1
|
Ramesh A, Srinivasan D, Subbarayan R, Chauhan A, Krishnamoorthy L, Kumar J, Krishnan M, Shrestha R. Enhancing Colorectal Cancer Treatment: The Role of Bifidobacterium in Modulating Gut Immunity and Mitigating Capecitabine-Induced Toxicity. Mol Nutr Food Res 2025; 69:e70023. [PMID: 40109200 DOI: 10.1002/mnfr.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/22/2025]
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer-related mortality globally and presents significant challenges in treatment and patient care. Capecitabine, a widely used prodrug of 5-fluorouracil (5-FU), offers targeted delivery with reduced systemic toxicity compared to traditional chemotherapies. However, capacitabine is associated with adverse effects, such as hand-foot syndrome, gastrointestinal issues, and mucositis. Emerging evidence suggests that probiotics, particularly Bifidobacterium, play a pivotal role in gut microbiota modulation, promoting anti-inflammatory cytokines and short-chain fatty acids, such as butyrate, which possess both intestinal protective and anti-cancer properties. In this review, we explored the potential of Bifidobacterium to improve chemotherapy outcomes by mitigating inflammation and enhancing mucosal immunity in CRC patients. Furthermore, we demonstrated in silico approaches, including molecular docking and protein-protein interaction analysis, for Bifidobacterium and Toll-like receptor 2 (TLR-2), a key mediator of intestinal immunity. Docking results revealed strong binding affinity, suggesting the activation of anti-inflammatory pathways. Notably, this interaction enhanced IL-10 production while reducing pro-inflammatory cytokines, such as IL-6 and TNF-α, fostering gut homeostasis and mitigating chronic inflammation, a key driver of CRC progression. Therefore, future research should focus on personalized probiotics and validating their synergy with chemotherapy and immunotherapy to improve CRC treatment outcomes.
Collapse
Affiliation(s)
- Aswathi Ramesh
- Centre for Advanced Biotherapeutics and Regenerative Medicine, Faculty of Research, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Dhasarathdev Srinivasan
- Centre for Advanced Biotherapeutics and Regenerative Medicine, Faculty of Research, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Rajasekaran Subbarayan
- Centre for Advanced Biotherapeutics and Regenerative Medicine, Faculty of Research, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Ankush Chauhan
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Loganathan Krishnamoorthy
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Jeevan Kumar
- Department of Biomedical Sciences, The Apollo University, Chittoor, Andhra Pradesh, India
| | - Madhan Krishnan
- Faculty of Research, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Rupendra Shrestha
- Department of Natural and Applied Sciences, Nexus Institute of Research and Innovation (NIRI), Lalitpur, Nepal
| |
Collapse
|
2
|
Kang SJ, Jun JS, Hong KW. Transcriptome Analysis Reveals Immunomodulatory Effect of Spore-Displayed p75 on Human Intestinal Epithelial Caco-2 Cells. Int J Mol Sci 2022; 23:ijms232314519. [PMID: 36498846 PMCID: PMC9739243 DOI: 10.3390/ijms232314519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/19/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022] Open
Abstract
Lacticaseibacillus rhamnosus GG (LGG) can promote intestinal health by modulating the immune responses of the gastrointestinal tract. However, knowledge about the immunomodulatory action of LGG-derived soluble factors is limited. In our previous study, we have displayed LGG-derived p75 protein on the spore surface of Bacillus subtilis. The objective of this study was to determine the effect of spore-displayed p75 (CotG-p75) on immune system by investigating transcriptional response of Caco-2 cells stimulated by CotG-p75 through RNA-sequencing (RNA-seq). RNA-seq results showed that CotG-p75 mainly stimulated genes involved in biological processes, such as response to stimulus, immune regulation, and chemotaxis. KEGG pathway analysis suggested that many genes activated by CotG-p75 were involved in NF-ĸB signaling and chemokine signaling pathways. CotG-p75 increased cytokines and chemokines such as CXCL1, CXCL2, CXCL3, CXCL8, CXCL10, CCL20, CCL22, and IL1B essential for the immune system. In particular, CotG-p75 increased the expression levels of NF-ĸB-related genes such as NFKBIA, TNFAIP3, BIRC3, NFKB2, and RELB involved in immune and inflammatory responses. This study provides genes and pathways involved in immune responses influenced by CotG-p75. These comprehensive transcriptome profiling could be used to elucidate the immunomodulatory action of CotG-p75.
