1
|
Yang L, Gomm A, Bai P, Ding W, Tanzi RE, Wang C, Shen S, Zhang C. The Effect of Pexidartinib on Neuropathic Pain via Influences on Microglia and Neuroinflammation in Mice. Anesth Analg 2025; 141:199-209. [PMID: 39475839 PMCID: PMC12041303 DOI: 10.1213/ane.0000000000007239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
BACKGROUND Chronic pain is a debilitating medical condition that lacks effective treatments. Increasing evidence suggests that microglia and neuroinflammation underlie pain pathophysiology, which therefore supports a potential strategy for developing pain therapeutics. Here, our study is testing the hypothesis that the promise of pain amelioration can be achieved using the small-molecule pexidartinib (PLX-3397), a previously food and drug administration (FDA)-approved cancer medicine and a colony-stimulating factor-1 receptor (CSF-1R) inhibitor that display microglia-depleting properties. METHOD We used the previously reported chronic constriction injury (CCI) mouse model, in which PLX-3397 or vehicle was orally administrated to mice daily for 21 days, then applied to the CCI model, followed by PLX-3397 or vehicle administration for an additional 28 days. Additionally, we examined microglia-related neuroinflammation markers using positron emission tomography (PET) neuroimaging and immunofluorescence (IF). RESULTS We showed that PLX-3397 significantly ameliorated pain-related behavioral changes throughout the entire experimental period after CCI (vehicle versus PLX-3397 at day 14, effect size: 2.57, P = .002). Microglia changes were first analyzed by live-animal PET neuroimaging, revealing PLX-3397-associated reduction of microglia by probing receptor-interacting serine/threonine-protein kinase 1 (RIPK1), a protein primarily expressed in microglia, which were further corroborated by postmortem immunohistochemistry (IHC) analysis using antibodies for microglia, including ionized Ca 2+ binding adaptor molecule 1 (Iba-1) (somatosensory cortex, hindlimb area; vehicle versus PLX-3397, effect size 3.6, P = .011) and RIPK1 (somatosensory cortex, hindlimb area; vehicle versus PLX-3397, effect size 2.9, P = .023. The expression of both markers decreased in the PLX-3397 group. Furthermore, we found that PLX-3397 led to significant reductions in various proteins, including inducible nitric oxide synthase (iNOS) (somatosensory cortex, hindlimb area; vehicle versus PLX-3397, effect size: 2.3, P = .048), involved in neuroinflammation through IHC. CONCLUSIONS Collectively, our study showed PLX-3397-related efficacy in ameliorating pain linked to the reduction of microglia and neuroinflammation in mice. Furthermore, our research provided new proof-of-concept data supporting the promise of testing PLX-3397 as an analgesic.
Collapse
Affiliation(s)
- Liuyue Yang
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129 United States
| | - Ashley Gomm
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, MA 02129
| | - Ping Bai
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, United States
| | - Weihua Ding
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129 United States
| | - Rudolph E. Tanzi
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, MA 02129
| | - Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, United States
| | - Shiqian Shen
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129 United States
| | - Can Zhang
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, MA 02129
| |
Collapse
|
2
|
Deng YT, Ma L, Mei Y, Wang JS, Bai XH, Zheng XJ, Ren JX, Zhong D, Zhou BL, Dan J, Li X, Gao YJ, Yu L, Yan M, Jiang BC. Amphiregulin contributes to neuropathic pain by enhancing glycolysis that stimulates histone lactylation in sensory neurons. Sci Signal 2025; 18:eadr9397. [PMID: 40526786 DOI: 10.1126/scisignal.adr9397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 05/22/2025] [Indexed: 06/19/2025]
Abstract
The genesis of neuropathic pain after peripheral nerve injury is associated with changes in gene expression and cell metabolism in sensory neurons and the release of inflammatory cytokines. Here, we connected glycolytic metabolism induced by the epidermal growth factor receptor (EGFR) ligand amphiregulin (AREG) to histone lactylation and changes in gene expression that promote chronic neuropathic pain. In both male and female mice subjected to peripheral nerve injury, the mRNA and protein abundance of AREG and its receptor EGFR was increased in dorsal root ganglia (DRGs). AREG-EGFR signaling induced glycolytic metabolism by activating the kinase PKM2. An increase in the glycolytic byproduct lactate facilitated lactylation of the histone lysines H3K18 and H4K12 by the lactyltransferase p300 in DRG neurons. These modifications promoted the expression of genes encoding various proinflammatory and pronociceptive proteins that contribute to the development and maintenance of pain. Deletion or knockdown of AREG or pharmacologically inhibiting EGFR, PKM2, or p300 alleviated neuropathic pain in mice and attenuated the injury-induced hyperexcitability of nociceptive neurons. Targeting this metabolically driven epigenetic mechanism may be a way to treat neuropathic pain in patients.
Collapse
Affiliation(s)
- Yu-Tao Deng
- Department of Anesthesiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| | - Longfei Ma
- Department of Anesthesiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| | - Yixiao Mei
- Department of Anesthesiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| | - Ji-Shuai Wang
- Pain Management Center, Department of Anesthesiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| | - Xue-Hui Bai
- Department of Anesthesiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| | - Xuan-Jie Zheng
- Department of Anesthesiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| | - Jin-Xuan Ren
- Department of Anesthesiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| | - Da Zhong
- Department of Anesthesiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| | - Bing-Lin Zhou
- Department of Anesthesiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| | - Jia Dan
- Department of Anesthesiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| | - Xue Li
- Pain Management Center, Department of Anesthesiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| | - Yong-Jing Gao
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong 226019, Jiangsu, China
| | - Lina Yu
- Department of Anesthesiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
- Zhejiang Key Laboratory of Pain Perception and Neuromodulation, Hangzhou 311202, China
| | - Min Yan
- Department of Anesthesiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
- Pain Management Center, Department of Anesthesiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
- Zhejiang Key Laboratory of Pain Perception and Neuromodulation, Hangzhou 311202, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 311202, Zhejiang, China
| | - Bao-Chun Jiang
- Department of Anesthesiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
- Pain Management Center, Department of Anesthesiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong 226019, Jiangsu, China
- Zhejiang Key Laboratory of Pain Perception and Neuromodulation, Hangzhou 311202, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 311202, Zhejiang, China
| |
Collapse
|
3
|
Centeno MV, Alam MS, Haldar K, Vania Apkarian A. A Triple combination formulation of an HDAC inhibitor treats chronic pain in rodent spared nerve injury model. THE JOURNAL OF PAIN 2025; 31:105396. [PMID: 40220879 DOI: 10.1016/j.jpain.2025.105396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 03/24/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025]
Abstract
Histone deacetylase inhibitors (HDACi) that modulate epigenetic regulation and are approved for treating rare cancers have, in disease models, also been shown to mitigate neurological conditions, including chronic pain. They are of interest as non-opioid treatments, but achieving long-term efficacy with limited dosing has remained elusive. Here we employ a triple combination formulation (TCF) that includes the pan-HDAC vorinostat (Vo) administered at its FDA-approved daily dosage of 50 mg/Kg, along with the caging agent 2-hydroxypropyl-β-cyclodextrin (HPBCD) and polyethylene glycol (PEG). This formulation enhances plasma and brain exposure of Vo in mice and rat models and shows specific activity in the spared nerve injury (SNI) model of chronic neuropathic pain. TCF (but not HPBCD and PEG) decreased mechanical allodynia for 4 weeks without antagonizing weight, anxiety, or mobility. This was achieved at less than 1% of the total dose of Vo approved for 4 weeks of tumor treatment, decreased RNA levels of two major inflammatory markers (CD11b and GFAP), and reduced proliferation of microglia in the ipsilateral (but not contralateral) spinal cord. A single TCF injection was sufficient for 3-4 weeks of efficacy. Pharmacodynamics suggested pain relief was sustained for weeks after Vo elimination. Doubling Vo in a single TCF injection tripled the response amplitude and remained effective for > 2 months in male rats. Together, these data suggest that the TCF enables single-dose effectiveness with extended action, reduces long-term HDACi dosage, and presents excellent potential to develop as a non-opioid treatment option for chronic pain. PERSPECTIVE: An epigenetic drug formulation (TCF) tested in rat and mouse chronic neuropathic pain models shows adequate and persistent pain relief, engaging spinal cord inflammatory mechanisms.
Collapse
Affiliation(s)
- Maria V Centeno
- Center for Translational Pain Research, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Md Suhail Alam
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Kasturi Haldar
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, IN 46556, USA
| | - A Vania Apkarian
- Center for Translational Pain Research, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Anesthesia, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
4
|
Shi WG, Yao Y, Liang YJ, Lei J, Feng SY, Zhang ZX, Tian Y, Cai J, Xing GG, Fu KY. Activation of TGR5 in the injured nerve site according to a prevention protocol mitigates partial sciatic nerve ligation-induced neuropathic pain by alleviating neuroinflammation. Pain 2025; 166:1296-1313. [PMID: 39450924 PMCID: PMC12067609 DOI: 10.1097/j.pain.0000000000003460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/18/2024] [Accepted: 09/22/2024] [Indexed: 10/26/2024]
Abstract
ABSTRACT Neuropathic pain is a pervasive medical challenge currently lacking effective treatment options. Molecular changes at the site of peripheral nerve injury contribute to both peripheral and central sensitization, critical components of neuropathic pain. This study explores the role of the G-protein-coupled bile acid receptor (GPBAR1 or TGR5) in the peripheral mechanisms underlying neuropathic pain induced by partial sciatic nerve ligation in male mice. TGR5 was upregulated in the injured nerve site and predominantly colocalized with macrophages. Perisciatic nerve administration of the TGR5 agonist, INT-777 according to a prevention protocol (50 μg/μL daily from postoperative day [POD] 0 to POD6) provided sustained relief from mechanical allodynia and spontaneous pain, whereas the TGR5 antagonist, SBI-115 worsened neuropathic pain. Transcriptome sequencing linked the pain relief induced by TGR5 activation to reduced neuroinflammation, which was further evidenced by a decrease in myeloid cells and pro-inflammatory mediators (eg, CCL3, CXCL9, interleukin [IL]-6, and tumor necrosis factor [TNF] α) and an increase in CD86-CD206+ anti-inflammatory macrophages at POD7. Besides, myeloid-cell-specific TGR5 knockdown in the injured nerve site exacerbated both neuropathic pain and neuroinflammation, which was substantiated by bulk RNA-sequencing and upregulated expression levels of inflammatory mediators (including CCL3, CCL2, IL-6, TNF α, and IL-1β) and the increased number of monocytes/macrophages at POD7. Furthermore, the activation of microglia in the spinal cord on POD7 and POD14 was altered when TGR5 in the sciatic nerve was manipulated. Collectively, TGR5 activation in the injured nerve site mitigates neuropathic pain by reducing neuroinflammation, while TGR5 knockdown in myeloid cells worsens pain by enhancing neuroinflammation.
Collapse
Affiliation(s)
- Wen-Ge Shi
- Center for TMD and Orofacial Pain, Peking University School and Hospital of Stomatology, Beijing, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases, Beijing, China
| | - Yao Yao
- Department of General Dentistry and Integrated Emergency Dental Care, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Ya-Jing Liang
- Department of General Dentistry and Integrated Emergency Dental Care, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Jie Lei
- Center for TMD and Orofacial Pain, Peking University School and Hospital of Stomatology, Beijing, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases, Beijing, China
| | - Shi-Yang Feng
- Center for TMD and Orofacial Pain, Peking University School and Hospital of Stomatology, Beijing, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases, Beijing, China
| | - Zi-Xian Zhang
- Neuroscience Research Institute, Peking University, Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory for Neuroscience, Ministry of Education of China & National Health, Beijing, China
| | - Yue Tian
- Neuroscience Research Institute, Peking University, Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory for Neuroscience, Ministry of Education of China & National Health, Beijing, China
| | - Jie Cai
- Neuroscience Research Institute, Peking University, Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory for Neuroscience, Ministry of Education of China & National Health, Beijing, China
| | - Guo-Gang Xing
- Neuroscience Research Institute, Peking University, Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory for Neuroscience, Ministry of Education of China & National Health, Beijing, China
| | - Kai-Yuan Fu
- Center for TMD and Orofacial Pain, Peking University School and Hospital of Stomatology, Beijing, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases, Beijing, China
| |
Collapse
|
5
|
Bo X. Microalgae and exercise: from molecular mechanisms and brain health to clinical perspectives in the context of 3P medicine. EPMA J 2025; 16:351-386. [PMID: 40438495 PMCID: PMC12106266 DOI: 10.1007/s13167-025-00405-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/11/2025] [Indexed: 06/01/2025]
Abstract
Microalgae are emerging as innovative bioresources with diverse therapeutic applications, particularly in cardiovascular health, neuroprotection, anti-inflammatory, and antioxidant responses. These bioactive compounds effectively reduce inflammatory mediators, mitigate oxidative stress, and support mitochondrial health-critical factors in exercise performance, recovery, and chronic disease management. Notably, microalgae such as Spirulina and Chlorella exhibit promising biological activities in preclinical and limited clinical studies, including anti-inflammatory and neuroprotective effects. However, large-scale, randomized controlled trials (RCTs) remain scarce, limiting their clinical translation. Although preliminary evidence suggests potential benefits for sports performance, oxidative stress reduction, and cognitive function, most studies are small-scale, preclinical, or observational. Large, well-powered RCTs are needed to confirm their efficacy and safety. Within the framework of Predictive, Preventive, and Personalized Medicine (PPPM/3PM), this review explores microalgae's potential in predictive diagnostics, targeted prevention, and individualized supplementation strategies. Despite promising findings, clinical application requires a cautious approach due to insufficient high-quality trials supporting microalgae-based interventions in medical practice. Future research should prioritize RCTs, pharmacokinetic studies, and long-term safety assessments to establish evidence-based guidelines for their use in health and disease management.
Collapse
Affiliation(s)
- Xuanyu Bo
- University of Glasgow, Gilmorehill, Glasgow, Scotland G128QQ UK
| |
Collapse
|
6
|
Huerta MÁ, Molina-Álvarez M, García MM, Tejada MA, Goicoechea C, Ghasemlou N, Ruiz-Cantero MC, Cobos EJ. The role of neutrophils in pain: systematic review and meta-analysis of animal studies. Pain 2025; 166:1230-1249. [PMID: 39450928 DOI: 10.1097/j.pain.0000000000003450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/10/2024] [Indexed: 10/26/2024]
Abstract
ABSTRACT The peripheral inflammatory response is an attractive therapeutic target for pain treatment. Neutrophils are the first circulating inflammatory cells recruited to sites of injury, but their contribution to pain outcomes is unclear. We performed a systematic review and meta-analysis of original preclinical studies, which evaluated the effect of preemptive neutrophil depletion on pain outcomes (PROSPERO registration number: CRD42022364004). Literature search (PubMed, January 19, 2023) identified 49 articles, which were meta-analyzed using a random-effects model. The risk of bias was evaluated using SYRCLE's tool. The pooled effect considering all studies showed that neutrophil depletion induced a consistent pain reduction. Inflammatory, joint, neuropathic, and visceral pain showed significant pain alleviation by neutrophil depletion with medium-large effect sizes. However, muscle and postoperative pain were not significantly alleviated by neutrophil depletion. Further analysis showed a differential contribution of neutrophils to pain outcomes. Neutrophils had a higher impact on mechanical hyperalgesia, followed by nociceptive behaviors and mechanical allodynia, with a smaller contribution to thermal hyperalgesia. Interspecies (mice or rats) differences were not appreciated. Analyses regarding intervention unveiled a lower pain reduction for some commonly used methods for neutrophil depletion, such as injection of antineutrophil serum or an anti-Gr-1 antibody, than for other agents such as administration of an anti-Ly6G antibody, fucoidan, vinblastine, CXCR1/2 inhibitors, and etanercept. In conclusion, the contribution of neutrophils to pain depends on pain etiology (experimental model), pain outcome, and the neutrophil depletion strategy. Further research is needed to improve our understanding on the mechanisms of these differences.
