, the main postbiotics products available in the market and players, the production key trends and available production methods. The main advantages identified for the use of postbiotics are related to their higher specificity of action on resident microbiota as of interaction with cells of the host compared to probiotics. Postbiotics can be produced/obtained especially through fermentative processes, but most of companies industrial processes are patented. Most of these compounds are usually derived from lactic acid bacteria, Lactobacillus genera and/or yeasts, especially Saccharomyces cerevisiae. Postbiotics go from metabolites like teichoic acids to polysaccharides among others and exhibit important biological properties such as antioxidant, anti-inflammatory, anti-proliferative and immunomodulatory-the reason why their use in cosmetic formulations must be considered. Besides that, when compared to probiotics, postbiotics have longer shelf life and greater safety and do not require viability in the topical formulation which turns them into an innovative approach within the cosmetic ingredients market. The main players are companies that operate in several areas, such as the chemical industry, food innovation, pharmaceutical and cosmetic industries, and the critical trends for production of these compounds include energy efficiency, emission-free mobility, conservation of finite resources and renewable raw material utilization. KEY POINTS: • Postbiotics are mainly derived from lactic acid bacteria and S. cerevisiae. • Postbiotics exhibit several biological properties. • Postbiotics present several advantages over probiotics.
Collapse
Affiliation(s)
- Marco Duarte
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Ana L Oliveira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Carla Oliveira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Manuela Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Ana Amaro
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Ana Raquel Madureira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal.
| |
Collapse
|
14
|
Bourebaba Y, Marycz K, Mularczyk M, Bourebaba L. Postbiotics as potential new therapeutic agents for metabolic disorders management. Biomed Pharmacother 2022; 153:113138. [PMID: 35717780 DOI: 10.1016/j.biopha.2022.113138] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/07/2022] [Accepted: 05/15/2022] [Indexed: 11/24/2022] Open
Abstract
The prevalence of obesity, diabetes, non-alcoholic fatty liver disease, and related metabolic disorders has been steadily increasing in the past few decades. Apart from the establishment of caloric restrictions in combination with improved physical activity, there are no effective pharmacological treatments for most metabolic disorders. Many scientific-studies have described various beneficial effects of probiotics in regulating metabolism but others questioned their effectiveness and safety. Postbiotics are defined as preparation of inanimate microorganisms, and/or their components, which determine their safety of use and confers a health benefit to the host. Additionally, unlike probiotics postbiotics do not require stringent production/storage conditions. Recently, many lines of evidence demonstrated that postbiotics may be beneficial in metabolic disorders management via several potential effects including anti-inflammatory, antibacterial, immunomodulatory, anti-carcinogenic, antioxidant, antihypertensive, anti-proliferative, and hypocholesterolaemia properties that enhance both the immune system and intestinal barrier functions by acting directly on specific tissues of the intestinal epithelium, but also on various organs or tissues. In view of the many reports that demonstrated the high biological activity and safety of postbiotics, we summarized in the present review the current findings reporting the beneficial effects of various probiotics derivatives for the management of metabolic disorders and related alterations.
Collapse
Affiliation(s)
- Yasmina Bourebaba
- Laboratoire de Biomathématique, Biophysique, Biochimie et Scientométrie (L3BS), Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algeria.
| | - Krzysztof Marycz
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland; Department of Medicine and Epidemiology, UC Davis School of Veterinary Medicine, Davis, CA 95516, USA
| | - Malwina Mularczyk
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland; International Institute of Translational Medicine, Jesionowa, 11, Malin, 55-114 Wisznia Mała, Poland
| | - Lynda Bourebaba
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland; International Institute of Translational Medicine, Jesionowa, 11, Malin, 55-114 Wisznia Mała, Poland.
| |
Collapse
|
15
|
Sudhakaran G, Guru A, Haridevamuthu B, Murugan R, Arshad A, Arockiaraj J. Molecular properties of postbiotics and their role in controlling aquaculture diseases. AQUACULTURE RESEARCH 2022; 53:3257-3273. [DOI: 10.1111/are.15846] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/13/2022] [Indexed: 10/16/2023]
Affiliation(s)
- Gokul Sudhakaran
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai India
| | - Ajay Guru
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai India
| | - B. Haridevamuthu
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai India
| | - Raghul Murugan
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai India
| | - Aziz Arshad
- International Institute of Aquaculture and Aquatic Sciences (I‐AQUAS) Universiti Putra Malaysia Port Dickson Malaysia
| | - Jesu Arockiaraj
- Department of Biotechnology, College of Science and Humanities SRM Institute of Science and Technology Chennai India
- Foundation for Aquaculture Innovations and Technology Transfer (FAITT) Chennai India
| |
Collapse
|
16
|
Sabahi S, Homayouni Rad A, Aghebati-Maleki L, Sangtarash N, Ozma MA, Karimi A, Hosseini H, Abbasi A. Postbiotics as the new frontier in food and pharmaceutical research. Crit Rev Food Sci Nutr 2022; 63:8375-8402. [PMID: 35348016 DOI: 10.1080/10408398.2022.2056727] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Food is the essential need of human life and has nutrients that support growth and health. Gastrointestinal tract microbiota involves valuable microorganisms that develop therapeutic effects and are characterized as probiotics. The investigations on appropriate probiotic strains have led to the characterization of specific metabolic byproducts of probiotics named postbiotics. The probiotics must maintain their survival against inappropriate lethal conditions of the processing, storage, distribution, preparation, and digestion system so that they can exhibit their most health effects. Conversely, probiotic metabolites (postbiotics) have successfully overcome these unfavorable conditions and may be an appropriate alternative to probiotics. Due to their specific chemical structure, safe profile, long shelf-life, and the fact that they contain various signaling molecules, postbiotics may have anti-inflammatory, immunomodulatory, antihypertensive properties, inhibiting abnormal cell proliferation and antioxidative activities. Consequently, present scientific literature approves that postbiotics can mimic the fundamental and clinical role of probiotics, and due to their unique characteristics, they can be applied in an oral delivery system (pharmaceutical/functional foods), as a preharvest food safety hurdle, to promote the shelf-life of food products and develop novel functional foods or/and for developing health benefits, and therapeutic aims. This review addresses the latest postbiotic applications with regard to pharmaceutical formulations and commercial food-based products. Potential postbiotic applications in the promotion of host health status, prevention of disease, and complementary treatment are also reviewed.
Collapse
Affiliation(s)
- Sahar Sabahi
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Aziz Homayouni Rad
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Narges Sangtarash
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahdi Asghari Ozma
- Department of Medical Bacteriology and Virology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Atefeh Karimi
- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Abbasi
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Aguilar-Toalá JE, Hall FG, Urbizo-Reyes UC, Garcia HS, Vallejo-Cordoba B, González-Córdova AF, Hernández-Mendoza A, Liceaga AM. In Silico Prediction and In Vitro Assessment of Multifunctional Properties of Postbiotics Obtained From Two Probiotic Bacteria. Probiotics Antimicrob Proteins 2021; 12:608-622. [PMID: 31280464 DOI: 10.1007/s12602-019-09568-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this study, a global metabolite profile using Raman spectroscopy analysis was obtained in order to predict, by an in silico prediction of activity spectra for substance approach, the bioactivities of the intracellular content (IC) and cell wall (CW) fractions obtained from Lactobacillus casei CRL 431 and Bacillus coagulans GBI-30 strains. Additionally, multifunctional in vitro bioactivity of IC and CW fractions was also assessed. The metabolite profile revealed a variety of compounds (fatty acids, amino acids, coenzyme, protein, amino sugars), with significant probable activities (Pa > 0.7) as immune-stimulant, anti-inflammatory, neuroprotective, antiproliferative, immunomodulator, and antineoplastic, among others. Moreover, in vitro assays exhibited that both IC and CW fractions presented angiotensin-converting enzyme-inhibitory (> 90%), chelating (> 79%), and antioxidant (ca. 22-57 cellular antioxidant activity units) activities. Our findings based on in silico and in vitro analyses suggest that L. casei CRL 431 and B. coagulans GBI-30 strains appear to be promising sources of postbiotics and may impart health benefits by their multifunctional properties.
