1
|
Prati JM, Gianlorenço AC. A new vision of the role of the cerebellum in pain processing. J Neural Transm (Vienna) 2025; 132:537-546. [PMID: 39798004 DOI: 10.1007/s00702-024-02872-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/13/2024] [Indexed: 01/13/2025]
Abstract
The cerebellum is a structure in the suprasegmental nervous system classically known for its involvement in motor functions such as motor planning, coordination, and motor learning. However, with scientific advances, other functions of the cerebellum, such as cognitive, emotional, and autonomic processing, have been discovered. Currently, there is a body of evidence demonstrating the involvement of the cerebellum in nociception and pain processing. The aim of this review is to present the current literature on the anatomical, physiological, and functional aspects of the cerebellum in pain processing and suggest functional mechanisms of pain processing based on the cerebellum and its connections with other brain structures. To achieve this, searches were conducted in databases to identify relevant studies on the topic. Studies with relevant data and information were collected and summarized. Current literature demonstrates that the cerebellum receives nociceptive afferents from different pathways and exhibits activity in different regions including the vermis, hemispheres, and deep cerebellar nuclei in pain processing. Through its connections with different brain regions, it is possible that the cerebellum participates in the multidimensional processing of pain, which may make it a potential therapeutic target for pain treatment.
Collapse
Affiliation(s)
- José Mário Prati
- Postgraduate Program of Physical Therapy, Department of Physical Therapy, Laboratory of Neuroscience and Neurological Rehabilitation, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Anna Carolyna Gianlorenço
- Postgraduate Program in Physical Therapy (PPGFT), Department of Physical Therapy (DFisio), University of São Carlos (UFSCar), Washington Luis Road, Km 235, São Carlos, São Paulo, 13565-905, Brazil.
| |
Collapse
|
2
|
Zang H, Ji X, Yao W, Wan L, Zhang C, Zhu C, Liu T. Role of efferocytosis in chronic pain -- From molecular perspective. Neurobiol Dis 2025; 207:106857. [PMID: 40015655 DOI: 10.1016/j.nbd.2025.106857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025] Open
Abstract
The complex nature of pain pathophysiology complicates the establishment of objective diagnostic criteria and targeted treatments. The heterogeneous manifestations of pain stemming from various primary diseases contribute to the complexity and diversity of underlying mechanisms, leading to challenges in treatment efficacy and undesirable side effects. Recent evidence suggests the presence of apoptotic cells at injury sites, the distal dorsal root ganglia (DRG), spinal cord, and certain brain regions, indicating a potential link between the ineffective clearance of dead cells and debris and pain persistence. This review highlights recent research findings indicating that efferocytosis plays a significant yet often overlooked role in lesion expansion while also representing a potentially reversible impairment that could be targeted therapeutically to mitigate chronic pain progression. We examine recent advances into how efferocytosis, a process by which phagocytes clear apoptotic cells without triggering inflammation, influences pain initiation and intensity in both human diseases and animal models. This review summarizes that efferocytosis contributes to pain progression from the perspective of defective and inefficient efferocytosis and its subsequent secondary necrocytosis, cascade inflammatory response, and the shift of phenotypic plasticity and metabolism. Additionally, we investigate the roles of newly discovered genetic alterations or modifications in biological signaling pathways in pain development and chronicity, providing insights into innovative treatment strategies that modulate efferocytosis, which are promising candidates and potential avenues for further research in pain management and prevention.
Collapse
Affiliation(s)
- Hu Zang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiaoyu Ji
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Wenlong Yao
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Li Wan
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Chuanhan Zhang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Chang Zhu
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| | - Tongtong Liu
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| |
Collapse
|
3
|
Liu Y, Cai X, Shi B, Mo Y, Zhang J, Luo W, Yu B, Li X. Mechanisms and Therapeutic Prospects of Microglia-Astrocyte Interactions in Neuropathic Pain Following Spinal Cord Injury. Mol Neurobiol 2025; 62:4654-4676. [PMID: 39470872 DOI: 10.1007/s12035-024-04562-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/16/2024] [Indexed: 11/01/2024]
Abstract
Neuropathic pain is a prevalent and debilitating condition experienced by the majority of individuals with spinal cord injury (SCI). The complex pathophysiology of neuropathic pain, involving continuous activation of microglia and astrocytes, reactive gliosis, and altered neuronal plasticity, poses significant challenges for effective treatment. This review focuses on the pivotal roles of microglia and astrocytes, the two major glial cell types in the central nervous system, in the development and maintenance of neuropathic pain after SCI. We highlight the extensive bidirectional interactions between these cells, mediated by the release of inflammatory mediators, neurotransmitters, and neurotrophic factors, which contribute to the amplification of pain signaling. Understanding the microglia-astrocyte crosstalk and its impact on neuronal function is crucial for developing novel therapeutic strategies targeting neuropathic pain. In addition, this review discusses the fundamental biology, post-injury pain roles, and therapeutic prospects of microglia and astrocytes in neuropathic pain after SCI and elucidates the specific signaling pathways involved. We also speculated that the extracellular matrix (ECM) can affect the glial cells as well. Furthermore, we also mentioned potential targeted therapies, challenges, and progress in clinical trials, as well as new biomarkers and therapeutic targets. Finally, other relevant cell interactions in neuropathic pain and the role of glial cells in other neuropathic pain conditions have been discussed. This review serves as a comprehensive resource for further investigations into the microglia-astrocyte interaction and the detailed mechanisms of neuropathic pain after SCI, with the aim of improving therapeutic efficacy.
Collapse
Affiliation(s)
- Yinuo Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- The Clinical Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Xintong Cai
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- The Clinical Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Bowen Shi
- The Clinical Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yajie Mo
- The Clinical Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Jianmin Zhang
- The Clinical Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Wenting Luo
- The Clinical Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Bodong Yu
- The Clinical Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Xi Li
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
4
|
Brenneman DE, Petkanas D, Ippolito M, Ward SJ. Effect of Fatty Acyl Composition for Lysophosphatidylinositol on Neuroinflammatory Responses in Primary Neuronal Cultures. J Mol Neurosci 2025; 75:35. [PMID: 40085305 DOI: 10.1007/s12031-025-02326-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 02/20/2025] [Indexed: 03/16/2025]
Abstract
Lysophosphatidylinositol (LPI) is an endogenous signaling molecule for the GPR55 receptor. Previous studies have shown that arachidonoyl-lysophosphatidylinositol (LPI-20:4) produced an increase in the inflammatory mediators NLPR3 (inflammasome-3 marker) and IL-1b in neurons from both rat dorsal root ganglion (DRG) and hippocampal cultures. Because LPI is comprised of a family of lipid structures that vary in fatty acyl composition, the current work examined neuroinflammatory responses to various LPI structures in DRG and hippocampal cultures as assessed by high-content fluorescent imaging. Major endogenous LPI fatty acyl structures consisting of 16:0, 18:0, 18:1, or 20:4 were compared for their effects on IL-1b, NLRP3, and GPR55 immunoreactive areas of neurites and cell bodies after a 6-h treatment. Among these four LPI structures, only LPI-20:4 treatment produced increases in immunoreactive areas for GPR55, NLRP3, and IL-1b in DRG and hippocampal neurites. In contrast, all other LPI structures tested produced a decrease in all of these inflammatory immunoreactive areas in both neurites and cell bodies. Additional studies with LPI-20:4 treatment indicated that IL-6, IL-18, and TNF-α were significantly increased in neurites of DRG and hippocampal cultures. However, oleoyl-lysophosphatidylinositol (LPI-18:1) treatment produced decreases in these three cytokines. Using the viability dye Alamar blue, LPI-20:4 was shown to produce concentration-dependent decreases, whereas all other endogenous LPI structures produced increases with this assay. These studies indicate that fatty acyl structure is the major determinant of LPI for neuroinflammatory responses in DRG and hippocampal cultures, with LPI-20:4 showing pro-inflammatory effects and all other endogenous LPIs tested exhibiting anti-inflammatory responses.
Collapse
Affiliation(s)
- Douglas E Brenneman
- Pennsylvania Biotechnology Center, Kannalife Sciences, Inc, 3805 Old Easton Road, Doylestown, PA, 18902, USA.
| | - Dean Petkanas
- Pennsylvania Biotechnology Center, Kannalife Sciences, Inc, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Michael Ippolito
- Center for Substance Abuse Research, Department of Neural Science, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Sara Jane Ward
- Center for Substance Abuse Research, Department of Neural Science, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| |
Collapse
|
5
|
Kuhlmann L, Olesen SS, Drewes AM. Pathophysiology, Assessment, and Management of Pain Associated with Chronic Pancreatitis. Gastroenterol Clin North Am 2025; 54:129-142. [PMID: 39880523 DOI: 10.1016/j.gtc.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Chronic pancreatitis (CP) is a fibroinflammatory disease, with pain as its most prominent symptom. This article provides a comprehensive review of the pathophysiology, assessment methodologies, and management strategies pertaining to pain in CP. Pathophysiological mechanisms include inflammatory and neuropathic components, including peripheral and central sensitization. Pain assessment can include unidimensional and multidimensional pain assessment scales, neurophysiological assessments, and advanced imaging techniques. Management strategies include a spectrum from lifestyle modifications, pharmacologic interventions, and interventional procedures to neuromodulatory techniques and other experimental treatments.
Collapse
Affiliation(s)
- Louise Kuhlmann
- Department of Gastroenterology and Hepatology, Centre for Pancreatic Diseases & Mech-Sense, Aalborg University Hospital, Aalborg, Denmark.
| | - Søren Schou Olesen
- Department of Gastroenterology and Hepatology, Centre for Pancreatic Diseases & Mech-Sense, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Asbjørn Mohr Drewes
- Department of Gastroenterology and Hepatology, Centre for Pancreatic Diseases & Mech-Sense, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
6
|
Jayathilake NJ, Phan TT, Kim J, Lee KP, Park JM. Modulating neuroplasticity for chronic pain relief: noninvasive neuromodulation as a promising approach. Exp Mol Med 2025; 57:501-514. [PMID: 40025172 PMCID: PMC11958754 DOI: 10.1038/s12276-025-01409-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/20/2024] [Accepted: 12/01/2024] [Indexed: 03/04/2025] Open
Abstract
Chronic neuropathic pain is a debilitating neuroplastic disorder that notably impacts the quality of life of millions of people worldwide. This complex condition, encompassing various manifestations, such as sciatica, diabetic neuropathy and postherpetic neuralgia, arises from nerve damage or malfunctions in pain processing pathways and involves various biological, physiological and psychological processes. Maladaptive neuroplasticity, known as central sensitization, plays a critical role in the persistence of chronic neuropathic pain. Current treatments for neuropathic pain include pharmacological interventions (for example, antidepressants and anticonvulsants), invasive procedures (for example, deep brain stimulation) and physical therapies. However, these approaches often have limitations and potential side effects. In light of these challenges, interest in noninvasive neuromodulation techniques as alternatives or complementary treatments for neuropathic pain is increasing. These methods aim to induce analgesia while reversing maladaptive plastic changes, offering potential advantages over conventional pharmacological practices and invasive methods. Recent technological advancements have spurred the exploration of noninvasive neuromodulation therapies, such as repetitive transcranial magnetic stimulation, transcranial direct current stimulation and transcranial ultrasound stimulation, as well as innovative transformations of invasive techniques into noninvasive methods at both the preclinical and clinical levels. Here this review aims to critically examine the mechanisms of maladaptive neuroplasticity in chronic neuropathic pain and evaluate the efficacy of noninvasive neuromodulation techniques in pain relief. By focusing on optimizing these techniques, we can better assess their short-term and long-term effects, refine treatment variables and ultimately improve the quality of neuropathic pain management.
Collapse
Affiliation(s)
- Nishani Jayanika Jayathilake
- Department of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
| | - Tien Thuy Phan
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
| | - Jeongsook Kim
- Department of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Kyu Pil Lee
- Department of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea.
| | - Joo Min Park
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea.
- Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
7
|
Wang QW, Zheng H, Yang Y, Chang X, Du Z, Hang ZN, Li ZS, Liao Z. Distinct microbial signatures and their predictive value in recurrent acute pancreatitis: insights from 5-region 16S rRNA gene sequencing. Front Immunol 2025; 16:1558983. [PMID: 40093002 PMCID: PMC11906328 DOI: 10.3389/fimmu.2025.1558983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 02/13/2025] [Indexed: 03/19/2025] Open
Abstract
Background Recurrent acute pancreatitis (RAP) poses significant clinical challenges, with 32.3% developing to chronic pancreatitis within 5 years. The underlying microbial factors contributing to RAP remain poorly understood. This study aims to identify blood microbial signatures associated with RAP and explore the potential microbial predictors for RAP. Methods In this prospective cohort, 90 acute pancreatitis patients are classified into non-recurrent acute pancreatitis (NRAP, n=68) and RAP (n=22) groups based on the number of pancreatitis episodes. Microbial composition of blood samples is analyzed using 5-region (5R) 16S rRNA gene sequencing. Key microbial taxa and functional predictions are made. A random forest model is used to assess the predictive value of microbial features for RAP. The impact of Staphylococcus hominis (S. hominis) on RAP is further evaluated in an experimental mouse model. Results Linear discriminant analysis effect size (LEfSe) analysis highlights significant microbial differences, with Paracoccus aminovorans, Corynebacterium glucuronolyticum and S. hominis being prominent in RAP. Functional predictions indicate enrichment of metabolic pathways in the RAP group. Random forest analysis identifies key microbial taxa with an AUC value of 0.759 for predicting RAP. Experimental validation shows that S. hominis exacerbates pancreatic inflammation in mice. Conclusions This study identifies distinct clinical and microbial features associated with RAP, emphasizing the role of specific bacterial taxa in pancreatitis recurrence. The findings suggest that microbial profiling could enhance the diagnosis and management of RAP, paving the way for personalized therapeutic approaches.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhao-Shen Li
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhuan Liao
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
8
|
Lee S, Edwards S. Alcohol and Cannabis Use for Pain Management: Translational Findings of Relative Risks, Benefits, and Interactions. Physiol Behav 2025:114867. [PMID: 40023207 DOI: 10.1016/j.physbeh.2025.114867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/08/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
Chronic pain affects over 20% of the global population and contributes to the vast burden of psychiatric illness. While effective treatments for chronic pain remain limited, both alcohol and cannabis have been used for centuries to manage pain and closely associated negative affective symptoms. However, persistent misuse of alcohol and/or cannabis in such a negative reinforcement fashion is hypothesized to increase the risk of severity of substance use disorders (SUDs). The current review describes neurobiological evidence for the analgesic efficacy of alcohol and primary cannabis constituents and how use or co-use of these substances may influence SUD risk.