Collapse
|
3
|
Sarangdhar M, Yacyshyn MB, Gruenzel AR, Engevik MA, Harris NL, Aronow BJ, Yacyshyn BR. Therapeutic Opportunities for Intestinal Angioectasia- Targeting PPARγ and Oxidative Stress. Clin Transl Sci 2020; 14:518-528. [PMID: 33048460 PMCID: PMC7993272 DOI: 10.1111/cts.12899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 08/30/2020] [Indexed: 01/22/2023] Open
Abstract
Recurrent and acute bleeding from intestinal tract angioectasia (AEC) presents a major challenge for clinical intervention. Current treatments are empiric, with frequent poor clinical outcomes. Improvements in understanding the pathophysiology of these lesions will help guide treatment. Using data from the US Food and Drug Administration (FDA)'s Adverse Event Reporting System (FAERS), we analyzed 12 million patient reports to identify drugs inversely correlated with gastrointestinal bleeding and potentially limiting AEC severity. FAERS analysis revealed that drugs used in patients with diabetes and those targeting PPARγ-related mechanisms were associated with decreased AEC phenotypes (P < 0.0001). Electronic health records (EHRs) at University of Cincinnati Hospital were analyzed to validate FAERS analysis. EHR data showed a 5.6% decrease in risk of AEC and associated phenotypes in patients on PPARγ agonists. Murine knockout models of AEC phenotypes were used to construct a gene-regulatory network of candidate drug targets and pathways, which revealed that wound healing, vasculature development and regulation of oxidative stress were impacted in AEC pathophysiology. Human colonic tissue was examined for expression differences across key pathway proteins, PPARγ, HIF1α, VEGF, and TGFβ1. In vitro analysis of human AEC tissues showed lower expression of PPARγ and TGFβ1 compared with controls (0.55 ± 0.07 and 0.49 ± 0.05). National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) RNA-Seq data was analyzed to substantiate human tissue findings. This integrative discovery approach showing altered expression of key genes involved in oxidative stress and injury repair mechanisms presents novel insight into AEC etiology, which will improve targeted mechanistic studies and more optimal medical therapy for AEC.
Collapse
Affiliation(s)
- Mayur Sarangdhar
- Department of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Mary B Yacyshyn
- Division of Digestive Diseases, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Andrew R Gruenzel
- Division of Digestive Diseases, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Department of Anesthesiology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Melinda A Engevik
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, Ohio, USA.,Department of Pathology, Baylor College of Medicine, Houston, Texas, USA
| | - Nathaniel L Harris
- Division of Digestive Diseases, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Bruce J Aronow
- Department of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Bruce R Yacyshyn
- Division of Digestive Diseases, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, Ohio, USA.,Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
4
|
Comprehensive analysis of transcriptional profiles in oral epithelial-like cells stimulated with oral probiotic Lactobacillus spp. Arch Oral Biol 2020; 118:104832. [PMID: 32739629 DOI: 10.1016/j.archoralbio.2020.104832] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/05/2020] [Accepted: 07/07/2020] [Indexed: 12/29/2022]
Abstract
OBJECTIVE The mechanisms of action of probiotics can vary among species and among strains of a single species; thus, they can affect host cells in a complex manner. In the present study, Lactobacillus spp. were evaluated for their ability to adhere to gingival epithelial-like cells. Comprehensive analyses of transcriptional profiles of mouse gingival epithelial GE1 cells treated with L. rhamnosus L8020 were performed to assess the putative in vivo probiotic potential of this strain. METHODS Five Lactobacillus spp., isolated from the oral cavity, traditional Bulgarian yoghurt, and the feces of a healthy human, were each co-cultured with GE1 cells. Adhesion assays with serial dilution plating and DNA microarray analysis were performed to identify differentially expressed genes (DEGs) in GE1 cells grown in co-culture with L. rhamnosus L8020. RESULTS The oral isolates L. rhamnosus L8020, L. casei YU3, and L. paracasei YU4 demonstrated significantly greater adhesion compared with the non-oral isolates. In total, 536 genes in GE1 cells exhibited more than twofold upregulation or downregulation, compared with the 0 h timepoint, during co-culture with L. rhamnosus L8020. Gene ontology enrichment analysis revealed that DEGs were differentially enriched in a time-dependent manner. Early responses involved widespread changes in gene expression. CONCLUSIONS This study reveals changes in expression of genes involved in the epithelial physical barrier and immune response in gingival epithelial-like cells co-cultured with L. rhamnosus L8020. Further investigations regarding the molecular mechanisms by which L. rhamnosus L8020 serves as a probiotic may provide evidence to support clinical use.
