1
|
Mergani A, Meurer M, Wiebe E, Dümmer K, Wirz K, Lehmann J, Brogden G, Schenke M, Künnemann K, Naim HY, Grassl GA, von Köckritz-Blickwede M, Seeger B. Alteration of cholesterol content and oxygen level in intestinal organoids after infection with Staphylococcus aureus. FASEB J 2023; 37:e23279. [PMID: 37902583 DOI: 10.1096/fj.202300799r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/16/2023] [Accepted: 10/13/2023] [Indexed: 10/31/2023]
Abstract
The pathogenicity elicited by Staphylococcus (S.) aureus, one of the best-studied bacteria, in the intestine is not well understood. Recently, we demonstrated that S. aureus infection induces alterations in membrane composition that are associated with concomitant impairment of intestinal function. Here, we used two organoid models, induced pluripotent stem cell (iPSC)-derived intestinal organoids and colonic intestinal stem cell-derived intestinal organoids (colonoids), to examine how sterol metabolism and oxygen levels change in response to S. aureus infection. HPLC quantification showed differences in lipid homeostasis between infected and uninfected cells, characterized by a remarkable decrease in total cellular cholesterol. As the altered sterol metabolism is often due to oxidative stress response, we next examined intracellular and extracellular oxygen levels. Three different approaches to oxygen measurement were applied: (1) cell-penetrating nanoparticles to quantify intracellular oxygen content, (2) sensor plates to quantify extracellular oxygen content in the medium, and (3) a sensor foil system for oxygen distribution in organoid cultures. The data revealed significant intracellular and extracellular oxygen drop after infection in both intestinal organoid models as well as in Caco-2 cells, which even 48 h after elimination of extracellular bacteria, did not return to preinfection oxygen levels. In summary, we show alterations in sterol metabolism and intra- and extracellular hypoxia as a result of S. aureus infection. These results will help understand the cellular stress responses during sustained bacterial infections in the intestinal epithelium.
Collapse
Affiliation(s)
- AhmedElmontaser Mergani
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Marita Meurer
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Elena Wiebe
- Institute for Food Quality and Food Safety, Research Group Food Toxicology and Replacement/Complementary Methods to Animal Testing, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Katrin Dümmer
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Katrin Wirz
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Judith Lehmann
- Institute for Food Quality and Food Safety, Research Group Food Toxicology and Replacement/Complementary Methods to Animal Testing, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Graham Brogden
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Maren Schenke
- Institute for Food Quality and Food Safety, Research Group Food Toxicology and Replacement/Complementary Methods to Animal Testing, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Katrin Künnemann
- Institute of Medical Microbiology and Hospital Epidemiology and German Center for Infection Research (DZIF), Partner Site Hannover, Hannover Medical School, Hannover, Germany
| | - Hassan Y Naim
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Guntram A Grassl
- Institute of Medical Microbiology and Hospital Epidemiology and German Center for Infection Research (DZIF), Partner Site Hannover, Hannover Medical School, Hannover, Germany
| | - Maren von Köckritz-Blickwede
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Bettina Seeger
- Institute for Food Quality and Food Safety, Research Group Food Toxicology and Replacement/Complementary Methods to Animal Testing, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
2
|
Das O, Masid A, Chakraborty M, Gope A, Dutta S, Bhaumik M. Butyrate driven raft disruption trots off enteric pathogen invasion: possible mechanism of colonization resistance. Gut Pathog 2023; 15:19. [PMID: 37085870 PMCID: PMC10122309 DOI: 10.1186/s13099-023-00545-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/09/2023] [Indexed: 04/23/2023] Open
Abstract
The gut microbiome derived short chain fatty acids perform multitude of functions to maintain gut homeostasis. Here we studied how butyrate stymie enteric bacterial invasion in cell using a simplistic binary model. The surface of the mammalian cells is enriched with microdomains rich in cholesterol that are known as rafts and act as entry points for pathogens. We showed that sodium butyrate treated RAW264.7 cells displayed reduced membrane cholesterol and less cholera-toxin B binding coupled with increased membrane fluidity compared to untreated cells indicating that reduced membrane cholesterol caused disruption of lipid rafts. The implication of such cellular biophysical changes on the invasion of enteric pathogenic bacteria was assessed. Our study showed, in comparison to untreated cells, butyrate-treated cells significantly reduced the invasion of Shigella and Salmonella, and these effects were found to be reversed by liposomal cholesterol treatment, increasing the likelihood that the rafts' function against bacterial invasion. The credence of ex vivo studies found to be in concordance in butyrate fed mouse model as evident from the significant drift towards a protective phenotype against virulent enteric pathogen invasion as compared to untreated mice. To produce a cytokine balance towards anti-inflammation, butyrate-treated mice produced more of the gut tissue anti-inflammatory cytokine IL-10 and less of the pro-inflammatory cytokines TNF-α, IL-6, and IFN-γ. In histological studies of Shigella infected gut revealed a startling observation where number of neutrophils infiltration was noted which was correlated with the pathology and was essentially reversed by butyrate treatment. Our results ratchet up a new dimension of our understanding how butyrate imparts resistance to pathogen invasion in the gut.