Collapse
Affiliation(s)
- Sumin Lee
- Department of Physiology and Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Scott Edwards
- Department of Physiology and Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.
| |
Collapse
|
9
|
Mascio G, Nicoletti F, Battaglia G, Notartomaso S. A type-5 metabotropic glutamate receptor-perineuronal net axis shapes the function of cortical GABAergic interneurons in chronic pain. JOURNAL OF ANESTHESIA, ANALGESIA AND CRITICAL CARE 2025; 5:10. [PMID: 39985105 PMCID: PMC11846390 DOI: 10.1186/s44158-025-00228-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 01/31/2025] [Indexed: 02/24/2025]
Abstract
Parvalbumin-positive (PV+) interneurons (basket and chandelier cells) regulate the firing rate of pyramidal neurons in the cerebral cortex and play a key role in the generation of network oscillations in the cerebral cortex. A growing body of evidence suggest that cortical PV+ interneurons become overactive in chronic pain and contribute to nociceptive sensitization by inhibiting a top-down analgesic pathway. Here, we provide further support to this hypothesis showing that intracortical infusion of the GABAA receptor antagonist, bicuculline, caused analgesia in a mouse model of chronic inflammatory pain, although it reduced pain thresholds in healthy mice. We propose that mGlu5 metabotropic glutamate receptors and perineuronal nets (PNNs) shape the activity of PV+ interneurons in chronic pain, generating a form of maladaptive plasticity that enhances behavioural pain responses. mGlu5 receptors might be locally targeted by drugs activated by light delivered in cortical regions of the pain matrix, whereas the density of PNNs enwrapping PV+ interneurons might be reduced by local activation of PNN-degrading enzyme, such as type-9 matrix metalloproteinase. These strategies, which may require invasive treatments, might be beneficial in the management of severe pain which is refractory to conventional pharmacological and non-pharmacological interventions.
Collapse
Affiliation(s)
| | - Ferdinando Nicoletti
- IRCCS Neuromed, Pozzilli, Italy
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Battaglia
- IRCCS Neuromed, Pozzilli, Italy
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
10
|
Pedersen TR, Berendt M, Rusbridge C. Neuroanatomy of spinal nociception and pain in dogs and cats: a practical review for the veterinary clinician. Front Vet Sci 2025; 12:1534685. [PMID: 40051980 PMCID: PMC11884323 DOI: 10.3389/fvets.2025.1534685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/04/2025] [Indexed: 03/09/2025] Open
Abstract
Chronic pain is a prevalent condition in companion animals and poses significant welfare challenges. To address these concerns effectively, veterinary clinicians must have a comprehensive understanding of the neuroanatomy of nociception and the intricate processes underlying pain perception. This knowledge is essential for planning and implementing targeted treatment strategies. However, much of the existing information on pain mechanisms is derived from studies on rodents or humans, highlighting the need for further translational research to bridge this gap for veterinary applications. This review aims to provide veterinary clinicians with an in-depth overview of the spinal nociceptive pathways in the dog and cat, tracing the journey from nociceptor activation to cortical processing in the brain. Additionally, the review explores factors influencing nociceptive signaling and pain perception. By enhancing the understanding of these fundamental physiological processes, this work seeks to lay the groundwork for developing effective therapies to manage the complexities of chronic pain in companion animals.
Collapse
Affiliation(s)
- Tenna Remler Pedersen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Mette Berendt
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Clare Rusbridge
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
11
|
Qian W, Xu X, Wu Y, Yu L, Wang C, Yan M, Yu R. Altered white matter microstructural integrity in patients with postherpetic neuralgia: a combined DTI and DTI-NODDI study. Front Neurosci 2025; 19:1552961. [PMID: 40040848 PMCID: PMC11876147 DOI: 10.3389/fnins.2025.1552961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 02/04/2025] [Indexed: 03/06/2025] Open
Abstract
Background Postherpetic neuralgia (PHN) is a debilitating condition resulting from herpes zoster infection, characterized by persistent pain that significantly impacts quality of life. This study aimed to investigate the white matter microstructural alterations associated with PHN and to assess the relationship between diffusion metrics and clinical symptoms. Methods A total of 29 patients with PHN, 28 patients recovering from herpes zoster (RHZ), and 27 healthy controls (HC) were recruited, and clinical assessments were obtained to evaluate pain intensity and psychological distress. Diffusion tensor imaging (DTI) data was collected, followed by analysis of diffusion and neurite orientation dispersion and density imaging (NODDI) metrics. Statistical analyses included ANOVA to compare groups and Pearson correlation coefficients to assess relationships between imaging metrics and clinical outcomes. Results PHN patients exhibited significantly altered white matter integrity, specifically in neurite density index (NDI) and orientation dispersion index, compared to both RHZ patients and HC. Significant correlations were also found between altered imaging metrics and clinical assessments of pain and emotional distress, with lower fractional anisotropy (FA) and NDI associated with higher pain scores and psychological symptoms. Conclusion Our study highlights significant microstructural changes in white matter tracts in patients with PHN, indicating compromised neural integrity that correlates with increased pain perception and emotional distress. NODDI demonstrated superior sensitivity in detecting these alterations compared to traditional DTI metrics, underscoring its potential for enhancing diagnostic and therapeutic approaches in managing chronic pain conditions like PHN.
Collapse
Affiliation(s)
- Wei Qian
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Xiaopei Xu
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Ying Wu
- Department of Anesthesiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lina Yu
- Department of Anesthesiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chao Wang
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Min Yan
- Department of Anesthesiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Risheng Yu
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| |
Collapse
|
12
|
Qiu Z, Liu T, Zeng C, Yang M, Yang H, Xu X. Exploratory study on the ascending pain pathway in patients with chronic neck and shoulder pain based on combined brain and spinal cord diffusion tensor imaging. Front Neurosci 2025; 19:1460881. [PMID: 40012685 PMCID: PMC11861079 DOI: 10.3389/fnins.2025.1460881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 01/27/2025] [Indexed: 02/28/2025] Open
Abstract
Objective To explore the changes in the white matter microstructure of the ascending pain conduction pathways in patients with chronic neck and shoulder pain (CNSP) using combined brain and spinal cord diffusion tensor imaging techniques, and to assess its correlation with clinical indicators and cognitive functions. Materials and methods A 3.0T MRI scanner was used to perform combined brain and spinal cord diffusion tensor imaging scans on 31 CNSP patients and 24 healthy controls (HCs), extracting the spinothalamic tract (STT) and quantitatively analyzing the fractional anisotropy (FA) and mean diffusivity (MD) which reflect the microstructural integrity of nerve fibers. Additionally, these differences were subjected to partial correlation analysis in relation to Visual Analog Scale (VAS) scores, duration of pain, Self-Rating Anxiety Scale (SAS), and Self-Rating Depression Scale (SDS). Results Compared to HCs, CNSP patients showed decreased mean FA values and increased mean MD values in bilateral intracranial STT compared to the HC group, but two-sample t-test results indicated no statistically significant differences (p > 0.05). FA values of the left STT (C2 segment, C5 segment) and right STT (C1 segment, C2 segment) were significantly decreased in bilateral cervical STTs of CNSP patients; MD values of the left STT (C1 segment, C2 segment, C5 segment) and right STT (C1 segment, C5 segment) were significantly increased (p < 0.05). Partial correlation analysis results showed that FA values of STT in CNSP patients were negatively correlated with VAS scores, duration of pain, SAS scores, and SDS scores, while MD values were positively correlated with VAS scores and duration of pain (Bonferroni p < 0.05). Conclusion This research identified that patients with CNSP exhibited reduced mean FA and increased mean MD in the bilateral intracranial STT, although these differences were not statistically significant (p > 0.05). Conversely, significant abnormalities were observed in specific segments of the bilateral cervical STT (p < 0.05), which were also correlated with variations in pain intensity, illness duration, and levels of anxiety and depression. These findings contribute a novel neuroimaging perspective to the evaluation and elucidation of the pathophysiological mechanisms underlying chronic pain in the ascending conduction pathways.
Collapse
Affiliation(s)
- Zhiqiang Qiu
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Tianci Liu
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Chengxi Zeng
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Maojiang Yang
- Department of Pain, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - HongYing Yang
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xiaoxue Xu
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
13
|
Tassou A, Richebe P, Rivat C. Mechanisms of chronic postsurgical pain. Reg Anesth Pain Med 2025; 50:77-85. [PMID: 39909543 DOI: 10.1136/rapm-2024-105964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/25/2024] [Indexed: 02/07/2025]
Abstract
Chronic pain after surgery, also known as chronic postsurgical pain (CPSP), is recognized as a significant public health issue with serious medical and economic consequences. Current research on CPSP underscores the significant roles of both peripheral and central sensitization in pain development and maintenance. Peripheral sensitization occurs at the site of injury, through the hyperexcitability of nerve fibers due to surgical damage and the release of inflammatory mediators. This leads to increased expression of pronociceptive ion channels and receptors, such as transient receptor potential and acid-sensing ion channels (ASIC), enhancing pain signal transmission. Central sensitization involves long-term changes in the central nervous system, particularly in the spinal cord. In this context, sensitized spinal neurons become more responsive to pain signals, driven by continuous nociceptive input from the periphery, which results in an enhanced pain response characterized by hyperalgesia and/or allodynia. Key players in this process include N-methyl-D-aspartate receptor and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors, along with proinflammatory cytokines and chemokines released by activated glia. These glial cells release substances that further increase neuronal excitability, maintaining the sensitized state and contributing to persistent pain. The activation of antinociceptive systems is required for the resolution of pain after surgery, and default in these systems may also be considered as an important component of CPSP. In this review, we will examine the clinical factors underlying CPSP in patients and the mechanisms previously established in preclinical models of CPSP that may explain how acute postoperative pain may transform into chronic pain in patients.
Collapse
Affiliation(s)
- Adrien Tassou
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Philippe Richebe
- Department of Anesthesiology and Pain Medicine, Polyclinique Bordeaux Nord Aquitaine (PBNA), Bordeaux, France
- Anesthesiology and Pain Medicine, Maisonneuve Rosemont Hospital, University of Montreal, Montreal, Quebec, Canada
| | - Cyril Rivat
- University of Montpellier, Montpellier, France
- Institut des Neurosciences de Montpellier INSERM U1298, Montpellier, France
| |
Collapse
|
14
|
Elsharkawy H, Clark JD, El-Boghdadly K. Evidence for regional anesthesia in preventing chronic postsurgical pain. Reg Anesth Pain Med 2025; 50:153-159. [PMID: 39909548 DOI: 10.1136/rapm-2024-105611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/05/2024] [Indexed: 02/07/2025]
Abstract
Chronic postsurgical pain (CPSP) is a common adverse outcome following surgical procedures. Despite ongoing research, the risk factors and effective strategies for mitigating CPSP remain uncertain. Regional anesthesia is a potentially beneficial yet debated intervention for mitigating the risk of CPSP. This review will delve into the mechanistic aspects of regional anesthesia and critically assess the current literature to provide a thorough understanding of its role and effectiveness. The incidence and severity of CPSP are linked to nerve damage, neuroplastic changes and immunological responses. Although numerous mechanisms contributing to CPSP have been identified, translational research is sparse, and findings are often inconsistent. Evidence suggests that regional anesthetic techniques could have a role in reducing CPSP risk across various clinical scenarios. Techniques studied include wound infiltration, peripheral nerve blocks, fascial plane blocks, thoracic paravertebral blocks and epidural anesthesia. Current data indicate that epidural anesthesia might decrease CPSP risk following thoracotomy, wound infiltration may be effective after major breast surgery and cesarean delivery, and serratus anterior plane block or pectoralis/interpectoral plane blocks might be beneficial in breast surgery. However, the existing evidence is limited and marked by several constraints especially the multifactorial causes, underscoring the need for further research in this area.
Collapse
Affiliation(s)
- Hesham Elsharkawy
- Anesthesiology Pain, MetroHealth Medical Center, Cleveland, Ohio, USA
- Professor of Anesthesiology, Case Western Reserve University, Cleveland, Ohio, USA
- Outcomes Research Consortium, Houston, Texas, USA
| | | | - Kariem El-Boghdadly
- Department of Anaesthesia and Perioperative Medicine, Guy's and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
15
|
Lascelles BDX, Ponnala R, Kamerling SG, Williams T. Proteomic profiling of serum in cats with naturally occurring degenerative joint disease and co-morbid conditions. FRONTIERS IN PAIN RESEARCH 2025; 6:1501932. [PMID: 39968160 PMCID: PMC11832531 DOI: 10.3389/fpain.2025.1501932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/16/2025] [Indexed: 02/20/2025] Open
Abstract
Introduction Degenerative joint disease (DJD) occurs very commonly in cats and can be associated with pain. Almost 70% of cats with DJD-associated pain suffer the co-morbidity of chronic kidney disease (CKD). There are currently very limited treatment or management options. A greater understanding of the systems biology of DJD, DJD-associated pain, and CKD may contribute to identifying disease specific biomarkers and relevant targets for the development of therapeutics for the control of these conditions in cats, and help inform human pain therapeutic development. Methods Using mass spectrometry-based proteomic profiling of the serum of 200 highly phenotyped cats with varying burdens of DJD, pain, and CKD, we identified significant individual proteins and pathways. Results Functional pathway analysis, based on differentially abundant proteins across individual disease states (DJD, pain, CKD), identified pathways playing a role in DJD and DJD-associated pain including acute phase response signaling, LXR/RXR and FXR/RXR activation and the complement system. With the added co-morbidity of CKD, similar pathways were identified, with the addition of IL-12 signaling and production in macrophages. Discussion We identified differentially abundant proteins associated with DJD, pain and CKD and future work should evaluate these proteins as potential biomarkers of disease (individually or as clusters). Further, these data could be leveraged to identify novel therapeutic targets to address the gap in our ability to manage DJD, pain, and CKD in cats. Given that our work was in cats with naturally occurring DJD, these results may have translational applicability to human health.
Collapse
Affiliation(s)
- B. Duncan X. Lascelles
- Translational Research in Pain, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
- Comparative Pain Research and Education Center, North Carolina State University, Raleigh, NC, United States
- Thurston Arthritis Center, UNC School of Medicine, Chapel Hill, NC, United States
- Center for Translational Pain Research, Department of Anesthesiology, Duke University, Durham, NC, United States
| | - Rakesh Ponnala
- Veterinary Medicine Research & Development, Zoetis, Kalamazoo, MI, United States
| | - Steven G. Kamerling
- Veterinary Pharmacology Consultant, Veterinary Medicine Research & Development, Zoetis, Kalamazoo, MI, United States
| | - Tracey Williams
- Veterinary Medicine Research & Development, Zoetis, Kalamazoo, MI, United States
| |
Collapse
|
16
|
Vygonskaya M, Wu Y, Price TJ, Chen Z, Smith MT, Klyne DM, Han FY. The role and treatment potential of the complement pathway in chronic pain. THE JOURNAL OF PAIN 2025; 27:104689. [PMID: 39362355 DOI: 10.1016/j.jpain.2024.104689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024]
Abstract
The role of the complement system in pain syndromes has garnered attention on the back of preclinical and clinical evidence supporting its potential as a target for new analgesic pharmacotherapies. Of the components that make up the complement system, component 5a (C5a) and component 3a (C3a) are most strongly and consistently associated with pain. Receptors for C5a are widely found in immune resident cells (microglia, astrocytes, sensory neuron-associated macrophages (sNAMs)) in the central nervous system (CNS) as well as hematogenous immune cells (mast cells, macrophages, T-lymphocytes, etc.). When active, as is often observed in chronic pain conditions, these cells produce various inflammatory mediators including pro-inflammatory cytokines. These events can trigger nervous tissue inflammation (neuroinflammation) which coexists with and potentially maintains peripheral and central sensitization. C5a has a likely critical role in initiating this process highlighting its potential as a promising non-opioid target for treating pain. This review summarizes the most up-to-date research on the role of the complement system in pain with emphasis on the C5 pathway in peripheral tissue, dorsal root ganglia (DRG) and the CNS, and explores advances in complement-targeted drug development and sex differences. A perspective on the optimal application of different C5a inhibitors for different types (e.g., neuropathic, post-surgical and chemotherapy-induced pain, osteoarthritis pain) and stages (e.g., acute, subacute, chronic) of pain is also provided to help guide future clinical trials. PERSPECTIVE: This review highlights the role and mechanisms of complement components and their receptors in physiological and pathological pain. The potential of complement-targeted therapeutics for the treatment of chronic pain is also explored with a focus on C5a inhibitors to help guide future clinical trials.
