1
|
Bi Z, Ren W, Zeng H, Zhou Y, Liu J, Chen Z, Zhang X, He X, Lu G, Wei Y, Wei X. LL-37 Inhibits TMPRSS2-Mediated S2' Site Cleavage and SARS-CoV-2 Infection but Not Omicron Variants. Cell Prolif 2025:e70060. [PMID: 40375579 DOI: 10.1111/cpr.70060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/10/2025] [Accepted: 04/29/2025] [Indexed: 05/18/2025] Open
Abstract
Continual evolution of SARS-CoV-2 spike drives the emergence of Omicron variants that show increased spreading and immune evasion. Understanding how the variants orientate themselves towards host immune defence is crucial for controlling future pandemics. Herein, we demonstrate that human cathelicidin LL-37, a crucial component of innate immunity, predominantly binds to the S2 subunit of SARS-CoV-2 spike protein, occupying sites where TMPRSS2 typically binds. This binding impedes TMPRSS2-mediated priming at site S2' and subsequent membrane fusion processes. The mutation N764K within S2 subunit of Omicron variants reduces affinity for LL-37 significantly, thereby diminishing binding capacity and inhibitory effects on membrane fusion. Moreover, the early humoral immune response enhanced by LL-37 is observed in mice against SARS-CoV-2 spike but not Omicron BA.4/5 spike. These findings reveal the mechanism underlying interactions amongst LL-37, TMPRSS2 and SARS-CoV-2 and VOCs, and highlight the distinct mutation for Omicron variants to evade the fusion activity inhibition by host innate immunity.
Collapse
Affiliation(s)
- Zhenfei Bi
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Department of Hepatobiliary Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Wenyan Ren
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Zeng
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yuanyuan Zhou
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, China
| | - Jian Liu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Zimin Chen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xindan Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xuemei He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Guangwen Lu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Fraser BJ, Wilson RP, Ferková S, Ilyassov O, Lac J, Dong A, Li YY, Seitova A, Li Y, Hejazi Z, Kenney TMG, Penn LZ, Edwards A, Leduc R, Boudreault PL, Morin GB, Bénard F, Arrowsmith CH. Structural basis of TMPRSS11D specificity and autocleavage activation. Nat Commun 2025; 16:4351. [PMID: 40348740 PMCID: PMC12065894 DOI: 10.1038/s41467-025-59677-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 05/01/2025] [Indexed: 05/14/2025] Open
Abstract
Transmembrane Protease, Serine-2 (TMPRSS2) and TMPRSS11D are human proteases that enable SARS-CoV-2 and Influenza A/B virus infections, but their biochemical mechanisms for facilitating viral cell entry remain unclear. We show these proteases spontaneously and efficiently cleave their own zymogen activation motifs, activating their broader protease activity on cellular substrates. We determine TMPRSS11D co-crystal structures with a native and an engineered activation motif, revealing insights into its autocleavage activation and distinct substrate binding cleft features. Leveraging this structural data, we develop nanomolar potency peptidomimetic inhibitors of TMPRSS11D and TMPRSS2. We show that a broad serine protease inhibitor that underwent clinical trials for TMPRSS2-targeted COVID-19 therapy, nafamostat mesylate, was rapidly cleaved by TMPRSS11D and converted to low activity derivatives. In this work, we develop mechanistic insights into human protease viral tropism and highlight both the strengths and limitations of existing human serine protease inhibitors, informing future drug discovery efforts targeting these proteases.
Collapse
Affiliation(s)
- Bryan J Fraser
- Structural Genomics Consortium Toronto, Toronto, ON, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| | - Ryan P Wilson
- Structural Genomics Consortium Toronto, Toronto, ON, Canada
| | - Sára Ferková
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | | | - Jackie Lac
- Structural Genomics Consortium Toronto, Toronto, ON, Canada
| | - Aiping Dong
- Structural Genomics Consortium Toronto, Toronto, ON, Canada
| | - Yen-Yen Li
- Structural Genomics Consortium Toronto, Toronto, ON, Canada
| | - Alma Seitova
- Structural Genomics Consortium Toronto, Toronto, ON, Canada
| | - Yanjun Li
- Structural Genomics Consortium Toronto, Toronto, ON, Canada
| | - Zahra Hejazi
- Structural Genomics Consortium Toronto, Toronto, ON, Canada
| | - Tristan M G Kenney
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Linda Z Penn
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Aled Edwards
- Structural Genomics Consortium Toronto, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Richard Leduc
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Pierre-Luc Boudreault
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Gregg B Morin
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, Canada.
- British Columbia Cancer Research Institute, Vancouver, BC, Canada.
- University of British Columbia, Vancouver, BC, Canada.
| | - François Bénard
- British Columbia Cancer Research Institute, Vancouver, BC, Canada.
- University of British Columbia, Vancouver, BC, Canada.
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium Toronto, Toronto, ON, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
- Princess Margaret Cancer Centre, Toronto, ON, Canada.
| |
Collapse
|
3
|
Feitosa DSLL, Saraiva LGM, de Sousa MKA, da Silva LMG, Borges IC, Ribeiro TA, Lederhos QR, de Castro Silva RR, Paula SM, de Freitas Clementino MA, Havt A, Souza MHLP, Dos Santos AA, Souza MAN. Impairment of Esophageal Barrier Integrity: New Insights into Esophageal Symptoms in Post-COVID-19. Dig Dis Sci 2025:10.1007/s10620-025-09062-3. [PMID: 40316885 DOI: 10.1007/s10620-025-09062-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 04/10/2025] [Indexed: 05/04/2025]
Abstract
BACKGROUND The COVID-19 pandemic, caused by SARS-CoV-2, has unveiled a range of symptoms beyond the respiratory system, including significant gastrointestinal manifestations. AIMS This study explores the prevalence and intensity of gastroesophageal symptoms in post-COVID-19 patients and the integrity of the esophageal epithelial barrier. METHODS We conducted a prospective longitudinal cohort study with 55 patients hospitalized due to COVID-19 at a University Hospital. Patients were evaluated during hospitalization and between 3 and 6 months post-discharge, using validated questionnaires for gastrointestinal and gastroesophageal reflux symptoms. Additionally, 25 of these patients underwent upper digestive endoscopy, with esophageal mucosal biopsies analyzed for transepithelial electrical resistance (TER), permeability, and expression of inflammatory cytokines and cell junction proteins. Data expressed as mean EPM, inference by two-way ANOVA. RESULTS Results were considered statistically significant at p < 0.05. There were significant increases in heartburn and acid reflux symptoms in post-COVID-19 patients, as measured by the GSRS questionnaire. Biopsies from post-COVID patients revealed increased esophageal permeability when compared to non-COVID patients in acidic media (pH 2: non-COVID-19: 717.8 ± 168.2 vs. post-COVID-19: 1377.6 ± 316.4), suggesting compromised mucosal barrier. Furthermore, IL-8 levels and expression of Claudin-2 were elevated in these patients. CONCLUSIONS The data suggested that COVID-19 infection may cause lasting damage to the esophageal epithelial barrier, increasing its permeability and provoking an exacerbated inflammatory response. These changes may explain the prevalence of post-infection gastroesophageal symptoms. Our findings underscored the importance of continuous monitoring and the development of therapeutic strategies to mitigate gastroesophageal effects in patients recovering from COVID-19.
Collapse
Affiliation(s)
| | | | | | - Lara Mara Gomes da Silva
- Department of Medicine, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Isabela Caldas Borges
- Department of Medicine, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Thiago Andrade Ribeiro
- Department of Medicine, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Quésia Reis Lederhos
- Department of Medicine, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | - Suliana Mesquita Paula
- Department of Medicine, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | - Alexandre Havt
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | | | - Miguel Angelo Nobre Souza
- Department of Medicine, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil.
- Institute of Biomedicine for Brazilian Semi-Arid (IBISAB), Coronel Nunes de Melo Street, 1315, Rodolfo Teófilo, Fortaleza, CE, 60.430-270, Brazil.
| |
Collapse
|
4
|
Pisani LF, Albertini Petroni G, Crespi G, Mola S, Annunziata ML, Caprioli FA, Porta C, Pastorelli L. Lower Expression of SARS-CoV-2 Host Cell Entry Genes in the Intestinal Mucosa of IBD Patients With Quiescent or Mildly Active Disease. Inflamm Bowel Dis 2025:izaf079. [PMID: 40279370 DOI: 10.1093/ibd/izaf079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Indexed: 04/27/2025]
Abstract
BACKGROUND Long-term immunosuppressive therapy typically increases the risk of viral infection, yet during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, inflammatory bowel disease (IBD) patients showed reduced severe coronavirus disease 2019 (COVID-19) susceptibility. This suggests potential overlapping molecular mechanisms between IBD and COVID-19 that warrant investigation. METHODS From April 2020 to April 2022, we enrolled 363 IBD patients and 146 healthy donors. Serum samples were analyzed by enzyme-linked immunoadsorption assay to determine the presence of anti-SARS-CoV-2 antibodies and to measure concentrations of the host-soluble factors sACE2 and mannose-binding lectin (MBL), which have SARS-CoV-2 neutralizing activity. Furthermore, colonic mucosa biopsies were analyzed by real-time PCR to confirm the upregulation of MBL2 as well as to assess the expression of genes encoding SARS-CoV-2 entry molecules (ie, ACE2, TMPRSS2, TMPRSS4, ADAM17, AGTR1). RESULTS Intestinal mucosa expression of ACE2, TMPRSS2, and TMPRSS4 genes was significantly lower in IBD than in healthy individuals, regardless of the type of medication, while ADAM17 and AGT1R were similar across groups. Serum sACE2 levels changed minimally, whereas circulating MBL levels were significantly higher in CD and somewhat elevated in UC patients versus controls. Parallel trends in MBL2 gene expression were observed in IBD patients' intestinal mucosa. CONCLUSIONS Overall, our study indicates that the presence of higher basal circulating levels of MBL in CD patients and the decreased intestinal mucosa expression of the SARS-CoV-2 receptor ACE2 and the host cell priming proteases TMPRSS2 and TMPRSS4 in both CD and UC patients may reduce COVID-19 risk, underscoring the potential protective role of these biomarkers in IBD populations against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Laura Francesca Pisani
- Unit of Immunology and Functional Genomics, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | | | - Giorgia Crespi
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara, Italy
| | - Silvia Mola
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara, Italy
| | - Maria Laura Annunziata
- Gastroenterology and Endoscopy Unit, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Flavio Andrea Caprioli
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Chiara Porta
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara, Italy
| | - Luca Pastorelli
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
- Liver and Gastroenterology Unit, ASST Santi Paolo e Carlo, Milan, Italy
| |
Collapse
|
5
|
Hou G, Beatty W, Ren L, Ooi YS, Son J, Zhu Y, Sheng Q, Huang W, Li D, Liu C, Welsh OL, Sutherland DM, Dermody TS, Shen C, Liu J, Sibley LD, Ding S. SAMD9 senses cytosolic double-stranded nucleic acids in epithelial and mesenchymal cells to induce antiviral immunity. Nat Commun 2025; 16:3756. [PMID: 40263291 PMCID: PMC12015307 DOI: 10.1038/s41467-025-59090-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 04/11/2025] [Indexed: 04/24/2025] Open
Abstract
Sensing of cytosolic, double-stranded (ds) DNA or dsRNA molecules derived from microbial or endogenous sources triggers cell-intrinsic innate immunity, but sensors recognizing both cytosolic dsDNA and dsRNA are sparsely reported. Here we find that full-length human SAMD9 protein directly binds to synthetic or viral dsDNA or dsRNA. Overexpression of SAMD9 from various vertebrate species leads to robust production of interferons and pro-inflammatory cytokines. By contrast, loss of endogenous SAMD9 impairs the interferon responses to cytosolic dsDNA and dsRNA stimulation in multiple cell types and enhances the infectivity of pathogenic dsDNA and dsRNA viruses. Mice lacking Samd9l, the human SAMD9 homolog, show increased viral load and severe clinical manifestations of rotavirus and reovirus infections. Rotavirus-encoded non-structural protein 1 targets SAMD9 for proteasomal degradation. Collectively, our data demonstrate that SAMD9 may serve as a pattern-recognition receptor for cytosolic dsDNA and dsRNA across different domains of life and represents a potential target of viral innate immune evasion.
Collapse
Affiliation(s)
- Gaopeng Hou
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Wandy Beatty
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Lili Ren
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
- Palo Alto Veterans Institute of Research, VA Palo Alto Health Care System, Palo Alto, CA, USA
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Yaw Shin Ooi
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
- Emerging Infectious Diseases Program, Duke-NUS Medical School, Singapore, Singapore
| | - Juhee Son
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Yinxing Zhu
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Qingyu Sheng
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Wanyi Huang
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Dian Li
- Division of Nephrology, Department of Medicine and Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Constin Liu
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Olivia L Welsh
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Danica M Sutherland
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Terence S Dermody
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Chen Shen
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Jia Liu
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - L David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Siyuan Ding
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
6
|
Tremoulis DC, Papadopoulou G, Pogka V, Argyraki A, Lourida G, Mentis A, Karamitros T. Blood Transcriptome Profiling Highlights the Role of Intestinal Bacterial Translocation in Severe COVID-19. Pathogens 2025; 14:381. [PMID: 40333157 PMCID: PMC12030260 DOI: 10.3390/pathogens14040381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 05/09/2025] Open
Abstract
COVID-19 has caused millions of deaths globally; however, the characterization of molecular biomarkers of severe disease remains of great scientific importance. The aim of this study was to capture the transcriptional differences of the whole blood gene expression between COVID-19 patients with mild and severe disease, using Next Generation Sequencing technologies, on admission and after 7 days. The genes which were differentially expressed in severe compared to mild patients were used for Gene Ontology (GO) enrichment analysis. Gene expression data were used to estimate the cell abundance of 22 immune cell types via digital cytometry. GO terms related to the response to molecules of bacterial origin, such as intestine-derived lipopolysaccharide (LPS), were enriched, among other dysregulated pathways, which are well described as paramount mechanisms of severe manifestations of COVID-19. The neutrophil population increased in patients with severe disease, whereas the monocyte, CD8+ T cell, and activated Natural Killer (NK) cell populations were depleted. These cell population dynamics are also indicative of severe COVID-19 and intestinal bacterial translocation. This study elucidates the molecular basis of severe COVID-19 and highlights intestinal bacterial translocation as a potential driver of severe disease.