Collapse
Affiliation(s)
- Miguel Á Huerta
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Granada, Spain
- Biosanitary Research Institute ibs.GRANADA, Granada, Spain
| | - Miguel Molina-Álvarez
- Area of Pharmacology, Nutrition and Bromatology, Department of Basic Health Sciences, Rey Juan Carlos University, Asociated Unit I+D+i Instituto de Química Médica (IQM) CSIC-URJC, Alcorcón, Spain
- High Performance Experimental Pharmacology Research Group, Rey Juan Carlos University (PHARMAKOM), Alcorcón, Spain
| | - Miguel M García
- Area of Pharmacology, Nutrition and Bromatology, Department of Basic Health Sciences, Rey Juan Carlos University, Asociated Unit I+D+i Instituto de Química Médica (IQM) CSIC-URJC, Alcorcón, Spain
- High Performance Experimental Pharmacology Research Group, Rey Juan Carlos University (PHARMAKOM), Alcorcón, Spain
| | - Miguel A Tejada
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Granada, Spain
- Biosanitary Research Institute ibs.GRANADA, Granada, Spain
| | - Carlos Goicoechea
- Area of Pharmacology, Nutrition and Bromatology, Department of Basic Health Sciences, Rey Juan Carlos University, Asociated Unit I+D+i Instituto de Química Médica (IQM) CSIC-URJC, Alcorcón, Spain
- High Performance Experimental Pharmacology Research Group, Rey Juan Carlos University (PHARMAKOM), Alcorcón, Spain
| | - Nader Ghasemlou
- Pain Chronobiology & Neuroimmunology Laboratory, Departments of Anesthesiology and Biomedical & Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - M Carmen Ruiz-Cantero
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Enrique J Cobos
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Granada, Spain
- Biosanitary Research Institute ibs.GRANADA, Granada, Spain
- Teófilo Hernando Institute for Drug Discovery, Madrid, Spain
| |
Collapse
|
7
|
Abrego-Guandique DM, Ilari S, Nucera S, Passacatini LC, Cione E, Cannataro R, Gallelli L, Caroleo MC, Mollace V, Muscoli C. Vitamin D in the Transition from Acute to Chronic Pain: A Systematic Review. Nutrients 2025; 17:1912. [PMID: 40507180 PMCID: PMC12156958 DOI: 10.3390/nu17111912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2025] [Revised: 05/23/2025] [Accepted: 05/30/2025] [Indexed: 06/16/2025] Open
Abstract
BACKGROUND The transition from acute to chronic pain is an important clinical phenomenon that significantly impacts the healthcare system. Despite decades of research, preventing this transition remains a complex challenge. Many studies have explored the various factors that contribute to the development of chronic pain, but the underlying mechanisms are still largely unclear. In this frame, vitamin D (VD) plays an important role in pain mechanism development, with emerging evidence suggesting it influences pain perception, inflammation, and nerve function. METHODS A total of 14 eligible original research articles were identified. RESULTS Our qualitative analysis showed that VD did not directly influence the transition from acute to chronic pain, but it affected pain intensity, improving outcomes in patients at risk of developing chronic pain. CONCLUSIONS Additional randomized clinical trials, particularly double-blind, placebo-controlled studies, which are regarded as the gold standard in clinical research, are warranted to evaluate the role of vitamin D in the progression from acute to chronic pain.
Collapse
Affiliation(s)
| | - Sara Ilari
- Department for the Promotion of Human Sciences and Quality of Life, San Raffaele Roma University, 00166 Rome, Italy;
- Laboratory of Physiology and Pharmacology of Pain, IRCCS San Raffaele Roma, 00166 Rome, Italy;
| | - Saverio Nucera
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (V.M.); (C.M.)
| | | | - Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
- Galascreen Laboratories, University of Calabria, 87036 Rende, Italy;
| | - Roberto Cannataro
- Galascreen Laboratories, University of Calabria, 87036 Rende, Italy;
- Research Division, Dynamical Business & Science Society, DBSS International SAS, Bogota 110311, Colombia
| | - Luca Gallelli
- Operative Unit of Pharmacology and Pharmacovigilance, “Renato Dulbecco” University Hospital, 88100 Catanzaro, Italy;
- Research Center FAS@UMG, Department of Health Science, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Maria Cristina Caroleo
- Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy;
- Galascreen Laboratories, University of Calabria, 87036 Rende, Italy;
- Research Center FAS@UMG, Department of Health Science, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (V.M.); (C.M.)
| | - Carolina Muscoli
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (V.M.); (C.M.)
| |
Collapse
|
8
|
Asimakopoulos T, Tsaroucha A, Kouri M, Pasqualucci A, Varrassi G, Leoni MLG, Rekatsina M. The Role of Biomarkers in Acute Pain: A Narrative Review. Pain Ther 2025; 14:775-789. [PMID: 40088258 PMCID: PMC12085431 DOI: 10.1007/s40122-025-00718-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/25/2025] [Indexed: 03/17/2025] Open
Abstract
Acute pain, a critical aspect of patient care, presents a challenge due to its subjective nature and complex biological underpinnings. Biomarkers for acute pain promise a paradigm shift in how pain is perceived, diagnosed, and managed. The study of genetic, inflammatory, and neurotransmission markers associated with pain experience may hold the key for the development of personalized and effective pain management strategies. This narrative review explores the neurobiological pathways of acute pain, encompassing inflammatory responses and neurotransmission mechanisms. It synthesizes current research on the identification and clinical application of biomarkers, emphasizing their potential to enhance diagnostic precision, treatment effectiveness, and risk prediction. We underscore the promising role of acute pain biomarkers in identifying patients at risk for developing acute and potentially chronic pain, predicting patients' response to pharmacological interventions, and aiding in the development of novel therapeutic and pain preventive strategies. The evolving landscape of biomarker research not only deepens our understanding of pain mechanisms but also lays the foundation for more tailored and patient-specific healthcare interventions.
Collapse
Affiliation(s)
- Thalis Asimakopoulos
- School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
- 1st Department of Anesthesiology and Pain Medicine, Aretaieion University Hospital, National and Kapodistrian University of Athens, Athens, Greece.
| | - Athanasia Tsaroucha
- 1st Department of Anesthesiology and Pain Medicine, Aretaieion University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Kouri
- Department of Oral Medicine & Pathology and Hospital Dentistry, School of Dentistry, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Alberto Pasqualucci
- Department of Anesthesia and Pain Medicine, University of Perugia, 06100, Perugia, Italy
| | | | - Matteo Luigi Giuseppe Leoni
- Department of Medical and Surgical Sciences and Translational Medicine, "La Sapienza" University of Rome, Rome, Italy
| | - Martina Rekatsina
- 1st Department of Anesthesiology and Pain Medicine, Aretaieion University Hospital, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
9
|
Lucarini I, Maita F, Conte G, Saracino E, Formaggio F, Palmieri E, Fabbri R, Konstantoulaki A, Lazzarini C, Caprini M, Benfenati V, Maiolo L, Convertino A. Silicon Nanowire Mats Enable Advanced Bioelectrical Recordings in Primary DRG Cell Cultures. Adv Healthc Mater 2025:e2500379. [PMID: 40411871 DOI: 10.1002/adhm.202500379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/23/2025] [Indexed: 05/26/2025]
Abstract
Primary dorsal root ganglion (DRG) cell cultures provide a valuable model for studying in vitro sensory transduction, neuropathies, and chronic pain, as they replicate the in vivo heterogeneity of DRG neurons and non-neuronal cells. However, traditional patch-clamp techniques are invasive and cannot capture the collective cell dynamics. While planar multielectrode arrays (MEAs) offer a non-invasive alternative, they suffer from poor cell-electrode coupling and limited resolution for identifying specific DRG neuronal types like C-fiber nociceptors, key targets in chronic pain research. This work demonstrates that silicon nanowire (SiNW) mat-based MEAs, while maintaining their reduced invasiveness, enable continuous intracellular recordings from neurons in primary rat DRG cell cultures. Supported by a cortical astrocyte feeder layer, SiNW mats promote DRG neuron and glial cell growth preserving cells' in vivo morphological and functional characteristics. Integrated into a compartmentalized MEA, they enable reliable recordings of drug-modulated neuronal activity alongside a baseline related to the astrocyte layer. The recorded signals exhibit characteristics of intracellular action potentials, suggesting spontaneous intracellular access by SiNWs. Distinct electrophysiological signatures allow identifying C-fiber nociceptors, as confirmed by patch-clamp measurements. This platform represents a powerful tool for investigating in vitro pain mechanisms, with potential applications in preclinical pain research and pharmacological translational studies.
Collapse
Affiliation(s)
- Ivano Lucarini
- Institute for Microelectronics and Microsystems, National Research Council, Via Fosso del Cavaliere 100, Rome, 00133, Italy
| | - Francesco Maita
- Institute for Microelectronics and Microsystems, National Research Council, Via Fosso del Cavaliere 100, Rome, 00133, Italy
| | - Giorgia Conte
- Institute for Organic Synthesis and Photoreactivity, National Research Council, Via Gobetti 101, Bologna, 40129, Italy
| | - Emanuela Saracino
- Institute for Organic Synthesis and Photoreactivity, National Research Council, Via Gobetti 101, Bologna, 40129, Italy
| | - Francesco Formaggio
- Department of Pharmacy and Biotechnology, University of Bologna, via San Donato 19/2, Bologna, 40127, Italy
| | - Elena Palmieri
- Institute for Microelectronics and Microsystems, National Research Council, Via Fosso del Cavaliere 100, Rome, 00133, Italy
| | - Roberta Fabbri
- Institute for Organic Synthesis and Photoreactivity, National Research Council, Via Gobetti 101, Bologna, 40129, Italy
| | - Aikaterini Konstantoulaki
- Institute for Organic Synthesis and Photoreactivity, National Research Council, Via Gobetti 101, Bologna, 40129, Italy
| | - Chiara Lazzarini
- Institute for Organic Synthesis and Photoreactivity, National Research Council, Via Gobetti 101, Bologna, 40129, Italy
| | - Marco Caprini
- Department of Pharmacy and Biotechnology, University of Bologna, via San Donato 19/2, Bologna, 40127, Italy
| | - Valentina Benfenati
- Institute for Organic Synthesis and Photoreactivity, National Research Council, Via Gobetti 101, Bologna, 40129, Italy
| | - Luca Maiolo
- Institute for Microelectronics and Microsystems, National Research Council, Via Fosso del Cavaliere 100, Rome, 00133, Italy
| | - Annalisa Convertino
- Institute for Microelectronics and Microsystems, National Research Council, Via Fosso del Cavaliere 100, Rome, 00133, Italy
| |
Collapse
|
10
|
Zhang R, Zhang N, Chen D, Hu X, Zhang M, Yao M, Zhang Q, Wu S, Zhang X, He Y, Gao F, Xu B, Fang Q. Neurone-satellite glial cell interactions in dorsal root ganglia drive peripheral sensitisation in a mouse burn pain model. Br J Anaesth 2025:S0007-0912(25)00235-1. [PMID: 40404497 DOI: 10.1016/j.bja.2025.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/31/2025] [Accepted: 04/21/2025] [Indexed: 05/24/2025] Open
Abstract
BACKGROUND Accumulating evidence suggests that glial mechanisms are pivotal in regulating chronic pain. Our previous findings revealed that the interactions between spinal microglia and astrocytes are crucial for burn-induced pain hypersensitivity. However, the mechanisms underlying burn-induced peripheral sensitisation remain incompletely understood. METHODS Sensory neurone-satellite glial cell (SGC) interactions within peripheral dorsal root ganglia were investigated using in vitro and in vivo experiments. Behavioural tests were conducted to evaluate the therapeutic potential of targeting peripheral sensitisation mechanisms for burn pain management. RESULTS Burn injury upregulated calcitonin gene-related peptide (CGRP) expression in sensory neurones (1.5-fold; P=0.013) through transient receptor potential vanilloid 1 (TRPV1) channels. Pharmacological blockade of the TRPV1/CGRP signalling pathway effectively attenuated burn-induced mechanical allodynia and thermal hyperalgesia. Additionally, neurone-derived CGRP triggered SGC activation (from 6.8% pre-injury to 41.6% at day 5 post-injury), concomitant with enhanced gap junction-mediated SGC coupling (from 16.7% pre-injury to 40.5% at day 5 post-injury). Furthermore, chemokine expression (particularly CXCL1) in SGCs was elevated after burn injury, which potentiated sensory neurone excitability and exacerbated pain hypersensitivity. Blocking SGC coupling exerted potent analgesic effects in this burn pain model. CONCLUSIONS A novel neurone-SGC interaction mechanism drives burn-induced peripheral sensitisation, providing translational implications for burn pain therapeutics.
Collapse
Affiliation(s)
- Run Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou, Gansu, China; Institute of Physiology, School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Nan Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou, Gansu, China
| | - Dan Chen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou, Gansu, China
| | - Xuanran Hu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou, Gansu, China
| | - Mengna Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou, Gansu, China
| | - Minhua Yao
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Qinqin Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou, Gansu, China
| | - Shuyuan Wu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaodi Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou, Gansu, China
| | - Yongtao He
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou, Gansu, China
| | - Feiyun Gao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou, Gansu, China
| | - Biao Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou, Gansu, China.
| | - Quan Fang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou, Gansu, China.
| |
Collapse
|
11
|
Zhong R, Chen C, Zhang Y, Wang C, Li M, Chen F, Wang L, Liu Q, Lei P. Genome-wide analysis of lncRNA m6A methylation in the mouse cortex after repetitive mild traumatic brain injury. BMC Genomics 2025; 26:509. [PMID: 40394496 PMCID: PMC12090626 DOI: 10.1186/s12864-025-11696-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 05/09/2025] [Indexed: 05/22/2025] Open
Abstract
N6-methyladenosine (m6A), a prevalent post-transcriptional modification in eukaryotic RNA, plays a significant role in regulating sensory experiences, learning, and injury in the mammalian central nervous system. However, the pattern of lncRNA m6A methylation in the mouse cortex following repetitive mild traumatic brain injury (rmTBI) has not been explored. This study conducted a genome-wide analysis of lncRNA m6A methylation in the mouse cortex using methylated RNA immunoprecipitation sequencing (MeRIP-Seq). We identified 43,103 differentially methylated peaks. Notably, the expression of m6A peaks indicated altered methylation and expression levels of 423 lncRNAs after rmTBI. In addition, employing METTL3 inhibitor STM2457 demonstrated that functional METTL3 was essential for repairing neural damage caused by rmTBI and influenced spatial learning and memory in rmTBI-model mice. Thus, the m6A methylation pattern of lncRNA in the mouse cortex after rmTBI identifies METTL3 as a potential intervention target for epigenetic modification following such injuries. Clinical trial number Not applicable.