Collapse
Affiliation(s)
- Marina Vygonskaya
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Youzhi Wu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Theodore J Price
- Center for Advanced Pain Studies, Department of Neuroscience, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Zhuo Chen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Maree T Smith
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David M Klyne
- NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Felicity Y Han
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
17
|
Wani P, Anand R. Neuroplasticity and Pain Perception: Exploring the Complexities of Temporomandibular Disorders. Cureus 2025; 17:e79098. [PMID: 40104480 PMCID: PMC11918487 DOI: 10.7759/cureus.79098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2025] [Indexed: 03/20/2025] Open
Abstract
Temporomandibular disorders (TMDs) are prevalent conditions affecting the temporomandibular joint (TMJ), masticatory muscles, and associated structures, leading to pain, restricted movement, and joint noises. These disorders are multifactorial in origin, involving structural, functional, and psychological components. This review delves into the neurophysiological mechanisms of pain perception in TMDs, focusing on peripheral and central processes, including the role of neural plasticity in chronic pain. Peripheral mechanisms involve nociceptors in the TMJ, activated by inflammatory mediators, mechanical stress, and tissue damage, leading to pain. Peripheral sensitization, driven by factors such as cytokines and neuropeptides, enhances nociceptor sensitivity, contributing to chronic pain states. The trigeminal nerve is pivotal in transmitting nociceptive information to the central nervous system (CNS), with C-fibers and A-delta fibers involved in pain perception. Central sensitization, a hallmark of chronic pain in TMDs, involves neuroplastic changes in the CNS, including wind-up and long-term potentiation (LTP), enhancing pain perception and facilitating pain persistence. Neuroplasticity, both central and peripheral, plays a critical role in the development of chronic pain. Central plasticity includes synaptic changes and alterations in brain connectivity, which were observed in functional imaging studies of TMD patients. Peripheral plasticity involves the upregulation of ion channels and neurotransmitters, sustaining pain signals. Additionally, neuroimmune interactions between microglia, astrocytes, and pain pathways are integral to central sensitization. Understanding these mechanisms is crucial for developing effective treatments targeting both peripheral and central pain processes. Emerging therapies, including transient receptor potential (TRP) channel blockers and neuroimmune modulators, offer new avenues for managing TMD pain, emphasizing the need for a multifaceted treatment approach.
Collapse
Affiliation(s)
- Pinaki Wani
- Physiology, All India Institute of Medical Sciences, Raebareli, Raebareli, IND
| | | |
Collapse
|
18
|
Salbego RS, Conti PCR, Soares FFC, Ferreira DMAO, Herreira-Ferreira M, de Lima-Netto BA, Costa YM, Bonjardim LR. Central sensitization inventory is associated with psychological functioning but not with psychophysical assessment of pain amplification. Eur J Pain 2025; 29:e4713. [PMID: 39120067 DOI: 10.1002/ejp.4713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 07/02/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND The central sensitization inventory (CSI) is a questionnaire that has been widely used as a tool for assessing symptoms associated with sensitization. However, its ability to identify individuals with this phenomenon has recently been questioned. The aim of this study was to assess the correlation of CSI with psychosocial and psychophysical factors in patients with painful TMD diagnosed according to diagnostic criteria for temporomandibular disorders (DC/TMD) and asymptomatic controls, as well as to determine the influence of these variables on the CSI scores variations. METHODS This cross-sectional study with 77 patients diagnosed with painful TMD according to DC/TMD and 101 asymptomatic controls realized correlations between CSI, WUR, PPT, CPM and psychosocial questionnaires (HADS, PSQI, PCS and PSS). In cases where significant correlations existed, the potential influence of these variables on CSI variation was explored through linear regression analysis. RESULTS It has been found that the CSI correlates with psychosocial variables (anxiety, depression, catastrophizing, sleep and stress) (p < 0.0006) regardless of the presence of TMD, and that 68.9% of the variation in CSI scores can be influenced by all these variables (except stress). On the contrary, the CSI does not correlate with psychophysical parameters indicative of pain amplification (wind-up ratio and conditioned pain modulation) (p > 0.320). CONCLUSION CSI is more associated with psychosocial factors than with more robust indicators of probable central sensitization (CS), thus limiting its utility in detecting this phenomenon both in TMD patients and healthy individuals. SIGNIFICANCE STATEMENT The research highlights a noteworthy relationship between the central sensitization inventory and psychological factors, emphasizing their substantial influence on inventory values. This correlation offers crucial insights into mental health markers within the questionnaire. Additionally, the lack of connection with pain amplification implies a necessary re-evaluation of the inventory's diagnostic suitability, especially in cases of painful temporomandibular disorders. Thus, caution is urged in its application for identifying CS in these individuals.
Collapse
Affiliation(s)
- Rafaela Stocker Salbego
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Paulo César Rodrigues Conti
- Department of Prosthodontics and Periodontology, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | | | | | - Matheus Herreira-Ferreira
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | | | - Yuri Martins Costa
- Department of Biosciences, Piracicaba School of Dentistry, University of Campinas, Piracicaba, Brazil
| | | |
Collapse
|
19
|
Xu Q, Zheng Q, Cui X, Cleland A, Hincapie J, Raja SN, Dong X, Guan Y. Visualizing the modulation of neurokinin 1 receptor-positive neurons in the superficial dorsal horn by spinal cord stimulation in vivo. Pain 2025; 166:428-437. [PMID: 39140483 PMCID: PMC11723817 DOI: 10.1097/j.pain.0000000000003361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/25/2024] [Indexed: 08/15/2024]
Abstract
ABSTRACT Spinal cord stimulation (SCS) is an effective modality for pain treatment, yet its underlying mechanisms remain elusive. Neurokinin 1 receptor-positive (NK1R + ) neurons in spinal lamina I play a pivotal role in pain transmission. To enhance our mechanistic understanding of SCS-induced analgesia, we investigated how different SCS paradigms modulate the activation of NK1R + neurons, by developing NK1R-Cre;GCaMP6s transgenic mice and using in vivo calcium imaging of superficial NK1R + neurons under anesthesia (1.5% isoflurane). Neurokinin 1 receptor-positive neurons in the lumbar spinal cord (L4-5) showed a greater activation by electrical test stimulation (TS, 3.0 mA, 1 Hz) at the hindpaw at 2 weeks after tibia-sparing nerve injury (SNI-t) than in naïve mice. Spinal cord stimulation was then delivered through a bipolar plate electrode placed epidurally at L1-2 level. The short-term 50-Hz high-intensity SCS (80% motor threshold [MoT], 10 minutes) induced robust and prolonged inhibition of NK1R + neuronal responses to TS in both naïve and SNI-t mice. The 30-minute 50-Hz and 900-Hz SCS applied at moderate intensity (50% MoT) also significantly inhibited neuronal responses in SNI-t mice. However, at low intensity (20% MoT), the 30-minute 900-Hz SCS only induced persistent neuronal inhibition in naïve mice, but not in SNI-t mice. In conclusion, both 10-minute high-intensity SCS and 30-minute SCS at moderate intensity inhibit the activation of superficial NK1R + neurons, potentially attenuating spinal nociceptive transmission. Furthermore, in vivo calcium imaging of NK1R + neurons provides a new approach for exploring the spinal neuronal mechanisms of pain inhibition by neuromodulation pain therapies.
Collapse
Affiliation(s)
- Qian Xu
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
- Howard Hughes Medical Institute, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Qin Zheng
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Xiang Cui
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | | | | | - Srinivasa N. Raja
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
- Howard Hughes Medical Institute, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
- Department of Neurological Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21205, USA
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
- Department of Neurological Surgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
20
|
Zhu Q, Yang J, Shi L, Zhang J, Zhang P, Li J, Song X. Exploring the role of ubiquitination modifications in migraine headaches. Front Immunol 2025; 16:1534389. [PMID: 39958329 PMCID: PMC11825825 DOI: 10.3389/fimmu.2025.1534389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/09/2025] [Indexed: 02/18/2025] Open
Abstract
Migraine is a complex neurovascular disorder whose pathogenesis involves activation of the trigeminal vascular system, central and peripheral sensitization, and neuroinflammation. Calcitonin gene-related peptide (CGRP) plays a dominant role and activation of MAPK and NF-κB signaling pathways regulates neuropeptide release, glial cell activation, and amplification of nociceptive signals. Aberrant activation of these pathways drives migraine onset and chronicity. The ubiquitin-proteasome system (UPS) is involved in neurological and inflammatory disorders. ubiquitination in the UPS is achieved through a cascade of enzymes, including Ub-activating enzyme (E1), Ub-coupling enzyme (E2), and Ub-ligase (E3). The aim of this review is to systematically explore the role of ubiquitination in the regulation of MAPK and NF-κB signaling pathways, with a focus on the mechanisms of ubiquitinating enzymes in neuroinflammation and pain signal amplification, and to explore their potential as diagnostics, biomarkers, predictors of response to therapy, and monitoring of chronicity in migraine disease.
Collapse
Affiliation(s)
- Qian Zhu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Jin Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Lei Shi
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Jieying Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Peng Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Junlong Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xiaoli Song
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
21
|
Li B, Yu K, Zhou X, Sun J, Qi L, Li W, Yang T, Li W, Wang N, Gu X, Cui S, Cao R. Increased TSPO alleviates neuropathic pain by preventing pyroptosis via the AMPK-PGC-1α pathway. J Headache Pain 2025; 26:16. [PMID: 39871133 PMCID: PMC11771075 DOI: 10.1186/s10194-025-01953-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/13/2025] [Indexed: 01/29/2025] Open
Abstract
Neuropathic pain poses a significant clinical challenge, largely due to the incomplete understanding of its molecular mechanisms, particularly the role of mitochondrial dysfunction. Bioinformatics analysis revealed that pyroptosis and inflammatory responses induced by spared nerve injury (SNI) in the spinal dorsal horn play a critical role in the initiation and persistence of neuropathic pain. Among the factors involved, TSPO (translocator protein) emerged as a key regulator. Our experimental findings showed that TSPO expression was upregulated during neuropathic pain, accompanied by mitochondrial dysfunction, specifically manifested as impaired mitochondrial biogenesis, disrupted mitochondrial dynamics (including insufficient expression of mitochondrial biogenesis and fusion-related proteins, as well as significantly increased expression of fission-related proteins), and activation of pyroptosis. Pharmacological upregulation of TSPO, but not its downregulation, effectively alleviated SNI-induced pain hypersensitivity, improving mitochondrial function and reducing pyroptosis. Immunofluorescence staining confirmed that TSPO was primarily localized in astrocytes, and its expression mirrored the protective effects on mitochondrial health and pyroptosis prevention. PCR array analysis suggested a strong association between TSPO and the mitochondrial regulation pathway AMPK-PGC-1α. Notably, inhibition of AMPK-PGC-1α abolished TSPO effects on mitochondrial balance and pyroptosis suppression. Furthermore, Mendelian randomization analysis of GWAS data indicated that increased TSPO expression was linked to pain relief. Through drug screening, molecular docking, and behavioral assays, we identified zopiclone as a promising TSPO-targeting drug for pain treatment. In summary, this study enhances our understanding of the molecular interplay between TSPO, mitochondrial health, and neuropathic pain, highlighting TSPO as a potential therapeutic target for pain management.
Collapse
Affiliation(s)
- Baolong Li
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China
| | - Kaiming Yu
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China
| | - Xiongyao Zhou
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China
| | - Jialu Sun
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China
| | - Le Qi
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China
| | - Weiye Li
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China
| | - Tuo Yang
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China
| | - Weizhen Li
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China
| | - Ningning Wang
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China.
| | - Shusen Cui
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, China.
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China.
| | - Rangjuan Cao
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, China.
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China.
| |
Collapse
|
22
|
Shi S, Gong X. The Role of Microglia in Perioperative Pain and Pain Treatment: Recent Advances in Research. J Integr Neurosci 2025; 24:22675. [PMID: 40018770 DOI: 10.31083/jin22675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/29/2024] [Accepted: 08/12/2024] [Indexed: 03/01/2025] Open
Abstract
Microglia play a crucial role in monitoring the microenvironment of the central nervous system. Over the past decade, the role of microglia in the field of pain has gradually been unraveled. Microglia activation not only releases proinflammatory factors that enhance nociceptive signaling, but also participates in the resolving of pain. Opioids induce microglia activation, which enhances phagocytic activity and release of neurotoxic substances. Conversely, microglia activation reduces opioid efficacy and results in opioid tolerance. The application of microglia research to clinical pain management and drug development is a promising but challenging area. Microglia-targeted therapies may provide new avenues for pain management.
Collapse
Affiliation(s)
- Shengnan Shi
- Department of Anesthesiology, Institution of Neuroscience and Brain Disease, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, 441000 Xiangyang, Hubei, China
| | - Xingrui Gong
- Department of Anesthesiology, Institution of Neuroscience and Brain Disease, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, 441000 Xiangyang, Hubei, China
| |
Collapse
|
23
|
Harvey ME, Shi M, Oh Y, Mitchell DA, Slayden OD, MacLean JA, Hayashi K. Multiple lesion inductions intensify central sensitization driven by neuroinflammation in a mouse model of endometriosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.23.634555. [PMID: 39896574 PMCID: PMC11785222 DOI: 10.1101/2025.01.23.634555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Introduction Endometriosis is an inflammatory disease associated with chronic pelvic pain (CPP). Growing evidence indicates that endometriotic lesions are not the sole source of pain. Instead, central nervous system (CNS) dysfunction created by prolonged peripheral and central sensitization plays a role in developing endometriosis-associated CPP. This study investigated how CPP is established using a multiple lesion induction mouse model of endometriosis, as repeated retrograde menstruation is considered underlying endometriosis pathogenesis. Methods We generated endometriosis-like lesions by injecting endometrial tissue fragments into the peritoneal cavity in mice. The mice received a single (1x) or multiple inductions (6x) to simulate recurrent retrograde menstruation. Lesion development, hyperalgesia by behavioral testing, signs of peripheral sensitization, chronic inflammation, and neuroinflammation were examined with lesions, peritoneal fluids, dorsal root ganglia (DRG), spinal codes, and brain. Results Multiple lesion inductions increased lesion numbers and elevated abdominal and hind paw hypersensitivity compared to single induction mice. Elevated persistent glial cell activation across several brain regions and/or spinal cords was found in the multiple induction mice. Specifically, IBA1+ microglial soma size was increased in the hippocampus and thalamus. IBA1+ cells were abundant in the cortex, hippocampus, thalamus, and hypothalamus of the multiple induction mice. GFAP+ astrocytes were mainly elevated in the hippocampus. Elevated TRPV1, SP, and CGRP expressions in the DRG were persistent in the multiple induction mice. Furthermore, multiple inductions induced the severe disappearance of TIM4hi MHCIIlo residential macrophages and the influx of increased proinflammatory TIM4lo MHCIIhi macrophages in the peritoneal cavity. The single and multiple inductions elevated secreted TNFα, IL-1β, and IL-6 levels in the peritoneal cavity at 2 weeks. Elevated cytokine levels returned to the pre-induction levels in the single induction mice at 6 weeks; however, they remained elevated in the multiple induction mice. Conclusions Our results indicate that the repeatedly occurring lesion inductions (=mimic retrograde menstruation) can be a peripheral stimulus that induces nociceptive pain and creates composite chronic inflammatory stimuli to cause neuroinflammation and sensitize the CNS. The circuits of neuroplasticity and stimulation of peripheral organs via a feedback loop of neuroinflammation may mediate widespread endometriosis-associated CPP.
