1
|
Ito M, Kataoka M, Sato Y, Nachi H, Nomoto K, Okada N. Diverse vaginal microbiota in healthy Japanese women: a combined relative and quantitative analyses. Front Cell Infect Microbiol 2025; 14:1487990. [PMID: 39967801 PMCID: PMC11832463 DOI: 10.3389/fcimb.2024.1487990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/30/2024] [Indexed: 02/20/2025] Open
Abstract
Introduction This cross-sectional study aimed to characterize the viable vaginal microbiota and identify host factors influencing this microbiota by employing a combination of relative and quantitative analyses. Methods Twenty-four vaginal fluid samples were collected from healthy adult Japanese women for analysis. Vaginal fluid pH was measured using a portable pH meter. DNA was extracted from the vaginal fluid, and the 16S ribosomal RNA gene sequences in the V3-V4 regions were analyzed to identify bacterial species. Additionally, the vaginal fluid was cultured on four types of selective agar plates. The predominant species in the growing colonies were identified using colony polymerase chain reaction, and the colonies were counted. Results The vaginal microbiota was classified into four categories based on the characterization of the dominant bacterial population: Lactobacillus crispatus, Lactobacillus iners, Lactobacillus gasseri, and a diversity group. The predominant bacterial species were consistent across methods; however, the levels of the viable population varied significantly. Body mass index had a significant influence on the total number of viable bacteria and vaginal pH, while age only affected vaginal pH. Conclusions Our findings indicate that the vaginal microbiome of healthy Japanese women is not only highly diverse but also affected by host factors such as BMI and age.
Collapse
Affiliation(s)
- Masahiro Ito
- Laboratory of Microbiology, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Misaki Kataoka
- Laboratory of Microbiology, School of Pharmacy, Kitasato University, Tokyo, Japan
| | | | - Hideki Nachi
- HMS Women’s Health Research and Development Center, Hanamisui Co., Ltd., Tokyo, Japan
| | - Koji Nomoto
- HMS Women’s Health Research and Development Center, Hanamisui Co., Ltd., Tokyo, Japan
- Department of Molecular Microbiology, Tokyo University of Agriculture, Tokyo, Japan
| | - Nobuhiko Okada
- Laboratory of Microbiology, School of Pharmacy, Kitasato University, Tokyo, Japan
| |
Collapse
|
2
|
Abd El-Hamid MI, Abd El-Aziz NK, Ammar AM, Gharib AA, Ibrahim GA, Moawed BFM, Alshamy H, El-Malt RMS. Emergence of multi-drug-resistant, vancomycin-resistant, and multi-virulent Enterococcus species from chicken, dairy, and human samples in Egypt. J Appl Microbiol 2025; 136:lxaf001. [PMID: 39756378 DOI: 10.1093/jambio/lxaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/20/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
AIMS The present study aimed to detect the frequency of vancomycin resistance and virulence genes' profiles of multi-drug-resistant (MDR) enterococcal isolates from different sources and to investigate the sequence heterogeneity between the esp genes of MDR and vancomycin-resistant Enterococcus faecalis isolates from chicken and human sources. METHODS AND RESULTS Conventional phenotypic methods identified 91 isolates (60.7%) as Enterococcus species, and these isolates were retrieved from dairy (37/52), chicken (35/54), and human (19/44) origins. Enterococcal isolates were frequently resistant to rifampin (67%), and 38.5% of the isolates were MDR. Of the 22 vancomycin-resistant enterococci (VRE) detected isolates, 11 (50%), 9 (41%), 1 (4.5%), and 1 (4.5%) isolate were identified as E. faecium, E. faecalis, E. casseliflavus, and un-specified Enterococcus spp., respectively. Moreover, 22 (100%) and 19 (86.4%) isolates harbored vanA and vanB genes, respectively. Of note, gelE and asa1 genes were more prevalent among the tested isolates (95.5% each), and the multi-virulence criteria were detected among 68.2% of the examined isolates. The sequences of esp genes of E. faecalis from the chicken breast meat and human urine samples were 100% identical with other esp genes and pathogenicity islands on GeneBank, which is undesirable. CONCLUSION Our findings require strict hygienic measures during the processing of chickens and their by-products to minimize the possibility of transmission of virulent enterococcal strains. Furthermore, the use of antimicrobials in poultry and animal production in developing countries should be controlled to minimize the prevalence of MDR and VRE isolates in humans.
Collapse
Affiliation(s)
- Marwa I Abd El-Hamid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Norhan K Abd El-Aziz
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Ahmed M Ammar
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Ahlam A Gharib
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Ghada A Ibrahim
- Bacteriology Department, Animal Health Research Institute (AHRI), Ismailia Branch, Agriculture Research Center (ARC), Ismailia 41522, Egypt
| | - Basma F M Moawed
- Department of Bacteriology, Animal Health Research Institute (AHRI), Zagazig Branch, Agriculture Research Center (ARC), Zagazig 44516, Egypt
| | - Hend Alshamy
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Rania M S El-Malt
- Department of Bacteriology, Animal Health Research Institute (AHRI), Zagazig Branch, Agriculture Research Center (ARC), Zagazig 44516, Egypt
| |
Collapse
|
3
|
Chinbat O, Erdenetsog P, Tuvshintur B, Gantumur A, Burenjargal M, Chimeddorj B, Janlav M. In vitro and in vivo investigation of the biological action of xylooligosaccharides derived from industrial waste. Food Sci Nutr 2024; 12:7877-7884. [PMID: 39479607 PMCID: PMC11521651 DOI: 10.1002/fsn3.4391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 07/10/2024] [Accepted: 07/25/2024] [Indexed: 11/02/2024] Open
Abstract
Xylooligosaccharides (XOS) are prebiotics of significant biological value that can be obtained through cost-effective purification of agricultural waste. The present research featured in vitro and in vivo investigation of prebiotic effects of xylooligosaccharides derived from wheat bran powder and brewer's spent grain. Prebiotic activity of Lactobacillus. fermentum, Lactobacillus. casei, and Bifidobacterium spp. was investigated in vitro using standard selective media. 16S rRNA quantitative PCR used for in vitro and in vivo investigation quantified relative abundance of Bifidobacterium spp., Lactobacillus spp., and Akkermansia. muciniphila in samples of fecal matter, cecal content, and intestinal tissue. Research revealed a favorable association between XOS concentration and both bacterial count and diameter of resultant colonies. The standard strain of L. casei showed no noticeable effect on growth rate. Bifidobacterium spp. proliferation in intestinal tissue was validated via in vivo tests using XOS obtained from wheat bran powder and brewer's spent grain. Findings indicated increased prevalence of the A. muciniphila species and the presence of XOS showed a protective function in preserving the structural integrity of intestinal mucus secretions. The presence of XOS in food indicated direct association with proliferation of Bifidobacterium spp. and A. muciniphila spp. Study results suggest that XOS extracted through enzymatic hydrolysis in Mongolian food industry by-products such as wheat bran products and brewer's spent grain exhibit prebiotic properties that justify XOS manufacture on a large scale and incorporation of XOS as nutritional enhancement in food products and pharmaceuticals.
Collapse
Affiliation(s)
- Odgerel Chinbat
- Department of Biochemistry, School of BioMedicineMongolian National University of Medical SciencesUlaanbaatarMongolia
| | - Purevdulam Erdenetsog
- Department of Biochemistry, School of BioMedicineMongolian National University of Medical SciencesUlaanbaatarMongolia
| | - Buyankhuu Tuvshintur
- Department of Biochemistry, School of BioMedicineMongolian National University of Medical SciencesUlaanbaatarMongolia
| | - Anuujin Gantumur
- Department of Microbiology and Infection Prevention Control, School of BioМedicineMongolian National University of Medical SciencesUlaanbaatarMongolia
| | - Munkhjargal Burenjargal
- Department of Chemistry, School of Arts and SciencesNational University of MongoliaUlaanbaatarMongolia
| | - Battogtokh Chimeddorj
- Department of Microbiology and Infection Prevention Control, School of BioМedicineMongolian National University of Medical SciencesUlaanbaatarMongolia
| | - Munkhtsetseg Janlav
- Department of Biochemistry, School of BioMedicineMongolian National University of Medical SciencesUlaanbaatarMongolia
| |
Collapse
|
4
|
Zhou T, Wu J, Khan A, Hu T, Wang Y, Salama ES, Su S, Han H, Jin W, Li X. A probiotic Limosilactobacillus fermentum GR-3 mitigates colitis-associated tumorigenesis in mice via modulating gut microbiome. NPJ Sci Food 2024; 8:61. [PMID: 39242568 PMCID: PMC11379937 DOI: 10.1038/s41538-024-00307-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024] Open
Abstract
Bacterial therapy for colorectal cancer (CRC) represents a burgeoning frontier. The probiotic Limosilactobacillus fermentum GR-3, derived from traditional food "Jiangshui", exhibited superior antioxidant capacity by producing indole derivatives ICA and IPA. In an AOM/DSS-induced CRC mouse model, GR-3 treatment alleviated weight loss, colon shortening, rectal bleeding and intestinal barrier disruption by reducing oxidative stress and inflammation. GR-3 colonization in distant colon induced apoptosis and reduced tumor incidence by 51.2%, outperforming the control strain and vitamin C. The beneficial effect of GR-3 on CRC was associated with gut microbiome modulation, increasing SCFA producer Lachnospiraceae NK4A136 group and suppressing pro-inflammatory strain Bacteroides. Metagenomic and metabolic analyses revealed that GR-3 intervention upregulated antioxidant genes (xseA, ALDH) and butyrate synthesis gene (bcd), while increasing beneficial metabolites (SCFAs, ICA, IPA, VB12 and VD3) and reducing harmful secondary bile acids. Overall, GR-3 emerges as a promising candidate in CRC therapy, offering effective gut microbiome remediation.
Collapse
Affiliation(s)
- Tuoyu Zhou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, China
| | - Jingyuan Wu
- The First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, 730000, China
| | - Aman Khan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Tianxiang Hu
- Georgia Cancer Center, Augusta University, 1410 Laney Walker Blvd, Augusta, GA, 30912, USA
| | - Yiqing Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, 730000, China
| | - El-Sayed Salama
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu Province, PR China
| | - Shaochen Su
- Healthy Examination & Management Center, First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Huawen Han
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, China.
| | - Weilin Jin
- Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou, China.
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
5
|
Muñoz-Labrador A, Kolida S, Rastall RA, Methven L, Lebrón-Aguilar R, Quintanilla-López JE, Galindo-Iranzo P, Javier Moreno F, Hernandez-Hernandez O. Prebiotic potential of new sweeteners based on the simultaneous biosynthesis of galactooligosaccharides and enzymatically modified steviol glycosides. Food Chem 2024; 436:137761. [PMID: 37862998 DOI: 10.1016/j.foodchem.2023.137761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023]
Abstract
Prebiotics are known for their health-promoting functions associated with the modulation of the colonic microbiota and the products of fermentation. Recently, single-pot syntheses of galactooligosaccharides in combination with steviol glycosides (mSG-GOS) have been developed. This work was conducted to evaluate their prebiotic effect by using faecal inoculum from healthy human donors during in vitro batch fermentations. Additionally, their relative sweetness was evaluated to determine their suitability as food ingredients. The results showed a significant growth (p < 0.05) of bacteria, including the genera Bifidobacterium, Bacteroides and Clostridium, and a corresponding increase in short-chain fatty acids (SCFA) in comparison to either positive and negative controls. The sweetness equivalence to 1 % w:v of SG-GOS was 0.8 % w:v when compared to sucrose. Considering the bacteria and organic acids analyses and their sweetness values of these new biosynthesized compounds, SG-GOS could act as a prebiotic sweetener with potential health benefits warranting further evaluation through human studies.
Collapse
Affiliation(s)
- Ana Muñoz-Labrador
- Institute of Food Science Research, CIAL (CSIC-UAM), C/ Nicolas Cabrera, 9, Campus Cantoblanco, 28049 Madrid, Spain.
| | - Sofia Kolida
- OptiBiotix Health plc, Innovation Centre, Innovation Way, Heslington, York YO10 5DG, UK
| | - Robert A Rastall
- Department of Food and Nutritional Sciences, The University of Reading, PO Box 226, Whiteknights, Reading RG6 6 AP, UK
| | - Lisa Methven
- Department of Food and Nutritional Sciences, The University of Reading, PO Box 226, Whiteknights, Reading RG6 6 AP, UK
| | - Rosa Lebrón-Aguilar
- Institute of Physical Chemistry "Rocasolano" (IQFR-CSIC), 28006 Madrid, Spain
| | | | | | - F Javier Moreno
- Institute of Food Science Research, CIAL (CSIC-UAM), C/ Nicolas Cabrera, 9, Campus Cantoblanco, 28049 Madrid, Spain
| | - Oswaldo Hernandez-Hernandez
- Institute of Food Science Research, CIAL (CSIC-UAM), C/ Nicolas Cabrera, 9, Campus Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
6
|
Morisaki Y, Miyata N, Nakashima M, Hata T, Takakura S, Yoshihara K, Suematsu T, Nomoto K, Miyazaki K, Tsuji H, Sudo N. Persistence of gut dysbiosis in individuals with anorexia nervosa. PLoS One 2023; 18:e0296037. [PMID: 38117788 PMCID: PMC10732397 DOI: 10.1371/journal.pone.0296037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/03/2023] [Indexed: 12/22/2023] Open
Abstract
Recent evidence suggests a crucial role of the gut microbiota in the pathogenesis of anorexia nervosa (AN). In this study, we carried out a series of multiple analyses of the gut microbiota of hospitalized individuals with AN over three months using 16S or 23S rRNA-targeted reverse transcription-quantitative polymerase chain reaction (PCR) technology (YIF-SCAN®), which is highly sensitive and enables the precise quantification of viable microorganisms. Despite the weight gain and improvements in psychological features observed during treatment, individuals with AN exhibited persistent gut microbial dysbiosis over the three-month duration. Principal component analysis further underscored the distinct microbial profile of individuals with AN, compared with that of age-matched healthy women at all time points. Regarding the kinetics of bacterial detection, the detection rate of Lactiplantibacillus spp. significantly increased after inpatient treatment. Additionally, the elevation in the Bifidobacterium counts during inpatient treatment was significantly correlated with the subsequent body weight gain after one year. Collectively, these findings suggest that gut dysbiosis in individuals with AN may not be easily restored solely through weight gain, highlighting the potential of therapeutic interventions targeting microbiota via dietary modifications or live biotherapeutics.
