1
|
Woo S, Park PG, An T, Fatima M, Moon YE, Lee SY, Youn H, Hong KJ. Mini-review on the therapeutic vaccines targeting chronic infectious diseases: Evaluation system of therapeutic vaccines targeting HPV and EBV-related cancers. Hum Vaccin Immunother 2025; 21:2457187. [PMID: 39957237 PMCID: PMC11834422 DOI: 10.1080/21645515.2025.2457187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/05/2025] [Accepted: 01/17/2025] [Indexed: 02/18/2025] Open
Abstract
Chronic infectious diseases are threatening human health today, and their public health severity is increasing. The efficacy issues of drugs and the increase in drug-resistant pathogens require new response strategies for chronic infectious diseases, and therapeutic vaccines have recently been proposed as an effective alternative. However, research on therapeutic vaccines is still relatively underdeveloped. To solve this problem, an accurate understanding of the status and the challenge at hand of therapeutic vaccines targeting chronic infectious diseases is needed. In the present review, we provide an overview of the latest research trends in therapeutic vaccines targeting chronic infectious diseases and summarize the development status of therapeutic vaccines currently undergoing clinical research, focusing on the cases of human papillomavirus (HPV) and Epstein-Barr virus (EBV) as representative examples. We highlight the importance of standard methods for the evaluation of therapeutic vaccine, focusing on the cell-mediated immune response, which might accelerate therapeutic vaccine development.
Collapse
Affiliation(s)
- Seungkyun Woo
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Korea
| | - Pil-Gu Park
- Department of Microbiology, Gachon University College of Medicine, Incheon, Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
- Korea mRNA Vaccine Initiative, Gachon University, Seongnam, Korea
| | - Timothy An
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
| | - Munazza Fatima
- Department of Microbiology, Gachon University College of Medicine, Incheon, Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
| | - Ye-Eun Moon
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Korea
| | - Seok-Yong Lee
- Department of Nuclear Medicine, Cancer Imaging Center, Seoul National University Hospital, Seoul, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hyewon Youn
- Department of Nuclear Medicine, Cancer Imaging Center, Seoul National University Hospital, Seoul, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Kee-Jong Hong
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Korea
- Department of Microbiology, Gachon University College of Medicine, Incheon, Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
- Korea mRNA Vaccine Initiative, Gachon University, Seongnam, Korea
| |
Collapse
|
2
|
Kiefer D, Bierscheid L, Kask O, Heyl C, Rehman S, Carmona J, Anderson KS, Fromme P. Diverse approaches to isolate HLA class I molecules from bacterial inclusion bodies, forming heterotrimeric complexes. Protein Expr Purif 2025; 231:106713. [PMID: 40154903 DOI: 10.1016/j.pep.2025.106713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 03/17/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
Production of recombinant human leukocyte antigen class I (HLA-I) proteins in vitro is fundamental for molecular immunology. However, HLA-I protein refolding has remained inefficient due to challenges in the assembling of the trimolecular complex. Here, we compare various in vitro refolding methods that address the challenges of intrachain disulfide bond formation and assembly of the complex between the light and heavy chains in the presence of the target peptide. We developed methods that uncouple the oxidation of disulfide bond formation of both subunits of HLA-I, followed by renaturation to promote complex formation. CuSO4-catalyzed air oxidation enhances correct disulfide bond formation when the protein is solubilized with N-lauryl-sarcosine (sarkosyl); however, careful removal of sarkosyl did not prevent heavy chain aggregation. We modified the classical method of HLA-I refolding by pre-oxidizing the β2m light chain before adding the HLA-I heavy chain and peptide. This method yielded successful complex refolding for HLA-A∗02:01/GILGFVFTL at 24.2 % efficiency, and HLA-C∗12:03/KAYNVTQAF at 14.5 % efficiency. Our results suggest that pre-folded β2m improves refolding efficiency of HLA-I molecules. This work presents novel approaches to HLA-I refolding that may be applied to other difficult-to-fold protein complexes.
Collapse
Affiliation(s)
- Dalton Kiefer
- Center for Applied Structural Discovery, Biodesign Institute at Arizona State University, Tempe, AZ, 85281, USA; Center for Personalized Diagnostics, Biodesign Institute at Arizona State University, Tempe, AZ, 85281, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ, 85281, USA
| | - Lucas Bierscheid
- Center for Personalized Diagnostics, Biodesign Institute at Arizona State University, Tempe, AZ, 85281, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ, 85281, USA
| | - Oliver Kask
- Center for Personalized Diagnostics, Biodesign Institute at Arizona State University, Tempe, AZ, 85281, USA; School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Calvin Heyl
- Center for Applied Structural Discovery, Biodesign Institute at Arizona State University, Tempe, AZ, 85281, USA; Center for Personalized Diagnostics, Biodesign Institute at Arizona State University, Tempe, AZ, 85281, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ, 85281, USA
| | - Shiza Rehman
- Center for Applied Structural Discovery, Biodesign Institute at Arizona State University, Tempe, AZ, 85281, USA; Center for Personalized Diagnostics, Biodesign Institute at Arizona State University, Tempe, AZ, 85281, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ, 85281, USA
| | - Jacqueline Carmona
- Center for Personalized Diagnostics, Biodesign Institute at Arizona State University, Tempe, AZ, 85281, USA; School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Karen S Anderson
- Center for Personalized Diagnostics, Biodesign Institute at Arizona State University, Tempe, AZ, 85281, USA; School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Petra Fromme
- Center for Applied Structural Discovery, Biodesign Institute at Arizona State University, Tempe, AZ, 85281, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ, 85281, USA; School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA.
| |
Collapse
|
3
|
Lopez GL, Adda-Bouchard Y, Laulhé X, Chamberlain G, Bourguignon L, Charpentier T, Cyr DG, Lamarre A. Short-term oral exposure to nanoplastics does not significantly impact the antiviral immune response of the mouse. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137316. [PMID: 39854993 DOI: 10.1016/j.jhazmat.2025.137316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/10/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
The increasing prevalence of nanoplastics (NPs) in the environment, particularly polystyrene (PS) nanoparticles, raises concerns regarding their potential impact on human and animal health. Given their small size, NPs can cross biological barriers and accumulate in organs, including those critical for immune functions. This study investigates the effects of short-term oral exposure to 100 and 500 nm PS NPs on the adaptive immune responses during viral infections in vivo, using vesicular stomatitis virus (VSV) and lymphocytic choriomeningitis virus (LCMV) as models. Male and female C57BL/6 mice were orally exposed to PS NP for a period of 28 days, during which they were infected with either VSV or LCMV to study the humoral and cellular responses, respectively. The humoral responses were assessed by measuring total and VSV-specific antibody levels, and splenic immune populations. T cell phenotypes, activation, exhaustion and functionality towards LCMV epitopes were studied as readouts of the cellular responses. Our results demonstrate that short-term NP exposure does not significantly affect the generation or neutralizing capacity of antibodies against VSV, nor the cellular responses directed against LCMV. These findings indicate that, under these conditions, PS NP exposure does not significantly compromise the adaptive immune responses during viral infections, underscoring the value of in vivo models.
Collapse
Affiliation(s)
- Guillaume L Lopez
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Laval, QC, Canada
| | - Yasmine Adda-Bouchard
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Laval, QC, Canada
| | - Xavier Laulhé
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Laval, QC, Canada
| | - Gabriel Chamberlain
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Laval, QC, Canada
| | - Léa Bourguignon
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Laval, QC, Canada
| | - Tania Charpentier
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Laval, QC, Canada
| | - Daniel G Cyr
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Laval, QC, Canada
| | - Alain Lamarre
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Laval, QC, Canada.
| |
Collapse
|
4
|
Zheng MZM, Burmas L, Tan HX, Trieu MC, Lee HJ, Rawlinson D, Haque A, Kent SJ, Wheatley AK, Juno JA. Deconvoluting TCR-dependent and -independent activation is vital for reliable Ag-specific CD4 + T cell characterization by AIM assay. SCIENCE ADVANCES 2025; 11:eadv3491. [PMID: 40279430 PMCID: PMC12024690 DOI: 10.1126/sciadv.adv3491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 03/20/2025] [Indexed: 04/27/2025]
Abstract
Activation-induced marker (AIM) assays identify antigen (Ag)-specific T cells, but recent studies revealed AIM+ T helper cell 17 (TH17)-like (CCR6+) and circulating T follicular helper cells (cTfh) were not associated with peptide/HLA tetramer staining. We show that CD39+ regulatory T cell (Treg)-like and CD26hi TH22-like cells undergo T cell receptor (TCR)-independent activation by cytokines during Ag stimulation, leading to nonspecific up-regulation of AIM readouts. Transcriptional analysis enabled discrimination of bona fide Ag-specific T cells from cytokine-activated Treg and TH22 cells. CXCR4 down-regulation emerged as a hallmark of clonotypic expansion and TCR-dependent activation in memory CD4+ T cells and cTfh. By tracking tetramer-binding cells upon Ag restimulation, we demonstrated that CXCR4-CD137+ cells provided a more accurate measure of Ag-specificity than standard AIM readouts. This modified assay excluded the predominantly CCR6+ cytokine-activated T cells that contributed to an average 12-fold overestimation of the Ag-specific population. Our findings provide an accurate approach to characterize genuine Ag-specific T cells.
Collapse
Affiliation(s)
- Ming Z. M. Zheng
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Lauren Burmas
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Hyon-Xhi Tan
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Mai-Chi Trieu
- Department of Clinical Science, Influenza Centre, University of Bergen and Haukeland University Hospital, Bergen, Norway
| | - Hyun Jae Lee
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Daniel Rawlinson
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
- Melbourne Integrative Genomics, School of Mathematics and Statistics, The University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Ashraful Haque
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Stephen J. Kent
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria 3053, Australia
| | - Adam K. Wheatley
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Jennifer A. Juno
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| |
Collapse
|
5
|
Xiong S, Huang Z, Mukwaya V, Zhao W, Wang L, Dou H. Cell-Targeting Bio-Catalytic Killer Protocell for High-Order Assembly Guided Cancer Cell Inhibition. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2500047. [PMID: 40270292 DOI: 10.1002/smll.202500047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 04/03/2025] [Indexed: 04/25/2025]
Abstract
The design and construction of synthetic therapeutic protocells capable of engaging in high-order assembly with living cells represent a significant challenge in synthetic biology and bioengineering. Inspired by cell membrane receptor-ligand systems, a protocell bioreactor is developed for targeted cancer cell elimination. This is achieved by constructing orthogonal, polysaccharide-based protocells (polysaccharidosomes, P-somes) through a bottom-up approach that leverages host-guest chemistry. The protocells are assembled via electrostatically-driven self-assembly of β-cyclodextrin (β-CD)-modified amino-dextran on a sacrificial template encapsulating glucose oxidase (GOx). To enable specific cancer cell targeting and catalytic activity, cell-targeting ligands (arginylglycylaspartic acid, cRGD) and catalase-like platinum-gold nanoparticles (Pt-AuNPs) are introduced through host-guest interactions, forming a fully functional, cell-targeting, bio-catalytic killer protocell. These protocells are programmed to spatially couple the GOx/Pt-AuNP catalytic reaction cascade. In the presence of glucose and hydroxyurea, this cascade generates a localized flux of nitric oxide (NO), which is exploited for in vitro cancer cell inhibition. Overall, the results highlight the potential of integrating orthogonal and synergistic tumor inhibition mechanisms within synthetic microcompartments. This platform demonstrates promise for future therapeutic applications, especially in cancer treatment, and represents a step forward in the development of programmable protocell-based therapeutic systems.
Collapse
Affiliation(s)
- Shuhan Xiong
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zeqi Huang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Vincent Mukwaya
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Weili Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Li Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hongjing Dou
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
6
|
Garrido-Mesa J, Brown MA. Antigen-driven T cell responses in rheumatic diseases: insights from T cell receptor repertoire studies. Nat Rev Rheumatol 2025; 21:157-173. [PMID: 39920282 DOI: 10.1038/s41584-025-01218-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2025] [Indexed: 02/09/2025]
Abstract
Advances in T cell receptor (TCR) profiling techniques have substantially improved our ability to investigate T cell responses to antigens that are presented on HLA class I and class II molecules and associations between autoimmune T cells and rheumatic diseases. Early-stage studies in axial spondyloarthritis (axSpA) identified disease-associated T cell clonotypes, benefiting from the relative genetic homogeneity of the disease. However, both the genetic and the T cell immunological landscape are more complex in other rheumatic diseases. The diversity or redundancy in the TCR repertoire, epitope spreading over disease duration, genetic heterogeneity of HLA genes or other loci, and the diversity of epitopes contributing to disease pathogenesis and persistent inflammation are all likely to contribute to this complexity. TCR profiling holds promise for identifying key antigenic drivers and phenotypic T cell states that sustain autoimmunity in rheumatic diseases. Here, we review key findings from TCR repertoire studies in axSpA and other chronic inflammatory rheumatic diseases including psoriatic arthritis, rheumatoid arthritis, systemic lupus erythematosus and Sjögren syndrome. We explore how TCR profiling technologies, if applied to better controlled studies focused on early disease stages and genetically homogeneous subsets, can facilitate disease monitoring and the development of therapeutics targeting autoimmune T cells, their cognate antigens, or their underlying biology.
Collapse
Affiliation(s)
- Jose Garrido-Mesa
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London, UK.
| | - Matthew A Brown
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London, UK.
- Genomics England, London, UK.
| |
Collapse
|
7
|
Song N, Elbahnasawy MA, Weng NP. General and individualized changes in T cell immunity during aging. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkae033. [PMID: 40073079 DOI: 10.1093/jimmun/vkae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/14/2024] [Indexed: 03/14/2025]
Abstract
Functional alterations with age are observed in all human systems, but the aging of the adaptive immune system displays both general changes affecting all individuals, and idiosyncratic changes that are unique to individuals. In the T cell compartment, general aging manifests in three ways: (1) the reduction of naïve T cells, (2) the accumulation of differentiated memory T cells, and (3) a reduced overall T cell receptor (TCR) repertoire. Idiosyncratic impacts of aging, such as changes in the TCR repertoires of altered memory and naïve T cells are shaped by each person's life exposures. Recent advancements in single-cell sequencing provide new information including the identification of new subpopulations of T cells, characteristics of transcriptome changes in T cells and their TCR clonotype with age, and measurement of individual cell age. Here, we focus on the changes in T cell subpopulations, transcriptomes and TCR repertoires in overall and antigen-specific T cell population with aging.