Collapse
Affiliation(s)
- Madeleine E. Harvey
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, 1770 NE Stadium Way, Pullman, WA, 99164, USA
| | - Mingxin Shi
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, 1770 NE Stadium Way, Pullman, WA, 99164, USA
| | - Yeongseok Oh
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, 1770 NE Stadium Way, Pullman, WA, 99164, USA
| | - Debra A. Mitchell
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, 1770 NE Stadium Way, Pullman, WA, 99164, USA
| | - Ov D. Slayden
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | - James A. MacLean
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, 1770 NE Stadium Way, Pullman, WA, 99164, USA
| | - Kanako Hayashi
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, 1770 NE Stadium Way, Pullman, WA, 99164, USA
| |
Collapse
|
24
|
Huang M, Fu C, Chui L, He J, Wang X, Luo J, Wu B, Chen Y, Hu S, Zhu J, Li Y. An AI recognition method for children's clinical operative pain by skin potential (SP) signal. Heliyon 2025; 11:e41558. [PMID: 39845012 PMCID: PMC11750553 DOI: 10.1016/j.heliyon.2024.e41558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 12/02/2024] [Accepted: 12/27/2024] [Indexed: 01/24/2025] Open
Abstract
Objective and rationale Children's clinical pain phenotypes are complex, and there is a lack of objective biological diagnostic markers and cognitive patterns. Detecting physiological signals through wearable devices simplifies disease diagnosis and holds the potential for remote medical applications. Method and results This research established a pain recognition model based on AI skin potential (SP) signal analysis. A total of 237 subjects participated in this study, comprising 152 boys and 85 girls, ranging in age from 2 to 16 years old. Initially, we preprocessed SP signals and built datasets for pain and non-pain conditions, including 195 pain and 97 non-pain samples. Then, we applied wavelet transform (WT) to capture the time-frequency characteristics of the signals and extract energy features and created a feature set comprising 30 features and selected 10 most relevant ones using the "SelectKBest" function.We compared six algorithms, optimized their parameters, and evaluated the stability and fitting performance of each algorithm. The random forest (RF) algorithm emerged as the best, demonstrating significant performance in pain recognition with an accuracy of 80.3 % and a sensitivity of 92 %. The SP signals generated by children of different genders, ages, and needling positions during indwelling needle puncture were accurately recognized. Conclusion We developed a comprehensive SP recognition model, innovatively employing WT for SP signal analysis. This time-frequency analysis method, by preserving low-frequency features, is particularly suitable for SP signals. By combining pain monitoring with SP signals and ML, subjective pain experiences are transformed into quantifiable data, achieving high accuracy and real-time measurement capabilities. These advantages provide valuable technical support for clinical pediatric pain management.
Collapse
Affiliation(s)
- Mingxuan Huang
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Cangcang Fu
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Linbo Chui
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Jiadong He
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiaozhi Wang
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, 310027, China
- International Joint Innovation Center, Zhejiang University, Haining, 314400, China
| | - Jikui Luo
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, 310027, China
- International Joint Innovation Center, Zhejiang University, Haining, 314400, China
| | - Bin Wu
- RuidiLab of Pulsed Power Medical Application, Hangzhou Ruidi Biotechnology Co.Ltd, Hangzhou, 310012, China
| | - Yonggang Chen
- RuidiLab of Pulsed Power Medical Application, Hangzhou Ruidi Biotechnology Co.Ltd, Hangzhou, 310012, China
| | - Shaohua Hu
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jihua Zhu
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
- National Clinical Research Center for Child Health, Hangzhou, 310052, China
| | - Yubo Li
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, 310027, China
- International Joint Innovation Center, Zhejiang University, Haining, 314400, China
| |
Collapse
|
25
|
Brenneman DE, Petkanas D, Ippolito M, Ward SJ. Effect of Fatty Acyl Composition for Lysophosphatidylinositol on Neuroinflammatory Responses in Primary Neuronal Cultures. RESEARCH SQUARE 2025:rs.3.rs-5742954. [PMID: 39866868 PMCID: PMC11760249 DOI: 10.21203/rs.3.rs-5742954/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Lysophosphatidylinositol (LPI) is an endogenous signaling molecule for the GPR55 receptor. Previous studies have shown that arachidonoyl-lysophosphatidylinositol (LPI-20:4) produced an increase in the inflammatory mediators NLPR3 (inflammasome - 3 marker) and IL-1b in neurons from both rat dorsal root ganglion (DRG) and hippocampal cultures. Because LPI is comprised of a family of lipid structures that vary in fatty acyl composition, the current work examined neuroinflammatory responses to various LPI structures in DRG and hippocampal cultures as assessed by high content fluorescent imaging. Major endogenous LPI fatty acyl structures consisting of 16:0, 18:0, 18:1 or 20:4 were compared for their effects on IL-1b, NLRP3 and GPR55 immunoreactive areas of neurites and cell bodies after a 6-hour treatment. Among these four LPI structures, only LPI-20:4 treatment produced increases in immunoreactive areas for GPR55, NLRP3 and IL-1b in DRG and hippocampal neurites. In contrast, all other LPI structures tested produced a decrease in all of these inflammatory immunoreactive areas in both neurites and cell bodies. Additional studies with LPI-20:4 treatment indicated that IL-6, IL-18 and TNF-a were significantly increased in neurites of DRG and hippocampal cultures. However, oleoyl-lysophosphatidylinositol (LPI-18:1) treatment produced decreases in these three cytokines. Using the viability dye alamar blue, LPI-20:4 was shown to produce concentration-dependent decreases, whereas all other endogenous LPI structures produced increases with this assay. These studies indicate that fatty acyl structure is the major determinant of LPI for neuroinflammatory responses in DRG and hippocampal cultures, with LPI-20:4 showing pro-inflammatory effects and all other endogenous LPIs tested exhibited anti-inflammatory responses.
Collapse
Affiliation(s)
| | - Dean Petkanas
- Kannalife Sciences, Inc Pennsylvania Biotechnology Center
| | | | | |
Collapse
|
26
|
Qiu Z, Liu T, Zeng C, Yang M, Xu X. Local abnormal white matter microstructure in the spinothalamic tract in people with chronic neck and shoulder pain. Front Neurosci 2025; 18:1485045. [PMID: 39834699 PMCID: PMC11743484 DOI: 10.3389/fnins.2024.1485045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/12/2024] [Indexed: 01/22/2025] Open
Abstract
Objective To investigate differences in the microstructure of the spinothalamic tract (STT) white matter in people with chronic neck and shoulder pain (CNSP) using diffusion tensor imaging, and to assess its correlation with pain intensity and duration of the pain. Materials and methods A 3.0T MRI scanner was used to perform diffusion tensor imaging scans on 31 people with CNSP and 24 healthy controls (HCs), employing the Automatic Fiber Segmentation and Quantification (AFQ) method to extract the STT and quantitatively analyze the fractional anisotropy (FA) and mean diffusivity (MD), reflecting the microstructural integrity of nerve fibers. Correlations of these differences with duration of pain and visual analog scale (VAS) scores were analyzed. Results No significant differences in the mean FA or MD values of the bilateral STT were observed between people with CNSP and HCs (p > 0.05), as indicated by the two-sample t test. Further point-by-point comparison along 100 equidistant nodes within the STT pathway revealed significant reductions in FA values in the left (segments 12-18, 81-89) and right (segments 9-19, 76-80) STT in the CNSP group compared to HCs; significant increases in MD values were observed in the left (segments 1-13, 26-30, 71-91) and right (segments 8-17, 76-91) STT (p < 0.05, FWE corrected). Partial correlation analysis indicates that in people with CNSP, the FA values of the STT in regions with damaged white matter structure show a negative correlation with VAS scores and duration of pain, whereas MD values show a positive correlation with VAS scores and duration of pain. Conclusion This study found that people with CNSP exhibit white matter microstructural abnormalities in the specific segments of STT. These abnormalities are associated with the patient's pain intensity and disease duration. The findings offer a new neuroimaging perspective on the pathophysiological basis of chronic pain in the ascending conduction process and its potential role in developing targeted intervention strategies. However, due to the limited sample size and the lack of statistical significance when analyzing the entire spinothalamic tract, these conclusions should be interpreted with caution. Further research with larger cohorts is necessary to validate these results.
Collapse
Affiliation(s)
- Zhiqiang Qiu
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Tianci Liu
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Chengxi Zeng
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Maojiang Yang
- Department of Pain, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xiaoxue Xu
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
27
|
Li YL, Zhang YY, Song QX, Liu F, Liu YJ, Li YK, Zhou C, Shen JF. N-methyl-D-aspartate Receptor Subunits 2A and 2B Mediate Connexins and Pannexins in the Trigeminal Ganglion Involved in Orofacial Inflammatory Allodynia during Temporomandibular Joint Inflammation. Mol Neurobiol 2025; 62:1247-1265. [PMID: 38976127 DOI: 10.1007/s12035-024-04291-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024]
Abstract
Temporomandibular joint osteoarthritis (TMJOA) is a severe form of temporomandibular joint disorders (TMD), and orofacial inflammatory allodynia is one of its common symptoms which lacks effective treatment. N-methyl-D-aspartate receptor (NMDAR), particularly its subtypes GluN2A and GluN2B, along with gap junctions (GJs), are key players in the mediation of inflammatory pain. However, the precise regulatory mechanisms of GluN2A, GluN2B, and GJs in orofacial inflammatory allodynia during TMJ inflammation still remain unclear. Here, we established the TMJ inflammation model by injecting Complete Freund's adjuvant (CFA) into the TMJ and used Cre/loxp site-specific recombination system to conditionally knock out (CKO) GluN2A and GluN2B in the trigeminal ganglion (TG). Von-frey test results indicated that CFA-induced mechanical allodynia in the TMJ region was relieved in GluN2A and GluN2B deficient mice. In vivo, CFA significantly up-regulated the expression of GluN2A and GluN2B, Gjb1, Gjb2, Gjc2 and Panx3 in the TG, and GluN2A and GluN2B CKO played different roles in mediating the expression of Gjb1, Gjb2, Gjc2 and Panx3. In vitro, NMDA up-regulated the expression of Gjb1, Gjb2, Gjc2 and Panx3 in satellite glial cells (SGCs) as well as promoted the intercellular communication between SGCs, and GluN2A and GluN2B knocking down (KD) altered the expression and function differently. NMDAR regulated Gjb1 and Panx3 through ERK1/2 pathway, and mediated Gjb2 and Gjc2 through MAPK, PKA, and PKC intracellular signaling pathways. These findings shed light on the distinct functions of GluN2A and GluN2B in mediating peripheral sensitization induced by TMJ inflammation in the TG, offering potential therapeutic targets for managing orofacial inflammatory allodynia.
Collapse
Affiliation(s)
- Yue-Ling Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology &, National Clinical Research Center for Oral Disease& West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin Road South, Chengdu, 610041, China
| | - Yan-Yan Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology &, National Clinical Research Center for Oral Disease& West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin Road South, Chengdu, 610041, China
| | - Qin-Xuan Song
- State Key Laboratory of Oral Diseases & National Center for Stomatology &, National Clinical Research Center for Oral Disease& West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin Road South, Chengdu, 610041, China
| | - Fei Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology &, National Clinical Research Center for Oral Disease& West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin Road South, Chengdu, 610041, China
| | - Ya-Jing Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology &, National Clinical Research Center for Oral Disease& West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin Road South, Chengdu, 610041, China
| | - Yi-Ke Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology &, National Clinical Research Center for Oral Disease& West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin Road South, Chengdu, 610041, China
| | - Cheng Zhou
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Jie-Fei Shen
- State Key Laboratory of Oral Diseases & National Center for Stomatology &, National Clinical Research Center for Oral Disease& West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin Road South, Chengdu, 610041, China.
| |
Collapse
|
28
|
Wright NJ, Matsuoka Y, Park H, He W, Webster CG, Furutani K, Fedor JG, McGinnis A, Zhao Y, Chen O, Bang S, Fan P, Spasojevic I, Hong J, Ji RR, Lee SY. Design of an equilibrative nucleoside transporter subtype 1 inhibitor for pain relief. Nat Commun 2024; 15:10738. [PMID: 39737929 DOI: 10.1038/s41467-024-54914-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/21/2024] [Indexed: 01/01/2025] Open
Abstract
The current opioid crisis urgently calls for developing non-addictive pain medications. Progress has been slow, highlighting the need to uncover targets with unique mechanisms of action. Extracellular adenosine alleviates pain by activating the adenosine A1 receptor (A1R). However, efforts to develop A1R agonists have faced obstacles. The equilibrative nucleoside transporter subtype 1 (ENT1) plays a crucial role in regulating adenosine levels across cell membranes. We postulate that ENT1 inhibition may enhance extracellular adenosine levels, potentiating endogenous adenosine action at A1R and leading to analgesic effects. Here, we modify the ENT1 inhibitor dilazep based on its complex X-ray structure and show that this modified inhibitor reduces neuropathic and inflammatory pain in animal models while dilazep does not. Notably, our ENT1 inhibitor surpasses gabapentin in analgesic efficacy in a neuropathic pain model. Additionally, our inhibitor exhibits less cardiac side effect than dilazep via systemic administration and shows no side effects via local/intrathecal administration. ENT1 is colocalized with A1R in mouse and human dorsal root ganglia, and the analgesic effect of our inhibitor is linked to A1R. Our studies reveal ENT1 as a therapeutic target for analgesia, highlighting the promise of rationally designed ENT1 inhibitors for non-opioid pain medications.
Collapse
Affiliation(s)
- Nicholas J Wright
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Yutaka Matsuoka
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Hyeri Park
- Department of Chemistry, Duke University, Durham, NC, 27708, USA
| | - Wei He
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | | | - Kenta Furutani
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Justin G Fedor
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Aidan McGinnis
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Yiquan Zhao
- Department of Chemistry, Duke University, Durham, NC, 27708, USA
| | - Ouyang Chen
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Sangsu Bang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Ping Fan
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
- Pharmacokinetics/Pharmacodynamics (PK/PD) Core Laboratory, Duke Cancer Institute, Durham, NC, 27710, USA
| | - Ivan Spasojevic
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
- Pharmacokinetics/Pharmacodynamics (PK/PD) Core Laboratory, Duke Cancer Institute, Durham, NC, 27710, USA
| | - Jiyong Hong
- Department of Chemistry, Duke University, Durham, NC, 27708, USA.