Collapse
Affiliation(s)
- Oishika Das
- ICMR-National Institute of Cholera and Enteric Diseases, P-33 C.I. T Road, Beleghata, Kolkata, West Bengal, 700010, India
| | - Aaheli Masid
- ICMR-National Institute of Cholera and Enteric Diseases, P-33 C.I. T Road, Beleghata, Kolkata, West Bengal, 700010, India
| | - Mainak Chakraborty
- ICMR-National Institute of Cholera and Enteric Diseases, P-33 C.I. T Road, Beleghata, Kolkata, West Bengal, 700010, India
| | - Animesh Gope
- ICMR-National Institute of Cholera and Enteric Diseases, P-33 C.I. T Road, Beleghata, Kolkata, West Bengal, 700010, India
| | - Shanta Dutta
- ICMR-National Institute of Cholera and Enteric Diseases, P-33 C.I. T Road, Beleghata, Kolkata, West Bengal, 700010, India
| | - Moumita Bhaumik
- ICMR-National Institute of Cholera and Enteric Diseases, P-33 C.I. T Road, Beleghata, Kolkata, West Bengal, 700010, India.
| |
Collapse
|
3
|
Allan DS, Holbein BE. Iron Chelator DIBI Suppresses Formation of Ciprofloxacin-Induced Antibiotic Resistance in Staphylococcus aureus. Antibiotics (Basel) 2022; 11:1642. [PMID: 36421286 PMCID: PMC9687013 DOI: 10.3390/antibiotics11111642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 09/30/2023] Open
Abstract
Antibiotic resistance of bacterial pathogens results from their exposure to antibiotics and this has become a serious growing problem that limits effective use of antibiotics. Resistance can arise from mutations induced by antibiotic-mediated damage with these mutants possessing reduced target sensitivity. We have studied ciprofloxacin (CIP)-mediated killing of Staphylococcus aureus and the influence of the Reactive Oxygen Species (ROS) inactivator, thiourea and the iron chelator DIBI, on initial killing by CIP and their effects on survival and outgrowth upon prolonged exposure to CIP. CIP at 2× MIC caused a rapid initial killing which was not influenced by initial bacterial iron status and which was followed by robust recovery growth over 96 h exposure. Thiourea and DIBI did slow the initial rate of CIP killing but the overall extent of kill by 24 h exposure was like CIP alone. Thiourea permitted recovery growth whereas this was strongly suppressed by DIBI. Small Colony Variant (SCV) survivors were progressively enriched in the survivor population during CIP exposure, and these were found to have stable slow-growth phenotype and acquired resistance to CIP and moxifloxacin but not to other non-related antibiotics. DIBI totally suppressed SCV formation with all survivors remaining sensitive to CIP and to DIBI. DIBI exposure did not promote resistance to DIBI. Our evidence indicates a high potential for DIBI as an adjunct to CIP and other antibiotics to both improve antibiotic efficacy and to thwart antibiotic resistance development.
Collapse
Affiliation(s)
| | - Bruce E. Holbein
- Fe Pharmaceuticals Canada Inc. #58, The Labs at Innovacorp, 1344 Summer Street, Halifax, NS B3H O8A, Canada
| |
Collapse
|
4
|
Dai C, Lin J, Li H, Shen Z, Wang Y, Velkov T, Shen J. The Natural Product Curcumin as an Antibacterial Agent: Current Achievements and Problems. Antioxidants (Basel) 2022; 11:459. [PMID: 35326110 PMCID: PMC8944601 DOI: 10.3390/antiox11030459] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
The rapid spread of antibiotic resistance and lack of effective drugs for treating infections caused by multi-drug resistant bacteria in animal and human medicine have forced us to find new antibacterial strategies. Natural products have served as powerful therapeutics against bacterial infection and are still an important source for the discovery of novel antibacterial drugs. Curcumin, an important constituent of turmeric, is considered safe for oral consumption to treat bacterial infections. Many studies showed that curcumin exhibited antibacterial activities against Gram-negative and Gram-positive bacteria. The antibacterial action of curcumin involves the disruption of the bacterial membrane, inhibition of the production of bacterial virulence factors and biofilm formation, and the induction of oxidative stress. These characteristics also contribute to explain how curcumin acts a broad-spectrum antibacterial adjuvant, which was evidenced by the markedly additive or synergistical effects with various types of conventional antibiotics or non-antibiotic compounds. In this review, we summarize the antibacterial properties, underlying molecular mechanism of curcumin, and discuss its combination use, nano-formulations, safety, and current challenges towards development as an antibacterial agent. We hope that this review provides valuable insight, stimulates broader discussions, and spurs further developments around this promising natural product.
Collapse
Affiliation(s)
- Chongshan Dai
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; (J.L.); (Z.S.); (Y.W.)
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jiahao Lin
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; (J.L.); (Z.S.); (Y.W.)
| | - Hui Li
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100193, China;
| | - Zhangqi Shen
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; (J.L.); (Z.S.); (Y.W.)
| | - Yang Wang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; (J.L.); (Z.S.); (Y.W.)
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Tony Velkov
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Jianzhong Shen
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; (J.L.); (Z.S.); (Y.W.)
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
5
|
Feng J, Sun D, Wang L, Li X, Guan J, Wei L, Yue D, Wang X, Zhao Y, Yang H, Song W, Wang B. Biochanin A as an α-hemolysin inhibitor for combating methicillin-resistant Staphylococcus aureus infection. World J Microbiol Biotechnol 2021; 38:6. [PMID: 34837116 DOI: 10.1007/s11274-021-03182-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/28/2021] [Indexed: 12/29/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a multidrug-resistant pathogen that poses a significant risk to global health today. In S. aureus, α-hemolysin is an important virulence factor as it contributes to the capacity of the bacteria to infect the host. Here, we showed that biochanin A (bioA), an isoflavone present in red clover, cabbage and alfalfa, effectively inhibited hemolytic activity at a dose as low as 32 μg/mL. Further, western blot and RT-qPCR data showed that bioA reduced the production and expression of MRSA hemolysin in a dose-dependent manner. In addition, when different concentrations of bioA were added to a coculture system of A549 cells and S. aureus, it could significantly decrease cell injury. Importantly, the in vivo study showed that bioA could protect mice from pneumonia caused by a lethal dose of MRSA, as evidenced by improving their survival and reducing the number of bacterial colonies in lung tissues, the secretion of hemolysin into alveolar lavage fluid and the degree of pulmonary edema. In conclusion, biochanin A protected the host from MRSA infection by inhibiting the expression of the hemolysin of MRSA, which may provide experimental evidence for its development to a potential anti-MRSA drug.
