1
|
Fierer N, Leung PM, Lappan R, Eisenhofer R, Ricci F, Holland SI, Dragone N, Blackall LL, Dong X, Dorador C, Ferrari BC, Goordial J, Holmes SP, Inagaki F, Korem T, Li SS, Makhalanyane TP, Metcalf JL, Nagarajan N, Orsi WD, Shanahan ER, Walker AW, Weyrich LS, Gilbert JA, Willis AD, Callahan BJ, Shade A, Parkhill J, Banfield JF, Greening C. Guidelines for preventing and reporting contamination in low-biomass microbiome studies. Nat Microbiol 2025:10.1038/s41564-025-02035-2. [PMID: 40542287 DOI: 10.1038/s41564-025-02035-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 05/15/2025] [Indexed: 06/22/2025]
Abstract
Numerous important environments harbour low levels of microbial biomass, including certain human tissues, the atmosphere, plant seeds, treated drinking water, hyper-arid soils and the deep subsurface, with some environments lacking resident microbes altogether. These low microbial biomass environments pose unique challenges for standard DNA-based sequencing approaches, as the inevitability of contamination from external sources becomes a critical concern when working near the limits of detection. Likewise, lower-biomass samples can be disproportionately impacted by cross-contamination and practices suitable for handling higher-biomass samples may produce misleading results when applied to lower microbial biomass samples. This Consensus Statement outlines strategies to reduce contamination and cross-contamination, focusing on marker gene and metagenomic analyses. We also provide minimal standards for reporting contamination information and removal workflows. Considerations must be made at every study stage, from sample collection and handling through data analysis and reporting to reduce and identify contaminants. We urge researchers to adopt these recommendations when designing, implementing and reporting microbiome studies, especially those conducted in low-biomass systems.
Collapse
Affiliation(s)
- Noah Fierer
- Department of Ecology and Evolutionary Biology, Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA.
| | - Pok Man Leung
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Securing Antarctica's Environmental Future, Monash University, Clayton, Victoria, Australia
| | - Rachael Lappan
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Securing Antarctica's Environmental Future, Monash University, Clayton, Victoria, Australia
| | - Raphael Eisenhofer
- Centre for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Francesco Ricci
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Securing Antarctica's Environmental Future, Monash University, Clayton, Victoria, Australia
| | - Sophie I Holland
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Securing Antarctica's Environmental Future, Monash University, Clayton, Victoria, Australia
| | - Nicholas Dragone
- Department of Ecology and Evolutionary Biology, Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
| | - Linda L Blackall
- School of Biosciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Xiyang Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Cristina Dorador
- Laboratorio de Complejidad Microbiana, Instituto Antofagasta and Centre for Biotechnology and Bioengineering, Universidad de Antofagasta, Antofagasta, Chile
| | - Belinda C Ferrari
- School of Biotechnology and Biomolecular Sciences, Evolution and Ecology Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Jacqueline Goordial
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Susan P Holmes
- Department of Statistics, Stanford University, Stanford, CA, USA
| | - Fumio Inagaki
- Advanced Institute for Marine Ecosystem Change (WPI-AIMEC), Japan Agency for Marine-Earth Science and Technology, Yokohoma, Japan
| | - Tal Korem
- Program for Mathematical Genomics, Department of Systems Biology, Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA
| | - Simone S Li
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Thulani P Makhalanyane
- Department of Microbiology, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Jessica L Metcalf
- Department of Animal Sciences, Colorado State University, Fort Collins, CO, USA
| | - Niranjan Nagarajan
- Yong Loon Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - William D Orsi
- Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Erin R Shanahan
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales, Australia
| | - Alan W Walker
- Rowett Institute, University of Aberdeen, Aberdeen, Scotland, UK
| | - Laura S Weyrich
- Department of Anthropology and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Jack A Gilbert
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Scripps Institute of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Amy D Willis
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Benjamin J Callahan
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Ashley Shade
- VetAgro Sup, Laboratoire d'Ecologie Microbienne, Universite Claude Bernard Lyon 1, CNRS, INRAE, Villeurbanne, France
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Jillian F Banfield
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Earth and Planetary Science, University of California Berkeley, Berkeley, CA, USA
| | - Chris Greening
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
- Securing Antarctica's Environmental Future, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
2
|
Zhang Z, Zhang Y, Wu A, Xu C, Li Z. Will gut, oral, and vaginal microbiota influence the outcome of FET or be influenced by FET? A pilot study. mBio 2025:e0050925. [PMID: 40525871 DOI: 10.1128/mbio.00509-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 05/15/2025] [Indexed: 06/19/2025] Open
Abstract
This study aims to examine the specific relationships between gut, oral, and vaginal microbiota and the frozen embryo transfer (FET) process. Patients undergoing fertility treatment who met the inclusion criteria were included in this study. After sampling at three time points, participants were then divided into two groups: the failure group and the success group, based on whether a viable intrauterine pregnancy was confirmed. In this pilot study, we systematically examined changes in the gut, oral, and vaginal microbiota at various stages of the FET process using 16S rDNA high-throughput sequencing and investigated their respective associations with FET outcomes. Metabolomics and random forest were used for evaluating the relationship between gut microbiota and metabolites during FET. Our findings indicate that while the gut microbiota underwent the least change throughout FET, it exhibited the greatest differences between success and failure groups. The oral and vaginal microbiota exhibited significant fluctuations. However, the differences in oral microbiota between the success and failure groups changed with the FET process, while the vaginal microbiota did not show any differences. Notably, two key gut genera, Anaerococcus and Negativicoccus, were identified as genera significantly associated with FET outcomes. Additionally, specific gut microbiota and metabolite profiles displayed significant correlations with FET success, particularly highlighting the potential relevance of cystamine before FET. These findings suggest that targeting microbiota-associated metabolic pathways may serve as a potential strategy to enhance FET success rates and provide new biomarkers for clinical prediction and intervention.IMPORTANCEThis study explores the potential role of microbiota in influencing FET outcomes. Through an analysis of gut, oral, and vaginal microbiota, we observed notable differences between success and failure groups, particularly in gut microbiota. Genera such as Anaerococcus and Negativicoccus, along with associated metabolic profiles, may offer insights into underlying mechanisms. These findings contribute to a growing understanding of the interplay between microbiota and reproductive outcomes and suggest that targeting microbiota-associated metabolic pathways could be a promising direction for enhancing FET success rates. This research highlights potential biomarkers and therapeutic avenues for further exploration in fertility treatments.
Collapse
Affiliation(s)
- Zhao Zhang
- Department of Reproduction, Southern Medical University Affiliate Dongguan People's Hospital, Dongguan, Guangdong, China
| | - Yiwen Zhang
- Department of Obstetrics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Aihua Wu
- Department of Reproduction, Southern Medical University Affiliate Dongguan People's Hospital, Dongguan, Guangdong, China
| | - Chengfang Xu
- Department of Obstetrics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhe Li
- Department of Obstetrics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Yagel Y, Motro Y, Green S, Klapper-Goldstein H, Pardo E, Moran-Gilad J, Weintraub AY. Investigation of the female genital tract microbiome and its association with hydrosalpinx in women undergoing salpingectomy. Arch Gynecol Obstet 2025; 311:1649-1656. [PMID: 40082312 PMCID: PMC12055863 DOI: 10.1007/s00404-025-07944-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 01/09/2025] [Indexed: 03/16/2025]
Abstract
OBJECTIVE To describe the microbiome of the vagina and fallopian tubes (FT) and its relation with hydrosalpinx. METHODS Case-control study was conducted in women who underwent salpingectomy for hydrosalpinx (case) or other indications (controls). Samples were obtained during surgery and subjected to 16S rRNA amplicon sequencing, and analyses of alpha diversity and beta diversity measures were compared between sites and groups. Differential abundance of bacteria associated with vaginal dysbiosis was compared between cases and controls. RESULTS Nine women with hydrosalpinx and 23 women without hydrosalpinx were included in the study. The mean age of studied women was 41 (range: 29-54) and most (89%) were premenopausal. After in silico decontamination, only 30% of control FT samples and 10% of case FT samples had evidence of bacterial presence. The vaginal microbiome of control patients showed greater abundance of lactobacilli, whereas the vaginal microbiome of case patients contained relatively more bacterial vaginosis-associated bacteria, such as Prevotella and Atopobium. A significant difference was found in alpha and beta diversity between vaginal and FT microbiomes in control patients as FT samples were more diverse. We found that women with hydrosalpinx had a more "dysbiotic" vaginal microbiome and in women without hydrosalpinx, microbial composition within the vagina and FT differed, possibly representing two distinct ecological environments. CONCLUSION Women undergoing salpingectomy for various reasons harbored bacteria within their FT, while women with hydrosalpinx generally did not. This suggests that even though infection may be an underlying cause of hydrosalpinx, bacteria may not be present by the time patients require surgery.
Collapse
Affiliation(s)
- Yael Yagel
- Department of Health Policy and Management, School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Yair Motro
- Department of Health Policy and Management, School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Stefan Green
- Genomics and Microbiome Core Facility, Rush University Medical Center, Chicago, IL, USA
| | - Hadar Klapper-Goldstein
- Department of Obstetrics and Gynecology, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, POB 151, Beer Sheva, Israel.
| | - Ella Pardo
- Department of Obstetrics and Gynecology, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, POB 151, Beer Sheva, Israel
| | - Jacob Moran-Gilad
- Department of Health Policy and Management, School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Adi Y Weintraub
- Department of Obstetrics and Gynecology, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, POB 151, Beer Sheva, Israel
| |
Collapse
|
4
|
Wang W, Gu W, Schweitzer R, Koren O, Khatib S, Tseng G, Konnikova L. In utero human intestine contains maternally derived bacterial metabolites. MICROBIOME 2025; 13:116. [PMID: 40329366 PMCID: PMC12054239 DOI: 10.1186/s40168-025-02110-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 04/10/2025] [Indexed: 05/08/2025]
Abstract
BACKGROUND Understanding when host-microbiome interactions are first established is crucial for comprehending normal development and identifying disease prevention strategies. Furthermore, bacterially derived metabolites play critical roles in shaping the intestinal immune system. Recent studies have demonstrated that memory T cells infiltrate human intestinal tissue early in the second trimester, suggesting that microbial components such as peptides that can prime adaptive immunity and metabolites that can influence the development and function of the immune system are also present in utero. Our previous study reported a unique fetal intestinal metabolomic profile with an abundance of several bacterially derived metabolites and aryl hydrocarbon receptor (AHR) ligands implicated in mucosal immune regulation. RESULTS In the current study, we demonstrate that a number of microbiome-associated metabolites present in the fetal intestines are also present in the placental tissue, and their abundance is different across the fetal intestine, fetal meconium, fetal placental villi, and the maternal decidua. The fetal gastrointestinal samples and maternal decidua samples show substantially higher positive correlation on the abundance of these microbial metabolites than the correlation between the fetal gastrointestinal samples and meconium samples. The expression of genes associated with the transport and signaling of some microbial metabolites is also detectable in utero. CONCLUSIONS We suggest that the microbiome-associated metabolites are maternally derived and vertically transmitted to the fetus. Notably, these bacterially derived metabolites, particularly short-chain fatty acids and secondary bile acids, are likely biologically active and functional in regulating the fetal immune system and preparing the gastrointestinal tract for postnatal microbial encounters, as the transcripts for their various receptors and carrier proteins are present in second trimester intestinal tissue through single-cell transcriptomic data. Video Abstract.
Collapse
Affiliation(s)
- Wenjia Wang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Weihong Gu
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, 06519, USA
| | - Ron Schweitzer
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
- Department of Biotechnology, Tel-Hai College, Upper Galilee, Kiryat Shmona, Israel
- Department of Natural Compounds and Analytical Chemistry, MIGAL Galilee Research Institute, Kiryat Shmona, Israel
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Soliman Khatib
- Department of Biotechnology, Tel-Hai College, Upper Galilee, Kiryat Shmona, Israel
- Department of Natural Compounds and Analytical Chemistry, MIGAL Galilee Research Institute, Kiryat Shmona, Israel
| | - George Tseng
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Liza Konnikova
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, 06519, USA.
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA.
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA.
- Program in Translational Biomedicine, Yale School of Medicine, New Haven, CT, USA.
- Human Translational Immunology Program, Yale School of Medicine, New Haven, CT, USA.
- Center for Systems and Engineering Immunology, Yale School of Medicine, 375 Congress Avenue, New Haven, CT, 06519, USA.
| |
Collapse
|
5
|
So AI, Chi K, Danielson B, Fleshner N, Kinnaird A, Niazi T, Pouliot F, Rendon RA, Shayegan B, Sridhar SS, Vigneault E, Breau RH, Saad F. 2025 Canadian Urological Association-Canadian Uro-oncology Group Guideline: Metastatic castration-naive and castration-sensitive prostate cancer (Update). Can Urol Assoc J 2025; 19:E142-E152. [PMID: 40398386 PMCID: PMC12091038 DOI: 10.5489/cuaj.9240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Affiliation(s)
- Alan I. So
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Kim Chi
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Brita Danielson
- Department of Oncology, Division of Radiation Oncology, University of Alberta, Edmonton, AB, Canada
| | - Neil Fleshner
- Division of Urology, University of Toronto, Toronto, ON, Canada
| | - Adam Kinnaird
- Division of Urology, Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Tamim Niazi
- Department of Oncology, Division of Radiation Oncology, McGill University, Montreal QC, Canada
| | - Frédéric Pouliot
- Division of Urology, Department of Surgery, Université Laval, Quebec, QC, Canada
| | | | - Bobby Shayegan
- Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - Srikala S. Sridhar
- Division of Hematology and Medical Oncology, Princess Margaret Cancer Center, University of Toronto, Toronto, ON, Canada
| | - Eric Vigneault
- Department of Radiation Oncology, CHUQ, Université Laval, Quebec City, QC, Canada
| | - Rodney H. Breau
- Department of Surgery, University of Ottawa, Ottawa, ON, Canada
| | - Fred Saad
- Department of Surgery, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
6
|
Hendesi H, Villani DA, Prawitt J, Gill AL, Abdo Z, Santangelo KS, Pezzanite L, Gill SR, Zuscik MJ. Gut and Joint Microbiomes: Implications in Osteoarthritis. Rheum Dis Clin North Am 2025; 51:295-324. [PMID: 40246442 DOI: 10.1016/j.rdc.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
This review summarizes and discusses key recent findings suggesting that microbiomes can play a role in the development and progression of osteoarthritis. Evidence supporting a gut microbiome-joint connection derived from human and animal studies is enumerated and discussed, with particular attention on the microbial and molecular basis for the development of therapeutic interventions that involve targeting the gut. Additionally, clinical data supporting the concept of a living microbiome within a diarthrodial joint are summarized. A discussion of key limitations in the current data and important technical considerations for firmly establishing the existence of a synovial joint microbial community is included.