Collapse
|
5
|
Jeffrey MP, MacPherson CW, Mathieu O, Tompkins TA, Green-Johnson JM. Secretome-Mediated Interactions with Intestinal Epithelial Cells: A Role for Secretome Components from Lactobacillus rhamnosus R0011 in the Attenuation of Salmonella enterica Serovar Typhimurium Secretome and TNF-α-Induced Proinflammatory Responses. THE JOURNAL OF IMMUNOLOGY 2020; 204:2523-2534. [PMID: 32238458 DOI: 10.4049/jimmunol.1901440] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/26/2020] [Indexed: 12/13/2022]
Abstract
Recent evidence suggests that lactic acid bacteria communicate with host cells via secretome components to influence immune responses but less is known about gut-pathogen secretomes, impact of lactic acid bacteria secretomes on host-pathogen interactions, and the mechanisms underlying these interactions. Genome-wide microarrays and cytokine profiling were used to interrogate the impact of the Lactobacillus rhamnosus R0011 secretome (LrS) on TNF-α and Salmonella enterica subsp. enterica serovar Typhimurium secretome (STS)-induced outcomes in human intestinal epithelial cells. The LrS attenuated both TNF-α- and STS-induced gene expression involved in NF-κB and MAPK activation, as well as expression of genes involved in other immune-related signaling pathways. Specifically, the LrS induced the expression of dual specificity phosphatase 1 (DUSP1), activating transcription factor 3 (ATF3), and tribbles pseudokinase 3 (TRIB3), negative regulators of innate immune signaling, in HT-29 intestinal epithelial cells challenged with TNF-α or STS. TNF-α- and STS-induced acetylation of H3 and H4 histones was attenuated by the LrS, as was the production of TNF-α- and STS-induced proinflammatory cytokines and chemokines. Interestingly, the LrS induced production of macrophage migration inhibitory factor (MIF), a cytokine involved in host-microbe interactions at the gut interface. We propose that the LrS attenuates proinflammatory mediator expression through increased transcription of negative regulators of innate immune activity and changes in global H3 and H4 histone acetylation. To our knowledge, these findings provide novel insights into the complex multifaceted mechanisms of action behind secretome-mediated interdomain communication at the gut-mucosal interface.