Collapse
Affiliation(s)
- Jiaxuan Feng
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Dazhong Sun
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Li Wang
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xueting Li
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Jiyu Guan
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Lin Wei
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Donghui Yue
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xingye Wang
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Yicheng Zhao
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Haimiao Yang
- Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Wu Song
- Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Bingmei Wang
- Changchun University of Chinese Medicine, Changchun, 130117, China.
| |
Collapse
|
6
|
Cardos IA, Zaha DC, Sindhu RK, Cavalu S. Revisiting Therapeutic Strategies for H. pylori Treatment in the Context of Antibiotic Resistance: Focus on Alternative and Complementary Therapies. Molecules 2021; 26:molecules26196078. [PMID: 34641620 PMCID: PMC8512130 DOI: 10.3390/molecules26196078] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 12/15/2022] Open
Abstract
The prevalence of Helicobacter pylori infection remains significant worldwide and it depends on many factors: gender, age, socio-economic status, geographic area, diet, and lifestyle. All successful infectious diseases treatments use antibiotic-susceptibility testing, but this strategy is not currently practical for H. pylori and the usual cure rates of H. pylori are lower than other bacterial infections. Actually, there is no treatment that ensures complete eradication of this pathogen. In the context of an alarming increase in resistance to antibiotics (especially to clarithromycin and metronidazole), alternative and complementary options and strategies are taken into consideration. As the success of antibacterial therapy depends not only on the susceptibility to given drugs, but also on the specific doses, formulations, use of adjuvants, treatment duration, and reinfection rates, this review discusses the current therapies for H. pylori treatment along with their advantages and limitations. As an alternative option, this work offers an extensively referenced approach on natural medicines against H. pylori, including the significance of nanotechnology in developing new strategies for treatment of H. pylori infection.
Collapse
Affiliation(s)
- Ioana Alexandra Cardos
- Faculty of Medicine and Pharmacy, Doctoral School of Biomedical Sciences, University of Oradea, 1 University Street, 410087 Oradea, Romania;
| | - Dana Carmen Zaha
- Department of Preclinical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, 1 University Street, 410087 Oradea, Romania
- Correspondence: (D.C.Z.); (R.K.S.); (S.C.)
| | - Rakesh K. Sindhu
- Chitkara College of Pharmacy, Chitkara University, Chandigarh 140401, India
- Correspondence: (D.C.Z.); (R.K.S.); (S.C.)
| | - Simona Cavalu
- Department of Preclinical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, 1 University Street, 410087 Oradea, Romania
- Correspondence: (D.C.Z.); (R.K.S.); (S.C.)
| |
Collapse
|
7
|
Dhar S, Bhattacharjee P. Promising role of curcumin against viral diseases emphasizing COVID-19 management: A review on the mechanistic insights with reference to host-pathogen interaction and immunomodulation. J Funct Foods 2021; 82:104503. [PMID: 33897833 PMCID: PMC8057770 DOI: 10.1016/j.jff.2021.104503] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 02/07/2023] Open
Abstract
Curcumin has already acknowledged immense interest from both medical and scientific research because of its multifaceted activity. To date, the promising effects of curcumin were perceived against numerous inflammatory diseases. Besides, curcumin's role as a medicine has been studied in many virus infections like influenza, HIV, etc. There is a need to analyze the cellular mechanisms of curcumin including host-pathogen interaction and immunomodulatory effects, to explore the role of curcumin against COVID-19. With this background, our study suggests that curcumin can prevent COVID-19 infections by inhibiting the pathogen entry, viral genome replication and steps in the endosomal pathway along with inhibition of T-cell signalling by impairing the autophagy-mediated antigen-presenting pathway. This review explicit the possible mechanisms behind curcumin-induced cellular immunity and a therapeutive dosage of curcumin suggesting a preventive strategy against COVID-19.
Collapse
|
8
|
Effects of Curcumin and Its Analogues on Infectious Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1291:75-101. [PMID: 34331685 DOI: 10.1007/978-3-030-56153-6_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Infectious diseases (IDs) are life-threatening illnesses, which result from the spread of pathogenic microorganisms such as bacteria, viruses, fungi, and parasites. IDs are a major challenge for the healthcare systems around the world, leading to a wide variety of clinical manifestations and complications. Despite the capability of frontline-approved medications to partially prevent or mitigate the invasion and subsequent damage of IDs to host tissues and cells, problems such as drug resistance, insufficient efficacy, unpleasant side effects, and high expenses stand in the way of their beneficial applications. One strategy is to evaluate currently explored and available bioactive compounds as possible anti-microbial agents. The natural polyphenol curcumin has been postulated to possess various properties including anti-microbial activities. Studies have shown that it possess pleiotropic effects against bacterial- and parasitic-associating IDs including drug-resistant strains. Curcumin can also potentiate the efficacy of available anti-bacterial and anti-parasitic drugs in a synergistic fashion. In this review, we summarize the findings of these studies along with reported controversies of native curcumin and its analogues, alone and in combination, toward its application in future studies as a natural anti-bacterial and anti-parasitic agent.