Collapse
Affiliation(s)
- Honey Hendesi
- Department of Orthopedics, University of Colorado, Anschutz Medical Campus, 12800 East 19th Avenue, RC1N, MS8343, Aurora, CO 80045, USA
| | - David A Villani
- Department of Orthopedics, University of Colorado, Anschutz Medical Campus, 12800 East 19th Avenue, RC1N, MS8343, Aurora, CO 80045, USA
| | - Janne Prawitt
- Rousselot BV, Science & Innovation, Meulestedekaai 81, Gent 9000, Belgium
| | - Ann L Gill
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Zaid Abdo
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 200 West Lake Street, Fort Collins, CO 80521, USA
| | - Kelly S Santangelo
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 200 West Lake Street, Fort Collins, CO 80521, USA
| | - Lynn Pezzanite
- American College of Veterinary Surgeons; Department of Clinical Sciences, Colorado State University, 2350 Gillette Drive, Fort Collins, CO 80523, USA
| | - Steven R Gill
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Michael J Zuscik
- Department of Orthopedics, University of Colorado, Anschutz Medical Campus, 12800 East 19th Avenue, RC1N, MS8343, Aurora, CO 80045, USA.
| |
Collapse
|
7
|
Cho KH, Kwon Y, Kasani PH, Lee SG, Jeong SJ. Influence of Maternal Weight Dynamics Prior to and Throughout Gestation on Early Infant Gut Microbiome Colonization. MICROBIAL ECOLOGY 2025; 88:32. [PMID: 40261360 PMCID: PMC12014846 DOI: 10.1007/s00248-025-02520-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 03/26/2025] [Indexed: 04/24/2025]
Abstract
This study is aimed at exploring the relationship between maternal weight categories, including pre-pregnancy body mass index (P-BMI) and gestational weight gain (GWG), and the composition of the infant gut microbiome in the early days of life. We recruited 71 mother-infant pairs from Kangwon National University Hospital and Bundang CHA Hospital, collecting meconium samples from the infants within the first 5 days postpartum. Using 16S ribosomal RNA gene sequencing (V3-V4 region), this study assessed microbial diversity and the relative abundance of specific bacterial taxa in these initial stool samples. Participants were categorized into groups based on maternal P-BMI and GWG, enabling a comprehensive comparison of the microbiota composition in the infants' meconium across different maternal weight metrics. Our analysis identified significant variations in the infant gut microbiome correlated with maternal weight categories. Key findings include a differential abundance of genera such as Sphingobacteriaceae, Bacillaceae, Cytophagaceae, and Alteromonadaceae across maternal P-BMI groups, whereas Moraxellaceae and Rhodospirillaceae varied across GWG groups. In the P-BMI category, infants born to overweight mothers demonstrated a higher abundance of Pseudopedobacter, and a lower abundance of Citrobacter and Lachnospira, while infants in the underweight group showed a higher abundance of Lachnospira and Weissella. In the normal weight group, Citrobacter and Pseudopedobacter were more abundant. Within the GWG category, infants in the inadequate group showed a higher abundance of Klebsiella, whereas the normal group showed a higher abundance of Holdemania. The composition of the infant gut microbiome in the early postnatal period is significantly influenced by maternal weight categories. Understanding the role of maternal weight in shaping early microbial colonization may provide insights into developing strategies to optimize infant health outcomes through targeted interventions before and during pregnancy.
Collapse
Affiliation(s)
- Kee Hyun Cho
- Department of Pediatrics, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, Republic of Korea
| | - Yoowon Kwon
- Department of Pediatrics, Chungnam National University Sejong Hospital, Chungnam National University School of Medicine, Sejong, Republic of Korea
| | - Payam Hosseinzadeh Kasani
- Department of Pediatrics, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, Republic of Korea
| | - Sung-Gwon Lee
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), US National Institutes of Health (NIH), Bethesda, MD, USA
| | - Su Jin Jeong
- Department of Pediatrics, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea.
| |
Collapse
|
8
|
Upadhyay R, Mani S, Sevanan M. Microbiome-based dietary supplements for better development and healthy brain. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2025; 180:329-368. [PMID: 40414637 DOI: 10.1016/bs.irn.2025.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2025]
Abstract
Microbiome-based dietary supplements have gained attention for their role in enhancing brain development and cognitive health. The gut microbiome influences neurological functions through the gut-brain axis, impacting neurotransmitter production, immune regulation, and metabolic pathways. Dysbiosis is linked to neurological disorders such as Alzheimer's, Parkinson's, and autism spectrum disorders. This chapter explores dietary interventions targeting the microbiome, emphasising probiotics, prebiotics, and postbiotics. Additionally, AI and machine learning are transforming microbiome research by enabling personalised supplementation strategies tailored to individual gut profiles. Ethical challenges, including data privacy and algorithmic bias, are also discussed. Advances in big data analytics and predictive modelling are paving the way for precision-targeted interventions to optimise brain health. While microbiome-based therapies hold great promise, further clinical validation and regulatory frameworks are needed to ensure their efficacy and accessibility. This chapter highlights the future potential of microbiome-targeted strategies in neuroprotection and cognitive well-being.
Collapse
Affiliation(s)
- Riddhi Upadhyay
- Division of Biotechnology, Karunya Institute of Technology and Sciences (Deemed University), Coimbatore, Tamil Nadu, India
| | - Sugumar Mani
- Palamur Biosciences Private Limited, Mahabubnagar, Telangana, India
| | - Murugan Sevanan
- Division of Biotechnology, Karunya Institute of Technology and Sciences (Deemed University), Coimbatore, Tamil Nadu, India.
| |
Collapse
|
9
|
Ramadan YN, Alqifari SF, Alshehri K, Alhowiti A, Mirghani H, Alrasheed T, Aljohani F, Alghamdi A, Hetta HF. Microbiome Gut-Brain-Axis: Impact on Brain Development and Mental Health. Mol Neurobiol 2025:10.1007/s12035-025-04846-0. [PMID: 40234288 DOI: 10.1007/s12035-025-04846-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 03/12/2025] [Indexed: 04/17/2025]
Abstract
The current discovery that the gut microbiome, which contains roughly 100 trillion microbes, affects health and disease has catalyzed a boom in multidisciplinary research efforts focused on understanding this relationship. Also, it is commonly demonstrated that the gut and the CNS are closely related in a bidirectional pathway. A balanced gut microbiome is essential for regular brain activities and emotional responses. On the other hand, the CNS regulates the majority of GI physiology. Any disruption in this bidirectional pathway led to a progression of health problems in both directions, neurological and gastrointestinal diseases. In this review, we hope to shed light on the complicated connections of the microbiome-gut-brain axis and the critical roles of gut microbiome in the early development of the brain in order to get a deeper knowledge of microbiome-mediated pathological conditions and management options through rebalancing of gut microbiome.
Collapse
Affiliation(s)
- Yasmin N Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut, 71515, Egypt.
| | - Saleh F Alqifari
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Khaled Alshehri
- Department of Internal Medicine (Neurology), Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Amirah Alhowiti
- Department of Family and Community Medicine, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Hyder Mirghani
- Department of Internal Medicine, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Tariq Alrasheed
- Department of Internal Medicine, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Faisal Aljohani
- Division of Medicine and Gastroenterology, Department of Medicine, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Abdulaziz Alghamdi
- Department of Medicine, Division of Psychiatry, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Helal F Hetta
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, 71491, Tabuk, Saudi Arabia
| |
Collapse
|
10
|
Bonomo MG, D’Angelo S, Picerno V, Carriero A, Salzano G. Recent Advances in Gut Microbiota in Psoriatic Arthritis. Nutrients 2025; 17:1323. [PMID: 40284188 PMCID: PMC12030176 DOI: 10.3390/nu17081323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/04/2025] [Accepted: 04/08/2025] [Indexed: 04/29/2025] Open
Abstract
Psoriatic arthritis (PsA) is a chronic inflammatory disease characterized by joint inflammation and skin lesions. Recent research has underscored the critical role of gut microbiota-comprising bacteria, fungi, viruses, and archaea-in the pathogenesis and progression of PsA. This narrative review synthesizes the latest findings on the influence of gut microbiota on PsA, focusing on mechanisms such as immune modulation, microbial dysbiosis, the gut-joint axis, and its impact on treatment. Advances in high-throughput sequencing and metagenomics have revealed distinct microbial profiles associated with PsA. Studies show that individuals with PsA have a unique gut microbiota composition, differing significantly from healthy controls. Alterations in the abundance of specific bacterial taxa, including a decrease in beneficial bacteria and an increase in potentially pathogenic microbes, contribute to systemic inflammation by affecting the intestinal barrier and promoting immune responses. This review explores the impact of various factors on gut microbiota composition, including age, hygiene, comorbidities, and medication use. Additionally, it highlights the role of diet, probiotics, and fecal microbiota transplantation as promising strategies to modulate gut microbiota and alleviate PsA symptoms. The gut-skin-joint axis concept illustrates how gut microbiota influences not only gastrointestinal health but also skin and joint inflammation. Understanding the complex interplay between gut microbiota and PsA could lead to novel, microbiome-based therapeutic approaches. These insights offer hope for improved patient outcomes through targeted manipulation of the gut microbiota, enhancing both diagnosis and treatment strategies for PsA.
Collapse
Affiliation(s)
- Maria Grazia Bonomo
- Department of Health Sciences, University of Basilicata, Viale dell’ Ateneo Lucano 10, 85100 Potenza, Italy; (S.D.); (G.S.)
| | - Salvatore D’Angelo
- Department of Health Sciences, University of Basilicata, Viale dell’ Ateneo Lucano 10, 85100 Potenza, Italy; (S.D.); (G.S.)
- Rheumatology Department of Lucania, San Carlo Hospital of Potenza, Via Potito Petrone, 85100 Potenza, Italy; (V.P.); (A.C.)
| | - Valentina Picerno
- Rheumatology Department of Lucania, San Carlo Hospital of Potenza, Via Potito Petrone, 85100 Potenza, Italy; (V.P.); (A.C.)
| | - Antonio Carriero
- Rheumatology Department of Lucania, San Carlo Hospital of Potenza, Via Potito Petrone, 85100 Potenza, Italy; (V.P.); (A.C.)
| | - Giovanni Salzano
- Department of Health Sciences, University of Basilicata, Viale dell’ Ateneo Lucano 10, 85100 Potenza, Italy; (S.D.); (G.S.)
| |
Collapse
|
11
|
Zhang L, Chen Z, Hu S, Liu H, Lai F, Fan Y, Li M, Zhou L. Assessment of the placental microbiota of preterm infants with pneumonia: a case control study. Front Cell Infect Microbiol 2025; 15:1511141. [PMID: 40248365 PMCID: PMC12004234 DOI: 10.3389/fcimb.2025.1511141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/28/2025] [Indexed: 04/19/2025] Open
Abstract
Objective To investigate the specific characteristics and differences in the placental microbiome of preterm infants with and without pneumonia. Methods Fifty-nine infants born at 32-36 weeks' gestation were enrolled in this study. Among them, 33 developed pneumonia within 48 hours of birth, while the remaining 26 did not. Placental swabs were collected at birth for DNA extraction, from which the placental microbial composition was analyzed using a bioinformatics pipeline following PCR amplification of genetic material and subsequent sequencing of bacterial 16S rRNA. Results Significant differences in both the alpha and beta diversities were found between the two groups (P<0.05). Proteobacteria, Firmicutes, and Actinobacteriota were identified as the predominant phyla in the placenta, while predominant identified genera included Brevundimonas, Caulobacter, Lactobacillus, and Citrobacter. There were no significant inter-group differences in the relative abundances of the predominant phyla and genera except Lactobacillus(P>0.05). Compared to infants without pneumonia, those with pneumonia demonstrated a decreased abundance of Lactobacillus, and an increased abundance of Ureaplasma and Staphylococcus (P<0.05). The relative abundance of Ureaplasma was positively correlated with that of Staphylococcus, and negatively correlation with that of Lactobacillus (P<0.05). Notably, we observed significant disparities in the metabolic pathways and phenotypes between the two groups (P<0.05). Conclusion Overall, this study suggests that alterations in the placental microbiome may be linked to the onset of pneumonia in preterm infants. Further investigations are required to elucidate the relationship between microbiota and disease pathogenesis.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Pediatric Pulmonology, The Affiliated Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Zijin Chen
- Department of Pediatric Pulmonology, The Affiliated Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Shuai Hu
- Department of Pediatric Pulmonology, The Affiliated Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Hong Liu
- Department of Operating Room, The Affiliated Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Fan Lai
- Obstetrics and Gynecology Department, The Affiliated Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yinghong Fan
- Department of Pediatric Pulmonology, The Affiliated Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Min Li
- Department of Neonatology, The Affiliated Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Ling Zhou
- Department of Operating Room, The Affiliated Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Zhang ZJ, Gao R, Lu YT, Zuo ZL, Li YH, Liu S, Song SY, Wang Y, Lai H. Factors affecting dysbiosis of the gut microbiota in the elderly and the progress of interventions in traditional Chinese and Western medicine. Front Cell Infect Microbiol 2025; 15:1529347. [PMID: 40196043 PMCID: PMC11973376 DOI: 10.3389/fcimb.2025.1529347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 02/27/2025] [Indexed: 04/09/2025] Open
Abstract
As the population ages, intestinal health in the elderly has become a key area of concern, with gut microbiota dysbiosis emerging as a significant issue. This review summarizes the factors influencing dysbiosis and interventions from both traditional Chinese medicine (TCM) and Western medicine, offering a reference for future research. A comprehensive search of global databases up to March 2024 identified 617 original studies on gut microbiota dysbiosis in individuals aged 65 and older. After applying strict PRISMA guidelines, 20 articles met the inclusion criteria. Key findings are summarized in four areas: 1) the definition and mechanisms of dysbiosis, 2) evaluation tools for gut microbiota imbalance, 3) factors contributing to dysbiosis in the elderly, and 4) pharmacological treatments. Both TCM and Western medicine offer unique advantages in managing gut microbiota dysbiosis, and the choice of intervention should be tailored to the individual's condition. Future research should focus on optimizing integrated TCM and Western medicine approaches to improve outcomes for elderly patients with gut microbiota dysbiosis.
