1
|
Lee MA, Brown JS, Farquhar CE, Loas A, Pentelute BL. Affinity selection-mass spectrometry with linearizable macrocyclic peptide libraries. SCIENCE ADVANCES 2025; 11:eadr1018. [PMID: 40106557 PMCID: PMC11922053 DOI: 10.1126/sciadv.adr1018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 02/11/2025] [Indexed: 03/22/2025]
Abstract
Despite their potential, the preparation of large synthetic macrocyclic libraries for ligand discovery and development has been limited. Here, we produce 100-million-membered macrocyclic libraries containing natural and nonnatural amino acids. Near-quantitative intramolecular disulfide formation is facilitated by rapid oxidation with iodine in solution. After use in affinity selection, treatment with dithiothreitol enables near-quantitative reduction, rendering linear peptide analogs for standard tandem mass spectrometry. We use these libraries to discover macrocyclic binders to cadherin-2 and anti-hemagglutinin antibody clone 12ca5. Structure-activity relationship studies of an initial cadherin-binding peptide [CBP; apparent dissociation constant (Kd) = 53 nanomolar] reveal residues responsible for driving affinity (hotspots) and mutation-tolerant residues (coldspots). Two original macrocyclic libraries are prepared in which these hotspots and coldspots are derivatized with nonnatural amino acids. Following discovery and validation, high-affinity ligands are discovered from the coldspot library, with NCBP-4 demonstrating improved affinity (Kd = 29 nanomolar). Overall, we expect that this work will improve the use of macrocyclic libraries in therapeutic peptide development.
Collapse
Affiliation(s)
- Michael A. Lee
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Joseph S. Brown
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Charlotte E. Farquhar
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Andrei Loas
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Bradley L. Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
2
|
Chen Q, Liu X, Wang J, Yang M, Fan QL. EPO-Mimetic Peptide Pegmolesatide Therapy for Pure Red Cell Aplasia in a Patient with Non-dialysis-dependent Type 1 Diabetic Nephropathy: A Case Report. Kidney Med 2025; 7:100947. [PMID: 39882157 PMCID: PMC11774825 DOI: 10.1016/j.xkme.2024.100947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
Pure red cell aplasia (PRCA) is a rare complication of erythropoietin (EPO) therapy, characterized by a severe deficiency in red blood cell production. There is no guideline on the treatment for PRCA because there have been too few cases to perform prospective cohort studies. The main treatments for PRCA include immediate cessation of EPO, restrictive transfusion, and immunosuppressive therapies. A 35-year-old male patient with type 1 diabetic nephropathy was diagnosed with PRCA. Enarodustat and roxadustat were administered successively after discontinuation of EPO, but anemia did not improve, and the patient was maintained with weekly blood transfusions. Subsequently, the EPO-mimetic peptide pegmolesatide was administered, and the patient's hemoglobin started to increase after 1 week and increased from 50 g/L to 92 g/L over approximately 3 months. Based on these findings, we speculate that pegmolesatide can provide a safe, effective, and convenient therapeutic strategy for PRCA in Chinese patients with chronic kidney disease.
Collapse
Affiliation(s)
- Qiong Chen
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuan Liu
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juan Wang
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Man Yang
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiu-ling Fan
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Bekker GJ, Oshima K, Araki M, Okuno Y, Kamiya N. Binding Mechanism between Platelet Glycoprotein and Cyclic Peptide Elucidated by McMD-Based Dynamic Docking. J Chem Inf Model 2024; 64:4158-4167. [PMID: 38751042 DOI: 10.1021/acs.jcim.4c00100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2024]
Abstract
The cyclic peptide OS1 (amino acid sequence: CTERMALHNLC), which has a disulfide bond between both termini cysteine residues, inhibits complex formation between the platelet glycoprotein Ibα (GPIbα) and the von Willebrand factor (vWF) by forming a complex with GPIbα. To study the binding mechanism between GPIbα and OS1 and, therefore, the inhibition mechanism of the protein-protein GPIbα-vWF complex, we have applied our multicanonical molecular dynamics (McMD)-based dynamic docking protocol starting from the unbound state of the peptide. Our simulations have reproduced the experimental complex structure, although the top-ranking structure was an intermediary one, where the peptide was bound in the same location as in the experimental structure; however, the β-switch of GPIbα attained a different conformation. Our analysis showed that subsequent refolding of the β-switch results in a more stable binding configuration, although the transition to the native configuration appears to take some time, during which OS1 could dissociate. Our results show that conformational changes in the β-switch are crucial for successful binding of OS1. Furthermore, we identified several allosteric binding sites of GPIbα that might also interfere with vWF binding, and optimization of the peptide to target these allosteric sites might lead to a more effective inhibitor, as these are not dependent on the β-switch conformation.