Collapse
|
9
|
Pradhan D, Pradhan J, Mishra A, Karmakar K, Dhiman R, Chakravortty D, Negi VD. Immune modulations and survival strategies of evolved hypervirulent Salmonella Typhimurium strains. Biochim Biophys Acta Gen Subj 2020; 1864:129627. [PMID: 32360143 DOI: 10.1016/j.bbagen.2020.129627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 04/19/2020] [Accepted: 04/24/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND Evolving multidrug-resistance and hypervirulence in Salmonella is due to multiple host-pathogen, and non-host environmental interactions. Previously we had studied Salmonella adaptation upon repeated exposure in different in-vitro and in-vivo environmental conditions. This study deals with the mechanistic basis of hypervirulence of the passaged hypervirulent Salmonella strains reported previously. METHODS Real-time PCR, flow cytometry, western blotting, and confocal microscopy were employed to check the alteration of signaling pathways by the hypervirulent strains. The hypervirulence was also looked in-vivo in the Balb/c murine model system. RESULTS The hypervirulent strains altered cytokine production towards anti-inflammatory response via NF-κB and Akt-NLRC4 signaling in RAW-264.7 and U-937 cells. They also impaired lysosome number, as well as co-localization with the lysosome as compared to unpassaged WT-STM. In Balb/c mice also they caused decreased antimicrobial peptides, reduced nitric oxide level, altered cytokine production, and reduced CD4+ T cell population leading to increased organ burden. CONCLUSIONS Hypervirulent Salmonella strains infection resulted in an anti-inflammatory environment by upregulating IL-10 and down-regulating IL-1β expression. They also evaded lysosomal degradation for their survival. With inhibition of NF-κB and Akt signaling, cytokine expression, lysosome number, as well as the bacterial burden was reverted, indicating the infection mediated immune modulation by the hypervirulent Salmonella strains through these pathways. GENERAL SIGNIFICANCE Understanding the mechanism of adaptation can provide better disease prognosis by either targeting the bacterial gene or by strengthening the host immune system that might ultimately help in controlling salmonellosis.
Collapse
Affiliation(s)
- Diana Pradhan
- Laboratory of Infection Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Jasmin Pradhan
- Laboratory of Infection Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Abtar Mishra
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Kapudeep Karmakar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka 560012, India; Regional Research Station, Terai Zone, Uttar Banga Krishi Viswavidyalaya, Coochbehar, west Bengal 736165, India
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Vidya Devi Negi
- Laboratory of Infection Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India.
| |
Collapse
|
10
|
Singh J, Mumtaz S, Joshi S, Mukhopadhyay K. In Vitro and Ex Vivo Efficacy of Novel Trp-Arg Rich Analogue of α-MSH against Staphylococcus aureus. ACS OMEGA 2020; 5:3258-3270. [PMID: 32118141 PMCID: PMC7045321 DOI: 10.1021/acsomega.9b03307] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 01/17/2020] [Indexed: 05/04/2023]
Abstract
Antimicrobial peptides (AMPs), an essential component of innate immunity, are very important resources for human therapeutics to counter the current threat of drug resistance. We have previously established that one such AMP, α-melanocyte stimulating hormone (α-MSH), an endogenous neuropeptide, and its derivatives have potent antimicrobial activity against Staphylococcus aureus, including methicillin-resistant S. aureus (MRSA). However, the immense potential of α-MSH for therapeutic development against staphylococcal infections is marred by its reduced efficacy in the presence of standard microbiological culture medium. To overcome this issue, in this study, we designed a series of five novel analogues of the C-terminal fragment of α-MSH, i.e., α-MSH(6-13), by replacing uncharged and less hydrophobic residues with tryptophan and arginine to increase the hydrophobicity and cationic charge of the peptide, respectively. While all of the peptides showed a preferential interaction with negatively charged phospholipid vesicles, the most hydrophobic and cationic peptide, i.e., Ana-5, exhibited the highest activity against S. aureus cells while maintaining cell selectivity. Moreover, Ana-5 could retain its activity even in complex media like the Mueller Hinton broth and displayed rapid bactericidal activity in the presence of serum. Ana-5 also caused rapid bacterial membrane depolarization, permeabilization, and cell lysis and was able to bind to polyanionic plasmid DNA suggesting a possible dual mode of action of the peptide. Importantly, Ana-5 was able to eradicate intracellular S. aureus in fibroblast cells similar to conventional antibiotics. Collectively, in the present study, we obtained a potent α-MSH-based analogue with excellent staphylocidal potency in microbial growth medium and ex vivo efficacy, which may translate into therapeutic application.
Collapse
|
11
|
Momeni HR, Eskandari N. Curcumin protects the testis against cadmium-induced histopathological damages and oxidative stress in mice. Hum Exp Toxicol 2019; 39:653-661. [PMID: 31876186 DOI: 10.1177/0960327119895564] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Cadmium is an environmental pollutant which can induce the overproduction of free radicals while suppressing the antioxidant defense system. Curcumin is considered a free-radical scavenger and a potent antioxidant. This study was conducted to investigate the effect of curcumin on serum antioxidant enzymes and histopathological changes in mice treated with cadmium. METHODS In this experimental study, adult mice were divided into four groups, namely, control, cadmium chloride (5 mg kg-1), curcumin (100 mg kg-1), and curcumin+cadmium chloride. The animals received curcumin 24 h prior to cadmium chloride injection. After 24 h, blood samples were collected and used to assess the levels of malondialdehyde (MDA), antioxidant enzymes activity (catalase, superoxide dismutase, and glutathione peroxidase), total glutathione, total thiol, and hydrogen peroxide. Histopathological evaluation was also performed for testicular tissue. RESULTS Mice treated with cadmium showed a significant (p < 0.001) decrease in the activity of antioxidant enzymes, serum amounts of total glutathione and total thiol, and the diameter of seminiferous tubules compared to the control group. This pollutant also significantly (p < 0.001) increased serum levels of MDA and hydrogen peroxide and the lumen diameter of seminiferous tubules compared to the control group. In the curcumin+cadmium group, curcumin significantly (p < 0.001) reversed the adverse effects of cadmium, compared to the cadmium group. In addition, curcumin alone significantly (p < 0.001) increased serum glutathione peroxidase activity and thiol content compared to the control group. CONCLUSION Curcumin, as a potent antioxidant, could compensate the adverse effects of cadmium on lipid and protein peroxidation, potentiated serum antioxidant defense system, and ameliorated some morphometrical parameters in the testis of cadmium-treated mice.