Collapse
Affiliation(s)
- Michael P Jeffrey
- Applied Bioscience Graduate Program and the Faculty of Science, Ontario Technical University, Oshawa, Ontario L1G 0C5, Canada; and
| | - Chad W MacPherson
- Rosell Institute for Microbiome and Probiotics, Montreal, Quebec H4P 2R2, Canada
| | - Olivier Mathieu
- Rosell Institute for Microbiome and Probiotics, Montreal, Quebec H4P 2R2, Canada
| | - Thomas A Tompkins
- Rosell Institute for Microbiome and Probiotics, Montreal, Quebec H4P 2R2, Canada
| | - Julia M Green-Johnson
- Applied Bioscience Graduate Program and the Faculty of Science, Ontario Technical University, Oshawa, Ontario L1G 0C5, Canada; and
| |
Collapse
|
6
|
Hou Y, Li X, Liu X, Zhang Y, Zhang W, Man C, Jiang Y. Transcriptomic responses of Caco-2 cells to Lactobacillus rhamnosus GG and Lactobacillus plantarum J26 against oxidative stress. J Dairy Sci 2019; 102:7684-7696. [PMID: 31255276 DOI: 10.3168/jds.2019-16332] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/20/2019] [Indexed: 12/12/2022]
Abstract
Oxidative stress is the basic reason for aging and age-related diseases. In this study, we investigated the protective effect of 2 strains of lactic acid bacteria (LAB), Lactobacillus rhamnosus GG and L. plantarum J26, against oxidative stress in Caco-2 cells, and gave an overview of the mechanisms of lactic acid bacteria antioxidant activity using digital gene expression profiling. The 2 LAB strains provided significant protection against hydrogen peroxide (H2O2)-induced reduction in superoxide dismutase activity and increase in glutathione peroxidase activity in Caco-2 cells. However, inactive bacteria had little effect on alleviating oxidation stress in Caco-2 cells. Eight genes related to oxidative stress-FOSB, TNF, PPP1R15A, NUAK2, ATF3, TNFAIP3, EGR2, and FBN2-were significantly upregulated in H2O2-induced Caco-2 cells compared with untreated Caco-2 cells. After incubation of the H2O2-induced Caco-2 cells with L. rhamnosus GG and L. plantarum J26, 5 genes (TNF, EGR2, NUAK2, FBN2, and TNFAIP3) and 2 genes (NUAK2 and FBN2) were downregulated, respectively. In addition, the Kyoto Encyclopedia of Genes and Genomes indicated that some signaling pathways associated with inflammation, immune response, and apoptosis, such as Janus kinase/signal transducers and activators of transcription (Jak-STAT), mitogen-activated protein kinase (MAPK), nuclear factor-κB, and tumor necrosis factor, were all negatively modulated by the 2 strains, especially L. rhamnosus GG. In this paper, we reveal the mechanism of LAB in relieving oxidative stress and provide a theoretical basis for the rapid screening and evaluation of new LAB resources.
Collapse
Affiliation(s)
- Yichao Hou
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Xuesong Li
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Xinyu Liu
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Yashuo Zhang
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Wei Zhang
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin, China, 150030.
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin, China, 150030.
| |
Collapse
|
7
|
Malmuthuge N, Liang G, Griebel PJ, Guan LL. Taxonomic and Functional Compositions of the Small Intestinal Microbiome in Neonatal Calves Provide a Framework for Understanding Early Life Gut Health. Appl Environ Microbiol 2019; 85:e02534-18. [PMID: 30658973 PMCID: PMC6414372 DOI: 10.1128/aem.02534-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/03/2019] [Indexed: 12/13/2022] Open
Abstract
A lack of information on the intestinal microbiome of neonatal calves prevents the use of microbial intervention strategies to improve calf gut health. This study profiled the taxonomic and functional composition of the small intestinal luminal microbiome of neonatal calves using whole-genome sequencing of the metagenome, aiming to understand the dynamics of microbial establishment during early life. Despite highly individualized microbial communities, we identified two distinct taxonomy-based clusters from the collective luminal microbiomes comprising a high level of either Lactobacillus or Bacteroides Among the clustered microbiomes, Lactobacillus-dominant ileal microbiomes had significantly lower abundances of Bacteroides, Prevotella, Roseburia, Ruminococcus, and Veillonella compared to the Bacteroides-dominated ileal microbiomes. In addition, the upregulated ileal genes of the Lactobacillus-dominant calves were related to leukocyte and lymphocyte chemotaxis, the