Collapse
Affiliation(s)
- Yukiko Morisaki
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Noriyuki Miyata
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Megumi Nakashima
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomokazu Hata
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shu Takakura
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazufumi Yoshihara
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Center for Health Sciences and Counseling, Kyushu University, Fukuoka, Japan
| | - Takafumi Suematsu
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koji Nomoto
- Faculty of Life Sciences, Department of Molecular Microbiology, Tokyo University of Agriculture, Setagaya City, Japan
| | | | | | - Nobuyuki Sudo
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
7
|
Liu J, Wu S, Zhao H, Ye C, Fu S, Liu Y, Liu T, Qiu Y. Baicalin-aluminum alleviates necrotic enteritis in broiler chickens by inhibiting virulence factors expression of Clostridium perfringens. Front Cell Infect Microbiol 2023; 13:1243819. [PMID: 37818042 PMCID: PMC10561085 DOI: 10.3389/fcimb.2023.1243819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/11/2023] [Indexed: 10/12/2023] Open
Abstract
Clostridium perfringens type A is the main cause of necrotic enteritis (NE) in chickens. Since the use of antibiotics in feed is withdrawn, it is imperative to find out suitable alternatives to control NE. Baicalin-aluminum complex is synthesized from baicalin, a flavonoid isolated from Scutellaria baicalensis Georgi. The present study investigated the effects of baicalin-aluminum on the virulence-associated traits and virulence genes expression of C. perfringens CVCC2030, it also evaluated the in vivo therapeutic effect on NE. The results showed that baicalin-aluminum inhibited bacterial hemolytic activity, diminished biofilm formation, attenuated cytotoxicity to Caco-2 cells, downregulated the expression of genes encoding for clostridial toxins and extracellular enzymes such as alpha toxin (CPA), perfringolysin O (PFO), collagenase (ColA), and sialidases (NanI, NanJ). Additionally, baicalin-aluminum was found to negatively regulate the expression of genes involved in quorum sensing (QS) communication, including genes of Agr QS system (agrB, agrD) and genes of VirS/R two-component regulatory system (virS, virR). In vivo experiments, baicalin-aluminum lightened the intestinal lesions and histological damage, it inhibited pro-inflammatory cytokines (TNF-α, IL-1β, IL-6) expression in the jejunal and ileal tissues. Besides, baicalin-aluminum alleviated the upregulation of C. perfringens and Escherichia coli and raised the relative abundance of Lactobacillus in the ileal digesta. This study suggests that baicalin-aluminum may be a potential candidate against C. perfringens infection by inhibiting the virulence-associated traits and virulence genes expression.
Collapse
Affiliation(s)
- Jin Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, China
| | - Shuangqi Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, China
| | - Honghao Zhao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, China
| | - Chun Ye
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, China
| | - Shulin Fu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, China
| | - Yu Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, China
| | - Ting Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, China
| | - Yinsheng Qiu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
8
|
Hussein MA, Khattak F, Vervelde L, Athanasiadou S, Houdijk JGM. Growth performance, caecal microbiome profile, short-chain fatty acids, and litter characteristics in response to placement on reused litter and combined threonine, arginine and glutamine supplementation to juvenile male broiler chickens. Anim Microbiome 2023; 5:18. [PMID: 36945017 PMCID: PMC10031934 DOI: 10.1186/s42523-023-00240-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/13/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Exposure of broilers to litter microbiome may increase specific amino acid (AA) requirements towards activated immune responses. This may challenge the generality of the ideal protein (IP) concept, in which dietary essential AA to lysine ratios aimed to mimic presumably constant AA to lysine ratios in whole bird requirements. Therefore, we tested the effect of threonine, arginine and glutamine (TAG) supplementation to IP-based control diets (C) on performance, caecal microbiome composition, short-chain fatty acids and litter characteristics of broiler chickens placed on reused litter. RESULTS Thirty-two pens with ten male broiler chickens each were used in a 2 × 2 factorial arrangement of two diet treatments (with or without TAG supplementation) and two litter treatments (placement on clean or reused litter) for 21 days (n = 8). Caecal contents were analysed for microbiome profile using percent guanine + cytosine (%G + C profile) method and short chain fatty acids. TAG-supplemented birds underperformed compared to C birds (P = 0.002), whereas birds placed on reused litter outperformed those on clean litter (P = 0.047). Diet, reused litter and their interaction impacted the %G + C profile at different ranges. Whilst TAG supplementation reduced bacterial abundance at %G + C 51-56 (P < 0.05), reused litter placement tended to reduce %G + C 23-31 and increase %G + C 56-59 (P < 0.10). However, TAG supplementation reduced bacterial abundance at %G + C 47-51 (P < 0.05) and increased caecal branched chain fatty acids on clean litter only (P = 0.025). Greater levels of propionic acid were observed for C birds placed on reused litter only (P = 0.008). Litter pH was greater for reused litter pens than clean litter pens at day 21 (P < 0.001). In addition, litter moisture content was less for TAG birds and reused litter pens compared to C birds (P = 0.041) and clean litter pens (P < 0.001), respectively. CONCLUSIONS These data support the view that irrespective of performance benefits arising from bird placement on reused litter, TAG supplementation to IP-formulated baseline rations impaired growth, supported by the lowered abundance of caecal bacteria known to dominate in well-performing birds and greater levels of caecal branched chain fatty acids.
Collapse
Affiliation(s)
- Marwa A Hussein
- Monogastric Science Research Centre, Scotland's Rural College (SRUC), Edinburgh, UK.
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK.
- Nutrition and Nutritional Deficiency Diseases Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt.
| | - Farina Khattak
- Monogastric Science Research Centre, Scotland's Rural College (SRUC), Edinburgh, UK
| | - Lonneke Vervelde
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | | | - Jos G M Houdijk
- Monogastric Science Research Centre, Scotland's Rural College (SRUC), Edinburgh, UK
| |
Collapse
|
9
|
Gu J, Zhang P, Yao Z, Li X, Zhang H. BdNub Is Essential for Maintaining gut Immunity and Microbiome Homeostasis in Bactrocera dorsalis. INSECTS 2023; 14:178. [PMID: 36835747 PMCID: PMC9964267 DOI: 10.3390/insects14020178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Insects face immune challenges posed by invading and indigenous bacteria. They rely on the immune system to clear these microorganisms. However, the immune response can be harmful to the host. Therefore, fine-tuning the immune response to maintain tissue homeostasis is of great importance to the survival of insects. The Nub gene of the OCT/POU family regulates the intestinal IMD pathway. However, the role of the Nub gene in regulating host microbiota remains unstudied. Here, a combination of bioinformatic tools, RNA interference, and qPCR methods were adopted to study BdNub gene function in Bactrocera dorsalis gut immune system. It's found that BdNubX1, BdNubX2, and antimicrobial peptides (AMPs), including Diptcin (Dpt), Cecropin (Cec), AttcinA (Att A), AttcinB (Att B) and AttcinC (Att C) are significantly up-regulated in Tephritidae fruit fly Bactrocera dorsalis after gut infection. Silencing BdNubX1 leads to down-regulated AMPs expression, while BdNubX2 RNAi leads to increased expression of AMPs. These results indicate that BdNubX1 is a positive regulatory gene of the IMD pathway, while BdNubX2 negatively regulates IMD pathway activity. Further studies also revealed that BdNubX1 and BdNubX2 are associated with gut microbiota composition, possibly through regulation of IMD pathway activity. Our results prove that the Nub gene is evolutionarily conserved and participates in maintaining gut microbiota homeostasis.
Collapse
|
10
|
Tomioka R, Tanaka Y, Suzuki M, Ebihara S. The Effects of Black Tea Consumption on Intestinal Microflora-A Randomized Single-Blind Parallel-Group, Placebo-Controlled Study. J Nutr Sci Vitaminol (Tokyo) 2023; 69:326-339. [PMID: 37940573 DOI: 10.3177/jnsv.69.326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
We previously reported that black tea consumption for 12 wk reduced the risk of acute upper respiratory tract inflammation, and improved secretory capacity in individuals with low salivary SIgA levels (Tanaka Y et al. 2021. Jpn Pharmacol Ther 49: 273-288). These results suggested that habitual black tea consumption improves mucosal immunity. Therefore, in this study we evaluated the effect of black tea intake on gut microbiota, which is known to be involved in mucosal immunity, by analyzing the bacterial flora and the short-chain fatty acids (SCFAs) concentration of feces collected during the above clinical study. The clinical design was a randomized, single-blind, parallel-group, placebo-controlled study with 72 healthy Japanese adult males and females, who consumed three cups of black tea (Black Tea Polymerized Polyphenols 76.2 mg per day) or placebo per day for 12 wk. In all subjects intake of black tea significantly increased abundance of Prevotella and decreased fecal acetic acid concentration. Particularly in the subjects with low salivary SIgA levels, the change over time of total bacteria, Prevotella, and butyrate-producing bacteria, which are involved in normalizing immune function, were higher in the black tea group than in the placebo group. In subjects with low abundance of Flavonifractor plautii a butyrate-producing bacteria, black tea consumption significantly increased salivary SIgA concentration and the absolute number of Flavonifractor plautii. In conclusion, our results suggest that improvement of mucosal immunity via an increase in butyrate-producing bacteria in the gut may partly contribute to the suppressive effect of black tea consumption on acute upper respiratory tract inflammation observed in our previous report.
Collapse
|
11
|
Evaluation of candidate reference genes stability for gene expression analysis by reverse transcription qPCR in Clostridium perfringens. Sci Rep 2022; 12:19434. [PMID: 36372839 PMCID: PMC9659559 DOI: 10.1038/s41598-022-23804-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 11/06/2022] [Indexed: 11/14/2022] Open
Abstract
Identification of stable reference genes for normalization purposes is necessary for obtaining reliable and accurate results of reverse transcription quantitative polymerase chain reaction (RT-qPCR) analyses. To our knowledge, no reference gene(s) have been validated for this purpose in Clostridium perfringens. In this study, the expression profile of ten candidate reference genes from three strains of C. perfringens were assessed for stability under various experimental conditions using geNorm in qbase + . These stability rankings were then compared to stability assessments evaluated by BestKeeper, NormFinder, delta Ct, and RefFinder algorithms. When comparing all the analyses; gyrA, ftsZ, and recA were identified within the most stable genes under the different experimental conditions and were further tested as a set of reference genes for normalization of alpha toxin gene expression over a 22-h period. Depending on the condition, rpoA and rho might also be suitable to include as part of the reference set. Although commonly used for the purpose of normalizing RT-qPCR data, the 16S rRNA gene (rrs) was found to be an unsuitable gene to be used as a reference. This work provides a framework for the selection of a suitable stable reference gene set for data normalization of C. perfringens gene expression.
Collapse
|
12
|
Yao Z, Cai Z, Ma Q, Bai S, Wang Y, Zhang P, Guo Q, Gu J, Lemaitre B, Zhang H. Compartmentalized PGRP expression along the dipteran Bactrocera dorsalis gut forms a zone of protection for symbiotic bacteria. Cell Rep 2022; 41:111523. [DOI: 10.1016/j.celrep.2022.111523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/18/2022] [Accepted: 09/27/2022] [Indexed: 11/24/2022] Open
|
13
|
Rustanti N, Murdiati A, Juffrie M, Rahayu ES. Effect of Probiotic Lactobacillus plantarum Dad-13 on Metabolic Profiles and Gut Microbiota in Type 2 Diabetic Women: A Randomized Double-Blind Controlled Trial. Microorganisms 2022; 10:microorganisms10091806. [PMID: 36144408 PMCID: PMC9502685 DOI: 10.3390/microorganisms10091806] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022] Open
Abstract
Several pathways link type 2 diabetes (T2D) mellitus to the gut microbiome. By modifying the gut microbiota (GM), probiotics may be useful in the treatment of T2D. Lactobacillus plantarum Dad-13 is an indigenous Indonesian probiotic strain that has colonized the digestive tracts of healthy Indonesian adults. Furthermore, the GM of Indonesians is dominated by L. plantarum. The probiotic L. plantarum Dad-13 is likely suitable for Indonesians. This study aimed to assess the effect of the probiotic L. plantarum Dad-13 on metabolic profiles and GM of women with T2D in Yogyakarta, Indonesia. Twenty women from each group of forty T2D patients received either a probiotic or a placebo. The probiotic group consumed 1 g skim milk powder containing 1010 CFU/g L. plantarum daily for 11 weeks. The placebo group received 1 g skim milk powder only daily for 11 weeks. At the start and end of the experiment, anthropometric measures, dietary intake surveys, blood samples, and fecal samples were obtained. The GM analysis of all samples was performed using polymerase chain reaction, and Illumina Novaseq was applied to the selected samples from each group at the beginning and end of the trial. Short-chain fatty acids (SCFAs) were analyzed with gas chromatography. The level of HbA1c in the probiotic group (n:10) significantly decreased from 9.34 ± 2.79% to 8.32 ± 2.04%. However, in comparison with the placebo (n:8), L. plantarum Dad-13 supplementation did not significantly decrease the HbA1c level. No significant change was observed in the fasting blood sugar and total cholesterol levels in either group. The GM analysis showed that L. plantarum Dad-13 supplementation resulted in a considerable increase in the L. plantarum number. No significant changes were observed in the Bifidobacterium and Prevotella populations. In addition, no significant change was observed in the fecal pH and SCFA (e.g., acetic acid, propionate, butyrate, and total SCFA) after supplementation with L. plantarum Dad-13.
Collapse
Affiliation(s)
- Ninik Rustanti
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Jl. Flora No 1 Bulaksumur, Yogyakarta 55281, Indonesia
- Department of Nutrition Science, Faculty of Medicine, Universitas Diponegoro, Jl. Prof Soedarto, Tembalang Semarang 50275, Indonesia
| | - Agnes Murdiati
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Jl. Flora No 1 Bulaksumur, Yogyakarta 55281, Indonesia
| | - Mohammad Juffrie
- Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Jl. Farmako Sekip Utara, Yogyakarta 55281, Indonesia
| | - Endang Sutriswati Rahayu
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Jl. Flora No 1 Bulaksumur, Yogyakarta 55281, Indonesia
- Center for Food and Nutrition Studies, Universitas Gadjah Mada, Jl. Teknika Utara Barek, Yogyakarta 55281, Indonesia
- Center of Excellence for Probiotics, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Correspondence:
| |
Collapse
|
14
|
Muñoz-Labrador A, Lebrón-Aguilar R, Quintanilla-López JE, Galindo-Iranzo P, Azcarate SM, Kolida S, Kachrimanidou V, Garcia-Cañas V, Methven L, Rastall RA, Moreno FJ, Hernandez-Hernandez O. Prebiotic Potential of a New Sweetener Based on Galactooligosaccharides and Modified Mogrosides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9048-9056. [PMID: 35830712 PMCID: PMC9335866 DOI: 10.1021/acs.jafc.2c01363] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/27/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
This study was conducted to investigate the sweetness intensity and the potential fecal microbiome modulation of galactooligosaccharides in combination with enzymatically modified mogrosides (mMV-GOS), both generated through a patented single-pot synthesis. Sweetness intensity was performed in vivo by trained sensory panelists. The impact on the human fecal microbiome was evaluated by in vitro pH-controlled batch fermentation, and bacterial populations and organic acid concentrations were measured by qPCR and GC-FID, respectively. Significant growth (p ≤ 0.05) during the fermentation at 10 h of bacterial populations includes Bifidobacterium (8.49 ± 0.44 CFU/mL), Bacteroides (9.73 ± 0.32 CFU/mL), Enterococcus (8.17 ± 0.42 CFU/mL), and Clostridium coccoides (6.15 ± 0.11 CFU/mL) as compared to the negative control counts for each bacterial group (7.94 ± 0.27, 7.84 ± 1.11, 7.52 ± 0.37, and 5.81 ± 0.08 CFU/mL, respectively) at the same time of fermentation. Likewise, the corresponding significant increase in production of SCFA in mMV-GOS at 10 h of fermentation, mainly seen in acetate (20.32 ± 2.56 mM) and propionate (9.49 ± 1.44 mM) production compared to a negative control at the same time (8.15 ± 1.97 and 1.86 ± 0.24 mM), is in line with a positive control (short-chain fructooligosaccharides; 46.74 ± 12.13 and 6.51 ± 1.91 mM, respectively) revealing a selective fermentation. In conclusion, these substrates could be considered as novel candidate prebiotic sweeteners, foreseeing a feasible and innovative approach targeting the sucrose content reduction in food. This new ingredient could provide health benefits when evaluated in human studies by combining sweetness and prebiotic fiber functionality.