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA.
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, 27710, USA.
| | - Seok-Yong Lee
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
29
|
Gentles A, Goodwin E, Bedaiwy Y, Marshall N, Yong PJ. Nociplastic Pain in Endometriosis: A Scoping Review. J Clin Med 2024; 13:7521. [PMID: 39768444 PMCID: PMC11727753 DOI: 10.3390/jcm13247521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/30/2024] [Accepted: 12/05/2024] [Indexed: 01/16/2025] Open
Abstract
Endometriosis is an inflammatory chronic condition associated with nociceptive, neuropathic, and nociplastic pain. Central sensitization (CS) is the primary nociplastic pain mechanism. However, there are currently no standardized methods for detecting CS or nociplastic pain. This review aims to identify available tools for characterizing CS/nociplastic pain in endometriosis-related chronic pelvic pain. Following the PRISMA-P protocol, MEDLINE, Embase, Scopus, and PsychINFO databases were searched on 23 April 2024, for the terms "endometriosis", "central sensitization", "nociplastic pain", "widespread pain", and "assessment tools". Publications were selected if they mentioned tool(s) for detecting nociplastic pain or CS in endometriosis patients. Information was extracted on study demographics, assessment types, and the tools used for detection. Of the 379 citations retrieved, 30 papers met the inclusion criteria. When working to identify CS and nociplastic pain, fourteen studies exclusively used patient-reported questionnaires, six used quantitative sensory testing (QST), two used clinical assessments, and eight used multiple approaches combining patient-reported questionnaires and clinical assessment. This review illustrates the diversity of tools currently used to identify CS and nociplastic pain in endometriosis patients. Further research is needed to evaluate their validity and to standardize methods in order to improve the accuracy of nociplastic pain identification and guide treatment.
Collapse
Affiliation(s)
- Avonae Gentles
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC V6H 3N1, Canada; (A.G.); (N.M.)
- BC Women’s Center for Pelvic Pain and Endometriosis, Vancouver, BC V6H 3N1, Canada; (E.G.); (Y.B.)
| | - Emma Goodwin
- BC Women’s Center for Pelvic Pain and Endometriosis, Vancouver, BC V6H 3N1, Canada; (E.G.); (Y.B.)
| | - Yomna Bedaiwy
- BC Women’s Center for Pelvic Pain and Endometriosis, Vancouver, BC V6H 3N1, Canada; (E.G.); (Y.B.)
| | - Nisha Marshall
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC V6H 3N1, Canada; (A.G.); (N.M.)
| | - Paul J. Yong
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC V6H 3N1, Canada; (A.G.); (N.M.)
- BC Women’s Center for Pelvic Pain and Endometriosis, Vancouver, BC V6H 3N1, Canada; (E.G.); (Y.B.)
- Women’s Health Research Institute, Vancouver, BC V6H 3N1, Canada
| |
Collapse
|
30
|
Ma N, Wang H, Lu Q, Liu J, Fan X, Li L, Wang Q, Li X, Yu B, Zhang Y, Gao J. Temporal changes of neurobehavior in rats following varied blast magnitudes and screening of serum biomarkers in early stage of brain injury. Sci Rep 2024; 14:30023. [PMID: 39627295 PMCID: PMC11615197 DOI: 10.1038/s41598-024-81656-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/28/2024] [Indexed: 12/06/2024] Open
Abstract
Blast neurotrauma has been linked to impairments in higher-order cognitive functions, including memory, attention, and mood. Current literature is limited to a single overpressure exposure or repeated exposures at the same level of overpressure. In this study, a rodent model of primary blast neurotrauma was employed to determine the pressure at which acute and chronic neurological alterations occurred. Three pressure magnitudes (low, moderate and high) were used to evaluate injury thresholds. A biology shock tube (BST) was used to simulate shock waves with overpressures of 60 kPa, 90 kPa and 120 kPa respectively. Neurological behavior of the rats was assessed by the Multi-Conditioning System (MCS) at 1 d, 7 d, 28 d and 90 d after shock wave exposure. Serum dopamine (DA), 5-hydroxytryptamine (5-HT), brain-derived neurotrophic factor (BDNF) and gamma-aminobutyric acid (GABA) were measured at the same time points. The proteomic analysis was conducted to identify potentially vulnerable cellular and molecule targets of serum in the immediate post-exposure period. Results revealed that: (1) Anxiety-like behavior increased significantly at 1 d post-exposure in the medium and high overpressure (90 kPa, 120 kPa) groups, returned to baseline at 7 days, and anxiety-like behavior in the high overpressure groups re-emerged at 28 d and 90 d. (2) High overpressure (120 kPa) impaired learning and memory in the immediate post-exposure period. (3) The serum DA levels decreased significantly at 1 d post-exposure in the medium and high overpressure groups; The 5-HT levels decreased significantly at 1 d and 90 d in the high overpressure groups; The BDNF levels decreased significantly at 90 d in the high overpressure groups. (4) Proteomic analysis identified 38, 306, and 57 differentially expressed proteins in serum following low, medium and high overpressure exposures, respectively. Two co-expressed proteins were validated. Functional analysis revealed significant enrichment of 1121, 2096, and 1121 Gene Ontology (GO) items and 33, 47, and 26 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, indicating extensive molecular responses to overpressure in the early phase. These findings suggest that exposure, even at moderate levels, can induce persistent neurobehavioral and molecular alterations, highlighting the need for further research into the long-term consequences of blast neurotrauma.
Collapse
Affiliation(s)
- Ning Ma
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicological and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, 710065, China
| | - Hong Wang
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicological and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, 710065, China
| | - Qing Lu
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicological and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, 710065, China
| | - Jinren Liu
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Xiaolin Fan
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicological and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, 710065, China
| | - Liang Li
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicological and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, 710065, China
| | - Qi Wang
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicological and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, 710065, China
| | - Xiao Li
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicological and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, 710065, China
| | - Boya Yu
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicological and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, 710065, China
| | - Yuhao Zhang
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicological and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, 710065, China
| | - Junhong Gao
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicological and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, 710065, China.
| |
Collapse
|
31
|
Pergolizzi JV, LeQuang JA, Coluzzi F, El-Tallawy SN, Magnusson P, Ahmed RS, Varrassi G, Porpora MG. Managing the neuroinflammatory pain of endometriosis in light of chronic pelvic pain. Expert Opin Pharmacother 2024; 25:2267-2282. [PMID: 39540855 DOI: 10.1080/14656566.2024.2425727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/28/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION Endometriosis affects 5% to 10% of reproductive age women and may be associated with severely painful and debilitating symptoms as well as infertility. Endometriosis involves hormonal fluctuations, angiogenesis, neurogenesis, vascular changes and neuroinflammatory processes. The neuroinflammatory component of endometriosis makes it a systemic disorder, similar to other chronic epithelial inflammatory conditions. AREAS COVERED Inflammatory mediators, mast cells, macrophages, and glial cells play a role in endometriosis which can result in peripheral sensitization and central sensitization. There is overlap between chronic pelvic pain and endometriosis, but the two conditions are distinct. Effective treatment is based on a personalized approach using a variety of pharmacologic and other treatment options. EXPERT OPINION Hormonal therapies are a first-line approach, but endometriosis is a challenging condition to manage. 'Add-back' hormonal therapy has been effective. Painful symptoms are likely caused by the interplay of multiple factors and there may be a neuropathic component. Analgesics and anticonvulsants may be appropriate. A holistic approach and multimodal treatments are likely to be most effective. In addition to pharmacologic treatment, there are surgical and alternative medicine options. Endometriosis may also have a psychological component.
Collapse
Affiliation(s)
| | | | - Flaminia Coluzzi
- Department Medical-Surgical and Translational Medicine, Sapienza University of Rome, Rome, Italy
- Unit of Anesthesia Care and Pain Medicine, University Hospital Sant'Andrea, Rome, Italy
| | - Salah N El-Tallawy
- Anesthesia and pain management department, King Khalid University Hospital, College of Medicine, King Saud University, Riyadh. Saudi Arabia and Minia University, NCI, Cairo University, Cairo, Egypt
| | - Peter Magnusson
- School of Medical Sciences, Orebro University, Orebro, Sweden and Center for Clinical Research Dalarna, Uppsala University, Falun, Sweden
| | - Rania S Ahmed
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | - Maria Grazia Porpora
- Department of Maternal and Infantile Health and Urology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
32
|
Lei WY, Hung JS, Wong MW, Liu TT, Yi CH, Gyawali CP, Chen CL. Effects of capsaicin on esophageal peristalsis in humans using high resolution manometry. Neurogastroenterol Motil 2024; 36:e14942. [PMID: 39385495 DOI: 10.1111/nmo.14942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Capsaicin-containing red pepper sauce suspension augments esophageal contraction amplitude on conventional manometry. This study used high-resolution manometry (HRM) to investigate if capsaicin infusion modulates segmental esophageal smooth muscle peristalsis in healthy adults. METHODS Sixteen healthy volunteers (mean age 37 years, 14 male) underwent HRM for the evaluation of primary peristalsis and secondary peristalsis using slow and rapid air distensions. Both primary and secondary peristalsis were assessed following infusions of capsaicin-containing red pepper sauce and saline. KEY RESULTS Capsaicin infusion significantly increased heartburn symptoms compared to saline infusion (p < 0.001), and significantly decreased threshold volumes of secondary peristalsis during rapid air distensions (p = 0.02). The frequency of secondary peristalsis during rapid air distensions was significantly increased by capsaicin infusion (p = 0.03). Neither capsaicin infusion (p = 0.06) nor saline infusion (p = 0.27) altered threshold volume during slow air distensions. Capsaicin infusion significantly increased distal contractile integral (DCI) of primary peristalsis (p = 0.04), particularly in the proximal smooth muscle segment (p = 0.048). It enhanced secondary peristalsis during rapid air distensions (p = 0.003) but not during slow air distension (p = 0.23). Saline infusion significantly increased DCI of secondary peristalsis during rapid air distension (p = 0.01). CONCLUSIONS AND INFERENCES Augmentation of distension-induced secondary peristalsis can be modulated by activation of capsaicin-sensitive afferents similar to mechanosensitive afferents. Capsaicin-induced augmentation of primary peristalsis isolates to the cholinergic-mediated proximal smooth muscle segment, which warrants study in ineffective esophageal motility to determine therapeutic potential.
Collapse
Affiliation(s)
- Wei-Yi Lei
- Department of Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and Tzu Chi University, Hualien, Taiwan
| | - Jui-Sheng Hung
- Department of Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and Tzu Chi University, Hualien, Taiwan
| | - Ming-Wun Wong
- Department of Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and Tzu Chi University, Hualien, Taiwan
| | - Tso-Tsai Liu
- Department of Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and Tzu Chi University, Hualien, Taiwan
| | - Chih-Hsun Yi
- Department of Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and Tzu Chi University, Hualien, Taiwan
| | - C Prakash Gyawali
- Division of Gastroenterology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Chien-Lin Chen
- Department of Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and Tzu Chi University, Hualien, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
33
|
Costantini E, Illiano E. Re: The Innovative Approach in Functional Bladder Disorders: The Communication Between Bladder and Brain-Gut Axis. Eur Urol 2024; 86:592. [PMID: 39030138 DOI: 10.1016/j.eururo.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 06/11/2024] [Indexed: 07/21/2024]
Affiliation(s)
- Elisabetta Costantini
- Andrological and Urogynecological Clinic, Santa Maria Hospital Terni, University of Perugia, Terni, Italy.
| | - Ester Illiano
- Andrological and Urogynecological Clinic, Santa Maria Hospital Terni, University of Perugia, Terni, Italy
| |
Collapse
|
34
|
Jang JH, Lee YJ, Ha IH, Park HJ. The analgesic effect of acupuncture in neuropathic pain: regulatory mechanisms of DNA methylation in the brain. Pain Rep 2024; 9:e1200. [PMID: 39450409 PMCID: PMC11500783 DOI: 10.1097/pr9.0000000000001200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/08/2024] [Accepted: 07/13/2024] [Indexed: 10/26/2024] Open
Abstract
Recent research has demonstrated that chronic pain, resulting from peripheral nerve injury, leads to various symptoms, including not only allodynia and hyperalgesia but also anxiety, depression, and cognitive impairment. These symptoms are believed to arise due to alterations in gene expression and neural function, mediated by epigenetic changes in chromatin structure. Emerging evidence suggests that acupuncture can modulate DNA methylation within the central nervous system, contributing to pain relief and the mitigation of comorbidities. Specifically, acupuncture has been shown to adjust the DNA methylation of genes related to mitochondrial dysfunction, oxidative phosphorylation, and inflammation pathways within cortical regions, such as the prefrontal cortex, anterior cingulate cortex, and primary somatosensory cortex. In addition, it influences the DNA methylation of genes associated with neurogenesis in hippocampal neurons. This evidence indicates that acupuncture, a treatment with fewer side effects compared with conventional medications, could offer an effective strategy for pain management.
Collapse
Affiliation(s)
- Jae-Hwan Jang
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, Republic of Korea
| | - Yoon Jae Lee
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, Republic of Korea
| | - In-Hyuk Ha
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, Republic of Korea
| | - Hi-Joon Park
- Acupuncture and Meridian Science Research Center (AMSRC), College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
35
|
de Abreu MM, Binda NS, Reis MPFCA, Diniz DM, Cordeiro MDN, Borges MH, de Lima ME, Ribeiro FM, Gomez MV, da Silva JF. Spinal antinociceptive effect of the PnTx4(5-5) peptide is possibly mediated by the NMDA autoreceptors. J Venom Anim Toxins Incl Trop Dis 2024; 30:e20230103. [PMID: 39686943 PMCID: PMC11649190 DOI: 10.1590/1678-9199-jvatitd-2023-0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 09/11/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Medications currently used to treat pain are frequently associated with serious adverse effects and rapid development of tolerance. Thus, there is a need to develop more effective, and safer medicines for the population. Blocking NMDA receptors (NMDAR) has shown to be a promising target for the development of new drugs. That statement is due to NMDAR activation and glutamate release in the spinal cord which affects chronic pain modulation. Therefore, the aim of this study was to evaluate the possible spinal antinociceptive activity of PnTx4(5-5) toxin. The peptide is purified from the venom of the spider P. nigriventer and its affinity for NMDAR and sodium channels Nav1.2-1.6 has already been established. METHODS We compared its effect and safety with MK-801 (NMDAR antagonist) and evaluated its influence on glutamate and reactive oxygen species (ROS) levels in CSF. PnTx4(5-5) was administered intrathecally in the Formalin test and co-administered with NMDA in the Spontaneous pain test. After three minutes of observation, mice cerebrospinal fluid was collected to measure glutamate and ROS levels. RESULTS The spider peptide inhibited nociception as post-treatment in the inflammatory phase of the Formalin test. Furthermore, it inhibited spontaneous nociception induced by NMDA, being more potent and effective than MK-801 in both models tested. A glutamate rise level in the CSF of mice was significantly reduced by the toxin, but ROS increase was not affected. The animals' motor skills were not affected by the tested doses of NMDAR inhibitors. CONCLUSION In conclusion, the results suggest PnTx4(5-5) may mediate its antinociceptive effect in the spinal cord not only by inhibiting postsynaptic receptors but probably also by acting on autoreceptors. This effect does not affect the motricity of mice at the highest dose tested, which suggests that it has therapeutic potential and safety for use as a painkiller.