cytokine/chemokine-mediated signaling pathway, and inflammatory responses, while the upregulated ileal genes of the Bacteroides-dominant calves were related to cell adhesion, response to stimulus, cell communication and regulation of mitogen-activated protein kinase cascades. The functional profiles of the luminal microbiomes also revealed two distinct clusters consisting of functions related to either high protein metabolism or sulfur metabolism. A lower abundance of Bifidobacterium and a higher abundance of sulfur-reducing bacteria (SRB) were observed in the sulfur metabolism-dominant cluster (0.2% ± 0.1%) compared to the protein metabolism-dominant cluster (12.6% ± 5.7%), suggesting an antagonistic relationship between SRB and Bifidobacterium, which both compete for cysteine. These distinct taxonomic and functional clusters may provide a framework to further analyze interactions between the intestinal microbiome and the immune function and health of neonatal calves.IMPORTANCE Dietary interventions to manipulate neonatal gut microbiota have been proposed to generate long-term impacts on hosts. Currently, our understanding of the early gut microbiome of neonatal calves is limited to 16S rRNA gene amplicon based microbial profiling, which is a barrier to developing dietary interventions to improve calf gut health. The use of a metagenome sequencing-based approach in the present study revealed high individual animal variation in taxonomic and functional abundance of intestinal microbiome and potential impacts of early microbiome on mucosal immune responses during the preweaning period. During this developmental period, age- and diet-related changes in microbial diversity, richness, density, and the abundance of taxa and functions were observed. A correlation-based approach to further explore the individual animal variation revealed potential enterotypes that can be linked to calf gut health, which may pave the way to developing strategies to manipulate the microbiome and improve calf health.
Collapse
Affiliation(s)
- Nilusha Malmuthuge
- Department of Agricultural Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Guanxiang Liang
- Department of Agricultural Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Philip J Griebel
- School of Public Health, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Le Luo Guan
- Department of Agricultural Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
8
|
Pereira MT, Malik M, Nostro JA, Mahler GJ, Musselman LP. Effect of dietary additives on intestinal permeability in both Drosophila and a human cell co-culture. Dis Model Mech 2018; 11:dmm034520. [PMID: 30504122 PMCID: PMC6307910 DOI: 10.1242/dmm.034520] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 10/06/2018] [Indexed: 12/13/2022] Open
Abstract
Increased intestinal barrier permeability has been correlated with aging and disease, including type 2 diabetes, Crohn's disease, celiac disease, multiple sclerosis and irritable bowel syndrome. The prevalence of these ailments has risen together with an increase in industrial food processing and food additive consumption. Additives, including sugar, metal oxide nanoparticles, surfactants and sodium chloride, have all been suggested to increase intestinal permeability. We used two complementary model systems to examine the effects of food additives on gut barrier function: a Drosophila in vivo model and an in vitro human cell co-culture model. Of the additives tested, intestinal permeability was increased most dramatically by high sugar. High sugar also increased feeding but reduced gut and overall animal size. We also examined how food additives affected the activity of a gut mucosal defense factor, intestinal alkaline phosphatase (IAP), which fluctuates with bacterial load and affects intestinal permeability. We found that high sugar reduced IAP activity in both models. Artificial manipulation of the microbiome influenced gut permeability in both models, revealing a complex relationship between the two. This study extends previous work in flies and humans showing that diet can play a role in the health of the gut barrier. Moreover, simple models can be used to study mechanisms underlying the effects of diet on gut permeability and function.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Matthew T Pereira
- Department of Biological Sciences, Binghamton University, Binghamton, New York 13902, USA
| | - Mridu Malik
- Department of Biomedical Engineering, Binghamton University, Binghamton, New York 13902, USA