Collapse
Affiliation(s)
- Dimitrios Christos Tremoulis
- Bioinformatics and Applied Genomics Unit, Department of Microbiology, Hellenic Pasteur Institute, Vasilissis Sofias 127, 11521 Athens, Greece
| | - Gethsimani Papadopoulou
- Bioinformatics and Applied Genomics Unit, Department of Microbiology, Hellenic Pasteur Institute, Vasilissis Sofias 127, 11521 Athens, Greece
| | - Vasiliki Pogka
- Bioinformatics and Applied Genomics Unit, Department of Microbiology, Hellenic Pasteur Institute, Vasilissis Sofias 127, 11521 Athens, Greece
| | - Aikaterini Argyraki
- Infectious Diseases Clinic A, Sotiria Chest Diseases Hospital, Mesogion 152, 11527 Athens, Greece
| | - Giota Lourida
- Infectious Diseases Clinic A, Sotiria Chest Diseases Hospital, Mesogion 152, 11527 Athens, Greece
| | - Andreas Mentis
- Laboratory of Medical Microbiology, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Timokratis Karamitros
- Bioinformatics and Applied Genomics Unit, Department of Microbiology, Hellenic Pasteur Institute, Vasilissis Sofias 127, 11521 Athens, Greece
| |
Collapse
|
7
|
Kumar V, Meidinna HN, Kaul SC, Gupta D, Ishida Y, Terao K, Vrati S, Sundar D, Wadhwa R. Molecular insights to the anti-COVID-19 potential of α-, β- and γ-cyclodextrins. J Biomol Struct Dyn 2025; 43:2890-2900. [PMID: 38116950 DOI: 10.1080/07391102.2023.2294385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023]
Abstract
SARS-CoV-2 viral infection is regulated by the host cell receptors ACE2 and TMPRSS2, and therefore the effect of various natural and synthetic compounds on these receptors has recently been the subject of investigations. Cyclodextrins, naturally occurring polysaccharides derived from starch, are soluble in water and have a hydrophobic cavity at their center enabling them to accommodate small molecules and utilize them as carriers in the food, supplements, and pharmaceutical industries to improve the solubility, stability, and bioavailability of target compounds. In the current study, computational molecular simulations were used to investigate the ability of α-, β- and γ-Cyclodextrins on human cell surface receptors. Cell-based experimental approaches, including expression analyses at mRNA and protein levels and virus replication, were used to assess the effect on receptor expression and virus infection, respectively. We found that none of the three CDs could dock effectively to human cell surface receptor ACE2 and viral protease Mpro (essential for virus replication). On the other hand, α- and β-CD showed strong and stable interactions with TMPRSS2, and the expression of both ACE2 and TMPRSS2 was downregulated at the mRNA and protein levels in cyclodextrin (CD)-treated cells. A cell-based virus replication assay showed ∼20% inhibition by β- and γ-CD. Taken together, the study suggested that (i) downregulation of expression of host cell receptors may not be sufficient to inhibit virus infection (ii) activity of the receptors and virus protein Mpro may play a critical and clinically relevant role, and hence (iii) newly emerging anti-Covid-19 compounds warrant multimodal functional analyses.
Collapse
Affiliation(s)
- Vipul Kumar
- DAILAB, Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, India
| | - Hazna Noor Meidinna
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Japan
| | - Sunil C Kaul
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Japan
| | | | | | - Keiji Terao
- CycloChem Bio Co., Ltd, Chuo-ku, Kobe, Japan
| | | | - Durai Sundar
- DAILAB, Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, India
| | - Renu Wadhwa
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Japan
| |
Collapse
|
8
|
Lauster D, Haag R, Ballauff M, Herrmann A. Balancing stability and function: impact of the surface charge of SARS-CoV-2 Omicron spike protein. NPJ VIRUSES 2025; 3:23. [PMID: 40295844 PMCID: PMC11962157 DOI: 10.1038/s44298-025-00104-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 02/21/2025] [Indexed: 04/30/2025]
Abstract
The ectodomain of the Omicron SARS-CoV-2 spike has an increased positive surface charge, favoring binding to the host cell surface, but may affect the stability of the ectodomain. Thermal stability studies identified two transitions associated with the flexibility of the receptor binding domain and the unfolding of the whole ectodomain, respectively. Despite destabilizing effects of some mutations, compensatory mutations maintain ECD stability and functional advantages thus supporting viral fitness.
Collapse
Affiliation(s)
- Daniel Lauster
- Institute of Pharmacy, Biopharmaceuticals, Freie Universität Berlin, Berlin, Germany.
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Matthias Ballauff
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Andreas Herrmann
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
9
|
Zhu J, Huang Z, Lin Y, Zhu W, Zeng B, Tang D. Intestinal-pulmonary axis: a 'Force For Good' against respiratory viral infections. Front Immunol 2025; 16:1534241. [PMID: 40170840 PMCID: PMC11959011 DOI: 10.3389/fimmu.2025.1534241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/28/2025] [Indexed: 04/03/2025] Open
Abstract
Respiratory viral infections are a major global public health concern, and current antiviral therapies still have limitations. In recent years, research has revealed significant similarities between the immune systems of the gut and lungs, which interact through the complex physiological network known as the "gut-lung axis." As one of the largest immune organs, the gut, along with the lungs, forms an inter-organ immune network, with strong parallels in innate immune mechanisms, such as the activation of pattern recognition receptors (PRRs). Furthermore, the gut microbiota influences antiviral immune responses in the lungs through mechanisms such as systemic transport of gut microbiota-derived metabolites, immune cell migration, and cytokine regulation. Studies have shown that gut dysbiosis can exacerbate the severity of respiratory infections and may impact the efficacy of antiviral therapies. This review discusses the synergistic role of the gut-lung axis in antiviral immunity against respiratory viruses and explores potential strategies for modulating the gut microbiota to mitigate respiratory viral infections. Future research should focus on the immune mechanisms of the gut-lung axis to drive the development of novel clinical treatment strategies.
Collapse
Affiliation(s)
- Jianing Zhu
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Zihang Huang
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Ying Lin
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Wenxu Zhu
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Binbin Zeng
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, China
- Northern Jiangsu People’s Hospital, Yangzhou, China
- The Yangzhou Clinical Medical College of Xuzhou Medical University, Yangzhou, China
- The Yangzhou School of Clinical Medicine of Dalian Medical University, Yangzhou, China
- The Yangzhou School of Clinical Medicine of Nanjing Medical University, Yangzhou, China
- Northern Jiangsu People’s Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Yangzhou, China
| |
Collapse
|
10
|
Hou G, Son J, Gomez Castro MF, Kawagishi T, Ren X, Roth AN, Antia A, Zeng Q, DeVeaux AL, Feng N, Kohio HP, Baldridge MT, Dermody TS, Zhu S, Ding S. Innate immune sensing of rotavirus by intestinal epithelial cells leads to diarrhea. Cell Host Microbe 2025; 33:408-419.e8. [PMID: 40037352 PMCID: PMC11932023 DOI: 10.1016/j.chom.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/07/2025] [Accepted: 02/07/2025] [Indexed: 03/06/2025]
Abstract
Diarrhea is the predominant symptom of acute gastroenteritis resulting from enteric infections and a leading cause of death in infants and young children. However, the role of the host response in diarrhea pathogenesis is unclear. Using rotavirus and neonatal mice as a model, we found that oral inoculation of UV-inactivated replication-defective rotavirus consistently induced watery diarrhea by robust activation of cytosolic double-stranded RNA sensing pathways and type III interferon (IFN-λ) secretion. Diarrhea was significantly diminished in mice lacking the IFN-λ receptor. Mechanistically, IFN-λ signaling downregulates the expression of Dra, a chloride and bicarbonate exchanger, which contributes to reduced water absorption. We confirmed these findings in mice inoculated with reovirus, as well as in donor-derived human intestinal organoids and human biopsy samples. Our data highlight a mechanism of rapid diarrhea induction by host innate immune sensing in the gastrointestinal tract and suggest that diarrhea induction is an active host defense strategy to eliminate the pathogen.
Collapse
Affiliation(s)
- Gaopeng Hou
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Juhee Son
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Maria Florencia Gomez Castro
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Takahiro Kawagishi
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Xingxing Ren
- Institute of Immunology and the Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Alexa N Roth
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Avan Antia
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Qiru Zeng
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Anna L DeVeaux
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Ningguo Feng
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hinissan P Kohio
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Megan T Baldridge
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Terence S Dermody
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Shu Zhu
- Institute of Immunology and the Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Siyuan Ding
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
11
|
Sugihara HY, Okamoto R, Mizutani T. Intestinal organoids: The path towards clinical application. Eur J Cell Biol 2025; 104:151474. [PMID: 39740324 DOI: 10.1016/j.ejcb.2024.151474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/14/2024] [Accepted: 11/17/2024] [Indexed: 01/02/2025] Open
Abstract
Organoids have revolutionized the whole field of biology with their ability to model complex three-dimensional human organs in vitro. Intestinal organoids were especially consequential as the first successful long-term culture of intestinal stem cells, which raised hopes for translational medical applications. Despite significant contributions to basic research, challenges remain to develop intestinal organoids into clinical tools for diagnosis, prognosis, and therapy. In this review, we outline the current state of translational research involving adult stem cell and pluripotent stem cell derived intestinal organoids, highlighting the advances and limitations in disease modeling, drug-screening, personalized medicine, and stem cell therapy. Preclinical studies have demonstrated a remarkable functional recapitulation of infectious and genetic diseases, and there is mounting evidence for the reliability of intestinal organoids as a patient-specific avatar. Breakthroughs now allow the generation of structurally and cellularly complex intestinal models to better capture a wider range of intestinal pathophysiology. As the field develops and evolves, there is a need for standardized frameworks for generation, culture, storage, and analysis of intestinal organoids to ensure reproducibility, comparability, and interpretability of these preclinical and clinical studies to ultimately enable clinical translation.
Collapse
Affiliation(s)
- Hady Yuki Sugihara
- Department of Gastroenterology and Hepatology, Institute of Science Tokyo, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Ryuichi Okamoto
- Department of Gastroenterology and Hepatology, Institute of Science Tokyo, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Tomohiro Mizutani
- Department of Gastroenterology and Hepatology, Institute of Science Tokyo, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.
| |
Collapse
|
12
|
Ana-Sosa-Batiz F, Verma SK, Shafee N, Miller R, Conner C, Hastie KM, Timis J, Maule E, Nguyen MN, Tran L, Varghese K, Madany H, Street AE, Zandonatti M, Moi ML, Jarnagin K, Webb DR, Saphire EO, Kim K, Shresta S. A humanised ACE2, TMPRSS2, and FCGRT mouse model reveals the protective efficacy of anti-receptor binding domain antibodies elicited by SARS-CoV-2 hybrid immunity. EBioMedicine 2025; 113:105619. [PMID: 40020261 PMCID: PMC11910679 DOI: 10.1016/j.ebiom.2025.105619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Despite the importance of vaccination- and infection-elicited antibodies (Abs) to SARS-CoV-2 immunity, current mouse models do not fully capture the dynamics of Ab-mediated immunity in vivo, including potential contributions of the neonatal Fc receptor, encoded by FCGRT. METHODS We generated triple knock-in (TKI) mice expressing human ACE2, TMPRSS2, and FCGRT; and evaluated the protective efficacy of anti-SARS-CoV-2 monoclonal Abs (mAbs) and plasma from individuals with immunity elicited by vaccination alone plus SARS-CoV-2 infection-induced (hybrid) immunity. FINDINGS A human anti-SARS-CoV-2 mAb harbouring a half-life-extending mutation, but not the wild-type mAb, exhibited prolonged half-life in TKI mice and protected against lung infection with Omicron BA.2, validating the utility of these mice for evaluating therapeutic Abs. Pooled plasma from individuals with hybrid immunity to Delta, but not from vaccinated-only individuals, cleared infectious Delta from the lungs of TKI mice (P < 0.01), even though the two plasma pools had similar Delta-binding and -neutralising Ab titres in vitro. Similarly, plasma from individuals with hybrid Omicron BA.1/2 immunity, but not hybrid Delta immunity, decreased lung infection (P < 0.05) with BA.5 in TKI mice, despite the plasma pools having comparable BA.5-binding and -neutralising titres in vitro. Depletion of receptor-binding domain-targeting Abs from hybrid immune plasma abrogated their protection against infection. INTERPRETATION These results demonstrate the utility of TKI mice as a tool for the development of anti-SARS-CoV-2 mAb therapeutics, show that in vitro neutralisation assays do not accurately predict in vivo protection, and highlight the importance of hybrid immunity for eliciting protective anti-receptor-binding domain Abs. FUNDING This work was funded by grants from the e-Asia Joint Research Program (N10A650706 and N10A660577 to MLM, in collaboration with SS); the NIH (U19 AI142790-02S1 to EOS and SS and R44 AI157900 to KJ); the GHR Foundation (to SS and EOS); the Overton family (to SS and EOS); the Arvin Gottlieb Foundation (to SS and EOS), the Prebys Foundation (to SS); and the American Association of Immunologists Fellowship Program for Career Reentry (to FASB).
Collapse
Affiliation(s)
| | - Shailendra Kumar Verma
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Norazizah Shafee
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA; Synbal Inc., 1759 Yorktown Rd., San Mateo, CA, 94402, USA
| | - Robyn Miller
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Chris Conner
- Synbal Inc., 1759 Yorktown Rd., San Mateo, CA, 94402, USA
| | - Kathryn M Hastie
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Julia Timis
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Erin Maule
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Michael N Nguyen
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Linda Tran
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Krithik Varghese
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Henry Madany
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | | | - Michelle Zandonatti
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Meng Ling Moi
- School of International Health, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Kurt Jarnagin
- Synbal Inc., 1759 Yorktown Rd., San Mateo, CA, 94402, USA
| | - David R Webb
- Synbal Inc., 1759 Yorktown Rd., San Mateo, CA, 94402, USA
| | - Erica Ollmann Saphire
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Kenneth Kim
- Histopathology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Sujan Shresta
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA; Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, UC San Diego School of Medicine, La Jolla, CA, 92037, USA.
| |
Collapse
|
13
|
Verhulst E, De Bruyn M, Berckmans P, Sim Y, Augustyns K, Pintelon I, Berg M, Van Wielendaele P, Lambeir A, Sterckx YG, Nelissen I, De Meester I. Human Transmembrane Serine Protease 2 (TMPRSS2) on Human Seminal Fluid Extracellular Vesicles Is Proteolytically Active. J Extracell Vesicles 2025; 14:e70061. [PMID: 40091430 PMCID: PMC11911546 DOI: 10.1002/jev2.70061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/03/2025] [Accepted: 02/12/2025] [Indexed: 03/19/2025] Open
Abstract
Human transmembrane serine protease 2 (TMPRSS2) has garnered substantial interest due to its clinical significance in various pathologies, notably its pivotal role in viral entry into host cells. The development of effective strategies to target TMPRSS2 is a current area of intense research and necessitates a consistent source of active TMPRSS2 with sufficient stability. Here, we comprehensively characterised human seminal-fluid extracellular vesicles (SF-EVs, also referred to as prostasomes), bearing a native source of surface-exposed, enzymatically active TMPRSS2 as demonstrated by high-sensitivity flow cytometry and a fluorometric activity assay. Additionally, we recombinantly produced human TMPRSS2 ectodomain in mammalian cells adopting a directed activation strategy. We observed comparable catalytic parameters and inhibition characteristics for both native SF-EV-associated and recombinant TMPRSS2 when exposed to serine protease inhibitor Nafamostat mesylate. Leveraging these findings, we developed a robust in vitro biochemical assay based on these SF-EVs for the screening of TMPRSS2-targeting compounds. Our results will accelerate the discovery and advancement of efficacious therapeutic approaches targeting TMPRSS2 and propel further exploration into the biological role of SF-EV-associated active TMPRSS2.