Collapse
Affiliation(s)
- H R Momeni
- Department of Biology, Faculty of Science, Arak University, Arak, Iran
| | - N Eskandari
- Department of Biology, Faculty of Science, Arak University, Arak, Iran
| |
Collapse
|
12
|
Wu SC, Liu F, Zhu K, Shen JZ. Natural Products That Target Virulence Factors in Antibiotic-Resistant Staphylococcus aureus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13195-13211. [PMID: 31702908 DOI: 10.1021/acs.jafc.9b05595] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The increase in the incidence of antibiotic-resistant Staphylococcus aureus (S. aureus) associated infections necessitates the urgent development of novel therapeutic strategies and antibacterial drugs. Antivirulence strategy is an especially compelling alternative strategy due to its low selective pressure for the development of drug resistance in bacteria. Plants and microorganisms are not only important food and medicinal resources but also serve as sources for the discovery of natural products that target bacterial virulence factors. This review discusses the mechanisms of the major virulence factors of S. aureus, including the accessory gene regulator quorum-sensing system, bacterial biofilm formation, α-hemolysin, sortase A, and staphyloxanthin. We also provide an overview of natural products isolated from plants and microorganisms with activity against the major virulence factors of S. aureus and their adjuvant effects on existing antibiotics to overcome antibiotic-resistant S. aureus. Finally, the limitations and solutions of these antivirulence compounds are discussed, which will help in the development of novel antibacterial drugs against antibiotic-resistant S. aureus.
Collapse
Affiliation(s)
- Shuai-Cheng Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine , China Agricultural University , No. 2 Yuanmingyuan West Road , Beijing 100193 , People's Republic of China
- College of Veterinary Medicine , Qingdao Agricultural University , No. 700 Changcheng Road , Qingdao , Shandong 266109 , People's Republic of China
| | - Fei Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine , China Agricultural University , No. 2 Yuanmingyuan West Road , Beijing 100193 , People's Republic of China
| | - Kui Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine , China Agricultural University , No. 2 Yuanmingyuan West Road , Beijing 100193 , People's Republic of China
| | - Jian-Zhong Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine , China Agricultural University , No. 2 Yuanmingyuan West Road , Beijing 100193 , People's Republic of China
| |
Collapse
|
13
|
Jahagirdar PS, Gupta PK, Kulkarni SP, Devarajan PV. Polymeric curcumin nanoparticles by a facile in situ method for macrophage targeted delivery. Bioeng Transl Med 2019; 4:141-151. [PMID: 30680325 PMCID: PMC6336664 DOI: 10.1002/btm2.10112] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 08/22/2018] [Accepted: 08/22/2018] [Indexed: 01/05/2023] Open
Abstract
Targeting macrophages is a promising strategy for improved therapy of intracellular infections as macrophages exhibit rapid phagocytosis of particles >200 nm. Entrapment of Curcumin (CUR) in nanocarriers could provide bioenhancement and macrophage targeting. We present a simple and facile in situ nanoprecipitation approach for instantaneous and on-site generation of curcumin nanoparticles (ISCurNP). ISCurNP optimised by Box-Behnken design exhibited average size of 208.25 ± 7.55 nm and entrapment efficiency of 90.16 ± 1.17%. Differential scanning calorimetry and X-Ray diffraction confirmed amorphization of CUR in ISCurNP. Sustained release was observed over 72 hr in vitro at lysosomal pH 4.5. Rapid and high uptake in RAW 264.7 macrophages was confirmed by flow cytometry and high performance liquid chromatography. Confocal microscopy established localisation of ISCurNP in lysosomal compartment. The facile in situ nanoprecipitation method provides simple, scalable technology to enable macrophage targeted delivery of CUR, with great promise for improved therapy of intracellular infections.
Collapse
Affiliation(s)
- Priyanka S. Jahagirdar
- Dept. of Pharmaceutical Sciences and TechnologyInstitute of Chemical TechnologyMatungaMumbai, MHIndia
| | - Pramod K. Gupta
- Radiation Medicine CentreBhabha Atomic Research CentreParelMumbai, MHIndia
| | - Savita P. Kulkarni
- Radiation Medicine CentreBhabha Atomic Research CentreParelMumbai, MHIndia
| | - Padma V. Devarajan
- Dept. of Pharmaceutical Sciences and TechnologyInstitute of Chemical TechnologyMatungaMumbai, MHIndia
| |
Collapse
|
14
|
Sarkar A, De R, Mukhopadhyay AK. Curcumin as a potential therapeutic candidate for Helicobacter pylori associated diseases. World J Gastroenterol 2016; 22:2736-2748. [PMID: 26973412 PMCID: PMC4777996 DOI: 10.3748/wjg.v22.i9.2736] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 01/01/2016] [Accepted: 01/18/2016] [Indexed: 02/06/2023] Open
Abstract
Curcumin, a yellow pigment and principal polyphenolic Curcuminoid obtained from the turmeric rhizome Curcuma longa, is commonly used as a food-coloring agent. Studies suggest that curcumin has a wide range of beneficial properties e.g., anti-inflammatory, anti-oxidant, anti-cancer, anti-proliferative, anti-fungal and anti-microbial. These pleiotropic activities prompted several research groups to elucidate the role of curcumin in Helicobacter pylori (H. pylori) infection. This is the first review with this heading where we discussed regarding the role of curcumin as an anti-H. pylori agent along with its potential in other gastrointestinal diseases. Based on several in vitro, early cell culture, animal research and few pre-clinical trials, curcumin projected as a potential therapeutic candidate against H. pylori mediated gastric pathogenesis. This review sheds light on the anti-H. pylori effects of curcumin in different models with meticulous emphasis on its anti-oxidant, anti-inflammatory and anti-carcinogenic effects as well as some critical signaling and effecter molecules. Remarkably, non-toxic molecule curcumin fulfills the characteristics for an ideal chemopreventive agent against H. pylori mediated gastric carcinogenesis but the foremost challenge is to obtain the optimum therapeutic levels of curcumin, due to its low solubility and poor bioavailability. Further, we have discussed about the possibilities for improving its efficacy and bioavailability. Lastly, we concluded with the anticipation that in near future curcumin may be used to develop a therapeutic drug against H. pylori mediated gastric ailments through improved formulation or delivery systems, facilitating its enhanced absorption and cellular uptake.