| | - Jillian A Nostro
- Department of Biological Sciences, Binghamton University, Binghamton, New York 13902, USA
| | - Gretchen J Mahler
- Department of Biomedical Engineering, Binghamton University, Binghamton, New York 13902, USA
| | | |
Collapse
|
9
|
MacPherson CW, Shastri P, Mathieu O, Tompkins TA, Burguière P. Genome-Wide Immune Modulation of TLR3-Mediated Inflammation in Intestinal Epithelial Cells Differs between Single and Multi-Strain Probiotic Combination. PLoS One 2017; 12:e0169847. [PMID: 28099447 PMCID: PMC5242491 DOI: 10.1371/journal.pone.0169847] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 12/22/2016] [Indexed: 12/27/2022] Open
Abstract
Genome-wide transcriptional analysis in intestinal epithelial cells (IEC) can aid in elucidating the impact of single versus multi-strain probiotic combinations on immunological and cellular mechanisms of action. In this study we used human expression microarray chips in an in vitro intestinal epithelial cell model to investigate the impact of three probiotic bacteria, Lactobacillus helveticus R0052 (Lh-R0052), Bifidobacterium longum subsp. infantis R0033 (Bl-R0033) and Bifidobacterium bifidum R0071 (Bb-R0071) individually and in combination, and of a surface-layer protein (SLP) purified from Lh-R0052, on HT-29 cells' transcriptional profile to poly(I:C)-induced inflammation. Hierarchical heat map clustering, Set Distiller and String analyses revealed that the effects of Lh-R0052 and Bb-R0071 diverged from those of Bl-R0033 and Lh-R0052-SLP. It was evident from the global analyses with respect to the immune, cellular and homeostasis related pathways that the co-challenge with probiotic combination (PC) vastly differed in its effect from the single strains and Lh-R0052-SLP treatments. The multi-strain PC resulted in a greater reduction of modulated genes, found through functional connections between immune and cellular pathways. Cytokine and chemokine analyses based on specific outcomes from the TNF-α and NF-κB signaling pathways revealed single, multi-strain and Lh-R0052-SLP specific attenuation of the majority of proteins measured (TNF-α, IL-8, CXCL1, CXCL2 and CXCL10), indicating potentially different mechanisms. These findings indicate a synergistic effect of the bacterial combinations relative to the single strain and Lh-R0052-SLP treatments in resolving toll-like receptor 3 (TLR3)-induced inflammation in IEC and maintaining cellular homeostasis, reinforcing the rationale for using multi-strain formulations as a probiotic.
Collapse
Affiliation(s)
- Chad W. MacPherson
- Lallemand Health Solutions Inc., 6100 avenue Royalmount, Montreal, QC, Canada
- * E-mail:
| | - Padmaja Shastri
- University of Ontario Institute of Technology, Oshawa, Canada
| | - Olivier Mathieu
- Lallemand Health Solutions Inc., 6100 avenue Royalmount, Montreal, QC, Canada
| | - Thomas A. Tompkins
- Lallemand Health Solutions Inc., 6100 avenue Royalmount, Montreal, QC, Canada
| | - Pierre Burguière
- Lallemand Health Solutions Inc., 6100 avenue Royalmount, Montreal, QC, Canada
| |
Collapse
|
10
|
Plaza-Diaz J, Gomez-Llorente C, Fontana L, Gil A. Modulation of immunity and inflammatory gene expression in the gut, in inflammatory diseases of the gut and in the liver by probiotics. World J Gastroenterol 2014; 20:15632-15649. [PMID: 25400447 PMCID: PMC4229528 DOI: 10.3748/wjg.v20.i42.15632] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/04/2014] [Accepted: 06/21/2014] [Indexed: 02/06/2023] Open
Abstract
The potential for the positive manipulation of the gut microbiome through the introduction of beneficial microbes, as also known as probiotics, is currently an active area of investigation. The FAO/WHO define probiotics as live microorganisms that confer a health benefit to the host when administered in adequate amounts. However, dead bacteria and bacterial molecular components may also exhibit probiotic properties. The results of clinical studies have demonstrated the clinical potential of probiotics in many pathologies, such as allergic diseases, diarrhea, inflammatory bowel disease and viral infection. Several mechanisms have been proposed to explain the beneficial effects of probiotics, most of which involve gene expression regulation in specific tissues, particularly the intestine and liver. Therefore, the modulation of gene expression mediated by probiotics is an important issue that warrants further investigation. In the present paper, we performed