Collapse
Affiliation(s)
- Gert-Jan Bekker
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kanji Oshima
- Bio-Pharma Research Laboratories, Kaneka Corporation, 1-8 Miyamae-cho, Takasago-cho, Takasago, Hyogo 676-8688, Japan
| | - Mitsugu Araki
- Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yasushi Okuno
- Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Narutoshi Kamiya
- Graduate School of Information Science, University of Hyogo, 7-1-28 minatojima Minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
4
|
Zhang L, Wang X, Zhao J, Sun B, Wang W. Construction of Targeting-Peptide-Based Imaging Reagents and Their Application in Bioimaging. CHEMICAL & BIOMEDICAL IMAGING 2024; 2:233-249. [PMID: 39473775 PMCID: PMC11503909 DOI: 10.1021/cbmi.3c00104] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 06/17/2025]
Abstract
Molecular imaging was developed from basic molecular recognition. It can visualize not only the expression levels of specific molecules in a living system but also specific biological processes, thus providing guidance for early detection and treatment of diseases. As a noninvasive method, imaging agents are one of the foundations of high spatial resolution imaging, and their sensitivity and specificity can be improved by coupling targeting ligands to imaging probes. Among the various targeting ligands (antibodies, aptamers, etc.), targeting peptides are widely used in various modalities of molecular imaging due to their high affinities toward the molecular target and their excellent physicochemical properties. In this review, we summarize the design concepts and methods of targeting peptides in molecular imaging, introduce the combination of targeting peptides and imaging probes in different imaging modalities (e.g., fluorescence imaging, radionuclide imaging), and provide examples of their applications in bioimaging. Finally, the challenges and strategies for clinical translation and practical application of targeting peptide-based imaging reagents are briefly discussed.
Collapse
Affiliation(s)
- Limin Zhang
- Key Laboratory of Medical
Molecule Science and Pharmaceutics Engineering, Ministry of Industry
and Information Technology, Key Laboratory of Cluster Science of Ministry
of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic
Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute
of Technology, Beijing 100081, PR China
| | - Xin Wang
- Key Laboratory of Medical
Molecule Science and Pharmaceutics Engineering, Ministry of Industry
and Information Technology, Key Laboratory of Cluster Science of Ministry
of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic
Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute
of Technology, Beijing 100081, PR China
| | - Jinge Zhao
- Key Laboratory of Medical
Molecule Science and Pharmaceutics Engineering, Ministry of Industry
and Information Technology, Key Laboratory of Cluster Science of Ministry
of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic
Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute
of Technology, Beijing 100081, PR China
| | - Beilei Sun
- Key Laboratory of Medical
Molecule Science and Pharmaceutics Engineering, Ministry of Industry
and Information Technology, Key Laboratory of Cluster Science of Ministry
of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic
Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute
of Technology, Beijing 100081, PR China
| | - Weizhi Wang
- Key Laboratory of Medical
Molecule Science and Pharmaceutics Engineering, Ministry of Industry
and Information Technology, Key Laboratory of Cluster Science of Ministry
of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic
Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute
of Technology, Beijing 100081, PR China
| |
Collapse
|
5
|
So YM, Wong JKY, Wong ASY, Tse ATL, Wan TSM, Ho ENM. Identification of erythropoietin mimetic peptide 1 linear form in a sealed vial and its administration study in horses for doping control purpose. Drug Test Anal 2024; 16:71-82. [PMID: 37248680 DOI: 10.1002/dta.3522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/31/2023]