Collapse
Affiliation(s)
- J E Aguilar-Toalá
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera a La Victoria km. 0.6, 83304, Hermosillo, Sonora, Mexico.,Department of Food Science, Purdue University, 745 Agriculture Mall Dr, West Lafayette, IN, 47907, USA
| | - F G Hall
- Department of Food Science, Purdue University, 745 Agriculture Mall Dr, West Lafayette, IN, 47907, USA
| | - U C Urbizo-Reyes
- Department of Food Science, Purdue University, 745 Agriculture Mall Dr, West Lafayette, IN, 47907, USA
| | - H S Garcia
- UNIDA Tecnológico Nacional de México, Instituto Tecnológico de Veracruz, M.A. de Quevedo 2279, Col. Formando Hogar, 91897, Veracruz, Veracruz, Mexico
| | - B Vallejo-Cordoba
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera a La Victoria km. 0.6, 83304, Hermosillo, Sonora, Mexico
| | - A F González-Córdova
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera a La Victoria km. 0.6, 83304, Hermosillo, Sonora, Mexico
| | - A Hernández-Mendoza
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera a La Victoria km. 0.6, 83304, Hermosillo, Sonora, Mexico.
| | - A M Liceaga
- Department of Food Science, Purdue University, 745 Agriculture Mall Dr, West Lafayette, IN, 47907, USA.
| |
Collapse
|
18
|
Abbasi A, Rad AH, Ghasempour Z, Sabahi S, Kafil HS, Hasannezhad P, Rahbar Saadat Y, Shahbazi N. The biological activities of postbiotics in gastrointestinal disorders. Crit Rev Food Sci Nutr 2021; 62:5983-6004. [PMID: 33715539 DOI: 10.1080/10408398.2021.1895061] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
According to outcomes from clinical studies, an intricate relationship occurs between the beneficial microbiota, gut homeostasis, and the host's health status. Numerous studies have confirmed the health-promoting effects of probiotics, particularly in gastrointestinal diseases. On the other hand, the safety issues regarding the consumption of some probiotics are still a matter of debate, thus to overcome the problems related to the application of live probiotic cells in terms of clinical, technological, and economic aspects, microbial-derived biomolecules (postbiotics) were introducing as a potential alternative agent. Presently scientific literature confirms that the postbiotic components can be used as promising tools for both prevention and treatment strategies in gastrointestinal disorders with less undesirable side-effects, particularly in infants and children. Future head-to-head trials are required to distinguish appropriate strains of parent cells, optimal dosages of postbiotics, and assessment of the cost-effectiveness of postbiotics compared to alternative drugs. This review provides an overview of the concept and safety issues regarding postbiotics, with emphasis on their biological role in the treatment of some important gastrointestinal disorders.
Collapse
Affiliation(s)
- Amin Abbasi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aziz Homayouni Rad
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Ghasempour
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sahar Sabahi
- Department of Nutritional Sciences, School of Paramedical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Paniz Hasannezhad
- Department of Medical Engineering Science, University College of Rouzbahan, Sari, Iran
| | - Yalda Rahbar Saadat
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nayyer Shahbazi
- Faculty of Agriculture Engineering, Department of Food Science, Shahrood University of Technology, Shahrood, Iran
| |
Collapse
|
19
|
Rad AH, Abbasi A, Kafil HS, Ganbarov K. Potential Pharmaceutical and Food Applications of Postbiotics: A Review. Curr Pharm Biotechnol 2021; 21:1576-1587. [PMID: 32416671 DOI: 10.2174/1389201021666200516154833] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 11/22/2022]
Abstract
In recent decades, functional foods with ingredients comprising probiotics, prebiotics and postbiotics have been gaining a lot of attention from scientists. Probiotics and postbiotics are usually applied in pharmaceutical formulations and/or commercial food-based products. These bioactive agents can be associated with host eukaryotic cells and have a key role in maintaining and restoring host health. The review describes the concept of postbiotics, their quality control and potential applications in pharmaceutical formulations and commercial food-based products for health promotion, prevention of disease and complementary treatment. Despite the effectiveness of probiotic products, researchers have introduced the concept of postbiotic to optimize their beneficial effects as well as to meet the needs of consumers to provide a safe product. The finding of recent studies suggests that postbiotics might be appropriate alternative agents for live probiotic cells and can be applied in medical, veterinary and food practice to prevent and to treat some diseases, promote animal health status and develop functional foods. Presently scientific literature confirms that postbiotics, as potential alternative agents, may have superiority in terms of safety relative to their parent live cells, and due to their unique characteristics in terms of clinical, technological and economical aspects, can be applied as promising tools in the drug and food industry for developing health benefits, and therapeutic aims.
Collapse
Affiliation(s)
- Aziz H Rad
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Abbasi
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein S Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khudaverdi Ganbarov
- Department of Microbiology, Faculty of Biology, Baku State University, Baku, Azerbaijan
| |
Collapse
|
20
|
Chee WJY, Chew SY, Than LTL. Vaginal microbiota and the potential of Lactobacillus derivatives in maintaining vaginal health. Microb Cell Fact 2020; 19:203. [PMID: 33160356 PMCID: PMC7648308 DOI: 10.1186/s12934-020-01464-4] [Citation(s) in RCA: 309] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/28/2020] [Indexed: 12/15/2022] Open
Abstract
Human vagina is colonised by a diverse array of microorganisms that make up the normal microbiota and mycobiota. Lactobacillus is the most frequently isolated microorganism from the healthy human vagina, this includes Lactobacillus crispatus, Lactobacillus gasseri, Lactobacillus iners, and Lactobacillus jensenii. These vaginal lactobacilli have been touted to prevent invasion of pathogens by keeping their population in check. However, the disruption of vaginal ecosystem contributes to the overgrowth of pathogens which causes complicated vaginal infections such as bacterial vaginosis (BV), sexually transmitted infections (STIs), and vulvovaginal candidiasis (VVC). Predisposing factors such as menses, pregnancy, sexual practice, uncontrolled usage of antibiotics, and vaginal douching can alter the microbial community. Therefore, the composition of vaginal microbiota serves an important role in determining vagina health. Owing to their Generally Recognised as Safe (GRAS) status, lactobacilli have been widely utilised as one of the alternatives besides conventional antimicrobial treatment against vaginal pathogens for the prevention of chronic vaginitis and the restoration of vaginal ecosystem. In addition, the effectiveness of Lactobacillus as prophylaxis has also been well-founded in long-term administration. This review aimed to highlight the beneficial effects of lactobacilli derivatives (i.e. surface-active molecules) with anti-biofilm, antioxidant, pathogen-inhibition, and immunomodulation activities in developing remedies for vaginal infections. We also discuss the current challenges in the implementation of the use of lactobacilli derivatives in promotion of human health. In the current review, we intend to provide insights for the development of lactobacilli derivatives as a complementary or alternative medicine to conventional probiotic therapy in vaginal health.