Collapse
|
15
|
Alkhaldi AAM, Creek DJ, Ibrahim H, Kim DH, Quashie NB, Burgess KE, Changtam C, Barrett MP, Suksamrarn A, de Koning HP. Potent trypanocidal curcumin analogs bearing a monoenone linker motif act on trypanosoma brucei by forming an adduct with trypanothione. Mol Pharmacol 2014; 87:451-64. [PMID: 25527638 DOI: 10.1124/mol.114.096016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We have previously reported that curcumin analogs with a C7 linker bearing a C4-C5 olefinic linker with a single keto group at C3 (enone linker) display midnanomolar activity against the bloodstream form of Trypanosoma brucei. However, no clear indication of their mechanism of action or superior antiparasitic activity relative to analogs with the original di-ketone curcumin linker was apparent. To further investigate their utility as antiparasitic agents, we compare the cellular effects of curcumin and the enone linker lead compound 1,7-bis(4-hydroxy-3-methoxyphenyl)hept-4-en-3-one (AS-HK014) here. An AS-HK014-resitant line, trypanosomes adapted to AS-HK014 (TA014), was developed by in vitro exposure to the drug. Metabolomic analysis revealed that exposure to AS-HK014, but not curcumin, rapidly depleted glutathione and trypanothione in the wild-type line, although almost all other metabolites were unchanged relative to control. In TA014 cells, thiol levels were similar to untreated wild-type cells and not significantly depleted by AS-HK014. Adducts of AS-HK014 with both glutathione and trypanothione were identified in AS-HK014-exposed wild-type cells and reproduced by chemical reaction. However, adduct accumulation in sensitive cells was much lower than in resistant cells. TA014 cells did not exhibit any changes in sequence or protein levels of glutathione synthetase and γ-glutamylcysteine synthetase relative to wild-type cells. We conclude that monoenone curcuminoids have a different mode of action than curcumin, rapidly and specifically depleting thiol levels in trypanosomes by forming an adduct. This adduct may ultimately be responsible for the highly potent trypanocidal and antiparasitic activity of the monoenone curcuminoids.
Collapse
Affiliation(s)
- Abdulsalam A M Alkhaldi
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (A.A.M.A, D.J.C., H.I., D.-H.K., N.B.Q., K.E.B., M.P.B., H.P.K.); Department of Biology, College of Science, Aljouf University, Skaka, Kingdom of Saudi Arabia (A.A.M.A); Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Australia (D.J.C.); Faculty of Science, Department of Zoology, Sebha University, Libya (H.I.); Centre for Analytical Bioscience, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom (D.-H.K.); Centre for Tropical Clinical Pharmacology and Therapeutics, University of Ghana Medical School, Accra, Ghana (N.B.Q.); Division of Physical Science, Faculty of Science and Technology, Huachiew Chalermprakiet University, Samutprakarn, Thailand (C.C.); Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom (M.P.B.); and Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand (A.S.)
| | - Darren J Creek
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (A.A.M.A, D.J.C., H.I., D.-H.K., N.B.Q., K.E.B., M.P.B., H.P.K.); Department of Biology, College of Science, Aljouf University, Skaka, Kingdom of Saudi Arabia (A.A.M.A); Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Australia (D.J.C.); Faculty of Science, Department of Zoology, Sebha University, Libya (H.I.); Centre for Analytical Bioscience, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom (D.-H.K.); Centre for Tropical Clinical Pharmacology and Therapeutics, University of Ghana Medical School, Accra, Ghana (N.B.Q.); Division of Physical Science, Faculty of Science and Technology, Huachiew Chalermprakiet University, Samutprakarn, Thailand (C.C.); Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom (M.P.B.); and Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand (A.S.)
| | - Hasan Ibrahim
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (A.A.M.A, D.J.C., H.I., D.-H.K., N.B.Q., K.E.B., M.P.B., H.P.K.); Department of Biology, College of Science, Aljouf University, Skaka, Kingdom of Saudi Arabia (A.A.M.A); Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Australia (D.J.C.); Faculty of Science, Department of Zoology, Sebha University, Libya (H.I.); Centre for Analytical Bioscience, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom (D.-H.K.); Centre for Tropical Clinical Pharmacology and Therapeutics, University of Ghana Medical School, Accra, Ghana (N.B.Q.); Division of Physical Science, Faculty of Science and Technology, Huachiew Chalermprakiet University, Samutprakarn, Thailand (C.C.); Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom (M.P.B.); and Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand (A.S.)