Collapse
Affiliation(s)
- Nianbin Song
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD, United States
| | - Mostafa A Elbahnasawy
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD, United States
| | - Nan-Ping Weng
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD, United States
| |
Collapse
|
8
|
Arata R, Tanimine N, Seidakhmetov A, Ide K, Tanaka Y, Ohdan H. Discrimination of Anti-Donor Response in Allogeneic Transplantation Using an Alloreactive T-Cell Detection Assay. Transpl Int 2025; 38:13879. [PMID: 39936124 PMCID: PMC11810569 DOI: 10.3389/ti.2025.13879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/08/2025] [Indexed: 02/13/2025]
Abstract
Understanding donor-reactive T-cell behavior post-transplantation is challenging owing to the rarity and diversity of these cells. Here, we aimed to evaluate the relevance of an assay for rapidly detecting alloreactive T cells in a mouse transplantation model. After 18 h of one-way mixed lymphocyte reaction (MLR) culture with pre-activated donor-derived stimulators, CD4+ and CD8+ donor-reactive T cells were identified by CD154 and CD137 expression, respectively. Using full MHC mismatched mouse skin transplant models, we observed an increased donor-reactive T-cell proportion by direct presentation with elevated interferon gamma and granzyme B production 7 days post-transplantation, before graft rejection. Immunosuppression with CTLA-4 IgG and anti-CD154 antibody varied depending on donor-recipient strain combinations. On day 7, donor-reactive CD8+ T-cell proportions were lower in the tolerance model (BALB/c to C3H/HeJ) than in the rejection model (BALB/c to C57BL/6); conventional proliferation readout after 4 days of MLR could not distinguish these responses. Overall, although the conventional readout for evaluating T-cell proliferation following an MLR quantifies the precursor frequency of alloreactive T cells, the assay reported herein assesses T-cell activation markers after a short-term MLR to characterize immediate immune status. These findings offer a promising tool to elucidate immune responses post-transplantation.
Collapse
Affiliation(s)
| | - Naoki Tanimine
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | | | | | | | | |
Collapse
|
9
|
Huang J, Song S, Yin Y, He Y, Wang H, Gu Y, He L, Wang X, Miao X, Zhang Z, Zhang X, Li Y. Unveiling immunogenic characteristics and neoantigens in endometrial cancer with POLE hotspot mutations for improved immunotherapy. Front Immunol 2025; 16:1528532. [PMID: 39931062 PMCID: PMC11808158 DOI: 10.3389/fimmu.2025.1528532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/06/2025] [Indexed: 02/13/2025] Open
Abstract
Background Immunotherapy, especially with the use of immune checkpoint inhibitors, has demonstrated efficacy for a variety of malignant tumors. However, the potential of immunotherapy for endometrial cancer (EC) with POLE mutations remains underexplored. Methods We utilized multiple databases and clinical specimens to investigate the immunogenicity profiles of EC patients carrying POLE mutations. One particular hotspot mutation POLEP286R was identified and further studied. Consequently, by constructing human leukocyte antigen (HLA) tetramers and incubating them with patients' peripheral blood mononuclear cells (PBMCs), T cells capable of recognizing the POLEP286R mutation were sorted for further transcriptomic, proteomic and T-cell receptor (TCR) sequencing analyses and for an organoid EC model. Results Tumor- and immune-related pathways were shown to be activated in the POLEP286R mutant group. Importantly, by using an organoid model of EC, we further confirmed the antitumor potential of T cells that were specific to the POLEP286R mutation. Conclusions Our study uncovers the pronounced immunogenicity of POLE-mutant EC and characterizes neoantigens that are unique to the POLEP286R mutation, thus providing a promising new immunotherapeutic strategy for EC.
Collapse
Affiliation(s)
- Jian Huang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shuangna Song
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yihua Yin
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yinyan He
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huimin Wang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ye Gu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Laman He
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xintao Wang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaocao Miao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhigang Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xueli Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yiran Li
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Center for Reproductive Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
10
|
Sun Z, Wu Z, Su X. Developing an Effective Therapeutic HPV Vaccine to Eradicate Large Tumors by Genetically Fusing Xcl1 and Incorporating IL-9 as Molecular Adjuvants. Vaccines (Basel) 2025; 13:49. [PMID: 39852828 PMCID: PMC11768903 DOI: 10.3390/vaccines13010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND Human papillomavirus (HPV) is a prevalent infection affecting both men and women, leading to various cytological lesions. Therapeutic vaccines mount a HPV-specific CD8+ cytotoxic T lymphocyte response, thus clearing HPV-infected cells. However, no therapeutic vaccines targeting HPV are currently approved for clinical treatment due to limited efficacy. Our goal is to develop a vaccine that can effectively eliminate tumors caused by HPV. METHODS We genetically fused the chemokine XCL1 with the E6 and E7 proteins of HPV16 to target cDC1 and enhance the vaccine-induced cytotoxic T cell response, ultimately developing a DNA vaccine. Additionally, we screened various interleukins and identified IL-9 as an effective molecular adjuvant for our DNA vaccine. RESULTS The fusion of Xcl1 significantly improved the quantity and quality of the specific CD8+ T cells. The fusion of Xcl1 also increased immune cell infiltration into the tumor microenvironment. The inclusion of IL-9 significantly elevated the vaccine-induced specific T cell response and enhanced anti-tumor efficacy. IL-9 promotes the formation of central memory T cells. CONCLUSIONS the fusion of Xcl1 and the use of IL-9 as a molecular adjuvant represent promising strategies for vaccine development.
Collapse
Affiliation(s)
- Zhongjie Sun
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Newish Biological R&D Center, Wuxi 214111, China
| | - Zhongyan Wu
- Newish Biological R&D Center, Wuxi 214111, China
| | - Xuncheng Su
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
11
|
Keetz K, Knapp M, Schulze Zur Wiesch J. Utilizing pMHC Multimers to Study Antigen-Specific T Cells and T Cell Exhaustion in Chronic Viral Infections. Methods Mol Biol 2025; 2904:193-209. [PMID: 40220235 DOI: 10.1007/978-1-0716-4414-0_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2025]
Abstract
This chapter presents a detailed protocol for peptide-major histocompatibility complex (pMHC) multimer staining and magnetic activated cell separation, offering a step-by-step guide to isolating and studying low-frequency antigen-specific T cells. This methodological approach provides a means to evaluate the phenotype and function of antigen-specific T cells, potentially facilitating the assessment of novel therapeutic interventions and aiding in understanding T cell exhaustion in chronic viral diseases. Despite challenges such as the necessity of knowing the epitope and HLA restrictions as well as the intricate nature of the pMHC multimer staining process, this protocol serves as a fundamental tool for both basic research and translational applications in chronic viral infections.
Collapse
Affiliation(s)
- K Keetz
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - M Knapp
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - J Schulze Zur Wiesch
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
12
|
Nettersheim FS, Brunel S, Sinkovits RS, Armstrong SS, Roy P, Billitti M, Kobiyama K, Alimadadi A, Bombin S, Lu L, Zoccheddu M, Oliaeimotlagh M, Benedict CA, Sette A, Ley K. PD-1 and CD73 on naive CD4 + T cells synergistically limit responses to self. Nat Immunol 2025; 26:105-115. [PMID: 39572641 PMCID: PMC11697576 DOI: 10.1038/s41590-024-02021-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 10/17/2024] [Indexed: 12/11/2024]
Abstract
Vaccination with self- and foreign peptides induces weak and strong expansion of antigen-specific CD4+ T cells, respectively, but the mechanism is not known. In the present study, we used computational analysis of the entire mouse major histocompatibility complex class II peptidome to test how much of the naive CD4+ T cell repertoire specific for self-antigens was shaped by negative selection in the thymus and found that negative selection only partially explained the difference between responses to self and foreign. In naive uninfected and unimmunized mice, we identified higher expression of programmed cell death protein 1 (PD-1) and CD73 mRNA and protein on self-specific CD4+ T cells compared with foreign-specific CD4+ T cells. Pharmacological or genetic blockade of PD-1 and CD73 significantly increased the vaccine-induced expansion of self-specific CD4+ T cells and their transcriptomes were similar to those of foreign-specific CD4+ T cells. We concluded that PD-1 and CD73 synergistically limited CD4+ T cell responses to self. These observations have implications for the development of tolerogenic vaccines and cancer immunotherapy.
Collapse
Affiliation(s)
| | - Simon Brunel
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Robert S Sinkovits
- San Diego Supercomputer Center, University of California, La Jolla, CA, USA
| | | | - Payel Roy
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Immunology Center of Georgia, Augusta University, Augusta, GA, USA
| | | | - Kouji Kobiyama
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Division of Vaccine Science, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Ahmad Alimadadi
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Immunology Center of Georgia, Augusta University, Augusta, GA, USA
| | - Sergei Bombin
- Immunology Center of Georgia, Augusta University, Augusta, GA, USA
| | - Lihui Lu
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | | | | | | | - Klaus Ley
- La Jolla Institute for Immunology, La Jolla, CA, USA.
- Immunology Center of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
13
|
Wang M, Fan W, Wu T, Li M. TPepRet: a deep learning model for characterizing T-cell receptors-antigen binding patterns. Bioinformatics 2024; 41:btaf022. [PMID: 39880376 PMCID: PMC11784750 DOI: 10.1093/bioinformatics/btaf022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/03/2025] [Accepted: 01/26/2025] [Indexed: 01/31/2025] Open
Abstract
MOTIVATION T-cell receptors (TCRs) elicit and mediate the adaptive immune response by recognizing antigenic peptides, a process pivotal for cancer immunotherapy, vaccine design, and autoimmune disease management. Understanding the intricate binding patterns between TCRs and peptides is critical for advancing these clinical applications. While several computational tools have been developed, they neglect the directional semantics inherent in sequence data, which are essential for accurately characterizing TCR-peptide interactions. RESULTS To address this gap, we develop TPepRet, an innovative model that integrates subsequence mining with semantic integration capabilities. TPepRet combines the strengths of the Bidirectional Gated Recurrent Unit (BiGRU) network for capturing bidirectional sequence dependencies with the Large Language Model framework to analyze subsequences and global sequences comprehensively, which enables TPepRet to accurately decipher the semantic binding relationship between TCRs and peptides. We have evaluated TPepRet to a range of challenging scenarios, including performance benchmarking against other tools using diverse datasets, analysis of peptide binding preferences, characterization of T cells clonal expansion, identification of true binder in complex environments, assessment of key binding sites through alanine scanning, validation against expression rates from large-scale datasets, and ability to screen SARS-CoV-2 TCRs. The comprehensive results suggest that TPepRet outperforms existing tools. We believe TPepRet will become an effective tool for understanding TCR-peptide binding in clinical treatment. AVAILABILITY AND IMPLEMENTATION The source code can be obtained from https://github.com/CSUBioGroup/TPepRet.git.
Collapse
Affiliation(s)
- Meng Wang
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Wei Fan
- Nuffield Department of Women’s and Reproductive Health, University of Oxford, Oxford OX39DU, United Kingdom
| | - Tianrui Wu
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Min Li
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
14
|
Hu W, Bian Y, Ji H. TIL Therapy in Lung Cancer: Current Progress and Perspectives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2409356. [PMID: 39422665 PMCID: PMC11633538 DOI: 10.1002/advs.202409356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/03/2024] [Indexed: 10/19/2024]
Abstract
Lung cancer remains the most prevalent malignant tumor worldwide and is the leading cause of cancer-related mortality. Although immune checkpoint blockade has revolutionized the treatment of advanced lung cancer, many patients still do not respond well, often due to the lack of functional T cell infiltration. Adoptive cell therapy (ACT) using expanded immune cells has emerged as an important therapeutic modality. Tumor-infiltrating lymphocytes (TIL) therapy is one form of ACT involving the administration of expanded and activated autologous T cells derived from surgically resected cancer tissues and reinfusion into patients and holds great therapeutic potential for lung cancer. In this review, TIL therapy is introduced and its suitability for lung cancer is discussed. Then its historical and clinical developments are summarized, and the methods developed up-to-date to identify tumor-recognizing TILs and optimize TIL composition. Some perspectives toward future TIL therapy for lung cancer are also provided.
Collapse
Affiliation(s)
- Weilei Hu
- Key Laboratory of Systems Health Science of Zhejiang ProvinceSchool of Life ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhou310024China
- Key Laboratory of Multi‐Cell SystemsShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghai200031China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yifei Bian
- Key Laboratory of Multi‐Cell SystemsShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghai200031China
- University of Chinese Academy of SciencesBeijing100049China
| | - Hongbin Ji
- Key Laboratory of Systems Health Science of Zhejiang ProvinceSchool of Life ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhou310024China
- Key Laboratory of Multi‐Cell SystemsShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghai200031China
- University of Chinese Academy of SciencesBeijing100049China
- School of Life Science and TechnologyShanghai Tech UniversityShanghai200120China
| |
Collapse
|
15
|
Mahdy AKH, Lokes E, Schöpfel V, Kriukova V, Britanova OV, Steiert TA, Franke A, ElAbd H. Bulk T cell repertoire sequencing (TCR-Seq) is a powerful technology for understanding inflammation-mediated diseases. J Autoimmun 2024; 149:103337. [PMID: 39571301 DOI: 10.1016/j.jaut.2024.103337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 10/12/2024] [Accepted: 11/09/2024] [Indexed: 12/15/2024]
Abstract
Multiple alterations in the T cell repertoire were identified in many chronic inflammatory diseases such as inflammatory bowel disease, multiple sclerosis, and rheumatoid arthritis, suggesting that T cells might, directly or indirectly, be implicated in these pathologies. This has sparked a deep interest in characterizing disease-associated T cell clonotypes as well as in identifying and quantifying their contribution to the pathophysiology of different autoimmune and inflammation-mediated diseases. Bulk T cell repertoire sequencing (TCR-Seq) has emerged as a powerful method to profile the T cell repertoire of a sample in a high throughput fashion. Given the increasing utilization of TCR-Seq, we aimed here to provide a comprehensive, up-to-date review of the method, its extensions, and its ability to investigate chronic and autoimmune diseases. Specifically, we started by introducing the immunological basis of TCR repertoire generation and features, followed by discussing different experimental approach to perform TCR-Seq, then we describe different methods and frameworks for analyzing the generated datasets. Subsequently, different experimental techniques for investigating the antigenicity of T cell clonotypes are described. Lastly, we discuss recent studies that utilized TCR-Seq to understand different inflammation-mediated diseases, discuss fallbacks of the technology and potential future directions to overcome current limitations.