Collapse
Affiliation(s)
| | - Nancy Scardua Binda
- Department of Pharmacy, Federal University of Ouro Preto (UFOP),
Ouro Preto, MG, Brazil
| | | | - Danuza Montijo Diniz
- Graduate Program in Health Sciences, Institute of Education and
Research, Santa Casa de Belo Horizonte, Belo Horizonte, MG, Brazil
| | - Marta do Nascimento Cordeiro
- Professor Carlos Diniz Research and Development Center, Ezequiel
Dias Foundation(FUNED), Belo Horizonte, MG, Brazil
| | - Márcia Helena Borges
- Professor Carlos Diniz Research and Development Center, Ezequiel
Dias Foundation(FUNED), Belo Horizonte, MG, Brazil
| | - Maria Elena de Lima
- Graduate Program in Health Sciences, Institute of Education and
Research, Santa Casa de Belo Horizonte, Belo Horizonte, MG, Brazil
| | - Fabíola Mara Ribeiro
- Department of Biochemistry and Immunology, Federal University of
Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Marcus Vinícius Gomez
- Graduate Program in Health Sciences, Institute of Education and
Research, Santa Casa de Belo Horizonte, Belo Horizonte, MG, Brazil
| | | |
Collapse
|
36
|
Karcz M, Abd-Elsayed A, Chakravarthy K, Aman MM, Strand N, Malinowski MN, Latif U, Dickerson D, Suvar T, Lubenow T, Peskin E, D’Souza R, Cornidez E, Dudas A, Lam C, Farrell II M, Sim GY, Sebai M, Garcia R, Bracero L, Ibrahim Y, Mahmood SJ, Lawandy M, Jimenez D, Shahgholi L, Sochacki K, Ramadan ME, Tieppo Francio V, Sayed D, Deer T. Pathophysiology of Pain and Mechanisms of Neuromodulation: A Narrative Review (A Neuron Project). J Pain Res 2024; 17:3757-3790. [PMID: 39583192 PMCID: PMC11581984 DOI: 10.2147/jpr.s475351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/29/2024] [Indexed: 11/26/2024] Open
Abstract
Pain serves as a vital innate defense mechanism that can significantly impact an individual's quality of life. Understanding the physiological effects of pain well plays an important role in developing novel pain treatments. Nociceptor neurons play a key role in pain and inflammation. Interactions between nociceptors and the immune system occur both at the site of injury and within the central nervous system. Modulating chemical mediators and nociceptor activity offers promising new approaches to pain management. Essentially, the sensory nervous system is essential for modulating the body's protective response, making it critical to understand these interactions to discover new pain treatment strategies. New innovations in neuromodulation have led to alternatives to opioids individuals with chronic pain with consequent improvement in disease-based treatment and nerve targeting. New neural targets from cellular and structural perspectives have revolutionized the field of neuromodulation. This narrative review aims to elucidate the mechanisms of pain transmission and processing, examine the characteristics and properties of nociceptors, and explore how the immune system influences pain perception. It further provides an updated overview of the physiology of pain and neuromodulatory mechanisms essential for managing acute and chronic pain. We assess the current understanding of different pain types, focusing on key molecules involved in each type and their physiological effects. Additionally, we compare painful and painless neuropathies and discuss the neuroimmune interactions involved in pain manifestation.
Collapse
Affiliation(s)
- Marcin Karcz
- The Spine and Nerve Centers of the Virginias, Charleston, WV, USA
| | - Alaa Abd-Elsayed
- Department of Anesthesiology, University of Wisconsin, Madison, WI, USA
| | | | - Mansoor M Aman
- Aurora Pain Management, Aurora Health Care, Oshkosh, WI, USA
| | - Natalie Strand
- Anesthesiology and Perioperative Medicine, Mayo Clinic, Phoenix, AZ, USA
| | - Mark N Malinowski
- OhioHealth Neurological Physicians, OhioHealth Inc, Columbus, OH, USA
| | - Usman Latif
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - David Dickerson
- Department of Pain Medicine, Northshore University Health System, Skokie, IL, USA
| | - Tolga Suvar
- Department of Anesthesiology and Pain Medicine, Rush University Medical Center, Oak Park, IL, USA
| | - Timothy Lubenow
- Department of Anesthesiology and Pain Medicine, Rush University Medical Center, Oak Park, IL, USA
| | - Evan Peskin
- Department of Pain Management, Insight Institute of Neurosurgery & Neuroscience, Flint, MI, USA
| | - Ryan D’Souza
- Anesthesiology and Perioperative Medicine, Mayo Clinic, Phoenix, AZ, USA
| | | | - Andrew Dudas
- Mays and Schnapp Neurospine and Pain, Memphis, TN, USA
| | - Christopher Lam
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Michael Farrell II
- Department of Pain Management, Erie County Medical Center, Buffalo, NY, USA
| | - Geum Yeon Sim
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins Bayview Medical Center, Baltimore, MD, USA
| | - Mohamad Sebai
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rosa Garcia
- Department of Physical Medicine & Rehabilitation, Larkin Hospital Health System, Miami, FL, USA
| | - Lucas Bracero
- The Spine and Nerve Centers of the Virginias, Charleston, WV, USA
| | - Yussr Ibrahim
- Department of Pain Management at Northern Light Health – Eastern Maine Medical Center, Bangor, ME, USA
| | - Syed Jafar Mahmood
- Department of Pain Medicine, University of California Davis Health System, Sacramento, CA, USA
| | - Marco Lawandy
- Department of Physical Medicine & Rehabilitation, Montefiore Medical Center, Bronx, NY, USA
| | - Daniel Jimenez
- Department of Physical Medicine & Rehabilitation, Michigan State University, Lansing, MI, USA
| | - Leili Shahgholi
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kamil Sochacki
- Department of Anesthesiology and Perioperative Medicine, Rutgers Robert Wood Johnson, New Brunswick, NJ, USA
| | - Mohamed Ehab Ramadan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vinicius Tieppo Francio
- Division of Pain Medicine, Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Dawood Sayed
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Timothy Deer
- The Spine and Nerve Centers of the Virginias, Charleston, WV, USA
| |
Collapse
|
37
|
Xu H, Shang DS, Tang J, Luo Q, Xu X, Liang R, Pan L, Gao B, Wang Q, He D, Liu Q, Liu M, Qian H, Wu H. A Biomimetic Nociceptor Based on a Vertical Multigate, Multichannel Neuromorphic Transistor. ACS NANO 2024; 18:30668-30680. [PMID: 39462258 PMCID: PMC11546598 DOI: 10.1021/acsnano.4c09632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/14/2024] [Accepted: 09/18/2024] [Indexed: 10/29/2024]
Abstract
Nociceptors, crucial sensory receptors within biological systems, are essential for survival in diverse and potentially hazardous environments. Efforts to replicate nociceptors through advanced electronic devices, such as memristors and neuromorphic transistors, have achieved limited success, capturing basic nociceptive functions while more advanced characteristics like various forms of central sensitization and analgesic effect remain out of reach. Here, we introduce a vertical multigate, multichannel electrolyte-gated transistor (Vm-EGT), designed to mimic nociceptors. Utilizing the hybrid mechanism combining electric-double-layer (EDL) with ion intercalation/deintercalation in EGTs, our approach successfully replicates peripheral sensitization and desensitization characteristics of nociceptors. The intricate multigate and multichannel design of the Vm-EGT enables the emulation of more advanced nociceptive functionalities, including central sensitization and analgesic effect. Furthermore, we demonstrate that by exploiting the inherent current-voltage relationship, the Vm-EGT can simulate these advanced nociceptive features and seamlessly transition between them. Integrating a Vm-EGT with a thermistor and a heating plate, we have developed an artificial thermal nociceptor that closely mirrors the sensory attributes of its biological counterpart. Our approach significantly advances the emulation of nociceptors, providing a basis for the development of sophisticated artificial sensory systems and intelligent robotics.
Collapse
Affiliation(s)
- Han Xu
- School of
Integrated Circuits, Beijing Advanced Innovation Center for Integrated
Circuits, Beijing National Research Center for Information Science
and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Da-Shan Shang
- Key Lab
of Fabrication Technologies for Integrated Circuits, Chinese Academy
of Sciences, Beijing 100049, China
- Key
Laboratory
of Microelectronics Devices and Integrated Technology, Institute of Microelectronics, Chinese Academy of
Sciences, Beijing 100049, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianshi Tang
- School of
Integrated Circuits, Beijing Advanced Innovation Center for Integrated
Circuits, Beijing National Research Center for Information Science
and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Qing Luo
- Key Lab
of Fabrication Technologies for Integrated Circuits, Chinese Academy
of Sciences, Beijing 100049, China
- Key
Laboratory
of Microelectronics Devices and Integrated Technology, Institute of Microelectronics, Chinese Academy of
Sciences, Beijing 100049, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxin Xu
- Key Lab
of Fabrication Technologies for Integrated Circuits, Chinese Academy
of Sciences, Beijing 100049, China
- Key
Laboratory
of Microelectronics Devices and Integrated Technology, Institute of Microelectronics, Chinese Academy of
Sciences, Beijing 100049, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Renrong Liang
- School of
Integrated Circuits, Beijing Advanced Innovation Center for Integrated
Circuits, Beijing National Research Center for Information Science
and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Liyang Pan
- School of
Integrated Circuits, Beijing Advanced Innovation Center for Integrated
Circuits, Beijing National Research Center for Information Science
and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Bin Gao
- School of
Integrated Circuits, Beijing Advanced Innovation Center for Integrated
Circuits, Beijing National Research Center for Information Science
and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Qi Wang
- School of
Materials & Energy, Lanzhou University, Lanzhou 730000, China
| | - Deyan He
- School of
Materials & Energy, Lanzhou University, Lanzhou 730000, China
| | - Qi Liu
- Frontier
Institute of Chip and System, Fudan University, Shanghai 200438, China
| | - Ming Liu
- Frontier
Institute of Chip and System, Fudan University, Shanghai 200438, China
| | - He Qian
- School of
Integrated Circuits, Beijing Advanced Innovation Center for Integrated
Circuits, Beijing National Research Center for Information Science
and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Huaqiang Wu
- School of
Integrated Circuits, Beijing Advanced Innovation Center for Integrated
Circuits, Beijing National Research Center for Information Science
and Technology (BNRist), Tsinghua University, Beijing 100084, China
| |
Collapse
|
38
|
Sun Z, Han W, Dou Z, Lu N, Wang X, Wang F, Ma S, Tian Z, Xian H, Liu W, Liu Y, Wu W, Chu W, Guo H, Wang F, Ding H, Liu Y, Tao H, Freichel M, Birnbaumer L, Li Z, Xie R, Wu S, Luo C. TRPC3/6 Channels Mediate Mechanical Pain Hypersensitivity via Enhancement of Nociceptor Excitability and of Spinal Synaptic Transmission. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404342. [PMID: 39340833 PMCID: PMC11600220 DOI: 10.1002/advs.202404342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/11/2024] [Indexed: 09/30/2024]
Abstract
Patients with tissue inflammation or injury often experience aberrant mechanical pain hypersensitivity, one of leading symptoms in clinic. Despite this, the molecular mechanisms underlying mechanical distortion are poorly understood. Canonical transient receptor potential (TRPC) channels confer sensitivity to mechanical stimulation. TRPC3 and TRPC6 proteins, coassembling as heterotetrameric channels, are highly expressed in sensory neurons. However, how these channels mediate mechanical pain hypersensitivity has remained elusive. It is shown that in mice and human, TRPC3 and TRPC6 are upregulated in DRG and spinal dorsal horn under pathological states. Double knockout of TRPC3/6 blunts mechanical pain hypersensitivity, largely by decreasing nociceptor hyperexcitability and spinal synaptic potentiation via presynaptic mechanism. In corroboration with this, nociceptor-specific ablation of TRPC3/6 produces comparable pain relief. Mechanistic analysis reveals that upon peripheral inflammation, TRPC3/6 in primary sensory neurons get recruited via released bradykinin acting on B1/B2 receptors, facilitating BDNF secretion from spinal nociceptor terminals, which in turn potentiates synaptic transmission through TRPC3/6 and eventually results in mechanical pain hypersensitivity. Antagonizing TRPC3/6 in DRG relieves mechanical pain hypersensitivity in mice and nociceptor hyperexcitability in human. Thus, TRPC3/6 in nociceptors is crucially involved in pain plasticity and constitutes a promising therapeutic target against mechanical pain hypersensitivity with minor side effects.
Collapse
Affiliation(s)
- Zhi‐Chuan Sun
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
- Department of NeurosurgeryXi'an Daxing HospitalXi'an710016China
| | - Wen‐Juan Han
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Zhi‐Wei Dou
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Na Lu
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
- The Assisted Reproduction CenterNorthwest Women and Children's HospitalXi'an710000China
| | - Xu Wang
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Fu‐Dong Wang
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Sui‐Bin Ma
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Zhi‐Cheng Tian
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Hang Xian
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
- Department of OrthopedicsXijing HospitalFourth Military Medical UniversityXi'an710032China
| | - Wan‐Neng Liu
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Ying‐Ying Liu
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Wen‐Bin Wu
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Wen‐Guang Chu
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Huan Guo
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Fei Wang
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Hui Ding
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Yuan‐Ying Liu
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Hui‐Ren Tao
- Department of Orthopedic SurgeryThe University of Hong Kong‐Shenzhen HospitalShenzhenGuangdong518053China
| | - Marc Freichel
- Institute of PharmacologyHeidelberg University69120HeidelbergGermany
| | - Lutz Birnbaumer
- Institute of Biomedical Research (BIOMED)Catholic University of ArgentinaBuenos AiresC1107AVVArgentina
- Signal Transduction LaboratoryNational institute of Environmental Health SciencesResearch Triangle ParkNC27709United States
| | - Zhen‐Zhen Li
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Rou‐Gang Xie
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Sheng‐Xi Wu
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
| | - Ceng Luo
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'an710032China
- Innovation Research InstituteXijing HospitalFourth Military Medical UniversityXi'an710032China
| |
Collapse
|
39
|
Bae J, Shin DR, Sohn JY, Park JW, Woo KJ. Multiple intramuscular ropivacaine injections to donor sites reduces pain in deep inferior epigastric artery perforator flap breast reconstruction. J Plast Reconstr Aesthet Surg 2024; 98:82-90. [PMID: 39243715 DOI: 10.1016/j.bjps.2024.08.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/08/2024] [Accepted: 08/09/2024] [Indexed: 09/09/2024]
Abstract
INTRODUCTION Local anesthetic infiltration at the surgical site has been studied in various surgical disciplines; however, its impact on deep inferior epigastric artery perforator (DIEP) flap breast reconstruction has not been previously assessed. This study aimed to evaluate the effects of multiple intramuscular ropivacaine injections on donor site pain during DIEP flap breast reconstruction. METHODS The study included 65 patients who received local ropivacaine injections during DIEP reconstructions between March 2022 and February 2023, compared to 55 patients who underwent surgeries without ropivacaine from October 2018 to July 2020. A total of 20 cc of 0.75% ropivacaine solution was evenly administered at 20 sites along the abdominal wall muscles. The effect of intramuscular ropivacaine injection on postoperative visual analog scale (VAS) was evaluated using linear mixed-effect model. Opioid consumption and hospital days were also compared. RESULTS The daily median VAS score was lower in the ropivacaine group (all p-values < 0.001). When analyzed using a linear mixed-effects model, those who received ropivacaine had significantly lower VAS scores over the first 5 days postoperatively (p-value < 0.001). The rate of VAS score decline was also faster in the ropivacaine group over the first 24 h postoperative (p-value = 0.045). Although opioid consumption was comparable between the groups, those receiving ropivacaine had significantly shorter hospital stay (p-value = 0.001) and no complications related to the injections were observed. CONCLUSION Multiple intramuscular injections of ropivacaine to the donor site may reduce postoperative pain and shorten hospital stays, without increasing opioid consumption.