| | - Dong-Hyun Kim
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (A.A.M.A, D.J.C., H.I., D.-H.K., N.B.Q., K.E.B., M.P.B., H.P.K.); Department of Biology, College of Science, Aljouf University, Skaka, Kingdom of Saudi Arabia (A.A.M.A); Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Australia (D.J.C.); Faculty of Science, Department of Zoology, Sebha University, Libya (H.I.); Centre for Analytical Bioscience, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom (D.-H.K.); Centre for Tropical Clinical Pharmacology and Therapeutics, University of Ghana Medical School, Accra, Ghana (N.B.Q.); Division of Physical Science, Faculty of Science and Technology, Huachiew Chalermprakiet University, Samutprakarn, Thailand (C.C.); Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom (M.P.B.); and Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand (A.S.)
| | - Neils B Quashie
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (A.A.M.A, D.J.C., H.I., D.-H.K., N.B.Q., K.E.B., M.P.B., H.P.K.); Department of Biology, College of Science, Aljouf University, Skaka, Kingdom of Saudi Arabia (A.A.M.A); Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Australia (D.J.C.); Faculty of Science, Department of Zoology, Sebha University, Libya (H.I.); Centre for Analytical Bioscience, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom (D.-H.K.); Centre for Tropical Clinical Pharmacology and Therapeutics, University of Ghana Medical School, Accra, Ghana (N.B.Q.); Division of Physical Science, Faculty of Science and Technology, Huachiew Chalermprakiet University, Samutprakarn, Thailand (C.C.); Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom (M.P.B.); and Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand (A.S.)
| | - Karl E Burgess
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (A.A.M.A, D.J.C., H.I., D.-H.K., N.B.Q., K.E.B., M.P.B., H.P.K.); Department of Biology, College of Science, Aljouf University, Skaka, Kingdom of Saudi Arabia (A.A.M.A); Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Australia (D.J.C.); Faculty of Science, Department of Zoology, Sebha University, Libya (H.I.); Centre for Analytical Bioscience, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom (D.-H.K.); Centre for Tropical Clinical Pharmacology and Therapeutics, University of Ghana Medical School, Accra, Ghana (N.B.Q.); Division of Physical Science, Faculty of Science and Technology, Huachiew Chalermprakiet University, Samutprakarn, Thailand (C.C.); Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom (M.P.B.); and Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand (A.S.)
| | - Chatchawan Changtam
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (A.A.M.A, D.J.C., H.I., D.-H.K., N.B.Q., K.E.B., M.P.B., H.P.K.); Department of Biology, College of Science, Aljouf University, Skaka, Kingdom of Saudi Arabia (A.A.M.A); Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Australia (D.J.C.); Faculty of Science, Department of Zoology, Sebha University, Libya (H.I.); Centre for Analytical Bioscience, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom (D.-H.K.); Centre for Tropical Clinical Pharmacology and Therapeutics, University of Ghana Medical School, Accra, Ghana (N.B.Q.); Division of Physical Science, Faculty of Science and Technology, Huachiew Chalermprakiet University, Samutprakarn, Thailand (C.C.); Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom (M.P.B.); and Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand (A.S.)
| | - Michael P Barrett
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (A.A.M.A, D.J.C., H.I., D.-H.K., N.B.Q., K.E.B., M.P.B., H.P.K.); Department of Biology, College of Science, Aljouf University, Skaka, Kingdom of Saudi Arabia (A.A.M.A); Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Australia (D.J.C.); Faculty of Science, Department of Zoology, Sebha University, Libya (H.I.); Centre for Analytical Bioscience, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom (D.-H.K.); Centre for Tropical Clinical Pharmacology and Therapeutics, University of Ghana Medical School, Accra, Ghana (N.B.Q.); Division of Physical Science, Faculty of Science and Technology, Huachiew Chalermprakiet University, Samutprakarn, Thailand (C.C.); Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom (M.P.B.); and Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand (A.S.)
| | - Apichart Suksamrarn
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (A.A.M.A, D.J.C., H.I., D.-H.K., N.B.Q., K.E.B., M.P.B., H.P.K.); Department of Biology, College of Science, Aljouf University, Skaka, Kingdom of Saudi Arabia (A.A.M.A); Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Australia (D.J.C.); Faculty of Science, Department of Zoology, Sebha University, Libya (H.I.); Centre for Analytical Bioscience, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom (D.-H.K.); Centre for Tropical Clinical Pharmacology and Therapeutics, University of Ghana Medical School, Accra, Ghana (N.B.Q.); Division of Physical Science, Faculty of Science and Technology, Huachiew Chalermprakiet University, Samutprakarn, Thailand (C.C.); Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom (M.P.B.); and Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand (A.S.)
| | - Harry P de Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (A.A.M.A, D.J.C., H.I., D.-H.K., N.B.Q., K.E.B., M.P.B., H.P.K.); Department of Biology, College of Science, Aljouf University, Skaka, Kingdom of Saudi Arabia (A.A.M.A); Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Australia (D.J.C.); Faculty of Science, Department of Zoology, Sebha University, Libya (H.I.); Centre for Analytical Bioscience, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom (D.-H.K.); Centre for Tropical Clinical Pharmacology and Therapeutics, University of Ghana Medical School, Accra, Ghana (N.B.Q.); Division of Physical Science, Faculty of Science and Technology, Huachiew Chalermprakiet University, Samutprakarn, Thailand (C.C.); Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom (M.P.B.); and Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand (A.S.)