Collapse
Affiliation(s)
- Zhi-Jun Zhang
- Hepatological surgery department, The People’s Hospital of Wenjiang Chengdu, Chengdu, China
| | - Ru Gao
- Nursing Department, The People’s Hospital of Wenjiang Chengdu, Chengdu, China
| | - Yu-Tong Lu
- Nursing Department, The People’s Hospital of Wenjiang Chengdu, Chengdu, China
| | - Zhi-Liang Zuo
- The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yu-Huan Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Shan Liu
- Nursing Department, The People’s Hospital of Wenjiang Chengdu, Chengdu, China
| | - Si-Yuan Song
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan, Chengdu, China
| | - Hongyan Lai
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China
| |
Collapse
|
13
|
Xie Z, Chen Z, Chai Y, Yao W, Ma G. Unveiling the placental bacterial microbiota: implications for maternal and infant health. Front Physiol 2025; 16:1544216. [PMID: 40161970 PMCID: PMC11949977 DOI: 10.3389/fphys.2025.1544216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/24/2025] [Indexed: 04/02/2025] Open
Abstract
The human placenta is a unique organ that forms under specific physiological conditions and plays a crucial role in nutrient and metabolite exchange between the mother and fetus. Research on the placenta is important for understanding maternal-fetal diseases. Traditionally, the placenta was considered "sterile," but advancements in detection techniques have revealed the presence of a low level of microorganisms. This discovery challenges the traditional notion that the uterine placenta is sterile. The revelation of this truth marks a significant breakthrough in medical research, prompting more researchers to focus on this vital organ, the placenta. Placental microbial communities may originate from the oral, vaginal, and intestinal microbiota of expectant mothers. These microorganisms may reach the maternal-fetal interface, collectively shaping the placental microbiota and contributing to the composition of normal placental microbial communities. Abnormal placental microbial communities may be associated with some pregnancy complications and fetal developmental issues such as preterm birth, gestational hypertension, fetal growth restriction, and gestational diabetes mellitus. Intervention strategies targeting microbial communities, which include modulation of placental microbiota composition or function, such as probiotics, may help prevent or treat complications related to abnormal placental microbiota during pregnancy.
Collapse
Affiliation(s)
- Zhuojun Xie
- General Medicine Department, Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, China
| | - Zhongsheng Chen
- Department of Colorectal Cancer Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yang Chai
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Wang Yao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Guangyu Ma
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
14
|
Zhao X, Zheng X, Wang Y, Chen J, Wang X, Peng X, Yuan D, Liu Y, Wang Z, Du J. Administration of Porphyromonas gingivalis in pregnant mice enhances glycolysis and histone lactylation/ADAM17 leading to cleft palate in offspring. Int J Oral Sci 2025; 17:18. [PMID: 40075093 PMCID: PMC11903673 DOI: 10.1038/s41368-025-00347-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 03/14/2025] Open
Abstract
Periodontal disease is a risk factor for many systemic diseases such as Alzheimer's disease and adverse pregnancy outcomes. Cleft palate (CP), the most common congenital craniofacial defect, has a multifaceted etiology influenced by complex genetic and environmental risk factors such as maternal bacterial or virus infection. A prior case-control study revealed a surprisingly strong association between maternal periodontal disease and CP in offspring. However, the precise relationship remains unclear. In this study, the relationship between maternal oral pathogen and CP in offspring was studied by sonicated P. gingivalis injected intravenously and orally into pregnant mice. We investigated an obvious increasing CP (12.5%) in sonicated P. gingivalis group which had inhibited osteogenesis in mesenchyme and blocked efferocytosis in epithelium. Then glycolysis and H4K12 lactylation (H4K12la) were detected to elevate in both mouse embryonic palatal mesenchyme (MEPM) cells and macrophages under P. gingivalis exposure which further promoted the transcription of metallopeptidase domain17 (ADAM17), subsequently mediated the shedding of transforming growth factor-beta receptor 1 (TGFBR1) in MEPM cells and mer tyrosine kinase (MerTK) in macrophages and resulted in the suppression of efferocytosis and osteogenesis in palate, eventually caused abnormalities in palate fusion and ossification. The abnormal efferocytosis also led to a predominance of M1 macrophages, which indirectly inhibited palatal osteogenesis via extracellular vesicles. Furthermore, pharmacological ADAM17 inhibition could ameliorate the abnormality of P. gingivalis-induced abnormal palate development. Therefore, our study extends the knowledge of how maternal oral pathogen affects fetal palate development and provides a novel perspective to understand the pathogenesis of CP.
Collapse
Affiliation(s)
- Xige Zhao
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Xiaoyu Zheng
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Yijia Wang
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Jing Chen
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Xiaotong Wang
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Xia Peng
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Dong Yuan
- Department of geriatric dentistry, Capital Medical University School of Stomatology, Beijing, China
| | - Ying Liu
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Zhiwei Wang
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Juan Du
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China.
- Department of geriatric dentistry, Capital Medical University School of Stomatology, Beijing, China.
| |
Collapse
|
15
|
Puglisi CH, Kim M, Aldhafeeri M, Lewandowski M, Vuong HE. Interactions of the maternal microbiome with diet, stress, and infection influence fetal development. FEBS J 2025; 292:1437-1453. [PMID: 39988792 PMCID: PMC11927046 DOI: 10.1111/febs.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/07/2024] [Accepted: 01/14/2025] [Indexed: 02/25/2025]
Abstract
Humans and other animals contain multitudes of microorganisms including bacteria, fungi, and viruses, which make up a diverse microbiome. Across body sites including skin, gastrointestinal tract, and oral cavity there are distinct microbial niches that are made up of trillions of microorganisms that have co-evolved to inhabit and interact with the host. The microbiome also interacts with the changing environment. This tripartite interaction between the host, microbiome, and environment suggests microbial communities play a key role in the biological processes of the host, such as development and behaviors. Over the past two decades, emerging research continues to reveal how host and microbe interactions impact nervous system signaling and behaviors, and influence neurodevelopmental, neurological, and neurodegenerative disorders. In this review, we will describe the unique features of the maternal microbiome that exist during the perinatal period and discuss evidence for the function of the maternal microbiome in offspring development. Finally, we will discuss how the maternal environment interacts with the microbiome and nervous system development and then postulate how the maternal microbiome can modify early offspring development to have lasting influence on brain health.
Collapse
Affiliation(s)
- Chloe H Puglisi
- Division of Neonatology, Department of PediatricsUniversity of MinnesotaMinneapolisMNUSA
| | - Minjeong Kim
- Division of Neonatology, Department of PediatricsUniversity of MinnesotaMinneapolisMNUSA
| | - Modi Aldhafeeri
- Division of Neonatology, Department of PediatricsUniversity of MinnesotaMinneapolisMNUSA
| | - Megan Lewandowski
- Division of Neonatology, Department of PediatricsUniversity of MinnesotaMinneapolisMNUSA
| | - Helen E. Vuong
- Division of Neonatology, Department of PediatricsUniversity of MinnesotaMinneapolisMNUSA
| |
Collapse
|
16
|
Magalhães MI, Azevedo MJ, Castro F, Oliveira MJ, Costa ÂM, Sampaio Maia B. The link between obesity and the gut microbiota and immune system in early-life. Crit Rev Microbiol 2025; 51:264-284. [PMID: 38651972 DOI: 10.1080/1040841x.2024.2342427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 04/25/2024]
Abstract
In early-life, the gut microbiota is highly modifiable, being modulated by external factors such as maternal microbiota, mode of delivery, and feeding strategies. The composition of the child's gut microbiota will deeply impact the development and maturation of its immune system, with consequences for future health. As one of the main sources of microorganisms to the child, the mother represents a crucial factor in the establishment of early-life microbiota, impacting the infant's wellbeing. Recent studies have proposed that dysbiotic maternal gut microbiota could be transmitted to the offspring, influencing the development of its immunity, and leading to the development of diseases such as obesity. This paper aims to review recent findings in gut microbiota and immune system interaction in early-life, highlighting the benefits of a balanced gut microbiota in the regulation of the immune system.
Collapse
Affiliation(s)
- Maria Inês Magalhães
- Doctoral Program in Biomedical Sciences, ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- Nephrology and Infectious Diseases R&D group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Tumor and Microenvironment Interactions group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- nBTT, NanoBiomaterials for Targeted Therapies group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- FMDUP - Faculdade de Medicina Dentária da Universidade do Porto, Porto, Portugal
| | - Maria João Azevedo
- Nephrology and Infectious Diseases R&D group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- nBTT, NanoBiomaterials for Targeted Therapies group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- FMDUP - Faculdade de Medicina Dentária da Universidade do Porto, Porto, Portugal
- Academic Center for Dentistry Amsterdam (ACTA), Universiteit van Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Flávia Castro
- Tumor and Microenvironment Interactions group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Maria José Oliveira
- Tumor and Microenvironment Interactions group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Ângela M Costa
- Tumor and Microenvironment Interactions group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Benedita Sampaio Maia
- Nephrology and Infectious Diseases R&D group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- nBTT, NanoBiomaterials for Targeted Therapies group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- FMDUP - Faculdade de Medicina Dentária da Universidade do Porto, Porto, Portugal
| |
Collapse
|
17
|
Kadam O, Dalai S, Chauhan B, Guru RR, Mitra S, Raytekar N, Kumar R. Nanobiotechnology Unveils the Power of Probiotics: A Comprehensive Review on the Synergistic Role of Probiotics and Advanced Nanotechnology in Enhancing Geriatric Health. Cureus 2025; 17:e80478. [PMID: 40225478 PMCID: PMC11990693 DOI: 10.7759/cureus.80478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2025] [Indexed: 04/15/2025] Open
Abstract
The geriatric population, comprising ages 65 and above, encounters distinct health obstacles because of physiological changes and heightened vulnerability to diseases. New technologies are being investigated to tackle the intricate health requirements of this population. Recent advancements in probiotics and nanotechnology offer promising strategies to enhance geriatric health by improving nutrient absorption, modulating gut microbiota, and delivering targeted therapeutic agents. Probiotics play a crucial role in maintaining gut homeostasis, reducing inflammation, and supporting metabolic functions. However, challenges such as limited viability and efficacy in harsh gastrointestinal conditions hinder their therapeutic potential. Advanced nanotechnology can overcome these constraints by enhancing the efficacy of probiotics through nano-encapsulation, controlled delivery, and improvement of bioavailability. This review explores the synergistic potential of probiotics and advanced nanotechnology in addressing age-related health concerns. It highlights key developments in probiotic formulations, nano-based delivery systems, and their combined impact on gut health, immunity, and neuroprotection. The convergence of probiotics and nanotechnology represents a novel and transformative approach to promoting healthy aging, paving the way for innovative therapeutic interventions.
Collapse
Affiliation(s)
- Onkar Kadam
- Biotechnology, Symbiosis Centre for Nanoscience and Nanotechnology, Symbiosis International (Deemed) University, Pune, IND
| | - Swayamprava Dalai
- Biotechnology, Symbiosis Centre for Nanoscience and Nanotechnology, Symbiosis International (Deemed) University, Pune, IND
| | - Bhawna Chauhan
- School of Biotech Engineering and Food Technology, Chandigarh University, Chandigarh, IND
| | - Rashmi Ranjan Guru
- Hospital Administration, All India Institute of Medical Sciences, Jodhpur, Jodhpur, IND
- Hospital Administration, Postgraduate Institute of Medical Education and Research, Chandigarh, Chandigarh, IND
| | - Subhodip Mitra
- Hospital Administration, All India Institute of Medical Sciences, Kalyani, Kolkata, IND
| | - Namita Raytekar
- Medical Technology, Symbiosis Institute of Health Sciences, Pune, IND
| | - Rahul Kumar
- Hospital Administration, Symbiosis University Hospital & Research Centre, Pune, IND
| |
Collapse
|
18
|
Jans M, Vereecke L. A guide to germ-free and gnotobiotic mouse technology to study health and disease. FEBS J 2025; 292:1228-1251. [PMID: 38523409 DOI: 10.1111/febs.17124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/17/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024]
Abstract
The intestinal microbiota has major influence on human physiology and modulates health and disease. Complex host-microbe interactions regulate various homeostatic processes, including metabolism and immune function, while disturbances in microbiota composition (dysbiosis) are associated with a plethora of human diseases and are believed to modulate disease initiation, progression and therapy response. The vast complexity of the human microbiota and its metabolic output represents a great challenge in unraveling the molecular basis of host-microbe interactions in specific physiological contexts. To increase our understanding of these interactions, functional microbiota research using animal models in a reductionistic setting are essential. In the dynamic landscape of gut microbiota research, the use of germ-free and gnotobiotic mouse technology, in which causal disease-driving mechanisms can be dissected, represents a pivotal investigative tool for functional microbiota research in health and disease, in which causal disease-driving mechanisms can be dissected. A better understanding of the health-modulating functions of the microbiota opens perspectives for improved therapies in many diseases. In this review, we discuss practical considerations for the design and execution of germ-free and gnotobiotic experiments, including considerations around germ-free rederivation and housing conditions, route and timing of microbial administration, and dosing protocols. This comprehensive overview aims to provide researchers with valuable insights for improved experimental design in the field of functional microbiota research.