Collapse
Affiliation(s)
- Aya K H Mahdy
- Institute of Clinical Molecular Biology, Kiel University & University Medical Centre Schleswig-Holstein, Kiel, 24105, Germany
| | - Evgeniya Lokes
- Institute of Clinical Molecular Biology, Kiel University & University Medical Centre Schleswig-Holstein, Kiel, 24105, Germany
| | - Valentina Schöpfel
- Institute of Clinical Molecular Biology, Kiel University & University Medical Centre Schleswig-Holstein, Kiel, 24105, Germany
| | - Valeriia Kriukova
- Institute of Clinical Molecular Biology, Kiel University & University Medical Centre Schleswig-Holstein, Kiel, 24105, Germany
| | - Olga V Britanova
- Institute of Clinical Molecular Biology, Kiel University & University Medical Centre Schleswig-Holstein, Kiel, 24105, Germany
| | - Tim A Steiert
- Institute of Clinical Molecular Biology, Kiel University & University Medical Centre Schleswig-Holstein, Kiel, 24105, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University & University Medical Centre Schleswig-Holstein, Kiel, 24105, Germany.
| | - Hesham ElAbd
- Institute of Clinical Molecular Biology, Kiel University & University Medical Centre Schleswig-Holstein, Kiel, 24105, Germany.
| |
Collapse
|
16
|
Fritsch N, Aparicio-Soto M, Curato C, Riedel F, Thierse HJ, Luch A, Siewert K. Chemical-Specific T Cell Tests Aim to Bridge a Gap in Skin Sensitization Evaluation. TOXICS 2024; 12:802. [PMID: 39590982 PMCID: PMC11598016 DOI: 10.3390/toxics12110802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/30/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024]
Abstract
T cell activation is the final key event (KE4) in the adverse outcome pathway (AOP) of skin sensitization. However, validated new approach methodologies (NAMs) for evaluating this step are missing. Accordingly, chemicals that activate an unusually high frequency of T cells, as does the most prevalent metal allergen nickel, are not yet identified in a regulatory context. T cell reactivity to chemical sensitizers might be especially relevant in real-life scenarios, where skin injury, co-exposure to irritants in chemical mixtures, or infections may trigger the heterologous innate immune stimulation necessary to induce adaptive T cell responses. Additionally, cross-reactivity, which underlies cross-allergies, can only be assessed by T cell tests. To date, several experimental T cell tests are available that use primary naïve and memory CD4+ and CD8+ T cells from human blood. These include priming and lymphocyte proliferation tests and, most recently, activation-induced marker (AIM) assays. All approaches are challenged by chemical-mediated toxicity, inefficient or unknown generation of T cell epitopes, and a low throughput. Here, we summarize solutions and strategies to confirm in vitro T cell signals. Broader application and standardization are necessary to possibly define chemical applicability domains and to strengthen the role of T cell tests in regulatory risk assessment.
Collapse
Affiliation(s)
- Nele Fritsch
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Dermatotoxicology Study Centre, 10589 Berlin, Germany; (N.F.); (C.C.); (F.R.)
- Institute of Biotechnology, Technical University of Berlin, 10115 Berlin, Germany
| | - Marina Aparicio-Soto
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Dermatotoxicology Study Centre, 10589 Berlin, Germany; (N.F.); (C.C.); (F.R.)
| | - Caterina Curato
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Dermatotoxicology Study Centre, 10589 Berlin, Germany; (N.F.); (C.C.); (F.R.)
| | - Franziska Riedel
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Dermatotoxicology Study Centre, 10589 Berlin, Germany; (N.F.); (C.C.); (F.R.)
| | - Hermann-Josef Thierse
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Dermatotoxicology Study Centre, 10589 Berlin, Germany; (N.F.); (C.C.); (F.R.)
| | - Andreas Luch
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Dermatotoxicology Study Centre, 10589 Berlin, Germany; (N.F.); (C.C.); (F.R.)
- Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Katherina Siewert
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Dermatotoxicology Study Centre, 10589 Berlin, Germany; (N.F.); (C.C.); (F.R.)
| |
Collapse
|
17
|
He T, Chen K, Zhou Q, Cai H, Yang H. Immune repertoire profiling in myasthenia gravis. Immunol Cell Biol 2024; 102:891-906. [PMID: 39396830 DOI: 10.1111/imcb.12825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/26/2024] [Accepted: 09/19/2024] [Indexed: 10/15/2024]
Abstract
Myasthenia gravis (MG) is the most frequent immune-mediated neurological disorder, characterized by fluctuating muscle weakness. Specific recognition of self-antigens by T-cell receptors (TCRs) and B-cell receptors (BCRs), coupled with T-B cell interactions, activates B cells to produce autoantibodies, which are critical for the initiation and perpetuation of MG. The immune repertoire comprises all functionally diverse T and B cells at a specific time point in an individual, reflecting the essence of immune selectivity. By sequencing the nucleotide sequences of TCRs and BCRs, it is possible to track individual T- and B-cell clones. This review delves into the generation of autoreactive TCRs and BCRs in MG and comprehensively examines the applications of immune repertoire sequencing in understanding disease pathogenesis, developing diagnostic and prognostic markers and informing targeted therapies. We also discuss the current limitations and future potential of this approach.
Collapse
MESH Headings
- Myasthenia Gravis/immunology
- Humans
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- B-Lymphocytes/immunology
- Autoantibodies/immunology
- Animals
- Autoantigens/immunology
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Ting He
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Kangzhi Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qian Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Haobing Cai
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Huan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
18
|
Yagawa Y, Kobayashi Y, Fujita I, Watanabe M, Koido S, Sugiyama H, Tanigawa K. Peritoneal Dissemination and Malignant Ascites in Duodenal Cancer Successfully Treated With Adoptive Cell Therapy Using WT1- and MUC1-Pulsed Dendritic Cells and Activated T Cells With No Adverse Effects: A Case Report. Cureus 2024; 16:e74834. [PMID: 39737308 PMCID: PMC11684412 DOI: 10.7759/cureus.74834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2024] [Indexed: 01/01/2025] Open
Abstract
A satisfactory treatment for the dissemination of duodenal cancer has not yet been established. We describe a case of peritoneal dissemination and malignant ascites in duodenal cancer that was successfully treated with adoptive cell therapy with no adverse effects. A 72-year-old Japanese male patient with primary duodenal cancer with distal lymph node metastases received chemotherapy with S-1, an oral pyrimidine fluoride-derived agent, and oxaliplatin after gastrojejunal bypass, which resulted in tumor shrinkage; however, peritoneal dissemination developed. Despite the administration of a second-line chemotherapy regimen comprising irinotecan, peritoneal dissemination, malignant ascites, and cachexia continued to progress, ultimately resulting in the failure of chemotherapy. He then received adoptive cell therapy with Wilms' tumor 1 (WT1)- and mucin 1 (MUC1) peptide-pulsed dendritic cells (WT1/MUC1-DC) and CD3-activated T lymphocytes (CAT). Following the administration of this treatment eight times per week, the patient's symptoms and malignant ascites surrounding his cancer disappeared. He developed no adverse effects from this treatment and was able to resume his usual activities without any symptoms. He has continued this treatment every few months as maintenance therapy and has been free of relapse for 54 months. This case suggests a possible beneficial effect of adoptive cell therapy with WT1/MUC1-DC and CAT for peritoneal dissemination and malignant ascites in duodenal cancer.
Collapse
Affiliation(s)
- Yohsuke Yagawa
- Department of Immunotherapy, Bio-Thera Clinic, Tokyo, JPN
| | | | - Izumi Fujita
- Department of Surgery, Ebara Hospital, Tokyo, JPN
| | - Manabu Watanabe
- Department of Surgery, Toho University Ohashi Medical Center, Tokyo, JPN
| | - Shigeo Koido
- Internal Medicine, The Jikei University School of Medicine, Tokyo, JPN
| | - Haruo Sugiyama
- Department of Cancer Immunology, Osaka University Graduate School of Medcine, Osaka, JPN
| | | |
Collapse
|
19
|
Lam N, Lee Y, Farber DL. A guide to adaptive immune memory. Nat Rev Immunol 2024; 24:810-829. [PMID: 38831162 DOI: 10.1038/s41577-024-01040-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2024] [Indexed: 06/05/2024]
Abstract
Immune memory - comprising T cells, B cells and plasma cells and their secreted antibodies - is crucial for human survival. It enables the rapid and effective clearance of a pathogen after re-exposure, to minimize damage to the host. When antigen-experienced, memory T cells become activated, they proliferate and produce effector molecules at faster rates and in greater magnitudes than antigen-inexperienced, naive cells. Similarly, memory B cells become activated and differentiate into antibody-secreting cells more rapidly than naive B cells, and they undergo processes that increase their affinity for antigen. The ability of T cells and B cells to form memory cells after antigen exposure is the rationale behind vaccination. Understanding immune memory not only is crucial for the design of more-efficacious vaccines but also has important implications for immunotherapies in infectious disease and cancer. This 'guide to' article provides an overview of the current understanding of the phenotype, function, location, and pathways for the generation, maintenance and protective capacity of memory T cells and memory B cells.
Collapse
Affiliation(s)
- Nora Lam
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - YoonSeung Lee
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Donna L Farber
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
20
|
Almanaa TN. Reverse Vaccinology Integrated with Biophysics Techniques for Designing a Peptide-Based Subunit Vaccine for Bourbon Virus. Bioengineering (Basel) 2024; 11:1056. [PMID: 39593716 PMCID: PMC11591159 DOI: 10.3390/bioengineering11111056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/14/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024] Open
Abstract
Despite the seriousness of the disease carried by ticks, little is known about the Bourbon virus. Only three US states have recorded human cases of Bourbon virus (BRBV) infection; in all cases, a tick bite was connected with the onset of the illness. The Bourbon virus (BRBV) belongs to the Orthomyxoviridae family and Thogotovirus genus, originating in the states of the US, i.e., Kansas, Oklahoma and Missouri. The growing rates of BRBV infections in various parts of the US highlight the necessity for a thorough analysis of the virus's transmission mechanisms, vector types and reservoir hosts. Currently, there are no vaccines or efficient antiviral therapies to stop these infections. It is imperative to produce a vaccination that is both affordable and thermodynamically stable to reduce the likelihood of future pandemics. Various computational techniques and reverse vaccinology methodologies were employed to identify specific B- and T-cell epitopes. After thorough examination, the linker proteins connected the B- and T-cell epitopes, resulting in this painstakingly constructed vaccine candidate. Furthermore, 3D modeling directed the vaccine construct toward molecular docking to determine its binding affinity and interaction with TLR-4. Human beta-defensin was used as an adjuvant and linked to the N-terminus to boost immunogenicity. Furthermore, the C-IMMSIM simulation resulted in high immunogenic activities, with activation of high interferon, interleukins and immunoglobulin. The results of the in silico cloning process for E. coli indicated that the vaccine construct will try its utmost to express itself in the host, with a codon adaptation CAI value of 0.94. A net binding free energy of -677.7 kcal/mol obtained during docking showed that the vaccine has a high binding affinity for immunological receptors. Further validation was achieved via molecular dynamic simulations, inferring the confirmational changes during certain time intervals, but the vaccine remained intact to the binding site for a 100 ns interval. The thermostability determined using an RMSF score predicted certain changes in the mechanistic insights of the loop region with carbon alpha deviations, but no major changes were observed during the simulations. Thus, the results obtained highlight a major concern for researchers to further validate the vaccine's efficacy using in vitro and in vivo approaches.
Collapse
Affiliation(s)
- Taghreed N Almanaa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
21
|
Chudnovskiy A, Castro TBR, Nakandakari-Higa S, Cui A, Lin CH, Sade-Feldman M, Phillips BK, Pae J, Mesin L, Bortolatto J, Schweitzer LD, Pasqual G, Lu LF, Hacohen N, Victora GD. Proximity-dependent labeling identifies dendritic cells that drive the tumor-specific CD4 + T cell response. Sci Immunol 2024; 9:eadq8843. [PMID: 39365874 DOI: 10.1126/sciimmunol.adq8843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/26/2024] [Indexed: 10/06/2024]
Abstract
Dendritic cells (DCs) are uniquely capable of transporting tumor antigens to tumor-draining lymph nodes (tdLNs) and interact with effector T cells in the tumor microenvironment (TME) itself, mediating both natural antitumor immunity and the response to checkpoint blockade immunotherapy. Using LIPSTIC (Labeling Immune Partnerships by SorTagging Intercellular Contacts)-based single-cell transcriptomics, we identified individual DCs capable of presenting antigen to CD4+ T cells in both the tdLN and TME. Our findings revealed that DCs with similar hyperactivated transcriptional phenotypes interact with helper T cells both in tumors and in the tdLN and that checkpoint blockade drugs enhance these interactions. These findings show that a relatively small fraction of DCs is responsible for most of the antigen presentation in the tdLN and TME to both CD4+ and CD8+ tumor-specific T cells and that classical checkpoint blockade enhances CD40-driven DC activation at both sites.
Collapse
Affiliation(s)
- Aleksey Chudnovskiy
- Laboratory of Lymphocyte Dynamics, Rockefeller University, New York, NY, USA
| | - Tiago B R Castro
- Laboratory of Lymphocyte Dynamics, Rockefeller University, New York, NY, USA
| | | | - Ang Cui
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard School of Dental Medicine, Harvard University, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Chia-Hao Lin
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | | | - Brooke K Phillips
- Laboratory of Lymphocyte Dynamics, Rockefeller University, New York, NY, USA
| | - Juhee Pae
- Laboratory of Lymphocyte Dynamics, Rockefeller University, New York, NY, USA
| | - Luka Mesin
- Laboratory of Lymphocyte Dynamics, Rockefeller University, New York, NY, USA
| | - Juliana Bortolatto
- Laboratory of Lymphocyte Dynamics, Rockefeller University, New York, NY, USA
| | | | - Giulia Pasqual
- Laboratory of Synthetic Immunology, Oncology and Immunology Section, Department of Surgery Oncology and Gastroenterology, University of Padua, Padua, Italy
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Li-Fan Lu
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Nir Hacohen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Gabriel D Victora
- Laboratory of Lymphocyte Dynamics, Rockefeller University, New York, NY, USA
| |
Collapse
|
22
|
Humblin E, Korpas I, Prokhnevska N, Vaidya A, Lu J, van der Heide V, Filipescu D, Bobrowski T, Marks A, Park MD, Bernstein E, Brown BD, Lujambio A, Dominguez-Sola D, Rosenberg BR, Kamphorst AO. ICOS limits memory-like properties and function of exhausted PD-1 + CD8 T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.611518. [PMID: 39345453 PMCID: PMC11429760 DOI: 10.1101/2024.09.16.611518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
During persistent antigen stimulation, PD-1 + CD8 T cells are maintained by progenitor exhausted PD-1 + TCF-1 + CD8 T cells (Tpex). Tpex respond to PD-1 blockade, and regulation of Tpex differentiation into more functional Tex is of major interest for cancer immunotherapies. Tpex express high levels of Inducible Costimulator (ICOS), but the role of ICOS for PD-1 + CD8 T cell responses has not been addressed. In chronic infection, ICOS-deficiency increased both number and quality of virus-specific CD8 T cells, with accumulation of effector-like Tex due to enhanced survival. Mechanistically, loss of ICOS signaling potentiated FoxO1 activity and memory-like features of Tpex. In mice with established chronic infection, ICOS-Ligand blockade resulted in expansion of effector-like Tex and reduction in viral load. In a mouse model of hepatocellular carcinoma, ICOS inhibition improved cytokine production by tumor-specific PD-1 + CD8 T cells and delayed tumor growth. Overall, we show that ICOS limits CD8 T cell responses during chronic antigen exposure.