Collapse
Affiliation(s)
- Juyoung Bae
- Department of Plastic Surgery, Samsung Medical Center, Sungkyunkwan University School of Mediclne, 81 Irwon-ro, Gangnam-gu, Seoul, Republic of Korea
| | - Dong Ryeol Shin
- Department of Plastic and Reconstructive Surgery, Ewha Womans University Mokdong Hospital, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Jee Yeon Sohn
- Department of Plastic Surgery, Samsung Medical Center, Sungkyunkwan University School of Mediclne, 81 Irwon-ro, Gangnam-gu, Seoul, Republic of Korea
| | - Jin-Woo Park
- Department of Plastic and Reconstructive Surgery, Ewha Womans University Mokdong Hospital, College of Medicine, Ewha Womans University, Seoul, Republic of Korea.
| | - Kyong-Je Woo
- Department of Plastic Surgery, Samsung Medical Center, Sungkyunkwan University School of Mediclne, 81 Irwon-ro, Gangnam-gu, Seoul, Republic of Korea.
| |
Collapse
|
40
|
Sharma Y, Gupta JK, Babu MA, Singh S, Sindhu RK. Signaling Pathways Concerning Mitochondrial Dysfunction: Implications in Neurodegeneration and Possible Molecular Targets. J Mol Neurosci 2024; 74:101. [PMID: 39466510 DOI: 10.1007/s12031-024-02269-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/16/2024] [Indexed: 10/30/2024]
Abstract
Mitochondrion is an important organelle present in our cells responsible for meeting energy requirements. All higher organisms rely on efficient mitochondrial bioenergetic machinery to sustain life. No other respiratory process can produce as much power as generated by mitochondria in the form of ATPs. This review is written in order to get an insight into the magnificent working of mitochondrion and its implications in cellular homeostasis, bioenergetics, redox, calcium signaling, and cell death. However, if this machinery gets faulty, it may lead to several disease states. Mitochondrial dysfunctioning is of growing concern today as it is seen in the pathogenesis of several diseases which includes neurodegenerative disorders, cardiovascular disorders, diabetes mellitus, skeletal muscle defects, liver diseases, and so on. To cover all these aspects is beyond the scope of this article; hence, our study is restricted to neurodegenerative disorders only. Moreover, faulty functioning of this organelle can be one of the causes of early ageing in individuals. This review emphasizes mutations in the mitochondrial DNA, defects in oxidative phosphorylation, generation of ROS, and apoptosis. Researchers have looked into new approaches that might be able to control mitochondrial failure and show a lot of promise as treatments.
Collapse
Affiliation(s)
- Yati Sharma
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Jeetendra Kumar Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Sumitra Singh
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Rakesh K Sindhu
- School of Pharmacy, Sharda University, Gautam Buddha Nagar, Greater Noida, Uttar Paresdh, 201310, India.
| |
Collapse
|
41
|
Shi WG, Yao Y, Liang YJ, Lei J, Feng SY, Zhang ZX, Tian Y, Cai J, Xing GG, Fu KY. Activation of TGR5 in the injured nerve site according to a prevention protocol mitigates partial sciatic nerve ligation-induced neuropathic pain by alleviating neuroinflammation. Pain 2024:00006396-990000000-00753. [PMID: 39450924 DOI: 10.1097/j.pain.0000000000003460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/22/2024] [Indexed: 10/26/2024]
Abstract
ABSTRACT Neuropathic pain is a pervasive medical challenge currently lacking effective treatment options. Molecular changes at the site of peripheral nerve injury contribute to both peripheral and central sensitization, critical components of neuropathic pain. This study explores the role of the G-protein-coupled bile acid receptor (GPBAR1 or TGR5) in the peripheral mechanisms underlying neuropathic pain induced by partial sciatic nerve ligation in male mice. TGR5 was upregulated in the injured nerve site and predominantly colocalized with macrophages. Perisciatic nerve administration of the TGR5 agonist, INT-777 according to a prevention protocol (50 μg/μL daily from postoperative day [POD] 0 to POD6) provided sustained relief from mechanical allodynia and spontaneous pain, whereas the TGR5 antagonist, SBI-115 worsened neuropathic pain. Transcriptome sequencing linked the pain relief induced by TGR5 activation to reduced neuroinflammation, which was further evidenced by a decrease in myeloid cells and pro-inflammatory mediators (eg, CCL3, CXCL9, interleukin [IL]-6, and tumor necrosis factor [TNF] α) and an increase in CD86-CD206+ anti-inflammatory macrophages at POD7. Besides, myeloid-cell-specific TGR5 knockdown in the injured nerve site exacerbated both neuropathic pain and neuroinflammation, which was substantiated by bulk RNA-sequencing and upregulated expression levels of inflammatory mediators (including CCL3, CCL2, IL-6, TNF α, and IL-1β) and the increased number of monocytes/macrophages at POD7. Furthermore, the activation of microglia in the spinal cord on POD7 and POD14 was altered when TGR5 in the sciatic nerve was manipulated. Collectively, TGR5 activation in the injured nerve site mitigates neuropathic pain by reducing neuroinflammation, while TGR5 knockdown in myeloid cells worsens pain by enhancing neuroinflammation.
Collapse
Affiliation(s)
- Wen-Ge Shi
- Center for TMD and Orofacial Pain, Peking University School and Hospital of Stomatology, Beijing, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases, Beijing, China
| | - Yao Yao
- Department of General Dentistry and Integrated Emergency Dental Care, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Ya-Jing Liang
- Department of General Dentistry and Integrated Emergency Dental Care, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Jie Lei
- Center for TMD and Orofacial Pain, Peking University School and Hospital of Stomatology, Beijing, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases, Beijing, China
| | - Shi-Yang Feng
- Center for TMD and Orofacial Pain, Peking University School and Hospital of Stomatology, Beijing, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases, Beijing, China
| | - Zi-Xian Zhang
- Neuroscience Research Institute, Peking University, Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory for Neuroscience, Ministry of Education of China & National Health, Beijing, China
| | - Yue Tian
- Neuroscience Research Institute, Peking University, Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory for Neuroscience, Ministry of Education of China & National Health, Beijing, China
| | - Jie Cai
- Neuroscience Research Institute, Peking University, Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory for Neuroscience, Ministry of Education of China & National Health, Beijing, China
| | - Guo-Gang Xing
- Neuroscience Research Institute, Peking University, Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory for Neuroscience, Ministry of Education of China & National Health, Beijing, China
| | - Kai-Yuan Fu
- Center for TMD and Orofacial Pain, Peking University School and Hospital of Stomatology, Beijing, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases, Beijing, China
| |
Collapse
|
42
|
Interlandi C, Spadola F, Neve VC, Tabbì M, Di Pietro S, Giudice E, Macrì D, Costa GL. Use of butorphanol as a local anaesthetic for pain management in calves undergoing umbilical hernia repair. Front Vet Sci 2024; 11:1470957. [PMID: 39421832 PMCID: PMC11483350 DOI: 10.3389/fvets.2024.1470957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
The aim of the study was to compare the analgesic efficacy of butorphanol and lidocaine, alone or in combination, in calves undergoing surgical repair of umbilical hernia. The study was conducted in 60 calves of different breeds. Xylazine 0.3 mg/kg was administered intramuscularly to all animals in the study. The animals were then divided into three groups (n = 20) that received different treatments with lidocaine at 4.5 mg/kg and butorphanol at 0.02 mg/kg. The L group received lidocaine both by infiltration of the surgical planes and intraperitoneally, the B group received butorphanol both by infiltration of the surgical planes and intraperitoneally, and finally the LB group received lidocaine by infiltration of the surgical planes and butorphanol intraperitoneally. Heart and respiratory rates, haemoglobin oxygen saturation, non-invasive blood pressure and temperature were recorded during surgery. Response to the surgical stimulus was scored on a cumulative numerical scale that included percentage changes in HR, RR and SAP. Postoperative pain was assessed by three independent observers, blinded to treatment, using the UNESP-Botucatu Unidimensional Composite Pain Scale (UNESP-Botucatu UCPS-IV) for the assessment of postoperative pain in cattle. The course of physiological variables was appropriate for patients under anaesthesia. No subject required rescue intraoperative analgesia. In group L, 4 subjects at 40 m and 5 subjects at 50 m required postoperative rescue analgesia. Both butorphanol alone and the combination of butorphanol and lidocaine showed excellent intraoperative and postoperative scores. Furthermore, this combination did not cause any cardiopulmonary or other adverse effects. Based on the results of this study, both butorphanol alone and the co-administration of butorphanol and lidocaine administered locally proved to be safe and effective in providing adequate and long-lasting analgesia in calves, helping to reduce postoperative discomfort and maintaining adequate animal welfare.
Collapse
Affiliation(s)
- Claudia Interlandi
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Filippo Spadola
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Veronica C. Neve
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Marco Tabbì
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Simona Di Pietro
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Elisabetta Giudice
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Daniele Macrì
- Experimental Zooprophylactic Institute of Sicily (IZSSi), Palermo, Italy
| | - Giovanna L. Costa
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| |
Collapse
|
43
|
Pepper CG, Mikhaeil JS, Khan JS. Perioperative Regional Anesthesia on Persistent Opioid Use and Chronic Pain after Noncardiac Surgery: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Anesth Analg 2024; 139:711-722. [PMID: 39231035 DOI: 10.1213/ane.0000000000006947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
BACKGROUND Whether regional anesthesia impacts the development of chronic postsurgical pain is currently debateable, and few studies have evaluated an effect on prolonged opioid use. We sought to systematically review the effect of regional anesthesia for adults undergoing noncardiac elective surgery on these outcomes. METHODS A systematic search was conducted in MEDLINE, EMBASE, CENTRAL, and CINHAL for randomized controlled trials (from inception to April 2022) of adult patients undergoing elective noncardiac surgeries that evaluated any regional technique and included one of our primary outcomes: (1) prolonged opioid use after surgery (continued opioid use ≥2 months postsurgery) and (2) chronic postsurgical pain (pain ≥3 months postsurgery). We conducted a random-effects meta-analysis on the specified outcomes and used the Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) approach to rate the quality of evidence. RESULTS Thirty-seven studies were included in the review. Pooled estimates indicated that regional anesthesia had a significant effect on reducing prolonged opioid use (relative risk [RR] 0.48, 95% CI, 0.24-0.96, P = .04, I 2 0%, 5 trials, n = 348 patients, GRADE low quality). Pooled estimates for chronic pain also indicated a significant effect favoring regional anesthesia at 3 (RR, 0.74, 95% CI, 0.59-0.93, P = .01, I 2 77%, 15 trials, n = 1489 patients, GRADE moderate quality) and 6 months (RR, 0.72, 95% CI, 0.61-0.85, P < .001, I 2 54%, 19 trials, n = 3457 patients, GRADE moderate quality) after surgery. No effect was found in the pooled analysis at 12 months postsurgery (RR, 0.44, 95% CI, 0.16-1.17, P = .10). CONCLUSIONS The results of this study suggest that regional anesthesia potentially reduces chronic postsurgical pain up to 6 months after surgery. Our findings also suggest a potential decrease in the development of persistent opioid use.
Collapse
Affiliation(s)
- Connor G Pepper
- From the Department of Anesthesia, McMaster University, Hamilton, ON, Canada
| | - John S Mikhaeil
- Department of Anesthesia and Pain Medicine, University of Toronto, Toronto, ON, Canada
| | - James S Khan
- Department of Anesthesia and Pain Medicine, University of Toronto, Toronto, ON, Canada
- Wasser Pain Management Center, Mount Sinai Hospital, Toronto, ON, Canada
| |
Collapse
|
44
|
Talotta R, Porcello M, Restuccia R, Magaudda L. Mental effects of physical activity in patients with fibromyalgia: A narrative review. J Bodyw Mov Ther 2024; 40:2190-2204. [PMID: 39593584 DOI: 10.1016/j.jbmt.2024.10.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 10/13/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024]
Abstract
INTRODUCTION Fibromyalgia (FM) is a multifaceted disease that is often associated with neuropsychiatric disorders and is burdened by a high degree of psychological distress. Non-pharmacological interventions, including physical exercise and complementary therapies, have shown satisfactory results for either physical or psychological FM symptoms. METHODS In this narrative review, we analyzed scientific evidence of moderate to high quality regarding the psychological and neurocognitive effects of physical therapies for FM. A total of 29 studies were selected after searching the PubMed and Google Scholar databases using the combination of terms « fibromyalgia», «psychological distress», «fibrofog», mental disorder», «aerobic exercise», «strength exercise», «Pilates», «Tai chi» and «Yoga». RESULTS Aerobic exercise can improve depression, anxiety, stress, mental function and mood, thanks to the remodulation of neurotransmitters and hormones. Strength training, on the other hand, has been shown to alleviate mental confusion, anger and depression. Finally, mind-body disciplines appear to be effective for depression, anxiety, catastrophizing, memory and coping strategies. Based on these findings, we devised an ideal exercise program that could relieve the psychological distress of FM patients, thus interrupting the pathogenic neuroendocrine circuits that lead to the exacerbation of pain and other FM-related symptoms. CONCLUSIONS Thanks to neuroendocrine remodulation, physical exercise may simultaneously improve the physical and mental health of FM patients. This narrative review collects current evidence on the effects of specific physical interventions on psychological and neurocognitive domains of FM patients and additionally provides an evidence-based training program that could be prescribed to FM patients with high psychological distress or neuropsychiatric symptoms.