Collapse
Affiliation(s)
- Emile Verhulst
- Laboratory of Medical Biochemistry, Faculty of Pharmaceutical, Biomedical and Veterinary SciencesUniversity of AntwerpWilrijkBelgium
| | - Michelle De Bruyn
- Laboratory of Medical Biochemistry, Faculty of Pharmaceutical, Biomedical and Veterinary SciencesUniversity of AntwerpWilrijkBelgium
| | | | - Yani Sim
- Laboratory of Medical Biochemistry, Faculty of Pharmaceutical, Biomedical and Veterinary SciencesUniversity of AntwerpWilrijkBelgium
| | - Koen Augustyns
- Laboratory of Medicinal Chemistry, Faculty of Pharmaceutical, Biomedical and Veterinary SciencesUniversity of AntwerpWilrijkBelgium
- Infla‐Med Centre of ExcellenceUniversity of AntwerpWilrijkBelgium
| | - Isabel Pintelon
- Laboratory of Cell Biology and Histology, Faculty of Pharmaceutical, Biomedical and Veterinary SciencesUniversity of AntwerpWilrijkBelgium
- Antwerp Centre for Advanced Microscopy (ACAM), Faculty of Pharmaceutical, Biomedical and Veterinary SciencesUniversity of AntwerpWilrijkBelgium
| | - Maya Berg
- Infla‐Med Centre of ExcellenceUniversity of AntwerpWilrijkBelgium
| | - Pieter Van Wielendaele
- Laboratory of Medical Biochemistry, Faculty of Pharmaceutical, Biomedical and Veterinary SciencesUniversity of AntwerpWilrijkBelgium
| | - Anne‐Marie Lambeir
- Laboratory of Medical Biochemistry, Faculty of Pharmaceutical, Biomedical and Veterinary SciencesUniversity of AntwerpWilrijkBelgium
| | - Yann G.‐J. Sterckx
- Laboratory of Medical Biochemistry, Faculty of Pharmaceutical, Biomedical and Veterinary SciencesUniversity of AntwerpWilrijkBelgium
| | - Inge Nelissen
- Health UnitFlemish Institute for Technological ResearchMolBelgium
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, Faculty of Pharmaceutical, Biomedical and Veterinary SciencesUniversity of AntwerpWilrijkBelgium
- Infla‐Med Centre of ExcellenceUniversity of AntwerpWilrijkBelgium
| |
Collapse
|
14
|
Martin-Castaño B, Diez-Echave P, García-García J, Hidalgo-García L, Ruiz-Malagon AJ, Molina-Tijeras JA, Rodríguez-Sojo MJ, Redruello-Romero A, Martínez-Zaldívar M, Mota E, Cobo F, Díaz-Villamarin X, Alvarez-Estevez M, García F, Morales-García C, Merlos S, Garcia-Flores P, Colmenero-Ruiz M, Hernández-Quero J, Nuñez M, Rodriguez-Cabezas ME, Carazo A, Martin J, Moron R, Rodríguez Nogales A, Galvez J. The relationship between gut and nasopharyngeal microbiome composition can predict the severity of COVID-19. eLife 2025; 13:RP95292. [PMID: 39963971 PMCID: PMC11835386 DOI: 10.7554/elife.95292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a respiratory illness caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that displays great variability in clinical phenotype. Many factors have been described to be correlated with its severity, and microbiota could play a key role in the infection, progression, and outcome of the disease. SARS-CoV-2 infection has been associated with nasopharyngeal and gut dysbiosis and higher abundance of opportunistic pathogens. To identify new prognostic markers for the disease, a multicentre prospective observational cohort study was carried out in COVID-19 patients divided into three cohorts based on symptomatology: mild (n = 24), moderate (n = 51), and severe/critical (n = 31). Faecal and nasopharyngeal samples were taken, and the microbiota was analysed. Linear discriminant analysis identified Mycoplasma salivarium, Prevotella dentalis, and Haemophilus parainfluenzae as biomarkers of severe COVID-19 in nasopharyngeal microbiota, while Prevotella bivia and Prevotella timonensis were defined in faecal microbiota. Additionally, a connection between faecal and nasopharyngeal microbiota was identified, with a significant ratio between P. timonensis (faeces) and P. dentalis and M. salivarium (nasopharyngeal) abundances found in critically ill patients. This ratio could serve as a novel prognostic tool for identifying severe COVID-19 cases.
Collapse
Affiliation(s)
- Benita Martin-Castaño
- Centro de Salud Las Gabias, Distrito Granada-MetropolitanoGranadaSpain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA)GranadaSpain
| | - Patricia Diez-Echave
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA)GranadaSpain
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of GranadaGranadaSpain
| | - Jorge García-García
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA)GranadaSpain
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of GranadaGranadaSpain
- Servicio Microbiología, Hospital Universitario Clínico San CecilioGranadaSpain
| | - Laura Hidalgo-García
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA)GranadaSpain
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of GranadaGranadaSpain
| | - Antonio Jesús Ruiz-Malagon
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA)GranadaSpain
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of GranadaGranadaSpain
| | - José Alberto Molina-Tijeras
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA)GranadaSpain
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of GranadaGranadaSpain
| | - María Jesús Rodríguez-Sojo
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA)GranadaSpain
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of GranadaGranadaSpain
| | | | - Margarita Martínez-Zaldívar
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA)GranadaSpain
- Centro de Salud “Salvador Caballero”, Distrito Granada-MetropolitanoGranadaSpain
| | - Emilio Mota
- Centro de Salud “Salvador Caballero”, Distrito Granada-MetropolitanoGranadaSpain
| | - Fernando Cobo
- Servicio Microbiología, Hospital Universitario Virgen de las NievesGranadaSpain
| | | | - Marta Alvarez-Estevez
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA)GranadaSpain
- Servicio Microbiología, Hospital Universitario Clínico San CecilioGranadaSpain
- CIBER de Enfermedades Infecciosas (CIBER-Infecc), Instituto de Salud Carlos IIIMadridSpain
| | - Federico García
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA)GranadaSpain
- Servicio Microbiología, Hospital Universitario Clínico San CecilioGranadaSpain
- CIBER de Enfermedades Infecciosas (CIBER-Infecc), Instituto de Salud Carlos IIIMadridSpain
| | | | - Silvia Merlos
- Respiratory Medicine Department, Hospital Universitario Virgen de las NievesGranadaSpain
| | - Paula Garcia-Flores
- Respiratory Medicine Department, Hospital Universitario Virgen de las NievesGranadaSpain
| | - Manuel Colmenero-Ruiz
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA)GranadaSpain
- Servicio de Medicina Intensiva, Hospital Universitario Clínico San CecilioGranadaSpain
| | - José Hernández-Quero
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA)GranadaSpain
- Servicio de Enfermedades Infecciosas, Hospital Universitario Clínico San CecilioGranadaSpain
| | - Maria Nuñez
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA)GranadaSpain
- Servicio Farmacia Hospitalaria, Hospital Universitario Clínico San CecilioGranadaSpain
- CIBER de Epidemiología y Salud Pública (CIBER-ESP), Instituto de Salud Carlos IIIMadridSpain
| | - Maria Elena Rodriguez-Cabezas
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA)GranadaSpain
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of GranadaGranadaSpain
| | - Angel Carazo
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA)GranadaSpain
- Servicio Microbiología, Hospital Universitario Clínico San CecilioGranadaSpain
| | - Javier Martin
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine López-Neyra, CSICGranadaSpain
| | - Rocio Moron
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA)GranadaSpain
- Servicio Farmacia Hospitalaria, Hospital Universitario Clínico San CecilioGranadaSpain
| | - Alba Rodríguez Nogales
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA)GranadaSpain
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of GranadaGranadaSpain
| | - Julio Galvez
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA)GranadaSpain
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of GranadaGranadaSpain
- CIBER de Enfermedades Hepáticas y Digestivas (CIBER-EHD), Instituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
15
|
Le NP, Cravo E, Burke T, Brooks B, Tucker A. Perspective on the Potential Vertical Transmission of SARS-CoV-2 Through Breast Milk. J Paediatr Child Health 2025; 61:148-152. [PMID: 39748549 DOI: 10.1111/jpc.16755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 09/14/2024] [Accepted: 12/08/2024] [Indexed: 01/04/2025]
Abstract
AIM SARS-CoV-2 is highly transmissible, having infected ~16 million children in the United States. Symptom severity is higher in infants compared to older children, possibly due to their ineligibility for vaccination. Concerns persist that mothers transmit infectious viral loads of SARS-CoV-2 through breast milk. In this review, we discuss the mechanism by which viruses transmit through breast milk, weigh the specific virulence and infectivity of SARS-COV-2, and review current guidelines for minimizing transmission in neonates. METHODS Through available literature, we propose a stepwise pathway for vertical transmission of SARS-CoV-2. The level of risk and probability of infection is assessed based on established mechanisms, reported viral loads, and presence of transmembrane receptors. RESULTS To successfully transmit viruses through breast milk, the virus must infect the mother's breast cells, replicate in the mammary gland, be secreted into breast milk, survive contact with the infant's oral mucosa and digestive tract, infect enterocytes, replicate while evading the infant's immune system, exit the gastrointestinal tract, and enter the bloodstream for systemic infection. CONCLUSIONS We conclude that SARS-CoV-2 infection through breast milk has limited transmission risk, and benefits for infants far outweigh the risks, aligning with current AAP/WHO/CDC guidelines. Though close contact during breastfeeding and exposure to respiratory droplets pose a higher transmission risk.
Collapse
Affiliation(s)
- Nam Phuong Le
- College of Osteopathic Medicine, Rocky Vista University, Ivins, Utah, USA
| | - Emma Cravo
- College of Osteopathic Medicine, Rocky Vista University, Ivins, Utah, USA
| | - Tyler Burke
- College of Osteopathic Medicine, Rocky Vista University, Ivins, Utah, USA
| | - Benjamin Brooks
- College of Osteopathic Medicine, Rocky Vista University, Ivins, Utah, USA
| | - Andrew Tucker
- College of Osteopathic Medicine, Rocky Vista University, Ivins, Utah, USA
| |
Collapse
|
16
|
Wang J, Wang L, Lu W, Farhataziz N, Gonzalez A, Xing J, Zhang Z. TRIM29 controls enteric RNA virus-induced intestinal inflammation by targeting NLRP6 and NLRP9b signaling pathways. Mucosal Immunol 2025; 18:135-150. [PMID: 39396665 DOI: 10.1016/j.mucimm.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/31/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024]
Abstract
Infections by enteric virus and intestinal inflammation are recognized as a leading cause of deadly gastroenteritis, and NLRP6 and NLRP9b signaling control these infection and inflammation. However, the regulatory mechanisms of the NLRP6 and NLRP9b signaling in enteric viral infection remain unexplored. In this study, we found that the E3 ligase TRIM29 suppressed type III interferon (IFN-λ) and interleukin-18 (IL-18) production by intestinal epithelial cells (IECs) when exposed to polyinosinic:polycytidylic acid (poly I:C) and enteric RNA viruses. Knockout of TRIM29 in IECs was efficient to restrict intestinal inflammation triggered by the enteric RNA viruses, rotavirus in suckling mice, and the encephalomyocarditis virus (EMCV) in adults. This attenuation in inflammation was attributed to the increased production of IFN-λ and IL-18 in the IECs and more recruitment of intraepithelial protective Ly6A+CCR9+CD4+ T cells in small intestines from TRIM29-deficient mice. Mechanistically, TRIM29 promoted K48-linked ubiquitination, leading to the degradation of NLRP6 and NLRP9b, resulting in decreased IFN-λ and IL-18 secretion by IECs. Our findings reveal that enteric viruses utilize TRIM29 to inhibit IFN-λ and inflammasome activation in IECs, thereby facilitating viral-induced intestinal inflammation. This indicates that targeting TRIM29 could offer a promising therapeutic strategy for alleviating gut diseases.
Collapse
Affiliation(s)
- Junying Wang
- Immunobiology and Transplant Science Center, Department of Surgery, Houston Methodist Academic Institute, Houston Methodist, Houston, TX 77030, USA
| | - Ling Wang
- Immunobiology and Transplant Science Center, Department of Surgery, Houston Methodist Academic Institute, Houston Methodist, Houston, TX 77030, USA; Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, 130021, China
| | - Wenting Lu
- Immunobiology and Transplant Science Center, Department of Surgery, Houston Methodist Academic Institute, Houston Methodist, Houston, TX 77030, USA
| | - Naser Farhataziz
- Immunobiology and Transplant Science Center, Department of Surgery, Houston Methodist Academic Institute, Houston Methodist, Houston, TX 77030, USA
| | - Anastasia Gonzalez
- Immunobiology and Transplant Science Center, Department of Surgery, Houston Methodist Academic Institute, Houston Methodist, Houston, TX 77030, USA
| | - Junji Xing
- Immunobiology and Transplant Science Center, Department of Surgery, Houston Methodist Academic Institute, Houston Methodist, Houston, TX 77030, USA; Department of Cardiovascular Sciences, Houston Methodist Academic Institute, Houston Methodist, Houston, TX 77030, USA; Department of Surgery, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA.
| | - Zhiqiang Zhang
- Immunobiology and Transplant Science Center, Department of Surgery, Houston Methodist Academic Institute, Houston Methodist, Houston, TX 77030, USA; Department of Surgery, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA.
| |
Collapse
|
17
|
Deguchi S, Yokoi F, Takayama K. Organoids and microphysiological systems for pharmaceutical research of viral respiratory infections. Drug Metab Pharmacokinet 2025; 60:101041. [PMID: 39847975 DOI: 10.1016/j.dmpk.2024.101041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 01/25/2025]
Abstract
In the pharmaceutical research of viral respiratory infections, cell culture models have traditionally been used to evaluate the therapeutic effects of candidate compounds. Although cell lines are easy to handle and cost-effective, they do not fully replicate the characteristics of human respiratory organs. Recently, organoids and microphysiological systems (MPS) have been employed to overcome this limitation for in vitro testing of drugs against viral respiratory infections. Advanced disease modeling using organoids, self-organized three-dimensional (3D) cell culture models derived from stem cells, or MPS, models for culturing multiple cell types in a microfluidic device and capable of recapitulating a physiological 3D dynamic environment, can accurately replicate the complex functions of respiratory organs, thus making them valuable tools for elucidating the organ damages caused by viral respiratory infections and evaluating the efficacy of candidate drugs against them. Recently, a wide range of organoids and MPS have been developed to model the complex pathophysiology caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and assess therapeutic drugs. In this review, we evaluate the latest pharmaceutical research on coronavirus disease 2019 (COVID-19) that utilizes organoids and MPS and discuss future perspectives of their applications.
Collapse
Affiliation(s)
- Sayaka Deguchi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Fuki Yokoi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan; Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Kazuo Takayama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan.
| |
Collapse
|
18
|
Hdoufane I, Oubahmane M, Habibi Y, Delaite C, Alanazi MM, Cherqaoui D. Identification of potent TMPRSS4 inhibitors through structural modeling and molecular dynamics simulations. Sci Rep 2025; 15:2748. [PMID: 39838126 PMCID: PMC11750979 DOI: 10.1038/s41598-025-86961-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/15/2025] [Indexed: 01/23/2025] Open
Abstract
TMPRSS4, a transmembrane serine protease type II, is associated with various pathological illnesses. It has been found to activate SARS-CoV-2, enhance viral infection of human small-intestinal enterocytes and is overexpressed in different types of cancers. Therefore, this study aims to disover potential TMPRSS4 inhibitors that have better binding affinity than the approved inhibitors: 2-hydroxydiarylamide and tyroserleutide. Since no 3D-structure is known for TMPRSS4, structural models for the TMPRSS4 serine protease domain were developed. The modeled structures were validated and subjected to molecular dynamics simulations. FDA-approved, clinical/preclinical drugs and natural products were docked to the pocket of TMPRSS4. Moreover, through a systematic analysis, MD simulations and MM-GBSA binding free energy calculations revealed that the best candidates Ergotamine, S55746, NPC478048, Lifirafenib, and NPC77101 are highly stable drug candidates in complex with TMPRSS4, displaying low RMSD and RMSF values with strong binding stability. Among these compounds, Ergotamine showed the most favorable binding energy (-33.73 kcal/mol). Overall, our in silico results revealed that these compounds could act as potent TMPRSS4 inhibitors and need to be validated by future experimental studies.