Collapse
|
23
|
Zhang M, Wang X, Wu J, Wang Q, Cui H, Chen X, Zhao Z, Liu S, Ye S. Preparation empty peptide-receptive MHC class I complex for large-scale detection through photolabile peptide ligands. Int J Biol Macromol 2024; 276:133781. [PMID: 38992528 DOI: 10.1016/j.ijbiomac.2024.133781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/24/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Peptide-major histocompatibility complex (pMHC) multimers are wide recognized as the premier technique for detecting, characterizing, and isolating antigen-specific CD8+ T-cell subsets. These multimers are specifically useful in studying infections, autoimmune conditions, and cancer through single-cell analysis techniques such as flow cytometry and fluorescence microscopy. However, the development of high-throughput assays with commercially available pMHC tetramers can be expensive, while in-house production may pose challenges for most biology research laboratories. In this context, we introduce a cost-friendly and uncomplicated protocol to prepare empty MHC class I tetramers using disulfide-stabilized molecules and photolabile peptide ligands. Our method relies on disulfide bond-stabilized MHC-I molecules, which demonstrated stability when folded into stable monomers in the presence of a photolabile epitope. These monomers, upon ultraviolet irradiation and streptavidin binding, efficiently assemble into tetramers devoid of any peptide. Following a short incubation with the peptide of interest under gentle conditions, the resulting pMHC tetramer effectively detects patient-sourced, neoantigen-specific T cells. Our unique approach streamlines large-scale pMHC generation, thus paving the way for advancements in T cell-based diagnostics and personalized therapies.
Collapse
Affiliation(s)
- Mengyu Zhang
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Xiangyao Wang
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Junjie Wu
- Jinzhou Medical University, Jinzhou, China
| | - Qiwei Wang
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Haozhe Cui
- School of Medicine, Nankai University, Tianjin, China
| | - Xiaofeng Chen
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Zhiming Zhao
- The Faculty of Hepatopancreatobiliary Surgery, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China.
| | - Si Liu
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China.
| | - Sheng Ye
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China.
| |
Collapse
|
24
|
Rojas M, Acosta-Ampudia Y, Heuer LS, Zang W, M Monsalve D, Ramírez-Santana C, Anaya JM, M Ridgway W, A Ansari A, Gershwin ME. Antigen-specific T cells and autoimmunity. J Autoimmun 2024; 148:103303. [PMID: 39141985 DOI: 10.1016/j.jaut.2024.103303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
Autoimmune diseases (ADs) showcase the intricate balance between the immune system's protective functions and its potential for self-inflicted damage. These disorders arise from the immune system's erroneous targeting of the body's tissues, resulting in damage and disease. The ability of T cells to distinguish between self and non-self-antigens is pivotal to averting autoimmune reactions. Perturbations in this process contribute to AD development. Autoreactive T cells that elude thymic elimination are activated by mimics of self-antigens or are erroneously activated by self-antigens can trigger autoimmune responses. Various mechanisms, including molecular mimicry and bystander activation, contribute to AD initiation, with specific triggers and processes varying across the different ADs. In addition, the formation of neo-epitopes could also be implicated in the emergence of autoreactivity. The specificity of T cell responses centers on the antigen recognition sequences expressed by T cell receptors (TCRs), which recognize peptide fragments displayed by major histocompatibility complex (MHC) molecules. The assortment of TCR gene combinations yields a diverse array of T cell populations, each with distinct affinities for self and non-self antigens. However, new evidence challenges the traditional notion that clonal expansion solely steers the selection of higher-affinity T cells. Lower-affinity T cells also play a substantial role, prompting the "two-hit" hypothesis. High-affinity T cells incite initial responses, while their lower-affinity counterparts perpetuate autoimmunity. Precision treatments that target antigen-specific T cells hold promise for avoiding widespread immunosuppression. Nevertheless, detection of such antigen-specific T cells remains a challenge, and multiple technologies have been developed with different sensitivities while still harboring several drawbacks. In addition, elements such as human leukocyte antigen (HLA) haplotypes and validation through animal models are pivotal for advancing these strategies. In brief, this review delves into the intricate mechanisms contributing to ADs, accentuating the pivotal role(s) of antigen-specific T cells in steering immune responses and disease progression, as well as the novel strategies for the identification of antigen-specific cells and their possible future use in humans. Grasping the mechanisms behind ADs paves the way for targeted therapeutic interventions, potentially enhancing treatment choices while minimizing the risk of systemic immunosuppression.
Collapse
Affiliation(s)
- Manuel Rojas
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA; Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia.
| | - Yeny Acosta-Ampudia
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Luke S Heuer
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
| | - Weici Zang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
| | - Diana M Monsalve
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Carolina Ramírez-Santana
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | | | - William M Ridgway
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
| | - Aftab A Ansari
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
25
|
Gujar S, Pol JG, Kumar V, Lizarralde-Guerrero M, Konda P, Kroemer G, Bell JC. Tutorial: design, production and testing of oncolytic viruses for cancer immunotherapy. Nat Protoc 2024; 19:2540-2570. [PMID: 38769145 DOI: 10.1038/s41596-024-00985-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 02/12/2024] [Indexed: 05/22/2024]
Abstract
Oncolytic viruses (OVs) represent a novel class of cancer immunotherapy agents that preferentially infect and kill cancer cells and promote protective antitumor immunity. Furthermore, OVs can be used in combination with established or upcoming immunotherapeutic agents, especially immune checkpoint inhibitors, to efficiently target a wide range of malignancies. The development of OV-based therapy involves three major steps before clinical evaluation: design, production and preclinical testing. OVs can be designed as natural or engineered strains and subsequently selected for their ability to kill a broad spectrum of cancer cells rather than normal, healthy cells. OV selection is further influenced by multiple factors, such as the availability of a specific viral platform, cancer cell permissivity, the need for genetic engineering to render the virus non-pathogenic and/or more effective and logistical considerations around the use of OVs within the laboratory or clinical setting. Selected OVs are then produced and tested for their anticancer potential by using syngeneic, xenograft or humanized preclinical models wherein immunocompromised and immunocompetent setups are used to elucidate their direct oncolytic ability as well as indirect immunotherapeutic potential in vivo. Finally, OVs demonstrating the desired anticancer potential progress toward translation in patients with cancer. This tutorial provides guidelines for the design, production and preclinical testing of OVs, emphasizing considerations specific to OV technology that determine their clinical utility as cancer immunotherapy agents.
Collapse
Affiliation(s)
- Shashi Gujar
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| | - Jonathan G Pol
- INSERM, U1138, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Cité, Paris, France
- Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, UMS AMICCa, Gustave Roussy, Villejuif, France
| | - Vishnupriyan Kumar
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| | - Manuela Lizarralde-Guerrero
- INSERM, U1138, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Cité, Paris, France
- Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, UMS AMICCa, Gustave Roussy, Villejuif, France
- Ecole Normale Supérieure de Lyon, Lyon, France
| | - Prathyusha Konda
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Harvard University, Boston, MA, USA
| | - Guido Kroemer
- INSERM, U1138, Paris, France.
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.
- Université Paris Cité, Paris, France.
- Sorbonne Université, Paris, France.
- Metabolomics and Cell Biology Platforms, UMS AMICCa, Gustave Roussy, Villejuif, France.
- Institut Universitaire de France, Paris, France.
- Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| | - John C Bell
- Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, Ontario, Canada.
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.
| |
Collapse
|
26
|
Najar TA, Hao Y, Hao Y, Romero-Meza G, Dolynuk A, Littman DR. Microbiota-induced plastic T cells enhance immune control of antigen-sharing tumors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.12.607605. [PMID: 39185202 PMCID: PMC11343098 DOI: 10.1101/2024.08.12.607605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Therapies that harness the immune system to target and eliminate tumor cells have revolutionized cancer care. Immune checkpoint blockade (ICB), which boosts the anti-tumor immune response by inhibiting negative regulators of T cell activation1-3, is remarkably successful in a subset of cancer patients, yet a significant proportion do not respond to treatment, emphasizing the need to understand factors influencing the therapeutic efficacy of ICB4-9. The gut microbiota, consisting of trillions of microorganisms residing in the gastrointestinal tract, has emerged as a critical determinant of immune function and response to cancer immunotherapy, with multiple studies demonstrating association of microbiota composition with clinical response10-16. However, a mechanistic understanding of how gut commensal bacteria influence the efficacy of ICB remains elusive. Here we utilized a gut commensal microorganism, segmented filamentous bacteria (SFB), which induces an antigen-specific Th17 cell effector program17, to investigate how colonization with it affects the efficacy of ICB in restraining distal growth of tumors sharing antigen with SFB. We find that anti-PD-1 treatment effectively inhibits the growth of implanted SFB antigen-expressing melanoma only if mice are colonized with SFB. Through T cell receptor clonal lineage tracing, fate mapping, and peptide-MHC tetramer staining, we identify tumor-associated SFB-specific Th1-like cells derived from the homeostatic Th17 cells induced by SFB colonization in the small intestine lamina propria. These gut-educated ex-Th17 cells produce high levels of the pro-inflammatory cytokines IFN-γ and TNF-α, and promote expansion and effector functions of CD8+ tumor-infiltrating cytotoxic lymphocytes, thereby controlling tumor growth. A better understanding of how distinct intestinal commensal microbes can promote T cell plasticity-dependent responses against antigen-sharing tumors may allow for the design of novel cancer immunotherapeutic strategies.
Collapse
Affiliation(s)
- Tariq A. Najar
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | - Yuan Hao
- Applied Bioinformatics Laboratories, Division of Advanced Research Technologies, New York, New York University School of Medicine, New York, NY 10016, USA
- Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Yuhan Hao
- Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
- New York Genome Center, New York, NY 10013, USA
| | - Gabriela Romero-Meza
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
- Howard Hughes Medical Institute, New York, NY 10016, USA
| | - Alexandra Dolynuk
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
- Howard Hughes Medical Institute, New York, NY 10016, USA
| | - Dan R. Littman
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
- Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
- Howard Hughes Medical Institute, New York, NY 10016, USA
| |
Collapse
|
27
|
Demirci I, Larsson AJM, Chen X, Hartman J, Sandberg R, Frisén J. Inferring clonal somatic mutations directed by X chromosome inactivation status in single cells. Genome Biol 2024; 25:214. [PMID: 39123248 PMCID: PMC11312698 DOI: 10.1186/s13059-024-03360-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Analysis of clonal dynamics in human tissues is enabled by somatic genetic variation. Here, we show that analysis of mitochondrial mutations in single cells is dramatically improved in females when using X chromosome inactivation to select informative clonal mutations. Applying this strategy to human peripheral mononuclear blood cells reveals clonal structures within T cells that otherwise are blurred by non-informative mutations, including the separation of gamma-delta T cells, suggesting this approach can be used to decipher clonal dynamics of cells in human tissues.
Collapse
Affiliation(s)
- Ilke Demirci
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Anton J M Larsson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Xinsong Chen
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Johan Hartman
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Rickard Sandberg
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| | - Jonas Frisén
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
28
|
Ravindranath KJ, Srinivasan H. Systematic Review on Flow Cytometry as a Versatile Tool for Disease Diagnosis. CURRENT PHARMACOLOGY REPORTS 2024; 10:237-249. [DOI: 10.1007/s40495-024-00359-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/26/2024] [Indexed: 01/04/2025]
|
29
|
Lindeboom RGH, Worlock KB, Dratva LM, Yoshida M, Scobie D, Wagstaffe HR, Richardson L, Wilbrey-Clark A, Barnes JL, Kretschmer L, Polanski K, Allen-Hyttinen J, Mehta P, Sumanaweera D, Boccacino JM, Sungnak W, Elmentaite R, Huang N, Mamanova L, Kapuge R, Bolt L, Prigmore E, Killingley B, Kalinova M, Mayer M, Boyers A, Mann A, Swadling L, Woodall MNJ, Ellis S, Smith CM, Teixeira VH, Janes SM, Chambers RC, Haniffa M, Catchpole A, Heyderman R, Noursadeghi M, Chain B, Mayer A, Meyer KB, Chiu C, Nikolić MZ, Teichmann SA. Human SARS-CoV-2 challenge uncovers local and systemic response dynamics. Nature 2024; 631:189-198. [PMID: 38898278 PMCID: PMC11222146 DOI: 10.1038/s41586-024-07575-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/16/2024] [Indexed: 06/21/2024]
Abstract
The COVID-19 pandemic is an ongoing global health threat, yet our understanding of the dynamics of early cellular responses to this disease remains limited1. Here in our SARS-CoV-2 human challenge study, we used single-cell multi-omics profiling of nasopharyngeal swabs and blood to temporally resolve abortive, transient and sustained infections in seronegative individuals challenged with pre-Alpha SARS-CoV-2. Our analyses revealed rapid changes in cell-type proportions and dozens of highly dynamic cellular response states in epithelial and immune cells associated with specific time points and infection status. We observed that the interferon response in blood preceded the nasopharyngeal response. Moreover, nasopharyngeal immune infiltration occurred early in samples from individuals with only transient infection and later in samples from individuals with sustained infection. High expression of HLA-DQA2 before inoculation was associated with preventing sustained infection. Ciliated cells showed multiple immune responses and were most permissive for viral replication, whereas nasopharyngeal T cells and macrophages were infected non-productively. We resolved 54 T cell states, including acutely activated T cells that clonally expanded while carrying convergent SARS-CoV-2 motifs. Our new computational pipeline Cell2TCR identifies activated antigen-responding T cells based on a gene expression signature and clusters these into clonotype groups and motifs. Overall, our detailed time series data can serve as a Rosetta stone for epithelial and immune cell responses and reveals early dynamic responses associated with protection against infection.