Abstract
The erythropoietin mimetic peptide 1 linear form (EMP1-linear), GGTYSCHFGPLTWVCKPQGG-NH2 , was identified in an unknown preparation consisting of white crystalline powder contained in sealed glass vials using ultrahigh performance liquid chromatography-high-resolution mass spectrometry (UPLC-HRMS). The white crystalline powder, allegedly used for doping racehorses, was found to contain around 2% (w/w) of EMP1-linear. EMP1-linear can be cyclised in equine plasma at physiological temperature of 37°C by forming an intramolecular disulfide bond to give EMP1, which is a well-known erythropoiesis stimulating agent that can bind to and activate the receptor for cytokine erythropoietin (EPO). Thus, EMP1-linear is a prodrug of EMP1, which is a performance-enhancing doping agent that can be misused in equine sports. In order to identify potential target(s) for detecting the misuse of EMP1-linear in horses, an in vitro metabolic study using horse liver S9 fraction was performed. After incubation, EMP1-linear mainly existed in its cyclic form as EMP1, and four N-terminus truncated in vitro metabolites TYSCHFGPLTWVCKPQGG-NH2 (M1), SCHFGPLTWVCKPQGG-NH2 (M2), WVCKPQGG-NH2 (M3) and VCKPQGG-NH2 (M4) were identified. An intravenous administration study with the preparation of white crystalline powder containing EMP1-linear was also conducted using three retired thoroughbred geldings. EMP1 was detectable only in the postadministration plasma samples, whereas the four identified in vitro metabolites were detected in both postadministration plasma and urine samples. For controlling the misuse of EMP1-linear in horse, its metabolite M3 gave the longest detection time in both plasma and urine and could be detected for up to 4 and 27 h postadministration, respectively.
Collapse
Affiliation(s)
- Yat-Ming So
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, Hong Kong, China
| | - Jenny K Y Wong
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, Hong Kong, China
| | - April S Y Wong
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, Hong Kong, China
| | - Alice T L Tse
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, Hong Kong, China
| | - Terence S M Wan
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, Hong Kong, China
| | - Emmie N M Ho
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, Hong Kong, China
| |
Collapse
|
6
|
Otvos L, Wade JD. Big peptide drugs in a small molecule world. Front Chem 2023; 11:1302169. [PMID: 38144886 PMCID: PMC10740154 DOI: 10.3389/fchem.2023.1302169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/24/2023] [Indexed: 12/26/2023] Open
Abstract
A quarter of a century ago, designer peptide drugs finally broke through the glass ceiling. Despite the resistance by big pharma, biotechnology companies managed to develop injectable peptide-based drugs, first against orphan or other small volume diseases, and later for conditions affecting large patient populations such as type 2 diabetes. Even their lack of gastrointestinal absorption could be utilized to enable successful oral dosing against chronic constipation. The preference of peptide therapeutics over small molecule competitors against identical medical conditions can be achieved by careful target selection, intrachain and terminal amino acid modifications, appropriate conjugation to stability enhancers and chemical space expansion, innovative delivery and administration techniques and patient-focused marketing strategies. Unfortunately, however, pharmacoeconomical considerations, including the strength of big pharma to develop competing small molecule drugs, have somewhat limited the success of otherwise smart peptide-based therapeutics. Yet, with increasing improvement in peptide drug modification and formulation, these are continuing to gain significant, and growing, acceptance as desirable alternatives to small molecule compounds.