Collapse
Affiliation(s)
- Ismail Hdoufane
- Laboratory of Molecular Chemistry, Department of Chemistry, Faculty of Sciences Semlalia, Cadi Ayyad University, BP 2390, 40000, Marrakech, Morocco.
| | - Mehdi Oubahmane
- Laboratory of Molecular Chemistry, Department of Chemistry, Faculty of Sciences Semlalia, Cadi Ayyad University, BP 2390, 40000, Marrakech, Morocco
| | - Youssef Habibi
- Sustainable Materials Research Center (SUSMAT-RC), University Mohamed VI Polytechnic (UM6P), Hay Moulay Rachid, Benguerir, Morocco
| | - Christelle Delaite
- Laboratoire de Photochimie et d'Ingénierie Macromoléculaires (LPIM EA 4567), Université de Haute-Alsace, 68100, Mulhouse, France
| | - Mohammed M Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Driss Cherqaoui
- Laboratory of Molecular Chemistry, Department of Chemistry, Faculty of Sciences Semlalia, Cadi Ayyad University, BP 2390, 40000, Marrakech, Morocco
- Sustainable Materials Research Center (SUSMAT-RC), University Mohamed VI Polytechnic (UM6P), Hay Moulay Rachid, Benguerir, Morocco
| |
Collapse
|
19
|
Zhou X, Wu Y, Zhu Z, Lu C, Zhang C, Zeng L, Xie F, Zhang L, Zhou F. Mucosal immune response in biology, disease prevention and treatment. Signal Transduct Target Ther 2025; 10:7. [PMID: 39774607 PMCID: PMC11707400 DOI: 10.1038/s41392-024-02043-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/05/2024] [Accepted: 10/27/2024] [Indexed: 01/11/2025] Open
Abstract
The mucosal immune system, as the most extensive peripheral immune network, serves as the frontline defense against a myriad of microbial and dietary antigens. It is crucial in preventing pathogen invasion and establishing immune tolerance. A comprehensive understanding of mucosal immunity is essential for developing treatments that can effectively target diseases at their entry points, thereby minimizing the overall impact on the body. Despite its importance, our knowledge of mucosal immunity remains incomplete, necessitating further research. The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has underscored the critical role of mucosal immunity in disease prevention and treatment. This systematic review focuses on the dynamic interactions between mucosa-associated lymphoid structures and related diseases. We delve into the basic structures and functions of these lymphoid tissues during disease processes and explore the intricate regulatory networks and mechanisms involved. Additionally, we summarize novel therapies and clinical research advances in the prevention of mucosal immunity-related diseases. The review also addresses the challenges in developing mucosal vaccines, which aim to induce specific immune responses while maintaining tolerance to non-pathogenic microbes. Innovative therapies, such as nanoparticle vaccines and inhalable antibodies, show promise in enhancing mucosal immunity and offer potential for improved disease prevention and treatment.
Collapse
Affiliation(s)
- Xiaoxue Zhou
- School of Medicine, Hangzhou City University, Hangzhou, China
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yuchen Wu
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhipeng Zhu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Chu Lu
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Chunwu Zhang
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Linghui Zeng
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Feng Xie
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China.
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Fangfang Zhou
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
20
|
Spalinger MR, Sanati G, Chatterjee P, Hai R, Li J, Santos AN, Nordgren TM, Tremblay ML, Eckmann L, Hanson E, Scharl M, Wu X, Boland BS, McCole DF. Tofacitinib Mitigates the Increased SARS-CoV-2 Infection Susceptibility Caused by an IBD Risk Variant in the PTPN2 Gene. Cell Mol Gastroenterol Hepatol 2025; 19:101447. [PMID: 39756517 PMCID: PMC11953972 DOI: 10.1016/j.jcmgh.2024.101447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/07/2025]
Abstract
BACKGROUND & AIMS Coronavirus disease (COVID-19), caused by severe acquired respiratory syndrome-Coronavirus-2 (SARS-CoV-2), triggered a global pandemic with severe medical and socioeconomic consequences. Although fatality rates are higher among the elderly and those with underlying comorbidities, host factors that promote susceptibility to SARS-CoV-2 infection and severe disease are poorly understood. Although individuals with certain autoimmune/inflammatory disorders show increased susceptibility to viral infections, there is incomplete knowledge of SARS-CoV-2 susceptibility in these diseases. The aim of our study was to investigate whether the autoimmunity risk gene, PTPN2, which also confers elevated risk to develop inflammatory bowel disease, affects susceptibility to SARS-CoV-2 viral uptake. METHODS Using samples from PTPN2 genotyped patients with inflammatory bowel disease, PTPN2-deficient mice, and human intestinal and lung epithelial cell lines, we investigated how PTPN2 affects expression of the SARS-CoV-2 receptor angiotensin converting enzyme 2 (ACE2), and uptake of virus-like particles expressing the SARS-CoV2 spike protein and live SARS-CoV-2 virus. RESULTS We report that the autoimmune PTPN2 loss-of-function risk variant rs1893217 promotes expression of the SARS-CoV-2 receptor, ACE2, and increases cellular entry of SARS-CoV-2 spike protein and live virus. Elevated ACE2 expression and viral entry were mediated by increased Janus kinase-signal transducers and activators of transcription signaling and were reversed by the Janus kinase inhibitor, tofacitinib. CONCLUSION Collectively, our findings uncover a novel risk biomarker for increased expression of the SARS-CoV-2 receptor and viral entry, and identify a clinically approved therapeutic agent to mitigate this risk.
Collapse
Affiliation(s)
- Marianne R Spalinger
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California; Department of Gastroenterology and Hepatology, University Hospital Zurich, and University of Zurich, Zurich, Switzerland
| | - Golshid Sanati
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California
| | - Pritha Chatterjee
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California
| | - Rong Hai
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, California
| | - Jiang Li
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California
| | - Alina N Santos
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California
| | - Tara M Nordgren
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California; Current position: College of Veterinary Medicine, Colorado State University, Fort Collins, Colorado
| | - Michel L Tremblay
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Lars Eckmann
- Division of Gastroenterology, University of California San Diego, La Jolla, California
| | - Elaine Hanson
- Division of Gastroenterology, University of California San Diego, La Jolla, California
| | - Michael Scharl
- Department of Gastroenterology and Hepatology, University Hospital Zurich, and University of Zurich, Zurich, Switzerland
| | - Xiwei Wu
- Integrative Genomics Core, Beckman Research Institute of City of Hope, Monrovia, California
| | - Brigid S Boland
- Division of Gastroenterology, University of California San Diego, La Jolla, California
| | - Declan F McCole
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California.
| |
Collapse
|
21
|
Thankamani K, Shubham D, Kandpal G, Isaac AM, Kavitha MS, Raj VS. Middle East respiratory syndrome coronavirus (MERS-CoV) internalization does not rely on DPP4 cytoplasmic tail signaling. NPJ VIRUSES 2024; 2:67. [PMID: 40295839 PMCID: PMC11721135 DOI: 10.1038/s44298-024-00080-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/05/2024] [Indexed: 04/30/2025]
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) infects respiratory epithelial cells in humans and camels by binding to dipeptidyl peptidase 4 (DPP4) as its entry receptor. DPP4 is a multifunctional type II membrane protein with a long ectodomain and a short six-amino-acid (aa) cytoplasmic tail. MERS-CoV is known to bind to the ectodomain of DPP4 to gain entry into the host cell. However, the role of the cytoplasmic tail in the entry process remains unclear. Here, we show that mutating or deleting individual aa residues or the entire cytoplasmic tail of DPP4 (ΔcytDPP4) does not completely prevent DPP4 from being inserted into the membrane or from allowing the binding of the MERS-CoV spike protein and pseudovirus infection. Although two mutants, ΔcytDPP4, and a single aa deleted DPP4 (ΔK6DPP4) displayed less surface presentation than wtDPP4, the spike protein could still bind and localize on different DPP4 mutants. The reduced surface expression of ΔK6DPP4 might be due to the extended transmembrane domain, which is altered by the hydrophobic tryptophan (W) residue adjacent to the deleted K6. Furthermore, HEK293T cells transiently expressing DPP4 mutants were permeable to MERS-CoV pseudovirus infection. Not only transiently expressing cells but also cells stably expressing the ΔcytDPP4 mutant were susceptible to MERS-CoV pseudoviral infection, indicating that the DPP4 cytoplasmic tail is not required for MERS-CoV entry. Overall, these data suggest that, although MERS-CoV binds to DPP4, other host factors may need to interact with DPP4 or the spike protein to trigger internalization.
Collapse
Affiliation(s)
- Karthika Thankamani
- Virology Scientific Research (VSR) Laboratory, School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram, Kerala, India
| | - Divakar Shubham
- Virology Scientific Research (VSR) Laboratory, School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram, Kerala, India
| | - Gayatri Kandpal
- Virology Scientific Research (VSR) Laboratory, School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram, Kerala, India
| | - Ann Mary Isaac
- Virology Scientific Research (VSR) Laboratory, School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram, Kerala, India
| | - Modenkattil Sethumadhavan Kavitha
- Virology Scientific Research (VSR) Laboratory, School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram, Kerala, India
| | - V Stalin Raj
- Virology Scientific Research (VSR) Laboratory, School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram, Kerala, India.
| |
Collapse
|
22
|
Chukwu EE, Okwuraiwe A, Kunle-Ope CN, Igbasi UT, Onyejepu N, Osuolale K, Shaibu JO, Ojogbede A, Abuh D, Afocha E, Awoderu O, Obiozor K, Mustapha A, Audu R. Surveillance of public health pathogens in Lagos wastewater canals: a cross-sectional study. BMC Public Health 2024; 24:3590. [PMID: 39725906 DOI: 10.1186/s12889-024-21157-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Wastewater-based epidemiology (WBE) is already being adopted for the surveillance of health conditions of communities and shows great potential for the monitoring of infectious pathogens of public health importance. There is however paucity of robust data to support extensive WBE in Nigeria. This study evaluated the prevalence of clinically relevant infectious pathogens and provided antimicrobial resistance profiles of bacteria pathogens in wastewater canals in Lagos State at a single point in time. METHODS This is a cross-sectional survey of wastewater canals in 20 Local Government Areas (LGAs) in Lagos State for detection of bacteria pathogens of public health importance including non-tuberculous mycobacteria and SARS-Cov-2 virus using cultural analysis and conventional Polymerase Chain Reaction (PCR) techniques. Descriptive epidemiological survey of communities around the canals was done using questionnaires to assess exposure pathways. Statistical analysis was done using SPSS version 27 while P value of < 0.05 was considered as significant. RESULTS Three thousand and fifty-four (3054) questionnaires were administered to 1215 (39.8%) females and 1658 (54.3%) males in communities situated around 40 canals in 20 LGAs. Although majority (81.8%) reported using water closet toilet system and pit latrine (12.5%), a few of them admitted to open defaecation [101 (3.3%)] while 299 (9.8%) engaged in open field waste disposal. SARS-CoV-2 was not detected from wastewater in this study. Two mycobacterial species that included Mycobacterium fortitium group (13, 32.5%) and Mycobacterium kansasii (11, 27.5%) were identified in 15 out of 20 LGAs sampled. A total of 123 bacteria pathogens were isolated across the 40 canals. Prominent enteropathogens isolated included Escheriachia coli (28.5%), Salmonella spp (16.3%), Vibro cholerae (10.6%) and Shigella spp (5.7%). Extended spectrum beta-lactamase genes were prominent (87.5%) in the wastewater samples with almost a half (42.5%) of the canals containing both SHV and CTX-M. CONCLUSION This study highlights the presence of pathogens with potential to cause epidemic in wastewater canals in Lagos State and provides evidence to inform policy and strategies for wastewater monitoring and treatment. Further studies involving longitudinal monitoring of time-based variations is needed to identify trends in pathogen loads and AMR patterns over time.
Collapse
Affiliation(s)
- Emelda E Chukwu
- Center for Infectious Diseases Research, Nigerian Institute of Medical Research, Yaba, Lagos State, Nigeria.
- Department of Medical Laboratory Sciences, Faculty of Sciences, Trinity University, Sabo, Yaba, Lagos State, Nigeria.
- Antimicrobial Resistance and Stewardship Research Group (AMRS-RG), Nigerian Institute of Medical Research, Yaba, Lagos State, Nigeria.
| | - Azuka Okwuraiwe
- Center for Human Virology and Genomics, Nigerian Institute of Medical Research, Yaba, Lagos State, Nigeria
| | - Chioma N Kunle-Ope
- Center for Tuberculosis Research, Nigerian Institute of Medical Research, Yaba, Lagos State, Nigeria
| | - Uche T Igbasi
- Center for Infectious Diseases Research, Nigerian Institute of Medical Research, Yaba, Lagos State, Nigeria
| | - Nneka Onyejepu
- Center for Tuberculosis Research, Nigerian Institute of Medical Research, Yaba, Lagos State, Nigeria
| | - Kazeem Osuolale
- Monitoring and Evaluation Unit, Nigerian Institute of Medical Research, Yaba, , Lagos State, Nigeria
- Antimicrobial Resistance and Stewardship Research Group (AMRS-RG), Nigerian Institute of Medical Research, Yaba, Lagos State, Nigeria
| | - Joseph O Shaibu
- Center for Human Virology and Genomics, Nigerian Institute of Medical Research, Yaba, Lagos State, Nigeria
| | - Adewale Ojogbede
- Public Health and Epidemiology Department, Nigerian Institute of Medical Research, Yaba, Lagos State, Nigeria
| | - Dennis Abuh
- Center for Infectious Diseases Research, Nigerian Institute of Medical Research, Yaba, Lagos State, Nigeria
- Antimicrobial Resistance and Stewardship Research Group (AMRS-RG), Nigerian Institute of Medical Research, Yaba, Lagos State, Nigeria
| | - Ebelechukwu Afocha
- Center for Infectious Diseases Research, Nigerian Institute of Medical Research, Yaba, Lagos State, Nigeria
| | - Oluwatoyin Awoderu
- Center for Infectious Diseases Research, Nigerian Institute of Medical Research, Yaba, Lagos State, Nigeria
- Antimicrobial Resistance and Stewardship Research Group (AMRS-RG), Nigerian Institute of Medical Research, Yaba, Lagos State, Nigeria
| | - Kelechi Obiozor
- Center for Infectious Diseases Research, Nigerian Institute of Medical Research, Yaba, Lagos State, Nigeria
- Antimicrobial Resistance and Stewardship Research Group (AMRS-RG), Nigerian Institute of Medical Research, Yaba, Lagos State, Nigeria
| | - Adetoun Mustapha
- Center for Infectious Diseases Research, Nigerian Institute of Medical Research, Yaba, Lagos State, Nigeria
| | - Rosemary Audu
- Center for Human Virology and Genomics, Nigerian Institute of Medical Research, Yaba, Lagos State, Nigeria
- Antimicrobial Resistance and Stewardship Research Group (AMRS-RG), Nigerian Institute of Medical Research, Yaba, Lagos State, Nigeria
| |
Collapse
|
23
|
Case JB, Sanapala S, Dillen C, Rhodes V, Zmasek C, Chicz TM, Switzer CE, Scheaffer SM, Georgiev G, Jacob-Dolan C, Hauser BM, Dos Anjos DCC, Adams LJ, Soudani N, Liang CY, Ying B, McNamara RP, Scheuermann RH, Boon ACM, Fremont DH, Whelan SPJ, Schmidt AG, Sette A, Grifoni A, Frieman MB, Diamond MS. A trivalent mucosal vaccine encoding phylogenetically inferred ancestral RBD sequences confers pan-Sarbecovirus protection in mice. Cell Host Microbe 2024; 32:2131-2147.e8. [PMID: 39561781 PMCID: PMC11637904 DOI: 10.1016/j.chom.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/13/2024] [Accepted: 10/28/2024] [Indexed: 11/21/2024]
Abstract
The continued emergence of SARS-CoV-2 variants and the threat of future Sarbecovirus zoonoses have spurred the design of vaccines that can induce broad immunity against multiple coronaviruses. Here, we use computational methods to infer ancestral phylogenetic reconstructions of receptor binding domain (RBD) sequences across multiple Sarbecovirus clades and incorporate them into a multivalent adenoviral-vectored vaccine. Mice immunized with this pan-Sarbecovirus vaccine are protected in the upper and lower respiratory tracts against infection by historical and contemporary SARS-CoV-2 variants, SARS-CoV, and pre-emergent SHC014 and Pangolin/GD coronavirus strains. Using genetic and immunological approaches, we demonstrate that vaccine-induced protection unexpectedly is conferred principally by CD4+ and CD8+ T cell-mediated anamnestic responses. Importantly, prior mRNA vaccination or SARS-CoV-2 respiratory infection does not alter the efficacy of the mucosally delivered pan-Sarbecovirus vaccine. These data highlight the promise of a phylogenetic approach for antigen and vaccine design against existing and pre-emergent Sarbecoviruses with pandemic potential.