Collapse
Affiliation(s)
- Rik G H Lindeboom
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
- The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Kaylee B Worlock
- UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Lisa M Dratva
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Masahiro Yoshida
- UCL Respiratory, Division of Medicine, University College London, London, UK
| | - David Scobie
- Research Department of Infection, Division of Infection and Immunity, University College London, London, UK
| | - Helen R Wagstaffe
- Department of Infectious Disease, Imperial College London, London, UK
| | - Laura Richardson
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | | | - Josephine L Barnes
- UCL Respiratory, Division of Medicine, University College London, London, UK
| | | | | | | | - Puja Mehta
- UCL Respiratory, Division of Medicine, University College London, London, UK
| | | | | | - Waradon Sungnak
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Department of Microbiology, Faculty of Science, and Integrative Computational BioScience Center, Mahidol University, Bangkok, Thailand
| | - Rasa Elmentaite
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Ensocell Therapeutics, BioData Innovation Centre, Wellcome Genome Campus, Hinxton, UK
| | - Ni Huang
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Lira Mamanova
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Rakesh Kapuge
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Liam Bolt
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Elena Prigmore
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Ben Killingley
- Department of Infectious Diseases, University College London Hospital, London, UK
| | | | | | | | | | - Leo Swadling
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, UK
| | | | - Samuel Ellis
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Claire M Smith
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Vitor H Teixeira
- UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Sam M Janes
- UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Rachel C Chambers
- UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Muzlifah Haniffa
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | | | - Robert Heyderman
- Research Department of Infection, Division of Infection and Immunity, University College London, London, UK
| | - Mahdad Noursadeghi
- Research Department of Infection, Division of Infection and Immunity, University College London, London, UK
| | - Benny Chain
- Research Department of Infection, Division of Infection and Immunity, University College London, London, UK
| | - Andreas Mayer
- Research Department of Infection, Division of Infection and Immunity, University College London, London, UK
| | - Kerstin B Meyer
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Christopher Chiu
- Department of Infectious Disease, Imperial College London, London, UK
| | - Marko Z Nikolić
- UCL Respiratory, Division of Medicine, University College London, London, UK.
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
- Theory of Condensed Matter, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK.
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
30
|
Schoufour TA, van der Plas - van Duijn A, Derksen I, Melgers M, van Veenendaal JM, Lensen C, Heemskerk MH, Neefjes J, Wijdeven RH, Scheeren FA. CRISPR-Cas9 screening reveals a distinct class of MHC-I binders with precise HLA-peptide recognition. iScience 2024; 27:110120. [PMID: 38939106 PMCID: PMC11209011 DOI: 10.1016/j.isci.2024.110120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/10/2024] [Accepted: 05/24/2024] [Indexed: 06/29/2024] Open
Abstract
Human leukocyte antigen (HLA) class-I molecules present fragments of the cellular proteome to the T cell receptor (TCR) of cytotoxic T cells to control infectious diseases and cancer. The large number of combinations of HLA class-I allotypes and peptides allows for highly specific and dedicated low-affinity interactions to a diverse array of TCRs and natural killer (NK) cell receptors. Whether the divergent HLA class-I peptide complex is exclusive for interactions with these proteins is unknown. Using genome-wide CRISPR-Cas9 activation and knockout screens, we identified peptide-specific HLA-C∗07 combinations that can interact with the surface molecules CD55 and heparan sulfate. These interactions closely resemble the HLA class-I interaction with the TCR regarding both the affinity range and the specificity of the peptide and HLA allele. These findings indicate that various proteins can specifically bind HLA class-I peptide complexes due to their polymorphic nature, which suggests there are more interactions like the ones we describe here.
Collapse
Affiliation(s)
- Tom A.W. Schoufour
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, 2333 ZA Leiden, Zuid-Holland, the Netherlands
| | - Anneloes van der Plas - van Duijn
- Department of Medical Oncology, Leiden University Medical Center, 2333 ZA Leiden, Zuid-Holland, the Netherlands
- Department of Dermatology, Leiden University Medical Center, 2333 ZA Leiden, Zuid-Holland, the Netherlands
| | - Ian Derksen
- Department of Dermatology, Leiden University Medical Center, 2333 ZA Leiden, Zuid-Holland, the Netherlands
| | - Marije Melgers
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, 2333 ZA Leiden, Zuid-Holland, the Netherlands
| | | | - Claire Lensen
- Department of Medical Oncology, Leiden University Medical Center, 2333 ZA Leiden, Zuid-Holland, the Netherlands
| | - Mirjam H.M. Heemskerk
- Department of Hematology, Leiden University Medical Center, 2333 ZA Leiden, Zuid-Holland, the Netherlands
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, 2333 ZA Leiden, Zuid-Holland, the Netherlands
| | - Ruud H.M. Wijdeven
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, 2333 ZA Leiden, Zuid-Holland, the Netherlands
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Medical Center, 1007 MB Amsterdam, Noord-Holland, the Netherlands
| | - Ferenc A. Scheeren
- Department of Dermatology, Leiden University Medical Center, 2333 ZA Leiden, Zuid-Holland, the Netherlands
| |
Collapse
|
31
|
Uslu S, Lee UJ, Tavakolpour S, Abousaway O, Nili A, Bass L, Purwar P, Lacson E, Berland L, Kuhnast A, Clark LM, Picard D, Rakhshandehroo T, Mantri SR, Moravej H, Rashidian M. Development of a Stable Peptide-Major Histocompatibility Complex (MHC) via Sortase and Click Chemistry. ACS Pharmacol Transl Sci 2024; 7:1746-1757. [PMID: 38898944 PMCID: PMC11184609 DOI: 10.1021/acsptsci.3c00268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 06/21/2024]
Abstract
T cells play a crucial role in antitumor immune responses and the clearance of infected cells. They identify their targets through the binding of T-cell receptors (TCRs) to peptide-major histocompatibility complex (pMHC) molecules present in cancer cells, infected cells, and antigen-presenting cells. This interaction is often weak, requiring multimeric pMHC molecules to enhance the avidity for identifying antigen-specific T cells. Current exchangeable pMHC-I tetramerization methods may overlook TCRs recognizing less stable yet immunogenic peptides. In vivo applications targeting antigen-specific T cells demand the genetic synthesis of a pMHC fusion for each unique peptide antigen, which poses a significant challenge. To address these challenges, we developed a sortase and click chemistry-mediated approach for generating stable pMHC molecules. Leveraging sortase technology, we introduced an azide click-handle near the N-terminus of β2m, proximal to the MHC-peptide-binding groove. Simultaneously, the peptide was engineered with a multi glycine linker and a C-terminal alkyne click-handle. Azide-alkyne click reactions efficiently immobilized the peptide onto the MHC molecule, providing a versatile and efficient method for pMHC generation. The resulting peptide-clicked-MHC specifically binds to its cognate TCR and remains stable for over 3 months at 4 °C in the absence of any additional free peptide. The stability of the pMHC and its affinity to cognate TCRs are influenced by the linker's nature and length. Multi glycine linkers outperform poly(ethylene glycol) (PEG) linkers in this regard. This technology expands the toolkit for identifying and targeting antigen-specific T cells, enhancing our understanding of cancer-specific immune responses, and has the potential to streamline the development of personalized immunotherapies.
Collapse
Affiliation(s)
- Safak
C. Uslu
- Department
of Cancer Immunology and Virology, Dana-Farber
Cancer Institute, Boston, Massachusetts 02215, United States
- Medical
Scientist Training Program, Hacettepe University
Faculty of Medicine, Ankara 06230, Turkey
| | - Uk-Jae Lee
- Department
of Cancer Immunology and Virology, Dana-Farber
Cancer Institute, Boston, Massachusetts 02215, United States
| | - Soheil Tavakolpour
- Department
of Cancer Immunology and Virology, Dana-Farber
Cancer Institute, Boston, Massachusetts 02215, United States
| | - Omar Abousaway
- Department
of Cancer Immunology and Virology, Dana-Farber
Cancer Institute, Boston, Massachusetts 02215, United States
| | - Ali Nili
- Department
of Cancer Immunology and Virology, Dana-Farber
Cancer Institute, Boston, Massachusetts 02215, United States
| | - Lily Bass
- Department
of Cancer Immunology and Virology, Dana-Farber
Cancer Institute, Boston, Massachusetts 02215, United States
| | - Pragallabh Purwar
- Department
of Cancer Immunology and Virology, Dana-Farber
Cancer Institute, Boston, Massachusetts 02215, United States
| | - Edward Lacson
- Department
of Cancer Immunology and Virology, Dana-Farber
Cancer Institute, Boston, Massachusetts 02215, United States
| | - Lea Berland
- Department
of Cancer Immunology and Virology, Dana-Farber
Cancer Institute, Boston, Massachusetts 02215, United States
- CNRS,
INSERM, IRCAN, Université Côte d’Azur, 06100 Nice, France
| | - Adrien Kuhnast
- Department
of Cancer Immunology and Virology, Dana-Farber
Cancer Institute, Boston, Massachusetts 02215, United States
| | - Louise M. Clark
- Department
of Cancer Immunology and Virology, Dana-Farber
Cancer Institute, Boston, Massachusetts 02215, United States
| | - Delia Picard
- Department
of Cancer Immunology and Virology, Dana-Farber
Cancer Institute, Boston, Massachusetts 02215, United States
| | - Taha Rakhshandehroo
- Department
of Cancer Immunology and Virology, Dana-Farber
Cancer Institute, Boston, Massachusetts 02215, United States
| | - Shreya R. Mantri
- Department
of Cancer Immunology and Virology, Dana-Farber
Cancer Institute, Boston, Massachusetts 02215, United States
| | - Heydar Moravej
- Department
of Cancer Immunology and Virology, Dana-Farber
Cancer Institute, Boston, Massachusetts 02215, United States
| | - Mohammad Rashidian
- Department
of Cancer Immunology and Virology, Dana-Farber
Cancer Institute, Boston, Massachusetts 02215, United States
- Department
of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02215, United States
- Parker
Institute for Cancer Immunotherapy, San Francisco, California 94129, United States
| |
Collapse
|
32
|
Zhang Y, Liu S, Guo F, Qin S, Zhou N, Liu Z, Fan X, Chen PR. Bioorthogonal Quinone Methide Decaging Enables Live-Cell Quantification of Tumor-Specific Immune Interactions. J Am Chem Soc 2024; 146:15186-15197. [PMID: 38789930 DOI: 10.1021/jacs.4c02052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Effective antitumor immunity hinges on the specific engagement between tumor and cytotoxic immune cells, especially cytotoxic T cells. Although investigating these intercellular interactions is crucial for characterizing immune responses and guiding immunotherapeutic applications, direct and quantitative detection of tumor-T cell interactions within a live-cell context remains challenging. We herein report a photocatalytic live-cell interaction labeling strategy (CAT-Cell) relying on the bioorthogonal decaging of quinone methide moieties for sensitive and selective investigation and quantification of tumor-T cell interactions. By developing quinone methide-derived probes optimized for capturing cell-cell interactions (CCIs), we demonstrated the capacity of CAT-Cell for detecting CCIs directed by various types of receptor-ligand pairs (e.g., CD40-CD40L, TCR-pMHC) and further quantified the strengths of tumor-T cell interactions that are crucial for evaluating the antitumor immune responses. We further applied CAT-Cell for ex vivo quantification of tumor-specific T cell interactions on splenocyte and solid tumor samples from mouse models. Finally, the broad compatibility and utility of CAT-Cell were demonstrated by integrating it with the antigen-specific targeting system as well as for tumor-natural killer cell interaction detection. By leveraging the bioorthogonal photocatalytic decaging chemistry on quinone methide, CAT-Cell provides a sensitive, tunable, universal, and noninvasive toolbox for unraveling and quantifying the crucial but delicate tumor-immune interactions under live-cell settings.
Collapse
Affiliation(s)
- Yan Zhang
- New Cornerstone Science Laboratory, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Shibo Liu
- New Cornerstone Science Laboratory, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Fuhu Guo
- New Cornerstone Science Laboratory, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Shan Qin
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Nan Zhou
- New Cornerstone Science Laboratory, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ziqi Liu
- New Cornerstone Science Laboratory, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xinyuan Fan
- New Cornerstone Science Laboratory, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Peng R Chen
- New Cornerstone Science Laboratory, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
33
|
Ren F, Wang F, Baghdasaryan A, Li Y, Liu H, Hsu R, Wang C, Li J, Zhong Y, Salazar F, Xu C, Jiang Y, Ma Z, Zhu G, Zhao X, Wong KK, Willis R, Christopher Garcia K, Wu A, Mellins E, Dai H. Shortwave-infrared-light-emitting probes for the in vivo tracking of cancer vaccines and the elicited immune responses. Nat Biomed Eng 2024; 8:726-739. [PMID: 37620621 PMCID: PMC11250370 DOI: 10.1038/s41551-023-01083-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/27/2023] [Indexed: 08/26/2023]
Abstract
Tracking and imaging immune cells in vivo non-invasively would offer insights into the immune responses induced by vaccination. Here we report a cancer vaccine consisting of polymer-coated NaErF4/NaYF4 core-shell down-conversion nanoparticles emitting luminescence in the near-infrared spectral window IIb (1,500-1,700 nm in wavelength) and with surface-conjugated antigen (ovalbumin) and electrostatically complexed adjuvant (class-B cytosine-phosphate-guanine). Whole-body wide-field imaging of the subcutaneously injected vaccine in tumour-bearing mice revealed rapid migration of the nanoparticles to lymph nodes through lymphatic vessels, with two doses of the vaccine leading to the complete eradication of pre-existing tumours and to the prophylactic inhibition of tumour growth. The abundance of antigen-specific CD8+ T lymphocytes in the tumour microenvironment correlated with vaccine efficacy, as we show via continuous-wave imaging and lifetime imaging of two intravenously injected near-infrared-emitting probes (CD8+-T-cell-targeted NaYbF4/NaYF4 nanoparticles and H-2Kb/ovalbumin257-264 tetramer/PbS/CdS quantum dots) excited at different wavelengths, and by volumetrically visualizing the three nanoparticles via light-sheet microscopy with structured illumination. Nanoparticle-based vaccines and imaging probes emitting infrared light may facilitate the design and optimization of immunotherapies.