Collapse
Affiliation(s)
- Rongrong Zhong
- Deparment of Geriatrics, Tianjin Medical University General Hospital, No. 154, Anshan Road, Nanyingmen Street, Heping District, Tianjin, 300052, China
| | - Chen Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Yingao Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Conglin Wang
- Deparment of Geriatrics, Tianjin Medical University General Hospital, No. 154, Anshan Road, Nanyingmen Street, Heping District, Tianjin, 300052, China
| | - Meimei Li
- Deparment of Geriatrics, Tianjin Medical University General Hospital, No. 154, Anshan Road, Nanyingmen Street, Heping District, Tianjin, 300052, China
| | - Fanglian Chen
- Deparment of Geriatrics, Tianjin Medical University General Hospital, No. 154, Anshan Road, Nanyingmen Street, Heping District, Tianjin, 300052, China
| | - Lu Wang
- Deparment of Geriatrics, Tianjin Medical University General Hospital, No. 154, Anshan Road, Nanyingmen Street, Heping District, Tianjin, 300052, China
| | - Qiang Liu
- Deparment of Geriatrics, Tianjin Medical University General Hospital, No. 154, Anshan Road, Nanyingmen Street, Heping District, Tianjin, 300052, China
| | - Ping Lei
- Deparment of Geriatrics, Tianjin Medical University General Hospital, No. 154, Anshan Road, Nanyingmen Street, Heping District, Tianjin, 300052, China.
| |
Collapse
|
12
|
Nwe SY, Dasuni Wasana PW, Hasriadi, Towiwat P, Thongphichai W, Sritularak B, Sukrong S. Angolensin Isolated from Pterocarpus indicus Willd. Attenuates LPS-Induced Sickness Behaviors in Mice and Exhibits CNS Safety. Int J Mol Sci 2025; 26:4887. [PMID: 40430027 PMCID: PMC12111846 DOI: 10.3390/ijms26104887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 05/09/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
Folk medicine in Thailand has long made use of Pterocarpus indicus Willd. for treating inflammation-related disorders. However, scientific exploration of isolated compounds from P. indicus for improving inflammation-associated sickness conditions and their impact on central nervous system (CNS) safety remain unexplored. The present study initially screened the anti-neuroinflammatory effects of angolensin, a compound isolated from P. indicus heartwood in vitro. Following substantial findings, the efficacy of angolensin was further evaluated in a mouse model of lipopolysaccharide (LPS)-induced sickness behaviors, alongside an assessment of its CNS safety profiles. The anti-neuroinflammatory effects of angolensin were evaluated in LPS-induced BV-2 microglial cells. The effects of angolensin on sickness behaviors were examined in LPS-induced mice using the Laboratory Animal Behaviors Observation, Registration and Analysis System (LABORAS). Proinflammatory cytokine expression in plasma samples of mice was also determined. LABORAS and rotarod tests were conducted to investigate its impact on the CNS. In vitro assessment of the anti-inflammatory activity of angolensin on BV-2 microglial cells revealed a concentration-dependent reduction in the release of LPS-induced nitric oxide (NO) and proinflammatory cytokines (TNF-α and IL-6). At a concentration of 20 µM, angolensin showed comparable results to the positive control, 20 µM minocycline. In mice, angolensin significantly improved LPS-induced sickness behaviors, as indicated by improved home-cage behaviors. Consistent with the in vitro findings, angolensin attenuated the release of proinflammatory cytokines in the plasma of LPS-induced mice. Importantly, angolensin did not induce any adverse effects on locomotion, motor coordination, or general well-being, indicating a favorable CNS safety profile. Overall, these results highlight the anti-inflammatory potential of angolensin in mitigating sickness behaviors in mice, while demonstrating its CNS safety.
Collapse
Affiliation(s)
- San Yoon Nwe
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (S.Y.N.); (W.T.); (B.S.)
- Center of Excellence in DNA Barcoding of Thai Medicinal Plants, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Peththa Wadu Dasuni Wasana
- Department of Pharmacy, Faculty of Allied Health Sciences, University of Ruhuna, Galle 80000, Sri Lanka;
| | - Hasriadi
- Animal Models of Chronic Inflammation-Associated Diseases for Drug Discovery Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (H.); (P.T.)
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pasarapa Towiwat
- Animal Models of Chronic Inflammation-Associated Diseases for Drug Discovery Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (H.); (P.T.)
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wisuwat Thongphichai
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (S.Y.N.); (W.T.); (B.S.)
- Center of Excellence in DNA Barcoding of Thai Medicinal Plants, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Boonchoo Sritularak
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (S.Y.N.); (W.T.); (B.S.)
| | - Suchada Sukrong
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (S.Y.N.); (W.T.); (B.S.)
- Center of Excellence in DNA Barcoding of Thai Medicinal Plants, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Chulalongkorn School of Integrated Innovation, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
13
|
Ai Z, Li H, Xu S, Cai C, Wang X, Guan Y, Guo R, Wang Y. Overexpression of TAFA4 in the dorsal root ganglion ameliorates neuropathic pain in male rats through promoting macrophage M2-Skewing. Neurochem Int 2025; 187:105993. [PMID: 40381955 DOI: 10.1016/j.neuint.2025.105993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 05/03/2025] [Accepted: 05/14/2025] [Indexed: 05/20/2025]
Abstract
Neuro-immune interactions between macrophages and primary sensory neurons have been implicated in nerve injury and associated pain. This study aims to explore the function of the TAFA4 as a crucial neuroimmune regulator in modulating macrophage states within the context of neuropathic pain. To elucidate the role of TAFA4 in dorsal root ganglia (DRG) following a chronic constriction injury (CCI) model in male rats, immunofluorescent staining, western blot, flow cytometry analysis and enzyme-linked immunosorbent assay were performed. Microinjection of self-complementary adeno-associated virus expressing TAFA4 mRNA into the L4 and L5 DRGs was conducted to overexpress TAFA4 in the DRGs. Following peripheral nerve injury, we observed a downregulation of TAFA4 in ipsilateral DRG neurons. Restoring this downregulation effectively alleviated the mechanical and thermal nociceptive hypersensitivity by inhibiting pro-inflammatory mediators while promoting the secretion of anti-inflammatory cytokines on day 14 post-CCI. Notably, scAAV-TAFA4 microinjection also facilitated the polarization of macrophages in the DRGs towards the M2 phenotype. Mechanistically, TAFA4 modulates the functions of macrophages in a lipoprotein receptor-related protein 1-dependent manner. Our findings revealed the role of TAFA4 in shifting macrophages in favor of an anti-inflammatory phenotype and enhancing interleukin 10 concentrations in the DRG, suggesting it is a potential analgesic target for alleviating neuropathic pain.
Collapse
Affiliation(s)
- Zhangran Ai
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Huili Li
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Songchao Xu
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Chenghui Cai
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Xuejuan Wang
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Ruijuan Guo
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| | - Yun Wang
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
14
|
Amini MJ, Seighali N, Arabazadeh Bahri R, Ala M, Mohammad Jafari R, Dehpour AR. Repurposing of modafinil as an anti-inflammatory drug: a systematic review of experimental studies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03964-9. [PMID: 40358683 DOI: 10.1007/s00210-025-03964-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 02/19/2025] [Indexed: 05/15/2025]
Abstract
Previous studies suggested the anti-inflammatory properties of modafinil. This study aimed to review the current literature to provide a comprehensive insight into the anti-inflammatory uses of modafinil in experimental studies. We conducted a systematic search using Medline (via PubMed), Web of Science, Scopus, and Embase databases from their commencement until 10 October 2022. All original articles focusing on modafinil anti-inflammatory effects were included. Our initial search yielded 1398 articles. Fourteen publications were included in our systematic review. Recent studies attempted to provide evidence for repurposing modafinil for several diseases, including autoimmune encephalomyelitis, nonalcoholic liver disease, gastric mucosal injury, neuropathic pain, atherosclerosis, intestinal ischemia, pulmonary hypertension, pancreatitis, ischemic stroke, testicular torsion, and lithium-pilocarpine-induced status epilepticus. Current evidence supports that modafinil can modulate inflammation, suppress the immune response, and improve disease severity partly by inhibiting NF-κB, NOS, Kca3.1, Kca2.3, and COX-2. By reviewing recent findings from experimental studies, we discussed the beneficial effects of modafinil on several inflammatory diseases, with a particular focus on the underlying mechanisms.
Collapse
Affiliation(s)
- Mohammad Javad Amini
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Niloofar Seighali
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Razman Arabazadeh Bahri
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, 13145-784, Iran
| | - Moein Ala
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, 13145-784, Iran
| | - Razieh Mohammad Jafari
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, 13145-784, Iran.
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, 13145-784, Iran.
| |
Collapse
|
15
|
Crosson T, Bretaud N, Ugolini S. Role of specialized sensory neuron subtypes in modulating peripheral immune responses. Immunity 2025; 58:1161-1174. [PMID: 40324383 DOI: 10.1016/j.immuni.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/07/2025] [Accepted: 04/07/2025] [Indexed: 05/07/2025]
Abstract
The immune and sensory nervous systems detect diverse threats, from tissue damage to infection, and coordinate protective responses to restore homeostasis. Like immune cells, sensory neurons exhibit remarkable heterogeneity, with advanced genetic models revealing that distinct subsets differentially regulate immune responses. Here, we review how various immune signals engage distinct subtypes of sensory neurons to mediate inflammatory pain, itch, relief, protective behavioral adaptations, and autonomic reflexes. We also highlight how specialized sensory neuron populations modulate immune function through the release of neuropeptides, neurokines, or glutamate. This functional specialization enables precise immunomodulation adapted to the kinetics and nature of immune responses, positioning sensory neurons as key regulators of host defense and tissue homeostasis.
Collapse
Affiliation(s)
- Théo Crosson
- Aix-Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Ninon Bretaud
- Aix-Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Sophie Ugolini
- Aix-Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France.
| |
Collapse
|
16
|
Ho MFS, Farkas O, Faria AV, Plemel JR, Kerr BJ. A recent history of immune cell sex differences in the peripheral nervous system in persistent pain states. Brain Behav Immun 2025; 128:766-775. [PMID: 40345628 DOI: 10.1016/j.bbi.2025.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 04/23/2025] [Accepted: 05/06/2025] [Indexed: 05/11/2025] Open
Abstract
Pain is entwined with inflammation, and biological sex often influences mechanisms of the immune system. Due to possible differences in inflammatory mechanisms, women are predisposed to autoimmune diseases and chronic pain. Despite sex as a critical variable in clinical cases of autoimmune conditions and its pain comorbidities, fundamental investigations have long underrepresented female subjects in their studies. Fundamental research in the 2010s, however, identified a binary sex specific mechanism for pain in rodents: male pain is microglia-driven while female pain is T cell-driven. Since then, studies have expanded in neuro-immunology to indicate that the sex differences and immune cells involved in these processes take on more elaborate roles when expanded to other causal modalities and anatomical levels of neuropathic and inflammatory pain. In this mini-review, we highlight updated roles for macrophages, T cells, and B cells in the peripheral nervous system during persistent pain conditions: neuropathic pain and inflammatory pain. We discuss sex similarities and sex differences in these cell types. By parsing out the sex specific roles of immune cells in persistent pain states, we may be better positioned to find immune-based therapies that can effectively target chronic pain in sex-biased autoimmune conditions.
Collapse
Affiliation(s)
- Madelene Faye S Ho
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| | - Olivia Farkas
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Andre Vilela Faria
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Jason R Plemel
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; Department of Medicine, Division of Neurology, University of Alberta, Edmonton, AB T6G 2E1, Canada; Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| | - Bradley J Kerr
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, AB T6G 2E1, Canada; Department of Pharmacology, University of Alberta, Edmonton, AB T6G 2E1, Canada; Department of Physiology, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| |
Collapse
|
17
|
de la Cruz-Lynch A, Dailey-Krempel B, Dayton A, Nguyen DT, Tyshynsky R, Van Helden D, Lahti M, Carney J, Evans L, Vulchanova L, Osborn J. A Novel Catheter-Based Method for Denervation of Afferent Renal Nerves in Sheep. Cardiovasc Eng Technol 2025:10.1007/s13239-025-00786-x. [PMID: 40329016 DOI: 10.1007/s13239-025-00786-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 04/21/2025] [Indexed: 05/08/2025]
Abstract
PURPOSE Catheter-based total renal denervation (TRDN) has recently gained FDA approval to lower blood pressure in patients with treatment-resistant hypertension. Current TRDN technologies indiscriminately destroy efferent (sympathetic) and afferent (sensory) renal nerves. However, preclinical studies suggest that the beneficial effects of TRDN may be due to ablation of afferent, rather than efferent, renal nerves. We developed a novel method for chemical ablation of afferent renal nerves by periaxonal application of capsaicin which has been employed in mouse and rat models of hypertension. In certain rodent models afferent-specific renal denervation (ARDN) has been shown to lower arterial pressure to the same degree as TRDN. The objective of the present study was to develop a catheter-based method for ARDN in a large animal model with the long-term goal of translating this treatment to humans. We tested the feasibility of using the Peregrine™ catheter infusion system, currently used to perform TRDN in humans by injection of ethanol, to perform catheter-based afferent renal denervation in sheep by periaxonal application of capsaicin. METHODS Castrated, adult, male, Friesen sheep underwent Sham RDN (saline, n = 2), TRDN (ethanol, n = 4), or ARDN (capsaicin, n = 4) with the Peregrine™ catheter before termination > 2 weeks after the procedure. Denervation of renal efferents was verified by measurement of renal cortical norepinephrine (NE) content and anti-tyrosine hydroxylase (TH) staining; denervation of renal afferents was verified with anti-calcitonin gene-related peptide (CGRP) staining. RESULTS There was a significant decrease in TH + and CGRP + fibers in TRDN kidneys and in CGRP + but not TH + fibers in ARDN kidneys. TRDN significantly reduced renal cortical norepinephrine (NE) content by 89% while ARDN had similar NE content to Sham RDN kidneys. CONCLUSIONS This study establishes the feasibility of performing catheter-based afferent renal denervation in a large animal model. Furthermore, this study provides a translational model to evaluate catheter-based ARDN as a potential treatment for hypertension.
Collapse
Affiliation(s)
- Arthur de la Cruz-Lynch
- Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA
- Department of Integrative Biology & Physiology, University of Minnesota, Minneapolis, MN, 55455, USA
- Medical Scientist Training Program, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Brianna Dailey-Krempel
- Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Alex Dayton
- Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Duc T Nguyen
- Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Roman Tyshynsky
- Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Dusty Van Helden
- Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Matthew Lahti
- Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA
- Experimental Surgical Services Laboratory, University of Minnesota, Minneapolis, MN, 55455, USA
| | - John Carney
- Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA
- Experimental Surgical Services Laboratory, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Louise Evans
- Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Lucy Vulchanova
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - John Osborn
- Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
18
|
Gonçalves WA, de Sousa CDF, Teixeira MM, Souza DG. A brief overview of chikungunya-related pain. Eur J Pharmacol 2025; 994:177322. [PMID: 39892450 DOI: 10.1016/j.ejphar.2025.177322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 01/15/2025] [Accepted: 01/29/2025] [Indexed: 02/03/2025]
Abstract
Pain is an important symptom associated with the arboviral disease caused by the Chikungunya virus (CHIKV). For a significant number of patients, this symptom can persist for months or even years, negatively affecting their quality of life. Unfortunately, pharmacological options for this condition are limited and only partially effective, as the underlying mechanisms associated with CHIKV-induced pain are still poorly understood. The re-emergence of CHIKV has led to new outbreaks, and the expected high prevalence of pain in these global events requires new scientific advances to find more effective solutions. Here we review the main aspects of pain caused by CHIKV infection, such as the anatomy of the affected sites, the prevalence and management of this symptom, the diversity of possible cellular and molecular mechanisms, and finally highlight a promising meningeal pathway to elucidate the mechanisms involved in the unsolved problem of CHIKV-associated pain.
Collapse
Affiliation(s)
- William Antonio Gonçalves
- Departamento de Morfologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil.
| | - Carla Daiane Ferreira de Sousa
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, University of Münster, Münster, Germany.
| | - Mauro Martins Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil.
| | - Daniele G Souza
- Laboratório Interação Microrganismo Hospedeiro, Departamento de Microbiologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil.
| |
Collapse
|
19
|
Pando MM, Debner EK, Jacobs BA, Jamshidi RJ, Jennings EM, Clarke WP, Berg KA. Activation of G protein gated inwardly rectifying potassium (GIRK) channels in keratinocytes mediates peripheral kappa opioid receptor-mediated antinociception. Neuropharmacology 2025; 268:110326. [PMID: 39880327 DOI: 10.1016/j.neuropharm.2025.110326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/08/2025] [Accepted: 01/23/2025] [Indexed: 01/31/2025]
Abstract
Kappa opioid receptors (KOR) expressed by peripheral pain-sensing neurons (nociceptors) are a promising target for development of effective and safer analgesics for inflammatory pain that are devoid of central nervous system adverse effects. Here we sought to delineate the signaling pathways that underlie peripheral KOR-mediated antinociception in adult male and female Sprague-Dawley rats. In an inflammatory model of pain, local intraplantar (i.pl.) injection of pertussis toxin prevented antinociception induced by the KOR agonist, U50488, indicating that members of the Gi/o family mediate the antinociceptive response. Furthermore, i.pl. injection of the G protein-coupled inward-rectifying potassium (GIRK) channel blocker, TPNQ, as well as GIRK2 subunit-targeted siRNA abolished U50488-mediated antinociceptive behavioral responses in both male and female rats. Consistent with these data, i.pl. injection of ML297, a direct activator of GIRK1 subunit-containing channels, elicited peripheral antinociceptive behavior. It is well known that intraepidermal nerve fibers (IENF) that innervate the hindpaw propagate nociceptive signals to the spinal cord. However, recent studies suggest that keratinocytes, the major cell type in the epidermis, also play an active role in pain and sensory processing. Results from RT-qPCR, RNAscope and immunohistochemistry experiments confirmed that both KOR and GIRK are expressed in keratinocytes in the epidermal layer of the rat hindpaw. Knockdown of either KOR or GIRK2 subunits selectively in keratinocytes by i.pl. injection of shRNA plasmids, prevented the antinociceptive response to U50488. Taken together, these data suggest that KOR-mediated activation of GIRK channels in keratinocytes is required for peripherally-mediated antinociception.