Collapse
Affiliation(s)
- Ana Muñoz-Labrador
- Institute
of Food Science Research, CIAL (CSIC-UAM), Nicolas Cabrera, 9, 28049 Madrid, Spain
| | - Rosa Lebrón-Aguilar
- Institute
of Physical Chemistry “Rocasolano” (IQFR-CSIC), Serrano 119, 28006 Madrid, Spain
| | | | - Plácido Galindo-Iranzo
- Institute
of Physical Chemistry “Rocasolano” (IQFR-CSIC), Serrano 119, 28006 Madrid, Spain
| | - Silvana M. Azcarate
- Institute
of Earth and Environmental Sciences of La Pampa (INCITAP), Mendoza 109, L6302EPA Santa Rosa, La Pampa, Argentina
| | - Sofia Kolida
- OptiBiotix
Health Plc, Innovation Centre, Innovation Way,
Heslington, York YO10 5DG, U.K.
| | - Vasiliki Kachrimanidou
- Department
of Food and Nutritional Sciences, The University
of Reading, PO Box 226,
Whiteknights, Reading RG6 6 AP, U.K.
| | - Virginia Garcia-Cañas
- Institute
of Food Science Research, CIAL (CSIC-UAM), Nicolas Cabrera, 9, 28049 Madrid, Spain
| | - Lisa Methven
- Department
of Food and Nutritional Sciences, The University
of Reading, PO Box 226,
Whiteknights, Reading RG6 6 AP, U.K.
| | - Robert A. Rastall
- Department
of Food and Nutritional Sciences, The University
of Reading, PO Box 226,
Whiteknights, Reading RG6 6 AP, U.K.
| | - F. Javier Moreno
- Institute
of Food Science Research, CIAL (CSIC-UAM), Nicolas Cabrera, 9, 28049 Madrid, Spain
| | | |
Collapse
|
15
|
Ahmad AAM, Gharieb AA, Elshorbgy E, Elewasy OA, Elmowalid GA. Nigella sativaoil extract: A natural novel specific conjugal transfer inhibitor of vancomycin resistance from vanA/B Resistant Enterococcus faecium to Staphylococcus aureus. J Appl Microbiol 2022; 133:619-629. [PMID: 35395119 DOI: 10.1111/jam.15567] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/04/2022] [Accepted: 03/31/2022] [Indexed: 11/30/2022]
Abstract
AIM The emergence of vancomycin-resistant Staphylococcus aureus (VRSA) has been identified as one of the most challenging problems in healthcare settings worldwide. Specific conjugation inhibitors development are critical in the fight against the spread of emerging VRSA. The impact of Nigella sativa oil on VR genes conjugal transfer from Enterococcus faecium (VREtfm) to vancomycin sensitive S. aureus (VSSA) was investigated in this study. METHODS AND RESULTS Enterococci were isolated from retail broilers, fish, cows' milk, and human urine. VR Enterococcus faecalis and VREtfm VanA-phenotype' were prevalent in retail broiler samples. The VREtfm isolates were dominant, exhibiting high levels of resistance to gentamycin and ciprofloxacin antibiotics, as well as the existence of both vanA and vanB genes and virulence traits (ESP+, asa1+) as determined by PCR. VREtfm strains containing vanA/vanB genes and transconjugants containing 20Kb plasmids (transfer frequency around 103 ) and carrying the Tn1546 transposon were identified. Tn1546 transposon transfer with its VR markers to VSSA was effectively inhibited in treated VREtfm donor strains with a sub-MIC of N. sativa oil. THE SIGNIFICANCE AND IMPACT OF THE STUDY This work offers new insights for overcoming VR conjugal transfer utilising natural N. sativa oil, as well as a suggestion for a novel specialized conjugation inhibitor that could effectively facilitate the difficulty of eliminating VR bacteria from healthcare settings.
Collapse
Affiliation(s)
- Adel Attia M Ahmad
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Ash Sharqiah Governorate, Egypt
| | - Ahlam A Gharieb
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Ash Sharqiah Governorate, Egypt
| | | | - Omnia A Elewasy
- Animal Diseases Research Institute, Zagazig, Ash Sharqiah, Egypt
| | | |
Collapse
|
16
|
Motoori M, Sugimura K, Tanaka K, Shiraishi O, Kimura Y, Miyata H, Yamasaki M, Makino T, Miyazaki Y, Iwama M, Yamashita K, Niikura M, Sugimoto T, Asahara T, Fujitani K, Yasuda T, Doki Y, Yano M. Comparison of Synbiotics Combined with Enteral Nutrition and Prophylactic Antibiotics as Supportive Care in Patients with Esophageal Cancer Undergoing Neoadjuvant Chemotherapy: A Multicenter Randomized Study. Clin Nutr 2022; 41:1112-1121. [DOI: 10.1016/j.clnu.2022.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 03/03/2022] [Accepted: 03/18/2022] [Indexed: 11/27/2022]
|
17
|
Kamil RZ, Murdiati A, Juffrie M, Rahayu ES. Gut Microbiota Modulation of Moderate Undernutrition in Infants through Gummy Lactobacillus plantarum Dad-13 Consumption: A Randomized Double-Blind Controlled Trial. Nutrients 2022; 14:1049. [PMID: 35268024 PMCID: PMC8912314 DOI: 10.3390/nu14051049] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/10/2022] [Accepted: 02/25/2022] [Indexed: 01/03/2023] Open
Abstract
Undernutrition is associated with gut microbiota unbalance, and probiotics are believed to restore it and improve gut integrity. A randomized double-blind controlled trial was conducted to evaluate the efficacy of gummy L. plantarum Dad-13 (108-9 CFU/3 g) to prevent the progression of severe undernutrition. Two groups of moderate undernutrition infants were involved in this study, namely the placebo (n = 15) and probiotics (n = 15) groups, and were required to consume the product for 50 days. 16S rRNA sequencing and qPCR were used for gut microbiota analysis, and gas chromatography was used to analyze Short-Chain Fatty Acid (SCFA). The daily food intake of both groups was recorded using food records. Our results revealed that the probiotic group had better improvements regarding the anthropometry and nutritional status. In addition, L. plantarum Dad-13 modulated the butyric acid-producing bacteria to increase and inhibit the growth of Enterobacteriaceae. This gut modulation was associated with the increment in SCFA, especially total SCFA, propionic, and butyric acid. The number of L. plantarum was increased after the probiotic intervention. However, L. plantarum Dad-13 was not able to change the alpha and beta diversity. Therefore, L. plantarum Dad-13 has been proven to promote the growth of beneficial bacteria.
Collapse
Affiliation(s)
- Rafli Zulfa Kamil
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Jl. Flora No 1 Bulaksumur, Yogyakarta 55281, Indonesia; (R.Z.K.); (A.M.)
- Centre for Food and Nutrition Studies, Universitas Gadjah Mada, Jl. Teknika Utara Barek, Yogyakarta 55281, Indonesia
- Centre of Excellence for Probiotics, Universitas Gadjah Mada, Jl. Teknika Utara Barek, Yogyakarta 55281, Indonesia
- Department of Food Technology, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Jl. Prof. Soedarto, Tembalang, Semarang 50275, Indonesia
| | - Agnes Murdiati
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Jl. Flora No 1 Bulaksumur, Yogyakarta 55281, Indonesia; (R.Z.K.); (A.M.)
| | - Mohammad Juffrie
- Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Jl. Farmako, Senolowo, Sekip Utara, Yogyakarta 55281, Indonesia;
| | - Endang Sutriswati Rahayu
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Jl. Flora No 1 Bulaksumur, Yogyakarta 55281, Indonesia; (R.Z.K.); (A.M.)
- Centre for Food and Nutrition Studies, Universitas Gadjah Mada, Jl. Teknika Utara Barek, Yogyakarta 55281, Indonesia
- Centre of Excellence for Probiotics, Universitas Gadjah Mada, Jl. Teknika Utara Barek, Yogyakarta 55281, Indonesia
| |
Collapse
|
18
|
Shima T, Kaga C, Shimamoto K, Sugimoto T, Kado Y, Watanabe O, Suwa T, Amamoto R, Tsuji H, Matsumoto S. Characteristics of gut microbiome, organic acid profiles and viral antibody indexes of healthy Japanese with live Lacticaseibacillus detected in stool. Benef Microbes 2022; 13:33-46. [PMID: 35144523 DOI: 10.3920/bm2021.0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To estimate the health-promoting effects of Lacticaseibacillus paracasei (previously Lactobacillus casei) strain Shirota (LcS) that reached the lower gastrointestinal tract alive, we investigated the characteristics of gut microbiome, organic acid profiles, defecatory symptoms and serum viral antibody indexes of healthy Japanese adults between the group in whom live LcS was detected or not from stool. The β-diversity index of the gut microbiome constituted a significant difference between the live-LcS-detected-group (LLD) and the live-LcS-not-detected-group (LLnD). In the LLD, the Bifidobacteriaceae, Lactobacillaceae, and Coriobacteriaceae counts were significantly higher, and the succinate concentration was significantly lower than that in the LLnD. The serum herpes simplex virus (HSV) immunoglobulin (Ig)M antibody index in the LLD tended to be lower than that of the LLnD in HSV IgG-positive subjects. Of the LLD, those in the fermented milk products containing LcS (FML)-high-frequency-group (FML-HF) and those in the FML-low-frequency-group (FML-LF) had different gut microbiome and organic acid profiles. However, the pattern of differences between FML-HF and FML-LF was dissimilar those between LLD and LLnD. In contrast, among subjects with FML-LF, those in the group with LLD in stool (LF-LLD) and those in the LLnD in stool (LF-LLnD) showed a similar pattern of differences in their gut microbiome and organic acid profiles as those in the LLnD and LLD. The LLD and LF-LLD commonly had lower caloric and carbohydrate intakes from the diet than their respective control groups. In this study, we found that the presence of live LcS in stool is associated with a healthy gut environment and inhibition of the reactivation of latently infected viruses in the host. However, these health-promoting effects on the host were not related to the frequency of FML intake. Furthermore, dysbiosis of the gut microbiome and diet including caloric intake was related to the viability of ingested LcS in the gut.
Collapse
Affiliation(s)
- T Shima
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| | - C Kaga
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| | - K Shimamoto
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| | - T Sugimoto
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| | - Y Kado
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| | - O Watanabe
- Yakult Honsha Co. Ltd., Development Department, 1-10-30 Kaigan, Minato-ku, Tokyo 105-8660, Japan
| | - T Suwa
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| | - R Amamoto
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| | - H Tsuji
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| | - S Matsumoto
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan
| |
Collapse
|
19
|
da Silva Duarte V, Lombardi A, Corich V, Giacomini A. Assessment of the microbiological origin of blowing defects in Grana Padano Protected Designation of Origin cheese. J Dairy Sci 2022; 105:2858-2867. [PMID: 35086714 DOI: 10.3168/jds.2021-21097] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022]
Abstract
Recognized worldwide for its history, flavor, and high nutritional quality, Grana Padano (GP) is one of the most traditional Italian raw-milk, hard-cooked, long-ripened cheese. Throughout GP manufacturing, some well-known and undesired bacterial species, such as clostridia, can proliferate and lead to spoilage defects that mischaracterize the final product; however, little is known about the development of late-blowing defects in hard cheese samples without clostridia. Therefore, in this study we aimed to use metataxonomic analysis to identify bacterial taxa associated with the development of late-blowing defect in GP samples. Furthermore, the presence of several heterofermentative lactobacilli species in defective zones were verified by primer-specific PCR assay. Considering α- and β-diversity analyses, no statistically significant differences were detected between cheese samples with and without blowing defect. Following taxonomic assignment, Lactobacillus and Streptococcus were the dominant genera, whereas clostridia-related taxa were not detected in any of the 20 analyzed samples. Using EdgeR, the genera Propionibacterium and Acinetobacter were found to be prevalently more abundant in samples categorized as having "big regular holes." In samples with "small regular holes," multiplex PCR amplification revealed differences in terms of Lactobacillus population composition, mainly obligate homofermentative lactobacilli, between defective and non-defective zones of the same cheese wheel. This study demonstrated that GP samples with blowing defects not caused by clostridial development share similar biodiversity indices with GP collected from control zones, but an imbalance of obligate homofermentative lactobacilli was noticed between samples, which requires further analysis to better comprehend the exact mechanism involved in this process.
Collapse
Affiliation(s)
- Vinícius da Silva Duarte
- Department of Agronomy Food Natural Resources Animals and Environment, University of Padova, 35020 Legnaro (Padua), Italy
| | - Angiolella Lombardi
- Department of Agronomy Food Natural Resources Animals and Environment, University of Padova, 35020 Legnaro (Padua), Italy
| | - Viviana Corich
- Department of Agronomy Food Natural Resources Animals and Environment, University of Padova, 35020 Legnaro (Padua), Italy.
| | - Alessio Giacomini
- Department of Agronomy Food Natural Resources Animals and Environment, University of Padova, 35020 Legnaro (Padua), Italy
| |
Collapse
|
20
|
Salachan PV, Rasmussen M, Fredsøe J, Ulhøi B, Borre M, Sørensen KD. Microbiota of the prostate tumor environment investigated by whole-transcriptome profiling. Genome Med 2022; 14:9. [PMID: 35078527 PMCID: PMC8787950 DOI: 10.1186/s13073-022-01011-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 01/05/2022] [Indexed: 02/08/2023] Open
Abstract
Background With over 350,000 estimated deaths worldwide in 2018, prostate cancer (PCa) continues to be a major health concern and a significant cause of cancer-associated mortality among men. While cancer in general is considered a disease of the human genome, there is a growing body of evidence suggesting that changes to the healthy microbiota could play a vital role in cancer development, progression, and/or treatment outcome. Methods Using a metatranscriptomic approach, we annotated the microbial reads obtained from total RNA sequencing of 106 prostate tissue samples from 94 PCa patients (discovery cohort). We investigated microbial dysbiosis associated with PCa by systematically comparing the microbiomes between benign and malignant tissue samples, between less vs. more-aggressive PCa, and between patients who had biochemical recurrence as opposed to those who did not. We further performed differential gene expression and cell type enrichment analysis to explore the host transcriptomic and cellular responses to selected microbial genera. A public dataset (GSE115414) of total RNA sequencing reads from 24 prostate tissue samples (8 benign and 16 malignant) served as the validation cohort. Results We observed decreased species diversity and significant under-representation of Staphylococcus saprophyticus and Vibrio parahaemolyticus, as well as significant over-abundance of Shewanella in malignant as compared to benign prostate tissue samples in both the discovery (p < 0.01) and validation (p < 0.05) cohorts. In addition, we identified Microbacterium species (p < 0.01) to be significantly over-abundant in pathologically advanced T3 tumors compared to T2 in the discovery cohort. Malignant samples having high vs. low Shewanella counts were associated with downregulated Toll-like receptor signaling pathways and decreased enrichment of dendritic cells. Malignant samples having low vs. high V. parahaemolyticus counts were enriched for olfactory transduction and drug metabolism pathways. Finally, malignant samples were enriched for M1 and M2 macrophages as compared to benign tissue samples. Conclusions The results from this exploratory study support the existence of an important biological link between the prostate microbiota and PCa development/progression. Our results highlight Shewanella, V. parahaemolyticus, and Microbacterium sp. as interesting candidates for further investigation of their association with PCa. Supplementary Information The online version contains supplementary material available at 10.1186/s13073-022-01011-3.