Collapse
Affiliation(s)
- Fuqiang Ren
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Feifei Wang
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Ani Baghdasaryan
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Ying Li
- Department of Pediatrics, Human Gene Therapy, Stanford University, Stanford, CA, USA
| | - Haoran Liu
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - RuSiou Hsu
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Chuchu Wang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Jiachen Li
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Yeteng Zhong
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Felix Salazar
- Department of Radiation Oncology, City of Hope, CA, USA
| | - Chun Xu
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Yingying Jiang
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Zhuoran Ma
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Guanzhou Zhu
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Xiang Zhao
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kerry Kaili Wong
- Department of Pediatrics, Human Gene Therapy, Stanford University, Stanford, CA, USA
| | - Richard Willis
- NIH Tetramer Facility at Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - K Christopher Garcia
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Anna Wu
- Department of Radiation Oncology, City of Hope, CA, USA
| | - Elizabeth Mellins
- Department of Pediatrics, Human Gene Therapy, Stanford University, Stanford, CA, USA
| | - Hongjie Dai
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA.
| |
Collapse
|
34
|
Kim J, Chang J. Cross-protective efficacy and safety of an adenovirus-based universal influenza vaccine expressing nucleoprotein, hemagglutinin, and the ectodomain of matrix protein 2. Vaccine 2024; 42:3505-3513. [PMID: 38714444 DOI: 10.1016/j.vaccine.2024.04.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/09/2024] [Accepted: 04/17/2024] [Indexed: 05/09/2024]
Abstract
It is necessary to develop universal vaccines that act broadly and continuously to combat regular seasonal epidemics of influenza and rare pandemics. The aim of this study was to find the optimal dose regimen for the efficacy and safety of a mixture of previously developed recombinant adenovirus-based vaccines that expressed influenza nucleoprotein, hemagglutinin, and ectodomain of matrix protein 2 (rAd/NP and rAd/HA-M2e). The vaccine efficacy and safety were measured in the immunized mice with the mixture of rAd/NP and rAd/HA-M2e intranasally or intramuscularly. The minimum dose that would be efficacious in a single intranasal administration of the vaccine mixture and cross-protective efficacy against various influenza strains were examined. In addition, the immune responses that may affect the cross-protective efficacy were measured. We found that intranasal administration is an optimal route for 107 pfu of vaccine mixture, which is effective against pre-existing immunity against adenovirus. In a study to find the minimum dose with vaccine efficacy, the 106 pfu of vaccine mixture showed higher antibody titers to the nucleoprotein than did the same dose of rAd/NP alone in the serum of immunized mice. The 106 pfu of vaccine mixture overcame the morbidity and mortality of mice against the lethal dose of pH1N1, H3N2, and H5N1 influenza infections. No noticeable side effects were observed in single and repeated toxicity studies. We found that the mucosal administration of adenovirus-based universal influenza vaccine has both efficacy and safety, and can provide cross-protection against various influenza infections even at doses lower than those previously known to be effective.
Collapse
MESH Headings
- Animals
- Influenza Vaccines/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Viral Matrix Proteins/immunology
- Viral Matrix Proteins/genetics
- Adenoviridae/genetics
- Adenoviridae/immunology
- Administration, Intranasal
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Mice
- Cross Protection
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/immunology
- Female
- Mice, Inbred BALB C
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza A Virus, H3N2 Subtype/genetics
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza A Virus, H5N1 Subtype/genetics
- Vaccine Efficacy
- Nucleoproteins/immunology
- Nucleoproteins/genetics
- Viral Core Proteins/immunology
- Viral Core Proteins/genetics
- Injections, Intramuscular
- Viroporin Proteins
Collapse
Affiliation(s)
- Jooyoung Kim
- QuadMedicine Inc., Seongnam, Gyeonggi 13209, Republic of Korea.
| | - Jun Chang
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
35
|
Levin N, Kim SP, Marquardt CA, Vale NR, Yu Z, Sindiri S, Gartner JJ, Parkhurst M, Krishna S, Lowery FJ, Zacharakis N, Levy L, Prickett TD, Benzine T, Ray S, Masi RV, Gasmi B, Li Y, Islam R, Bera A, Goff SL, Robbins PF, Rosenberg SA. Neoantigen-specific stimulation of tumor-infiltrating lymphocytes enables effective TCR isolation and expansion while preserving stem-like memory phenotypes. J Immunother Cancer 2024; 12:e008645. [PMID: 38816232 PMCID: PMC11141192 DOI: 10.1136/jitc-2023-008645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND Tumor-infiltrating lymphocytes (TILs) targeting neoantigens can effectively treat a selected set of metastatic solid cancers. However, harnessing TILs for cancer treatments remains challenging because neoantigen-reactive T cells are often rare and exhausted, and ex vivo expansion can further reduce their frequencies. This complicates the identification of neoantigen-reactive T-cell receptors (TCRs) and the development of TIL products with high reactivity for patient treatment. METHODS We tested whether TILs could be in vitro stimulated against neoantigens to achieve selective expansion of neoantigen-reactive TILs. Given their prevalence, mutant p53 or RAS were studied as models of human neoantigens. An in vitro stimulation method, termed "NeoExpand", was developed to provide neoantigen-specific stimulation to TILs. 25 consecutive patient TILs from tumors harboring p53 or RAS mutations were subjected to NeoExpand. RESULTS We show that neoantigenic stimulation achieved selective expansion of neoantigen-reactive TILs and broadened the neoantigen-reactive CD4+ and CD8+ TIL clonal repertoire. This allowed the effective isolation of novel neoantigen-reactive TCRs. Out of the 25 consecutive TIL samples, neoantigenic stimulation enabled the identification of 16 unique reactivities and 42 TCRs, while conventional TIL expansion identified 9 reactivities and 14 TCRs. Single-cell transcriptome analysis revealed that neoantigenic stimulation increased neoantigen-reactive TILs with stem-like memory phenotypes expressing IL-7R, CD62L, and KLF2. Furthermore, neoantigenic stimulation improved the in vivo antitumor efficacy of TILs relative to the conventional OKT3-induced rapid TIL expansion in p53-mutated or KRAS-mutated xenograft mouse models. CONCLUSIONS Taken together, neoantigenic stimulation of TILs selectively expands neoantigen-reactive TILs by frequencies and by their clonal repertoire. NeoExpand led to improved phenotypes and functions of neoantigen-reactive TILs. Our data warrant its clinical evaluation. TRIAL REGISTRATION NUMBER NCT00068003, NCT01174121, and NCT03412877.
Collapse
Affiliation(s)
- Noam Levin
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Sanghyun P Kim
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Charles A Marquardt
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Nolan R Vale
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Zhiya Yu
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Sivasish Sindiri
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Jared J Gartner
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Maria Parkhurst
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Sri Krishna
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Frank J Lowery
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Nikolaos Zacharakis
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Lior Levy
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Todd D Prickett
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Tiffany Benzine
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Satyajit Ray
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Robert V Masi
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Billel Gasmi
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Yong Li
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Rafiqul Islam
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Alakesh Bera
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Stephanie L Goff
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Paul F Robbins
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Steven A Rosenberg
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
36
|
Bulashevska A, Nacsa Z, Lang F, Braun M, Machyna M, Diken M, Childs L, König R. Artificial intelligence and neoantigens: paving the path for precision cancer immunotherapy. Front Immunol 2024; 15:1394003. [PMID: 38868767 PMCID: PMC11167095 DOI: 10.3389/fimmu.2024.1394003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/13/2024] [Indexed: 06/14/2024] Open
Abstract
Cancer immunotherapy has witnessed rapid advancement in recent years, with a particular focus on neoantigens as promising targets for personalized treatments. The convergence of immunogenomics, bioinformatics, and artificial intelligence (AI) has propelled the development of innovative neoantigen discovery tools and pipelines. These tools have revolutionized our ability to identify tumor-specific antigens, providing the foundation for precision cancer immunotherapy. AI-driven algorithms can process extensive amounts of data, identify patterns, and make predictions that were once challenging to achieve. However, the integration of AI comes with its own set of challenges, leaving space for further research. With particular focus on the computational approaches, in this article we have explored the current landscape of neoantigen prediction, the fundamental concepts behind, the challenges and their potential solutions providing a comprehensive overview of this rapidly evolving field.
Collapse
Affiliation(s)
- Alla Bulashevska
- Host-Pathogen-Interactions, Paul-Ehrlich-Institut, Langen, Germany
| | - Zsófia Nacsa
- Host-Pathogen-Interactions, Paul-Ehrlich-Institut, Langen, Germany
| | - Franziska Lang
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg University gGmbH, Mainz, Germany
| | - Markus Braun
- Host-Pathogen-Interactions, Paul-Ehrlich-Institut, Langen, Germany
| | - Martin Machyna
- Host-Pathogen-Interactions, Paul-Ehrlich-Institut, Langen, Germany
| | - Mustafa Diken
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg University gGmbH, Mainz, Germany
| | - Liam Childs
- Host-Pathogen-Interactions, Paul-Ehrlich-Institut, Langen, Germany
| | - Renate König
- Host-Pathogen-Interactions, Paul-Ehrlich-Institut, Langen, Germany
| |
Collapse
|
37
|
Takahashi M, So TY, Chamberlain-Evans V, Hughes R, Yam-Puc JC, Kania K, Ruhle M, Mann T, Schuijs MJ, Coupland P, Naisbitt D, Halim TY, Lyons PA, Lio P, Roychoudhuri R, Okkenhaug K, Adams DJ, Smith KG, Jodrell DI, Chapman MA, Thaventhiran JED. Intratumoral antigen signaling traps CD8 + T cells to confine exhaustion to the tumor site. Sci Immunol 2024; 9:eade2094. [PMID: 38787961 PMCID: PMC7616235 DOI: 10.1126/sciimmunol.ade2094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 05/02/2024] [Indexed: 05/26/2024]
Abstract
Immunotherapy advances have been hindered by difficulties in tracking the behaviors of lymphocytes after antigen signaling. Here, we assessed the behavior of T cells active within tumors through the development of the antigen receptor signaling reporter (AgRSR) mouse, fate-mapping lymphocytes responding to antigens at specific times and locations. Contrary to reports describing the ready egress of T cells out of the tumor, we find that intratumoral antigen signaling traps CD8+ T cells in the tumor. These clonal populations expand and become increasingly exhausted over time. By contrast, antigen-signaled regulatory T cell (Treg) clonal populations readily recirculate out of the tumor. Consequently, intratumoral antigen signaling acts as a gatekeeper to compartmentalize CD8+ T cell responses, even within the same clonotype, thus enabling exhausted T cells to remain confined to a specific tumor tissue site.
Collapse
Affiliation(s)
- Munetomo Takahashi
- Medical Research Council Toxicology Unit, University of Cambridge; Gleeson Building, Tennis Court Road,
Cambridge,
CB2 1QR, UK
- Graduate School and Faculty of Medicine, The University of Tokyo, Tokyo,
113-0033, Japan
| | - Tsz Y. So
- Medical Research Council Toxicology Unit, University of Cambridge; Gleeson Building, Tennis Court Road,
Cambridge,
CB2 1QR, UK
- University of Cambridge, CRUK Cambridge Institute; Cambridge,
CB2 0RE, UK
| | - Vitalina Chamberlain-Evans
- Medical Research Council Toxicology Unit, University of Cambridge; Gleeson Building, Tennis Court Road,
Cambridge,
CB2 1QR, UK
| | - Robert Hughes
- Medical Research Council Toxicology Unit, University of Cambridge; Gleeson Building, Tennis Court Road,
Cambridge,
CB2 1QR, UK
| | - Juan Carlos Yam-Puc
- Medical Research Council Toxicology Unit, University of Cambridge; Gleeson Building, Tennis Court Road,
Cambridge,
CB2 1QR, UK
| | - Katarzyna Kania
- University of Cambridge, CRUK Cambridge Institute; Cambridge,
CB2 0RE, UK
| | - Michelle Ruhle
- University of Cambridge, CRUK Cambridge Institute; Cambridge,
CB2 0RE, UK
| | - Tiffeney Mann
- Medical Research Council Toxicology Unit, University of Cambridge; Gleeson Building, Tennis Court Road,
Cambridge,
CB2 1QR, UK
| | - Martijn J. Schuijs
- University of Cambridge, CRUK Cambridge Institute; Cambridge,
CB2 0RE, UK
| | - Paul Coupland
- University of Cambridge, CRUK Cambridge Institute; Cambridge,
CB2 0RE, UK
- Altos Labs Cambridge Institute, Cambridge CB21 6GP, UK
| | - Dean Naisbitt
- Department of Pharmacology and Therapeutics, University of Liverpool; Sherrington Building, Ashton Street,
Liverpool,
L69 3G, UK
| | | | - Paul A. Lyons
- Cambridge Institute of Therapeutic Immunology and Infectious
Disease, University of Cambridge; Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus,
Cambridge, UK
- Department of Medicine, University of Cambridge, School of Clinical Medicine; Cambridge Biomedical Campus,
Cambridge, UK
| | - Pietro Lio
- Department of Computer Science and Technology, University of Cambridge; Cambridge,
CB3 0FD, UK
| | | | - Klaus Okkenhaug
- Department of Pathology, University of Cambridge; Cambridge, UK
| | - David J. Adams
- Experimental Cancer Genetics, Wellcome Sanger Institute; Hinxton, Cambridge,
CB10 1SA
| | - Ken G.C. Smith
- Cambridge Institute of Therapeutic Immunology and Infectious
Disease, University of Cambridge; Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus,
Cambridge, UK
- Department of Medicine, University of Cambridge, School of Clinical Medicine; Cambridge Biomedical Campus,
Cambridge, UK
- The Walter and Eliza Hall Institute of Medical
Research, Parkville, VIC 3052,
Australia
- The University of Melbourne, Parkville, VIC 3052,
Australia
| | - Duncan I. Jodrell
- Department of Oncology, University of Cambridge, School of Clinical Medicine; Box 197, Cambridge
Biomedical Campus, Cambridge, CB2
0XZ, UK
| | - Michael A. Chapman
- Medical Research Council Toxicology Unit, University of Cambridge; Gleeson Building, Tennis Court Road,
Cambridge,
CB2 1QR, UK
- Department of Hematology, University of Cambridge, Cambridge,
CB2 0RE, UK
| | - James E. D. Thaventhiran
- Medical Research Council Toxicology Unit, University of Cambridge; Gleeson Building, Tennis Court Road,
Cambridge,
CB2 1QR, UK
- University of Cambridge, CRUK Cambridge Institute; Cambridge,
CB2 0RE, UK
| |
Collapse
|
38
|
Huang X, Meng L, Cao G, Prominski A, Hu Y, Yang C, Chen M, Shi J, Gallagher C, Cao T, Yue J, Huang J, Tian B. Multimodal probing of T-cell recognition with hexapod heterostructures. Nat Methods 2024; 21:857-867. [PMID: 38374262 PMCID: PMC11723587 DOI: 10.1038/s41592-023-02165-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 12/26/2023] [Indexed: 02/21/2024]
Abstract
Studies using antigen-presenting systems at the single-cell and ensemble levels can provide complementary insights into T-cell signaling and activation. Although crucial for advancing basic immunology and immunotherapy, there is a notable absence of synthetic material toolkits that examine T cells at both levels, and especially those capable of single-molecule-level manipulation. Here we devise a biomimetic antigen-presenting system (bAPS) for single-cell stimulation and ensemble modulation of T-cell recognition. Our bAPS uses hexapod heterostructures composed of a submicrometer cubic hematite core (α-Fe2O3) and nanostructured silica branches with diverse surface modifications. At single-molecule resolution, we show T-cell activation by a single agonist peptide-loaded major histocompatibility complex; distinct T-cell receptor (TCR) responses to structurally similar peptides that differ by only one amino acid; and the superior antigen recognition sensitivity of TCRs compared with that of chimeric antigen receptors (CARs). We also demonstrate how the magnetic field-induced rotation of hexapods amplifies the immune responses in suspended T and CAR-T cells. In addition, we establish our bAPS as a precise and scalable method for identifying stimulatory antigen-specific TCRs at the single-cell level. Thus, our multimodal bAPS represents a unique biointerface tool for investigating T-cell recognition, signaling and function.