Collapse
Affiliation(s)
- Miryam M Pando
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Emily K Debner
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Blaine A Jacobs
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Raehannah J Jamshidi
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Elaine M Jennings
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - William P Clarke
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Kelly A Berg
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
20
|
Giosan IM, Serafini RA, Ramakrishnan A, Tuffy MJ, Zimering J, Babes A, Shen L, Zachariou V. HDAC6 inhibition ameliorates sensory hypersensitivity and reduces immune cell signatures in the dorsal root ganglia in murine chronic pain models. Mol Pharmacol 2025; 107:100034. [PMID: 40311408 DOI: 10.1016/j.molpha.2025.100034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 03/21/2025] [Indexed: 05/03/2025] Open
Abstract
Histone deacetylase (HDAC)6 is a broadly expressed class IIb HDAC that regulates cytoskeletal dynamics and some nuclear processes. Previously research has shown that HDAC6 enzymatic inhibition has analgesic properties in models of chemotherapy-induced peripheral neuropathy. Here, we evaluated the effects of genetic and pharmacologic inhibition of HDAC6 on the development of sensory hypersensitivity in mouse models of peripheral nerve injury and peripheral inflammation. Daily administration of the peripherally restricted HDAC6 inhibitor, ACY1215 (Regenacy Pharmaceuticals, Inc), attenuated mechanical allodynia in the von Frey assay within 2 days of treatment initiation, with no signs of analgesic tolerance after 21 days of administration. We observed a similar antiallodynic effect across the implemented injury models after conditionally knocking down Hdac6 in the adult dorsal root ganglia (DRGs). Bioinformatic analysis of whole-transcriptome RNA-sequencing data predicted that ACY1215 treatment predominantly attenuated proinflammatory mechanisms, such as the suppression of immune cell infiltration into the DRG after injury. Accordingly, we demonstrated a reduction in the expression of various immune cell markers in the DRG after pharmacologic and genetic HDAC6 inhibition in both neuropathic and inflammatory pain models. We identified a direct relationship between Ccl5/Ccr5 and Hdac6 downregulation, as well as reduced hypersensitivity after hind paw CCL5 administration upon Hdac6 knockdown in the DRG. Our findings highlight that peripheral inhibition of HDAC6 ameliorates sensory hypersensitivity in models of postoperative inflammatory and neuropathic pain through mechanisms beyond reduction of tubulin deacetylation. SIGNIFICANCE STATEMENT: Recent studies highlight the role of histone deacetylase (HDAC)6 in chemotherapy-induced peripheral neuropathy, through mechanisms of action including tubulin acetylation and mitochondrial trafficking. In this study, various murine models of acute and chronic pain are applied to show that inhibition of HDAC6 activity in the periphery, using the clinically tested ACY1215 compound, and genetic inactivation of the Hdac6 gene in the dorsal root ganglia, alleviated mechanical hypersensitivity in male and in female mice through mechanisms that include targeting injury-induced inflammation.
Collapse
Affiliation(s)
- Ilinca M Giosan
- Department of Pharmacology, Physiology, & Biophysics, Chobanian and Avedisian School of Medicine at Boston University, Boston, Massachusetts; Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology and Interdisciplinary School of Doctoral Studies, University of Bucharest, Bucharest, Romania
| | - Randal A Serafini
- Department of Pharmacology, Physiology, & Biophysics, Chobanian and Avedisian School of Medicine at Boston University, Boston, Massachusetts; Nash Family Department of Neuroscience and Freidman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience and Freidman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Madden J Tuffy
- Department of Pharmacology, Physiology, & Biophysics, Chobanian and Avedisian School of Medicine at Boston University, Boston, Massachusetts
| | - Jeffrey Zimering
- Nash Family Department of Neuroscience and Freidman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Alexandru Babes
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology and Interdisciplinary School of Doctoral Studies, University of Bucharest, Bucharest, Romania
| | - Li Shen
- Nash Family Department of Neuroscience and Freidman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Venetia Zachariou
- Department of Pharmacology, Physiology, & Biophysics, Chobanian and Avedisian School of Medicine at Boston University, Boston, Massachusetts.
| |
Collapse
|
21
|
Heo JI, Kim MJ, Kim D, Seo J, Moon JH, Choi SH, Lee HJ, Oh TJ. Alpha-Tocopherol-Loaded Liposomes Reduce High Glucose Induced Oxidative Stress in Schwann Cells: A Proof of Concept Study. Diabetes Metab J 2025; 49:507-512. [PMID: 39908988 PMCID: PMC12086562 DOI: 10.4093/dmj.2024.0489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/23/2024] [Indexed: 02/07/2025] Open
Abstract
Although oxidative stress is the main pathophysiology of the development of diabetic neuropathy, oral administration of antioxidants has given disappointing results. Here, we hypothesized that local delivery of antioxidants would provide protective effects on Schwann cells due to the high concentration of local lesions. We prepared alpha-tocopherol (ATF)-loaded liposomes and tested their skin penetration after sonication. An in vitro study using IMS-32 cells was conducted to determine the level of reactive oxygen species (ROS) scavenging effects of ATF-liposomes. ATF reduced ROS in high-glucose-exposed IMS-32 cells in a dosedependent manner. ATF-liposomes also reduced the ROS level in vitro and ultrasound irradiation enhanced delivery to the dermis in porcine ear skin. This study showed that it is feasible to deliver ATF through the skin and can effectively reduce ROS. This model is worthy of development for clinical use.
Collapse
Affiliation(s)
- Jee-In Heo
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Mi Jeong Kim
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Daehyun Kim
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| | - Jimin Seo
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Joon Ho Moon
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Sung Hee Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Hak Jong Lee
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
- Department of Medical Device Development, Seoul National University College of Medicine, Seoul, Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
| | - Tae Jung Oh
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
22
|
Sumimoto T, Tanaka R, Murakami Y, Tatsuta R, Itoh H. Clinical relevance of immune checkpoint inhibitors for the analgesic effect of opioids: A retrospective propensity score analysis. Br J Clin Pharmacol 2025; 91:1409-1418. [PMID: 40289636 DOI: 10.1111/bcp.16377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/10/2024] [Accepted: 12/10/2024] [Indexed: 04/30/2025] Open
Abstract
AIMS This study aimed to determine the clinical relevance of the influence of coadministration of immune checkpoint inhibitors (ICIs) on the analgesic effects of opioids, focusing on the amount of change in opioid dosage. METHODS This study used data from patients who used opioids during anticancer therapy at the Oita University Hospital between September 2014 and October 2023. The primary outcome measure was the amount of change in morphine mg equivalent opioid dose during the period of anticancer therapy. Propensity score matching was performed to reduce confounding effects. RESULTS The study enrolled 235 patients; 101 received ICI and 134 received no ICI. Before propensity score matching, there were significant differences between the ICI and non-ICI groups in lines of anticancer therapy, type of primary cancer, body mass index, maximum opioid dose and the amount of change in opioid dose. Following propensity score matching, 73 patients each were included in the ICI and non-ICI groups. Analysis of the propensity score-matched cohort showed a significant increase in the median amount of change in opioid dose in ICI group vs non-ICI group (22.5 vs. 15.0 morphine mg equivalents, interquartile range; 0.0, 40.0 vs. 0.0, 30.0, P = .044). Multiple regression analysis identified ICI administration and body mass index as significant independent factors associated with the amount of change in opioid dose (P = .014 and .027, respectively). CONCLUSIONS ICI administration significantly increased opioid dosage regardless of patient background. Our findings would provide valuable insight into future pain management strategies.
Collapse
Affiliation(s)
- Takahiro Sumimoto
- Department of Clinical Pharmacy, Oita University Hospital, Oita, Japan
| | - Ryota Tanaka
- Department of Clinical Pharmacy, Oita University Hospital, Oita, Japan
| | - Yuko Murakami
- Department of Clinical Pharmacy, Oita University Hospital, Oita, Japan
| | - Ryosuke Tatsuta
- Department of Clinical Pharmacy, Oita University Hospital, Oita, Japan
| | - Hiroki Itoh
- Department of Clinical Pharmacy, Oita University Hospital, Oita, Japan
| |
Collapse
|
23
|
Huang S, Xie Y, Zhan Z, Liu F, Liu P, Xu F, Xu T, Fang Z, Chen Z, Han Q, Jie L, Xie R, Zhang H, Xu S, Zhang Y, Mo K, Luo X. Geranyl hydroquinone alleviates rheumatoid arthritis-associated pain by suppressing neutrophil accumulation, N1 polarization and ROS production in mice. Redox Biol 2025; 82:103603. [PMID: 40147153 PMCID: PMC11986610 DOI: 10.1016/j.redox.2025.103603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/03/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025] Open
Abstract
Pain hypersensitivity is a hallmark of rheumatoid arthritis (RA); however, the underlying mechanisms and effective therapies remain largely undefined. Emerging studies suggest that neutrophils play a significant role in the pathology of RA, yet their involvement in RA-associated pain is still unclear. The present study investigates whether neutrophil activity contributes to pain pathogenesis in RA. Our flow cytometry analysis reveals that the accumulation and N1 polarization (indicated by the ratio of CD45+CD66b+CD95+ subset) of neutrophils occur in synovial fluid samples from RA patients, positively correlating with pain scores. In the collagen-induced rheumatoid arthritis (CIA) model, mice demonstrate neutrophil accumulation, N1 polarization (indicated by the ratio of CD45+Ly-6G+CD95+ subset), and reactive oxygen species (ROS) production in affected paw tissues. Geranyl hydroquinone (GHQ), a natural meroterpenoid with antioxidative properties, reverses N1 polarization and ROS production in synovial neutrophils from RA patients in vitro. Moreover, a 10-day oral administration of GHQ alleviates pain hypersensitivity and reduces neutrophil accumulation, N1 polarization, and ROS production in CIA mice. Notably, GHQ treatment reverses TNF-α-evoked ROS production in neutrophils in vitro through downregulating gene expression associated with the ROS pathway. Further, liquid chromatography-tandem mass spectrometry and biochemical analyses indicate that GHQ binds to microsomal glutathione S-transferase 3 (MGST3) in neutrophils. In vitro and in vivo evidence demonstrates that the RA-specific analgesic and antioxidative effects of GHQ require MGST3. Lastly, GHQ administration exhibits superior therapeutic effects compared to methotrexate, a first-line disease-modifying antirheumatic drug, in CIA mice. Collectively, our findings indicate that neutrophil accumulation, N1 polarization and ROS production contribute to RA-associated pain, suggesting that targeting these pathways, such as with GHQ, could be a viable strategy for RA treatment.
Collapse
Affiliation(s)
- Sen Huang
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yuxin Xie
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhaochun Zhan
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China; Department of Anesthesiology, Shunde Hospital, Southern Medical University, Foshan, 528300, China
| | - Fengdong Liu
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Peiyang Liu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Fei Xu
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Tingting Xu
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhenning Fang
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Zhiqiang Chen
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China; Department of Anesthesiology, Shunde Hospital, Southern Medical University, Foshan, 528300, China
| | - Qingjian Han
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Ligang Jie
- Department of Rheumatology and Clinical Immunology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Rougang Xie
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Hongfei Zhang
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Institute of Perioperative Medicine and Organ Protection, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Shiyuan Xu
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Institute of Perioperative Medicine and Organ Protection, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yiwen Zhang
- Department of Anesthesiology, Shunde Hospital, Southern Medical University, Foshan, 528300, China.
| | - Kai Mo
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Institute of Perioperative Medicine and Organ Protection, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| | - Xin Luo
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China; Department of Anesthesiology, Shunde Hospital, Southern Medical University, Foshan, 528300, China; Institute of Perioperative Medicine and Organ Protection, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| |
Collapse
|
24
|
Feng WD, Liu DN, Shang YF, Zhang WF, Xu S, Feng DH, Wang YH. Neuroimmune modulators derived from natural products: Mechanisms and potential therapies. Pharmacol Ther 2025; 269:108830. [PMID: 40015519 DOI: 10.1016/j.pharmthera.2025.108830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 12/26/2024] [Accepted: 02/23/2025] [Indexed: 03/01/2025]
Abstract
Neuroimmunology is a multidisciplinary field that investigates the interactions between the nervous and immune systems. Neuroimmune interactions persist throughout the entire lifespan, and their dysregulation can lead to the onset and development of multiple diseases. Despite significant progress over the past decades in elucidating the interaction between neuroscience and immunology, the exact mechanism underlying neuroimmune crosstalk has not yet been fully elucidated. In recent years, natural products have emerged as a promising avenue for the therapeutic implications of neuroimmune diseases. Naturally derived anti-neuroimmune disease agents, such as polyphenols, flavonoids, alkaloids, and saponins, have been extensively studied for their potential neuroimmune modulatory effects. This comprehensive review delves into the specific molecular mechanisms of bidirectional neuro-immune interactions, with particular emphasis on the role of neuro-immune units. The review synthesizes a substantial body of evidence from in vitro and in vivo experiments as well as clinical studies, highlighting the therapeutic potential of various natural products in intervening in neuroimmune disorders.
Collapse
Affiliation(s)
- Wan-Di Feng
- Beijing Key Laboratory of Innovative Drug Discovery and Polymorphic Druggability Research for Cerebrovascular Diseases, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Dong-Ni Liu
- Beijing Key Laboratory of Innovative Drug Discovery and Polymorphic Druggability Research for Cerebrovascular Diseases, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yu-Fu Shang
- Beijing Key Laboratory of Innovative Drug Discovery and Polymorphic Druggability Research for Cerebrovascular Diseases, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Wen-Fang Zhang
- Beijing Key Laboratory of Innovative Drug Discovery and Polymorphic Druggability Research for Cerebrovascular Diseases, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Shuang Xu
- Beijing Key Laboratory of Innovative Drug Discovery and Polymorphic Druggability Research for Cerebrovascular Diseases, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Dan-Hong Feng
- Beijing Key Laboratory of Innovative Drug Discovery and Polymorphic Druggability Research for Cerebrovascular Diseases, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yue-Hua Wang
- Beijing Key Laboratory of Innovative Drug Discovery and Polymorphic Druggability Research for Cerebrovascular Diseases, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
25
|
Yang Y, Zhao B, Wang Y, Lan H, Liu X, Hu Y, Cao P. Diabetic neuropathy: cutting-edge research and future directions. Signal Transduct Target Ther 2025; 10:132. [PMID: 40274830 PMCID: PMC12022100 DOI: 10.1038/s41392-025-02175-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/12/2024] [Accepted: 02/08/2025] [Indexed: 04/26/2025] Open
Abstract
Diabetic neuropathy (DN) is a prevalent and debilitating complication of diabetes mellitus, significantly impacting patient quality of life and contributing to morbidity and mortality. Affecting approximately 50% of patients with diabetes, DN is predominantly characterized by distal symmetric polyneuropathy, leading to sensory loss, pain, and motor dysfunction, often resulting in diabetic foot ulcers and lower-limb amputations. The pathogenesis of DN is multifaceted, involving hyperglycemia, dyslipidemia, oxidative stress, mitochondrial dysfunction, and inflammation, which collectively damage peripheral nerves. Despite extensive research, disease-modifying treatments remain elusive, with current management primarily focusing on symptom control. This review explores the complex mechanisms underlying DN and highlights recent advances in diagnostic and therapeutic strategies. Emerging insights into the molecular and cellular pathways have unveiled potential targets for intervention, including neuroprotective agents, gene and stem cell therapies, and innovative pharmacological approaches. Additionally, novel diagnostic tools, such as corneal confocal microscopy and biomarker-based tests, have improved early detection and intervention. Lifestyle modifications and multidisciplinary care strategies can enhance patient outcomes. While significant progress has been made, further research is required to develop therapies that can effectively halt or reverse disease progression, ultimately improving the lives of individuals with DN. This review provides a comprehensive overview of current understanding and future directions in DN research and management.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China.