Collapse
Affiliation(s)
- Maude Jans
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Lars Vereecke
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Belgium
| |
Collapse
|
19
|
Patki A, Kunjimoideen K, Sawankar S, Tyagi R, Hegde V, Budi J. Expert Opinion on the Use of Probiotics in Recurrent Pregnancy Loss. Cureus 2025; 17:e81056. [PMID: 40271290 PMCID: PMC12015142 DOI: 10.7759/cureus.81056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2025] [Indexed: 04/25/2025] Open
Abstract
Recurrent pregnancy loss (RPL) involves multiple consecutive miscarriages in early pregnancy, affecting a significant number of Indian women and placing substantial physical and emotional stress on expecting couples. This expert consensus aims to highlight probiotics as a promising option for enhancing fertility and supporting successful pregnancy outcomes, offering hope to individuals and couples affected by RPL. A group of fourteen experts with diverse expertise in gynecology, obstetrics, and fertility from across India gathered between June 29 and June 30, 2024. According to the experts, advanced maternal age emerges as an independent risk factor for miscarriage, with increased risks among older Indian women. The major contributors to RPL include thyroid disease and polycystic ovarian disease. Experts emphasize that the vaginal microbiome dysbiosis, characterized by the reduced dominance of Lactobacilli, is associated with adverse pregnancy outcome, such as preterm birth, early pregnancy loss, and increased events of RPL. Oral probiotic supplementation, particularly strains like L. acidophilus and L. rhamnosus, may improve embryo implantation, reduce miscarriage risk, and support pregnancy maintenance. A healthy lifestyle choice and minimal use of antibiotics are important in creating a positive reproductive outcome. The present expert opinion supports the potential benefits of probiotics, particularly Lactobacillus species, in managing RPL and improving reproductive outcomes. By promoting a balanced microbiota, reducing inflammation, and modulating immune responses, probiotics may play a critical role in enhancing reproductive success.
Collapse
Affiliation(s)
- Ameet Patki
- Obstetrics and Gynecology, Indian Society for Assisted Reproduction (ISAR), Mumbai, IND
| | - K Kunjimoideen
- Obstetrics and Gynecology, Asian Reproductive Medicine Centre, Kochi, IND
| | - Sheetal Sawankar
- Obstetrics and Gynecology, Avisa IVF and Fertility Center, Mumbai, IND
| | - Rajul Tyagi
- Obstetrics and Gynecology, Javitri Hospital and Test Tube Baby Centre, Lucknow, IND
| | - Vandana Hegde
- Obstetrics and Gynecology, Hegde Fertility, Hyderabad, IND
| | - Jyoti Budi
- Obstetrics and Gynecology, Ferty9 Fertility Center, Hyderabad, IND
| |
Collapse
|
20
|
Pattaroni C, Marsland BJ, Harris NL. Early-Life Host-Microbial Interactions and Asthma Development: A Lifelong Impact? Immunol Rev 2025; 330:e70019. [PMID: 40099971 PMCID: PMC11917194 DOI: 10.1111/imr.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/19/2025] [Accepted: 02/28/2025] [Indexed: 03/20/2025]
Abstract
Childhood is a multifactorial disease, and recent research highlights the influence of early-life microbial communities in shaping disease risk. This review explores the roles of the gut and respiratory microbiota in asthma development, emphasizing the importance of early microbial exposure. The gut microbiota has been particularly well studied, with certain taxa like Faecalibacterium and Bifidobacterium linked to asthma protection, whereas short-chain fatty acids produced by gut microbes support immune tolerance through the gut-lung axis. In contrast, the respiratory microbiota, though low in biomass, shows consistent associations between early bacterial colonization by Streptococcus, Moraxella, and Haemophilus and increased asthma risk. The review also addresses the emerging roles of the skin microbiota and environmental fungi in asthma, though findings remain inconsistent. Timing is a critical factor, with early-life disruptions, such as antibiotic use, potentially leading to increased asthma risk. Despite significant advances, there are still unresolved questions about the long-term consequences of early microbial perturbations, particularly regarding whether microbial dysbiosis is a cause or consequence of asthma. This review integrates current findings, highlighting the need for deeper investigation into cross-organ interactions and early microbial exposures to understand childhood asthma pathophysiology.
Collapse
Affiliation(s)
- Céline Pattaroni
- Department of Immunology, School of Translational MedicineMonash UniversityMelbourneVictoriaAustralia
| | - Benjamin J. Marsland
- Department of Immunology, School of Translational MedicineMonash UniversityMelbourneVictoriaAustralia
| | - Nicola L. Harris
- Department of Immunology, School of Translational MedicineMonash UniversityMelbourneVictoriaAustralia
| |
Collapse
|
21
|
Neu J, Stewart CJ. Neonatal microbiome in the multiomics era: development and its impact on long-term health. Pediatr Res 2025:10.1038/s41390-025-03953-x. [PMID: 40021924 DOI: 10.1038/s41390-025-03953-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 03/03/2025]
Abstract
The neonatal microbiome has been the focus of considerable research over the past two decades and studies have added fascinating information in terms of early microbial patterns and how these relate to various disease processes. One difficulty with the interpretation of these relationships is that such data is associative and provides little in terms of proof of causality or the underpinning mechanisms. Integrating microbiome data with other omics such as the proteome, inflammatory mediators, and the metabolome is an emerging approach to address this gap. Here we discuss these omics, their integration, and how they can be applied to improve our understanding, treatment, and prevention of disease. IMPACT: This review introduces the concept of multiomics in neonatology and how emerging technologies can be integrated improve understanding, treatment, and prevention of disease. We highlight considerations for performing multiomic research in neonates and the need for validation in separate cohorts and/or relevant model systems. We summarise how the use of multiomics is expanding and lay out steps to bring this to the clinic to enable precision medicine.
Collapse
Affiliation(s)
- Josef Neu
- University of Florida, Gainesville, FL, USA
| | - Christopher J Stewart
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
22
|
Eslami M, Naderian R, Ahmadpour A, Shushtari A, Maleki S, Mohammadian P, Amiri A, Janbazi M, Memarian M, Yousefi B. Microbiome structure in healthy and pregnant women and importance of vaginal dysbiosis in spontaneous abortion. Front Cell Infect Microbiol 2025; 14:1401610. [PMID: 40046910 PMCID: PMC11881085 DOI: 10.3389/fcimb.2024.1401610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/15/2024] [Indexed: 05/13/2025] Open
Abstract
The vaginal microbiome of healthy women is dominated by Lactobacillus spp. A variety of illnesses, such as vaginosis, sexually transmitted infections (STIs), failed implantation, premature birth (PTB), and preterm pre-labor membrane rupture, are brought on by an unbalanced microbiota. Pregnancy is associated with a decrease in the metabolic capacity of the vaginal resident microbiome, which is consistent with a change to a less complex Lactobacillus-dominated microbiome. Age, race, sexual intercourse, smoking, IUD, contraception, lifestyle, and diet all affect the makeup of the vaginal microbiome. Moreover, physiological events including menarche, the menstrual cycle, pregnancy, menopause, and other hormonal changes have an impact on the vaginal microbiome. The vaginal microbiome is significantly disrupted by the menstrual cycle, with significant changes toward a more varied microbiota occurring around menstruation. Several major factors maintain or disrupt the vaginal microbiome including ethnic group, menstruation cycle, and pregnancy which are discussed in this section. In the index pregnancy, the vaginal microbiota of women who had already given birth, or had just experienced an induced or spontaneous abortion, was qualitatively and quantitatively different from that of women who were having their first child. Early pregnancy vaginal microbiome depletion is a risk factor for early pregnancy miscarriage. Although, early pregnancy miscarriage is not always caused by a high bacterial diversity and quantity of lactobacilli. Lactobacillus protects against pathogens through the production of antibacterial compounds such as lactic acid and bacteriocins.
Collapse
Affiliation(s)
- Majid Eslami
- Department of Bacteriology and Virology, Semnan University of Medical Sciences, Semnan, Iran
| | - Ramtin Naderian
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Ariyan Ahmadpour
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Shushtari
- Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sahar Maleki
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Parham Mohammadian
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Arvin Amiri
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Babol Branch Islamic Azad University, Babol, Iran
| | - Maryam Janbazi
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Babol Branch Islamic Azad University, Babol, Iran
| | - Mohammad Memarian
- Department of Internal Medicine, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Bahman Yousefi
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
23
|
Ma ZF, Lee YY. The Role of the Gut Microbiota in Health, Diet, and Disease with a Focus on Obesity. Foods 2025; 14:492. [PMID: 39942085 PMCID: PMC11817362 DOI: 10.3390/foods14030492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
The gut microbiota has been increasingly recognised as a critical determinant of human health, influencing a wide range of physiological processes. A healthy gut microbiota is essential for maintaining metabolic, immune, and gastrointestinal homeostasis, contributing to overall well-being. Alterations in its composition and functionality, often referred to as microbial dysbiosis, are strongly associated with the development of gut-related and systemic diseases. The gut microbiota synthesises several components and interacts with epithelial cell receptors, influencing processes that extend beyond nutritional status to the pathogenesis of diseases such as obesity, which extend beyond their known contribution to nutritional status. Therefore, this state-of-the-art review synthesises findings from recent studies on the composition, functions, and influencing factors of the gut microbiota, with a focus on its role in obesity. A systematic search of peer-reviewed literature was conducted to ensure comprehensive coverage, while expert insights are incorporated to discuss emerging research directions and future perspectives in the field.
Collapse
Affiliation(s)
- Zheng Feei Ma
- Centre for Public Health, School of Health and Social Wellbeing, College of Health, Science and Society, University of the West of England, Bristol BS16 1QY, UK
| | - Yeong Yeh Lee
- School of Medical Sciences, University Sains Malaysia, Kota Bharu 15200, Malaysia
| |
Collapse
|
24
|
Beretta S, de Araújo RA, Bianchini MO, Bonavina JT, Rocha-Júnior JD, Campos NC, Pizauro LJL, Rodrigues-Silva FA, Toniollo GH, Cardozo MV, Apparício M. Vaginal Seeding: Is There Any Positive Effect in Canine C-Sections? Animals (Basel) 2025; 15:416. [PMID: 39943186 PMCID: PMC11816153 DOI: 10.3390/ani15030416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/19/2024] [Accepted: 01/02/2025] [Indexed: 02/16/2025] Open
Abstract
This study aimed to scrutinize variations in the intestinal microbiota of neonatal dogs born through natural birth versus elective cesarean section, focusing on evaluating the influence of vaginal seeding on the microbiota of cesarean-born neonates. Samples were collected from cesarean-sectioned females before anesthesia and from naturally birthing females during prodrome signs, along with neonates at eight time points from birth to 15 days of age. In the cesarean section group, seeding was performed in half of the neonates (cesarean section seeding group; seeding consisted of gently rubbing the gauze, obtained from the mother's vagina, onto the mouths, faces, and bodies of the newborns), while the other half underwent microbiological sample collection without seeding (cesarean section group). Another group (normal birth group) consisted of naturally born neonates. Microbiota analysis included counting for enterobacteria, Staphylococcus spp., and Streptococcus spp. The results suggested that vertical transmission played a crucial role, but the method of birth did not emerge as the primary determinant of observed differences. Under study conditions, vaginal seeding failed to effectively modulate the microbiota of neonates born through elective cesarean section. Further investigations into the gut-brain axis are suggested for understanding factors influencing the initial development of the canine intestinal microbiota in neonates born through different delivery routes.
Collapse
Affiliation(s)
- Samara Beretta
- Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil; (S.B.); (R.A.d.A.); (M.O.B.); (J.D.R.-J.); (N.C.C.); (G.H.T.); (M.V.C.)
| | - Renatha Almeida de Araújo
- Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil; (S.B.); (R.A.d.A.); (M.O.B.); (J.D.R.-J.); (N.C.C.); (G.H.T.); (M.V.C.)
| | - Melissa Oliveira Bianchini
- Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil; (S.B.); (R.A.d.A.); (M.O.B.); (J.D.R.-J.); (N.C.C.); (G.H.T.); (M.V.C.)
| | - Jaqueline Tamara Bonavina
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil; (J.T.B.); (F.A.R.-S.)
| | - João Domingos Rocha-Júnior
- Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil; (S.B.); (R.A.d.A.); (M.O.B.); (J.D.R.-J.); (N.C.C.); (G.H.T.); (M.V.C.)
| | - Nayara Camatta Campos
- Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil; (S.B.); (R.A.d.A.); (M.O.B.); (J.D.R.-J.); (N.C.C.); (G.H.T.); (M.V.C.)
| | - Lucas José Luduverio Pizauro
- Department of Agricultural and Environmental Sciences, State University of Santa Cruz (UESC), Ilhéus 45662-900, BA, Brazil;
| | - Fernanda Andreza Rodrigues-Silva
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil; (J.T.B.); (F.A.R.-S.)
| | - Gilson Hélio Toniollo
- Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil; (S.B.); (R.A.d.A.); (M.O.B.); (J.D.R.-J.); (N.C.C.); (G.H.T.); (M.V.C.)
| | - Marita Vedovelli Cardozo
- Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil; (S.B.); (R.A.d.A.); (M.O.B.); (J.D.R.-J.); (N.C.C.); (G.H.T.); (M.V.C.)
| | - Maricy Apparício
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil; (J.T.B.); (F.A.R.-S.)
| |
Collapse
|
25
|
Miyoshi J, Hisamatsu T. Effect of maternal exposure to antibiotics during pregnancy on the neonatal intestinal microbiome and health. Clin J Gastroenterol 2025; 18:1-10. [PMID: 39709577 DOI: 10.1007/s12328-024-02088-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
Antibiotics are widely used during pregnancy. Recent epidemiological studies suggest that maternal exposure to antibiotics during pregnancy is associated with increased risks of various diseases in offspring; host-microbiome interactions are considered to be involved in pathogenesis, as antibiotic-induced perturbations (dysbiosis) of the maternal microbiome can be transmitted to offspring. We reviewed the current status of antibiotic usage during pregnancy, transmission of maternal antibiotic-induced dysbiosis to offspring, and several diseases in offspring reported to be associated with maternal antibiotic exposure. Antibiotics must be properly used when necessary. While the adverse effect of maternal antibiotic exposure during pregnancy on the health of offspring has been demonstrated by several studies, more robust clinical evidence is necessary to define the best practice for antibiotic use during pregnancy. Epidemiologic studies have limitations in establishing causal links beyond associations; animal studies provide benefits in examining these links, however, microbiomes, gestation courses, and aging vary between host species. Understanding the underlying mechanisms of epidemiologic findings as well as the healthy microbiome during pregnancy and early life in humans would contribute to developing future microbial interventions for restoring antibiotic-induced dysbiosis during pregnancy.