Collapse
Affiliation(s)
- James Brett Case
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shilpa Sanapala
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Carly Dillen
- Department of Microbiology and Immunology, Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Victoria Rhodes
- Department of Microbiology and Immunology, Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Christian Zmasek
- Department of Informatics, J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Taras M Chicz
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Charlotte E Switzer
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston 02115, MA, USA; Department of Bioengineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Suzanne M Scheaffer
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - George Georgiev
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Catherine Jacob-Dolan
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Blake M Hauser
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Lucas J Adams
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nadia Soudani
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chieh-Yu Liang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Baoling Ying
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ryan P McNamara
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | | | - Adrianus C M Boon
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daved H Fremont
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sean P J Whelan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Aaron G Schmidt
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Alessandro Sette
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92037, USA
| | - Alba Grifoni
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Matthew B Frieman
- Department of Microbiology and Immunology, Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Vaccines and Immunity against Microbial Pathogens, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
24
|
Yan C, Liu L, Zhang T, Hu Y, Pan H, Cui C. A comprehensive review on human enteric viruses in water: Detection methods, occurrence, and microbial risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136373. [PMID: 39531817 DOI: 10.1016/j.jhazmat.2024.136373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 09/28/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Human enteric viruses, such as norovirus, adenovirus, rotavirus, and enterovirus, are crucial targets in controlling biological contamination in water systems worldwide. Due to their small size and low concentrations in water, effective virus concentration and detection methods are essential for ensuring microbial safety. This paper reviews the typical and innovative methods for concentrating and detecting human enteric viruses, highlights viral contamination levels across different water bodies, and discusses the removal efficiencies of virus through various treatment technologies. The application and current gaps of quantitative microbial risk assessment (QMRA) for evaluating the risks of human enteric viruses is also explored. Innovative methods such as digital polymerase chain reaction and isothermal amplification show promise in sensitivity and convenience, however, distinguishing between infectious and non-infectious viruses should be a key focus of future detection techniques. The highest concentrations of human enteric viruses were detected in wastewater, ranging from 103 to 106 copies/L, while drinking water showed significantly lower concentrations, often below 102 copies/L. QMRA studies suggest that exposure to human enteric viruses, whether through contaminated drinking water, occupational contact, or accidental wastewater discharge, could result in a life expectancy of 1.96 × 10-4 to 4.53 × 10-1 days/year.
Collapse
Affiliation(s)
- Chicheng Yan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lingli Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Tingyuan Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yaru Hu
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Hongchen Pan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Changzheng Cui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
25
|
Xiang Q, Wouters C, Chang P, Lu YN, Liu M, Wang H, Yang J, Pekosz A, Zhang Y, Wang J. Ubiquitin Ligase ITCH Regulates Life Cycle of SARS-CoV-2 Virus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.04.624804. [PMID: 39677672 PMCID: PMC11642887 DOI: 10.1101/2024.12.04.624804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
SARS-CoV-2 infection poses a major threat to public health, and understanding the mechanism of viral replication and virion release would help identify therapeutic targets and effective drugs for combating the virus. Herein, we identified E3 ubiquitin-protein ligase Itchy homolog (ITCH) as a central regulator of SARS-CoV-2 at multiple steps and processes. ITCH enhances the ubiquitination of viral envelope and membrane proteins and mutual interactions of structural proteins, thereby aiding in virion assembly. ITCH-mediated ubiquitination also enhances the interaction of viral proteins to the autophagosome receptor p62, promoting their autophagosome-dependent secretion. Additionally, ITCH disrupts the trafficking of the protease furin and the maturation of cathepsin L, thereby suppressing their activities in cleaving and destabilizing the viral spike protein. Furthermore, ITCH exhibits robust activation during the SARS-CoV-2 replication stage, and SARS-CoV-2 replication is significantly decreased by genetic or pharmacological inhibition of ITCH. These findings provide new insights into the mechanisms of the SARS-CoV-2 life cycle and identify a potential target for developing treatments for the virus-related diseases.
Collapse
Affiliation(s)
- Qiwang Xiang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Camille Wouters
- Department of Molecular Microbiology & Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Peixi Chang
- Department of Veterinary Medicine, University of Maryland, College Park, MD, 20742, USA
| | - Yu-Ning Lu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Mingming Liu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Haocheng Wang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Junqin Yang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Andrew Pekosz
- Department of Molecular Microbiology & Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Yanjin Zhang
- Department of Veterinary Medicine, University of Maryland, College Park, MD, 20742, USA
| | - Jiou Wang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
- Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| |
Collapse
|
26
|
Chio CC, Chien JC, Chan HW, Huang HI. Overview of the Trending Enteric Viruses and Their Pathogenesis in Intestinal Epithelial Cell Infection. Biomedicines 2024; 12:2773. [PMID: 39767680 PMCID: PMC11672972 DOI: 10.3390/biomedicines12122773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/08/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
Enteric virus infection is a major public health issue worldwide. Enteric viruses have become epidemic infectious diseases in several countries. Enteric viruses primarily infect the gastrointestinal tract and complete their life cycle in intestinal epithelial cells. These viruses are transmitted via the fecal-oral route through contaminated food, water, or person to person and cause similar common symptoms, including vomiting, abdominal pain, and diarrhea. Diarrheal disease is the third leading cause of death in children under five years of age, accounting for approximately 1.7 billion cases and 443,832 deaths annually in this age group. Additionally, some enteric viruses can invade other tissues, leading to severe conditions and even death. The pathogenic mechanisms of enteric viruses are also unclear. In this review, we organized the research on trending enteric virus infections, including rotavirus, norovirus, adenovirus, Enterovirus-A71, Coxsackievirus A6, and Echovirus 11. Furthermore, we discuss the gastrointestinal effects and pathogenic mechanisms of SARS-CoV-2 in intestinal epithelial cells, given the gastrointestinal symptoms observed during the COVID-19 pandemic. We conducted a literature review on their pathogenic mechanisms, which serves as a guide for formulating future treatment strategies for enteric virus infections.
Collapse
Affiliation(s)
- Chi-Chong Chio
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan; (C.-C.C.); (J.-C.C.); (H.-W.C.)
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
| | - Jou-Chun Chien
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan; (C.-C.C.); (J.-C.C.); (H.-W.C.)
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
| | - Hio-Wai Chan
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan; (C.-C.C.); (J.-C.C.); (H.-W.C.)
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
| | - Hsing-I Huang
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan; (C.-C.C.); (J.-C.C.); (H.-W.C.)
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 33302, Taiwan
- Department of Pediatrics, Linkou Chang Gung Memorial Hospital, Kwei-Shan, Taoyuan 33305, Taiwan
| |
Collapse
|
27
|
Mao B, Le-Trilling VTK, Tang H, Hu J, Schmitz MS, Barbet K, Xu D, Wei Z, Guo B, Mennerich D, Yao C, Liu J, Li Z, Wan Y, Zhang X, Wang K, Tang N, Yu Z, Trilling M, Lin Y. Diphyllin elicits a doubled-pronged attack on the entry of SARS-CoV-2 by inhibiting cathepsin L and furin. Virus Res 2024; 350:199485. [PMID: 39424146 PMCID: PMC11532987 DOI: 10.1016/j.virusres.2024.199485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the coronavirus disease 2019 (COVID-19) pandemic, posing serious threats to global health. Effective broad-spectrum antiviral drugs for the treatment of COVID-19 are not sufficiently available. In the present study, we investigated the antiviral activity of the natural lignan diphyllin (PubChem CID 100492) against different SARS-CoV-2 variants and explored the underlying molecular mechanisms. We found that diphyllin dose-dependently inhibits the SARS-CoV-2 spike (S)-mediated entry into different types of cells. The potent inhibition was evident against spike proteins derived from the original SARS-CoV-2 and from variants of concern such as Alpha, Beta, Delta or Omicron. Accordingly, diphyllin also significantly inhibited the in vitro infection of a clinical SARS-CoV-2 virus isolate. Mechanistically, diphyllin simultaneously inhibited the endosomal entry of SARS-CoV-2 by neutralizing the endosomal acidification and reducing the activity of the cysteine protease cathepsin L (CTSL) as well as S-meditated cell surface entry by impairing furin activity. Collectively, our findings establish diphyllin as novel inhibitor of CTSL and furin proteases, resulting in a double-pronged attack on SARS-CoV-2 entry along endosomal as well as cell surface routes. Therefore, diphyllin has the potential to be advanced as an inhibitor of SARS-CoV-2 entry.
Collapse
Affiliation(s)
- Binli Mao
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing 400016, China; Department of Blood Transfusion, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Vu Thuy Khanh Le-Trilling
- Institute for the Research on HIV and AIDS-associated Diseases, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany; Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany
| | - Haihuan Tang
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Jie Hu
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing 400016, China; Department of Laboratory Medicine, Bishan Hospital of Chongqing Medical University, Chongqing 402760, China
| | - Mona S Schmitz
- Department of Pulmonary Medicine, University Medical Center Essen, Ruhrlandklinik, Essen 45239, Germany
| | - Kimberly Barbet
- Department of Pulmonary Medicine, University Medical Center Essen, Ruhrlandklinik, Essen 45239, Germany
| | - Dan Xu
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Zhen Wei
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Beinu Guo
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Denise Mennerich
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany
| | - Chun Yao
- Chongqing Yucai Secondary School, Chongqing 400050, China
| | - Jinxin Liu
- Chongqing Yucai Secondary School, Chongqing 400050, China
| | - Zhenghan Li
- Chongqing Yucai Secondary School, Chongqing 400050, China
| | - Yushun Wan
- College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xiaoyong Zhang
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Kai Wang
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Ni Tang
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Zebo Yu
- Department of Blood Transfusion, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Mirko Trilling
- Institute for the Research on HIV and AIDS-associated Diseases, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany; Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany.
| | - Yong Lin
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
28
|
Criscuolo E, Giuliani B, Castelli M, Cavallaro M, Sisti S, Burioni R, Ferrari D, Mancini N, Locatelli M, Clementi N. Single spike mutation differentiating XBB.1 and XBB.1.5 enhances SARS-CoV-2 cell-to-cell transmission and facilitates serum-mediated enhancement. Front Immunol 2024; 15:1501200. [PMID: 39664381 PMCID: PMC11631925 DOI: 10.3389/fimmu.2024.1501200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/06/2024] [Indexed: 12/13/2024] Open
Abstract
Introduction The ongoing emergence of SARS-CoV-2 variants poses significant challenges to existing therapeutics. The spike (S) glycoprotein is central to both viral entry and cell-to-cell transmission via syncytia formation, a process that confers resistance to neutralizing antibodies. The mechanisms underlying this resistance, particularly in relation to spike-mediated fusion, remain poorly understood. Methods We analyzed two clinical SARS-CoV-2 isolates differing by a single amino acid substitution in the S protein. Using biochemical and cell-based assays, we evaluated entry kinetics, syncytia formation, and the neutralizing efficacy of convalescent sera. These parameters were further correlated with S-mediated cell-cell fusion activity. Results The single amino acid substitution significantly altered entry kinetics and enhanced syncytia formation. This modification did not diminished the neutralizing capacity of convalescent sera, but it increased the efficiency of S-induced cell-cell fusion. These findings highlight the mutation's impact on viral transmissibility and immune evasion. Discussion Our study demonstrates that even minor changes in the S protein can profoundly influence SARS-CoV-2 transmissibility and resistance to antibody-mediated neutralization. Understanding the molecular basis of S-mediated cell-cell fusion is crucial for anticipating the impact of emerging variants and developing next-generation therapeutic strategies. These insights provide a framework for predicting variant fitness and optimizing treatment approaches against future SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Elena Criscuolo
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
| | - Benedetta Giuliani
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
| | - Matteo Castelli
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
| | - Mattia Cavallaro
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
| | - Sofia Sisti
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
| | - Roberto Burioni
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
| | | | - Nicasio Mancini
- Laboratory of Medical Microbiology and Virology, Fondazione Macchi University Hospital, Varese, Italy
| | | | - Nicola Clementi
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
- IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
29
|
Stearns K, Lampe G, Hanan R, Marcink T, Niewiesk S, Sternberg SH, Greninger AL, Porotto M, Moscona A. Human parainfluenza virus 3 field strains undergo extracellular fusion protein cleavage to activate entry. mBio 2024; 15:e0232724. [PMID: 39382296 PMCID: PMC11559058 DOI: 10.1128/mbio.02327-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 08/23/2024] [Indexed: 10/10/2024] Open
Abstract
Human parainfluenza virus 3 (HPIV3) infection is driven by the coordinated action of viral surface glycoproteins hemagglutinin-neuraminidase (HN) and fusion protein (F). Receptor-engaged HN activates F to insert into the target cell membrane and drive virion-cell membrane fusion. For F to mediate entry, its precursor (F0) must first be cleaved by host proteases. F0 cleavage has been thought to be executed during viral glycoprotein transit through the trans-Golgi network by the ubiquitously expressed furin because F0 proteins of laboratory-adapted viruses contain a furin recognition dibasic cleavage motif RXKR around residue 108. Here, we show that the F proteins of field strains have a different cleavage motif from laboratory-adapted strains and are cleaved by unidentified proteases expressed in only a narrow subset of cell types. We demonstrate that extracellular serine protease inhibitors block HPIV3 F0 cleavage for field strains, suggesting F0 cleavage occurs at the cell surface facilitated by transmembrane proteases. Candidate proteases that may process HPIV3 F in vivo were identified by a genome-wide CRISPRa screen in HEK293/dCas9-VP64 + MPH cells. The lung-expressed extracellular serine proteases TMPRSS2 and TMPRSS13 are both sufficient to cleave HPIV3 F and enable infectious virus release by otherwise non-permissive cells. Our findings support an alternative mechanism of F activation in vivo, reliant on extracellular membrane-bound serine proteases expressed in a narrow subset of cells. The proportion of HPIV3 F proteins cleaved and infectious virus release is determined by host cell expression of requisite proteases, allowing just-in-time activation of F and positioning F cleavage as another key regulator of HPIV3 spread. IMPORTANCE Enveloped viruses cause a wide range of diseases in humans. At the first step of infection, these viruses must fuse their envelope with a cell membrane to initiate infection. This fusion is mediated by viral proteins that require a critical activating cleavage event. It was previously thought that for parainfluenza virus 3, an important cause of respiratory disease and a representative of a group of important pathogens, this cleavage event was mediated by furin in the cell secretory pathways prior to formation of the virions. We show that this is only true for laboratory strain viruses, and that clinical viruses that infect humans utilize extracellular proteases that are only made by a small subset of cells. These results highlight the importance of studying authentic clinical viruses that infect human tissues for understanding natural infection.