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Bing Zhao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuanzhe Wang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongli Lan
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinyu Liu
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yue Hu
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Peng Cao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China.
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
26
|
Ji YZ, Lin ZH, Liao CX, Wang Q, Chen FY, Su WF, Zhao YY, Chen G, Wei ZY. Inhibition of Macrophage Activation by Minocycline Attenuates CCI-Induced Neuropathic Pain. Inflammation 2025:10.1007/s10753-025-02300-w. [PMID: 40281365 DOI: 10.1007/s10753-025-02300-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/25/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025]
Abstract
Neuropathic pain is characterized by a high prevalence and associated with a variety of disorders of the peripheral and central nervous systems. It remains a major challenge for clinical management due to lack effective treatments. Our previous studies have demonstrated that nerve injury-induced neuroinflammation plays a critical role in regulating the development and maintenance of neuropathic pain. In the present study, we found that chronic constriction injury (CCI) led to a significant increase in the number of macrophages at the site of injured nerves. To elucidate the role of macrophage activation in CCI-induced neuropathic pain, we employed chemical agents, including clodronate liposomes, which is known for their ability to deplete macrophages, and minocycline, an inhibitor of macrophage function. Both intravenous injection of liposome-encapsulated clodronate and intrasciatic delivery of minocycline effectively attenuated CCI-induced mechanical and heat hyperalgesia. Furthermore, transfer of polarized M2 macrophages significantly alleviated CCI-induced neuropathic pain, but not under the condition of M1 macrophage transfer. Mechanistically, our findings indicated that pretreatment with minocycline increased the expression level of CD206 but decreased that of IL-1β, while post-polarization treatment markedly decreased the expression level of both. Additionally, an in vitro migration assay revealed that minocycline exerts an inhibitory effect on macrophage migration. In brief, our study elucidates the effect of CCI-induced macrophage activation on neuropathic pain and provides new insights into the potential clinical application of minocycline for managing neuropathic pain.
Collapse
Affiliation(s)
- Yan-Zhe Ji
- Co-Innovation Center of Neuroregeneration, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Zhi-Hao Lin
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Cai-Xian Liao
- Co-Innovation Center of Neuroregeneration, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Qian Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Fang-Yu Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Wen-Feng Su
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Ya-Yu Zhao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Gang Chen
- Co-Innovation Center of Neuroregeneration, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Zhong-Ya Wei
- School of Nursing and Rehabilitation, Nantong University, Nantong, Jiangsu Province, China.
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.
| |
Collapse
|
27
|
Xu J, Bang S, Chen O, Li Y, McGinnis A, Zhang Q, Ji RR. Neuroprotectin D1 and GPR37 protect against chemotherapy-induced peripheral neuropathy and the transition from acute to chronic pain. Pharmacol Res 2025; 216:107746. [PMID: 40287118 DOI: 10.1016/j.phrs.2025.107746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 04/20/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) significantly impacts patient's quality of life and complicates cancer treatment. Neuroprotectin D1 (NPD1)/protectin D1 (PD1), derived from docosahexaenoic acid (DHA), exhibits analgesic actions in animal models of inflammatory pain and neuropathic pain. GPR37, a receptor for NPD1/PD1, is known to regulate macrophage phagocytosis and inflammatory cytokine expression, but its role in primary sensory neurons and CIPN remains poorly understood. We found Gpr37 mRNA expression in both neurons and macrophages in mouse dorsal root ganglia (DRG), furthermore, GPR37 is downregulated by the chemotherapy agent paclitaxel. Gpr37 mRNA was notably high in neonatal mouse DRG neurons. In contrast, Gpr37l1 is primarily expressed by satellite glial cells in DRG. Chemotherapy-induced neuropathic pain symptom (mechanical allodynia) resolved within seven weeks in wild-type mice, but it persisted in Gpr37 knockout mice, highlighting GPR37's role in acute-to-chronic pain transition. Consistently, intra-DRG knockdown of Gpr37 in naive animals was sufficient to induce mechanical allodynia. In primary DRG cultures, NPD1 facilitated neurite outgrowth of sensory neurons in the presence of paclitaxel, in a GPR37-dependent manner. NPD1 treatment also mitigated mechanical allodynia and prevented the loss of intraepidermal nerve fibers in hind paw skins in wild-type mice undergoing chemotherapy, but these protective effects are absent in Gpr37 knockout mice. Finally, spatial transcriptomics analysis revealed macrophage and neuronal expression of GPR37 in human DRG. Our findings indicate that GPR37 deficiency drives pain chronicity in CIPN. This study also underscores the potential of NPD1 in safeguarding against sensory neuron degeneration and neuropathic pain in CIPN through GPR37.
Collapse
Affiliation(s)
- Jing Xu
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, United States
| | - Sangsu Bang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, United States
| | - Ouyang Chen
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, United States
| | - Yize Li
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, United States
| | - Aidan McGinnis
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, United States
| | - Qin Zhang
- Department of Anesthesiology, Duke University, Durham, NC 27708, United States
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, United States; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, United States; Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, United States.
| |
Collapse
|
28
|
Li M, Tang Y, Zhou C, Geng Y, Zhang C, Hsu Y, Ma L, Guo W, Li M, Wang Y. The Application of Stem Cells and Exosomes in Promoting Nerve Conduits for Peripheral Nerve Repair. Biomater Res 2025; 29:0160. [PMID: 40231207 PMCID: PMC11994886 DOI: 10.34133/bmr.0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 04/16/2025] Open
Abstract
The repair of peripheral nerve injury (PNI) presents a multifaceted and protracted challenge, with current therapeutic approaches failing to achieve optimal repair outcomes, thereby not satisfying the considerable clinical demand. The advent of tissue engineering has led to a growing body of experimental evidence indicating that the synergistic application of nerve conduits, which provide structural guidance, alongside the biological signals derived from exosomes and stem cells, yields superior therapeutic results for PNI compared to isolated interventions. This combined approach holds great promise for clinical application. In this review, we present the latest advancements in the treatment of PNI through the integration of stem cells or exosomes with nerve conduits. We have addressed the inadequate efficiency of exosomes or stem cells in conjunction with nerve conduits from 3 perspectives: enhancing stem cells or exosomes, improving nerve conduits, and incorporating physical stimulation.
Collapse
Affiliation(s)
- Mengen Li
- National Center for Trauma Medicine, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education,
Peking University, Beijing 100044, China
- Trauma Medicine Center,
Peking University People’s Hospital, Beijing 100044, China
- Department of Orthopedics and Trauma,
Peking University People’s Hospital, Beijing 100044, China
| | - Ye Tang
- National Center for Trauma Medicine, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education,
Peking University, Beijing 100044, China
- Trauma Medicine Center,
Peking University People’s Hospital, Beijing 100044, China
- Department of Orthopedics and Trauma,
Peking University People’s Hospital, Beijing 100044, China
| | - Chengkai Zhou
- National Center for Trauma Medicine, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education,
Peking University, Beijing 100044, China
- Trauma Medicine Center,
Peking University People’s Hospital, Beijing 100044, China
| | - Yan Geng
- National Center for Trauma Medicine, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education,
Peking University, Beijing 100044, China
- Trauma Medicine Center,
Peking University People’s Hospital, Beijing 100044, China
| | - Chenxi Zhang
- National Center for Trauma Medicine, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education,
Peking University, Beijing 100044, China
- Trauma Medicine Center,
Peking University People’s Hospital, Beijing 100044, China
| | - Yuwei Hsu
- National Center for Trauma Medicine, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education,
Peking University, Beijing 100044, China
- Trauma Medicine Center,
Peking University People’s Hospital, Beijing 100044, China
- Emergency Department,
Peking University People’s Hospital, Beijing 100044, China
| | - Le Ma
- National Center for Trauma Medicine, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education,
Peking University, Beijing 100044, China
- Trauma Medicine Center,
Peking University People’s Hospital, Beijing 100044, China
| | - Wei Guo
- Emergency Department,
Peking University People’s Hospital, Beijing 100044, China
| | - Ming Li
- National Center for Trauma Medicine, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education,
Peking University, Beijing 100044, China
- Trauma Medicine Center,
Peking University People’s Hospital, Beijing 100044, China
| | - Yanhua Wang
- National Center for Trauma Medicine, Beijing 100044, China
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education,
Peking University, Beijing 100044, China
- Department of Orthopedics and Trauma,
Peking University People’s Hospital, Beijing 100044, China
| |
Collapse
|
29
|
Wan T, Wei A, Ding Z, Gonzalez SC, Wang J, Hou X, Luo X, He L, Song Z. Inflammation and macrophage infiltration exacerbate adult incision response by early life injury. BMC Anesthesiol 2025; 25:165. [PMID: 40211125 PMCID: PMC11983940 DOI: 10.1186/s12871-025-03029-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/26/2025] [Indexed: 04/12/2025] Open
Abstract
BACKGROUND Neonatal hindpaw incision can evoke long-lasting changes in nociceptive processing following repeat injury in adulthood. Studies have focused on the effects and mechanisms in the spinal cord and brain, however changes in inflammation and macrophages in the periphery, especially at the site of early life injury, remain poorly defined. In this paper, we investigated the role of macrophages in the injured tissue in pain hypersensitivity caused by repeat hindpaw incisions and primed by neonatal injury. METHODS Hindpaw incision was performed in anesthetized adult rats. Among them, some had neonatal hindpaw incisions on postnatal day 3. To assess the role of inflammatory response in the priming of adult incision pain, the rats were treated with clodronate liposome, a macrophage depletion agent, and ketorolac tromethamine, the commonly used anti-inflammatory drug following surgery. Their mechanical pain sensitivity was measured via von Frey filaments. Inflammation induced by hindpaw incision was evaluated via Enzyme-linked Immunosorbent Assay, H&E, and immunofluorescence staining. The phenotypes of macrophages were examined by analyzing their surface markers by flow cytometry. RESULTS Mechanical pain hypersensitivity caused by the hindpaw incision in the adult rats was enhanced by previous neonatal injury, which also significantly increased microglial activation in the spinal dorsal horn, aggravation of inflammation, and infiltration of both M1 and M2 macrophages in damaged hindpaw tissue after the repeat incision in the adult rats on POD 5. Intraperitoneal injection of clodronate liposome alleviates nociceptive and inflammatory responses in neonatal injured rats. Intramuscular injection of ketorolac tromethamine decreased mechanical hyperalgesia and inflammatory responses primed by prior neonatal injury. CONCLUSIONS Neonatal tissue injury exacerbated mechanical hypersensitivity, infiltration, and activation of macrophages evoked by repeat hindpaw incision in adulthood.
Collapse
Affiliation(s)
- Tong Wan
- 1Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Anqi Wei
- 1Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, 410008, China
- Department of Anesthesiology, Guiqian International General Hospital, Guiyang, 550024, China
| | - Zhuofeng Ding
- 1Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, 410008, China.
| | - Sarel Chavarria Gonzalez
- 1Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Jian Wang
- 1Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Xinran Hou
- 1Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Xiao Luo
- 1Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Liqiong He
- 1Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Zongbin Song
- 1Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, 410008, China.
- Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, 410008, China.
| |
Collapse
|
30
|
Qiao J, Xu X, Zhou X, Wu Y, Wang J, Xi H, Liu C, Wang Y, Zhou L, Zhou X, Jiang H, Wu J, Deng H, Yu L. Targeted Ganglion Delivery of CaV2.2-Mediated Peptide by DNA Nanoflowers for Relieving Myocardial Infarction and Neuropathic Pain. ACS NANO 2025; 19:13037-13052. [PMID: 40128122 DOI: 10.1021/acsnano.4c17325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
N-type calcium channel (CaV2.2) protein contributes to neuronal excitability and overactivation in sympathetic ganglion (SG) following myocardial infarction (MI), thereby easily triggering cardiac remodeling and ventricular arrhythmias (VAs). Despite much advances in the understanding of CaV2.2, a neuron-targeted modifying treatment is, yet, infrequently realized. Moreover, establishing a specific delivery strategy and stable probe architecture with an extensive molecular structure in pursuit of the complex CaV2.2 regulation still remains a challenge. Herein, we develop a smart DNA nanoflower (sDNF) composite by utilizing the customizable design and scalable production from a multifunctionality-encoded template that self-assembles into a biomimetic nanoarchitecture. The nanoarchitecture contains a neuron-targeting aptamer and a decorated CaV2.2 mediator peptide-DNA bioconjugate. The combined targeted delivery and the release of the CaV2.2 mediator peptide synergistically led to an ∼31% reduction of the peak calcium current in neuron cells. Moreover, sDNF alleviated MI-induced SG hyperactivity and improved in vivo outcomes, such as decreasing susceptibility to VAs and relieving neuropathic pain for 10 h. The infarct size treated with sDNF is reduced to approximately 11.1%. It is envisioned that the DNF-based nanostructure for cardiac remodeling suppression and VAs inhibition along with pain relief provides a potential approach for the clinical treatment of sympathetic-associated cardiovascular diseases.
Collapse
Affiliation(s)
- Jiaming Qiao
- Department of Cardiology, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan 430060, P. R. China
| | - Xiao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan 430060, P. R. China
| | - Xiaoya Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan 430060, P. R. China
| | - Yang Wu
- Hubei Key Laboratory of Biomass Resource Chemistry. and Environmental Biotechnology, Hubei Engineering Center of Natural Polymers-Based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Jiale Wang
- Department of Cardiology, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan 430060, P. R. China
| | - Haosong Xi
- Department of Cardiology, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan 430060, P. R. China
| | - Chengzhe Liu
- Department of Cardiology, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan 430060, P. R. China
| | - Yuhong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan 430060, P. R. China
| | - Liping Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan 430060, P. R. China
| | - Xue Zhou
- Key Laboratory of Environment and Health, Ministry of Education, Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan 430060, P. R. China
| | - Jun Wu
- Department of Cardiology, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan 430060, P. R. China
| | - Hongbing Deng
- Hubei Key Laboratory of Biomass Resource Chemistry. and Environmental Biotechnology, Hubei Engineering Center of Natural Polymers-Based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Lilei Yu
- Department of Cardiology, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Taikang Center for Life and Medical Sciences, Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan 430060, P. R. China
| |
Collapse
|
31
|
Jiang R, Geha P, Rosenblatt M, Wang Y, Fu Z, Foster M, Dai W, Calhoun VD, Sui J, Spann MN, Scheinost D. The inflammatory and genetic mechanisms underlying the cumulative effect of co-occurring pain conditions on depression. SCIENCE ADVANCES 2025; 11:eadt1083. [PMID: 40173244 PMCID: PMC11964001 DOI: 10.1126/sciadv.adt1083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 02/27/2025] [Indexed: 04/04/2025]
Abstract
Chronic pain conditions frequently coexist and share common genetic vulnerabilities. Despite evidence showing associations between pain and depression, the additive effect of co-occurring pain conditions on depression risk and the underlying mechanisms remain unclear. Leveraging data from 431,038 UK Biobank participants with 14-year follow-up, we found a significantly increased risk of depression incidence in individuals reporting pain, irrespective of body site or duration (acute or chronic), compared with pain-free individuals. The depression risk increased with the number of co-occurring pain sites. Mendelian randomization supported potential causal inference. We constructed a composite pain score by combining individual effects of acute or chronic pain conditions across eight body sites in a weighted manner. We found that depression risks increased monotonically in parallel with composite pain scores. Moreover, some inflammatory markers, including C-reactive protein, partially mediated the association between composite pain scores and depression risk. Considering the high prevalence of comorbid depression and pain, pain screening may help identify high-risk individuals for depression.