Collapse
Affiliation(s)
- Wallace Jeng Yang Chee
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Shu Yih Chew
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Leslie Thian Lung Than
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| |
Collapse
|
21
|
Su SB, Tao L, Deng ZP, Chen W, Qin SY, Jiang HX. TLR10: Insights, controversies and potential utility as a therapeutic target. Scand J Immunol 2020; 93:e12988. [PMID: 33047375 DOI: 10.1111/sji.12988] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/11/2022]
Abstract
The Toll-like receptor (TLR) family acts as a bridge connecting innate and acquired immunity. TLR10 remains one of the least understood members of this family. Some studies have examined TLR10 ligands, dimerization of TLR10 with other TLRs, and downstream signalling pathways and functions, but they have often arrived at conflicting conclusions. TLR10 can induce the production of proinflammatory cytokines by forming homodimers with itself or heterodimers with TLR1 or other TLRs, but it can also inhibit proinflammatory responses when co-expressed with TLR2 or potentially other TLRs. Mutations in the Toll/Interleukin 1 receptor (TIR) domain of TLR10 alter its signalling activity. Polymorphisms in the TLR10 gene can change the balance between pro- and anti-inflammatory responses and hence modulate the susceptibility to infection and autoimmune diseases. Understanding the full range of TLR10 ligands and functions may allow the receptor to be exploited as a therapeutic target in inflammation- or immune-related diseases. Here, we summarize recent findings on the pro- and anti-inflammatory roles of TLR10 and the molecular pathways in which it is implicated. Our goal is to pave the way for future studies of the only orphan TLR thought to have strong potential as a target in the treatment of inflammation-related diseases.
Collapse
Affiliation(s)
- Si-Biao Su
- Department of Gastroenterology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lin Tao
- Department of Gastroenterology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ze-Ping Deng
- Department of Gastroenterology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wen Chen
- Department of Academic Affairs, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shan-Yu Qin
- Department of Gastroenterology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hai-Xing Jiang
- Department of Gastroenterology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
22
|
Teame T, Wang A, Xie M, Zhang Z, Yang Y, Ding Q, Gao C, Olsen RE, Ran C, Zhou Z. Paraprobiotics and Postbiotics of Probiotic Lactobacilli, Their Positive Effects on the Host and Action Mechanisms: A Review. Front Nutr 2020; 7:570344. [PMID: 33195367 PMCID: PMC7642493 DOI: 10.3389/fnut.2020.570344] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022] Open
Abstract
Lactobacilli comprise an important group of probiotics for both human and animals. The emerging concern regarding safety problems associated with live microbial cells is enhancing the interest in using cell components and metabolites derived from probiotic strains. Here, we define cell structural components and metabolites of probiotic bacteria as paraprobiotics and postbiotics, respectively. Paraprobiotics and postbiotics produced from Lactobacilli consist of a wide range of molecules including peptidoglycans, surface proteins, cell wall polysaccharides, secreted proteins, bacteriocins, and organic acids, which mediate positive effect on the host, such as immunomodulatory, anti-tumor, antimicrobial, and barrier-preservation effects. In this review, we systematically summarize the paraprobiotics and postbiotics derived from Lactobacilli and their beneficial functions. We also discuss the mechanisms underlying their beneficial effects on the host, and their interaction with the host cells. This review may boost our understanding on the benefits and molecular mechanisms associated with paraprobiotics and probiotics from Lactobacilli, which may promote their applications in humans and animals.
Collapse
Affiliation(s)
- Tsegay Teame
- China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Tigray Agricultural Research Institute, Mekelle, Ethiopia
| | - Anran Wang
- AgricultureIsLife/EnvironmentIsLife and Precision Livestock and Nutrition Unit, AgroBioChem/TERRA, Gembloux Agro-Bio Tech, University of Liege, Passage des Deportes, Gembloux, Belgium
| | - Mingxu Xie
- Norway-China Fish Gastrointestinal Microbiota Joint Lab, Institute of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Zhen Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yalin Yang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qianwen Ding
- Norway-China Fish Gastrointestinal Microbiota Joint Lab, Institute of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Chenchen Gao
- China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rolf Erik Olsen
- Norway-China Fish Gastrointestinal Microbiota Joint Lab, Institute of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Chao Ran
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhigang Zhou
- China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
23
|
Abd El-Ghany WA. Paraprobiotics and postbiotics: Contemporary and promising natural antibiotics alternatives and their applications in the poultry field. Open Vet J 2020; 10:323-330. [PMID: 33282704 PMCID: PMC7703615 DOI: 10.4314/ovj.v10i3.11] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/23/2020] [Indexed: 12/14/2022] Open
Abstract
With the high rise of drug resistance in microbial populations, there has been a surge in researches to find new natural antibiotics alternative compounds that can be used safely in both humans and animals. The main goals of using this category of alternatives are maintaining the gut microbiome in healthy conditions and preventing the attachment of pathogenic organisms at the early life stages. Probiotics, prebiotics, and synbiotics have been widely used for several years as growth promoters and as preventive measures against several enteric pathogens with successful results. Recently, paraprobiotics and postbiotics are derivatives of probiotic cultures and have been used in humans, animals, and poultry. They are regarded as immunostimulators, anti-inflammatory, antioxidants, and anti-microbial, as well as growth promoters. Till now, there is scanty information about the use of paraprobiotics and postbiotics in animals or in the poultry sector. Accordingly, this review article has focused on defining these new categories of natural alternatives with descriptions of their types, functions, and uses, especially in the poultry field.
Collapse
Affiliation(s)
- Wafaa A Abd El-Ghany
- Poultry Diseases Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
24
|
Rad AH, Aghebati-Maleki L, Kafil HS, Abbasi A. Molecular mechanisms of postbiotics in colorectal cancer prevention and treatment. Crit Rev Food Sci Nutr 2020; 61:1787-1803. [PMID: 32410512 DOI: 10.1080/10408398.2020.1765310] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The occurrence of colorectal cancer (CRC) has been rising expeditiously and anticipated that 2.4 million new occasions of CRC will be detected yearly around the world until the year 2035. Due to some side-effects and complications of conventional CRC therapies, bioactive components such as microbial-derived biomolecules (postbiotics) have been attaining great significance by researchers for adjuvant therapy in CRC patients. The term 'postbiotics' encompasses an extensive range of complex micro- and macro-molecules (<50, 50-100, and 100< kDa) such as inactivated microbial cells, cell fractions or metabolites, which confer various physiological health benefits to the host when administered in adequate amounts. Postbiotics modulate the composition of the gut microbiota and the functionality of the immune system, as well as promote the CRC treatment effectiveness and reduces its side-effects in CRC patients due to possessing anti-oxidant, anti-proliferative, anti-inflammatory, and anti-cancer activities. Presently scientific literature confirms that postbiotics with their unique characteristics in terms of clinical (safe origin), technological (stability), and economic (low production costs) aspects can be used as promising tools for both prevent and adjuvant treat strategies in CRC patients without any serious undesirable side-effects. This review provides an overview of the concept and safety issues regarding postbiotics, with emphasis on their biological role in the prevention and treatment of CRC.