Collapse
Affiliation(s)
- Kyle Stearns
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
- Center for Host–Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
- Department of Physiology & Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - George Lampe
- Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Rachel Hanan
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
- Center for Host–Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Tara Marcink
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
- Center for Host–Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Stefan Niewiesk
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Samuel H. Sternberg
- Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Alexander L. Greninger
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Matteo Porotto
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
- Center for Host–Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Anne Moscona
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
- Center for Host–Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
- Department of Physiology & Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
- Department of Microbiology & Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
30
|
Soudani N, Bricker TL, Darling T, Seehra K, Patel N, Guebre-Xabier M, Smith G, Davis-Gardner M, Suthar MS, Ellebedy AH, Boon ACM. Immunogenicity and efficacy of XBB.1.5 rS vaccine against the EG.5.1 variant of SARS-CoV-2 in Syrian hamsters. J Virol 2024; 98:e0052824. [PMID: 39230305 PMCID: PMC11494984 DOI: 10.1128/jvi.00528-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/25/2024] [Indexed: 09/05/2024] Open
Abstract
The continued emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants necessitates updating coronavirus disease 2019 (COVID-19) vaccines to match circulating strains. The immunogenicity and efficacy of these vaccines must be tested in pre-clinical animal models. In Syrian hamsters, we measured the humoral and cellular immune response after immunization with the nanoparticle recombinant Spike (S) protein-based COVID-19 vaccine (Novavax, Inc.). We also compared the efficacy of the updated monovalent XBB.1.5 variant vaccine with previous COVID-19 vaccines for the induction of XBB.1.5 and EG.5.1 neutralizing antibodies and protection against a challenge with the EG.5.1 variant of SARS-CoV-2. Immunization induced high levels of S-specific IgG and IgA antibody-secreting cells and antigen-specific CD4+ T cells. The XBB.1.5 and XBB.1.16 vaccines, but not the Prototype vaccine, induced high levels of neutralizing antibodies against the XBB.1.5, EG.5.1, and JN.1 variants of SARS-CoV-2. Upon challenge with the Omicron EG.5.1 variant, the XBB.1.5 and XBB.1.16 vaccines reduced the virus load in the lungs, nasal turbinates, trachea, and nasal washes. The bivalent vaccine (Prototype rS + BA.5 rS) continued to offer protection in the trachea and lungs, but protection was reduced in the upper airways. By contrast, the monovalent Prototype vaccine no longer offered good protection, and breakthrough infections were observed in all animals and tissues. Thus, based on these study results, the protein-based XBB.1.5 vaccine is immunogenic and increased the breadth of protection against the Omicron EG.5.1 variant in the Syrian hamster model. IMPORTANCE As SARS-CoV-2 continues to evolve, there is a need to assess the immunogenicity and efficacy of updated vaccines against newly emerging variants in pre-clinical models such as mice and hamsters. Here, we compared the immunogenicity and efficacy between the updated XBB.1.5, the original Prototype Wuhan-1, and the bivalent Prototype + BA.5 vaccine against a challenge with the EG.5.1 Omicron variant of SARS-CoV-2 in hamsters. The XBB.1.5 and bivalent vaccine, but not the Prototype, induced serum-neutralizing antibodies against EG.5.1, albeit the titers were higher in the XBB.1.5 immunized hamsters. The presence of neutralizing antibodies was associated with complete protection against EG.5.1 infection in the lower airways and reduced virus titers in the upper airways. Compared with the bivalent vaccine, immunization with XBB.1.5 improved viral control in the nasal turbinates. Together, our data show that the updated vaccine is immunogenic and that it offers better protection against recent variants of SARS-CoV-2.
Collapse
MESH Headings
- Animals
- SARS-CoV-2/immunology
- COVID-19/prevention & control
- COVID-19/immunology
- COVID-19/virology
- Mesocricetus
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/blood
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/administration & dosage
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/genetics
- Cricetinae
- Immunogenicity, Vaccine
- Disease Models, Animal
- Vaccine Efficacy
- Immunoglobulin G/blood
- Immunoglobulin G/immunology
- Female
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
Collapse
Affiliation(s)
- Nadia Soudani
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Traci L. Bricker
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tamarand Darling
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kuljeet Seehra
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nita Patel
- Novavax Inc., Gaithersburg, Maryland, USA
| | | | - Gale Smith
- Novavax Inc., Gaithersburg, Maryland, USA
| | - Meredith Davis-Gardner
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta, Department of Pediatrics, Emory Vaccine Center, Emory National Primate Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mehul S. Suthar
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta, Department of Pediatrics, Emory Vaccine Center, Emory National Primate Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Ali H. Ellebedy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Adrianus C. M. Boon
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
31
|
Barreto-Duran E, Synowiec A, Szczepański A, Gałuszka-Bulaga A, Węglarczyk K, Baj-Krzyworzeka M, Siedlar M, Bochenek M, Dufva M, Dogan AA, Lenart M, Pyrc K. Development of an intestinal mucosa ex vivo co-culture model to study viral infections. J Virol 2024; 98:e0098724. [PMID: 39212448 PMCID: PMC11495016 DOI: 10.1128/jvi.00987-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024] Open
Abstract
Studying viral infections necessitates well-designed cell culture models to deepen our understanding of diseases and develop effective treatments. In this study, we present a readily available ex vivo 3D co-culture model replicating the human intestinal mucosa. The model combines fully differentiated human intestinal epithelium (HIE) with human monocyte-derived macrophages (hMDMs) and faithfully mirrors the in vivo structural and organizational properties of intestinal mucosal tissues. Specifically, it mimics the lamina propria, basement membrane, and the air-exposed epithelial layer, enabling the pioneering observation of macrophage migration through the tissue to the site of viral infection. In this study, we applied the HIE-hMDMs model for the first time in viral infection studies, infecting the model with two globally significant viruses: severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and human norovirus GII.4. The results demonstrate the model's capability to support the replication of both viruses and show the antiviral role of macrophages, determined by their migration to the infection site and subsequent direct contact with infected epithelial cells. In addition, we evaluated the production of cytokines and chemokines in the intestinal niche, observing an increased interleukin-8 production during infection. A parallel comparison using a classical in vitro cell line model comprising Caco-2 and THP-1 cells for SARS-CoV-2 experiments confirmed the utility of the HIE-hMDMs model in viral infection studies. Our data show that the ex vivo tissue models hold important implications for advances in virology research.IMPORTANCEThe fabrication of intricate ex vivo tissue models holds important implications for advances in virology research. The co-culture model presented here provides distinct spatial and functional attributes not found in simplified models, enabling the evaluation of macrophage dynamics under severe acute respiratory syndrome coronavirus 2 and human norovirus (HuNoV) infections in the intestine. Moreover, these models, comprised solely of primary cells, facilitate the study of difficult-to-replicate viruses such as HuNoV, which cannot be studied in cell line models, and offer the opportunity for personalized treatment evaluations using patient cells. Similar co-cultures have been established for the study of bacterial infections and different characteristics of the intestinal tissue. However, to the best of our knowledge, a similar intestinal model for the study of viral infections has not been published before.
Collapse
Affiliation(s)
- Emilia Barreto-Duran
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Aleksandra Synowiec
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Artur Szczepański
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Adrianna Gałuszka-Bulaga
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Kazimierz Węglarczyk
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Monika Baj-Krzyworzeka
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Maciej Siedlar
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Michał Bochenek
- Flow Cytometry Facility, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Martin Dufva
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Asli Aybike Dogan
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Marzena Lenart
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Krzysztof Pyrc
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
32
|
Guarienti FA, Gonçalves JIB, Gonçalves JB, Antônio Costa Xavier F, Marinowic D, Machado DC. COVID-19: a multi-organ perspective. Front Cell Infect Microbiol 2024; 14:1425547. [PMID: 39492990 PMCID: PMC11527788 DOI: 10.3389/fcimb.2024.1425547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/18/2024] [Indexed: 11/05/2024] Open
Abstract
In this mini review, we explore the complex network of inflammatory reactions incited by SARS-CoV-2 infection, which extends its reach well beyond the respiratory domain to influence various organ systems. Synthesizing existing literature, it elucidates how the hyperinflammation observed in COVID-19 patients affects multiple organ systems leading to physiological impairments that can persist over long after the resolution of infection. By exploring the systemic manifestations of this inflammatory cascade, from acute respiratory distress syndrome (ARDS) to renal impairment and neurological sequelae, the review highlights the profound interplay between inflammation and organ dysfunction. By synthesizing recent research and clinical observations, this mini review aims to provide an overview of the systemic interactions and complications associated with COVID-19, underscoring the need for an integrated approach to treatment and management. Understanding these systemic effects is crucial for improving patient outcomes and preparing for future public health challenges.
Collapse
Affiliation(s)
- Fabiana Amaral Guarienti
- Graduate Program in Biomedical Gerontology, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - João Ismael Budelon Gonçalves
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Júlia Budelon Gonçalves
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Fernando Antônio Costa Xavier
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Daniel Marinowic
- Graduate Program in Biomedical Gerontology, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Denise Cantarelli Machado
- Graduate Program in Biomedical Gerontology, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| |
Collapse
|
33
|
Doyle CA, Busey GW, Iobst WH, Kiessling V, Renken C, Doppalapudi H, Stremska ME, Manjegowda MC, Arish M, Wang W, Naphade S, Kennedy J, Bloyet LM, Thompson CE, Rothlauf PW, Stipes EJ, Whelan SPJ, Tamm LK, Kreutzberger AJB, Sun J, Desai BN. Endosomal fusion of pH-dependent enveloped viruses requires ion channel TRPM7. Nat Commun 2024; 15:8479. [PMID: 39353909 PMCID: PMC11445543 DOI: 10.1038/s41467-024-52773-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/19/2024] [Indexed: 10/03/2024] Open
Abstract
The majority of viruses classified as pandemic threats are enveloped viruses which enter the cell through receptor-mediated endocytosis and take advantage of endosomal acidification to activate their fusion machinery. Here we report that the endosomal fusion of low pH-requiring viruses is highly dependent on TRPM7, a widely expressed TRP channel that is located on the plasma membrane and in intracellular vesicles. Using several viral infection systems expressing the envelope glycoproteins of various viruses, we find that loss of TRPM7 protects cells from infection by Lassa, LCMV, Ebola, Influenza, MERS, SARS-CoV-1, and SARS-CoV-2. TRPM7 ion channel activity is intrinsically necessary to acidify virus-laden endosomes but is expendable for several other endosomal acidification pathways. We propose a model wherein TRPM7 ion channel activity provides a countercurrent of cations from endosomal lumen to cytosol necessary to sustain the pumping of protons into these virus-laden endosomes. This study demonstrates the possibility of developing a broad-spectrum, TRPM7-targeting antiviral drug to subvert the endosomal fusion of low pH-dependent enveloped viruses.
Collapse
Affiliation(s)
- Catherine A Doyle
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Gregory W Busey
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Wesley H Iobst
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Volker Kiessling
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA
| | - Chloe Renken
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Hansa Doppalapudi
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Marta E Stremska
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
- Department of Pathology and Immunology, Washington University, St. Louis, MO, USA
| | - Mohan C Manjegowda
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Mohd Arish
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Weiming Wang
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Nikegen Inc., Shanghai, China
| | - Shardul Naphade
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Joel Kennedy
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Louis-Marie Bloyet
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Cassandra E Thompson
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Paul W Rothlauf
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
- Program in Virology, Harvard Medical School, Boston, MA, USA
| | - Eric J Stipes
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Sean P J Whelan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lukas K Tamm
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA
| | - Alex J B Kreutzberger
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Boston Children's Hospital, Boston, MA, USA
| | - Jie Sun
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Bimal N Desai
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA.
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA.
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
34
|
Ying B, Liang CY, Desai P, Scheaffer SM, Elbashir SM, Edwards DK, Thackray LB, Diamond MS. Ipsilateral or contralateral boosting of mice with mRNA vaccines confers equivalent immunity and protection against a SARS-CoV-2 Omicron strain. J Virol 2024; 98:e0057424. [PMID: 39194250 PMCID: PMC11406931 DOI: 10.1128/jvi.00574-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
Boosting with mRNA vaccines encoding variant-matched spike proteins has been implemented to mitigate their reduced efficacy against emerging SARS-CoV-2 variants. Nonetheless, in humans, it remains unclear whether boosting in the ipsilateral or contralateral arm with respect to the priming doses impacts immunity and protection. Here, we boosted K18-hACE2 mice with either monovalent mRNA-1273 (Wuhan-1 spike) or bivalent mRNA-1273.214 (Wuhan-1 + BA.1 spike) vaccine in the ipsilateral or contralateral leg after a two-dose priming series with mRNA-1273. Boosting in the ipsilateral or contralateral leg elicited equivalent levels of serum IgG and neutralizing antibody responses against Wuhan-1 and BA.1. While contralateral boosting with mRNA vaccines resulted in the expansion of spike-specific B and T cells beyond the ipsilateral draining lymph node (DLN) to the contralateral DLN, administration of a third mRNA vaccine dose at either site resulted in similar levels of antigen-specific germinal center B cells, plasmablasts/plasma cells, T follicular helper cells, and CD8+ T cells in the DLNs and the spleen. Furthermore, ipsilateral and contralateral boosting with mRNA-1273 or mRNA-1273.214 vaccines conferred similar homologous or heterologous immune protection against SARS-CoV-2 BA.1 virus challenge with equivalent reductions in viral RNA and infectious virus in the nasal turbinates and lungs. Collectively, our data show limited differences in B and T cell immune responses after ipsilateral and contralateral site boosting by mRNA vaccines that do not substantively impact protection against an Omicron strain.IMPORTANCESequential boosting with mRNA vaccines has been an effective strategy to overcome waning immunity and neutralization escape by emerging SARS-CoV-2 variants. However, it remains unclear how the site of boosting relative to the primary vaccination series shapes optimal immune responses or breadth of protection against variants. In K18-hACE2 transgenic mice, we observed that intramuscular boosting with historical monovalent or variant-matched bivalent vaccines in the ipsilateral or contralateral limb elicited comparable levels of serum spike-specific antibody and antigen-specific B and T cell responses. Moreover, boosting on either side conferred equivalent protection against a SARS-CoV-2 Omicron challenge strain. Our data in mice suggest that the site of intramuscular boosting with an mRNA vaccine does not substantially impact immunity or protection against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Baoling Ying
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Chieh-Yu Liang
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Pritesh Desai
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Suzanne M Scheaffer
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | - Larissa B Thackray
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
35
|
Eisenreich W, Leberfing J, Rudel T, Heesemann J, Goebel W. Interactions of SARS-CoV-2 with Human Target Cells-A Metabolic View. Int J Mol Sci 2024; 25:9977. [PMID: 39337465 PMCID: PMC11432161 DOI: 10.3390/ijms25189977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Viruses are obligate intracellular parasites, and they exploit the cellular pathways and resources of their respective host cells to survive and successfully multiply. The strategies of viruses concerning how to take advantage of the metabolic capabilities of host cells for their own replication can vary considerably. The most common metabolic alterations triggered by viruses affect the central carbon metabolism of infected host cells, in particular glycolysis, the pentose phosphate pathway, and the tricarboxylic acid cycle. The upregulation of these processes is aimed to increase the supply of nucleotides, amino acids, and lipids since these metabolic products are crucial for efficient viral proliferation. In detail, however, this manipulation may affect multiple sites and regulatory mechanisms of host-cell metabolism, depending not only on the specific viruses but also on the type of infected host cells. In this review, we report metabolic situations and reprogramming in different human host cells, tissues, and organs that are favorable for acute and persistent SARS-CoV-2 infection. This knowledge may be fundamental for the development of host-directed therapies.