Collapse
Affiliation(s)
- Rongtao Jiang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA
| | - Paul Geha
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Matthew Rosenblatt
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Yunhe Wang
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Zening Fu
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA 30303, USA
| | - Maya Foster
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, USA
| | - Wei Dai
- Department of Biostatistics, Yale University, New Haven, CT 06520, USA
| | - Vince D. Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA 30303, USA
| | - Jing Sui
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Marisa N. Spann
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Dustin Scheinost
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, USA
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
32
|
Wang F, Ye Z, Yin X, Zhou C, Zhong M, Zhao G. Electroacupuncture at 5/100 Hz alleviates neuropathic pain in rats by inhibiting the CCL3/CCR5 axis in the spinal cord. Acupunct Med 2025; 43:95-103. [PMID: 40119762 DOI: 10.1177/09645284251327197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2025]
Abstract
OBJECTIVE Typically, neuropathic pain (NP) is difficult to manage as it is refractory to conventional medications. Electroacupuncture (EA) at 5/100 Hz has emerged as an effective and promising treatment for NP; however, its mechanism of action is still uncertain. Accordingly, this study investigated the alleviatory mechanism of EA in chronic compression injury (CCI)-induced chronic pain via the C-C chemokine ligand 3 / C-C chemokine receptor type 5 (CCL3/CCR5) axis. METHODS The CCI model was established in rats to induce NP. Mechanical and thermal hyperalgesia were assessed with von Frey and Hargreaves tests, respectively. From day 8 after CCI, EA (5/100 Hz) was performed for 1 week (30 min/day). CCL3 and CCR5 expression was detected with Western blotting and immunofluorescence. Glial cell activation was determined through co-labeling of neurons and glial cells with antibodies against CCL3 and CCR5. The release of interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α was tested with enzyme-linked immunosorbent assay (ELISA). RESULTS EA markedly ameliorated CCI-induced chronic NP in rats and reduced CCL3 and CCR5 expression in the rat spinal cord. CCL3 and CCR5 were co-expressed by neurons and microglia in the central nervous system. In addition, EA also repressed the activation of glial cells and levels of IL-1β, IL-6 and TNF-α. CONCLUSION EA may mitigate chronic NP in rats by blocking the CCL3/CCR5 axis in the spinal cord. In addition, EA appeared to exert anti-inflammatory and analgesic effects by suppressing glial cell activation. These findings add to our understanding of the mechanism of EA-induced analgesia.
Collapse
Affiliation(s)
- Feng Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhihui Ye
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiuju Yin
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | | | - Min Zhong
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Gaofeng Zhao
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
33
|
Chen Y, Liu F, Shi S, Xiao S, Gong X. The Integrated Transcriptome Bioinformatics Analysis of Energy Metabolism-Related Profiles for Dorsal Root Ganglion of Neuropathic Pain. Mol Neurobiol 2025; 62:4149-4171. [PMID: 39406937 DOI: 10.1007/s12035-024-04537-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/07/2024] [Indexed: 03/05/2025]
Abstract
Neuropathic pain (NP) is a debilitating disease and is associated with energy metabolism alterations. This study aimed to identify energy metabolism-related differentially expressed genes (EMRDEGs) in NP, construct a diagnostic model, and analyze immune cell infiltration and single-cell gene expression characteristics of NP. GSE89224, GSE123919, and GSE134003 were downloaded from the Gene Expression Omnibus. Differentially expressed genes (DEGs) analysis and an intersection with highly energy metabolism-related modules in weighted gene co-expression network analysis (WGCNA) was performed in GSE89224. Least absolute shrinkage and selection operator (LASSO), random forest, and logistic regression were used for model genes selection. NP samples were divided into high- and low-risk groups and different disease subtypes based on risk score of LASSO algorithm and consensus clustering analysis, respectively. Immune cell composition was estimated in different risk groups and NP subtypes. Datasets 134,003 were performed for identification of single-cell DEGs and functional enrichment. Cell-cell communications and pseudo-time analysis to reveal the expression profile of NP. A total of 38 EMRDEGs were obtained and are majorly enriched in metabolism about glioma and inflammation. LASSO, random forest, and logistic regression identified 6 model genes, which were Itpr1, Gng8, Socs3, Fscn1, Cckbr, and Camk1. The nomogram, based on six model genes, had a good predictive ability, concordance, and diagnostic value. The comparisons between different risk groups and NP subtypes identified important pathways and different immune cells component. The immune infiltration results majorly associated with inflammation and energy metabolism. Single-cell analysis revealed cell-cell communications and cells differentiation characteristics of NP. In conclusion, our results not only elucidate the involvement of energy metabolism in NP but also provides a robust diagnostic tool with six model genes. These findings might give insight into the pathogenesis of NP and provide effective therapeutic regimens for the treatment of NP.
Collapse
Affiliation(s)
- Yongmei Chen
- Department of Laboratory, Xiangyang Central Hospital, Affiliation of Hubei University of Art and Science, Xiangyang City, Hubei, China
| | - Fan Liu
- Institute of Neuroscience, Department of Anesthesiology, Xiangyang Central Hospital, Affiliation of Hubei University of Art and Science, No.136, Jingzhou Street, Xiangcheng District, Xiangyang City, 441000, Hubei, China
| | - Shengnan Shi
- Institute of Neuroscience, Department of Anesthesiology, Xiangyang Central Hospital, Affiliation of Hubei University of Art and Science, No.136, Jingzhou Street, Xiangcheng District, Xiangyang City, 441000, Hubei, China
| | - Shugen Xiao
- Institute of Neuroscience, Department of Anesthesiology, Xiangyang Central Hospital, Affiliation of Hubei University of Art and Science, No.136, Jingzhou Street, Xiangcheng District, Xiangyang City, 441000, Hubei, China
| | - Xingrui Gong
- Institute of Neuroscience, Department of Anesthesiology, Xiangyang Central Hospital, Affiliation of Hubei University of Art and Science, No.136, Jingzhou Street, Xiangcheng District, Xiangyang City, 441000, Hubei, China.
| |
Collapse
|
34
|
Zang H, Ji X, Yao W, Wan L, Zhang C, Zhu C, Liu T. Role of efferocytosis in chronic pain -- From molecular perspective. Neurobiol Dis 2025; 207:106857. [PMID: 40015655 DOI: 10.1016/j.nbd.2025.106857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025] Open
Abstract
The complex nature of pain pathophysiology complicates the establishment of objective diagnostic criteria and targeted treatments. The heterogeneous manifestations of pain stemming from various primary diseases contribute to the complexity and diversity of underlying mechanisms, leading to challenges in treatment efficacy and undesirable side effects. Recent evidence suggests the presence of apoptotic cells at injury sites, the distal dorsal root ganglia (DRG), spinal cord, and certain brain regions, indicating a potential link between the ineffective clearance of dead cells and debris and pain persistence. This review highlights recent research findings indicating that efferocytosis plays a significant yet often overlooked role in lesion expansion while also representing a potentially reversible impairment that could be targeted therapeutically to mitigate chronic pain progression. We examine recent advances into how efferocytosis, a process by which phagocytes clear apoptotic cells without triggering inflammation, influences pain initiation and intensity in both human diseases and animal models. This review summarizes that efferocytosis contributes to pain progression from the perspective of defective and inefficient efferocytosis and its subsequent secondary necrocytosis, cascade inflammatory response, and the shift of phenotypic plasticity and metabolism. Additionally, we investigate the roles of newly discovered genetic alterations or modifications in biological signaling pathways in pain development and chronicity, providing insights into innovative treatment strategies that modulate efferocytosis, which are promising candidates and potential avenues for further research in pain management and prevention.
Collapse
Affiliation(s)
- Hu Zang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiaoyu Ji
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Wenlong Yao
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Li Wan
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Chuanhan Zhang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Chang Zhu
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| | - Tongtong Liu
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| |
Collapse
|
35
|
Liu Y, Cai X, Shi B, Mo Y, Zhang J, Luo W, Yu B, Li X. Mechanisms and Therapeutic Prospects of Microglia-Astrocyte Interactions in Neuropathic Pain Following Spinal Cord Injury. Mol Neurobiol 2025; 62:4654-4676. [PMID: 39470872 DOI: 10.1007/s12035-024-04562-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/16/2024] [Indexed: 11/01/2024]
Abstract
Neuropathic pain is a prevalent and debilitating condition experienced by the majority of individuals with spinal cord injury (SCI). The complex pathophysiology of neuropathic pain, involving continuous activation of microglia and astrocytes, reactive gliosis, and altered neuronal plasticity, poses significant challenges for effective treatment. This review focuses on the pivotal roles of microglia and astrocytes, the two major glial cell types in the central nervous system, in the development and maintenance of neuropathic pain after SCI. We highlight the extensive bidirectional interactions between these cells, mediated by the release of inflammatory mediators, neurotransmitters, and neurotrophic factors, which contribute to the amplification of pain signaling. Understanding the microglia-astrocyte crosstalk and its impact on neuronal function is crucial for developing novel therapeutic strategies targeting neuropathic pain. In addition, this review discusses the fundamental biology, post-injury pain roles, and therapeutic prospects of microglia and astrocytes in neuropathic pain after SCI and elucidates the specific signaling pathways involved. We also speculated that the extracellular matrix (ECM) can affect the glial cells as well. Furthermore, we also mentioned potential targeted therapies, challenges, and progress in clinical trials, as well as new biomarkers and therapeutic targets. Finally, other relevant cell interactions in neuropathic pain and the role of glial cells in other neuropathic pain conditions have been discussed. This review serves as a comprehensive resource for further investigations into the microglia-astrocyte interaction and the detailed mechanisms of neuropathic pain after SCI, with the aim of improving therapeutic efficacy.
Collapse
Affiliation(s)
- Yinuo Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- The Clinical Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Xintong Cai
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- The Clinical Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Bowen Shi
- The Clinical Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yajie Mo
- The Clinical Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Jianmin Zhang
- The Clinical Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Wenting Luo
- The Clinical Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Bodong Yu
- The Clinical Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Xi Li
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
36
|
Yang C, Wu X, Jiang Z, Ru Y, Shen B, Li F, Cui J, Zhang C, Wang X, Yu W, Li Y, Huang Y, Kong A, Hao F, Xiao C, Wang Y, Gao Y. Evodiamine rescues lipopolysaccharide-induced cognitive impairment via C/EBP-β-COX2 axis-regulated neuroinflammation. Int J Biol Macromol 2025; 300:139597. [PMID: 39798734 DOI: 10.1016/j.ijbiomac.2025.139597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Neuroinflammation is a key driver of neurological disorders. Evodiamine (EVO), an alkaloid from the traditional Chinese herb Evodia rutaecarpa, possesses potent biological activities, notably anticancer and anti-inflammatory effects. This study investigates EVO's potential to attenuate LPS-induced neuroinflammation, focusing on identifying its therapeutic targets and mechanisms of action. EVO treatment significantly improved mitochondrial function and reduced oxidative stress in LPS-stimulated BV2 cells, while also lowering levels of pro-inflammatory factors (IL-6, NO, IL-1β) in brain organoids. In mice, EVO treatment alleviated behavioral abnormalities, especially in cognition and memory, and lowered hippocampal inflammation marker levels. To elucidate the critical mechanisms by which EVO exerts its anti-inflammatory effects, we analyzed LPS-induced inflammatory injury in BV2 cells and used transcriptomics to investigate whether EVO modulates the C/EBP-β signaling pathway. Further validation using si-C/EBP-β confirmed EVO's regulatory effect on the C/EBP-β-COX2 axis, showing that knockdown significantly reduced pro-inflammatory factor expression, thereby providing neuroprotection. Moreover, molecular docking and dynamics simulations confirmed a stable interaction between EVO and C/EBP-β, supporting its role in attenuating LPS-induced neuroinflammation. In summary, these findings suggest that EVO regulates inflammation-related pathways by targeting the C/EBP-β-COX2 axis, offering neuroprotective benefits and mitigating neuroinflammatory responses.
Collapse
Affiliation(s)
- Chunqi Yang
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China; Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xiangjun Wu
- School of Pharmacy, Henan University, Kaifeng 475000, China; Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Ziyu Jiang
- Beijing Institute of Radiation Medicine, Beijing 100850, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yi Ru
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Baoying Shen
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Fangyang Li
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Jialu Cui
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Cheng Zhang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xiaoqiang Wang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Wenrun Yu
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yina Li
- Beijing Institute of Radiation Medicine, Beijing 100850, China; School of Life Sciences, Hebei University, Baoding, Hebei 071002, China
| | - Ying Huang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Ao Kong
- School of Pharmacy, Henan University, Kaifeng 475000, China; Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Feiran Hao
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Chengrong Xiao
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yuguang Wang
- School of Pharmacy, Henan University, Kaifeng 475000, China; Beijing Institute of Radiation Medicine, Beijing 100850, China; School of Life Sciences, Hebei University, Baoding, Hebei 071002, China.
| | - Yue Gao
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China; Beijing Institute of Radiation Medicine, Beijing 100850, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
37
|
Chen L, Chen Z, Chen J, Du H, Chen X, Chen J, Wang H, Liang C. CXCL10 Promotes Spinal Macrophage Recruitment via the JAK/STAT3 Pathway to Induce Pain in Experimental Autoimmune Prostatitis. Cell Prolif 2025; 58:e13784. [PMID: 39718951 PMCID: PMC11969258 DOI: 10.1111/cpr.13784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/28/2024] [Accepted: 11/18/2024] [Indexed: 12/26/2024] Open
Abstract
The aim is to explore the mechanisms underlying pain development in chronic prostatitis and identify therapeutic targets for pain management in patients with chronic prostatitis. RNA sequence of the spinal cord dorsal horns and proteomic analysis of spinal macrophages of experimental autoimmune prostatitis (EAP) mice were conducted to identify pain-related genes, proteins and signalling pathways. The clodronate liposome, CXCR3 and P-STAT3 inhibitors, NGF antibody and cromolyn sodium were used to investigate the roles of the CXCL10/CXCR3, JAK/STAT3 and NGF/TrKA pathways in spinal macrophage recruitment and pain response. Finally, prostate tissues from benign prostate hyperplasia (BPH) patients were collected to validate the aforementioned results. Neuron and astrocyte-derived CXCL10 was associated with spinal macrophage recruitment, and CXCL10/CXCR3 axis could regulate the chemotaxis of macrophage to the spinal cord in EAP mice. Results of proteomic analysis found that CXCL10 could regulate the JAK/STAT3 pathway to mediate neuroinflammation in EAP, which was validated in vivo and in vitro experiments. The number of mast cells and expressions of NGF, TrKA and PGP9.5 increased in the prostates of EAP mice and BPH patients, and targeting NGF could reduce spinal macrophage recruitment and pain response. NGF was the triggering factor to induce chemotaxis of spinal macrophages and neuroinflammation, and the CXCL10/CXCR3 axis and JAK/STAT3 pathway was involved in spinal macrophage recruitment and infiltration, which provided therapeutic targets for pain management.