Collapse
|
21
|
Wu Y, Ye Z, Feng P, Li R, Chen X, Tian X, Han R, Kakade A, Liu P, Li X. Limosilactobacillus fermentum JL-3 isolated from "Jiangshui" ameliorates hyperuricemia by degrading uric acid. Gut Microbes 2022; 13:1-18. [PMID: 33764849 PMCID: PMC8007157 DOI: 10.1080/19490976.2021.1897211] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Recent studies into the beneficial effects of fermented foods have shown that this class of foods are effective in managing hyperuricemia and gout. In this study, the uric acid (UA) degradation ability of Limosilactobacillus fermentum JL-3 strain, isolated from "Jiangshui" (a fermented Chinese food), was investigated. In vitro results showed that JL-3 strain exhibited high degradation capacity and selectivity toward UA. After oral administration to mice for 15 days, JL-3 colonization was continuously detected in the feces of mice. The UA level in urine of mice fed with JL-3 was similar with the control group mice. And the serum UA level of the former was significantly lower (31.3%) than in the control, further confirmed the UA-lowering effect of JL-3 strain. Limosilactobacillus fermentum JL-3 strain also restored some of the inflammatory markers and oxidative stress indicators (IL-1β, MDA, CRE, blood urea nitrogen) related to hyperuricemia, while the gut microbial diversity results showed that JL-3 could regulate gut microbiota dysbiosis caused by hyperuricemia. Therefore, the probiotic Limosilactobacillus fermentum JL-3 strain is effective in lowering UA levels in mice and could be used as a therapeutic adjunct agent in treating hyperuricemia.
Collapse
Affiliation(s)
- Ying Wu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China,Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Ze Ye
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Pengya Feng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Rong Li
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China,Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Xiao Chen
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Xiaozhu Tian
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China,Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Rong Han
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Apurva Kakade
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Pu Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China,CONTACT Xiangkai Li Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Xiangkai Li
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China,Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| |
Collapse
|
22
|
Yuan C, Xing L, Wang M, Hu Z, Zou Z. Microbiota modulates gut immunity and promotes baculovirus infection in Helicoverpa armigera. INSECT SCIENCE 2021; 28:1766-1779. [PMID: 33463036 DOI: 10.1111/1744-7917.12894] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/07/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
Baculoviruses are natural enemies of agricultural and forest insect pests and play an important role in biological pest control. Oral infection by baculovirus in the insect midgut is necessary for establishing systemic infection and eventually killing the insect. Since the insect midgut continuously encounters microbiota, the gut microbiota could affect baculovirus infection. Here, we demonstrated that gut microbiota modulates immune responses and promotes baculovirus infection in the cotton bollworm, Helicoverpa armigera. After oral infection, numerous host immunity-related genes including genes encoding Toll and immune deficiency (IMD) pathway components were upregulated in the midgut. Elimination of the gut microbiota significantly increased the resistance to viral infection in H. armigera. Quantitative real-time reverse transcription polymerase chain reaction and proteomic analysis showed that downregulation of the antiviral factor prophenoloxidase (PPO) could be mediated by microbiota during infection. It implied that midgut microbiota diminishes the expression of PPO to facilitate viral infection in H. armigera. Our findings revealed that the microbiota plays an important role in modulating the resistance of H. armigera to baculovirus infection, providing new insights in applying biopesticide.
Collapse
Affiliation(s)
- Chuanfei Yuan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Control of Tropical Diseases, School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, 571199, China
| | - Longsheng Xing
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Manli Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zhihong Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
23
|
Ehrenschwender M, Muehlenberg K, Ambrosch A. [52 year old female with sepsis and severe hemolysis]. Dtsch Med Wochenschr 2021; 146:1445-1446. [PMID: 34741289 DOI: 10.1055/a-1639-9104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Martin Ehrenschwender
- Institut für Labormedizin, Mikrobiologie und Krankenhaushygiene, Krankenhaus Barmherzige Brüder, Regensburg
| | - Klaus Muehlenberg
- Klinik für Gastroenterologie und interventionelle Endoskopie, Krankenhaus Barmherzige Brüder, Regensburg
| | - Andreas Ambrosch
- Institut für Labormedizin, Mikrobiologie und Krankenhaushygiene, Krankenhaus Barmherzige Brüder, Regensburg
| |
Collapse
|
24
|
Nguyen QT, Ishizaki A, Bi X, Matsuda K, Nguyen LV, Pham HV, Phan CTT, Phung TTB, Ngo TTT, Nguyen AV, Khu DTK, Ichimura H. Alterations in children's sub-dominant gut microbiota by HIV infection and anti-retroviral therapy. PLoS One 2021; 16:e0258226. [PMID: 34634074 PMCID: PMC8504761 DOI: 10.1371/journal.pone.0258226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/21/2021] [Indexed: 12/05/2022] Open
Abstract
Objective We investigated the impact of human immunodeficiency virus (HIV) infection and anti-retroviral therapy (ART) on the gut microbiota of children. Design This cross-sectional study investigated the gut microbiota of children with and without HIV. Methods We collected fecal samples from 59 children with HIV (29 treated with ART [ART(+)] and 30 without ART [HIV(+)]) and 20 children without HIV [HIV(–)] in Vietnam. We performed quantitative RT-PCR to detect 14 representative intestinal bacteria targeting 16S/23S rRNA molecules. We also collected the blood samples for immunological analyses. Results In spearman’s correlation analyses, no significant correlation between the number of dominant bacteria and age was found among children in the HIV(−) group. However, the number of sub-dominant bacteria, including Streptococcus, Enterococcus, and Enterobacteriaceae, positively correlated with age in the HIV(−) group, but not in the HIV(+) group. In the HIV(+) group, Clostridium coccoides group positively associated with the CD4+ cell count and its subsets. In the ART(+) group, Staphylococcus and C. perfringens positively correlated with CD4+ cells and their subsets and negatively with activated CD8+ cells. C. coccoides group and Bacteroides fragilis group were associated with regulatory T-cell counts. In multiple linear regression analyses, ART duration was independently associated with the number of C. perfringens, and Th17 cell count with the number of Staphylococcus in the ART(+) group. Conclusions HIV infection and ART may influence sub-dominant gut bacteria, directly or indirectly, in association with immune status in children with HIV.
Collapse
Affiliation(s)
- Quynh Thi Nguyen
- Department of Viral infection and International Health, Graduate school of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Azumi Ishizaki
- Department of Viral infection and International Health, Graduate school of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Xiuqiong Bi
- Department of Viral infection and International Health, Graduate school of Medical Science, Kanazawa University, Kanazawa, Japan
| | | | | | | | | | | | | | - An Van Nguyen
- Vietnam National Children’s Hospital, Hanoi, Viet Nam
| | | | - Hiroshi Ichimura
- Department of Viral infection and International Health, Graduate school of Medical Science, Kanazawa University, Kanazawa, Japan
- * E-mail:
| |
Collapse
|
25
|
Tsujikawa Y, Suzuki M, Sakane I. Isolation, identification, and impact on intestinal barrier integrity of Lactiplantibacillus plantarum from fresh tea leaves (Camellia sinensis). BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH 2021; 40:186-195. [PMID: 34631330 PMCID: PMC8484006 DOI: 10.12938/bmfh.2020-083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 07/19/2021] [Indexed: 11/05/2022]
Abstract
Lactic acid bacteria (LAB) are safe microorganisms that have been used in the processing of fermented food for centuries. The aim of this study was to isolate Lactobacillus from fresh tea leaves and examine the impact of an isolated strain on intestinal barrier integrity. First, the presence of Lactobacillus strains was investigated in fresh tea leaves from Kagoshima, Japan. Strains were isolated by growing on De Man, Rogosa and Sharpe (MRS) agar medium containing sodium carbonate, followed by the identification of one strain by polymerase chain reaction (PCR) and pheS sequence analysis, with the strain identified as Lactiplantibacillus plantarum and named L. plantarum LOC1. Second, the impact of strain LOC1 in its heat-inactivated form on intestinal barrier integrity was investigated. Strain LOC1, but not L. plantarum ATCC 14917T or L. plantarum ATCC 8014, significantly suppressed dextran sulfate sodium (DSS)-induced decreases in transepithelial electrical resistance values of Caco-2:HT29-MTX 100:0 and 90:10 co-cultures. Moreover, in Caco-2:HT29-MTX co-cultures (90:10 and 75:25), levels of occludin mRNA were significantly increased by strain LOC1 compared with untreated co-cultures, and strain LOC1 had higher mRNA levels of MUC2 and MUC4 mucins than L. plantarum ATCC 14917T and L. plantarum YT9. These results indicate that L. plantarum LOC1 may be used as a safe probiotic with beneficial effects on the intestinal barrier, suggesting that fresh tea leaves could be utilized as a safe source for isolating probiotics.
Collapse
Affiliation(s)
- Yuji Tsujikawa
- Central Research Institute, ITO EN, Ltd., 21 Mekami, Makinohara-shi, Shizuoka 421-0516, Japan
| | - Masahiko Suzuki
- Central Research Institute, ITO EN, Ltd., 21 Mekami, Makinohara-shi, Shizuoka 421-0516, Japan
| | - Iwao Sakane
- Central Research Institute, ITO EN, Ltd., 21 Mekami, Makinohara-shi, Shizuoka 421-0516, Japan
| |
Collapse
|
26
|
Shimizu H, Arai K, Asahara T, Takahashi T, Tsuji H, Matsumoto S, Takeuchi I, Kyodo R, Yamashiro Y. Stool preparation under anaerobic conditions contributes to retention of obligate anaerobes: potential improvement for fecal microbiota transplantation. BMC Microbiol 2021; 21:275. [PMID: 34627158 PMCID: PMC8501685 DOI: 10.1186/s12866-021-02325-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/20/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Fecal microbiota transplantation (FMT) in patients with ulcerative colitis has shown variable efficacy depending on the protocol used. A previous randomized controlled trial reported that anaerobic preparation of donor stool contributes to improved efficacy. Despite the suggestion that viable obligate anaerobes would be decreased through aerobic handling, there have been only a limited number of reports on how these aerobic or anaerobic procedures affect the composition of viable microbiota in the fecal slurries used for FMT. METHODS We adopted 16S and 23S rRNA-targeted reverse transcription-quantitative polymerase chain reaction to quantify viable bacteria in fecal slurries. This study utilized specific primers designed to detect obligate anaerobes (including Clostridium coccoides group, C. leptum subgroup, Bacteroides fragilis group, Bifidobacterium, Atopobium cluster, and Prevotella) and facultative anaerobes (including total lactobacilli, Enterobacteriaceae, Enterococcus, Streptococcus, and Staphylococcus). We then calculated the ratio change (RC) between before and after mixing, and compared the resulting values between anaerobic-prep and aerobic-prep in samples fixed immediately after blending (RCAn0 vs. RCAe0) and in samples maintained (under anaerobic or aerobic conditions) for 1 h after blending (RCAn1 vs. RCAe1). RESULTS For most obligate anaerobes, the median RC tended to be less than 1, indicating that the number of obligate anaerobes was decreased by the blending procedure. However, in samples maintained for 1 h after blending, anaerobic-prep counteracted the decrease otherwise seen for the C. coccoides group and B. fragilis groups (P < 0.01 for both). The C. leptum subgroup also tended to show higher RC by anaerobic-prep than by aerobic-prep, although this effect was not statistically significant. Among facultative anaerobes, Enterobacteriaceae, Enterococcus, and Staphylococcus showed median RC values of more than 1, indicating that these organisms survived and even grew after mixing. Moreover, oxygen exposure had no significant influence on the survival of the facultative anaerobes. CONCLUSIONS The conditions under which the blending procedure was performed affected the proportion of live anaerobes in fecal slurries. The obligate anaerobes tended to be decreased by blending processes, but anaerobic-prep significantly mitigated this effect. Anaerobic-prep may improve the efficacy of FMT by permitting the efficient transfer of obligate anaerobes to patients with ulcerative colitis.
Collapse
Affiliation(s)
- Hirotaka Shimizu
- Division of Gastroenterology, Department of Medical Specialty, National Center for Child Health and Development, Tokyo, Japan. .,Department of Pediatrics and Adolescent Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan.
| | - Katsuhiro Arai
- Division of Gastroenterology, Department of Medical Specialty, National Center for Child Health and Development, Tokyo, Japan
| | - Takashi Asahara
- Yakult Central Institute, Tokyo, Japan.,Probiotics Research Laboratory, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takuya Takahashi
- Yakult Central Institute, Tokyo, Japan.,Probiotics Research Laboratory, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hirokazu Tsuji
- Yakult Central Institute, Tokyo, Japan.,Probiotics Research Laboratory, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Satoshi Matsumoto
- Yakult Central Institute, Tokyo, Japan.,Probiotics Research Laboratory, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ichiro Takeuchi
- Division of Gastroenterology, Department of Medical Specialty, National Center for Child Health and Development, Tokyo, Japan.,Department of Pediatrics and Adolescent Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Reiko Kyodo
- Division of Gastroenterology, Department of Medical Specialty, National Center for Child Health and Development, Tokyo, Japan.,Department of Pediatrics and Adolescent Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Yuichiro Yamashiro
- Probiotics Research Laboratory, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
27
|
Henderickx JGE, d’Haens EJ, Hemels MAC, Schoorlemmer ME, Giezen A, van Lingen RA, Knol J, Belzer C. From Mum to Bum: An Observational Study Protocol to Follow Digestion of Human Milk Oligosaccharides and Glycoproteins from Mother to Preterm Infant. Nutrients 2021; 13:3430. [PMID: 34684428 PMCID: PMC8538091 DOI: 10.3390/nu13103430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 11/21/2022] Open
Abstract
The nutritional requirements of preterm infants are challenging to meet in neonatal care, yet crucial for their growth, development and health. Aberrant maturation of the gastrointestinal tract and the microbiota could affect the digestion of human milk and its nutritional value considerably. Therefore, the main objective of the proposed research is to investigate how the intestinal microbiota of preterm and full-term infants differ in their ability to extract energy and nutrients from oligosaccharides and glycoproteins in human milk. This pilot study will be an observational, single-center study performed at the Neonatal Intensive Care Unit at Isala Women and Children's Hospital (Zwolle, The Netherlands). A cohort of thirty mother-infant pairs (preterm ≤30 weeks of gestation, n = 15; full-term 37-42 weeks of gestation, n = 15) will be followed during the first six postnatal weeks with follow-up at three- and six-months postnatal age. We will collect human milk of all mothers, gastric aspirates of preterm infants and fecal samples of all infants. A combination of 16S rRNA amplicon sequencing, proteomics, peptidomics, carbohydrate analysis and calorimetric measurements will be performed. The role of the microbiota in infant growth and development is often overlooked yet offers opportunities to advance neonatal care. The 'From Mum to Bum' study is the first study in which the effect of a preterm gut microbiota composition on its metabolic capacity and subsequent infant growth and development is investigated. By collecting human milk of all mothers, gastric aspirates of preterm infants and fecal samples of all infants at each timepoint, we can follow digestion of human milk from the breast of the mother throughout the gastrointestinal tract of the infant, or 'From Mum to Bum'.