Collapse
Affiliation(s)
- Aziz Homayouni Rad
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hossein Samadi Kafil
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Abbasi
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student's research committee, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
25
|
Jeffrey MP, Strap JL, Jones Taggart H, Green-Johnson JM. Suppression of Intestinal Epithelial Cell Chemokine Production by Lactobacillus rhamnosus R0011 and Lactobacillus helveticus R0389 Is Mediated by Secreted Bioactive Molecules. Front Immunol 2018; 9:2639. [PMID: 30524427 PMCID: PMC6262363 DOI: 10.3389/fimmu.2018.02639] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/26/2018] [Indexed: 12/21/2022] Open
Abstract
Host intestinal epithelial cells (IEC) present at the gastrointestinal interface are exposed to pathogenic and non-pathogenic bacteria and their products. Certain probiotic lactic acid bacteria (LAB) have been associated with a range of host-immune modulatory activities including down-regulation of pro-inflammatory gene expression and cytokine production by IEC, with growing evidence suggesting that these bacteria secrete bioactive molecules with immunomodulatory activity. The aim of this study was to determine whether two lactobacilli with immunomodulatory activity [Lactobacillus rhamnosus R0011 (Lr) and Lactobacillus helveticus R0389 (Lh)], produce soluble mediators able to influence IEC responses to Pattern Recognition Receptor (PRR) ligands and pro-inflammatory cytokines [Tumor Necrosis Factor α (TNFα), Interleukin-1β (IL-1β)], signals inducing IEC chemokine production during infection. To this end, the effects of cell-free supernatants (CFS) from Lr and Lh on IEC production of the pro-inflammatory chemokines interleukin (IL)-8 and cytokine-induced neutrophil chemoattractant 1 (CINC-1) induced by a range of host- or pathogen-derived pro-inflammatory stimuli were determined, and the impact on human HT-29 IEC and a primary IEC line (rat IEC-6) was compared. The Lr-CFS and Lh-CFS did not significantly modulate basal IL-8 production from HT-29 IECs or CINC-1 production from IEC-6 cells. However, both Lr-CFS and Lh-CFS significantly down-regulated IL-8 production from HT-29 IECs challenged with varied PRR ligands. Lr-CFS and Lh-CFS had differential effects on PRR-induced CINC-1 production by rat IEC-6 IECs, with no significant down-regulation of CINC-1 observed from IEC-6 IECs cultured with Lh-CFS. Further analysis of the Lr-CFS revealed down-regulation of IL-8 production induced by the pro-inflammatory cytokines IL-1β and TNFα Preliminary characterization of the bioactive constituent(s) of the Lr-CFS indicates that it is resistant to treatment with DNase, RNase, and an acidic protease, but is sensitive to alterations in pH. Taken together, these results indicate that these lactobacilli secrete bioactive molecules of low molecular weight that may modulate host innate immune activity through interactions with IEC.
Collapse
Affiliation(s)
- Michael P Jeffrey
- Applied Bioscience Graduate Program, University of Ontario Institute of Technology, Oshawa, ON, Canada
| | - Janice L Strap
- Applied Bioscience Graduate Program, University of Ontario Institute of Technology, Oshawa, ON, Canada.,Faculty of Science, University of Ontario Institute of Technology, Oshawa, ON, Canada
| | - Holly Jones Taggart
- Applied Bioscience Graduate Program, University of Ontario Institute of Technology, Oshawa, ON, Canada.,Faculty of Health Sciences, University of Ontario Institute of Technology, Oshawa, ON, Canada
| | - Julia M Green-Johnson
- Applied Bioscience Graduate Program, University of Ontario Institute of Technology, Oshawa, ON, Canada.,Faculty of Science, University of Ontario Institute of Technology, Oshawa, ON, Canada
| |
Collapse
|
26
|
He Y, Xu X, Zhang F, Xu D, Liu Z, Tao X, Wei H. Anti-adhesion of probiotic Enterococcus faecium WEFA23 against five pathogens and the beneficial effect of its S-layer proteins against Listeria monocytogenes. Can J Microbiol 2018; 65:175-184. [PMID: 30395485 DOI: 10.1139/cjm-2018-0031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Enterococcus faecium WEFA23 is a potential probiotic strain isolated from Chinese infant feces. In this study, the antagonistic activity of E. faecium WEFA23 on adhesion to pathogens was investigated. Enterococcus faecium WEFA23 was able to compete, exclude, and displace the adhesion of Escherichia coli O157:H7, Salmonella Typhimurium ATCC 13311, Listeria monocytogenes CMCC54007, Staphylococcus aureus CMCC26003, and Shigella sonnei ATCC 25931 to Caco-2 cells. Among them, L. monocytogenes achieved the strongest inhibition rate in both competition and displacement assays. Those anti-adhesion capacities were related to the bacterial physicochemical properties (hydrophobicity, auto-aggregation, and co-aggregation) of the bacterial surface. For L. monocytogenes, the anti-adhesion capacity was affected by the heat treatment, cell density, and growth phase of E. faecium WEFA23; 108 colony-forming units of viable cells per millilitre at the stationary phase exhibited the strongest anti-adhesion activity. In addition, removal of S-layer proteins of E. faecium WEFA23 by treatment with 5 mol/L LiCl significantly decreased its adhesion capacity, and those S-layer proteins were able to compete, displace, and exclude L. monocytogenes at different levels. Both cells and S-layer proteins of E. faecium WEFA23 significantly reduced the apoptosis of Caco-2 cells induced by L. monocytogenes, which was mediated by caspase-3 activation. This study might be helpful in understanding the anti-adhesion mechanism of probiotics against pathogens.