| |
Collapse
|
16
|
Cheikh-Ali Z, Caron J, Cojean S, Bories C, Couvreur P, Loiseau PM, Desmaële D, Poupon E, Champy P. "Squalenoylcurcumin" nanoassemblies as water-dispersible drug candidates with antileishmanial activity. ChemMedChem 2014; 10:411-8. [PMID: 25523035 DOI: 10.1002/cmdc.201402449] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Indexed: 12/21/2022]
Abstract
Curcumin, a natural polyphenolic compound, showed antiparasitic potential, including trypanocidal and leishmanicidal activity, in several in vitro and in vivo models. The molecule is well tolerated in humans. However, it is insoluble in water and displays poor oral bioavailability as a result of low absorption. New derivatives of curcumin were prepared by esterification of one or two of its phenolic groups with 1,1',2-tris-norsqualenic acid. These "squalenoylcurcumins" were formulated as water-dispersible nanoassemblies of homogeneous size, and they proved to be stable. Squalenoylcurcumins were inactive against Trypanosoma brucei brucei trypomastigotes, even as nanoassemblies, in contrast with curcumin. However, against Leishmania donovani promastigotes, the activities of the squalenoylcurcumins and their nanoassemblies were enhanced relative to that of curcumin. In L. donovani axenic and intramacrophagic amastigotes, they showed activity in the range of miltefosine, with good selectivity indexes. In regard to their dispersibility in water and to the safety of curcumin, these nanoassemblies are promising candidates for preclinical study toward the treatment of visceral leishmaniasis.
Collapse
Affiliation(s)
- Zakaria Cheikh-Ali
- Laboratoire de Pharmacognosie, CNRS UMR 8076 BioCIS, LabEX LERMIT, Faculté de Pharmacie, Université Paris-Sud, 92296 Châtenay-Malabry (France)
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Son D, Chung MH. In vitro Synergism between Chloroquine and Antibiotics against Orientia tsutsugamushi. Infect Chemother 2014; 46:182-8. [PMID: 25298907 PMCID: PMC4189136 DOI: 10.3947/ic.2014.46.3.182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/12/2014] [Accepted: 09/12/2014] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND To investigate whether chloroquine enhances the effect of antibiotics against Orientia tsutsugamushi, the causative organism of scrub typhus, we compared the effect of antibiotics in combination with chloroquine with the effect of antibiotics alone in vitro. MATERIALS AND METHODS The Boryong or AFSC-4 strain was inoculated into ECV304 cells, and incubated in medium containing doxycycline (4 µg/mL), rifampin (4 µg/mL), azithromycin (0.5 µg/mL), chloroquine (1 µg/mL), and each of these antibiotics in combination with chloroquine for 7 d. Immunofluorescence (IF) staining for O. tsutsugamushi was performed 4 hr and 7 d after inoculation of the bacteria, and IF-positive foci were enumerated. RESULTS Chloroquine inhibited the growth of O. tsutsugamushi by 15.5%. In combination with chloroquine, the antimicrobial effects increased by 4.4% for doxycycline (a 92.9% reduction of bacterial numbers for doxycycline versus a 97.3% reduction for doxycycline plus chloroquine), 4.6% for rifampin (90.0% versus 94.6%), and 8.3% for azithromycin (86.9% versus 95.2%). The antimicrobial effect of the antibiotics alone was significantly different compared to the combined effect of antibiotics and chloroquine (Wilcoxon signed-rank test, P = 0.001). CONCLUSIONS The combined use of chloroquine with an antibiotic for the treatment of O. tsutsugamushi infections may be useful for increasing the efficacy of the antibiotics.
Collapse
Affiliation(s)
- Dongwook Son
- Department of Internal Medicine, Inha University School of Medicine, Incheon, Korea
| | - Moon-Hyun Chung
- Department of Internal Medicine, Inha University School of Medicine, Incheon, Korea
| |
Collapse
|
18
|
Chakraborty S, Chaudhuri D, Balakrishnan A, Chakravortty D. Salmonella methylglyoxal detoxification by STM3117-encoded lactoylglutathione lyase affects virulence in coordination with Salmonella pathogenicity island 2 and phagosomal acidification. MICROBIOLOGY (READING, ENGLAND) 2014; 160:1999-2017. [PMID: 24961952 DOI: 10.1099/mic.0.078998-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Intracellular pathogens such as Salmonella enterica serovar Typhimurium (S. Typhimurium) manipulate their host cells through the interplay of various virulence factors. A multitude of such virulence factors are encoded on the genome of S. Typhimurium and are usually organized in pathogenicity islands. The virulence-associated genomic stretch of STM3117-3120 has structural features of pathogenicity islands and is present exclusively in non-typhoidal serovars of Salmonella. It encodes metabolic enzymes predicted to be involved in methylglyoxal metabolism. STM3117-encoded lactoylglutathione lyase significantly impacts the proliferation of intracellular Salmonella. The deletion mutant of STM3117 (Δlgl) fails to grow in epithelial cells but hyper-replicates in macrophages. This difference in proliferation outcome was the consequence of failure to detoxify methylglyoxal by Δlgl, which was also reflected in the form of oxidative DNA damage and upregulation of kefB in the mutant. Within macrophages, the toxicity of methylglyoxal adducts elicits the potassium efflux channel (KefB) in the mutant which subsequently modulates the acidification of mutant-containing vacuoles (MCVs). The perturbation in the pH of the MCV milieu and bacterial cytosol enhances the Salmonella pathogenicity island 2 translocation in Δlgl, increasing its net growth within macrophages. In epithelial cells, however, the maturation of Δlgl-containing vacuoles were affected as these non-phagocytic cells maintain less acidic vacuoles compared to those in macrophages. Remarkably, ectopic expression of Toll-like receptors 2 and 4 on epithelial cells partially restored the survival of Δlgl. This study identified a novel metabolic enzyme in S. Typhimurium whose activity during intracellular infection within a given host cell type differentially affected the virulence of the bacteria.
Collapse
Affiliation(s)
- Sangeeta Chakraborty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Debalina Chaudhuri
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Arjun Balakrishnan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| |
Collapse
|