Collapse
Affiliation(s)
- Jannie G. E. Henderickx
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands; (J.G.E.H.); (J.K.)
| | - Esther J. d’Haens
- Department of Neonatology, Isala Women and Children’s Hospital, Dokter van Heesweg 2, 8025 AB Zwolle, The Netherlands; (E.J.d.H.); (M.A.C.H.); (M.E.S.); (A.G.); (R.A.v.L.)
| | - Marieke A. C. Hemels
- Department of Neonatology, Isala Women and Children’s Hospital, Dokter van Heesweg 2, 8025 AB Zwolle, The Netherlands; (E.J.d.H.); (M.A.C.H.); (M.E.S.); (A.G.); (R.A.v.L.)
| | - Mariëtte E. Schoorlemmer
- Department of Neonatology, Isala Women and Children’s Hospital, Dokter van Heesweg 2, 8025 AB Zwolle, The Netherlands; (E.J.d.H.); (M.A.C.H.); (M.E.S.); (A.G.); (R.A.v.L.)
| | - Astrid Giezen
- Department of Neonatology, Isala Women and Children’s Hospital, Dokter van Heesweg 2, 8025 AB Zwolle, The Netherlands; (E.J.d.H.); (M.A.C.H.); (M.E.S.); (A.G.); (R.A.v.L.)
| | - Richard A. van Lingen
- Department of Neonatology, Isala Women and Children’s Hospital, Dokter van Heesweg 2, 8025 AB Zwolle, The Netherlands; (E.J.d.H.); (M.A.C.H.); (M.E.S.); (A.G.); (R.A.v.L.)
| | - Jan Knol
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands; (J.G.E.H.); (J.K.)
- Danone Nutricia Research, Uppsalalaan 12, 3584 CT Utrecht, The Netherlands
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands; (J.G.E.H.); (J.K.)
| |
Collapse
|
28
|
Wang X, Howe S, Deng F, Zhao J. Current Applications of Absolute Bacterial Quantification in Microbiome Studies and Decision-Making Regarding Different Biological Questions. Microorganisms 2021; 9:1797. [PMID: 34576694 PMCID: PMC8467167 DOI: 10.3390/microorganisms9091797] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/16/2021] [Accepted: 08/21/2021] [Indexed: 11/17/2022] Open
Abstract
High throughput sequencing has emerged as one of the most important techniques for characterizing microbial dynamics and revealing bacteria and host interactions. However, data interpretation using this technique is mainly based on relative abundance and ignores total bacteria load. In certain cases, absolute abundance is more important than compositional relative data, and interpretation of microbiota data based solely on relative abundance can be misleading. The available approaches for absolute quantification are highly diverse and challenging, especially for quantification in differing biological situations, such as distinguishing between live and dead cells, quantification of specific taxa, enumeration of low biomass samples, large sample size feasibility, and the detection of various other cellular features. In this review, we first illustrate the importance of integrating absolute abundance into microbiome data interpretation. Second, we briefly discuss the most widely used cell-based and molecular-based bacterial load quantification methods, including fluorescence spectroscopy, flow cytometry, 16S qPCR, 16S qRT-PCR, ddPCR, and reference spike-in. Last, we present a specific decision-making scheme for absolute quantification methods based on different biological questions and some of the latest quantitative methods and procedure modifications.
Collapse
Affiliation(s)
- Xiaofan Wang
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, USA
| | - Samantha Howe
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, USA
| | - Feilong Deng
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, USA
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
29
|
Kunugi H. Gut Microbiota and Pathophysiology of Depressive Disorder. ANNALS OF NUTRITION AND METABOLISM 2021; 77 Suppl 2:11-20. [PMID: 34350881 DOI: 10.1159/000518274] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 07/03/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Accumulating evidence has suggested that the bi-directional communication pathway, the microbiota-gut-brain axis, plays an important role in the pathophysiology of many neuropsychiatric diseases including major depressive disorder (MDD). This review outlines current evidence and promising findings related to the pathophysiology and treatment of MDD. SUMMARY There are at least 4 key biological molecules/systems underlying the pathophysiology of MDD: central dopamine, stress responses by the hypothalamic-pituitary-adrenal axis and autonomic nervous system, inflammation, and brain-derived neurotrophic factor. Animal experiments in several depression models have clearly indicated that gut microbiota is closely related to these molecules/systems and administration of probiotics and prebitotics may have beneficial effects on them. Although the results of microbiota profile of MDD patients varied from a study to another, multiple studies reported that bacteria which produce short-chain fatty acids such as butyrate and those protective against metabolic diseases (e.g., Bacteroidetes) were reduced. Clinical trials of probiotics have emerged, and the majority of the studies have reported beneficial effects on depression symptoms and related biological markers. Key Messages: The accumulating evidence suggests that research on the microbiota-gut-brain axis in major depressive disorder (MDD) is promising to elucidate the pathophysiology and to develop novel treatment of MDD, although there is still a long distance yet to reach the goals.
Collapse
Affiliation(s)
- Hiroshi Kunugi
- Department of Psychiatry, Teikyo University School of Medicine, Tokyo, Japan
| |
Collapse
|
30
|
Nart J, Jiménez-Garrido S, Ramírez-Sebastià A, Astó E, Buj D, Huedo P, Espadaler J. Oral colonization by Levilactobacillus brevis KABPTM-052 and Lactiplantibacillus plantarum KABPTM-051: A Randomized, Double-Blinded, Placebo-Controlled Trial (Pilot Study). J Clin Exp Dent 2021; 13:e433-e439. [PMID: 33981389 PMCID: PMC8106927 DOI: 10.4317/jced.57771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/02/2020] [Indexed: 01/01/2023] Open
Abstract
Background To determine the oral colonization capacity of the strains Levilactobacillus brevis KABPTM-052 (CECT 7480) and Lactiplantibacillus plantarum KABPTM-051 (CECT 7481) in healthy subjects.
Material and Methods This randomized, double-blinded, placebo-controlled study included 40 volunteers (22 females, 18 males; age range 18-55 years) with healthy gingiva or mild gingivitis, allocated to receiving probiotic chewing gum (n=20) or placebo (n=20) b.i.d for 6 weeks. At baseline and after 6 weeks of treatment, a periodontics specialist collected saliva samples to assess probiotic colonization by qPCR, and analysed dental plaque, gingival index and dental probing pocket depth in Community Periodontal Index (CPI) teeth subset. Protocol was registered as NCT03540498.
Results Treatment compliance was high (99%). Both L. brevis and L. plantarum were detected in the oral microbiota at baseline. After 6 weeks, volunteers receiving probiotic showed a significant increase of both L. brevis (p = 0.017) and L. plantarum (p = 0.004) versus placebo. This effect remained significant after adjusting for gender and gingival index at baseline. In the probiotic group, reduction in plaque index significantly correlated to higher levels of L. brevis (rho = 0.57, p = 0.022) but not of L. plantarum at study endpoint, and the number of subjects with dental plaque was reduced during intervention (7 of 17, p = 0.016). No such effects were observed in the placebo group. No adverse drug reactions were reported.
Conclusions Levilactobacillus brevis KABPTM-052 and Lactiplantibacillus plantarum KABPTM-051 colonize the buccal microbiota of healthy volunteers, and higher colonization by L. brevis positively correlated to reduction in dental plaque. Key words:Probiotic, Levilactobacillus brevis, Lactiplantibacillus plantarum, oral colonization, oral microbiota, dental plaque.
Collapse
Affiliation(s)
- José Nart
- Department of Periodontology, Universitat Internacional de Catalunya, Barcelona, Spain.,Nart Dental Clinic, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
31
|
Otaka M, Kikuchi-Hayakawa H, Ogura J, Ishikawa H, Yomogida Y, Ota M, Hidese S, Ishida I, Aida M, Matsuda K, Kawai M, Yoshida S, Kunugi H. Effect of Lacticaseibacillus paracasei Strain Shirota on Improvement in Depressive Symptoms, and Its Association with Abundance of Actinobacteria in Gut Microbiota. Microorganisms 2021; 9:microorganisms9051026. [PMID: 34068832 PMCID: PMC8150707 DOI: 10.3390/microorganisms9051026] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022] Open
Abstract
We previously reported lower counts of lactobacilli and Bifidobacterium in the gut microbiota of patients with major depressive disorder (MDD), compared with healthy controls. This prompted us to investigate the possible efficacy of a probiotic strain, Lacticaseibacillus paracasei strain Shirota (LcS; basonym, Lactobacillus casei strain Shirota; daily intake of 8.0 × 1010 colony-forming units), in alleviating depressive symptoms. A single-arm trial was conducted on 18 eligible patients with MDD or bipolar disorder (BD) (14 females and 4 males; 15 MDD and 3 BD), assessing changes in psychiatric symptoms, the gut microbiota, and biological markers for intestinal permeability and inflammation, over a 12-week intervention period. Depression severity, evaluated by the Hamilton Depression Rating Scale, was significantly alleviated after LcS treatment. The intervention-associated reduction of depressive symptoms was associated with the gut microbiota, and more pronounced when Bifidobacterium and the Atopobium clusters of the Actinobacteria phylum were maintained at higher counts. No significant changes were observed in the intestinal permeability or inflammation markers. Although it was difficult to estimate the extent of the effect of LcS treatment alone, the results indicated that it was beneficial to alleviate depressive symptoms, partly through its association with abundance of Actinobacteria in the gut microbiota.
Collapse
Affiliation(s)
- Machiko Otaka
- National Centre of Neurology and Psychiatry, Department of Mental Disorder Research, National Institute of Neuroscience, 4-1-1 Ogawa-Higashi, Kodaira-shi, Tokyo 187-8502, Japan; (M.O.); (J.O.); (Y.Y.); (M.O.); (S.H.); (I.I.)
| | - Hiroko Kikuchi-Hayakawa
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan; (H.K.-H.); (H.I.); (M.A.); (K.M.); (M.K.)
| | - Jun Ogura
- National Centre of Neurology and Psychiatry, Department of Mental Disorder Research, National Institute of Neuroscience, 4-1-1 Ogawa-Higashi, Kodaira-shi, Tokyo 187-8502, Japan; (M.O.); (J.O.); (Y.Y.); (M.O.); (S.H.); (I.I.)
| | - Hiroshi Ishikawa
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan; (H.K.-H.); (H.I.); (M.A.); (K.M.); (M.K.)
| | - Yukihito Yomogida
- National Centre of Neurology and Psychiatry, Department of Mental Disorder Research, National Institute of Neuroscience, 4-1-1 Ogawa-Higashi, Kodaira-shi, Tokyo 187-8502, Japan; (M.O.); (J.O.); (Y.Y.); (M.O.); (S.H.); (I.I.)
| | - Miho Ota
- National Centre of Neurology and Psychiatry, Department of Mental Disorder Research, National Institute of Neuroscience, 4-1-1 Ogawa-Higashi, Kodaira-shi, Tokyo 187-8502, Japan; (M.O.); (J.O.); (Y.Y.); (M.O.); (S.H.); (I.I.)
| | - Shinsuke Hidese
- National Centre of Neurology and Psychiatry, Department of Mental Disorder Research, National Institute of Neuroscience, 4-1-1 Ogawa-Higashi, Kodaira-shi, Tokyo 187-8502, Japan; (M.O.); (J.O.); (Y.Y.); (M.O.); (S.H.); (I.I.)
| | - Ikki Ishida
- National Centre of Neurology and Psychiatry, Department of Mental Disorder Research, National Institute of Neuroscience, 4-1-1 Ogawa-Higashi, Kodaira-shi, Tokyo 187-8502, Japan; (M.O.); (J.O.); (Y.Y.); (M.O.); (S.H.); (I.I.)
| | - Masanori Aida
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan; (H.K.-H.); (H.I.); (M.A.); (K.M.); (M.K.)
| | - Kazunori Matsuda
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan; (H.K.-H.); (H.I.); (M.A.); (K.M.); (M.K.)
| | - Mitsuhisa Kawai
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo 186-8650, Japan; (H.K.-H.); (H.I.); (M.A.); (K.M.); (M.K.)
| | - Sumiko Yoshida
- National Centre of Neurology and Psychiatry, Department of Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira-shi, Tokyo 187-8551, Japan;
| | - Hiroshi Kunugi
- National Centre of Neurology and Psychiatry, Department of Mental Disorder Research, National Institute of Neuroscience, 4-1-1 Ogawa-Higashi, Kodaira-shi, Tokyo 187-8502, Japan; (M.O.); (J.O.); (Y.Y.); (M.O.); (S.H.); (I.I.)
- Department of Psychiatry, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
- Correspondence:
| |
Collapse
|
32
|
Modulation and metabolism of obesity-associated microbiota in a dynamic simulator of the human gut microbiota. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
33
|
Kanazawa A, Aida M, Yoshida Y, Kaga H, Katahira T, Suzuki L, Tamaki S, Sato J, Goto H, Azuma K, Shimizu T, Takahashi T, Yamashiro Y, Watada H. Effects of Synbiotic Supplementation on Chronic Inflammation and the Gut Microbiota in Obese Patients with Type 2 Diabetes Mellitus: A Randomized Controlled Study. Nutrients 2021; 13:nu13020558. [PMID: 33567701 PMCID: PMC7914668 DOI: 10.3390/nu13020558] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/27/2021] [Accepted: 02/04/2021] [Indexed: 12/23/2022] Open
Abstract
The aim of this study was to investigate the effects of 24-week synbiotic supplementation on chronic inflammation and the gut microbiota in obese patients with type 2 diabetes. We randomized 88 obese patients with type 2 diabetes to one of two groups for 24 weeks: control or synbiotic (Lacticaseibacillus paracasei strain Shirota (previously Lactobacillus casei strain Shirota) and Bifidobacterium breve strain Yakult, and galactooligosaccharides). The primary endpoint was the change in interleukin-6 from baseline to 24 weeks. Secondary endpoints were evaluation of the gut microbiota in feces and blood, fecal organic acids, high-sensitivity C-reactive protein, lipopolysaccharide-binding protein, and glycemic control. Synbiotic administration for 24 weeks did not significantly affect changes in interleukin-6 from baseline to 24 weeks (0.35 ± 1.99 vs. −0.24 ± 1.75 pg/mL, respectively). Relative to baseline, however, at 24 weeks after synbiotic administration there were positive changes in the counts of Bifidobacterium and total lactobacilli, the relative abundances of Bifidobacterium species such as Bifidobacterium adolescentis and Bifidobacterium pseudocatenulatum, and the concentrations of acetic and butyric acids in feces. No significant changes in inflammatory markers were found in the synbiotic group compared to the control group. However, synbiotic administration at least partially improved the gut environment in obese patients with type 2 diabetes.