a systematic review of the probiotic-mediated modulation of gene expression that is associated with the immune system and inflammation. Between January 1990 to February 2014, PubMed was searched for articles that were published in English using the MeSH terms "probiotics" and "gene expression" combined with "intestines", "liver", "enterocytes", "antigen-presenting cells", "dendritic cells", "immune system", and "inflammation". Two hundred and five original articles matching these criteria were initially selected, although only those articles that included specific gene expression results (77) were later considered for this review and separated into three major topics: the regulation of immunity and inflammatory gene expression in the gut, in inflammatory diseases of the gut and in the liver. Particular strains of Bifidobacteria, Lactobacilli, Escherichia coli, Propionibacterium, Bacillus and Saccharomyces influence the gene expression of mucins, Toll-like receptors, caspases, nuclear factor-κB, and interleukins and lead mainly to an anti-inflammatory response in cultured enterocytes. In addition, the interaction of commensal bacteria and probiotics with the surface of antigen-presenting cells in vitro results in the downregulation of pro-inflammatory genes that are linked to inflammatory signaling pathways, whereas other anti-inflammatory genes are upregulated. The effects of probiotics have been extensively investigated in animal models ranging from fish to mice, rats and piglets. These bacteria induce a tolerogenic and hyporesponsive immune response in which many genes that are related to the immune system, in particular those genes expressing anti-inflammatory cytokines, are upregulated. By contrast, information related to gene expression in human intestinal cells mediated by the action of probiotics is scarce. There is a need for further clinical studies that evaluate the mechanism of action of probiotics both in healthy humans and in patients with chronic diseases. These types of clinical studies are necessary for addressing the influence of these microorganisms in gene expression for different pathways, particularly those that are associated with the immune response, and to better understand the role that probiotics might have in the prevention and treatment of disease.
Collapse
|
11
|
Johnson BR, Klaenhammer TR. Impact of genomics on the field of probiotic research: historical perspectives to modern paradigms. Antonie Van Leeuwenhoek 2014; 106:141-56. [PMID: 24748373 PMCID: PMC4064118 DOI: 10.1007/s10482-014-0171-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 04/04/2014] [Indexed: 02/07/2023]
Abstract
For thousands of years, humans have safely consumed microorganisms through fermented foods. Many of these bacteria are considered probiotics, which act through diverse mechanisms to confer a health benefit to the host. However, it was not until the availability of whole-genome sequencing and the era of genomics that mechanisms of probiotic efficacy could be discovered. In this review, we explore the history of the probiotic concept and the current standard of integrated genomic techniques to discern the complex, beneficial relationships between probiotic microbes and their hosts.
Collapse
Affiliation(s)
- Brant R. Johnson
- Department of Microbiology, North Carolina State University, Raleigh, NC USA
| | - Todd R. Klaenhammer
- Department of Microbiology, North Carolina State University, Raleigh, NC USA
- Department of Food, Bioprocessing, and Nutrition Science, North Carolina State University, Raleigh, NC USA
| |
Collapse
|
12
|
Bifidobacterium bifidum PRL2010 modulates the host innate immune response. Appl Environ Microbiol 2013; 80:730-40. [PMID: 24242237 DOI: 10.1128/aem.03313-13] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Here, we describe data obtained from transcriptome profiling of human cell lines and intestinal cells of a murine model upon exposure and colonization, respectively, with Bifidobacterium bifidum PRL2010. Significant changes were detected in the transcription of genes that are known to be involved in innate immunity. Furthermore, results from enzyme-linked immunosorbent assays (ELISAs) showed that exposure to B. bifidum PRL2010 causes enhanced production of interleukin 6 (IL-6) and IL-8 cytokines, presumably through NF-κB activation. The obtained global transcription profiles strongly suggest that Bifidobacterium bifidum PRL2010 modulates the innate immune response of the host.