Collapse
Affiliation(s)
- Yao He
- a State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330031, P.R. China
| | - Xiongpeng Xu
- a State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330031, P.R. China
| | - Fen Zhang
- a State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330031, P.R. China
| | - Di Xu
- b Technische Mikrobiologie, Technische Universität München, Freising 85354, Germany
| | - Zhengqi Liu
- a State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330031, P.R. China
| | - Xueying Tao
- a State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330031, P.R. China
| | - Hua Wei
- a State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330031, P.R. China
| |
Collapse
|
27
|
Parlindungan E, Dekiwadia C, Tran KT, Jones OA, May BK. Morphological and ultrastructural changes in Lactobacillus plantarum B21 as an indicator of nutrient stress. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.02.072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
28
|
|
29
|
Allain T, Chaouch S, Thomas M, Vallée I, Buret AG, Langella P, Grellier P, Polack B, Bermúdez-Humarán LG, Florent I. Bile-Salt-Hydrolases from the Probiotic Strain Lactobacillus johnsonii La1 Mediate Anti-giardial Activity in Vitro and in Vivo. Front Microbiol 2018; 8:2707. [PMID: 29472895 PMCID: PMC5810305 DOI: 10.3389/fmicb.2017.02707] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/29/2017] [Indexed: 01/10/2023] Open
Abstract
Giardia duodenalis (syn. G. lamblia, G. intestinalis) is the protozoan parasite responsible for giardiasis, the most common and widely spread intestinal parasitic disease worldwide, affecting both humans and animals. After cysts ingestion (through either contaminated food or water), Giardia excysts in the upper intestinal tract to release replicating trophozoites that are responsible for the production of symptoms. In the gut, Giardia cohabits with the host's microbiota, and several studies have revealed the importance of this gut ecosystem and/or some probiotic bacteria in providing protection against G. duodenalis infection through mechanisms that remain incompletely understood. Recent findings suggest that Bile-Salt-Hydrolase (BSH)-like activities from the probiotic strain of Lactobacillus johnsonii La1 may contribute to the anti-giardial activity displayed by this strain. Here, we cloned and expressed each of the three bsh genes present in the L. johnsonii La1 genome to study their enzymatic and biological properties. While BSH47 and BSH56 were expressed as recombinant active enzymes, no significant enzymatic activity was detected with BSH12. In vitro assays allowed determining the substrate specificities of both BSH47 and BSH56, which were different. Modeling of these BSHs indicated a strong conservation of their 3-D structures despite low conservation of their primary structures. Both recombinant enzymes were able to mediate anti-giardial biological activity against Giardia trophozoites in vitro. Moreover, BSH47 exerted significant anti-giardial effects when tested in a murine model of giardiasis. These results shed new light on the mechanism, whereby active BSH derived from the probiotic strain Lactobacillus johnsonii La1 may yield anti-giardial effects in vitro and in vivo. These findings pave the way toward novel approaches for the treatment of this widely spread but neglected infectious disease, both in human and in veterinary medicine.
Collapse
Affiliation(s)
- Thibault Allain
- Commensal and Probiotics-Host Interactions Laboratory, Micalis Institute, Institut National de la Recherche Agronomique, AgroParisTech, Jouy-en-Josas, France.,UMR7245, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Sorbonne-Universités, Paris, France
| | - Soraya Chaouch
- UMR7245, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Sorbonne-Universités, Paris, France
| | - Myriam Thomas
- JRU BIPAR, ANSES, Ecole Nationale Vétérinaire d'Alfort, INRA, Université Paris-Est, Animal Health Laboratory, Maisons-Alfort, France
| | - Isabelle Vallée
- JRU BIPAR, ANSES, Ecole Nationale Vétérinaire d'Alfort, INRA, Université Paris-Est, Animal Health Laboratory, Maisons-Alfort, France
| | - André G Buret
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Philippe Langella
- Commensal and Probiotics-Host Interactions Laboratory, Micalis Institute, Institut National de la Recherche Agronomique, AgroParisTech, Jouy-en-Josas, France
| | - Philippe Grellier
- UMR7245, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Sorbonne-Universités, Paris, France
| | - Bruno Polack
- JRU BIPAR, Ecole Nationale Vétérinaire d'Alfort, ANSES, INRA, Université Paris-Est, Maisons-Alfort, France
| | - Luis G Bermúdez-Humarán
- Commensal and Probiotics-Host Interactions Laboratory, Micalis Institute, Institut National de la Recherche Agronomique, AgroParisTech, Jouy-en-Josas, France
| | - Isabelle Florent
- UMR7245, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Sorbonne-Universités, Paris, France
| |
Collapse
|
30
|
Liu C, Zhu Q, Chang J, Yin Q, Song A, Li Z, Wang E, Lu F. Effects of Lactobacillus casei and Enterococcus faecalis on growth performance, immune function and gut microbiota of suckling piglets. Arch Anim Nutr 2017; 71:120-133. [PMID: 28201936 DOI: 10.1080/1745039x.2017.1283824] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This study was carried out to investigate the effects of orally administrated Lactobacillus casei and Enterococcus faecalis on performance, immune function and gut microbiota of suckling piglets. Neonatal piglets (n = 120) were randomly assigned to 4 groups, with 30 suckling piglets in each group. The piglets were from 15 litters, one male and one female piglet were selected for each group in each litter. The Control group was administrated with normal saline, the other groups with L. casei or E. faecalis or a combination of L. casei and E. faecalis at a ratio of 3:1. Each piglet was orally administrated with 1, 2, 3 and 4 ml probiotics or normal saline at the age of 1, 7, 14 and 21 d, respectively. The piglets were weaned at the age of 21 d. The results showed that compared with the Control group, the average daily gain of piglets administrated with probiotics was significantly increased, and the diarrhoea rate and mortality were significantly decreased (p < 0.05). After supplementation of the combined probiotics, the protease activity in stomach, duodenum and colon was increased and in all supplemented groups, the immunoglobulin A concentration in plasma was significantly higher (p < 0.05). The combined probiotics significantly increased villus length and the expression level of transforming growth factor-β in the jejunum (p < 0.05) but decreased the expression level of the jejunal tumour necrosis factor-α (p < 0.05). In addition, probiotics could regulate gut microbiota and increase microbial similarity coefficients for keeping piglet gut microbiota stable.
Collapse
Affiliation(s)
- Chaoqi Liu
- a College of Animal Science and Veterinary Medicine , Henan Agricultural University , Zhengzhou , China
| | - Qun Zhu
- a College of Animal Science and Veterinary Medicine , Henan Agricultural University , Zhengzhou , China.,c Henan Delin Biological Product Co. Ltd ., Xinxiang , China
| | - Juan Chang
- a College of Animal Science and Veterinary Medicine , Henan Agricultural University , Zhengzhou , China
| | - Qingqiang Yin
- a College of Animal Science and Veterinary Medicine , Henan Agricultural University , Zhengzhou , China
| | - Andong Song
- b College of Life Sciences , Henan Agricultural University , Zhengzhou , China
| | - Zhentian Li
- a College of Animal Science and Veterinary Medicine , Henan Agricultural University , Zhengzhou , China
| | - Erzhu Wang
- c Henan Delin Biological Product Co. Ltd ., Xinxiang , China
| | - Fushan Lu
- d Henan Engineering and Technology Research Center of Feed Microbes , Zhoukou , China
| |
Collapse
|
31
|
Moshiri M, Dallal MMS, Rezaei F, Douraghi M, Sharifi L, Noroozbabaei Z, Gholami M, Mirshafiey A. The Effect of Lactobacillus acidophilus PTCC 1643 on Cultured Intestinal Epithelial Cells Infected with Salmonella enterica serovar Enteritidis. Osong Public Health Res Perspect 2017; 8:54-60. [PMID: 28443224 PMCID: PMC5402851 DOI: 10.24171/j.phrp.2017.8.1.07] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Objectives Gastrointestinal disorders caused by Salmonella enterica serovar Enteritidis (SesE) are a significant health problem around the globe. Probiotic bacteria have been shown to have positive effects on the immune responses. Lactobacillus acidophilus was examined for its capability to influence the innate immune response of HT29 intestinal epithelial cells towards SesE. The purpose of this work was to assess the effect of L. acidophilus PTCC 1643 on cultured intestinal epithelial cells infected with SesE. Methods HT29 cells were cultured in Roswell Park Memorial Institute medium supplemented with 10% fetal bovine serum and 1% penicillin/streptomycin. The cells were treated with L. acidophilus PTCC 1643 after or before challenge with SesE. At 2 and 4 hours post-infection, we measured changes in the expression levels of TLR2 and TLR4 via real-time polymerase chain reaction. Results Treatment with L. acidophilus inhibited SesE-induced increases in TLR2 and TLR4 expression in the infected HT29 cells. Moreover, the expression of TLR2 and TLR4 in cells that were pretreated with L. acidophilus and then infected with SesE was significantly higher than that in cells infected with SesE without pretreatment. Taken together, the results indicated that L. acidophilus had an anti-inflammatory effect and modulated the innate immune response to SesE by influencing TLR2 and TLR4 expression. Conclusion Our findings suggested that L. acidophilus PTCC 1643 was able to suppress inflammation caused by SesE infection in HT29 cells and reduce TLR2 and TLR4 expression. Additional in vivo and in vitro studies are required to further elucidate the mechanisms underlying this anti-inflammatory effect.