Collapse
Affiliation(s)
- Xiaodan Huang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Lingyuan Meng
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Guoshuai Cao
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | | | - Yifei Hu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
- Pritzker School of Medicine, University of Chicago, Chicago, IL, USA
| | - Chuanwang Yang
- The James Franck Institute, University of Chicago, Chicago, IL, USA
| | - Min Chen
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Jiuyun Shi
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | | | - Thao Cao
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Jiping Yue
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Jun Huang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA.
| | - Bozhi Tian
- Department of Chemistry, University of Chicago, Chicago, IL, USA.
- The James Franck Institute, University of Chicago, Chicago, IL, USA.
- The Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
39
|
de Miranda NFCC, Scheeren FA. Immunogenetic Diversity and Cancer Immunotherapy Disparities. Cancer Discov 2024; 14:585-588. [PMID: 38571423 DOI: 10.1158/2159-8290.cd-23-1536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
SUMMARY The success of checkpoint blockade cancer immunotherapies has unequivocally confirmed the critical role of T cells in cancer immunity and boosted the development of immunotherapeutic strategies targeting specific antigens on cancer cells. The vast immunogenetic diversity of human leukocyte antigen (HLA) class I alleles across populations is a key factor influencing the advancement of HLA class I-restricted therapies and related research and diagnostic tools.
Collapse
Affiliation(s)
| | - Ferenc A Scheeren
- Department of Dermatology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
40
|
Slieker RC, Warmerdam DO, Vermeer MH, van Doorn R, Heemskerk MHM, Scheeren FA. Reassessing human MHC-I genetic diversity in T cell studies. Sci Rep 2024; 14:7966. [PMID: 38575727 PMCID: PMC10995142 DOI: 10.1038/s41598-024-58777-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/03/2024] [Indexed: 04/06/2024] Open
Abstract
The Major Histocompatibility Complex class I (MHC-I) system plays a vital role in immune responses by presenting antigens to T cells. Allele specific technologies, including recombinant MHC-I technologies, have been extensively used in T cell analyses for COVID-19 patients and are currently used in the development of immunotherapies for cancer. However, the immense diversity of MHC-I alleles presents challenges. The genetic diversity serves as the foundation of personalized medicine, yet it also poses a potential risk of exacerbating healthcare disparities based on MHC-I alleles. To assess potential biases, we analysed (pre)clinical publications focusing on COVID-19 studies and T cell receptor (TCR)-based clinical trials. Our findings reveal an underrepresentation of MHC-I alleles associated with Asian, Australian, and African descent. Ensuring diverse representation is vital for advancing personalized medicine and global healthcare equity, transcending genetic diversity. Addressing this disparity is essential to unlock the full potential of T cells for enhancing diagnosis and treatment across all individuals.
Collapse
Affiliation(s)
- Roderick C Slieker
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
- Leiden Center for Computational Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Daniël O Warmerdam
- Centre for Future Affordable & Sustainable Therapy Development (FAST), The Hague, The Netherlands
| | - Maarten H Vermeer
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Remco van Doorn
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Dermatology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Mirjam H M Heemskerk
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ferenc A Scheeren
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
41
|
Bryan E, Teague JE, Eligul S, Arkins WC, Moody DB, Clark RA, Van Rhijn I. Human Skin T Cells Express Conserved T-Cell Receptors that Cross-React with Staphylococcal Superantigens and CD1a. J Invest Dermatol 2024; 144:833-843.e3. [PMID: 37951348 DOI: 10.1016/j.jid.2023.09.284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/06/2023] [Accepted: 09/30/2023] [Indexed: 11/14/2023]
Abstract
Human Langerhans cells highly express CD1a antigen-presenting molecules. To understand the functions of CD1a in human skin, we used CD1a tetramers to capture T cells and determine their effector functions and TCR patterns. Skin T cells from all donors showed CD1a tetramer staining, which in three cases exceeded 10% of skin T cells. CD1a tetramer-positive T cells produced diverse cytokines, including IL-2, IL-4, IL-5, IL-9, IL-17, IL-22, and IFN-γ. Conserved TCRs often recognize nonpolymorphic antigen-presenting molecules, but no TCR motifs are known for CD1a. We detected highly conserved TCRs that used TRAV34 and TRBV28 variable genes, which is a known motif for recognition of staphylococcal enterotoxin B, a superantigen associated with atopic dermatitis. We found that these conserved TCRs did not respond to superantigen presented by CD1a, but instead showed a cross-reactive response with two targets: CD1a and staphylococcal enterotoxin B presented by classical major histocompatibility complex II. These studies identify a conserved human TCR motif for CD1a-reactive T cells. Furthermore, the demonstrated cross-reaction of T cells with two common skin-specific stimuli suggests a candidate mechanism by which CD1a and skin flora could synergize during natural immune response and in Staphylococcus-associated skin diseases.
Collapse
Affiliation(s)
- Elizabeth Bryan
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jessica E Teague
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sezin Eligul
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Wellington C Arkins
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - D Branch Moody
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Rachael A Clark
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ildiko Van Rhijn
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
42
|
Rogers J, Ma R, Foote A, Hu Y, Salaita K. Force-Induced Site-Specific Enzymatic Cleavage Probes Reveal That Serial Mechanical Engagement Boosts T Cell Activation. J Am Chem Soc 2024; 146:7233-7242. [PMID: 38451498 PMCID: PMC10958510 DOI: 10.1021/jacs.3c08137] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 03/08/2024]
Abstract
The T cell membrane is studded with >104 T cell receptors (TCRs) that are used to scan target cells to identify short peptide fragments associated with viral infection or cancerous mutation. These peptides are presented as peptide-major-histocompatibility complexes (pMHCs) on the surface of virtually all nucleated cells. The TCR-pMHC complex forms at cell-cell junctions, is highly transient, and experiences mechanical forces. An important question in this area pertains to the role of the force duration in immune activation. Herein, we report the development of force probes that autonomously terminate tension within a time window following mechanical triggering. Force-induced site-specific enzymatic cleavage (FUSE) probes tune the tension duration by controlling the rate of a force-triggered endonuclease hydrolysis reaction. This new capability provides a method to study how the accumulated force duration contributes to T cell activation. We screened DNA sequences and identified FUSE probes that disrupt mechanical interactions with F > 7.1 piconewtons (pN) between TCRs and pMHCs. This rate of disruption, or force lifetime (τF), is tunable from tens of minutes down to 1.9 min. T cells challenged with FUSE probes with F > 7.1 pN presenting cognate antigens showed up to a 23% decrease in markers of early activation. FUSE probes with F > 17.0 pN showed weaker influence on T cell triggering further showing that TCR-pMHC with F > 17.0 pN are less frequent compared to F > 7.1 pN. Taken together, FUSE probes allow a new strategy to investigate the role of force dynamics in mechanotransduction broadly and specifically suggest a model of serial mechanical engagement boosting TCR activation.
Collapse
Affiliation(s)
- Jhordan Rogers
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Rong Ma
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Alexander Foote
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Yuesong Hu
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Khalid Salaita
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| |
Collapse
|
43
|
Tiwari R, Singh VK, Rajneesh, Kumar A, Gautam V, Kumar R. MHC tetramer technology: Exploring T cell biology in health and disease. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 140:327-345. [PMID: 38762273 DOI: 10.1016/bs.apcsb.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Major histocompatibility complex (MHC) tetramers stand as formidable tools within T cell biology, facilitating the exploration and comprehension of immune responses. These artificial molecules, comprising four bound MHC molecules, typically with a specified peptide and a fluorescent label, play a pivotal role in characterizing T cell subsets, monitoring clonal expansion, and unraveling T cell dynamics during responses to infections or immunotherapies. Beyond their applications in T cell biology, MHC tetramers prove valuable in investigating a spectrum of diseases such as infectious diseases, autoimmune disorders, and cancers. Their instrumental role extends to vaccine research and development. Notably, when appropriately configured, tetramers transcend T cell biology research and find utility in exploring natural killer T cells and contributing to specific T cell clonal deletions.
Collapse
Affiliation(s)
- Rahul Tiwari
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Vishal Kumar Singh
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Rajneesh
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Awnish Kumar
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Vibhav Gautam
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Rajiv Kumar
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India.
| |
Collapse
|
44
|
Ishimoto T, Arakawa Y, Vural S, Stöhr J, Vollmer S, Galinski A, Siewert K, Rühl G, Poluektov Y, Delcommenne M, Horvath O, He M, Summer B, Pohl R, Alharbi R, Dornmair K, Arakawa A, Prinz JC. Multiple environmental antigens may trigger autoimmunity in psoriasis through T-cell receptor polyspecificity. Front Immunol 2024; 15:1374581. [PMID: 38524140 PMCID: PMC10958380 DOI: 10.3389/fimmu.2024.1374581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/16/2024] [Indexed: 03/26/2024] Open
Abstract
Introduction Psoriasis is a T-cell mediated autoimmune skin disease. HLA-C*06:02 is the main psoriasis-specific risk gene. Using a Vα3S1/Vβ13S1 T-cell receptor (TCR) from a lesional psoriatic CD8+ T-cell clone we had discovered that, as an underlying pathomechanism, HLA-C*06:02 mediates an autoimmune response against melanocytes in psoriasis, and we had identified an epitope from ADAMTS-like protein 5 (ADAMTSL5) as a melanocyte autoantigen. The conditions activating the psoriatic autoimmune response in genetically predisposed individuals throughout life remain incompletely understood. Here, we aimed to identify environmental antigens that might trigger autoimmunity in psoriasis because of TCR polyspecificity. Methods We screened databases with the peptide recognition motif of the Vα3S1/Vβ13S1 TCR for environmental proteins containing peptides activating this TCR. We investigated the immunogenicity of these peptides for psoriasis patients and healthy controls by lymphocyte stimulation experiments and peptide-loaded HLA-C*06:02 tetramers. Results We identified peptides from wheat, Saccharomyces cerevisiae, microbiota, tobacco, and pathogens that activated both the Vα3S1/Vβ13S1 TCR and CD8+ T cells from psoriasis patients. Using fluorescent HLA-C*06:02 tetramers loaded with ADAMTSL5 or wheat peptides, we find that the same CD8+ T cells may recognize both autoantigen and environmental antigens. A wheat-free diet could alleviate psoriasis in several patients. Discussion Our results show that due to TCR polyspecificity, several environmental antigens corresponding to previously suspected psoriasis risk conditions converge in the reactivity of a pathogenic psoriatic TCR and might thus be able to stimulate the psoriatic autoimmune response against melanocytes. Avoiding the corresponding environmental risk factors could contribute to the management of psoriasis.
Collapse
Affiliation(s)
- Tatsushi Ishimoto
- Department of Dermatology and Allergy, University Hospital, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Yukiyasu Arakawa
- Department of Dermatology and Allergy, University Hospital, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Secil Vural
- Department of Dermatology and Allergy, University Hospital, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Julia Stöhr
- Department of Dermatology and Allergy, University Hospital, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Sigrid Vollmer
- Department of Dermatology and Allergy, University Hospital, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Adrian Galinski
- Department of Dermatology and Allergy, University Hospital, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Katherina Siewert
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospital, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Geraldine Rühl
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospital, Ludwig-Maximilian-University Munich, Munich, Germany
| | | | | | - Orsolya Horvath
- Department of Dermatology and Allergy, University Hospital, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Mengwen He
- Department of Dermatology and Allergy, University Hospital, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Burkhard Summer
- Department of Dermatology and Allergy, University Hospital, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Ralf Pohl
- Department of Dermatology and Allergy, University Hospital, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Rehab Alharbi
- Department of Dermatology and Allergy, University Hospital, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Klaus Dornmair
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospital, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Akiko Arakawa
- Department of Dermatology and Allergy, University Hospital, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Jörg C. Prinz
- Department of Dermatology and Allergy, University Hospital, Ludwig-Maximilian-University Munich, Munich, Germany
| |
Collapse
|
45
|
Efe O, Gassen RB, Morena L, Ganchiku Y, Al Jurdi A, Lape IT, Ventura-Aguiar P, LeGuern C, Madsen JC, Shriver Z, Babcock GJ, Borges TJ, Riella LV. A humanized IL-2 mutein expands Tregs and prolongs transplant survival in preclinical models. J Clin Invest 2024; 134:e173107. [PMID: 38426492 PMCID: PMC10904054 DOI: 10.1172/jci173107] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 01/05/2024] [Indexed: 03/02/2024] Open
Abstract
Long-term organ transplant survival remains suboptimal, and life-long immunosuppression predisposes transplant recipients to an increased risk of infection, malignancy, and kidney toxicity. Promoting the regulatory arm of the immune system by expanding Tregs may allow immunosuppression minimization and improve long-term graft outcomes. While low-dose IL-2 treatment can expand Tregs, it has a short half-life and off-target expansion of NK and effector T cells, limiting its clinical applicability. Here, we designed a humanized mutein IL-2 with high Treg selectivity and a prolonged half-life due to the fusion of an Fc domain, which we termed mIL-2. We showed selective and sustainable Treg expansion by mIL-2 in 2 murine models of skin transplantation. This expansion led to donor-specific tolerance through robust increases in polyclonal and antigen-specific Tregs, along with enhanced Treg-suppressive function. We also showed that Treg expansion by mIL-2 could overcome the failure of calcineurin inhibitors or costimulation blockade to prolong the survival of major-mismatched skin grafts. Validating its translational potential, mIL-2 induced a selective and sustainable in vivo Treg expansion in cynomolgus monkeys and showed selectivity for human Tregs in vitro and in a humanized mouse model. This work demonstrated that mIL-2 can enhance immune regulation and promote long-term allograft survival, potentially minimizing immunosuppression.