Collapse
Affiliation(s)
- Jun Miyoshi
- Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo, 181-8611, Japan.
| | - Tadakazu Hisamatsu
- Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo, 181-8611, Japan
| |
Collapse
|
26
|
Narwal E, Choudhary J, Kumar M, Amarowicz R, Kumar S, Radha, Chandran D, Dhumal S, Singh S, Senapathy M, Rajalingam S, Muthukumar M, Mekhemar M. Botanicals as promising antimicrobial agents for enhancing oral health: a comprehensive review. Crit Rev Microbiol 2025; 51:84-107. [PMID: 38546272 DOI: 10.1080/1040841x.2024.2321489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 01/03/2024] [Accepted: 02/14/2024] [Indexed: 01/28/2025]
Abstract
The mouth houses the second largest diversity of microorganisms in the body, harboring more than 700 bacterial species colonizing the soft mucosa and hard tooth surfaces. Microbes are the cause of several health-related problems, such as dental carries, gingivitis, periodontitis, etc., in the mouth across different age groups and socioeconomic/demographic groups. Oral infections are major health problems that affect the standard of living. Compromised oral health is related to chronic conditions and systemic disorders. Microbes responsible for dental caries are acid-producing and aciduric Gram-positive bacteria (Streptococci, Lactobacilli). Gram-negative bacteria (Porphyromonas, Prevotella, Actinobacillus, and Fusobacterium) capable of growing in anaerobic environments are responsible for periodontal diseases. Due to the high prevalence of oral diseases, negative effects associated with the use of antimicrobial agents and increased antibiotic resistance in oral pathogens, suitable alternative methods (effective, economical and safe) to suppress microbes disturbing oral health need to be adopted. Side effects associated with the chemical antimicrobial agents are vomiting, diarrhea and tooth staining. Several researchers have studied the antimicrobial properties of plant extracts and phytochemicals and have used them as indigenous practices to control several infections. Therefore, phytochemicals extracted from plants can be suitable alternatives. This review focuses on the various phytochemical/plant extracts suppressing the growth of oral pathogens either by preventing their attachment to the surfaces or by preventing biofilm formation or other mechanisms.
Collapse
Affiliation(s)
- Ekta Narwal
- ICAR - Indian Institute of Agricultural Biotechnology, Ranchi, India
| | - Jairam Choudhary
- ICAR - Indian Institute of Farming Systems Research, New Delhi, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, India
| | - Ryszard Amarowicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Sunil Kumar
- ICAR - Indian Institute of Farming Systems Research, New Delhi, India
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Deepak Chandran
- Department of Animal Husbandry, Government of Kerala, Palakkad, India
| | - Sangram Dhumal
- Division of Horticulture, RCSM College of Agriculture, Kolhapur, India
| | - Surinder Singh
- Dr. S. S. Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh, India
| | - Marisennayya Senapathy
- Department of Rural Development and Agricultural Extension, College of Agriculture, Wolaita Sodo University, SNNPR, Sodo, Ethiopia
| | - Sureshkumar Rajalingam
- Department of Agronomy, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore, India
| | - Muthamilselvan Muthukumar
- Department of Agricultural Entomology, SRM College of Agricultural Sciences, SRM Institute of Science and Technology, Chengalpattu, India
| | - Mohamed Mekhemar
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrecht's University, Kiel, Germany
| |
Collapse
|
27
|
Faas MM, Smink AM. Shaping immunity: the influence of the maternal gut bacteria on fetal immune development. Semin Immunopathol 2025; 47:13. [PMID: 39891756 PMCID: PMC11787218 DOI: 10.1007/s00281-025-01039-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 01/13/2025] [Indexed: 02/03/2025]
Abstract
The development of the fetal immune response is a highly complex process. In the present review, we describe the development of the fetal immune response and the role of the maternal gut bacteria in this process. In contrast to the previous belief that the fetal immune response is inert, it is now thought that the fetal immune response is uniquely tolerant to maternal and allo-antigens, but able to respond to infectious agents, such as bacteria. This is accomplished by the development of T cells toward regulatory T cells rather than toward effector T cells, but also by the presence of functional innate immune cells, such as monocytes and NK cells. Moreover, in fetuses there is different programming of CD8 + T cells and memory T cells toward innate immune cells rather than to adaptive immune cells. The maternal gut bacteria are important in shaping the fetal immune response by producing bacterial products and metabolites that pass the placenta into the fetus and influence development of the fetal immune response. Insight into how and when these products affect the fetal immune response may open new treatment options with pre- or probiotics to affect the maternal gut bacteria and therewith the fetal immune response.
Collapse
Affiliation(s)
- Marijke M Faas
- Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, Hanzeplein 1, Groningen, 9713 GZ, The Netherlands.
| | - Alexandra M Smink
- Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, Hanzeplein 1, Groningen, 9713 GZ, The Netherlands
| |
Collapse
|
28
|
Su Z, Liu L, Zhang J, Guo J, Wang G, Zeng X. A scientometric visualization analysis of the gut microbiota and gestational diabetes mellitus. Front Microbiol 2025; 16:1485560. [PMID: 39980689 PMCID: PMC11841407 DOI: 10.3389/fmicb.2025.1485560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/08/2025] [Indexed: 02/22/2025] Open
Abstract
Background The prevalence of gestational diabetes mellitus (GDM), a condition that is widespread globally, is increasing. The relationship between the gut microbiota and GDM has been a subject of research for nearly two decades, yet there has been no bibliometric analysis of this correlation. This study aimed to use bibliometrics to explore the relationship between the gut microbiota and GDM, highlighting emerging trends and current research hotspots in this field. Results A total of 394 papers were included in the analysis. China emerged as the preeminent nation in terms of the number of publications on the subject, with 128 papers (32.49%), whereas the United States had the most significant impact, with 4,874 citations. The University of Queensland emerged as the most prolific institution, contributing 18 publications. Marloes Dekker Nitert was the most active author with 16 publications, and Omry Koren garnered the most citations, totaling 154. The journal Nutrients published the most studies (28 publications, 7.11%), whereas PLoS One was the most commonly co-cited journal, with a total of 805 citations. With respect to keywords, research focuses can be divided into 4 clusters, namely, "the interrelationship between the gut microbiota and pregnancy, childbirth," "the relationship between adverse metabolic outcomes and GDM," "the gut microbiota composition and metabolic mechanisms" and "microbiota and ecological imbalance." Key areas of focus include the interactions between the gut microbiota and individuals with GDM, as well as the formation and inheritance of the gut microbiota. Increasing attention has been given to the impact of probiotic supplementation on metabolism and pregnancy outcomes in GDM patients. Moreover, ongoing research is exploring the potential of the gut microbiota as a biomarker for GDM. These topics represent both current and future directions in this field. Conclusion This study provides a comprehensive knowledge map of the gut microbiota and GDM, highlights key research areas, and outlines potential future directions.
Collapse
Affiliation(s)
- Zehao Su
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Lina Liu
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| | - Jian Zhang
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Jingjing Guo
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Guan Wang
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoxi Zeng
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
| |
Collapse
|
29
|
Liu Y, Ma J, Li X, Zhao H, Ai Q, Zhang L, Tong Y, Meng L, Yang H. No microorganism was detected in amniotic fluid of healthy pregnancies from the second trimester to the delivery. MICROBIOME 2025; 13:20. [PMID: 39849623 PMCID: PMC11755948 DOI: 10.1186/s40168-024-02024-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 12/24/2024] [Indexed: 01/25/2025]
Abstract
BACKGROUND The early colonization and establishment of the microbiome in newborns is a crucial step in the development of the immune system and host metabolism. However, the exact timing of initial microbial colonization remains a subject of ongoing debate. While numerous studies have attempted to determine the presence or absence of intrauterine bacteria, the majority of them have drawn conclusions based on sequencing data from maternal or infant samples taken at a single time point. In this study, we aimed to investigate the microbial population in amniotic fluid (AF) from the second trimester until the time of delivery using multiple microbiological methods. METHODS AF samples were collected during the second trimester (19-21 gestational weeks) and at the time of delivery. Cohort 1 included 51 women who underwent the term and elective cesarean section, with both their second trimester and delivery AF samples (n = 55, respectively) analyzed. Cohort 2 contained 22 women who experienced infection-related adverse pregnancy outcomes (including preterm birth, histological chorioamnionitis, and stillbirth), with only their second trimester AF samples (n = 24) examined. Additionally, multiple procedural negative controls and technical positive controls were applied to this study to remove potential contamination. Microbial profiles were assessed through cultivation, quantitative real-time polymerase chain reaction, 16S ribosomal RNA gene sequencing, and cytokine analysis. RESULTS In cohort 1, the bacterial load and community structure in the second trimester AF samples were indistinguishable from negative controls. Although marginally higher bacterial loads and different bacterial communities were observed in the delivery AF samples compared to negative controls, these bacterial DNA were not considered biologically functional due to the absence of maternal inflammatory responses. In cohort 2, the bacterial load and community structure of the second trimester AF samples differed significantly from those of negative controls, with Ureaplasma and Lactobacillus identified as the most prevalent genera against negative controls. CONCLUSIONS Our study demonstrates that no microorganisms were detected in the AF of healthy pregnancies from the second trimester to the delivery. The presence of Ureaplasma and Lactobacillus in the second trimester AF may be associated with infection-related adverse pregnancy outcomes. Video Abstract.
Collapse
Affiliation(s)
- Yu Liu
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
- Women and Children's Hospital, Chongqing Medical University, Chongqing, 401147, China
| | - Jingmei Ma
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| | - Xiang Li
- COYOTE Medical Laboratory, Beijing, China
| | | | - Qubo Ai
- COYOTE Medical Laboratory, Beijing, China
| | | | - Yulong Tong
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| | - Lingzhen Meng
- Department of Laboratory, Peking University First Hospital, Beijing, China
| | - Huixia Yang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China.
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China.
| |
Collapse
|
30
|
Zhu J, He M, Li S, Lei Y, Xiang X, Guo Z, Wang Q. Shaping oral and intestinal microbiota and the immune system during the first 1,000 days of life. Front Pediatr 2025; 13:1471743. [PMID: 39906673 PMCID: PMC11790674 DOI: 10.3389/fped.2025.1471743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 01/10/2025] [Indexed: 02/06/2025] Open
Abstract
The first 1, 000 days of life, from the fetal stage of a woman's pregnancy to 2 years of age after the baby is born, is a critical period for microbial colonization of the body and development of the immune system. The immune system and microbiota exhibit great plasticity at this stage and play a crucial role in subsequent development and future health. Two-way communication and interaction between immune system and microbiota is helpful to maintain human microecological balance and immune homeostasis. Currently, there is a growing interest in the important role of the microbiota in the newborn, and it is believed that the absence or dysbiosis of human commensal microbiota early in life can have lasting health consequences. Thus, this paper summarizes research advances in the establishment of the oral and intestinal microbiome and immune system in early life, emphasizing the substantial impact of microbiota diversity in the prenatal and early postnatal periods, and summarizes that maternal microbes, mode of delivery, feeding practices, antibiotics, probiotics, and the environment shape the oral and intestinal microbiota of infants in the first 1, 000 days of life and their association with the immune system.
Collapse
Affiliation(s)
- Jie Zhu
- Institute of Infection, Immunology and Tumor Microenvironment, Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Mingxin He
- Department of Hematology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Simin Li
- Institute of Infection, Immunology and Tumor Microenvironment, Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Yumeng Lei
- Institute of Infection, Immunology and Tumor Microenvironment, Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Xiaochen Xiang
- Institute of Infection, Immunology and Tumor Microenvironment, Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Zhi Guo
- Department of Hematology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Qiang Wang
- Institute of Infection, Immunology and Tumor Microenvironment, Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Medical College, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
31
|
Saadaoui M, Djekidel MN, Murugesan S, Kumar M, Elhag D, Singh P, Kabeer BSA, Marr AK, Kino T, Brummaier T, McGready R, Nosten F, Chaussabel D, Terranegra A, Al Khodor S. Exploring the composition of placental microbiome and its potential origin in preterm birth. Front Cell Infect Microbiol 2025; 14:1486409. [PMID: 39885963 PMCID: PMC11779731 DOI: 10.3389/fcimb.2024.1486409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/16/2024] [Indexed: 02/01/2025] Open
Abstract
Introduction For years, the placenta was believed to be sterile, but recent studies reveal it hosts a unique microbiome. Despite these findings, significant questions remain about the origins of the placental microbiome and its effects on pregnancy and fetal health. Some studies suggest it may originate from the vaginal tract, while others indicate that oral bacteria can enter the maternal bloodstream and seed the placenta. However, research analyzing the vaginal, oral, and placental microbiomes within the same cohort is lacking. Additionally, it's unclear whether the placental microbiome differs between healthy pregnancies and those with complications like preterm birth (PTB), which remains a leading cause of neonatal morbidity and mortality worldwide. Methods In this study, we performed 16S rRNA gene sequencing to investigate the composition of the oral and placental microbiome in samples collected from 18 women who experienced PTB and 36 matched controls who delivered at term (TB), all of whom were part of the Molecular Signature in Pregnancy (MSP) study. We leveraged on the multisite microbiome sampling from the MSP participants and on our previously published vaginal microbiome data to investigate the potential origins of the placental microbiome and assess whether its composition varies between healthy and complicated pregnancies. Results and Discussion Our analysis revealed distinct profiles in the oral microbiome of PTB subjects compared to those who delivered at term. Specifically, we observed an increased abundance of Treponema maltophilum, Bacteroides sp, Mollicutes, Prevotella buccae, Leptotrichia, Prevotella_sp_Alloprevotella, in the PTB group. Importantly, Treponema maltophilum species showed higher abundance in the PTB group during the second trimester, suggesting its potential use as biomarkers. When we assessed the placenta microbiome composition, we found that Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria were the most dominant phyla. Interestingly, microorganisms such as Ureaplasma urealyticum were more abundant in PTB placenta samples. Our findings suggest that the placenta microbiome could originate from the oral or vaginal cavities, with a notable increase in the crosstalk between the vaginal and placental sites in cases of PTB. Specifically, our data revealed that in PTB cases, the placental microbiome exhibited a closer resemblance to the vaginal microbiome, whereas in term pregnancies, the placental microbiome was similar to the oral microbiome.