Collapse
Affiliation(s)
- Mona Moshiri
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Soltan Dallal
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Rezaei
- Department of Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Douraghi
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Laleh Sharifi
- Research Center for Immunodeficiencies, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Noroozbabaei
- Department of Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Gholami
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abbas Mirshafiey
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
Duary RK, Batish VK, Grover S. Immunomodulatory activity of two potential probiotic strains in LPS-stimulated HT-29 cells. GENES AND NUTRITION 2014; 9:398. [PMID: 24682881 DOI: 10.1007/s12263-014-0398-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 03/17/2014] [Indexed: 12/22/2022]
Abstract
The relative expression of mucin, pro- and anti-inflammatory genes besides other signaling molecules in HT-29 cells by two test probiotic strains of Lactobacillus plantarum Lp9 and Lp91 and the reference strain L. plantarum 5276 was evaluated by RT-qPCR using Relative Expression Software Tool qBase-Plus under in vitro simulated gut conditions. Ten house keeping genes were evaluated by using geNorm 3.4 excel based application. The most stable genes were RPL27, ACTB and B2M which were subsequently used for calculating the normalization factor. Under pretreatment conditions (4 h probiotic treatment, followed by lipopolysaccharide challenge for 3 h), all the three strains evoked downregulation of IL-8 expression by ~100 %, while in case of TNF-α, the downregulation of the relative gene expression was at the rate of 98.2, 93.8 and 98.0 % with Lp5276, Lp9 and Lp91, respectively, under the same set of conditions. Lp91 evoked maximum downregulation of IL12p35 and IFN-γ with corresponding fold reduction in relative expression of the two genes by 96.5 and 96.7 % during pre-treatment conditions. However, IL-10 and IFN-α were significantly upregulated to the extent of 8.13 ± 0.36 and 2.62 ± 0.14 fold by Lp91 under the same conditions. Lp9 and Lp91 were also quite effective in inducing the expression of Cox-1 and Cox-2 in HT-29 cells as can be reflected from their ratios, i.e., 5.90 and 6.50 (under pretreatment conditions); 3.79 and 4.36 (under co-culture conditions). Thus, the two putative indigenous L. plantarum strains Lp9 and Lp91 demonstrated immunomodulating functions in HT-29 cells at significant levels under different experimental conditions.
Collapse
Affiliation(s)
- Raj Kumar Duary
- Department of Food Engineering and Technology, Tezpur University, Napaam, 784028, Assam, India
| | | | | |
Collapse
|
33
|
|
34
|
Patten DA, Collett A. Exploring the immunomodulatory potential of microbial-associated molecular patterns derived from the enteric bacterial microbiota. MICROBIOLOGY-SGM 2013; 159:1535-1544. [PMID: 23851280 DOI: 10.1099/mic.0.064717-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The human intestinal lumen represents one of the most densely populated microbial niches in the biological world and, as a result, the intestinal innate immune system exists in a constant state of stimulation. A key component in the innate defence system is the intestinal epithelial layer, which acts not only as a physical barrier, but also as an immune sensor. The expression of pattern recognition receptors, such as Toll-like receptors, in epithelial cells allows innate recognition of a wide range of highly conserved bacterial moieties, termed microbial-associated molecular patterns (MAMPs), from both pathogenic and non-pathogenic bacteria. To date, studies of epithelial immunity have largely concentrated on inflammatory pathogenic antigens; however, this review discusses the major types of MAMPs likely to be produced by the enteric bacterial microbiota and, using data from in vitro studies, animal model systems and clinical observations, speculates on their immunomodulatory potential.
Collapse
Affiliation(s)
- Daniel A Patten
- Department of Chemical and Biological Sciences, University of Huddersfield, Huddersfield, UK
| | - Andrew Collett
- Department of Chemical and Biological Sciences, University of Huddersfield, Huddersfield, UK
| |
Collapse
|
35
|
Abstract
Necrotizing enterocolitis (NEC) is a severe intestinal inflammatory disorder in newborns. Although the pathogenesis of NEC is not completely understood, we reviewed the literature and our previous studies to explore the mechanism of NEC and to evaluate the role for probiotics in this disease. NEC may be associated with an inappropriate innate immune and excessive inflammatory response of the immature intestine. Probiotics are widely used in promoting human health and adjunctive therapy of human disease. There are growing clinical trials and research studies that support a beneficial role for probiotics for NEC. We have reviewed the literature associated with the use of probiotics in NEC.
Collapse
Affiliation(s)
- Chien-Chang Chen
- Division of Gastroenterology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan, Republic of China
| | | |
Collapse
|
36
|
The role of cell surface architecture of lactobacilli in host-microbe interactions in the gastrointestinal tract. Mediators Inflamm 2013; 2013:237921. [PMID: 23576850 PMCID: PMC3610365 DOI: 10.1155/2013/237921] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 02/11/2013] [Indexed: 11/18/2022] Open
Abstract
Lactobacillus species can exert health promoting effects in the gastrointestinal tract (GIT) through many mechanisms, which include pathogen inhibition, maintenance of microbial balance, immunomodulation, and enhancement of the epithelial barrier function. Different species of the genus Lactobacillus can evoke different responses in the host, and not all strains of the same species can be considered beneficial. Strain variations may be related to diversity of the cell surface architecture of lactobacilli and the bacteria's ability to express certain surface components or secrete specific compounds in response to the host environment. Lactobacilli are known to modify their surface structures in response to stress factors such as bile and low pH, and these adaptations may help their survival in the face of harsh environmental conditions encountered in the GIT. In recent years, multiple cell surface-associated molecules have been implicated in the adherence of lactobacilli to the GIT lining, immunomodulation, and protective effects on intestinal epithelial barrier function. Identification of the relevant bacterial ligands and their host receptors is imperative for a better understanding of the mechanisms through which lactobacilli exert their beneficial effects on human health.