Collapse
Affiliation(s)
- Wolfgang Eisenreich
- Structural Membrane Biochemistry, Bavarian NMR Center (BNMRZ), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85747 Garching, Germany;
| | - Julian Leberfing
- Structural Membrane Biochemistry, Bavarian NMR Center (BNMRZ), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85747 Garching, Germany;
| | - Thomas Rudel
- Chair of Microbiology, Biocenter, University of Würzburg, 97074 Würzburg, Germany;
| | - Jürgen Heesemann
- Max von Pettenkofer Institute, Ludwig Maximilian University of Munich, 80336 München, Germany; (J.H.); (W.G.)
| | - Werner Goebel
- Max von Pettenkofer Institute, Ludwig Maximilian University of Munich, 80336 München, Germany; (J.H.); (W.G.)
| |
Collapse
|
36
|
Noh HE, Rha MS, Jeong Y, Kim D, Seo JH, Kang M, Moon UY, Kim CH, Cho HJ. Differential regulation of viral entry-associated genes modulated by inflammatory cytokines in the nasal epithelium. J Med Virol 2024; 96:e29913. [PMID: 39257039 DOI: 10.1002/jmv.29913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 08/15/2024] [Accepted: 08/31/2024] [Indexed: 09/12/2024]
Abstract
This study aimed to investigate the impact of different types of nasal inflammation on the regulation of entry-associated genes of respiratory viruses, including severe acute respiratory syndrome coronavirus 2 (SARS CoV-2), Middle East respiratory syndrome coronavirus (MERS-CoV), human coronavirus 229E (HCoV-229E), and influenza virus, in the nasal epithelium. Subjects were classified into three groups: control, eosinophilic chronic rhinosinusitis (ECRS), and noneosinophilic CRS (NECRS) groups. Angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine subtype 2 (TMPRSS2), alanyl aminopeptidase (ANPEP), dipeptidyl peptidase 4 (DPP4), and beta-galactoside alpha-2,6-sialyltransferase 1 (ST6GAL1), and beta-galactoside alpha-2,3-sialyltransferase 4 (ST3GAL4) were selected as key entry-associated genes for SARS-CoV-2, HCoV-229E, MERS-CoV, and influenza, respectively, and were evaluated. Brushing samples obtained from each group and human nasal epithelial cells cultured using an air-liquid interface system were treated for 7 days with typical inflammatory cytokines and analyzed using real-time polymerase chain reaction. Western blot analysis and confocal microscopy were performed. The entry-associated genes showed distinct regulation patterns in response to each interleukin-4 (IL-4), interleukin-13 (IL-13), tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ). Specifically, ACE2 significantly decreased in type 2 cytokines (IL-4 and IL-13), while TMPRSS2 significantly decreased in type 1 cytokines (TNF-α and IFN-γ). ANPEP significantly decreased in both types of cytokines. Remarkably, DPP4 significantly increased in type 2 cytokines and decreased in type 1 cytokines. Moreover, ST6GAL1 and ST3GAL4 significantly increased in type 2 cytokines and decreased in type 1 cytokines, particularly IFN-γ. These findings were supported by western blot analysis and confocal imaging results, especially for ACE2 and DPP4. The findings regarding differential regulation suggest that patients with ECRS, primarily mediated by type 2 inflammation, may have lower susceptibility to SARS-CoV-2 and HCoV-229E infections but higher susceptibility to MERS-CoV and influenza infections.
Collapse
Affiliation(s)
- Hae Eun Noh
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min-Seok Rha
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yeonsu Jeong
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Dachan Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ju Hee Seo
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Miran Kang
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Uk Yeol Moon
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Chang-Hoon Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
- The Airway Mucus Institute, Yonsei University College of Medicine, Severance Hospital, Seoul, Republic of Korea
| | - Hyung-Ju Cho
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
- The Airway Mucus Institute, Yonsei University College of Medicine, Severance Hospital, Seoul, Republic of Korea
- Department of Otorhinolaryngology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
37
|
Desai P, Karl CE, Ying B, Liang CY, Garcia-Salum T, Santana AC, Ten-Caten F, Joseph F Urban, Elbashir SM, Edwards DK, Ribeiro SP, Thackray LB, Sekaly RP, Diamond MS. Intestinal helminth infection impairs vaccine-induced T cell responses and protection against SARS-CoV-2 in mice. Sci Transl Med 2024; 16:eado1941. [PMID: 39167662 DOI: 10.1126/scitranslmed.ado1941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024]
Abstract
Although vaccines have reduced the burden of COVID-19, their efficacy in helminth infection-endemic areas is not well characterized. We evaluated the impact of infection by Heligmosomoides polygyrus bakeri (Hpb), a murine intestinal roundworm, on the efficacy of an mRNA vaccine targeting the Wuhan-1 spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in mice. Although immunization generated similar B cell responses in Hpb-infected and uninfected mice, polyfunctional CD4+ and CD8+ T cell responses were markedly reduced in Hpb-infected mice. Hpb-infected and mRNA-vaccinated mice were protected against the ancestral SARS-CoV-2 strain WA1/2020, but control of lung infection was diminished against an Omicron variant compared with animals immunized without Hpb infection. Helminth-mediated suppression of spike protein-specific CD8+ T cell responses occurred independently of signal transducer and activator of transcription 6 (STAT6) signaling, whereas blockade of interleukin-10 (IL-10) rescued vaccine-induced CD8+ T cell responses. Together, these data show that, in mice, intestinal helminth infection impaired vaccine-induced T cell responses through an IL-10 pathway, which compromised protection against antigenically drifted SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Pritesh Desai
- Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Courtney E Karl
- Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Baoling Ying
- Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Chieh-Yu Liang
- Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Tamara Garcia-Salum
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30317, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ana Carolina Santana
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30317, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Felipe Ten-Caten
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30317, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Joseph F Urban
- US Department of Agriculture, Agricultural Research Services, Beltsville Human Nutrition Research Center, Diet, Genomics, and Immunology Laboratory, and Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Beltsville, MD 20705, USA
| | | | | | - Susan P Ribeiro
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30317, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Larissa B Thackray
- Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Rafick P Sekaly
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30317, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Michael S Diamond
- Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
- Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
38
|
McCallum M, Park YJ, Stewart C, Sprouse KR, Addetia A, Brown J, Tortorici MA, Gibson C, Wong E, Ieven M, Telenti A, Veesler D. Human coronavirus HKU1 recognition of the TMPRSS2 host receptor. Cell 2024; 187:4231-4245.e13. [PMID: 38964328 DOI: 10.1016/j.cell.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/26/2024] [Accepted: 06/05/2024] [Indexed: 07/06/2024]
Abstract
The human coronavirus HKU1 spike (S) glycoprotein engages host cell surface sialoglycans and transmembrane protease serine 2 (TMPRSS2) to initiate infection. The molecular basis of HKU1 binding to TMPRSS2 and determinants of host receptor tropism remain elusive. We designed an active human TMPRSS2 construct enabling high-yield recombinant production in human cells of this key therapeutic target. We determined a cryo-electron microscopy structure of the HKU1 RBD bound to human TMPRSS2, providing a blueprint of the interactions supporting viral entry and explaining the specificity for TMPRSS2 among orthologous proteases. We identified TMPRSS2 orthologs from five mammalian orders promoting HKU1 S-mediated entry into cells along with key residues governing host receptor usage. Our data show that the TMPRSS2 binding motif is a site of vulnerability to neutralizing antibodies and suggest that HKU1 uses S conformational masking and glycan shielding to balance immune evasion and receptor engagement.
Collapse
Affiliation(s)
- Matthew McCallum
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Cameron Stewart
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Kaitlin R Sprouse
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Amin Addetia
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Jack Brown
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | | | - Cecily Gibson
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Emily Wong
- Vir Biotechnology, San Francisco, CA 94158, USA
| | - Margareta Ieven
- Laboratory of Clinical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | | | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA.
| |
Collapse
|
39
|
Michaels TM, Essop MF, Joseph DE. Potential Effects of Hyperglycemia on SARS-CoV-2 Entry Mechanisms in Pancreatic Beta Cells. Viruses 2024; 16:1243. [PMID: 39205219 PMCID: PMC11358987 DOI: 10.3390/v16081243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
The COVID-19 pandemic has revealed a bidirectional relationship between SARS-CoV-2 infection and diabetes mellitus. Existing evidence strongly suggests hyperglycemia as an independent risk factor for severe COVID-19, resulting in increased morbidity and mortality. Conversely, recent studies have reported new-onset diabetes following SARS-CoV-2 infection, hinting at a potential direct viral attack on pancreatic beta cells. In this review, we explore how hyperglycemia, a hallmark of diabetes, might influence SARS-CoV-2 entry and accessory proteins in pancreatic β-cells. We examine how the virus may enter and manipulate such cells, focusing on the role of the spike protein and its interaction with host receptors. Additionally, we analyze potential effects on endosomal processing and accessory proteins involved in viral infection. Our analysis suggests a complex interplay between hyperglycemia and SARS-CoV-2 in pancreatic β-cells. Understanding these mechanisms may help unlock urgent therapeutic strategies to mitigate the detrimental effects of COVID-19 in diabetic patients and unveil if the virus itself can trigger diabetes onset.
Collapse
Affiliation(s)
- Tara M. Michaels
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7600, South Africa;
| | - M. Faadiel Essop
- Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa;
| | - Danzil E. Joseph
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7600, South Africa;
| |
Collapse
|
40
|
Shafqat A, Masters MC, Tripathi U, Tchkonia T, Kirkland JL, Hashmi SK. Long COVID as a disease of accelerated biological aging: An opportunity to translate geroscience interventions. Ageing Res Rev 2024; 99:102400. [PMID: 38945306 DOI: 10.1016/j.arr.2024.102400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/12/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
It has been four years since long COVID-the protracted consequences that survivors of COVID-19 face-was first described. Yet, this entity continues to devastate the quality of life of an increasing number of COVID-19 survivors without any approved therapy and a paucity of clinical trials addressing its biological root causes. Notably, many of the symptoms of long COVID are typically seen with advancing age. Leveraging this similarity, we posit that Geroscience-which aims to target the biological drivers of aging to prevent age-associated conditions as a group-could offer promising therapeutic avenues for long COVID. Bearing this in mind, this review presents a translational framework for studying long COVID as a state of effectively accelerated biological aging, identifying research gaps and offering recommendations for future preclinical and clinical studies.
Collapse
Affiliation(s)
- Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
| | - Mary Clare Masters
- Division of Infectious Diseases, Northwestern University, Chicago, IL, USA
| | - Utkarsh Tripathi
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Tamara Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA; Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Shahrukh K Hashmi
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA; Research and Innovation Center, Department of Health, Abu Dhabi, UAE; College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
41
|
Donowitz M, Tse CM, Sarker R, Lin R, Dokladny K, Rawat M, Horwitz I, Ye C, McNamara G, In J, Kell A, Guo C, JuiTsai S, Vong T, Karaba A, Singh V, Sachithanandham J, Pekosz A, Cox A, Bradfute S, Zachos NC, Gould S, Kovbasnjuk O. COVID-19 Diarrhea Is Inflammatory, Caused by Direct Viral Effects Plus Major Role of Virus-induced Cytokines. Cell Mol Gastroenterol Hepatol 2024; 18:101383. [PMID: 39089626 PMCID: PMC11404158 DOI: 10.1016/j.jcmgh.2024.101383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/08/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND & AIMS Diarrhea occurs in up to 50% of cases of COVID-19. Nonetheless, the pathophysiologic mechanism(s) have not been determined. METHODS This was examined using normal human enteroid monolayers exposed apically to live SARS-CoV-2 or non-replicating virus-like particles (VLPs) bearing the 4 SARS-CoV-2 structural proteins or irradiated virus, all of which bound and entered enterocytes. RESULTS Live virus and VLPs incrieased secretion of multiple cytokines and reduced mRNAs of ACE2, NHE3, and DRA. Interleukin (IL)-6 plus IL-8 alone reduced NHE3 mRNA and protein and DRA mRNA and protein. Neither VLPs nor IL-6 plus IL-8 alone altered Cl- secretion, but together they caused Cl- secretion, which was Ca2+-dependent, CFTR-independent, blocked partially by a specific TMEM16A inhibitor, and entirely by a general TMEM16 family inhibitor. VLPs and irradiated virus, but not IL-6 plus IL-8, produced Ca2+ waves that began within minutes of VLP exposure, lasted for at least 60 minutes, and were prevented by pretreatment with apyrase, a P2Y1 receptor antagonist, and general TMEM16 family inhibitor but not by the specific TMEM16A inhibitor. CONCLUSIONS The pathophysiology of COVID-19 diarrhea appears to be a unique example of a calcium-dependent inflammatory diarrhea that is caused by direct viral effects plus the virus-induced intestinal epithelial cytokine secretion.
Collapse
Affiliation(s)
- Mark Donowitz
- Division of Gastroenterology and Hepatology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Physiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Chung-Ming Tse
- Division of Gastroenterology and Hepatology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Rafiq Sarker
- Division of Gastroenterology and Hepatology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ruxian Lin
- Division of Gastroenterology and Hepatology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Karol Dokladny
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Manmeet Rawat
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Ivy Horwitz
- University of New Mexico Center for Global Health, Albuquerque, New Mexico
| | - ChunYan Ye
- University of New Mexico Center for Global Health, Albuquerque, New Mexico
| | - George McNamara
- Division of Gastroenterology and Hepatology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Julie In
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Alison Kell
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Chenxu Guo
- Department of Biological Chemistry, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Shang JuiTsai
- Department of Biological Chemistry, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Tyrus Vong
- Division of Gastroenterology and Hepatology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Andrew Karaba
- Division of Infectious Diseases, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Varsha Singh
- Division of Gastroenterology and Hepatology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jaiprasath Sachithanandham
- Department of Microbiology and Immunology, Bloomberg School of Public Health of the Johns Hopkins University, Baltimore, Maryland
| | - Andrew Pekosz
- Department of Microbiology and Immunology, Bloomberg School of Public Health of the Johns Hopkins University, Baltimore, Maryland
| | - Andrea Cox
- Division of Infectious Diseases, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Steven Bradfute
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico; University of New Mexico Center for Global Health, Albuquerque, New Mexico
| | - Nicholas C Zachos
- Division of Gastroenterology and Hepatology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Steven Gould
- Department of Biological Chemistry, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Olga Kovbasnjuk
- Division of Gastroenterology and Hepatology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| |
Collapse
|
42
|
Daneshwar D, Lee Y, Nordin A. COVID-19 and Prostatitis: A Review of Current Evidence. Diseases 2024; 12:157. [PMID: 39057128 PMCID: PMC11276594 DOI: 10.3390/diseases12070157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/20/2024] [Accepted: 06/16/2024] [Indexed: 07/28/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19), a highly contagious viral disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), poses a global health threat. The virus enters host cells by binding with angiotensin-converting enzyme 2 (ACE2), which is then facilitated by the protease activity of transmembrane serine protease 2 (TMPRSS2). It triggers a cytokine storm that eventually leads to cell apoptosis, tissue damage, and organ failure. Therefore, any organs in the human body that have both receptors are highly susceptible to COVID-19 infection, potentially resulting in multiple-organ failure. The prostate has been reported to express high levels of ACE2 and TMPRSS2. While there are limited studies regarding the association between COVID-19 and prostatitis, the possibility that SARS-CoV-2 could cause prostatitis cannot be denied. Thus, through this review, a better insight into the associations of SAR-CoV-2 can be provided.