Collapse
Affiliation(s)
- Akio Kanazawa
- Department of Metabolism & Endocrinology, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan; (H.K.); (T.K.); (L.S.); (S.T.); (J.S.); (H.G.); (K.A.); (T.S.); (H.W.)
- Correspondence: ; Tel.: +81-3-5802-1579
| | - Masanori Aida
- Food Research Department, Yakult Central Institute, Tokyo 186-8650, Japan; (M.A.); (Y.Y.)
| | - Yasuto Yoshida
- Food Research Department, Yakult Central Institute, Tokyo 186-8650, Japan; (M.A.); (Y.Y.)
| | - Hideyoshi Kaga
- Department of Metabolism & Endocrinology, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan; (H.K.); (T.K.); (L.S.); (S.T.); (J.S.); (H.G.); (K.A.); (T.S.); (H.W.)
| | - Takehiro Katahira
- Department of Metabolism & Endocrinology, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan; (H.K.); (T.K.); (L.S.); (S.T.); (J.S.); (H.G.); (K.A.); (T.S.); (H.W.)
| | - Luka Suzuki
- Department of Metabolism & Endocrinology, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan; (H.K.); (T.K.); (L.S.); (S.T.); (J.S.); (H.G.); (K.A.); (T.S.); (H.W.)
| | - Shoko Tamaki
- Department of Metabolism & Endocrinology, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan; (H.K.); (T.K.); (L.S.); (S.T.); (J.S.); (H.G.); (K.A.); (T.S.); (H.W.)
| | - Junko Sato
- Department of Metabolism & Endocrinology, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan; (H.K.); (T.K.); (L.S.); (S.T.); (J.S.); (H.G.); (K.A.); (T.S.); (H.W.)
| | - Hiromasa Goto
- Department of Metabolism & Endocrinology, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan; (H.K.); (T.K.); (L.S.); (S.T.); (J.S.); (H.G.); (K.A.); (T.S.); (H.W.)
| | - Kosuke Azuma
- Department of Metabolism & Endocrinology, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan; (H.K.); (T.K.); (L.S.); (S.T.); (J.S.); (H.G.); (K.A.); (T.S.); (H.W.)
| | - Tomoaki Shimizu
- Department of Metabolism & Endocrinology, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan; (H.K.); (T.K.); (L.S.); (S.T.); (J.S.); (H.G.); (K.A.); (T.S.); (H.W.)
| | - Takuya Takahashi
- Yakult Honsha European Research Center for Microbiology, 9052 Gent-Zwijnaarde, Belgium;
| | - Yuichiro Yamashiro
- Probiotics Research Laboratory, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan;
| | - Hirotaka Watada
- Department of Metabolism & Endocrinology, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan; (H.K.); (T.K.); (L.S.); (S.T.); (J.S.); (H.G.); (K.A.); (T.S.); (H.W.)
- Center for Therapeutic Innovations in Diabetes, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
- Center for Identification of Diabetic Therapeutic Targets, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
- Sportology Center, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| |
Collapse
|
34
|
Rahayu ES, Mariyatun M, Putri Manurung NE, Hasan PN, Therdtatha P, Mishima R, Komalasari H, Mahfuzah NA, Pamungkaningtyas FH, Yoga WK, Nurfiana DA, Liwan SY, Juffrie M, Nugroho AE, Utami T. Effect of probiotic Lactobacillus plantarum Dad-13 powder consumption on the gut microbiota and intestinal health of overweight adults. World J Gastroenterol 2021; 27:107-128. [PMID: 33505154 PMCID: PMC7789061 DOI: 10.3748/wjg.v27.i1.107] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/07/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Shifting on lifestyle, diet, and physical activity contributed on increasing number of obese people around the world. Multiple factors influence the development of obesity. Some research suggested that gut microbiota (GM) plays an important role in nutrient absorption and energy regulation of individuals, thus affecting their nutritional status. Report of Indonesia Basic Health Research showed that the prevalence of obesity in every province tended to increase. Although the root cause of obesity is excessive calorie intake compared with expenditure, the differences in gut microbial ecology between healthy and obese humans may affect energy homeostasis. GM affect body weight, especially obesity. Probiotics that are consumed while alive and able to colonize in the intestine are expected to increase the population of good bacteria, especially Bifidobacteria and Lactobacilli, and suppress pathogens such as Enterobacteriaceae and Staphylococcus. The strain of L. plantarum Dad-13 has been demonstrated to survive and colonize in the gastrointestinal tract of healthy Indonesian adults who consume fermented milk containing L. plantarum Dad-13. The consumption of probiotic L. plantarum Dad-13 powder decreased E. coli and non-E. coli coliform bacteria in school-aged children in Indonesia. L. plantarum is a dominant bacterium in the average Indonesian’s GM. For this reason, this bacterium is probably a more suitable probiotic for Indonesians.
AIM To determine the effect of the consumption of indigenous probiotic Lactobacillus plantarum Dad-13 powder in overweight adults in Yogyakarta (Indonesia).
METHODS Sixty overweight volunteers with a body mass index (BMI) equal to or greater than 25 consume indigenous probiotic powder L. plantarum Dad-13 (2 × 109 CFU/gram/sachet) for 90 d. The study was a randomized, double-blind, placebo-controlled study. The volunteers filled in a diary on a daily basis, which consisted of questions on study product intake (only during ingestion period), other food intake, number of bowel movements, fecal quality (consistency and color), any medications received, and any symptom of discomfort, such as diarrhea, constipation, vomiting, gassing, sensation of illness, etc. Fecal samples and the subjects’ diaries were collected on the morning of day 10 + 1, which was marked as the end of the baseline period and the start of the ingestion period. During the ingestion period (from day 11 to day 101), several parameters to measure and analyze the results included body weight and height (once a month), the lipid profile, GM analysis using MiSeq, short-chain fatty acid (SCFA) analysis using gas chromatography, and the measurement of fecal pH using a pH meter.
RESULTS The consumption of indigenous probiotic powder L. plantarum Dad-13 caused the average body weight and BMI of the probiotic group to decrease from 84.54 ± 17.64 kg to 83.14 ± 14.71 kg and 33.10 ± 6.15 kg/m2 to 32.57 ± 5.01 kg/m2, respectively. No significant reduction of body weight and BMI in the placebo group was observed. An analysis of the microbiota showed that the number of Bacteroidetes, specifically Prevotella, increased significantly, while that of Firmicutes significantly decreased. No significant change in lipid profile in both groups was found. Also, no significant change in SCFAs (e.g., butyrate, propionate, acetic acid) and pH level was found after the consumption of the probiotic.
CONCLUSION No significant differences in pH before and after ingestion were observed in both the probiotic and placebo groups as well as in the lipid profile of both cholesterol and triglyceride, high-density lipoprotein (HDL), low-density lipoprotein (LDL), and the LDL/HDL ratio. In addition, no significant changes in the concentration of SCFAs (e.g., acetic acid, propionate, and butyrate) were found after con-sumption. Interestingly, a significant decrease in body weight and BMI (P < 0.05) was determined in the treatment group. An analysis of GM shows that L. plantarum Dad-13 caused the Firmicutes population to decrease and the Bacteroidetes population (especially Prevotella) to increase.
Collapse
Affiliation(s)
- Endang Sutriswati Rahayu
- Department of Food and Agricultural Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Center for Food and Nutrition Studies, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Mariyatun Mariyatun
- Department of Food and Agricultural Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Center for Food and Nutrition Studies, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Nancy Eka Putri Manurung
- Department of Food and Agricultural Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Center for Food and Nutrition Studies, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Pratama Nur Hasan
- Department of Food and Agricultural Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Center for Food and Nutrition Studies, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Phatthanaphong Therdtatha
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 774 Motooka, Nishi-ku, Fukuoka, Japan
| | - Riko Mishima
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 774 Motooka, Nishi-ku, Fukuoka, Japan
| | - Husnita Komalasari
- Department of Food and Agricultural Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Nurul Ain Mahfuzah
- Department of Food and Agricultural Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Fathyah Hanum Pamungkaningtyas
- Department of Food and Agricultural Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Center for Food and Nutrition Studies, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Wahyu Krisna Yoga
- Department of Food and Agricultural Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Dina Aulia Nurfiana
- Department of Food and Agricultural Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Center for Food and Nutrition Studies, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Stefanie Yolanda Liwan
- Department of Food and Agricultural Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Mohammad Juffrie
- Department of Public Health, Faculty of Medicine, Public Health and Nursery, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Agung Endro Nugroho
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Tyas Utami
- Department of Food and Agricultural Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Center for Food and Nutrition Studies, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| |
Collapse
|
35
|
Rahayu ES, Mariyatun M, Putri Manurung NE, Hasan PN, Therdtatha P, Mishima R, Komalasari H, Mahfuzah NA, Pamungkaningtyas FH, Yoga WK, Nurfiana DA, Liwan SY, Juffrie M, Nugroho AE, Utami T. Effect of probiotic Lactobacillus plantarum Dad-13 powder consumption on the gut microbiota and intestinal health of overweight adults. World J Gastroenterol 2021. [PMID: 33505154 DOI: 10.3748/wjg.v27.i1.107]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Shifting on lifestyle, diet, and physical activity contributed on increasing number of obese people around the world. Multiple factors influence the development of obesity. Some research suggested that gut microbiota (GM) plays an important role in nutrient absorption and energy regulation of individuals, thus affecting their nutritional status. Report of Indonesia Basic Health Research showed that the prevalence of obesity in every province tended to increase. Although the root cause of obesity is excessive calorie intake compared with expenditure, the differences in gut microbial ecology between healthy and obese humans may affect energy homeostasis. GM affect body weight, especially obesity. Probiotics that are consumed while alive and able to colonize in the intestine are expected to increase the population of good bacteria, especially Bifidobacteria and Lactobacilli, and suppress pathogens such as Enterobacteriaceae and Staphylococcus. The strain of L. plantarum Dad-13 has been demonstrated to survive and colonize in the gastrointestinal tract of healthy Indonesian adults who consume fermented milk containing L. plantarum Dad-13. The consumption of probiotic L. plantarum Dad-13 powder decreased E. coli and non-E. coli coliform bacteria in school-aged children in Indonesia. L. plantarum is a dominant bacterium in the average Indonesian's GM. For this reason, this bacterium is probably a more suitable probiotic for Indonesians. AIM To determine the effect of the consumption of indigenous probiotic Lactobacillus plantarum Dad-13 powder in overweight adults in Yogyakarta (Indonesia). METHODS Sixty overweight volunteers with a body mass index (BMI) equal to or greater than 25 consume indigenous probiotic powder L. plantarum Dad-13 (2 × 109 CFU/gram/sachet) for 90 d. The study was a randomized, double-blind, placebo-controlled study. The volunteers filled in a diary on a daily basis, which consisted of questions on study product intake (only during ingestion period), other food intake, number of bowel movements, fecal quality (consistency and color), any medications received, and any symptom of discomfort, such as diarrhea, constipation, vomiting, gassing, sensation of illness, etc. Fecal samples and the subjects' diaries were collected on the morning of day 10 + 1, which was marked as the end of the baseline period and the start of the ingestion period. During the ingestion period (from day 11 to day 101), several parameters to measure and analyze the results included body weight and height (once a month), the lipid profile, GM analysis using MiSeq, short-chain fatty acid (SCFA) analysis using gas chromatography, and the measurement of fecal pH using a pH meter. RESULTS The consumption of indigenous probiotic powder L. plantarum Dad-13 caused the average body weight and BMI of the probiotic group to decrease from 84.54 ± 17.64 kg to 83.14 ± 14.71 kg and 33.10 ± 6.15 kg/m2 to 32.57 ± 5.01 kg/m2, respectively. No significant reduction of body weight and BMI in the placebo group was observed. An analysis of the microbiota showed that the number of Bacteroidetes, specifically Prevotella, increased significantly, while that of Firmicutes significantly decreased. No significant change in lipid profile in both groups was found. Also, no significant change in SCFAs (e.g., butyrate, propionate, acetic acid) and pH level was found after the consumption of the probiotic. CONCLUSION No significant differences in pH before and after ingestion were observed in both the probiotic and placebo groups as well as in the lipid profile of both cholesterol and triglyceride, high-density lipoprotein (HDL), low-density lipoprotein (LDL), and the LDL/HDL ratio. In addition, no significant changes in the concentration of SCFAs (e.g., acetic acid, propionate, and butyrate) were found after con-sumption. Interestingly, a significant decrease in body weight and BMI (P < 0.05) was determined in the treatment group. An analysis of GM shows that L. plantarum Dad-13 caused the Firmicutes population to decrease and the Bacteroidetes population (especially Prevotella) to increase.
Collapse
Affiliation(s)
- Endang Sutriswati Rahayu
- Department of Food and Agricultural Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Mariyatun Mariyatun
- Department of Food and Agricultural Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Nancy Eka Putri Manurung
- Department of Food and Agricultural Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Pratama Nur Hasan
- Department of Food and Agricultural Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Phatthanaphong Therdtatha
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 774 Motooka, Nishi-ku, Fukuoka, Japan
| | - Riko Mishima
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 774 Motooka, Nishi-ku, Fukuoka, Japan
| | - Husnita Komalasari
- Department of Food and Agricultural Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Nurul Ain Mahfuzah
- Department of Food and Agricultural Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Fathyah Hanum Pamungkaningtyas
- Department of Food and Agricultural Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Wahyu Krisna Yoga
- Department of Food and Agricultural Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Dina Aulia Nurfiana
- Department of Food and Agricultural Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Stefanie Yolanda Liwan
- Department of Food and Agricultural Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Mohammad Juffrie
- Department of Public Health, Faculty of Medicine, Public Health and Nursery, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Agung Endro Nugroho
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Tyas Utami
- Department of Food and Agricultural Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| |
Collapse
|
36
|
Miyata N, Hata T, Takakura S, Yoshihara K, Morita C, Mikami K, Nomoto K, Miyazaki K, Tsuji H, Sudo N. Metabolomics profile of Japanese female patients with restricting-type anorexia nervosa. Physiol Behav 2021; 228:113204. [PMID: 33053407 DOI: 10.1016/j.physbeh.2020.113204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 01/21/2023]
Abstract
In this study, the serum metabolic profiles of 10 female patients with restricting type anorexia nervosa (ANR) were compared to those of 10 age-matched healthy female controls. While the levels of amino acids were lower among the patients than among the controls, the levels of uremic toxins, including p-cresyl sulfate (PCS), indole-3-acetic acid, and phenyl sulfate, were higher in ANR patients. The serum PCS levels correlated positively with the abundance of the Clostridium coccoides group or the C. leptum subgroup in the feces of patients, but not in those of controls. Collectively, these results indicate that the serum metabolic profiles of patients with ANR differ from those of healthy women in terms of both decreased amino acid levels and increased uremic toxins. Gut microbes including C. coccoides or C. leptum may be involved in such an increase in uremic toxins.