Collapse
Affiliation(s)
- R Talotta
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy.
| | - M Porcello
- Degree Course of Theory and Methods of Preventive and Adapted Physical Activities, BIOMORF Department, University of Messina, Messina, Italy.
| | - R Restuccia
- Postgraduate School of Sport and Physical Exercise Medicine, BIOMORF Department, University of Messina, Messina, Italy.
| | - L Magaudda
- Degree Course of Theory and Methods of Preventive and Adapted Physical Activities, BIOMORF Department, University of Messina, Messina, Italy; Postgraduate School of Sport and Physical Exercise Medicine, BIOMORF Department, University of Messina, Messina, Italy.
| |
Collapse
|
45
|
Ren YM, Hou WY, Fan BY, Duan YH, Sun YB, Yang T, Zhang HJ, Sun TW, Tian MQ. Causality of genetically determined serum metabolites on lower back pain or/and sciatica: a comprehensive Mendelian randomized study. FRONTIERS IN PAIN RESEARCH 2024; 5:1370704. [PMID: 39385756 PMCID: PMC11461461 DOI: 10.3389/fpain.2024.1370704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024] Open
Abstract
Background There is an urgent need to confirm biomarkers reflecting the pathogenesis and targeted drugs of lower back pain or/and sciatica in clinical practice. This study aimed to conduct a two sample bidirectional Mendelian randomization (MR) analysis to explore the causal link between 486 serum metabolites and lower back pain or/and sciatica. Methods All data come from two public shared databases of European ancestry and single nucleotide polymorphisms (SNPs) for lower back pain or/and sciatica acted as instrumental variables. The traditional inverse variance weighting (IVW) method, weighted-median method, MR-Egger methodand other methods were used to estimate causality. The horizontal pleiotropy, heterogeneities were also verified through the MR-Egger intercept test, Cochran's Q test, MR-PRESSO test and the leave-one-out sensitivity analysis. Reverse MR analysis was employed to evaluate the direct impact of metabolites on lower back pain or/and sciatica. Additionally, we conducted the colocalization analysis to reflect the causality deeply. Furthermore, metabolic pathway analysis was performed. Results 28 metabolites (18 known metabolites, 1 identified metabolites and 9 unknown metabolites) relevant to the risk of sciatica or/and lower back pain after using genetic variants as probes at PIVW < 0.05 were identifed. Among them, 8 serum metabolites decreased risk of sciatica or/and lower back pain significantly (P < 0.05), and 14 serum metabolites increased risk of sciatica or/and lower back pain significantly (P < 0.05). No reverse causal association was found between 28 metabolites and sciatica or/and lower back pain. Colocalization analysis results showed that the associations between sciatica or/and lower back pain and the 28 identified metabolites were not due to shared causal variant sites. Moreover, pathway enrichment analysis identifed 11 signifcant metabolic pathways, which are mainly involved in the pathological mechanism of sciatica or/and lower back pain (P < 0.05). There was no horizontal pleiotropy or heterogeneity in the other analyses. Conclusion Our analyses provided robust evidence of causal associations between blood metabolites on sciatica or/and lower back pain. However, the underlying mechanisms remain to be further investigated.
Collapse
Affiliation(s)
- Yi-Ming Ren
- Department of Orthopaedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, China
- Department of Joint and Sport Medicine, Tianjin Union Medical Center, Nankai University Affiliated People’s Hospital, Tianjin, China
| | - Wei-Yu Hou
- Department of Joint and Sport Medicine, Tianjin Union Medical Center, Nankai University Affiliated People’s Hospital, Tianjin, China
| | - Bao-You Fan
- Department of Orthopaedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuan-Hui Duan
- Department of Joint and Sport Medicine, Tianjin Union Medical Center, Nankai University Affiliated People’s Hospital, Tianjin, China
| | - Yun-Bo Sun
- Department of Joint and Sport Medicine, Tianjin Union Medical Center, Nankai University Affiliated People’s Hospital, Tianjin, China
| | - Tao Yang
- Department of Joint and Sport Medicine, Tianjin Union Medical Center, Nankai University Affiliated People’s Hospital, Tianjin, China
| | - Han-Ji Zhang
- Department of Joint and Sport Medicine, Tianjin Union Medical Center, Nankai University Affiliated People’s Hospital, Tianjin, China
| | - Tian-Wei Sun
- Department of Spine Surgery, Tianjin Union Medical Center, Nankai University Affiliated People’s Hospital, Tianjin, China
| | - Meng-Qiang Tian
- Department of Joint and Sport Medicine, Tianjin Union Medical Center, Nankai University Affiliated People’s Hospital, Tianjin, China
| |
Collapse
|
46
|
Della Porta D, Scheirman E, Legrain V. Top-down attention does not modulate mechanical hypersensitivity consecutive to central sensitization: insights from an experimental analysis. Pain 2024; 165:2098-2110. [PMID: 38595183 DOI: 10.1097/j.pain.0000000000003225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/08/2024] [Indexed: 04/11/2024]
Abstract
ABSTRACT According to the neurocognitive model of attention to pain, when the attentional resources invested in a task unrelated to pain are high, limited cognitive resources can be directed toward the pain. This is supported by experimental studies showing that diverting people's attention away from acute pain leads to experiencing less pain. Theoretical work has suggested that this phenomenon may present a top-down modulatory mechanism for persistent pain as well. However, conclusive empirical evidence is lacking. To fill this gap, we used a preregistered, double-blind, between-subject study design to investigate whether performing a tailored, demanding, and engaging working memory task unrelated to pain (difficult) vs a task that requires less mental effort to be performed (easy), could lead to lower development of secondary hypersensitivity-a hallmark of central sensitization. Eighty-five healthy volunteers, randomly assigned to one of the 2 conditions, performed a visual task with a different cognitive load (difficult vs easy), while secondary hypersensitivity was induced on their nondominant forearm using high-frequency stimulation. To assess the development of secondary hypersensitivity, sensitivity to mechanical stimuli was measured 3 times: T0, for baseline and 20 (T1) and 40 (T2) minutes after the procedure. We did not observe any significant difference in the development of secondary hypersensitivity between the 2 groups, neither in terms of the intensity of mechanical sensitivity nor its spatial extent. Our results suggest that a top-down modulation through attention might not be sufficient to affect pain sensitization and the development of secondary hypersensitivity.
Collapse
Affiliation(s)
- Delia Della Porta
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
- Psychological Sciences Research Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Eléonore Scheirman
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Valéry Legrain
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
- Psychological Sciences Research Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
- Louvain Bionics, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
47
|
Stone TW, Williams RO. Tryptophan metabolism as a 'reflex' feature of neuroimmune communication: Sensor and effector functions for the indoleamine-2, 3-dioxygenase kynurenine pathway. J Neurochem 2024; 168:3333-3357. [PMID: 38102897 DOI: 10.1111/jnc.16015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/16/2023] [Accepted: 11/08/2023] [Indexed: 12/17/2023]
Abstract
Although the central nervous system (CNS) and immune system were regarded as independent entities, it is now clear that immune system cells can influence the CNS, and neuroglial activity influences the immune system. Despite the many clinical implications for this 'neuroimmune interface', its detailed operation at the molecular level remains unclear. This narrative review focuses on the metabolism of tryptophan along the kynurenine pathway, since its products have critical actions in both the nervous and immune systems, placing it in a unique position to influence neuroimmune communication. In particular, since the kynurenine pathway is activated by pro-inflammatory mediators, it is proposed that physical and psychological stressors are the stimuli of an organismal protective reflex, with kynurenine metabolites as the effector arm co-ordinating protective neural and immune system responses. After a brief review of the neuroimmune interface, the general perception of tryptophan metabolism along the kynurenine pathway is expanded to emphasize this environmentally driven perspective. The initial enzymes in the kynurenine pathway include indoleamine-2,3-dioxygenase (IDO1), which is induced by tissue damage, inflammatory mediators or microbial products, and tryptophan-2,3-dioxygenase (TDO), which is induced by stress-induced glucocorticoids. In the immune system, kynurenic acid modulates leucocyte differentiation, inflammatory balance and immune tolerance by activating aryl hydrocarbon receptors and modulates pain via the GPR35 protein. In the CNS, quinolinic acid activates N-methyl-D-aspartate (NMDA)-sensitive glutamate receptors, whereas kynurenic acid is an antagonist: the balance between glutamate, quinolinic acid and kynurenic acid is a significant regulator of CNS function and plasticity. The concept of kynurenine and its metabolites as mediators of a reflex coordinated protection against stress helps to understand the variety and breadth of their activity. It should also help to understand the pathological origin of some psychiatric and neurodegenerative diseases involving the immune system and CNS, facilitating the development of new pharmacological strategies for treatment.
Collapse
Affiliation(s)
- Trevor W Stone
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| | - Richard O Williams
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| |
Collapse
|
48
|
Hung 洪瑋辰 WC, Chen 陳志成 CC, Yen 嚴震東 CT, Min 閔明源 MY. Presynaptic Enhancement of Transmission from Nociceptors Expressing Nav1.8 onto Lamina-I Spinothalamic Tract Neurons by Spared Nerve Injury in Mice. eNeuro 2024; 11:ENEURO.0087-24.2024. [PMID: 39256039 PMCID: PMC11391502 DOI: 10.1523/eneuro.0087-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/12/2024] Open
Abstract
Alteration of synaptic function in the dorsal horn (DH) has been implicated as a cellular substrate for the development of neuropathic pain, but certain details remain unclear. In particular, the lack of information on the types of synapses that undergo functional changes hinders the understanding of disease pathogenesis from a synaptic plasticity perspective. Here, we addressed this issue by using optogenetic and retrograde tracing ex vivo to selectively stimulate first-order nociceptors expressing Nav1.8 (NRsNav1.8) and record the responses of spinothalamic tract neurons in spinal lamina I (L1-STTNs). We found that spared nerve injury (SNI) increased excitatory postsynaptic currents (EPSCs) in L1-STTNs evoked by photostimulation of NRsNav1.8 (referred to as Nav1.8-STTN EPSCs). This effect was accompanied by a significant change in the failure rate and paired-pulse ratio of synaptic transmission from NRsNav1.8 to L1-STTN and in the frequency (not amplitude) of spontaneous EPSCs recorded in L1-STTNs. However, no change was observed in the ratio of AMPA to NMDA receptor-mediated components of Nav1.8-STTN EPSCs or in the amplitude of unitary EPSCs constituting Nav1.8-STTN EPSCs recorded with extracellular Ca2+ replaced by Sr2+ In addition, there was a small increase (approximately 10%) in the number of L1-STTNs showing immunoreactivity for phosphorylated extracellular signal-regulated kinases in mice after SNI compared with sham. Similarly, only a small percentage of L1-STTNs showed a lower action potential threshold after SNI. In conclusion, our results show that SNI induces presynaptic modulation at NRNav1.8 (consisting of both peptidergic and nonpeptidergic nociceptors) synapses on L1-STTNs forming the lateral spinothalamic tract.
Collapse
Affiliation(s)
- Wei-Chen Hung 洪瑋辰
- Department of Life Science, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
- Neurobiology and Cognitive Science Centre, National Taiwan University, Taipei 10617, Taiwan
| | | | - Cheng-Tung Yen 嚴震東
- Department of Life Science, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
- Neurobiology and Cognitive Science Centre, National Taiwan University, Taipei 10617, Taiwan
| | - Ming-Yuan Min 閔明源
- Department of Life Science, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
- Neurobiology and Cognitive Science Centre, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
49
|
Liu Y, Qi Q, Jiang Y, Zhao P, Chen L, Ma X, Shi Y, Xu J, Li J, Chen F, Chen J, Zhang L, Wu Y, Jiang X, Jin D, Xu T, Bu W. Ion Current Rectification Activity Induced by Boron Hydride Nanosheets to Enhance Magnesium Analgesia. Angew Chem Int Ed Engl 2024; 63:e202405131. [PMID: 38845566 DOI: 10.1002/anie.202405131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Indexed: 07/23/2024]
Abstract
The limited analgesic efficiency of magnesium restricts its application in pain management. Here, we report boron hydride (BH) with ion currents rectification activity that can enhance the analgesic efficiency of magnesium without the risks of drug tolerance or addiction. We synthesize MgB2, comprising hexagonal boron sheets alternating with Mg2+. In pathological environment, Mg2+ is exchanged by H+, forming two-dimensional borophene-analogue BH sheets. BH interacts with the charged cations via cation-pi interaction, leading to dynamic modulation of sodium and potassium ion currents around neurons. Additionally, released Mg2+ competes Ca2+ to inhibit its influx and neuronal excitation. In vitro cultured dorsal root neurons show a remarkable increase in threshold potential from the normal -35.9 mV to -5.9 mV after the addition of MgB2, indicating potent analgesic effect. In three typical pain models, including CFA-induced inflammatory pain, CINP- or CCI-induced neuropathic pain, MgB2 exhibits analgesic efficiency approximately 2.23, 3.20, and 2.0 times higher than clinical MgSO4, respectively, and even about 1.04, 1.66, and 1.95 times higher than morphine, respectively. The development of magnesium based intermetallic compounds holds promise in addressing the non-opioid medical need for pain relief.
Collapse
Affiliation(s)
- Yanyan Liu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| | - Qi Qi
- Department of Anesthesiology, Shanghai Sixth Peoples Hospital Affiliated to Shanghai Jiao tong University, Shanghai, 200233, China
| | - Yaqin Jiang
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Peiran Zhao
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| | - Lijie Chen
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| | - Xiaqing Ma
- Department of Anesthesiology, Shanghai Sixth Peoples Hospital Affiliated to Shanghai Jiao tong University, Shanghai, 200233, China
| | - Yuhan Shi
- Baylor College of medicine, Houston, TX 77030, USA
| | - Jianxun Xu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| | - Jinjin Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Feixiang Chen
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| | - Jian Chen
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| | - Le Zhang
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, New South Wales, 2007, Australia
| | - Yelin Wu
- Department of Medical Ultrasound, Shanghai Tenth people's hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Xingwu Jiang
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| | - Dayong Jin
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, New South Wales, 2007, Australia
| | - Tao Xu
- Department of Anesthesiology, Shanghai Sixth Peoples Hospital Affiliated to Shanghai Jiao tong University, Shanghai, 200233, China
| | - Wenbo Bu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| |
Collapse
|
50
|
Zhao YY, Wu ZJ, Hao SJ, Dong BB, Zheng YX, Liu B, Li J. Common alterations in parallel metabolomic profiling of serum and spinal cord and mechanistic studies on neuropathic pain following PPARα administration. Neuropharmacology 2024; 254:109988. [PMID: 38744401 DOI: 10.1016/j.neuropharm.2024.109988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 04/17/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024]
Abstract
Neuropathic pain (NP) is usually treated with analgesics and symptomatic therapy with poor efficacy and numerous side effects, highlighting the urgent need for effective treatment strategies. Recent studies have reported an important role for peroxisome proliferator-activated receptor alpha (PPARα) in regulating metabolism as well as inflammatory responses. Through pain behavioral assessment, we found that activation of PPARα prevented chronic constriction injury (CCI)-induced mechanical allodynia and thermal hyperalgesia. In addition, PPARα ameliorated inflammatory cell infiltration at the injury site and decreased microglial activation, NOD-like receptor protein 3 (NLRP3) inflammasome production, and spinal dendritic spine density, as well as improved serum and spinal cord metabolic levels in mice. Administration of PPARα antagonists eliminates the analgesic effect of PPARα agonists. PPARα relieves NP by inhibiting neuroinflammation and functional synaptic plasticity as well as modulating metabolic mechanisms, suggesting that PPARα may be a potential molecular target for NP alleviation. However, the effects of PPARα on neuroinflammation and synaptic plasticity should be further explored.
Collapse
Affiliation(s)
- Yu-Ying Zhao
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin, 300052, China
| | - Zi-Jun Wu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin, 300052, China
| | - Shu-Jing Hao
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin, 300052, China
| | - Bei-Bei Dong
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin, 300052, China
| | - Yu-Xin Zheng
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin, 300052, China
| | - Bin Liu
- Department of Critical Care Medicine, General Hospital of Tianjin Medical University, Tianjin, 300052, China; Center for Critical Care Medicine, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300020, China.
| | - Jing Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin, 300052, China.
| |
Collapse
|