Collapse
|
13
|
Transcriptional response of HT-29 intestinal epithelial cells to human and bovine milk oligosaccharides. Br J Nutr 2013; 110:2127-37. [DOI: 10.1017/s0007114513001591] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human milk oligosaccharides (HMO) have been shown to interact directly with immune cells. However, large quantities of HMO are required for intervention or clinical studies, but these are unavailable in most cases. In this respect, bovine milk is potentially an excellent source of commercially viable analogues of these unique molecules. In the present study, we compared the transcriptional response of colonic epithelial cells (HT-29) to the entire pool of HMO and bovine colostrum oligosaccharides (BCO) to determine whether the oligosaccharides from bovine milk had effects on gene expression that were similar to those of their human counterparts. Gene set enrichment analysis of the transcriptional data revealed that there were a number of similar biological processes that may be influenced by both treatments including a response to stimulus, signalling, locomotion, and multicellular, developmental and immune system processes. For a more detailed insight into the effects of milk oligosaccharides, the effect on the expression of immune system-associated glycogenes was chosen as a case study when performing validation studies. Glycogenes in the current context are genes that are directly or indirectly regulated in the presence of glycans and/or glycoconjugates. RT-PCR analysis revealed that HMO and BCO influenced the expression of cytokines (IL-1β, IL-8, colony-stimulating factor 2 (granulocyte–macrophage) (GM-CSF2), IL-17C and platelet factor 4 (PF4)), chemokines (chemokine (C–X–C motif) ligand 1 (CXCL1), chemokine (C–X–C motif) ligand 3 (CXCL3), chemokine (C–C motif) ligand 20 (CCL20), chemokine (C–X–C motif) ligand 2 (CXCL2), chemokine (C–X–C motif) ligand 6 (CXCL6), chemokine (C–C motif) ligand 5 (CCL5), chemokine (C–X3–C motif) ligand 1 (CX3CL1) and CXCL2) and cell surface receptors (interferon γ receptor 1 (IFNGR1), intercellular adhesion molecule-1 (ICAM-1), intercellular adhesion molecule-2 (ICAM-2) and IL-10 receptor α (IL10RA)). The present study suggests that milk oligosaccharides contribute to the development and maturation of the intestinal immune response and that bovine milk may be an attractive commercially viable source of oligosaccharides for such applications.
Collapse
|
14
|
Call EK, Klaenhammer TR. Relevance and application of sortase and sortase-dependent proteins in lactic acid bacteria. Front Microbiol 2013; 4:73. [PMID: 23579319 PMCID: PMC3619620 DOI: 10.3389/fmicb.2013.00073] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 03/14/2013] [Indexed: 11/27/2022] Open
Abstract
Lactic acid bacteria (LAB) are a diverse group of Gram-positive bacteria found in a vast array of environments including dairy products and the human gastrointestinal tract (GIT). In both niches, surface proteins play a crucial role in mediating interactions with the surrounding environment. The sortase enzyme is responsible for covalently coupling a subset of sortase-dependent proteins (SDPs) to the cell wall of Gram-positive organisms through recognition of a conserved C-terminal LPXTG motif. Genomic sequencing of LAB and annotation has allowed for the identification of sortase and SDPs. Historically, sortase and SDPs were predominately investigated for their role in mediating pathogenesis. Identification of these proteins in LAB has shed light on their important roles in mediating nutrient acquisition through proteinase P as well as positive probiotic attributes including adhesion, mucus barrier function, and immune signaling. Furthermore, sortase expression signals in LAB have been exploited as a means to develop oral vaccines targeted to the GIT. In this review, we examine the collection of studies which evaluate sortase and SDPs in select species of dairy-associated and health promoting LAB.
Collapse
Affiliation(s)
- Emma K Call
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University Raleigh, NC, USA
| | | |
Collapse
|