Collapse
Affiliation(s)
- Noriyuki Miyata
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Tomokazu Hata
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Shu Takakura
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kazufumi Yoshihara
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Chihiro Morita
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Katsunaka Mikami
- Department of Psychiatry, Tokai University School of Medicine, Isehara, Japan
| | - Koji Nomoto
- Tokyo University of Agriculture, Faculty of Life Sciences, Department of Molecular Microbiology, Japan
| | | | | | - Nobuyuki Sudo
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
37
|
Clairmont LK, Coristine A, Stevens KJ, Slawson RM. Factors influencing the persistence of enteropathogenic bacteria in wetland habitats and implications for water quality. J Appl Microbiol 2020; 131:513-526. [PMID: 33274572 DOI: 10.1111/jam.14955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/12/2020] [Accepted: 11/29/2020] [Indexed: 11/28/2022]
Abstract
AIMS To better understand the persistence dynamics of enteropathogenic bacteria in freshwater wetland habitats, we constructed lab-scale mesocosms planted with two different wetland plant species using a subsurface flow wetland design. Mesocosms were treated with either a high-quality or a poor-quality water source to examine the effects of water quality exposure and plant species on Escherichia coli, Salmonella spp. and Enterococcus spp. in the rhizoplane, rhizosphere and water of wetland habitats. METHODS AND RESULTS Quantities of study micro-organisms were detected using real-time PCR in wetland mesocosms. A combination of molecular and culture-based methods was also used to enumerate these organisms from surface water and plant material at high, medium and poor water quality sites in the field. We found that all three enteropathogenic micro-organisms were influenced by microhabitat type and plant species. Organisms differed with respect to their predominant microhabitat and the extent of persistence associated with wetland plant species in the mesocosm study. Of the monitored pathogens, only E. coli was influenced by both water quality treatment and plant species. Salmonella spp. quantities in the rhizoplane consistently increased in all treatments over the course of the mesocosm experiment. CONCLUSIONS Plant species selection appears to be an overlooked aspect of constructed wetland design with respect to the removal of enteropathogenic micro-organisms. Escherichia coli and Enterococcus concentrations in wetland outflow were significantly different between the two plant species tested, with Enterococcus concentrations being significantly higher in mesocosms planted with Phalaris arundinaceae and E. coli concentrations being higher in mesocosms planted with Veronica anagallis-aquatica. Furthermore, there is evidence that the rhizoplane is a significant reservoir for Salmonella spp. within wetland habitats. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first time that Salmonella spp. has been shown to proliferate under natural conditions within the rhizoplane. This will contribute to our understanding of wetland removal mechanisms for enteropathogenic bacteria. This study identifies the rhizoplane as a potentially important reservoir for human pathogenic micro-organisms and warrants additional study to establish whether this finding is applicable in non-wetland habitats.
Collapse
Affiliation(s)
| | - A Coristine
- Wilfrid Laurier University, Waterloo, ON, Canada
| | - K J Stevens
- Wilfrid Laurier University, Waterloo, ON, Canada
| | - R M Slawson
- Wilfrid Laurier University, Waterloo, ON, Canada
| |
Collapse
|
38
|
Suenaga M, Yokoyama Y, Fujii T, Yamada S, Yamaguchi J, Hayashi M, Asahara T, Nagino M, Kodera Y. Impact of Preoperative Occult-Bacterial Translocation on Surgical Site Infection in Patients Undergoing Pancreatoduodenectomy. J Am Coll Surg 2020; 232:298-306. [PMID: 33316423 DOI: 10.1016/j.jamcollsurg.2020.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/05/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Occult-bacterial translocation (O-BT) has been reported as the condition in which microorganisms are detected in blood or lymph nodes by a highly sensitive method. However, the clinical impact of preoperative O-BT on postoperative complication is unclear. STUDY DESIGN A prospective observational study with patients undergoing pancreatoduodenectomy for periampullary diseases was conducted. Blood samples were collected immediately after induction of anesthesia. The status of O-BT was investigated using bacterium-specific ribosomal RNA-targeted reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR). The impact of O-BT on surgical site infection (SSI) was analyzed. RESULTS A total of 155 patients were included. The positive rate in preoperative blood samples detected by RT-qPCR was significantly higher than that obtained by the culture method (32 of 155 vs 4 of 155, p < 0.001). Preoperative blood samples were contaminated with 1.0 to 19.2 bacterial cells/mL in positive patients, and 30 of the 41 detected microorganisms were obligate anaerobes. No differences in preoperative factors were observed between patients with positive and negative RT-qPCR results. The incidence of any SSI was significantly higher in patients with contaminated preoperative blood (≥1.2 bacterial cells/mL) than in other patients (14 of 27 vs 35 of 128, p = 0.013). Multivariable analysis indicated that contaminated preoperative blood was identified as one of the independent risk factors for SSI (odds ratio 2.71, 95% CI 1.04 to 7.24, p = 0.041). CONCLUSIONS O-BT, predominantly with obligate anaerobes, was commonly observed in preoperative blood samples. In addition to the previously known risk factors, O-BT may be one of the risk factors for SSI after pancreatoduodenectomy.
Collapse
Affiliation(s)
| | - Yukihiro Yokoyama
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Tsutomu Fujii
- Department of Gastroenterological Surgery (Surgery II); Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Suguru Yamada
- Department of Gastroenterological Surgery (Surgery II)
| | - Junpei Yamaguchi
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | - Masato Nagino
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | |
Collapse
|
39
|
Kurita N, Yamashiro K, Kuroki T, Tanaka R, Urabe T, Ueno Y, Miyamoto N, Takanashi M, Shimura H, Inaba T, Yamashiro Y, Nomoto K, Matsumoto S, Takahashi T, Tsuji H, Asahara T, Hattori N. Metabolic endotoxemia promotes neuroinflammation after focal cerebral ischemia. J Cereb Blood Flow Metab 2020; 40:2505-2520. [PMID: 31910709 PMCID: PMC7820690 DOI: 10.1177/0271678x19899577] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lipopolysaccharide (LPS) is a major component of the outer membrane of Gram-negative bacteria and a potent inflammatory stimulus for the innate immune response via toll-like receptor (TLR) 4 activation. Type 2 diabetes is associated with changes in gut microbiota and impaired intestinal barrier functions, leading to translocation of microbiota-derived LPS into the circulatory system, a condition referred to as metabolic endotoxemia. We investigated the effects of metabolic endotoxemia after experimental stroke with transient middle cerebral artery occlusion (MCAO) in a murine model of type 2 diabetes (db/db) and phenotypically normal littermates (db/+). Compared to db/+ mice, db/db mice exhibited an altered gut microbial composition, increased intestinal permeability, and higher plasma LPS levels. In addition, db/db mice presented increased infarct volumes and higher expression levels of LPS, TLR4, and inflammatory cytokines in the ischemic brain, as well as more severe neurological impairments and reduced survival rates after MCAO. Oral administration of a non-absorbable antibiotic modulated the gut microbiota and improved metabolic endotoxemia and stroke outcomes in db/db mice; these effects were associated with reduction of LPS levels and neuroinflammation in the ischemic brain. These data suggest that targeting metabolic endotoxemia may be a novel potential therapeutic strategy to improve stroke outcomes.
Collapse
Affiliation(s)
- Naohide Kurita
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Kazuo Yamashiro
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Takuma Kuroki
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Ryota Tanaka
- Division of Neurology, Department of Internal Medicine, Jichi Medical University, Tochigi Japan
| | - Takao Urabe
- Department of Neurology, Juntendo University Urayasu Hospital, Chiba, Japan
| | - Yuji Ueno
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Nobukazu Miyamoto
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Masashi Takanashi
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Hideki Shimura
- Department of Neurology, Juntendo University Urayasu Hospital, Chiba, Japan
| | - Toshiki Inaba
- Department of Neurology, Juntendo University Urayasu Hospital, Chiba, Japan
| | - Yuichiro Yamashiro
- Probiotics Research Laboratory, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Koji Nomoto
- Probiotics Research Laboratory, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Molecular Microbiology, Tokyo University of Agriculture, Tokyo, Japan
| | - Satoshi Matsumoto
- Probiotics Research Laboratory, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Yakult Central Institute, Tokyo, Japan
| | - Takuya Takahashi
- Probiotics Research Laboratory, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Yakult Honsha European Research Center for Microbiology ESV, Gent, Belgium
| | - Hirokazu Tsuji
- Probiotics Research Laboratory, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Yakult Central Institute, Tokyo, Japan
| | - Takashi Asahara
- Probiotics Research Laboratory, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Yakult Central Institute, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
40
|
Feng X, Han L, Ma S, Zhao L, Wang L, Zhang K, Yin P, Guo L, Jing W, Li Q. Microbes in Tumoral In Situ Tissues and in Tumorigenesis. Front Cell Infect Microbiol 2020; 10:572570. [PMID: 33330121 PMCID: PMC7732458 DOI: 10.3389/fcimb.2020.572570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/23/2020] [Indexed: 12/14/2022] Open
Abstract
Cancerous tumors are severe diseases affecting human health that have a complicated etiology and pathogenesis. Microbes have been considered to be related to the development and progression of numerous tumors through various pathogenic mechanisms in recent studies. Bacteria, which have so far remained the most studied microbes worldwide, have four major possible special pathogenic mechanisms (modulation of inflammation, immunity, DNA damage, and metabolism) that are related to carcinogenesis. This review aims to macroscopically summarize and verify the relationships between microbes and tumoral in situ tissues from cancers of four major different systems (urinary, respiratory, digestive, and reproductive); the abovementioned four microbial pathogenic mechanisms, as well as some synergistic pathogenic mechanisms, are also discussed. Once the etiologic role of microbes and their precise pathogenic mechanisms in carcinogenesis are known, the early prevention, diagnosis, and treatment of cancers would progress significantly.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Qiling Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
41
|
Yokoyama Y, Nagino M, Ebata T. Importance of "muscle" and "intestine" training before major HPB surgery: A review. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2020; 28:545-555. [PMID: 33058524 DOI: 10.1002/jhbp.835] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 01/07/2023]
Abstract
Major hepato-pancreato-biliary (HPB) surgery is one of the most invasive abdominal surgeries. Through the experiences of several clinical trials, including those involving patients undergoing major HPB surgery, we have recognized the importance of "muscle" and "intestine" training before surgery. This review article summarizes the results of our clinical trials, specifically focusing on the importance of "muscle" and "intestine". The patients with low skeletal muscle mass or those with low functional exercise capacity showed a significantly worse postoperative course and poor long-term survival after surgery for HPB malignancy. The introduction of prehabilitation (preoperative physical and nutritional support) improved nutritional status and functional exercise capacity, even in patients with malignancy. Daily physical activity was correlated with nutritional status before surgery. These results indicated the usefulness of prehabilitation. The intestinal microenvironment, which is extrapolated from the fecal concentrations of short-chain fatty acids (SCFAs), showed a significant association with the incidence of surgery-induced bacterial translocation and postoperative infectious complications (POICs). The use of perioperative synbiotics not only increased the fecal levels of SCFAs but also prevented the incidence of POICs. A recent study also indicated that there are correlations between muscle mass and the intestinal microenvironment. Further investigation is required to determine the best "muscle" and "intestine" training protocol to improve the outcomes of major HPB surgeries.
Collapse
Affiliation(s)
- Yukihiro Yokoyama
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Division of Perioperative Medicine, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masato Nagino
- Department of Gastroenterological Surgery, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Tomoki Ebata
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
42
|
Liao JF, Cheng YF, You ST, Kuo WC, Huang CW, Chiou JJ, Hsu CC, Hsieh-Li HM, Wang S, Tsai YC. Lactobacillus plantarum PS128 alleviates neurodegenerative progression in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse models of Parkinson's disease. Brain Behav Immun 2020; 90:26-46. [PMID: 32739365 DOI: 10.1016/j.bbi.2020.07.036] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
Evidence suggests that the Parkinson's disease (PD) pathogenesis is strongly associated with bidirectional pathways in the microbiota-gut-brain axis (MGBA), and psychobiotics may inhibit PD progression. We previously reported that the novel psychobiotic strain, Lactobacillus plantarum PS128 (PS128), ameliorated abnormal behaviors and modulated neurotransmissions in dopaminergic pathways in rodent models. Here, we report that orally administering PS128 for 4 weeks significantly alleviated the motor deficits, elevation in corticosterone, nigrostriatal dopaminergic neuronal death, and striatal dopamine reduction in 1-methyl-4-phenyl-1,2,3,6-tetrathydropyridine (MPTP)-induced PD mouse models. PS128 ingestion suppressed glial cell hyperactivation and increased norepinephrine and neurotrophic factors in the striatum of the PD-model mice. PS128 administration also attenuated MPTP-induced oxidative stress and neuroinflammation in the nigrostriatal pathway. Fecal analysis showed that PS128 modulated the gut microbiota. L. plantarum abundance was significantly increased along with methionine biosynthesis-related microbial modules. PS128 also suppressed the increased family Enterobacteriaceae and lipopolysaccharide and peptidoglycan biosynthesis-related microbial modules caused by MPTP. In conclude, PS128 ingestion alleviated MPTP-induced motor deficits and neurotoxicity.PS128 supplementation inhibited neurodegenerative processes in PD-model mice and may help prevent PD.