Collapse
Affiliation(s)
- Datesh Daneshwar
- Urology Clinic, Prince Court Medical Centre, 39, Jalan Kia Peng, Kuala Lumpur 50450, Malaysia
| | - Yemin Lee
- MedCentral Consulting, International Youth Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Abid Nordin
- Graduate School of Medicine, KPJ Healthcare University, Nilai 71800, Negeri Sembilan, Malaysia;
| |
Collapse
|
43
|
Vanderheiden A, Hill JD, Jiang X, Deppen B, Bamunuarachchi G, Soudani N, Joshi A, Cain MD, Boon ACM, Klein RS. Vaccination reduces central nervous system IL-1β and memory deficits after COVID-19 in mice. Nat Immunol 2024; 25:1158-1171. [PMID: 38902519 DOI: 10.1038/s41590-024-01868-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/13/2024] [Indexed: 06/22/2024]
Abstract
Up to 25% of individuals infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exhibit postacute cognitive sequelae. Although millions of cases of coronavirus disease 2019 (COVID-19)-mediated memory dysfunction are accumulating worldwide, the underlying mechanisms and how vaccination lowers risk are unknown. Interleukin-1 (IL-1), a key component of innate immune defense against SARS-CoV-2 infection, is elevated in the hippocampi of individuals with COVID-19. Here we show that intranasal infection of C57BL/6J mice with SARS-CoV-2 Beta variant leads to central nervous system infiltration of Ly6Chi monocytes and microglial activation. Accordingly, SARS-CoV-2, but not H1N1 influenza virus, increases levels of brain IL-1β and induces persistent IL-1R1-mediated loss of hippocampal neurogenesis, which promotes postacute cognitive deficits. Vaccination with a low dose of adenoviral-vectored spike protein prevents hippocampal production of IL-1β during breakthrough SARS-CoV-2 infection, loss of neurogenesis and subsequent memory deficits. Our study identifies IL-1β as one potential mechanism driving SARS-CoV-2-induced cognitive impairment in a new mouse model that is prevented by vaccination.
Collapse
Affiliation(s)
- Abigail Vanderheiden
- Center for Neuroimmunology and Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jeremy D Hill
- Center for Neuroimmunology and Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiaoping Jiang
- Center for Neuroimmunology and Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Ben Deppen
- Center for Neuroimmunology and Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Gayan Bamunuarachchi
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Nadia Soudani
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Astha Joshi
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Matthew D Cain
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Adrianus C M Boon
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Robyn S Klein
- Schulich School of Medicine and Dentistry, Department of Microbiology and Immunology, Western University, London, Ontario, Canada.
- Schulich School of Medicine and Dentistry, Western Institute of Neuroscience, Western University, London, Ontario, Canada.
| |
Collapse
|
44
|
Hammerhøj A, Chakravarti D, Sato T, Jensen KB, Nielsen OH. Organoids as regenerative medicine for inflammatory bowel disease. iScience 2024; 27:110118. [PMID: 38947526 PMCID: PMC11214415 DOI: 10.1016/j.isci.2024.110118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic disorder with an increasing global prevalence. Managing disease activity relies on various pharmacological options. However, the effectiveness of current therapeutics is limited and not universally applicable to all patients and circumstances. Consequently, developing new management strategies is necessary. Recent advances in endoscopically obtained intestinal biopsy specimens have highlighted the potential of intestinal epithelial organoid transplantation as a novel therapeutic approach. Experimental studies using murine and human organoid transplantations have shown promising outcomes, including tissue regeneration and functional recovery. Human trials with organoid therapy have commenced; thus, this article provides readers with insights into the necessity and potential of intestinal organoid transplantation as a new regenerative therapeutic option in clinical settings and explores its associated challenges.
Collapse
Affiliation(s)
- Alexander Hammerhøj
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Deepavali Chakravarti
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Toshiro Sato
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kim Bak Jensen
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ole Haagen Nielsen
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| |
Collapse
|
45
|
Khan S, Partuk EO, Chiaravalli J, Kozer N, Shurrush KA, Elbaz-Alon Y, Scher N, Giraud E, Tran-Rajau J, Agou F, Barr HM, Avinoam O. High-throughput screening identifies broad-spectrum Coronavirus entry inhibitors. iScience 2024; 27:110019. [PMID: 38883823 PMCID: PMC11176637 DOI: 10.1016/j.isci.2024.110019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/04/2024] [Accepted: 05/14/2024] [Indexed: 06/18/2024] Open
Abstract
The COVID-19 pandemic highlighted the need for antivirals against emerging coronaviruses (CoV). Inhibiting spike (S) glycoprotein-mediated viral entry is a promising strategy. To identify small molecule inhibitors that block entry downstream of receptor binding, we established a high-throughput screening (HTS) platform based on pseudoviruses. We employed a three-step process to screen nearly 200,000 small molecules. First, we identified hits that inhibit pseudoviruses bearing the SARS-CoV-2 S glycoprotein. Counter-screening against pseudoviruses with the vesicular stomatitis virus glycoprotein (VSV-G), yielded sixty-five SARS-CoV-2 S-specific inhibitors. These were further tested against pseudoviruses bearing the MERS-CoV S glycoprotein, which uses a different receptor. Out of these, five compounds, which included the known broad-spectrum inhibitor Nafamostat, were subjected to further validation and tested against pseudoviruses bearing the S glycoprotein of the Alpha, Delta, and Omicron variants as well as bona fide SARS-CoV-2. This rigorous approach revealed an unreported inhibitor and its derivative as potential broad-spectrum antivirals.
Collapse
Affiliation(s)
- Suman Khan
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Efrat Ozer Partuk
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jeanne Chiaravalli
- Institut Pasteur, Université Paris Cité, CNRS UMR 3523, Chemogenomic and Biological Screening Core Facility, C2RT, Paris, France
| | - Noga Kozer
- The Wohl Drug Discovery Institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Khriesto A Shurrush
- The Wohl Drug Discovery Institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yael Elbaz-Alon
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nadav Scher
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Emilie Giraud
- Institut Pasteur, Université Paris Cité, CNRS UMR 3523, Chemogenomic and Biological Screening Core Facility, C2RT, Paris, France
| | - Jaouen Tran-Rajau
- Institut Pasteur, Université Paris Cité, CNRS UMR 3523, Chemogenomic and Biological Screening Core Facility, C2RT, Paris, France
| | - Fabrice Agou
- Institut Pasteur, Université Paris Cité, CNRS UMR 3523, Chemogenomic and Biological Screening Core Facility, C2RT, Paris, France
| | - Haim Michael Barr
- The Wohl Drug Discovery Institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ori Avinoam
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
46
|
Lubinski B, Whittaker GR. Host Cell Proteases Involved in Human Respiratory Viral Infections and Their Inhibitors: A Review. Viruses 2024; 16:984. [PMID: 38932275 PMCID: PMC11209347 DOI: 10.3390/v16060984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Viral tropism is most commonly linked to receptor use, but host cell protease use can be a notable factor in susceptibility to infection. Here we review the use of host cell proteases by human viruses, focusing on those with primarily respiratory tropism, particularly SARS-CoV-2. We first describe the various classes of proteases present in the respiratory tract, as well as elsewhere in the body, and incorporate the targeting of these proteases as therapeutic drugs for use in humans. Host cell proteases are also linked to the systemic spread of viruses and play important roles outside of the respiratory tract; therefore, we address how proteases affect viruses across the spectrum of infections that can occur in humans, intending to understand the extrapulmonary spread of SARS-CoV-2.
Collapse
Affiliation(s)
- Bailey Lubinski
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850, USA;
| | - Gary R. Whittaker
- Department of Microbiology & Immunology and Public & Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
47
|
Liu Z, Lu Q, Zhang Z, Feng Q, Wang X. TMPRSS2 is a tumor suppressor and its downregulation promotes antitumor immunity and immunotherapy response in lung adenocarcinoma. Respir Res 2024; 25:238. [PMID: 38862975 PMCID: PMC11167788 DOI: 10.1186/s12931-024-02870-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 06/06/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND TMPRSS2, a key molecule for SARS-CoV-2 invading human host cells, has an association with cancer. However, its association with lung cancer remains insufficiently unexplored. METHODS In five bulk transcriptomics datasets, one single-cell RNA sequencing (scRNA-seq) dataset and one proteomics dataset for lung adenocarcinoma (LUAD), we explored associations between TMPRSS2 expression and immune signatures, tumor progression phenotypes, genomic features, and clinical prognosis in LUAD by the bioinformatics approach. Furthermore, we performed experimental validation of the bioinformatics findings. RESULTS TMPRSS2 expression levels correlated negatively with the enrichment levels of both immune-stimulatory and immune-inhibitory signatures, while they correlated positively with the ratios of immune-stimulatory/immune-inhibitory signatures. It indicated that TMPRSS2 levels had a stronger negative correlation with immune-inhibitory than with immune-stimulatory signatures. TMPRSS2 downregulation correlated with increased proliferation, stemness, genomic instability, tumor progression, and worse survival in LUAD. We further validated that TMPRSS2 was downregulated with tumor progression in the LUAD cohort we collected from Jiangsu Cancer Hospital, China. In vitro and in vivo experiments verified the association of TMPRSS2 deficiency with increased tumor cell proliferation and invasion and antitumor immunity in LUAD. Moreover, in vivo experiments demonstrated that TMPRSS2-knockdown tumors were more sensitive to BMS-1, an inhibitor of PD-1/PD-L1. CONCLUSIONS TMPRSS2 is a tumor suppressor, while its downregulation is a positive biomarker of immunotherapy in LUAD. Our data provide a potential link between lung cancer and pneumonia caused by SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Zhixian Liu
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Qiqi Lu
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing, 211198, China
- Big Data Research Institute, China Pharmaceutical University, Nanjing, 211198, China
| | - Zhilan Zhang
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing, 211198, China
- Big Data Research Institute, China Pharmaceutical University, Nanjing, 211198, China
| | - Qiushi Feng
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing, 211198, China
- Big Data Research Institute, China Pharmaceutical University, Nanjing, 211198, China
| | - Xiaosheng Wang
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing, 211198, China.
- Big Data Research Institute, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
48
|
Han Y, Ma Y, Wang Z, Feng F, Zhou L, Feng H, Ma J, Ye R, Zhang R. TMPRSS13 promotes the cell entry of swine acute diarrhea syndrome coronavirus. J Med Virol 2024; 96:e29712. [PMID: 38808555 DOI: 10.1002/jmv.29712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/08/2024] [Accepted: 05/17/2024] [Indexed: 05/30/2024]
Abstract
Swine acute diarrhea syndrome coronavirus (SADS-CoV) has caused severe intestinal diseases in pigs. It originates from bat coronaviruses HKU2 and has a potential risk of cross-species transmission, raising concerns about its zoonotic potential. Viral entry-related host factors are critical determinants of susceptibility to cells, tissues, or species, and remain to be elucidated for SADS-CoV. Type II transmembrane serine proteases (TTSPs) family is involved in many coronavirus infections and has trypsin-like catalytic activity. Here we examine all 18 members of the TTSPs family through CRISPR-based activation of endogenous protein expression in cells, and find that, in addition to TMPRSS2 and TMPRSS4, TMPRSS13 significantly facilitates SADS-CoV infection. This is confirmed by ectopic expression of TMPRSS13, and specific to trypsin-dependent SADS-CoV. Infection with pseudovirus bearing SADS-CoV spike protein indicates that TMPRSS13 acts at the entry step and is sensitive to serine protease inhibitor Camostat. Moreover, both human and pig TMPRSS13 are able to enhance the cell-cell membrane fusion and cleavage of spike protein. Overall, we demonstrate that TMPRSS13 is another host serine protease promoting the membrane-fusion entry of SADS-CoV, which may expand its host tropism by using diverse TTSPs.
Collapse
Affiliation(s)
- Yutong Han
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yanlong Ma
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ziqiao Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fei Feng
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ling Zhou
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Hui Feng
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jingyun Ma
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Rong Ye
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Rong Zhang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
49
|
Liang CY, Raju S, Liu Z, Li Y, Asthagiri Arunkumar G, Case JB, Scheaffer SM, Zost SJ, Acreman CM, Gagne M, Andrew SF, Carvalho Dos Anjos DC, Foulds KE, McLellan JS, Crowe JE, Douek DC, Whelan SPJ, Elbashir SM, Edwards DK, Diamond MS. Imprinting of serum neutralizing antibodies by Wuhan-1 mRNA vaccines. Nature 2024; 630:950-960. [PMID: 38749479 PMCID: PMC11419699 DOI: 10.1038/s41586-024-07539-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/08/2024] [Indexed: 06/21/2024]
Abstract
Immune imprinting is a phenomenon in which prior antigenic experiences influence responses to subsequent infection or vaccination1,2. The effects of immune imprinting on serum antibody responses after boosting with variant-matched SARS-CoV-2 vaccines remain uncertain. Here we characterized the serum antibody responses after mRNA vaccine boosting of mice and human clinical trial participants. In mice, a single dose of a preclinical version of mRNA-1273 vaccine encoding Wuhan-1 spike protein minimally imprinted serum responses elicited by Omicron boosters, enabling generation of type-specific antibodies. However, imprinting was observed in mice receiving an Omicron booster after two priming doses of mRNA-1273, an effect that was mitigated by a second booster dose of Omicron vaccine. In both SARS-CoV-2-infected and uninfected humans who received two Omicron-matched boosters after two or more doses of the prototype mRNA-1273 vaccine, spike-binding and neutralizing serum antibodies cross-reacted with Omicron variants as well as more distantly related sarbecoviruses. Because serum neutralizing responses against Omicron strains and other sarbecoviruses were abrogated after pre-clearing with Wuhan-1 spike protein, antibodies induced by XBB.1.5 boosting in humans focus on conserved epitopes targeted by the antecedent mRNA-1273 primary series. Thus, the antibody response to Omicron-based boosters in humans is imprinted by immunizations with historical mRNA-1273 vaccines, but this outcome may be beneficial as it drives expansion of cross-neutralizing antibodies that inhibit infection of emerging SARS-CoV-2 variants and distantly related sarbecoviruses.
Collapse
Affiliation(s)
- Chieh-Yu Liang
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Saravanan Raju
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Zhuoming Liu
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Yuhao Li
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | | | - James Brett Case
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Suzanne M Scheaffer
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Seth J Zost
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cory M Acreman
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Matthew Gagne
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Shayne F Andrew
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Kathryn E Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sean P J Whelan
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | | | | | - Michael S Diamond
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA.
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA.
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA.
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
50
|
Shen Q, Zhou YH, Zhou YQ. A prospects tool in virus research: Analyzing the applications of organoids in virus studies. Acta Trop 2024; 254:107182. [PMID: 38479469 DOI: 10.1016/j.actatropica.2024.107182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/23/2024] [Accepted: 03/10/2024] [Indexed: 04/28/2024]
Abstract
Organoids have emerged as a powerful tool for understanding the biology of the respiratory, digestive, nervous as well as urinary system, investigating infections, and developing new therapies. This article reviews recent progress in the development of organoid and advancements in virus research. The potential applications of these models in studying virul infections, pathogenesis, and antiviral drug discovery are discussed.
Collapse
Affiliation(s)
- Qi Shen
- Institute of Microbiology Laboratory, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 20036, China; Institute of Microbiology Laboratory, Shanghai Institute of Preventive Medicine, Shanghai 20036, China
| | - Yu-Han Zhou
- College of Public Health, Jilin University, Changchun 130021, China
| | - Yan-Qiu Zhou
- Institute of Microbiology Laboratory, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 20036, China; Institute of Microbiology Laboratory, Shanghai Institute of Preventive Medicine, Shanghai 20036, China.
| |
Collapse
|