Collapse
Affiliation(s)
| | | | | | - Manoj Kumar
- Research Department, Sidra Medicine, Doha, Qatar
| | - Duaa Elhag
- Research Department, Sidra Medicine, Doha, Qatar
| | - Parul Singh
- Research Department, Sidra Medicine, Doha, Qatar
| | - Basirudeen Syed Ahamed Kabeer
- Research Department, Sidra Medicine, Doha, Qatar
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha University, Chennai, India
| | | | | | - Tobias Brummaier
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Rose McGready
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - François Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Damien Chaussabel
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | | | | |
Collapse
|
32
|
Novelle MG, Naranjo-Martínez B, López-Cánovas JL, Díaz-Ruiz A. Fecal microbiota transplantation, a tool to transfer healthy longevity. Ageing Res Rev 2025; 103:102585. [PMID: 39586550 DOI: 10.1016/j.arr.2024.102585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/13/2024] [Accepted: 11/12/2024] [Indexed: 11/27/2024]
Abstract
The complex gut microbiome influences host aging and plays an important role in the manifestation of age-related diseases. Restoring a healthy gut microbiome via Fecal Microbiota Transplantation (FMT) is receiving extensive consideration to therapeutically transfer healthy longevity. Herein, we comprehensively review the benefits of gut microbial rejuvenation - via FMT - to promote healthy aging, with few studies documenting life length properties. This review explores how preconditioning donors via standard - lifestyle and pharmacological - antiaging interventions reshape gut microbiome, with the resulting benefits being also FMT-transferable. Finally, we expose the current clinical uses of FMT in the context of aging therapy and address FMT challenges - regulatory landscape, protocol standardization, and health risks - that require refinement to effectively utilize microbiome interventions in the elderly.
Collapse
Affiliation(s)
- Marta G Novelle
- Department of Genetics, Physiology and Microbiology (Unity of Animal Physiology), Faculty of Biology, Complutense University of Madrid (UCM), Madrid, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Spain
| | - Beatriz Naranjo-Martínez
- Laboratory of Cellular and Molecular Gerontology, Precision Nutrition and Aging, Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, Madrid, Spain
| | - Juan L López-Cánovas
- Laboratory of Cellular and Molecular Gerontology, Precision Nutrition and Aging, Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, Madrid, Spain
| | - Alberto Díaz-Ruiz
- Laboratory of Cellular and Molecular Gerontology, Precision Nutrition and Aging, Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, Madrid, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Spain.
| |
Collapse
|
33
|
Du Q, Liu X, Zhang R, Hu G, Liu Q, Wang R, Ma W, Hu Y, Fan Z, Li J. Placental and Fetal Microbiota in Rhesus Macaque: A Case Study Using Metagenomic Sequencing. Am J Primatol 2025; 87:e23718. [PMID: 39716039 DOI: 10.1002/ajp.23718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/04/2024] [Accepted: 11/30/2024] [Indexed: 12/25/2024]
Abstract
Recent evidence challenging the notion of a sterile intrauterine environment has sparked research into the origins and effects of fetal microbiota on immunity development during gestation. Rhesus macaques (RMs) serve as valuable nonhuman primate models due to their similarities to humans in development, placental structure, and immune response. In this study, metagenomic analysis was applied to the placenta, umbilical cord, spleen, gastrointestinal tissues of an unborn RM fetus, and the maternal intestine, revealing the diversity and functionality of microbes in these tissues. Additionally, gut metagenomic data of adult Rhesus macaques from our previous study, along with data from a human fetus obtained from public databases, were included for comparison. We observed substantial microbial sharing between the mother and fetus, with the microbial composition of the placenta and umbilical cord more closely resembling that of the fetal organs than the maternal intestine. Notably, compared with other adult RMs, there was a clear convergence between maternal and fetal microbiota, alongside distinct differences between the microbiota of adults and the fetus, which underscores the unique microbial profiles in fetal environments. Furthermore, the fetal microbiota displayed a less developed carbohydrate metabolism capacity than adult RMs. It also shared antibiotic resistance genes with both maternal and adult RM microbiomes, indicating potential vertical transmission. Comparative analysis of the metagenomes between the RM fetus and a human fetus revealed significant differences in microbial composition and genes, yet also showed similarities in certain abundant microbiota. Collectively, our results contribute to a more comprehensive understanding of the intrauterine microbial environment in macaques.
Collapse
Affiliation(s)
- Qiao Du
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Xu Liu
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Rusong Zhang
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Gang Hu
- SCU-SGHB Joint Laboratory on Nonhuman Primates Research, Sichuan Green-house Biotech Co. Ltd., Meishan, China
| | - Qinghua Liu
- SCU-SGHB Joint Laboratory on Nonhuman Primates Research, Sichuan Green-house Biotech Co. Ltd., Meishan, China
| | - Rui Wang
- SCU-SGHB Joint Laboratory on Nonhuman Primates Research, Sichuan Green-house Biotech Co. Ltd., Meishan, China
| | - Wen Ma
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Ying Hu
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhenxin Fan
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Jing Li
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
34
|
Jia X, Li Q, Yang X, Li D, Jin Z. Comparative analysis of the gut microbiota composition and diversity in Erinaceus amurensis from the Wandashan Mountain range area based on metagenomics. Front Microbiol 2024; 15:1479352. [PMID: 39703701 PMCID: PMC11656159 DOI: 10.3389/fmicb.2024.1479352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/12/2024] [Indexed: 12/21/2024] Open
Abstract
This study aimed to preliminarily explore the composition and diversity of intestinal bacteria in Erinaceus amurensis during breeding period, aiding in the field rescue and population conservation efforts of Erinaceus amurensis. This also provides foundational data for further research on the prevention and screening of Emerging Zoonotic Infectious Diseases and the experimental animalization of wild Erinaceus amurensis. Between April and July 2023, we collected 13 fresh fecal samples from Erinaceus amurensis at the Sishan Forest Farm in Jidong County, Heilongjiang Province, situated within the Wandashan Mountain range. Utilizing metagenomic sequencing technology, we conducted a comparative analysis of the gut microbiota composition and diversity in wild Erinaceus amurensis across different genders and between adult and fetal individuals within the same habitat. Our results revealed significant differences (P < 0.01) in the classification and diversity of gut microbiota between genders and between adult and fetal Erinaceus amurensis. Specifically, the dominant bacterial groups in the gut of Erinaceus amurensis were Pseudomonas, Proteobacteria, and Enterobacteriaceae. In male and female Erinaceus amurensis, the dominant bacterial groups were Pseudomonas, Bacteroides, and Firmicutes, with variations in bacterial abundance and diversity. While male and female Erinaceus amurensis exhibited similar microbial compositions, they displayed significant differences in specific bacterial classifications. The dominant bacterial group in fetal Erinaceus amurensis was Proteobacteria, which demonstrated lower diversity and abundance compared to the adult group. Furthermore, the types and abundance of pathogenic or opportunistic pathogens in the gut of fetal Erinaceus amurensis and male Erinaceus amurensis were higher than those in female Erinaceus amurensis. The analysis of experimental results indicates that Erinaceus amurensis in this region either have or are at risk of developing inflammation related to the intestinal and urinary tracts, as well as skin-related issues. Consequently, it is advised that forestry and wildlife conservation personnel in this area prioritize treatment against these specific pathogens when conducting rescue operations for Erinaceus amurensis in the wild.
Collapse
Affiliation(s)
| | | | | | | | - Zhimin Jin
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang, China
| |
Collapse
|
35
|
Tang L, Chen K. Association Between Periodontitis and Adverse Pregnancy Outcomes: Two-Sample Mendelian Randomisation Study. Int Dent J 2024; 74:1397-1404. [PMID: 38797633 PMCID: PMC11551559 DOI: 10.1016/j.identj.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/15/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024] Open
Abstract
AIM This Mendelian randomisation (MR) study endeavoured to delineate the causal relationship between periodontitis and adverse pregnancy outcomes (APOs), encompassing low birthweight (LBW), pre-term birth (PTB), stillbirth, miscarriage, and gestational hypertension (GH). METHODS Utilising genetic instruments for periodontitis (acute and chronic periodontitis) from the Genome-Wide Association Study (GWAS) database among individuals of European descent, this study explored the causal relationship with adverse pregnancy outcomes, and vice versa. The Inverse Variance Weighted (IVW) method was employed as the primary analytical approach to assess causality, with MR-Egger serving as a sensitivity analysis method. RESULTS The primary analytical method employed in this study, IVW, did not reveal any impact of periodontitis (acute and chronic periodontitis) on PTB, stillbirth, miscarriage, and gestational hypertension, and vice versa. Heterogeneity testing using the MR-Egger method confirmed the null causal hypothesis, with odds ratios (OR) approximating 1, and P-values exceeding 0.05. Notably, the results from the IVW analysis (OR 1.410, CI 1.039-1.915, P-value 0.028) indicate statistically significant evidence supporting a causal relationship between chronic periodontitis and LBW. However, caution is advised in interpreting the causal relationship, considering the non-significant P-values obtained from other methods. CONCLUSION Within the limitations of this MR study, the findings do not support the influence of periodontitis on LBW, PTB, stillbirth, miscarriage, and GH, nor vice versa.
Collapse
Affiliation(s)
- Liying Tang
- College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Kun Chen
- College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
36
|
Liu L, Yin T, Zhang X, Sun L, Yin Y. Temporal and Spatial Variation of the Human Placental Microbiota During Pregnancy. Am J Reprod Immunol 2024; 92:e70023. [PMID: 39636749 DOI: 10.1111/aji.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 11/03/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024] Open
Abstract
PROBLEM Previously believed sterile, the placenta hosts distinct microbial species across various locations. This study aims to elucidate the temporal and spatial variations of placental microbiota throughout gestation, addressing gaps in current understanding. METHOD OF STUDY A case-control study at a single-center compared microbial profiles in pregnant women delivering preterm (<37 weeks) or at term (>37 weeks) across placental sites: basal plate, fetal membranes, and placental villous. Microbial abundance and diversity were evaluated using QIIME and the R package "Phyloseq," while Q-PCR with specific primers validated absolute abundance in samples. RESULTS We found no alteration in bacterial communities based on delivery mode across all samples. Q-PCR detected low-abundance bacteria, notably enriched in preterm samples, especially in early preterm cases. Throughout gestation, bacterial composition varied, with increasing levels of Proteobacteria and Firmicutes observed in the placenta. Significant differences in bacterial profiles were noted across locations and gestational stages, with Ralstonia insidiosa consistently present in the basal plate throughout gestation. Species-specific Q-PCR confirmed the presence of Ralstonia and revealed an inverse relationship between Streptococcus agalactiae and pregnancy progression. CONCLUSIONS The placenta hosts its own microbiome, with distinct profiles observed between term and preterm samples. Further research is needed to clarify the impact of bacterial dysbiosis on preterm birth and develop methods to distinguish pathological bacteria from the natural microbiome.
Collapse
Affiliation(s)
- Liping Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tingting Yin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xin Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lizhou Sun
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yin Yin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
37
|
Olasunkanmi OI, Aremu J, Wong ML, Licinio J, Zheng P. Maternal gut-microbiota impacts the influence of intrauterine environmental stressors on the modulation of human cognitive development and behavior. J Psychiatr Res 2024; 180:307-326. [PMID: 39488009 DOI: 10.1016/j.jpsychires.2024.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/01/2023] [Accepted: 10/23/2024] [Indexed: 11/04/2024]
Abstract
This review examines the longstanding debate of nature and intrauterine environmental challenges that shapes human development and behavior, with a special focus on the influence of maternal prenatal gut microbes. Recent research has revealed the critical role of the gut microbiome in human neurodevelopment, and evidence suggest that maternal microbiota can impact fetal gene and microenvironment composition, as well as immunophysiology and neurochemical responses. Furthermore, intrauterine neuroepigenetic regulation may be influenced by maternal microbiota, capable of having long-lasting effects on offspring behavior and cognition. By examining the complex relationship between maternal prenatal gut microbes and human development, this review highlights the importance of early-life environmental factors in shaping neurodevelopment and cognition.
Collapse
Affiliation(s)
- Oluwatayo Israel Olasunkanmi
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China; Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education) Chongqing Medical University, Chongqing, China.
| | - John Aremu
- Department of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Ma-Li Wong
- Department of Psychiatry, College of Medicine, Upstate Medical University, Syracuse, NY, USA
| | - Julio Licinio
- Department of Psychiatry, College of Medicine, Upstate Medical University, Syracuse, NY, USA.
| | - Peng Zheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China; Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education) Chongqing Medical University, Chongqing, China.
| |
Collapse
|
38
|
Yang R, Shi Z, Li Y, Huang X, Li Y, Li X, Chen Q, Hu Y, Li X. Research focus and emerging trends of the gut microbiome and infant: a bibliometric analysis from 2004 to 2024. Front Microbiol 2024; 15:1459867. [PMID: 39633813 PMCID: PMC11615055 DOI: 10.3389/fmicb.2024.1459867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024] Open
Abstract
Background Over the past two decades, gut microbiota has demonstrated unprecedented potential in human diseases and health. The gut microbiota in early life is crucial for later health outcomes. This study aims to reveal the knowledge collaboration network, research hotspots, and explore the emerging trends in the fields of infant and gut microbiome using bibliometric analysis. Method We searched the literature on infant and gut microbiome in the Web of Science Core Collection (WOSCC) database from 2004 to 2024. CiteSpace V (version: 6.3.R1) and VOSview (version: 1.6.20) were used to display the top authors, journals, institutions, countries, authors, keywords, co-cited articles, and potential trends. Results A total of 9,899 documents were retrieved from the Web of Science Core Collection. The United States, China, and Italy were the three most productive countries with 3,163, 1,510, and 660 publications. The University of California System was the most prolific institution (524 publications). Van Sinderen, Douwe from University College Cork of Ireland was the most impactful author. Many studies have focused on atopic dermatitis (AD), necrotizing enterocolitis (NEC), as well as the immune mechanisms and microbial treatments for these diseases, such as probiotic strains mixtures and human milk oligosaccharides (HMOs). The mother-to-infant microbiome transmission, chain fatty acids, and butyrate maybe the emerging trends. Conclusion This study provided an overview of the knowledge structure of infant and gut microbiome, as well as a reference for future research.