Collapse
Affiliation(s)
- Jian-Fu Liao
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, 155, Section 2, Linong Street, Beitou Dist., Taipei City 11221, Taiwan, ROC
| | - Yun-Fang Cheng
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, 155, Section 2, Linong Street, Beitou Dist., Taipei City 11221, Taiwan, ROC; Microbiome Research Center, National Yang-Ming University, 155, Section 2, Linong Street, Beitou Dist., Taipei City 11221, Taiwan, ROC; Bened Biomedical Co. Ltd., 2F-2, No.129, Sec. 2, Zhongshan N. Rd., Zhongshan Dist., Taipei City 104, Taiwan, ROC
| | - Shu-Ting You
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, 155, Section 2, Linong Street, Beitou Dist., Taipei City 11221, Taiwan, ROC
| | - Wen-Chun Kuo
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, 155, Section 2, Linong Street, Beitou Dist., Taipei City 11221, Taiwan, ROC
| | - Chi-Wei Huang
- Center for Systems and Synthetic Biology, National Yang-Ming University, 155, Section 2, Linong Street, Beitou Dist., Taipei City 11221, Taiwan, ROC
| | - Jen-Jie Chiou
- Center for Systems and Synthetic Biology, National Yang-Ming University, 155, Section 2, Linong Street, Beitou Dist., Taipei City 11221, Taiwan, ROC
| | - Chih-Chieh Hsu
- Bened Biomedical Co. Ltd., 2F-2, No.129, Sec. 2, Zhongshan N. Rd., Zhongshan Dist., Taipei City 104, Taiwan, ROC
| | - Hsiu-Mei Hsieh-Li
- Department of Life Science, National Taiwan Normal University, 88, Section 4, Tingchow Rd., Wenshan Dist., Taipei City 116, Taiwan, ROC
| | - Sabrina Wang
- Institute of Anatomy and Cell Biology, National Yang-Ming University, 155, Section 2, Linong Street, Beitou Dist., Taipei City 11221, Taiwan, ROC.
| | - Ying-Chieh Tsai
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, 155, Section 2, Linong Street, Beitou Dist., Taipei City 11221, Taiwan, ROC; Microbiome Research Center, National Yang-Ming University, 155, Section 2, Linong Street, Beitou Dist., Taipei City 11221, Taiwan, ROC.
| |
Collapse
|
43
|
Maekawa M, Yoshitani K, Yahagi M, Asahara T, Shishido Y, Fukushima S, Tadokoro N, Fujita T, Ohnishi Y. Association between postoperative changes in the gut microbiota and pseudopsia after cardiac surgery: prospective observational study. BMC Surg 2020; 20:247. [PMID: 33081782 PMCID: PMC7576870 DOI: 10.1186/s12893-020-00907-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 10/12/2020] [Indexed: 12/15/2022] Open
Abstract
Background Delirium after cardiac surgery affects mortality, but the mechanism remains unclear. Previous studies have reported gut microbiota are associated with brain activity. Systemic inflammation and antibiotics can damage the gut microbiota after cardiac surgery. We aimed to investigate changes in the gut microbiota and the association between the gut microbiota and delirium after cardiac surgery. Methods Twenty-one patients who underwent cardiac surgery were enrolled. Microbiota counts and fecal organic acid concentrations were measured in fecal samples harvested before surgery, just after surgery, and before discharge. To quantify the microbiota, we extracted total RNA fractions and examined gut microbiota composition using 16S and 23S rRNA-targeted quantitative-reverse Transcription-PCR. Postoperative delirium, insomnia, and pseudopsia were assessed for 1 week. Postoperative total bacterial counts changed significantly from 10.2 ± 0.2 log10 cells/g of feces to 9.8 ± 0.5 in the first postoperative samples (p = 0.003) and 10.0 ± 0.4 in the samples before discharge (p = 0.039). Fecal pH was 6.9 ± 0.6 before surgery and 7.4 ± 0.7 in the first postoperative samples (p = 0.001). Postoperative Staphylococcus and Pseudomonas counts were significantly higher in patients with postoperative pseudopsia than in patients without pseudopsia (3.2 ± 1.3 vs. 5.4 ± 0.9; p = 0.012 and 1.7 ± 0.8 vs. 4.6 ± 2.7; p = 0.001). Conclusions Total bacterial counts were significantly lower after surgery and until discharge. Fecal pH was significantly higher than preoperative levels. Staphylococcus and Pseudomonas counts were significantly higher in patients with postoperative pseudopsia.
Collapse
Affiliation(s)
- Masaki Maekawa
- Department of Anesthesiology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Kenji Yoshitani
- Department of Anesthesiology, National Cerebral and Cardiovascular Center, Suita, Japan.
| | - Musashi Yahagi
- Department of Anesthesiology, National Cerebral and Cardiovascular Center, Suita, Japan
| | | | | | - Satsuki Fukushima
- Department of Cardiovascular Surgery, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Naoki Tadokoro
- Department of Cardiovascular Surgery, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Tomoyuki Fujita
- Department of Cardiovascular Surgery, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Yoshihiko Ohnishi
- Department of Anesthesiology, National Cerebral and Cardiovascular Center, Suita, Japan
| |
Collapse
|
44
|
Ma C, Guo H, Chang H, Huang S, Jiang S, Huo D, Zhang J, Zhu X. The effects of exopolysaccharides and exopolysaccharide-producing Lactobacillus on the intestinal microbiome of zebrafish (Danio rerio). BMC Microbiol 2020; 20:300. [PMID: 33023493 PMCID: PMC7539446 DOI: 10.1186/s12866-020-01990-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 09/30/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Numerous studies have reported the health-promoting effects of exopolysaccharides (EPSs) in in vitro models; however, a functional evaluation of EPSs will provide additional knowledge of EPS-microbe interactions by in vivo intestinal microbial model. In the present study, high-throughput amplicon sequencing, short-chain fatty acid (SCFAs) and intestinal inflammation evaluation were performed to explore the potential benefits of exopolysaccharides (EPSs) and EPS-producing Lactobacillus (HNUB20 group) using the healthy zebrafish (Danio rerio) model. RESULTS The results based on microbial taxonomic analysis revealed that the abundance of four genera, Ochrobactrum, Sediminibacterium, Sphingomonas and Sphingobium, were increased in the control group in comparison to HNUB20 group. Pelomonas spp. levels were significantly higher and that of the genera Lactobacillus and Brachybacterium were significantly decreased in EPS group compared with control group. PICRUSt based functional prediction of gut microbiota metabolic pathways indicated that significantly lower abundance was found for transcription, and membrane transport, whereas folding, sorting and degradation and energy metabolism had significantly higher abundance after HNUB20 treatment. Two metabolic pathways, including metabolism and endocrine functions, were more abundant in the EPS group than control group. Similar to the HNUB20 group, transcription was also decreased in the EPS group compared with the control group. However, SCFAs and immune indexes indicated EPS and HNUB20 performed limited efficacy in the healthy zebrafish. CONCLUSIONS The present intestinal microbial model-based study indicated that EPSs and high-yield EPS-producing Lactobacillus can shake the structure of intestinal microbiota, but cannot change SCFAs presence and intestinal inflammation.
Collapse
Affiliation(s)
- Chenchen Ma
- College of Food Science and Engineering, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228, Hainan, P. R. China
| | - Hongyang Guo
- College of Food Science and Engineering, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228, Hainan, P. R. China
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Hainan University, Haikou, 570228, Hainan, P. R. China
| | - Haibo Chang
- College of Food Science and Engineering, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228, Hainan, P. R. China
| | - Shi Huang
- Single-Cell Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, People's Republic of China
| | - Shuaiming Jiang
- College of Food Science and Engineering, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228, Hainan, P. R. China
| | - Dongxue Huo
- College of Food Science and Engineering, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228, Hainan, P. R. China
| | - Jiachao Zhang
- College of Food Science and Engineering, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228, Hainan, P. R. China.
| | - Xiaopeng Zhu
- College of Food Science and Engineering, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228, Hainan, P. R. China.
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Hainan University, Haikou, 570228, Hainan, P. R. China.
| |
Collapse
|
45
|
Yokoyama Y, Fukaya M, Mizuno T, Ebata T, Asahara T, Nagino M. Clinical importance of "occult-bacterial translocation" in patients undergoing highly invasive gastrointestinal surgery: A review. Surg Today 2020; 51:485-492. [PMID: 32857253 DOI: 10.1007/s00595-020-02126-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/25/2020] [Indexed: 02/07/2023]
Abstract
In the clinical setting, mild bacteremia cannot be detected by conventional culture methods, only by a highly sensitive bacterial detection system. One of the major causes of mild bacteremia is bacterial translocation (BT) induced by a dysregulated intestinal microenvironment and increased intestinal epithelial permeability. This condition is called "occult-bacterial translocation (O-BT)"; however, the concept of O-BT is not yet fully recognized. In our previous studies, done using a highly sensitive bacterial detection system such as bacterium-specific ribosomal RNA-targeted reverse transcriptase quantitative polymerase chain reaction (RT-qPCR), O-BT was commonly observed in patients who underwent highly invasive surgery. We collected blood and mesenteric lymph node (MLN) samples from patients undergoing esophagectomy for esophageal cancer, before and after they were subjected to surgical stress. The detection rate of bacteria in these samples increased from approximately 20% before surgical stress to more than 50% after surgical stress. Moreover, positivity for bacteria in the blood or MLN samples was associated with the incidence of postoperative infectious complications (POICs). Using the RT-qPCR system, it is possible to detect the specific bacteria that cause O-BT immediately after surgery. This may allow us to select the exact antibiotic that targets possible pathogenic bacteria of POICs.
Collapse
Affiliation(s)
- Yukihiro Yokoyama
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Masahide Fukaya
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Takashi Mizuno
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Tomoki Ebata
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | | | - Masato Nagino
- Department of Gastroenterological Surgery, Aichi Cancer Center Hospital, Nagoya, Japan
| |
Collapse
|
46
|
Cunningham JL, Bramstång L, Singh A, Jayarathna S, Rasmusson AJ, Moazzami A, Müller B. Impact of time and temperature on gut microbiota and SCFA composition in stool samples. PLoS One 2020; 15:e0236944. [PMID: 32745090 PMCID: PMC7398539 DOI: 10.1371/journal.pone.0236944] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/16/2020] [Indexed: 01/08/2023] Open
Abstract
Gut dysbiosis has been implicated in the pathophysiology of a growing number of non-communicable diseases. High through-put sequencing technologies and short chain fatty acid (SCFA) profiling enables surveying of the composition and function of the gut microbiota and provide key insights into host-microbiome interactions. However, a methodological problem with analyzing stool samples is that samples are treated and stored differently prior to submission for analysis potentially influencing the composition of the microbiota and its metabolites. In the present study, we simulated the sample acquisition of a large-scale study, in which stool samples were stored for up to two days in the fridge or at room temperature before being handed over to the hospital. To assess the influence of time and temperature on the microbial community and on SCFA composition in a controlled experimental setting, the stool samples of 10 individuals were exposed to room and fridge temperatures for 24 and 48 hours, respectively, and analyzed using 16S rRNA gene amplicon sequencing, qPCR and nuclear magnetic resonance spectroscopy. To best of our knowledge, this is the first study to investigate the influence of storage time and temperature on the absolute abundance of methanogens, and of Lactobacillus reuteri. The results indicate that values obtained for methanogens, L. reuteri and total bacteria are still representative even after storage for up to 48 hours at RT (20°C) or 4°C. The overall microbial composition and structure appeared to be influenced more by laboratory errors introduced during sample processing than by the actual effects of temperature and time. Although microbial activity was demonstrated by elevated SCFA at both 4°C and RT, SCFAs ratios were more stable over the different conditions and may be considered as long as samples are come from similar storage conditions.
Collapse
Affiliation(s)
- Janet L. Cunningham
- Department of Neurosciences, Psychiatry, Uppsala University, Uppsala, Sweden
| | - Ludvig Bramstång
- Department of Neurosciences, Psychiatry, Uppsala University, Uppsala, Sweden
| | - Abhijeet Singh
- Department of Molecular Sciences, BioCentrum, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Shishanthi Jayarathna
- Department of Molecular Sciences, BioCentrum, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Annica J. Rasmusson
- Department of Neurosciences, Psychiatry, Uppsala University, Uppsala, Sweden
| | - Ali Moazzami
- Department of Molecular Sciences, BioCentrum, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Bettina Müller
- Department of Molecular Sciences, BioCentrum, Swedish University of Agricultural Sciences, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
47
|
|
48
|
Human milk and mucosa-associated disaccharides impact on cultured infant fecal microbiota. Sci Rep 2020; 10:11845. [PMID: 32678209 PMCID: PMC7366668 DOI: 10.1038/s41598-020-68718-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/30/2020] [Indexed: 12/17/2022] Open
Abstract
Human milk oligosaccharides (HMOs) are a mixture of structurally diverse carbohydrates that contribute to shape a healthy gut microbiota composition. The great diversity of the HMOs structures does not allow the attribution of specific prebiotic characteristics to single milk oligosaccharides. We analyze here the utilization of four disaccharides, lacto-N-biose (LNB), galacto-N-biose (GNB), fucosyl-α1,3-GlcNAc (3FN) and fucosyl-α1,6-GlcNAc (6FN), that form part of HMOs and glycoprotein structures, by the infant fecal microbiota. LNB significantly increased the total levels of bifidobacteria and the species Bifidobacterium breve and Bifidobacterium bifidum. The Lactobacillus genus levels were increased by 3FN fermentation and B. breve by GNB and 3FN. There was a significant reduction of Blautia coccoides group with LNB and 3FN. In addition, 6FN significantly reduced the levels of Enterobacteriaceae family members. Significantly higher concentrations of lactate, formate and acetate were produced in cultures containing either LNB or GNB in comparison with control cultures. Additionally, after fermentation of the oligosaccharides by the fecal microbiota, several Bifidobacterium strains were isolated and identified. The results presented here indicated that each, LNB, GNB and 3FN disaccharide, might have a specific beneficial effect in the infant gut microbiota and they are potential prebiotics for application in infant foods.
Collapse
|
49
|
Suenaga M, Yokoyama Y, Fujii T, Yamada S, Yamaguchi J, Hayashi M, Asahara T, Nagino M, Kodera Y. Impact of Qualitative and Quantitative Biliary Contamination Status on the Incidence of Postoperative Infection Complications in Patients Undergoing Pancreatoduodenectomy. Ann Surg Oncol 2020; 28:560-569. [PMID: 32468346 DOI: 10.1245/s10434-020-08645-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND Bacterial contamination status may differ under different biliary drainage conditions. The purpose of this study was to determine the impact of qualitative and quantitative biliary bacterial contamination on the incidence of infection complications in patients undergoing pancreatoduodenectomy. METHODS Patients undergoing pancreatoduodenectomy for periampullary diseases with different biliary drainage conditions, such as external drainage (ED), internal drainage (ID), and no drainage (ND), were included. Bile was collected intraoperatively, and biliary contamination status was qualified and quantified using bacterium-specific ribosomal RNA-targeted reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The impact of biliary contamination status on infection complications was analyzed. RESULTS A total of 152 patients were included (38 with ED, 40 with ID, and 74 with ND). The positive rate of microorganisms in bile was higher in the ID group (98%) compared with the ED group (82%, p = 0.021) and the ND group (65%, p < 0.001). The number of microorganisms detected in bile samples was higher in the ID group compared with the ED group (median 489,788 vs. 5375 bacteria/mL of bile, p < 0.001). With multivariate analysis, soft pancreas, intraoperative bleeding (> 600 mL), and biliary contamination by Atopobium cluster were identified as independent risk factors for infection complications. Biliary contamination by Atopobium cluster was significantly higher in the ID group compared with the other groups. CONCLUSIONS Biliary bacterial contamination is more frequently induced by ID than either ED or ND. In addition to the previously known risk factors, biliary contamination with Atopobium cluster may be one of the risk factors of infection complications following pancreatoduodenectomy.
Collapse
Affiliation(s)
- Masaya Suenaga
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukihiro Yokoyama
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tsutomu Fujii
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan. .,Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.
| | - Suguru Yamada
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Junpei Yamaguchi
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masamichi Hayashi
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Masato Nagino
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
50
|
Suenaga M, Yokoyama Y, Fujii T. ASO Author Reflections: Real Prevalence of Microorganisms in Bile in Patients Undergoing Pancreatoduodenectomy. Ann Surg Oncol 2020; 27:761-762. [PMID: 32458327 DOI: 10.1245/s10434-020-08662-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Indexed: 11/18/2022]
Affiliation(s)
- Masaya Suenaga
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukihiro Yokoyama
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tsutomu Fujii
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan. .,Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.
| |
Collapse
|