Collapse
Affiliation(s)
- Lei Chen
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
- Institute of UrologyAnhui Medical UniversityHefeiAnhuiChina
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical TransformationHefeiAnhuiChina
| | - Ziqi Chen
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
- Institute of UrologyAnhui Medical UniversityHefeiAnhuiChina
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical TransformationHefeiAnhuiChina
| | - Jia Chen
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
- Institute of UrologyAnhui Medical UniversityHefeiAnhuiChina
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical TransformationHefeiAnhuiChina
| | - Hexi Du
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
- Institute of UrologyAnhui Medical UniversityHefeiAnhuiChina
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical TransformationHefeiAnhuiChina
| | - Xianguo Chen
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
- Institute of UrologyAnhui Medical UniversityHefeiAnhuiChina
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical TransformationHefeiAnhuiChina
| | - Jing Chen
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
- Institute of UrologyAnhui Medical UniversityHefeiAnhuiChina
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical TransformationHefeiAnhuiChina
| | - Hui Wang
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
- Institute of UrologyAnhui Medical UniversityHefeiAnhuiChina
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical TransformationHefeiAnhuiChina
| | - Chaozhao Liang
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiChina
- Institute of UrologyAnhui Medical UniversityHefeiAnhuiChina
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical TransformationHefeiAnhuiChina
| |
Collapse
|
38
|
Arendt-Tranholm A, Sankaranarayanan I, Payne C, Moreno MM, Mazhar K, Yap N, Chiu AP, Barry A, Patel PP, Inturi NN, Ferreira DT, Amin A, Karandikar M, Jarvik JG, Turner JA, Hofstetter CP, Curatolo M, Price TJ. Single-cell characterization of the human C2 dorsal root ganglion recovered from C1-2 arthrodesis surgery: implications for neck pain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.24.645122. [PMID: 40196625 PMCID: PMC11974819 DOI: 10.1101/2025.03.24.645122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Neurons in the dorsal root ganglion (DRG) receive and transmit sensory information from the tissues they innervate and from the external environment. Upper cervical (C1-C2) DRGs are functionally unique as they receive input from the neck, head, and occipital cranial dura, the latter two of which are also innervated by the trigeminal ganglion (TG). The C2 DRG also plays an important role in neck pain, a common and disabling disorder that is poorly understood. Advanced transcriptomic approaches have significantly improved our ability to characterize RNA expression patterns at single-cell resolution in the DRG and TG, but no previous studies have characterized the C2 DRG. Our aim was to use single-nucleus and spatial transcriptomic approaches to create a molecular map of C2 DRGs from patients undergoing arthrodesis surgery with ganglionectomy. Patients with acute (<3 months) or chronic (≥3 months) neck pain were enrolled and completed patient-reported outcomes and quantitative sensory testing prior to surgery. C2 DRGs were characterized with bulk, single nucleus, and spatial RNA sequencing technologies from 22 patients. Through a comparative analysis to published datasets of the lumbar DRG and TG, neuronal clusters identified in both TG and DRG were identified in the C2 DRG. Therefore, our study definitively characterizes the molecular composition of human C2 neurons and establishes their similarity with unique characteristics of subsets of TG neurons. We identified differentially expressed genes in endothelial, fibroblast and myelinating Schwann cells associated with chronic pain, including FGFBP2, C8orf34 and EFNA1 which have been identified in previous genome and transcriptome wide association studies (GWAS/TWAS). Our work establishes an atlas of the human C2 DRG and identifies altered gene expression patterns associated with chronic neck pain. This work establishes a foundation for the exploration of painful disorders in humans affecting the cervical spine.
Collapse
Affiliation(s)
- Asta Arendt-Tranholm
- Center for Advanced Pain Studies, Department of Neuroscience, University of Texas at Dallas, Richardson, TX, USA
| | - Ishwarya Sankaranarayanan
- Center for Advanced Pain Studies, Department of Neuroscience, University of Texas at Dallas, Richardson, TX, USA
| | - Cathryn Payne
- Department of Neurological Surgery, University of Washington, Seattle WA, USA
| | - Marisol Mancilla Moreno
- Center for Advanced Pain Studies, Department of Neuroscience, University of Texas at Dallas, Richardson, TX, USA
| | - Khadijah Mazhar
- Center for Advanced Pain Studies, Department of Neuroscience, University of Texas at Dallas, Richardson, TX, USA
| | - Natalie Yap
- Department of Neurological Surgery, University of Washington, Seattle WA, USA
| | - Abby P Chiu
- Department of Neurological Surgery, University of Washington, Seattle WA, USA
| | - Allison Barry
- Center for Advanced Pain Studies, Department of Neuroscience, University of Texas at Dallas, Richardson, TX, USA
| | - Pooja P Patel
- Center for Advanced Pain Studies, Department of Neuroscience, University of Texas at Dallas, Richardson, TX, USA
| | - Nikhil N Inturi
- Center for Advanced Pain Studies, Department of Neuroscience, University of Texas at Dallas, Richardson, TX, USA
| | - Diana Tavares Ferreira
- Center for Advanced Pain Studies, Department of Neuroscience, University of Texas at Dallas, Richardson, TX, USA
| | - Anubhav Amin
- Department of Neurological Surgery, University of Washington, Seattle WA, USA
| | - Mahesh Karandikar
- Department of Neurological Surgery, University of Washington, Seattle WA, USA
| | - Jeffrey G Jarvik
- Department of Neurological Surgery, University of Washington, Seattle WA, USA
- Department of Radiology, University of Washington, Seattle WA, USA
- The University of Washington Clinical Learning, Evidence and Research (CLEAR) Center for Musculoskeletal Disorders
| | - Judith A Turner
- Department of Psychiatry & Behavioral Sciences, University of Washington, Seattle WA, USA
- The University of Washington Clinical Learning, Evidence and Research (CLEAR) Center for Musculoskeletal Disorders
| | | | - Michele Curatolo
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle WA, USA
- The University of Washington Clinical Learning, Evidence and Research (CLEAR) Center for Musculoskeletal Disorders
| | - Theodore J Price
- Center for Advanced Pain Studies, Department of Neuroscience, University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
39
|
Saika F, Sato T, Nakabayashi T, Fukazawa Y, Hino S, Suzuki K, Kiguchi N. Male-Dominant Spinal Microglia Contribute to Neuropathic Pain by Producing CC-Chemokine Ligand 4 Following Peripheral Nerve Injury. Cells 2025; 14:484. [PMID: 40214438 PMCID: PMC11987877 DOI: 10.3390/cells14070484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/19/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025] Open
Abstract
Recent studies have revealed marked sex differences in pathophysiological roles of spinal microglia in neuropathic pain, with microglia contributing to pain exacerbation exclusively in males. However, the characteristics of pain-enhancing microglia, which are more prominent in males, remain poorly understood. Here, we reanalyzed a previously published single-cell RNA sequencing dataset and identified a microglial subpopulation that significantly increases in the spinal dorsal horn (SDH) of male mice following peripheral nerve injury. CC-chemokine ligand 4 (CCL4) was highly expressed in this subpopulation and its mRNA levels were increased in the SDH after partial sciatic nerve ligation (PSL) only in male mice. Notably, CCL4 expression was reduced in male mice following microglial depletion, indicating that microglia are the primary source of CCL4. Intrathecal administration of maraviroc, an inhibitor of the CCL4-CC-chemokine receptor 5 (CCR5) signaling pathway, after PSL, significantly suppressed mechanical allodynia only in male mice. Furthermore, intrathecal administration of CCL4 induced mechanical allodynia in both sexes, accompanied by increased expression of c-fos, a neuronal excitation marker, in the SDH. These findings highlight a sex-biased difference in the gene expression profile of spinal microglia following peripheral nerve injury, with elevated CCL4 expression in male mice potentially contributing to pain exacerbation.
Collapse
Affiliation(s)
- Fumihiro Saika
- Department of Physiological Sciences, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama 640-8156, Japan;
- Faculty of Wakayama Health Care Sciences, Takarazuka University of Medical and Health Care, Wakayama 640-8392, Japan
| | - Tetsuya Sato
- H.U. Group Research Institute G.K., Tokyo 197-0833, Japan;
| | | | - Yohji Fukazawa
- Department of Anatomy, Kansai University of Health Sciences, Osaka 590-0482, Japan;
| | - Shinjiro Hino
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan;
| | - Kentaro Suzuki
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan;
| | - Norikazu Kiguchi
- Department of Physiological Sciences, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama 640-8156, Japan;
| |
Collapse
|
40
|
Mazzitelli M, Kiritoshi T, Presto P, Hurtado Z, Antenucci N, Ji G, Neugebauer V. BDNF Signaling and Pain Modulation. Cells 2025; 14:476. [PMID: 40214430 PMCID: PMC11987912 DOI: 10.3390/cells14070476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is an important neuromodulator of nervous system functions and plays a key role in neuronal growth and survival, neurotransmission, and synaptic plasticity. The effects of BDNF are mainly mediated by the activation of tropomyosin receptor kinase B (TrkB), expressed in both the peripheral and central nervous system. BDNF has been implicated in several neuropsychiatric conditions such as schizophrenia and anxio-depressive disorders, as well as in pain states. This review summarizes the evidence for a critical role of BDNF throughout the pain system and describes contrasting findings of its pro- and anti-nociceptive effects. Different cellular sources of BDNF, its influence on neuroimmune signaling in pain conditions, and its effects in different cell types and regions are described. These and endogenous BDNF levels, downstream signaling mechanisms, route of administration, and approaches to manipulate BDNF functions could explain the bidirectional effects in pain plasticity and pain modulation. Finally, current knowledge gaps concerning BDNF signaling in pain are discussed, including sex- and pathway-specific differences.
Collapse
Affiliation(s)
- Mariacristina Mazzitelli
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (M.M.); (T.K.); (P.P.); (Z.H.); (N.A.); (G.J.)
| | - Takaki Kiritoshi
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (M.M.); (T.K.); (P.P.); (Z.H.); (N.A.); (G.J.)
| | - Peyton Presto
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (M.M.); (T.K.); (P.P.); (Z.H.); (N.A.); (G.J.)
| | - Zachary Hurtado
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (M.M.); (T.K.); (P.P.); (Z.H.); (N.A.); (G.J.)
| | - Nico Antenucci
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (M.M.); (T.K.); (P.P.); (Z.H.); (N.A.); (G.J.)
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (M.M.); (T.K.); (P.P.); (Z.H.); (N.A.); (G.J.)
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (M.M.); (T.K.); (P.P.); (Z.H.); (N.A.); (G.J.)
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
41
|
Xu K, Wu K, Chen L, Zhao Y, Li H, Lin N, Ye Z, Xu J, Huang D, Huang X. Selective promotion of sensory innervation-mediated immunoregulation for tissue repair. SCIENCE ADVANCES 2025; 11:eads9581. [PMID: 40117376 PMCID: PMC11927663 DOI: 10.1126/sciadv.ads9581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 02/14/2025] [Indexed: 03/23/2025]
Abstract
Sensory innervation triggers the regenerative response after injury. However, dysfunction and impairment of sensory nerves, accompanied by excessive inflammation impede tissue regeneration. Consequently, specific induction of sensory innervation to mediate immunoregulation becomes a promising therapeutic approach. Herein, we developed a cell/drug-free strategy to selectively boost endogenous sensory innervation to harness immune responses for promoting tissue rehabilitation. Specifically, a dual-functional phage was constructed with a sensory nerve-homing peptide and a β-subunit of nerve growth factor (β-NGF)-binding peptide. These double-displayed phages captured endogenic β-NGF and localized to sensory nerves to promote sensory innervation. Furthermore, regarding bone regeneration, phage-loaded hydrogels achieved rapid sensory nerve ingrowth in bone defect areas. Mechanistically, sensory neurotization facilitated M2 polarization of macrophages through the Sema3A/XIAP/PAX6 pathway, thus decreasing the M1/M2 ratio to induce the dissipation of local inflammation. Collectively, these findings highlight the essential role of sensory innervation in manipulating inflammation and provide a conceptual framework based on neuroimmune interactions for promoting tissue regeneration.
Collapse
Affiliation(s)
- Kaicheng Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Kaile Wu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Liang Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yubin Zhao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hengyuan Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Nong Lin
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhaoming Ye
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jianbin Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Donghua Huang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xin Huang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
42
|
Oggero S, Voisin MB, Picco F, Huerta MÁ, Cecconello C, Burgoyne T, Perretti M, Malcangio M. Activation of proresolving macrophages in dorsal root ganglia attenuates persistent arthritis pain. Proc Natl Acad Sci U S A 2025; 122:e2416343122. [PMID: 40063821 PMCID: PMC11929478 DOI: 10.1073/pnas.2416343122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 01/31/2025] [Indexed: 03/25/2025] Open
Abstract
Pain independent of disease activity is frequently reported by rheumatoid arthritis patients and remains undertreated. Preclinical evidence suggests that imbalance of neuroimmune proresolving interactions within dorsal root ganglia (DRG) rather than at the site of inflammation plays mechanistic roles in persistent arthritis pain. Here, we inhibited production of proresolving lipid mediators by silencing 12/15-lipoxygenase expression in CX3CR1+ monocyte/macrophages conditional knockout (cKO) mice. In an arthritis model, hind paw mechanical hypersensitivity is exacerbated in male and female cKO mice in association with DRG infiltration of neutrophils, which migrate in response to leukotriene B4 released by macrophages through 5-lipoxygenase conversion of arachidonic acid provided by neuron-derived vesicles. Neutrophils apoptosis promotes primary macrophage efferocytosis which is defective in cKO macrophages. In wild-type (WT) and cKO mice, intrathecal injection of MerTK activating antibody, attenuates persistent hypersensitivity and polarizes DRG macrophages toward a proresolving phenotype with production of antinociceptive lipoxin A4. Thus, we delineate a neuron-macrophage-neutrophil bidirectional circuit that can be exploited to reduce persistent arthritis pain.
Collapse
Affiliation(s)
- Silvia Oggero
- Sensory, Pain and Regeneration Centre, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, Guys’ Campus, LondonSE1 1UL, United Kingdom
| | - Mathieu-Benoit Voisin
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, LondonEC1M 6BQ, United Kingdom
| | - Francesca Picco
- Sensory, Pain and Regeneration Centre, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, Guys’ Campus, LondonSE1 1UL, United Kingdom
| | - Miguel Á. Huerta
- Sensory, Pain and Regeneration Centre, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, Guys’ Campus, LondonSE1 1UL, United Kingdom
- Department of Pharmacology, University of Granada, Granada18016, Spain
| | - Chiara Cecconello
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, LondonEC1M 6BQ, United Kingdom
| | - Thomas Burgoyne
- Institute of Ophthalmology, Faculty of Brain Sciences, University College London, LondonEC1V 9EL, United Kingdom
- Pediatric Respiratory Medicine, Royal Brompton Hospital, Guy’s and St Thomas’ National Health System Foundation Trust, LondonSW3 6NP, United Kingdom
| | - Mauro Perretti
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, LondonEC1M 6BQ, United Kingdom
| | - Marzia Malcangio
- Sensory, Pain and Regeneration Centre, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, Guys’ Campus, LondonSE1 1UL, United Kingdom
| |
Collapse
|
43
|
Li Y, Sun H, Cao D, Guo Y, Wu D, Yang M, Wang H, Shao X, Li Y, Liang Y. Overcoming Biological Barriers in Cancer Therapy: Cell Membrane-Based Nanocarrier Strategies for Precision Delivery. Int J Nanomedicine 2025; 20:3113-3145. [PMID: 40098719 PMCID: PMC11913051 DOI: 10.2147/ijn.s497510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/04/2025] [Indexed: 03/19/2025] Open
Abstract
Given the unique capabilities of natural cell membranes, such as prolonged blood circulation and homotypic targeting, extensive research has been devoted to developing cell membrane-inspired nanocarriers for cancer therapy, while most focused on overcoming one or a few biological barriers. In fact, the journey of nanosystems from systemic circulation to tumor cells involves intricate processes, encompassing blood circulation, tissue accumulation, cancer cell targeting, endocytosis, endosomal escape, intracellular trafficking to target sites, and therapeutic action, all of which pose limitations to their clinical translation. This underscores the necessity of meticulously considering these biological barriers in the design of cell membrane-mimetic nanocarriers. In this review, we delineate the functions and applications of diverse types of cell membranes in nanocarrier systems. We elaborate on the biological hurdles encountered at each stage of the biomimetic nanoparticle's odyssey to the target, and comprehensively discuss the obstacles imposed by the tumor microenvironment for precise delivery. Subsequently, we systematically review contemporary cell membrane-based strategies aimed at overcoming these multi-level biological barriers, encompassing hybrid cell membrane (HCM) camouflage, tumor microenvironment remodeling, endosomal/lysosomal escape, multidrug resistance (MDR) reversal, optimization of nanoparticle physicochemical properties, and so on. Finally, we outline potential strategies to accelerate the development of cell membrane-inspired precision nanocarriers and discuss the challenges that must be addressed to enhance their clinical applicability. This review serves as a guide for refining the study of cell membrane-mimetic nanosystems in surmounting in vivo delivery barriers, thereby significantly contributing to advancing the development and application of cell membrane-based nanoparticles in cancer delivery.