Collapse
|
37
|
Functionality of the S-layer proteins from Lactobacillus in the competitive against enteropathogens infection. Eur Food Res Technol 2012. [DOI: 10.1007/s00217-012-1871-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
38
|
Karlsson M, Jass J. Lactobacilli differently regulate expression and secretion of CXCL8 in urothelial cells. Benef Microbes 2012; 3:195-203. [DOI: 10.3920/bm2012.0011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Modulation of the immune response is an established feature of certain lactobacilli. CXCL8 is an inflammatory chemokine released by the urinary tract mucosa after contact with uropathogenic Escherichia coli during urinary tract infection and is crucial for proper infiltration of immune cells. Nevertheless, persistently high levels of CXCL8 are associated with pathogenicity and malignancy. In this study, we tested twelve Lactobacillus strains for their ability to influence CXCL8 release from urothelial cells. We evaluated how strains from different Lactobacillus species could regulate CXCL8 in human 5637 urothelial cells, either resting cells or cells concomitantly challenged with heat-killed E. coli. A majority of the tested species altered CXCL8 release from the urothelial cells after 24 hours of stimulation. Most species increased CXCL8 release, whereas a few lactobacilli efficiently suppressed CXCL8 secretion from E. coli-challenged cells. While strong CXCL8 modulators such as Lactobacillus reuteri and Lactobacillus delbrueckii were unable to degrade CXCL8 in the extracellular environment, effects on IL8 transcription were evident for selected lactobacilli. Although IL8 transcription was affected by lactobacilli, the influence on mRNA transcript did not correlate to the impact on CXCL8 release. Phylogenetic analysis based on a 16S rRNA dendrogram of the tested lactobacilli and their effect on CXCL8 revealed some linkage to specific Lactobacillus groups. Testing the immunomodulatory nature of lactobacilli can prove important when selecting new probiotic microbes. Moreover, we believe that phylogenetic and phenotypic similarities could be used to analyse the traits governing such modulation.
Collapse
Affiliation(s)
- M. Karlsson
- School of Science and Technology, Örebro Life Science Center, Örebro University, 701 82 Örebro Sweden
| | - J. Jass
- School of Science and Technology, Örebro Life Science Center, Örebro University, 701 82 Örebro Sweden
| |
Collapse
|
39
|
Reduction of overall Helicobacter pylori colonization levels in the stomach of Mongolian gerbil by Lactobacillus johnsonii La1 (LC1) and its in vitro activities against H. pylori motility and adherence. Biosci Biotechnol Biochem 2012; 76:850-2. [PMID: 22484956 DOI: 10.1271/bbb.110921] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The effects of Lactobacillus johnsonii La1 (LC1) on Helicobacter pylori colonization in the stomach were investigated. H. pylori colonization and gastritis in LC1-inoculated Mongolian gerbils were significantly less intense than those in the control animals. LC1 culture supernatant (>10-kDa fraction) inhibited H. pylori motility and induced bacterial aggregation in human gastric epithelial cells, suggesting the potential of clinical use of LC1 product.
Collapse
|
40
|
Santos Rocha C, Lakhdari O, Blottière HM, Blugeon S, Sokol H, Bermúdez-Humarán LG, Azevedo V, Miyoshi A, Doré J, Langella P, Maguin E, van de Guchte M. Anti-inflammatory properties of dairy lactobacilli. Inflamm Bowel Dis 2012; 18:657-66. [PMID: 21837773 DOI: 10.1002/ibd.21834] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 06/28/2011] [Indexed: 12/14/2022]
Abstract
BACKGROUND The intestinal microbiota plays an important role in human health through the modulation of innate immune responses. While selected commensal bacteria are marketed in specific probiotic products to control these responses, relatively little is known about the immune modulation potential of dairy bacteria that have principally been selected for their fermentation properties. The modulation of innate immune responses may reduce chronic inflammation in inflammatory bowel diseases like ulcerative colitis. METHODS A collection of dairy Lactobacillus delbrueckii strains was screened for immune modulation effects in vitro through the quantification of nuclear factor kappa B (NF-κB) activation in a human intestinal epithelial cell line. Selected bacterial strains were then tested in vivo in a mouse dextran sodium sulfate (DSS) colitis model. RESULTS All L. delbrueckii strains tested showed anti-inflammatory effects in vitro, to an extent that varied between strains. These effects rely on bacterial surface exposed proteins and affect the central part of the NF-κB activation pathway. One of the selected strains significantly reduced the macroscopic and microscopic symptoms of DSS-induced colitis in the mouse intestinal tract, diminished body weight loss, and improved survival. CONCLUSIONS The results of this study show that dairy lactobacilli that often are part of a regular diet can modulate innate immune responses, and may thus affect health more than generally thought. One of the strains tested alleviated the symptoms of DSS-induced colitis in mice, a model of human ulcerative colitis.
Collapse
|
41
|
Górska-Frączek S, Sandström C, Kenne L, Rybka J, Strus M, Heczko P, Gamian A. Structural studies of the exopolysaccharide consisting of a nonasaccharide repeating unit isolated from Lactobacillus rhamnosus KL37B. Carbohydr Res 2011; 346:2926-32. [PMID: 22063501 DOI: 10.1016/j.carres.2011.10.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 10/13/2011] [Accepted: 10/15/2011] [Indexed: 12/20/2022]
Abstract
A novel structure of exopolysaccharide from the lactic acid bacteria (LAB) Lactobacillus rhamnosus KL37B, from the human intestinal flora, is described. During the structural investigation of the exopolysaccharide it was found that the repeating unit is a nonasaccharide, which is the largest repeating unit found in LAB exopolysaccharides to date. The polysaccharide material was prepared by TCA extraction of a bacterial cell mass, purified by anion-exchange and gel permeation chromatography and characterized using chemical and enzymatic methods. On the basis of monosaccharide and methylation analysis and also 1D and 2D (1)H and (13)C NMR spectroscopy the exopolysaccharide was shown to be composed of the following nonasaccharide repeating unit: The physicochemical cell surface study and adhesive properties indicated distinct surface properties of Lactobacillus rhamnosus strain KL37B with high adhesive abilities to Caco-2 cells, hydrophobicity and slime production, in comparison to other Lactobacillus strains used as controls.
Collapse
Affiliation(s)
- Sabina Górska-Frączek
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wrocław, Poland.
| | | | | | | | | | | | | |
Collapse
|
42
|
Ciszek-Lenda M, Nowak B, Sróttek M, Gamian A, Marcinkiewicz J. Immunoregulatory potential of exopolysaccharide from Lactobacillus rhamnosus KL37: effects on the production of inflammatory mediators by mouse macrophages. Int J Exp Pathol 2011; 92:382-91. [PMID: 21950581 DOI: 10.1111/j.1365-2613.2011.00788.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The ability to produce exopolysaccharides (EPS) is widespread among lactobacilli including Lactobacillus rhamnosus, the commonly used probiotic bacteria. Exopolysaccharides are a major component of the bacterial biofilm with a well-documented impact on adherence of bacteria to host cells. However, their immunoregulatory properties are unknown. The aim of this study was to examine the immunostimulatory potential of EPS derived from L. rhamnosus KL37. We investigated the effect of EPS on the production of inflammatory mediators by mouse peritoneal macrophages and compared it with the effect of Lipopolysaccharide (LPS). Exopolysaccharides, at concentrations higher than those of LPS, stimulated production of both pro-inflammatory (TNF-α, IL-6, IL-12) and anti-inflammatory (IL-10) cytokines. Interestingly, analysis of the balance of TNF-α/IL-10 production showed a potential pro-inflammatory effect of EPS. Furthermore, our data demonstrate that exposure of macrophages to LPS induced a state of hyporesponsiveness, as indicated by reduced production of TNF-α after restimulation with either LPS or EPS ('cross-tolerance'). By contrast, EPS could make cells tolerant only to subsequent stimulation by the same stimulus. We also examined the relationship between TNF-α production and activation of mitogen-activated protein kinases (MAPKs) by EPS and LPS. Pretreatment of macrophages with specific inhibitors of p38 and ERK MAPKs reduced TNF-α production induced by both stimuli to the same extent. In conclusion, these data demonstrate that EPS can effectively stimulate production of inflammatory mediators by macrophages in vitro. However, to predict whether EPS could be clinically useful as an immunomodulatory agent, further in vivo studies with highly purified EPS are necessary.