Collapse
Affiliation(s)
- Orhan Efe
- Center for Transplantation Sciences, Department of Surgery
- Division of Nephrology, Department of Medicine, and
| | | | - Leela Morena
- Center for Transplantation Sciences, Department of Surgery
| | | | - Ayman Al Jurdi
- Center for Transplantation Sciences, Department of Surgery
- Division of Nephrology, Department of Medicine, and
| | | | | | | | - Joren C. Madsen
- Center for Transplantation Sciences, Department of Surgery
- Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | - Leonardo V. Riella
- Center for Transplantation Sciences, Department of Surgery
- Division of Nephrology, Department of Medicine, and
| |
Collapse
|
46
|
Vasoya D, Connelley T, Tzelos T, Todd H, Ballingall KT. Large scale transcriptional analysis of MHC class I haplotype diversity in sheep. HLA 2024; 103:e15356. [PMID: 38304958 DOI: 10.1111/tan.15356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/15/2023] [Accepted: 01/09/2024] [Indexed: 02/03/2024]
Abstract
Domestic sheep (Ovis aries) have been an important component of livestock agricultural production for thousands of years. Preserving genetic diversity within livestock populations maintains a capacity to respond to changing environments and rapidly evolving pathogens. MHC genetic diversity can influence immune functionality at individual and population levels. Here, we focus on defining functional MHC class I haplotype diversity in a large cohort of Scottish Blackface sheep pre-selected for high levels of MHC class II DRB1 diversity. Using high-throughput amplicon sequencing with three independent sets of barcoded primers we identified 134 MHC class I transcripts within 38 haplotypes. Haplotypes were identified with between two and six MHC class I genes, plus variable numbers of conserved sequences with very low read frequencies. One or two highly transcribed transcripts dominate each haplotype indicative of two highly polymorphic, classical MHC class I genes. Additional clusters of medium, low, and very low expressed transcripts are described, indicative of lower transcribed classical, non-classical and genes whose function remains to be determined.
Collapse
Affiliation(s)
- Deepali Vasoya
- Division of Infection and Immunity, The Roslin Institute, The University of Edinburgh, Scotland, UK
| | - Timothy Connelley
- Division of Infection and Immunity, The Roslin Institute, The University of Edinburgh, Scotland, UK
| | - Thomas Tzelos
- Division of Infection and Immunity, The Roslin Institute, The University of Edinburgh, Scotland, UK
- Moredun Research Institute, Pentlands Science Park, Scotland, UK
| | - Helen Todd
- Moredun Research Institute, Pentlands Science Park, Scotland, UK
| | | |
Collapse
|
47
|
Ishina IA, Kurbatskaia IN, Mamedov AE, Shramova EI, Deyev SM, Nurbaeva KS, Rubtsov YP, Belogurov AA, Gabibov AG, Zakharova MY. Genetically engineered CD80-pMHC-harboring extracellular vesicles for antigen-specific CD4 + T-cell engagement. Front Bioeng Biotechnol 2024; 11:1341685. [PMID: 38304104 PMCID: PMC10833362 DOI: 10.3389/fbioe.2023.1341685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/29/2023] [Indexed: 02/03/2024] Open
Abstract
The identification of low-frequency antigen-specific CD4+ T cells is crucial for effective immunomonitoring across various diseases. However, this task still encounters experimental challenges necessitating the implementation of enrichment procedures. While existing antigen-specific expansion technologies predominantly concentrate on the enrichment of CD8+ T cells, advancements in methods targeting CD4+ T cells have been limited. In this study, we report a technique that harnesses antigen-presenting extracellular vesicles (EVs) for stimulation and expansion of antigen-specific CD4+ T cells. EVs are derived from a genetically modified HeLa cell line designed to emulate professional antigen-presenting cells (APCs) by expressing key costimulatory molecules CD80 and specific peptide-MHC-II complexes (pMHCs). Our results demonstrate the beneficial potent stimulatory capacity of EVs in activating both immortalized and isolated human CD4+ T cells from peripheral blood mononuclear cells (PBMCs). Our technique successfully expands low-frequency influenza-specific CD4+ T cells from healthy individuals. In summary, the elaborated methodology represents a streamlined and efficient approach for the detection and expansion of antigen-specific CD4+ T cells, presenting a valuable alternative to existing antigen-specific T-cell expansion protocols.
Collapse
Affiliation(s)
- Irina A. Ishina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Inna N. Kurbatskaia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Azad E. Mamedov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Elena I. Shramova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Sergey M. Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- Biomarker Research Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Sechenov First Moscow State Medical University, Sechenov University, Moscow, Russia
| | | | - Yury P. Rubtsov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- N. N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation (NN Blokhin NMRCO), Moscow, Russia
| | - Alexey A. Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- Department of Biological Chemistry, Evdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - Alexander G. Gabibov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- Department of Life Sciences, Higher School of Economics, Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Maria Y. Zakharova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
48
|
Meyer M, Parpoulas C, Barthélémy T, Becker JP, Charoentong P, Lyu Y, Börsig S, Bulbuc N, Tessmer C, Weinacht L, Ibberson D, Schmidt P, Pipkorn R, Eichmüller SB, Steinberger P, Lindner K, Poschke I, Platten M, Fröhling S, Riemer AB, Hassel JC, Roberti MP, Jäger D, Zörnig I, Momburg F. MediMer: a versatile do-it-yourself peptide-receptive MHC class I multimer platform for tumor neoantigen-specific T cell detection. Front Immunol 2024; 14:1294565. [PMID: 38239352 PMCID: PMC10794645 DOI: 10.3389/fimmu.2023.1294565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/28/2023] [Indexed: 01/22/2024] Open
Abstract
Peptide-loaded MHC class I (pMHC-I) multimers have revolutionized our capabilities to monitor disease-associated T cell responses with high sensitivity and specificity. To improve the discovery of T cell receptors (TCR) targeting neoantigens of individual tumor patients with recombinant MHC molecules, we developed a peptide-loadable MHC class I platform termed MediMer. MediMers are based on soluble disulfide-stabilized β2-microglobulin/heavy chain ectodomain single-chain dimers (dsSCD) that can be easily produced in large quantities in eukaryotic cells and tailored to individual patients' HLA allotypes with only little hands-on time. Upon transient expression in CHO-S cells together with ER-targeted BirA biotin ligase, biotinylated dsSCD are purified from the cell supernatant and are ready to use. We show that CHO-produced dsSCD are free of endogenous peptide ligands. Empty dsSCD from more than 30 different HLA-A,B,C allotypes, that were produced and validated so far, can be loaded with synthetic peptides matching the known binding criteria of the respective allotypes, and stored at low temperature without loss of binding activity. We demonstrate the usability of peptide-loaded dsSCD multimers for the detection of human antigen-specific T cells with comparable sensitivities as multimers generated with peptide-tethered β2m-HLA heavy chain single-chain trimers (SCT) and wild-type peptide-MHC-I complexes prior formed in small-scale refolding reactions. Using allotype-specific, fluorophore-labeled competitor peptides, we present a novel dsSCD-based peptide binding assay capable of interrogating large libraries of in silico predicted neoepitope peptides by flow cytometry in a high-throughput and rapid format. We discovered rare T cell populations with specificity for tumor neoepitopes and epitopes from shared tumor-associated antigens in peripheral blood of a melanoma patient including a so far unreported HLA-C*08:02-restricted NY-ESO-1-specific CD8+ T cell population. Two representative TCR of this T cell population, which could be of potential value for a broader spectrum of patients, were identified by dsSCD-guided single-cell sequencing and were validated by cognate pMHC-I multimer staining and functional responses to autologous peptide-pulsed antigen presenting cells. By deploying the technically accessible dsSCD MHC-I MediMer platform, we hope to significantly improve success rates for the discovery of personalized neoepitope-specific TCR in the future by being able to also cover rare HLA allotypes.
Collapse
Affiliation(s)
- Marten Meyer
- Antigen Presentation and T/NK Cell Activation Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumor Immunity, DKFZ, Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| | - Christina Parpoulas
- Antigen Presentation and T/NK Cell Activation Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Titouan Barthélémy
- Antigen Presentation and T/NK Cell Activation Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jonas P. Becker
- Division of Immunotherapy and Immunoprevention, DKFZ, Heidelberg, Germany
- German Center for Infection Research (DZIF) Partner Site Heidelberg, Heidelberg, Germany
| | - Pornpimol Charoentong
- Clinical Cooperation Unit Applied Tumor Immunity, DKFZ, Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Center for Quantitative Analysis of Molecular and Cellular Biosystems (Bioquant), Heidelberg University, Heidelberg, Germany
| | - Yanhong Lyu
- Clinical Cooperation Unit Applied Tumor Immunity, DKFZ, Heidelberg, Germany
| | - Selina Börsig
- Antigen Presentation and T/NK Cell Activation Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| | - Nadja Bulbuc
- Antigen Presentation and T/NK Cell Activation Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Claudia Tessmer
- Antigen Presentation and T/NK Cell Activation Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumor Immunity, DKFZ, Heidelberg, Germany
| | - Lisa Weinacht
- Antigen Presentation and T/NK Cell Activation Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David Ibberson
- Deep Sequencing Core Facility, Heidelberg University, Heidelberg, Germany
| | - Patrick Schmidt
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- GMP and T Cell Therapy, DKFZ, Heidelberg, Germany
| | | | | | - Peter Steinberger
- Division of Immune Receptors and T Cell Activation, Center for Pathophysiology, Infectiology, Medical University of Vienna, Vienna, Austria
| | - Katharina Lindner
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, DKFZ, Heidelberg, Germany
- Immune Monitoring Unit, NCT Heidelberg and DKFZ, Heidelberg, Germany
| | - Isabel Poschke
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, DKFZ, Heidelberg, Germany
- Immune Monitoring Unit, NCT Heidelberg and DKFZ, Heidelberg, Germany
| | - Michael Platten
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, DKFZ, Heidelberg, Germany
- Immune Monitoring Unit, NCT Heidelberg and DKFZ, Heidelberg, Germany
- German Cancer Consortium (DKTK), DKFZ, Core Center, Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neuroscience (MCTN), Heidelberg University, Mannheim, Germany
- DKFZ Hector Cancer Institute at the University Medical Center, Mannheim, Germany
- Helmholtz Institute for Translational Oncology, Mainz (HI-TRON Mainz), Mainz, Germany
| | - Stefan Fröhling
- German Cancer Consortium (DKTK), DKFZ, Core Center, Heidelberg, Germany
- Division of Translational Medical Oncology, NCT Heidelberg and DKFZ, Heidelberg, Germany
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Angelika B. Riemer
- Division of Immunotherapy and Immunoprevention, DKFZ, Heidelberg, Germany
- German Center for Infection Research (DZIF) Partner Site Heidelberg, Heidelberg, Germany
| | - Jessica C. Hassel
- Section of DermatoOncology, Department of Dermatology and NCT, Heidelberg University Hospital, Heidelberg, Germany
| | - Maria Paula Roberti
- Clinical Cooperation Unit Applied Tumor Immunity, DKFZ, Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| | - Dirk Jäger
- Clinical Cooperation Unit Applied Tumor Immunity, DKFZ, Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| | - Inka Zörnig
- Clinical Cooperation Unit Applied Tumor Immunity, DKFZ, Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| | - Frank Momburg
- Antigen Presentation and T/NK Cell Activation Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
49
|
Aba G, Scheeren FA, Sharp TH. Design and Synthesis of DNA Origami Nanostructures to Control TNF Receptor Activation. Methods Mol Biol 2024; 2800:35-53. [PMID: 38709476 DOI: 10.1007/978-1-0716-3834-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Clustering of type II tumor necrosis factor (TNF) receptors (TNFRs) is essential for their activation, yet currently available drugs fail to activate signaling. Some strategies aim to cluster TNFR by using multivalent streptavidin or scaffolds based on dextran or graphene. However, these strategies do not allow for control of the valency or spatial organization of the ligands, and consequently control of the TNFR activation is not optimal. DNA origami nanostructures allow nanometer-precise control of the spatial organization of molecules and complexes, with defined spacing, number and valency. Here, we demonstrate the design and characterization of a DNA origami nanostructure that can be decorated with engineered single-chain TNF-related apoptosis-inducing ligand (SC-TRAIL) complexes, which show increased cell killing compared to SC-TRAIL alone on Jurkat cells. The information in this chapter can be used as a basis to decorate DNA origami nanostructures with various proteins, complexes, or other biomolecules.
Collapse
Affiliation(s)
- Göktuğ Aba
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ferenc A Scheeren
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Thomas H Sharp
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands.
- School of Biochemistry, University of Bristol, Bristol, UK.
| |
Collapse
|
50
|
Trubach D, Muleta KG, Lahl K, Saini SK. Identification and Characterization of Antigen-Specific T-Cells in Viral Infections. Methods Mol Biol 2024; 2813:295-308. [PMID: 38888785 DOI: 10.1007/978-1-0716-3890-3_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Identification and characterization of CD8+ T-cells is important to determine their role in protecting and clearing viral infections. Here we provide details of the peptide-MHC (pMHC) tetramers-based approach to identify antigen-specific T-cells in human and murine samples. This method provides ex vivo quantification and functional characterization of T-cells reactive to specific viral antigens derived from CMV and rotavirus in human blood and in murine intestinal lamina propria samples, respectively.
Collapse
Affiliation(s)
- Darya Trubach
- Section for Experimental and Translational Immunology, Institute for Health Technology, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
| | | | - Katharina Lahl
- Section for Experimental and Translational Immunology, Institute for Health Technology, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
- Immunology Section, Lund University, Lund, Sweden
| | - Sunil Kumar Saini
- Section for Experimental and Translational Immunology, Institute for Health Technology, Technical University of Denmark (DTU), Kongens Lyngby, Denmark.
| |
Collapse
|