Collapse
Affiliation(s)
- Yuping Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
- Binzhou Inspection and Testing Center, Binzhou, ShanDong, 256600, People’s Republic of China
| | - Hongfang Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
| | - Dianchao Cao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
| | - Yang Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
| | - Dongyang Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
| | - Menghao Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
| | - Hongming Wang
- Binzhou Inspection and Testing Center, Binzhou, ShanDong, 256600, People’s Republic of China
| | - Xiaowei Shao
- Binzhou Inspection and Testing Center, Binzhou, ShanDong, 256600, People’s Republic of China
| | - Youjie Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
| | - Yan Liang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
| |
Collapse
|
44
|
Zhu H, Wen B, Xu J, Xu L, Huang Y. Wnt5a in keratinocytes contributes to complex regional pain syndrome through the activation of NR2B and MMP9 in rats. Reg Anesth Pain Med 2025:rapm-2024-106139. [PMID: 40081928 DOI: 10.1136/rapm-2024-106139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 02/25/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND Complex regional pain syndrome (CRPS) is a chronic pain condition characterized by inflammatory features, though the underlying mechanisms remain partly understood. Our study examined whether Wnt5a in skin keratinocytes contributes to CRPS-related pain hypersensitivity by activating downstream N-methyl-D-aspartate receptor subunit 2B (NR2B) and matrix metalloproteinase-9 (MMP9) signaling in rats. METHODS We developed a cell-culture model to mimic the local inflammation of CRPS and a rat model to mimic the chronic post-ischemia pain experienced by CRPS patients. Mechanical and heat pain thresholds in the hind paw were measured using an electronic von Frey apparatus and a radiant heat device. Western blotting and immunofluorescence were used to examine the expressions of NR2B and MMP9 in the skin and dorsal root ganglion (DRG), and immunofluorescence staining of connexin 43 (Cx43) and protein gene product 9.5 (PGP9.5) were conducted to explore the interaction between keratinocytes and nerve fibers in the skin. RESULTS In cell culture, Wnt5a was expressed in keratinocytes and contributed to cellular injury by increasing the levels of NR2B and MMP9. The mechanical and heat pain thresholds measured in the hind paw were decreased in CRPS rats, indicating increased pain sensitivity. The inhibition of Wnt5a alleviated these CRPS-related pain hypersensitivities. High levels of Cx43 and PGP9.5 staining were observed in the epidermis of CRPS rats, suggesting an interaction between keratinocytes and nerve fibers that may contribute to CRPS. Additionally, upregulations of NR2B and MMP9 in the DRG may further exacerbate pain. CONCLUSIONS Skin keratinocytes may play an essential role in the pathophysiology of CRPS. Wnt5a signaling may increase pain sensitivity by upregulating downstream NR2B and MMP9, thereby contributing to CRPS.
Collapse
Affiliation(s)
- He Zhu
- Department of Anesthesiology, Peking Union Medical College Hospital,Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Bei Wen
- Department of Anesthesiology, Peking Union Medical College Hospital,Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jijun Xu
- Department of Pain Management, Cleveland Clinic, Cleveland, Ohio, USA
| | - Li Xu
- Department of Anesthesiology, Peking Union Medical College Hospital,Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuguang Huang
- Department of Anesthesiology, Peking Union Medical College Hospital,Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
45
|
Qneibi M, Hawash M, Bdir S, Bdair M, Idais T, Sarhan I, Touqan J. Regulating AMPA Receptors with Isoxazole-4-Carboxamide Derivatives: An Electrophysiological Study. J Xenobiot 2025; 15:40. [PMID: 40126258 PMCID: PMC11932207 DOI: 10.3390/jox15020040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 03/25/2025] Open
Abstract
Isoxazole carboxamide derivatives are intriguing modulators of ionotropic glutamate receptors; more specifically, their prospective analgesic activities based on non-opioid pathways have sparked widespread research. α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, especially Ca2+-permeable subtypes that are highly expressed in the spinal dorsal horn, play a critical role in nociceptive transmission and inflammatory pain. Herein, the neuromodulatory effects of these derivatives on AMPA receptor activity have been studied, focusing on their potential as modulators of AMPA receptors, a target implicated in pain and neurological disorders. The whole-cell patch clamp technique for electrophysiological recordings was used to investigate the effect of twelve isoxazole-4-carboxamide derivatives (CIC-1-12) on AMPA receptors' whole-cell currents and kinetics, including deactivation and desensitization. The isoxazole-4-carboxamide derivatives tested as inhibitors of AMPA receptor activity were very potent, with an 8-fold inhibition by CIC-1 and a 7.8-fold reduction by CIC-2. Additionally, these compounds profoundly altered the biophysical gating properties of both homomeric and heteromeric receptor subunits. These findings emphasize the therapeutic promise of isoxazole-4-carboxamide derivatives due to their potential as AMPA receptor modulators. Their ability to affect receptor activity and gating properties makes them promising candidates for future treatments for controlling pain.
Collapse
Affiliation(s)
- Mohammad Qneibi
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, P400 Nablus, Palestine; (S.B.); (M.B.); (T.I.); (I.S.); (J.T.)
| | - Mohammed Hawash
- Pharmaceutical Chemistry and Technology Division, Faculty of Pharmacy, An-Najah National University, P400 Nablus, Palestine;
| | - Sosana Bdir
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, P400 Nablus, Palestine; (S.B.); (M.B.); (T.I.); (I.S.); (J.T.)
| | - Mohammad Bdair
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, P400 Nablus, Palestine; (S.B.); (M.B.); (T.I.); (I.S.); (J.T.)
| | - Tala Idais
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, P400 Nablus, Palestine; (S.B.); (M.B.); (T.I.); (I.S.); (J.T.)
| | - Iyas Sarhan
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, P400 Nablus, Palestine; (S.B.); (M.B.); (T.I.); (I.S.); (J.T.)
| | - Joud Touqan
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, P400 Nablus, Palestine; (S.B.); (M.B.); (T.I.); (I.S.); (J.T.)
| |
Collapse
|
46
|
de Souza S, Laumet S, Hua H, Inyang KE, Sim J, Folger JK, Moeser AJ, Laumet G. Mast cell-derived chymases are essential for the resolution of inflammatory pain in mice. Pain 2025:00006396-990000000-00843. [PMID: 40035664 DOI: 10.1097/j.pain.0000000000003565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/02/2024] [Indexed: 03/06/2025]
Abstract
ABSTRACT Immune cells play a critical role in the transition from acute to chronic pain. However, the role of mast cells in pain remains underinvestigated. Here, we demonstrated that the resolution of inflammatory pain is markedly delayed in mast cell-deficient mice. In response to complete Freund adjuvant, mast cell-deficient mice showed greater levels of nitric oxide, leukocyte infiltration, and altered cytokine/chemokine profile in inflamed skin in both sexes. In wild-type mice, the number of mast cell and mast cell-derived chymases, chymase 1 (CMA1) and mast cell protease 4 (MCPT4), increased in the inflamed skin. Inhibiting chymase enzymatic activity delayed the resolution of inflammatory pain. Consistently, local pharmacological administration of recombinant CMA1 and MCPT4 promoted the resolution of pain hypersensitivity and attenuated the upregulation of cytokines and chemokines under inflammation. We identified CCL9 as a target of MCPT4. Inhibition of CCL9 promoted recruitment of CD206+ myeloid cells and alleviated inflammatory pain. Our work reveals a new role of mast cell-derived chymases in preventing the transition from acute to chronic pain and suggests new therapeutic avenues for the treatment of inflammatory pain.
Collapse
Affiliation(s)
- Sabrina de Souza
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Sophie Laumet
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Hannah Hua
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Kufreobong E Inyang
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Jaewon Sim
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Joseph K Folger
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Adam J Moeser
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, Mi, United States
| | - Geoffroy Laumet
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
47
|
Fatima SA, Akhtar B, Sharif A, Khan MI, Shahid M, Anjum F, Hussain F, Mobashar A, Ashraf M. Implications of nociceptor receptors and immune modulation: emerging therapeutic targets for autoimmune diseases. Inflammopharmacology 2025; 33:959-977. [PMID: 39955696 DOI: 10.1007/s10787-025-01653-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/07/2025] [Indexed: 02/17/2025]
Abstract
Chronic painful autoimmune disorders such as multiple sclerosis (MS), inflammatory bowel disease (IBD), and rheumatoid arthritis (RA) induce significant discomfort. They are defined by persistent inflammation and immune-mediated tissue injury. The activation and sensitisation of nociceptors, mutated in various disorders, are fundamental components contributing to the pain experienced in these conditions. Recent discoveries indicate that immunological mediators and nociceptive receptors interact functionally within peripheral and central sensitisation pathways, amplifying chronic pain. This research examines the involvement of nociceptors in rheumatoid arthritis, multiple sclerosis, and inflammatory bowel disease. It explores how immune cells and pro-inflammatory cytokines induce, sensitise and regulate various nociceptive receptors (P2X, TRPA1 and TRPV1). Finally, we address possible future directions with respect to the treatment of long-lasting effects on immunity, and what new drug targets could be pursued as well, in order to counteract such either neuro-immune interactions in conditions involving the immunological system. By studying nociceptive mechanisms across autoimmune illnesses, we want to identify shared pathways and activation of nociceptors specific to individual diseases. This will shed insight on potential therapies for managing pain associated with autoimmune diseases.
Collapse
Affiliation(s)
- Syeda Asloob Fatima
- Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| | - Bushra Akhtar
- Department of Pharmacy, Faculty of Health and Pharmaceutical Sciences, University of Agriculture, Faisalabad, Pakistan.
| | - Ali Sharif
- Department of Pharmacology, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University, Lahore, Pakistan
| | - Muhammad Imran Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Pakistan
| | - Muhammad Shahid
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Fozia Anjum
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Fatma Hussain
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Aisha Mobashar
- Department of Pharmacology, Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Maham Ashraf
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, The University of Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
48
|
Avagliano C, De Caro C, Cuozzo M, Roberti R, Russo E, La Rana G, Russo R. Sodium Butyrate ameliorates pain and mood disorders in a mouse model of Parkinson disease. Biomed Pharmacother 2025; 184:117903. [PMID: 39938349 DOI: 10.1016/j.biopha.2025.117903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/28/2025] [Accepted: 02/05/2025] [Indexed: 02/14/2025] Open
Abstract
Pain is one of non-motor features of Parkinson's disease (PD) that significantly impacts on patients' quality of life and increases the risk of developing psychiatric disorders. The mechanisms underlying pain in PD are poorly understood and the classic pharmacological treatments supplying to dopamine depletion have limited therapeutic effects on this symptom. It has been demonstrated that short chain fatty acids (SCFAs) play a key role in several central nervous system diseases including PD; low serum and faecal levels of SCFAs have been described in PD patients. Among SCFAs, the gut microbial metabolite butyrate has a neuroprotective and anti-inflammatory effect, influencing neurological and behavioural processes. Using a 6-hydroxydopamine (6-OHDA) induced-PD mouse model, we evaluated the effects of sodium butyrate (BuNa) treatment on pain and mood-related behaviour, exporing the role of PPARs, opioid and endocannabinoid systems. Our results demonstrated that repeated BuNa treatment (100 mg/kg po) in PD-mice reduced pain hypersensitivity as well as depressive- and anxiety-lke behaviour both on day 7 and day 14 after 6-OHDA injection. Moreover, AM281(CB1R antagonist), GW6471 (PPAR-alpha antagonist), and naloxone (opioid receptor antagonist), reduced BuNa efficacy. Finally, BuNa treatment was associated with a significant reduction of pro-inflammatory cytokines at spinal and supraspinal levels. In conclusion, our results demonstrate that increasing endogenous butyrate concentration reduces PD comorbidities such as pain and psychiatric symptoms, restoring opioidergic and endocannabinergic pathways.
Collapse
Affiliation(s)
- Carmen Avagliano
- CEINGE-Biotechnlogies Advances, via Gaetano Salvatore 486, Naples, Italy; Department of Pharmacy, University of Naples "Federico II", via D. Montesano, 49, Naples 80131, Italy.
| | - Carmen De Caro
- Department of Pharmacy, University of Naples "Federico II", via D. Montesano, 49, Naples 80131, Italy.
| | - Mariarosaria Cuozzo
- CEINGE-Biotechnlogies Advances, via Gaetano Salvatore 486, Naples, Italy; Department of Anatomy and Neuroscience, APC Microbiome, University Collage of Cork, Ireland.
| | - Roberta Roberti
- Department of Health Sciences, School of Medicine, University of Catanzaro "Magna Graecia", Viale Europa, Catanzaro 88100, Italy.
| | - Emilio Russo
- Department of Health Sciences, School of Medicine, University of Catanzaro "Magna Graecia", Viale Europa, Catanzaro 88100, Italy.
| | - Giovanna La Rana
- Department of Pharmacy, University of Naples "Federico II", via D. Montesano, 49, Naples 80131, Italy.
| | - Roberto Russo
- Department of Pharmacy, University of Naples "Federico II", via D. Montesano, 49, Naples 80131, Italy.
| |
Collapse
|
49
|
Ning Y, Zhang Y, Jiang T, Feng J, Zhan J, Ou C, Wang L. LRP1-mediated p-tau propagation contributes to cognitive impairment after chronic neuropathic pain in rats. Neurosci Res 2025; 212:84-96. [PMID: 39674403 DOI: 10.1016/j.neures.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 12/16/2024]
Abstract
Trigeminal neuralgia (TN) is a prevalent chronic neuropathic pain syndrome characterized by severe pain, often accompanied by cognitive dysfunction and cerebral degeneration. However, its mechanisms remain poorly understood. Hyperphosphorylation of tau protein (p-tau) is often seen in neurodegenerative disorders such as Alzheimer's disease (AD). LRP1 expression on brain neurons and microglial cells is believed to facilitate the propagation of p-tau. We established a TN rat model via infraorbital nerve chronic constrictive injury (ION-CCI). Once the model was established, we investigated the association between p-tau and cognitive impairment in TN rats by evaluating behavioral and degenerative markers. During the initial phase, we noted an increase in p-tau level in the prefrontal cortex and hippocampal tissues of TN rats. The accompanied impaired learning and memory abilities suggested cognitive dysfunction. Blocking p-tau synthesis by orally administering a protein phosphatase and by injecting adenoviral vectors targeting LRP1 into the lateral ventricle of rats ameliorated cognitive impairment. This suggests that cognitive decline in TN rats is linked to elevated p-tau levels. Our findings show that LRP1-mediated p-tau propagation may drive cognitive impairment associated with neuropathic pain in TN rats.
Collapse
Affiliation(s)
- Youzhi Ning
- Department of Pain Management, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yue Zhang
- Department of Pain Management, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Tao Jiang
- Department of Anesthesiology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Laboratory of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jian Zhan
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Laboratory of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Cehua Ou
- Department of Pain Management, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | - Lu Wang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Laboratory of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| |
Collapse
|
50
|
Jahangiri Esfahani S, Ao X, Oveisi A, Diatchenko L. Rare variant association studies: Significance, methods, and applications in chronic pain studies. Osteoarthritis Cartilage 2025; 33:313-321. [PMID: 39725155 DOI: 10.1016/j.joca.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/27/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Rare genetic variants, characterized by their low frequency in a population, have emerged as essential components in the study of complex disease genetics. The biology of rare variants underscores their significance, as they can exert profound effects on phenotypic variation and disease susceptibility. Recent advancements in sequencing technologies have yielded the availability of large-scale sequencing data such as the UK Biobank whole-exome sequencing (WES) cohort empowered researchers to conduct rare variant association studies (RVASs). This review paper discusses the significance of rare variants, available methodologies, and applications. We provide an overview of RVASs, emphasizing their relevance in unraveling the genetic architecture of complex diseases with special focus on chronic pain and Arthritis. Additionally, we discuss the strengths and limitations of various rare variant association testing methods, outlining a typical pipeline for conducting rare variant association. This pipeline encompasses crucial steps such as quality control of WES data, rare variant annotation, and association testing. It serves as a comprehensive guide for researchers in the field of chronic pain diseases interested in rare variant association studies in large-scale sequencing datasets like the UK Biobank WES cohort. Lastly, we discuss how the identified variants can be further investigated through detailed experimental studies in animal models to elucidate their functional impact and underlying mechanisms.
Collapse
Affiliation(s)
- Sahel Jahangiri Esfahani
- Faculty of Medicine and Health Sciences, Department of Human Genetics, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Canada
| | - Xiang Ao
- Faculty of Dental Medicine and Oral Health Sciences, Department of Anesthesia, Faculty of Medicine, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Canada
| | - Anahita Oveisi
- Department of Neuroscience, Faculty of Science, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Canada
| | - Luda Diatchenko
- Faculty of Dental Medicine and Oral Health Sciences, Department of Anesthesia, Faculty of Medicine, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Canada.
| |
Collapse
|