Collapse
|
43
|
Taverniti V, Guglielmetti S. The immunomodulatory properties of probiotic microorganisms beyond their viability (ghost probiotics: proposal of paraprobiotic concept). GENES AND NUTRITION 2011; 6:261-74. [PMID: 21499799 DOI: 10.1007/s12263-011-0218-x] [Citation(s) in RCA: 392] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Accepted: 03/24/2011] [Indexed: 12/20/2022]
Abstract
The probiotic approach represents a potentially effective and mild alternative strategy for the prevention and treatment of either inflammatory or allergic diseases. Several studies have shown that different bacterial strains can exert their probiotic abilities by influencing the host's immune system, thereby modulating immune responses. However, the emerging concern regarding safety problems arising from the extensive use of live microbial cells is enhancing the interest in non-viable microorganisms or microbial cell extracts, as they could eliminate shelf-life problems and reduce the risks of microbial translocation and infection. The purpose of this review is to provide an overview of the scientific literature concerning studies in which dead microbial cells or crude microbial cell fractions have been used as health-promoting agents. Particular attention will be given to the modulation of host immune responses. Possible mechanisms determining the effect on the immune system will also be discussed. Finally, in the light of the FAO/WHO definition of probiotics, indicating that the word 'probiotic' should be restricted to products that contain live microorganisms, and considering the scientific evidence indicating that inactivated microbes can positively affect human health, we propose the new term 'paraprobiotic' to indicate the use of inactivated microbial cells or cell fractions to confer a health benefit to the consumer.
Collapse
Affiliation(s)
- Valentina Taverniti
- Department of Food Science and Microbiology (DiSTAM), Università degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy
| | | |
Collapse
|
44
|
Abstract
Mucosal dendritic cells are at the heart of decision-making processes that dictate immune reactivity to intestinal microbes. They ensure tolerance to commensal bacteria and a vigorous immune response to pathogens. It has recently been demonstrated that the former involves a limited migration of bacterially loaded dendritic cells from the Peyer's patches to the mesenteric lymph nodes. During lactation, cells from gut-associated lymphoid tissue travel to the breast via the lymphatics and peripheral blood. Here, we show that human peripheral blood mononuclear cells and breast milk cells contain bacteria and their genetic material during lactation. Furthermore, we show an increased bacterial translocation from the mouse gut during pregnancy and lactation and the presence of bacterially loaded dendritic cells in lactating breast tissue. Our observations show bacterial translocation as a unique physiological event, which is increased during pregnancy and lactation. They suggest endogenous transport of intestinally derived bacterial components within dendritic cells destined for the lactating mammary gland. They also suggest neonatal immune imprinting by milk cells containing commensal-associated molecular patterns.
Collapse
|
45
|
Host interactions of probiotic bacterial surface molecules: comparison with commensals and pathogens. Nat Rev Microbiol 2010; 8:171-84. [PMID: 20157338 DOI: 10.1038/nrmicro2297] [Citation(s) in RCA: 689] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
How can probiotic bacteria transduce their health benefits to the host? Bacterial cell surface macromolecules are key factors in this beneficial microorganism-host crosstalk, as they can interact with host pattern recognition receptors (PRRs) of the gastrointestinal mucosa. In this Review, we highlight the documented signalling interactions of the surface molecules of probiotic bacteria (such as long surface appendages, polysaccharides and lipoteichoic acids) with PRRs. Research on host-probiotic interactions can benefit from well-documented host-microorganism studies that span the spectrum from pathogenicity to mutualism. Distinctions and parallels are therefore drawn with the interactions of similar molecules that are presented by gastrointestinal commensals and pathogens.
Collapse
|
46
|
Yu Z, Dong B, Lu W. Dynamics of bacterial community in solid-state fermented feed revealed by 16S rRNA. Lett Appl Microbiol 2009; 49:166-72. [DOI: 10.1111/j.1472-765x.2009.02636.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Wood C, Keeling S, Bradley S, Johnson-Green P, Green-Johnson JM. Interactions in the mucosal microenvironment: vasoactive intestinal peptide modulates the down-regulatory action ofLactobacillus rhamnosuson LPS-induced interleukin-8 production by intestinal epithelial cells. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2009. [DOI: 10.1080/08910600701278722] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Christine Wood
- School of Nutrition and Dietetics, Acadia University, Wolfville, NS
| | - Suzanne Keeling
- Faculty of Science, University of Ontario Institute of Technology, Oshawa, ON, Canada
| | - Shannon Bradley
- Faculty of Science, University of Ontario Institute of Technology, Oshawa, ON, Canada
| | - Perry Johnson-Green
- School of Nutrition and Dietetics, Acadia University, Wolfville, NS
- Faculty of Science, University of Ontario Institute of Technology, Oshawa, ON, Canada
| | | |
Collapse
|
48
|
Genes and molecules of lactobacilli supporting probiotic action. Microbiol Mol Biol Rev 2009; 72:728-64, Table of Contents. [PMID: 19052326 DOI: 10.1128/mmbr.00017-08] [Citation(s) in RCA: 653] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Lactobacilli have been crucial for the production of fermented products for centuries. They are also members of the mutualistic microbiota present in the human gastrointestinal and urogenital tract. Recently, increasing attention has been given to their probiotic, health-promoting capacities. Many human intervention studies demonstrating health effects have been published. However, as not all studies resulted in positive outcomes, scientific interest arose regarding the precise mechanisms of action of probiotics. Many reported mechanistic studies have addressed mainly the host responses, with less attention being focused on the specificities of the bacterial partners, notwithstanding the completion of Lactobacillus genome sequencing projects, and increasing possibilities of genomics-based and dedicated mutant analyses. In this emerging and highly interdisciplinary field, microbiologists are facing the challenge of molecular characterization of probiotic traits. This review addresses the advances in the understanding of the probiotic-host interaction with a focus on the molecular microbiology of lactobacilli. Insight into the molecules and genes involved should contribute to a more judicious application of probiotic lactobacilli and to improved screening of novel potential probiotics.
Collapse
|
49
|
Feeding of Lactobacillus sobrius reduces Escherichia coli F4 levels in the gut and promotes growth of infected piglets. FEMS Microbiol Ecol 2008; 66:599-607. [DOI: 10.1111/j.1574-6941.2008.00517.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
50
|
Adhesion of the probiotic strains Enterococcus mundtii ST4SA and Lactobacillus plantarum 423 to Caco-2 cells under conditions simulating the intestinal tract, and in the presence of antibiotics and anti-inflammatory medicaments. Arch Microbiol 2008; 190:573-84. [DOI: 10.1007/s00203-008-0408-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 05/21/2008] [Accepted: 06/30/2008] [Indexed: 11/30/2022]
|