Collapse
Affiliation(s)
- Ru Yang
- Department of Neonatology Nursing, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Zeyao Shi
- Department of Neonatology Nursing, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Yuan Li
- Department of Neonatology Nursing, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Xi Huang
- Department of Neonatology Nursing, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Yingxin Li
- Department of Neonatology Nursing, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Xia Li
- Department of Neonatology Nursing, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Qiong Chen
- Department of Neonatology Nursing, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Yanling Hu
- Department of Neonatology Nursing, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Xiaowen Li
- Department of Neonatology Nursing, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
39
|
Hou L, Zhao J, Yin L, Dai L, Deng H, Jiang L. Brain injury in premature infants may be related to abnormal colonization of early gut microbiome. BMC Microbiol 2024; 24:483. [PMID: 39558267 PMCID: PMC11575211 DOI: 10.1186/s12866-024-03643-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 11/07/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND Premature infants are more prone to brain injuries owing to incomplete nervous system development and poor adaptation outside the mother's body. Without timely intervention, premature infants with brain injuries often develop intellectual disabilities, causing significant burdens on families and the society. Multiple studies have shown that gut dysbiosis can affect the nervous system, and vice versa. This study aimed to explore the changes in gut microbiota of typical premature infants and those with brain injuries on the third and seventh days after birth using 16 S rRNA technology. METHODS Fecal samples from typical premature infants (non-brain injury group, n = 17) and those with brain injuries (brain injury group, n = 21) were collected on days 1, 3, and 7 after birth for 16 S rRNA sequencing. Alpha diversity analysis was used to evaluate the diversity of gut microbiome. LEfSe and DESeq2 were used to analyze of the microorganisms' characteristics and differentiate the microorganisms between the two groups. RESULTS At the phylum level, Firmicutes, Proteobacteria, and Actinobacteria were the dominant flora in both groups. At the genus level, the proportion of Enterococcus in fecal samples of the brain injury group was higher than that of the non-brain injury group on day three after birth; however, the opposite was observed on day seven. Rothia and Lactobacillales were characteristic bacteria of the non-brain injury group on days three and seven after birth, whereas Enterococcus and Bifidobacteria were characteristic bacteria of the brain injury group on days three and seven after birth, respectively. Three days after birth, the Shannon and Simpson indices of the non-brain injury group were significantly higher than those of the brain injury group. CONCLUSION Premature infants with brain injuries have a unique gut microbiota that is different from that of typical premature infants, indicating correlation between brain injuries and gut microbiota.
Collapse
Affiliation(s)
- Li Hou
- Department of Neonatology, Affiliated Hospital of North Sichuan Medical College, No.1, Mao Yuan South Road, Shunqing District, Nanchong, 637000, Sichuan, China
| | - Jing Zhao
- Department of Neonatology, Affiliated Hospital of North Sichuan Medical College, No.1, Mao Yuan South Road, Shunqing District, Nanchong, 637000, Sichuan, China.
| | - Linlin Yin
- Department of Neonatology, Affiliated Hospital of North Sichuan Medical College, No.1, Mao Yuan South Road, Shunqing District, Nanchong, 637000, Sichuan, China
| | - Lu Dai
- Department of Neonatology, Affiliated Hospital of North Sichuan Medical College, No.1, Mao Yuan South Road, Shunqing District, Nanchong, 637000, Sichuan, China
| | - Hong Deng
- Department of Neonatology, Affiliated Hospital of North Sichuan Medical College, No.1, Mao Yuan South Road, Shunqing District, Nanchong, 637000, Sichuan, China
| | - Lin Jiang
- Department of Neonatology, Affiliated Hospital of North Sichuan Medical College, No.1, Mao Yuan South Road, Shunqing District, Nanchong, 637000, Sichuan, China
| |
Collapse
|
40
|
Olaniyi KS, Mackraj I, Moodley J, Moodley R. Evaluation of the Human Placental Microbiota in Early- and Late-Onset Pre-Eclampsia. High Blood Press Cardiovasc Prev 2024; 31:677-685. [PMID: 39414750 PMCID: PMC11604690 DOI: 10.1007/s40292-024-00679-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 09/25/2024] [Indexed: 10/18/2024] Open
Abstract
INTRODUCTION Despite many decades of research, the exact etiology of pre-eclampsia (PE) remains unknown. Several etiopathologies have been suggested, including the role of the placental microbiota. However, the existence of placental microbiota and its possible contribution to pregnancy complications, particularly PE has remained controversial. AIM The present study was designed to identify different microbes that co-exist the placenta of women with early- and late-onset PE. METHODS Thirty age-matched normotensive and early-onset as well as age-matched normotensive and late-onset pre-eclamptic women respectively, were recruited. After obtaining an informed consent, the placental tissues were obtained through caesarian section with sterile and standardized clinical procedures. DNA was extracted from each tissue and microbiome analysis was conducted using a targeted 16 S analysis and the reads were analyzed with bioinformatics. RESULTS There was a significance difference between the blood pressure of early-/late-onset PE compared with age-matched normotensive controls, respectively. In addition, the reads from placencental samples were classified as belonging to the phyla, Actinobacteria, Firmicutes, Bacteroidetes, Proteobacteria, with Proteobacteria dominated by the classes Pseudomonadales and Gammaproteobacteria with smaller amounts of Actinobacteria and Bacteroidetes. There was no significant difference between the placental bacterial species of early-/late-onset PE compared with age-matched normotensive controls, respectively. Further analysis found no correlation between bacterial species and early- or late-onset PE. CONCLUSION The present results demonstrate a low biomass of bacterial species, which might further indicate that the placental samples had very low levels of bacteria species and there is no correlation between the bacterial composition and early- or late-onset PE.
Collapse
Affiliation(s)
- Kehinde S Olaniyi
- School of Laboratory Medicine and Medical Sciences, Nelson R Mandela School of Medicine, University of Kwa-Zulu-Natal, Durban, South Africa.
| | - Irene Mackraj
- School of Laboratory Medicine and Medical Sciences, Nelson R Mandela School of Medicine, University of Kwa-Zulu-Natal, Durban, South Africa
| | - Jagidesa Moodley
- Women's Health and HIV Research Group, Nelson R Mandela School of Medicine, College of Health Sciences, University of Kwa-Zulu-Natal, Durban, South Africa
| | - Roshila Moodley
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
41
|
Lamminpää I, Boem F, Amedei A. Health-promoting worms? Prospects and pitfalls of helminth therapy. Bioessays 2024; 46:e2400080. [PMID: 39263744 DOI: 10.1002/bies.202400080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
In this manuscript, we explore the potential therapeutic use of helminths. After analyzing helminths' role in connection with human health from the perspective of their symbiotic and evolutionary relationship, we critically examine some studies on their therapeutic applications. In doing so, we focus on some prominent mechanisms of action and potential benefits, but also on the exaggerations and theoretical and methodological difficulties of such proposals. We conclude that further studies are needed to fully explore the potential benefits of this perspective, and we encourage the scientific community in doing so.
Collapse
Affiliation(s)
- Ingrid Lamminpää
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Federico Boem
- Institut für Philosophie I, Ruhr-Universität Bochum, Bochum, Germany
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Interdisciplinary Internal Medicine Unit, Careggi University Hospital, Florence, Italy
| |
Collapse
|
42
|
Harnett NG, Merrill LC, Fani N. Racial and ethnic socioenvironmental inequity and neuroimaging in psychiatry: a brief review of the past and recommendations for the future. Neuropsychopharmacology 2024; 50:3-15. [PMID: 38902354 PMCID: PMC11526029 DOI: 10.1038/s41386-024-01901-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/22/2024]
Abstract
Neuroimaging is a major tool that holds immense translational potential for understanding psychiatric disorder phenomenology and treatment. However, although epidemiological and social research highlights the many ways inequity and representativeness influences mental health, there is a lack of consideration of how such issues may impact neuroimaging features in psychiatric research. More specifically, the potential extent to which racialized inequities may affect underlying neurobiology and impact the generalizability of neural models of disorders is unclear. The present review synthesizes research focused on understanding the potential consequences of racial/ethnic inequities relevant to neuroimaging in psychiatry. We first discuss historical and contemporary drivers of inequities that persist today. We then discuss the neurobiological consequences of these inequities as revealed through current research, and note emergent research demonstrating the impact such inequities have on our ability to use neuroimaging to understand psychiatric disease. We end with a set of recommendations and practices to move the field towards more equitable approaches that will advance our abilities to develop truly generalizable neurobiological models of psychiatric disorders.
Collapse
Affiliation(s)
- Nathaniel G Harnett
- Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| | - Livia C Merrill
- Department of Psychology, University of Houston, Houston, TX, USA
| | - Negar Fani
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
43
|
de Albuquerque Lemos DE, de Brito Alves JL, de Souza EL. Probiotic therapy as a promising strategy for gestational diabetes mellitus management. Expert Opin Biol Ther 2024; 24:1207-1219. [PMID: 39323363 DOI: 10.1080/14712598.2024.2409880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/16/2024] [Accepted: 09/24/2024] [Indexed: 09/27/2024]
Abstract
INTRODUCTION Gestational diabetes mellitus (GDM) has become the most common pregnancy medical complication, and its prevalence has increased in recent years. The GDM treatment primarily relies on adopting healthy eating habits, physical exercise, and insulin therapy. However, using probiotics to modulate the gut microbiota has been the subject of clinical trials as a promising therapeutic strategy for GDM management. AREAS COVERED Due to the adverse effects of gut dysbiosis in women with GDM, strategies targeting the gut microbiota to mitigate hyperglycemia, low-grade inflammation, and adverse pregnancy outcomes have been explored. Probiotic supplementation may improve glucose metabolism, lipid profile, oxidative stress, inflammation, and blood pressure in women with GDM. Furthermore, decreased fasting blood glucose, insulin resistance, and inflammatory markers, such as TNF-α and CRP, as well as increased total antioxidant capacity, lipid profile modulation, and improved blood pressure in women with GDM, are some of the important results reported in the available literature. EXPERT OPINION To fill the knowledge gap, further studies are needed focusing on modulating gut microbiota composition and metabolic activity and their systemic repercussions in GDM.
Collapse
Affiliation(s)
| | - José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Federal University of Paraiba, João Pessoa, Brazil
| | - Evandro Leite de Souza
- Department of Nutrition, Health Sciences Center, Federal University of Paraiba, João Pessoa, Brazil
| |
Collapse
|
44
|
Soo N, Farinre O, Chahroudi A, Boliar S, Goswami R. A gut check: understanding the interplay of the gastrointestinal microbiome and the developing immune system towards the goal of pediatric HIV remission. Retrovirology 2024; 21:15. [PMID: 39425183 PMCID: PMC11490017 DOI: 10.1186/s12977-024-00648-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024] Open
Abstract
Despite the efficacy of antiretroviral therapy (ART) in reducing the global incidence of vertical HIV transmissions, more than 120,000 children are still infected with the virus each year. Since ART cannot clear the HIV reservoir that is established soon after infection, children living with HIV (CLWH) are forced to rely on therapy for their lives and suffer from long-term drug-related complications. Pediatric HIV infection, like adult infection, is associated with gut microbial dysbiosis, loss of gut epithelial integrity, bacterial translocation, CD4 + T cell depletion, systemic immune activation, and viral reservoir establishment. However, unlike in adults, HIV that is vertically acquired by infants interacts with a gut microbiome that is continuously evolving while concomitantly shaping the infant's immune ontogeny. Therefore, to determine whether there may be interventions that target the HIV reservoir through microbiome-directed approaches, understanding the complex tripartite interactions between the transmitted HIV, the maturing gut microbiome, and the developing immune system during early life is crucial. Importantly, early life is the time when the gut microbiome of an individual is highly dynamic, and this temporal development of the gut microbiome plays a crucial role in educating the maturing immune system of a child. Therefore, manipulation of the gut microbiome of CLWH to a phenotype that can reduce HIV persistence by fostering an antiviral immune system might be an opportune strategy to achieve ART-free viral suppression in CLWH. This review summarizes the current state of knowledge on the vertical transmission of HIV, the developing gut microbiome of CLWH, and the immune landscape of pediatric elite controllers, and explores the prospect of employing microbial modulation as a potential therapeutic approach to achieve ART-free viral suppression in the pediatric population.
Collapse
Affiliation(s)
- Nicole Soo
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Omotayo Farinre
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta and Emory University, Atlanta, GA, 30322, USA
| | - Saikat Boliar
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA
| | - Ria Goswami
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, 10021, USA.
- Gale and Ira Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, 10021, USA.
| |
Collapse
|
45
|
Hsu CY, Khachatryan LG, Younis NK, Mustafa MA, Ahmad N, Athab ZH, Polyanskaya AV, Kasanave EV, Mirzaei R, Karampoor S. Microbiota-derived short chain fatty acids in pediatric health and diseases: from gut development to neuroprotection. Front Microbiol 2024; 15:1456793. [PMID: 39439941 PMCID: PMC11493746 DOI: 10.3389/fmicb.2024.1456793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/12/2024] [Indexed: 10/25/2024] Open
Abstract
The infant gut microbiota undergoes significant changes during early life, which are essential for immune system maturation, nutrient absorption, and metabolic programming. Among the various microbial metabolites, short-chain fatty acids (SCFAs), primarily acetate, propionate, and butyrate, produced through the fermentation of dietary fibers by gut bacteria, have emerged as critical modulators of host-microbiota interactions. SCFAs serve as energy sources for colonic cells and play pivotal roles in regulating immune responses, maintaining gut barrier integrity, and influencing systemic metabolic pathways. Recent research highlights the potential neuroprotective effects of SCFAs in pediatric populations. Disruptions in gut microbiota composition and SCFA production are increasingly associated with a range of pediatric health issues, including obesity, allergic disorders, inflammatory bowel disease (IBD), and neurodevelopmental disorders. This review synthesizes current knowledge on the role of microbiota-derived SCFAs in pediatric health, emphasizing their contributions from gut development to neuroprotection. It also underscores the need for further research to unravel the precise mechanisms by which SCFAs influence pediatric health and to develop targeted interventions that leverage SCFAs for therapeutic benefits.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, AZ, United States
| | - Lusine G. Khachatryan
- Department of Pediatric Diseases, N. F. Filatov Clinical Institute of Children’s Health, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Techniques, University of Imam Jafar Al-Sadiq, College of Technology, Baghdad, Iraq
| | - Nabeel Ahmad
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, India
- Department of Biotechnology, School of Allied Sciences, Dev Bhoomi Uttarakhand University Dehradun, Uttarakhand, India
| | - Zainab H. Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Angelina V. Polyanskaya
- Department of Pediatric Diseases, N. F. Filatov Clinical Institute of Children’s Health, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Elena Victorovna Kasanave
- Department of Pediatric Diseases, N. F. Filatov Clinical Institute of Children’s Health, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
46
|
Yang J, Qu H, Liu Q, Wang Y, Cao J, Jiang F, Wang Q, Shu J. Global Insights and Key Trends in Gut Microbiota Research for Premature Infants: A Bibliometric and Visualization Study. J Multidiscip Healthc 2024; 17:4611-4626. [PMID: 39381419 PMCID: PMC11460277 DOI: 10.2147/jmdh.s483332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/18/2024] [Indexed: 10/10/2024] Open
Abstract
Background Premature infants, defined as those born before 37 weeks of gestation, face numerous health challenges due to their underdeveloped systems. One critical aspect of their health is the gut microbiota, which plays a vital role in their immune function and overall development. This study provides a comprehensive bibliometric analysis of research trends, influential contributors, and evolving themes in the study of gut microbiota in premature infants over the past two decades. Methods We conducted a bibliometric analysis using the Web of Science Core Collection database, covering publications from January 1, 2004, to June 17, 2024. We employed VOSviewer, the R package "bibliometrix", and Citespace for data visualization and analysis, focusing on co-authorship, co-citation, and keyword co-occurrence networks. Results The temporal analysis revealed a significant increase in research output on gut microbiota in premature infants, particularly in the last decade. Early research primarily focused on characterizing the gut microbiota of premature infants, identifying less diversity and a higher prevalence of pathogenic bacteria compared to full-term infants. Key research themes identified include probiotics, necrotizing enterocolitis (NEC), and breastfeeding. Probiotic studies highlighted the potential of strains like Bifidobacterium and Lactobacillus in reducing NEC and sepsis incidences. Breastfeeding research consistently showed the benefits of human milk in fostering a healthier gut microbiota profile. Co-authorship and co-citation analyses identified key contributors and influential studies, emphasizing strong international collaborations, particularly among researchers from the United States, China, and European countries. Conclusion This bibliometric analysis underscores the growing recognition of the gut microbiota's crucial role in the health of premature infants. The field has seen significant advancements, particularly in understanding how interventions like probiotics and breastfeeding can modulate gut microbiota to improve health outcomes. Continued research and international collaboration are essential to further unravel the complexities of gut microbiota in premature infants and develop effective therapeutic strategies.
Collapse
Affiliation(s)
- Juanzhi Yang
- Department of Pediatrics, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, People’s Republic of China
| | - Huanxia Qu
- Department of Blood Transfusion, Zhenjiang First People’s Hospital, Zhenjiang, People’s Republic of China
| | - Qi Liu
- Department of Pediatrics, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, People’s Republic of China
| | - Yixing Wang
- Department of Pediatrics, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, People’s Republic of China
| | - Jiaxin Cao
- Department of Pediatrics, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, People’s Republic of China
| | - Feng Jiang
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Qian Wang
- Department of Pediatrics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Jin Shu
- Department of Pediatrics, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, People’s Republic of China
| |
Collapse
|
47
|
Li M, Xue Y, Lu H, Bai J, Cui L, Ning Y, Yuan Q, Jia X, Wang S. Relationship between infant gastrointestinal microorganisms and maternal microbiome within 6 months of delivery. Microbiol Spectr 2024; 12:e0360823. [PMID: 39172626 PMCID: PMC11448430 DOI: 10.1128/spectrum.03608-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/08/2024] [Indexed: 08/24/2024] Open
Abstract
To investigate the association between the microbiota in mothers and gut microbiota in infants from 0 to 6 months, the microbiotas in infant feces, maternal feces, and breast milk were determined by 16S rRNA gene sequencing. The contribution of each maternal microbiome to the infant was assessed using fast expectation-maximization for microbial source tracking calculations. The levels of short-chain fatty acids (SCFAs) and secretory immunoglobulin A (sIgA) in the feces of infants were also determined using gas chromatography and IDK-sIgA ELISA to gain a more comprehensive understanding of the infant gut microbiome. The results of this study showed that in addition to Firmicutes (E1) and Bifidobacterium (E2), the dominant microorganisms of the intestinal microbiota of infants aged 0-6 months include Proteobacteria, which is different from previous findings. Acetic acid, the most abundant SCFA in the infant gut, was positively correlated with Megasphaera (P < 0.01), whereas sIgA was positively correlated with Bacteroides (P < 0.05) and negatively correlated with Klebsiella and Clostridium_XVIII (P < 0.05). The maternal gut microbiota contributed more to the infant gut microbiota (43.58% ± 11.13%) than the breast milk microbiota, and significant differences were observed in the contribution of the maternal microbiota to the infant gut microbiota based on the delivery mode and feeding practices. In summary, we emphasize the key role of maternal gut health in the establishment and succession of infant gut microbiota.IMPORTANCEThis study aims to delineate the microbial connections between mothers and infants, leveraging the fast expectation-maximization for microbial source tracking methodology to quantify the contribution of maternal microbiota to the constitution of the infant's gut microbiome. Concurrently, it examines the correlations between the infant gut microbiota and two distinctive biomolecules, namely short-chain fatty acids (SCFAs) and secretory immunoglobulin A (sIgA). The findings indicate that the maternal gut microbiota exerts a greater influence on the infant's gut microbial composition than does the microbiota present in breast milk. Infants born via vaginal delivery and receiving mixed feeding display gut microbiota profiles more similar to their mothers'. Notably, the SCFA acetate displays positive associations with beneficial bacteria and inverse relationships with potentially harmful ones within the infant's gut. Meanwhile, sIgA positively correlates with Bacteroides species and negatively with potentially pathogenic bacteria. By delving into the transmission dynamics of maternal-infant microbiota, exploring the impacts of metabolic byproducts within the infant's gut, and scrutinizing how contextual factors such as birthing method and feeding practices affect the correlation between maternal and infant microbiota, this research endeavors to establish practical strategies for optimizing early-life gut health management in infants. Such insights promise to inform targeted interventions that foster healthier microbial development during the critical first 6 months of life.
Collapse
Affiliation(s)
- Menglu Li
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei, China
| | - Yuling Xue
- Junlebao Dairy Group Co., Ltd., Shijiazhuang, Hebei, China
| | - Han Lu
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei, China
| | - Jinping Bai
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei, China
| | - Liru Cui
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei, China
| | - Yibing Ning
- Junlebao Dairy Group Co., Ltd., Shijiazhuang, Hebei, China
| | - Qingbin Yuan
- Junlebao Dairy Group Co., Ltd., Shijiazhuang, Hebei, China
| | - Xianxian Jia
- Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shijie Wang
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei, China
- Junlebao Dairy Group Co., Ltd., Shijiazhuang, Hebei, China
| |
Collapse
|
48
|
Luppi S, Aldegheri L, Azzalini E, Pacetti E, Barucca Sebastiani G, Fabiani C, Robino A, Comar M. Unravelling the Role of Gut and Oral Microbiota in the Pediatric Population with Type 1 Diabetes Mellitus. Int J Mol Sci 2024; 25:10611. [PMID: 39408940 PMCID: PMC11477131 DOI: 10.3390/ijms251910611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Type 1 Diabetes Mellitus (T1DM) is a chronic autoimmune disease that results in the destruction of pancreatic β cells, leading to hyperglycaemia and the need for lifelong insulin therapy. Although genetic predisposition and environmental factors are considered key contributors to T1DM, the exact causes of the disease remain partially unclear. Recent evidence has focused on the relationship between the gut, the oral cavity, immune regulation, and systemic inflammation. In individuals with T1DM, changes in the gut and oral microbial composition are commonly observed, indicating that dysbiosis may contribute to immune dysregulation. Gut dysbiosis can influence the immune system through increased intestinal permeability, altered production of short chain fatty acids (SCFAs), and interactions with the mucosal immune system, potentially triggering the autoimmune response. Similarly, oral dysbiosis may contribute to the development of systemic inflammation and thus influence the progression of T1DM. A comprehensive understanding of these relationships is essential for the identification of biomarkers for early diagnosis and monitoring, as well as for the development of therapies aimed at restoring microbial balance. This review presents a synthesis of current research on the connection between T1DM and microbiome dysbiosis, with a focus on the gut and oral microbiomes in pediatric populations. It explores potential mechanisms by which microbial dysbiosis contributes to the pathogenesis of T1DM and examines the potential of microbiome-based therapies, including probiotics, prebiotics, synbiotics, and faecal microbiota transplantation (FMT). This complex relationship highlights the need for longitudinal studies to monitor microbiome changes over time, investigate causal relationships between specific microbial species and T1DM, and develop personalised medicine approaches.
Collapse
Affiliation(s)
- Stefania Luppi
- Institute for Maternal and Child Health—IRCCS Burlo Garofolo, 65/1 Via dell’Istria, 34137 Trieste, Italy; (S.L.); (L.A.); (M.C.)
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy; (E.A.); (E.P.)
| | - Luana Aldegheri
- Institute for Maternal and Child Health—IRCCS Burlo Garofolo, 65/1 Via dell’Istria, 34137 Trieste, Italy; (S.L.); (L.A.); (M.C.)
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy; (E.A.); (E.P.)
| | - Eros Azzalini
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy; (E.A.); (E.P.)
| | - Emanuele Pacetti
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy; (E.A.); (E.P.)
| | - Giulia Barucca Sebastiani
- Medicine of Services Department, Clinical Analysis Laboratory, Azienda Sanitaria Universitaria Giuliano Isontina, 34125 Trieste, Italy; (G.B.S.); (C.F.)
| | - Carolina Fabiani
- Medicine of Services Department, Clinical Analysis Laboratory, Azienda Sanitaria Universitaria Giuliano Isontina, 34125 Trieste, Italy; (G.B.S.); (C.F.)
| | - Antonietta Robino
- Institute for Maternal and Child Health—IRCCS Burlo Garofolo, 65/1 Via dell’Istria, 34137 Trieste, Italy; (S.L.); (L.A.); (M.C.)
| | - Manola Comar
- Institute for Maternal and Child Health—IRCCS Burlo Garofolo, 65/1 Via dell’Istria, 34137 Trieste, Italy; (S.L.); (L.A.); (M.C.)
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy; (E.A.); (E.P.)
| |
Collapse
|
49
|
Horwell E, Bearn P, Cutting SM. A microbial symphony: a literature review of the factors that orchestrate the colonization dynamics of the human colonic microbiome during infancy and implications for future health. MICROBIOME RESEARCH REPORTS 2024; 4:1. [PMID: 40207275 PMCID: PMC11977369 DOI: 10.20517/mrr.2024.32] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Since the advent of new sequencing and bioinformatic technologies, our understanding of the human microbiome has expanded rapidly over recent years. Numerous studies have indicated causal links between alterations to the microbiome and a range of pathological conditions. Furthermore, a large body of epidemiological data is starting to suggest that exposure, or lack thereof, to specific microbial species during the first five years of life has key implications for long-term health outcomes. These include chronic inflammatory and metabolic conditions such as diabetes, asthma, inflammatory bowel disease (IBD), and obesity, with the effects lasting into adulthood. Human microbial colonisation during these first five years of life is a highly dynamic process, with multiple environmental exposures recently being characterised to have influence before the microbiome stabilises and resembles that of an adult at 3-5 years. This short period of time, known as the window of opportunity, appears to "prime" immunoregulation for later life. Understanding and appreciating this aspect of human physiology is therefore crucial for clinicians, scientists, and public health officials. This review outlines the most recent evidence for the pre- and post-natal environments that order the development of the microbiome, how these influences metabolic and immunoregulatory pathways, and their associated health outcomes. It also discusses the limitations of the current knowledge base, and describes the potential microbiome-mediated interventions and public health measures that may have therapeutic potential in the future.
Collapse
Affiliation(s)
- Edward Horwell
- Department of Biomedical Sciences, The Bourne Laboratory, Royal Holloway University of London, London TW20 0EX, UK
- Department of Colorectal Surgery, Ashford and Saint Peter’s NHS Foundation Trust, London KT16 0PZ, UK
| | - Philip Bearn
- Department of Colorectal Surgery, Ashford and Saint Peter’s NHS Foundation Trust, London KT16 0PZ, UK
| | - Simon M. Cutting
- Department of Biomedical Sciences, The Bourne Laboratory, Royal Holloway University of London, London TW20 0EX, UK
| |
Collapse
|
50
|
Cannon M, Toma R, Ganeshan S, de Jesus Alvarez Varela E, Vuyisich M, Banavar G. Salivary Transcriptome and Mitochondrial Analysis of Autism Spectrum Disorder Children Compared to Healthy Controls. NEUROSCI 2024; 5:276-290. [PMID: 39483288 PMCID: PMC11467968 DOI: 10.3390/neurosci5030022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/22/2024] [Accepted: 07/28/2024] [Indexed: 11/03/2024] Open
Abstract
Autism rates have been reported to be increasing rapidly in industrialized societies. The pathology most often combines neurological symptoms associated with language and social impairments with gastrointestinal symptoms. This study aimed to measure differences in oral metatranscriptome and mitochondrial health between ASD children and neurotypical USA and Colombia ("Blue Zone") children. In addition, this study aimed to determine whether using prebiotics and probiotics would change the oral microbiome and mitochondrial health of ASD children. Buccal swabs and saliva samples were obtained from 30 autistic individuals (USA) at three intervals: prior to intervention, post-prebiotic, and post-probiotic. In addition, a subject component who were neurotypical, which included individuals from the USA (30) and Colombia (30), had buccal swabbing and salivary sampling performed for metatranscriptomic and mitochondrial comparison. Significant differences were observed in the temporal data, demonstrating shifts that interventions with probiotics and polyols may have precipitated. Particular bacterial strains were significantly more prevalent in the autism group, including a strain that reduced neurotransmitter levels via enzymatic degradation. This supports the hypothesis that the microbiome may influence the occurrence and degree of autism. Verbal skills increased in six of the 30 ASD subjects following xylitol and three more after probiotic supplementation, according to both parental reports and the subjects' healthcare providers.
Collapse
Affiliation(s)
- Mark Cannon
- Ann and Robert Lurie Children’s Hospital, Northwestern University, Chicago, IL 60611, USA
| | - Ryan Toma
- Viome Research Institute, Los Alamos, NM 98011, USA (M.V.); (G.B.)
| | - Sri Ganeshan
- MITOSWAB Religen Labs, Plymouth Meeting, PA 19462, USA
| | | | | | - Guruduth Banavar
- Viome Research Institute, Los Alamos, NM 98011, USA (M.V.); (G.B.)
| |
Collapse
|