Collapse
Affiliation(s)
- Laszlo Otvos
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary
- OLPE Pharmaceutical Consultants, Audubon, PA, United States
| | - John D. Wade
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- School of Chemistry, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
7
|
Zhang P, Jiang Y, Xu C, Zhou L, Zheng H, Xie D, Guo M, Huang X, Lu G, Jiang H, Qiu H, Liu B, Li S, Chen Q, Xia Y, Sun B, Yang X, Zhang S, Du S, Sun M, Chen M, Zhong A, Wang X, Zhao Z, Zhou H, Li G, Ren Y, Luo Q, Yang A, Luo P, Tang S, Xu C, Wang Q, Wang X, Yan T, He W, Qin S, Zhang W, Lv L, Wang C, Liu H, Li J, Wu Q, Pan C, Li C, He L, Chen J. Pegmolesatide for the treatment of anemia in patients undergoing dialysis: a randomized clinical trial. EClinicalMedicine 2023; 65:102273. [PMID: 37954906 PMCID: PMC10632410 DOI: 10.1016/j.eclinm.2023.102273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 11/14/2023] Open
Abstract
Background Pegmolesatide, a synthetic peptide-based erythropoietin (EPO) receptor agonist, is being evaluated as an alternative to epoetin alfa for treating anemia of chronic kidney disease (CKD) in Chinese dialysis patients. There is a critical need for a long-acting, cost-effective erythropoiesis-stimulating agent that does not produce EPO antibodies. Methods A randomized, open-label, active-comparator, non-inferiority phase three trial was conducted at 43 dialysis centers in China between May 17th, 2019, and March 28th, 2022. Eligible patients aged 18-70 years were randomly assigned (2:1) to receive pegmolesatide once every four weeks or epoetin alfa one to three times per week, with doses adjusted to maintain a hemoglobin level between 10.0 and 12.0 g/dL. The primary efficacy endpoint was the mean change in hemoglobin level from baseline to the efficacy evaluation period in the per-protocol set (PPS) population. Non-inferiority of pegmolesatide to epoetin alfa was established if the lower limit of the two-sided 95% confidence interval for the between-group difference was ≥ -1.0 g/dL. Safety assessment included adverse events and potential anaphylaxis reactions. This trial is registered at ClinicalTrials.gov, NCT03902691. Findings Three hundreds and seventy-two patients were randomly assigned to the pegmolesatide group (248 patients) or the epoetin alfa group (124 patients). A total of 347 patients (233 in the pegmolesatide group and 114 in the epoetin alfa group) were included in the PPS population. In the PPS, the mean change (standard deviation, SD) in hemoglobin level from baseline to the efficacy evaluation period was 0.07 (0.92) g/dL in the pegmolesatide group and -0.22 (0.97) g/dL in the epoetin alfa group. The between-group difference was 0.29 g/dL (95% confidence interval: 0.11-0.47), verifying non-inferiority of pegmolesatide to epoetin alfa. Adverse events occurred in 231 (94%) participants in the pegmolesatide group and in 110 (89%) in the epoetin alfa group. Hypertension was the most common treatment-related adverse event. No fatal cases of anaphylaxis or hypotension were reported. Interpretation Monthly subcutaneously injection of pegmolesatide was as effective and safe as conventional epoetin alfa administrated one to three times a week in treating anemia in Chinese dialysis patients. Funding The study was supported by Hansoh Medical Development Group.
Collapse
Affiliation(s)
- Ping Zhang
- Kidney Disease Center, The First Affiliated Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Yan Jiang
- Kidney Disease Center, The First Affiliated Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Chunping Xu
- Kidney Disease Center, The First Affiliated Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Linghui Zhou
- The Department of Nephrology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Hongguang Zheng
- The Department of Nephrology, General Hospital of Northern Theater Command, Shengyang, China
| | - Deqiong Xie
- The Department of Nephrology, The Second People's Hospital of Yibin, Yibin, China
| | - Minghao Guo
- The Department of Nephrology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Xiangyang Huang
- The Department of Nephrology, Liuzhou Worker's Hospital, Liuzhou, China
| | - Guoyuan Lu
- The Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hongli Jiang
- The Department of Blood Purification, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, China
| | - Hongyu Qiu
- The Department of Nephrology, West China Hospital of Sichuan University, Chengdu, China
| | - Bicheng Liu
- The Institute of Nephrology, Zhongda Hospital Southeast University, Nanjing, China
| | - Shaomei Li
- The Department of Nephrology, The Second Hospital of HeBei Medical University, Shijiazhuang, China
| | - Qinkai Chen
- The Department of Nephrology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yu'ou Xia
- The Department of Nephrology, Siping Central People's Hospital, Siping, China
| | - Bengui Sun
- The Department of Nephrology, The Second People's Hospital of Hefei, Hefei, China
| | - Xiao Yang
- The Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Shiying Zhang
- The Department of Nephrology, Jilin Province People's Hospital, Changchun, China
| | - Shutong Du
- The Department of Nephrology, Cangzhou People's Hospital, Cangzhou, China
| | - Mindan Sun
- The Department of Nephrology, The First Bethune Hospital of Jilin University, Changchun, China
| | - Menghua Chen
- The Department of Nephrology, General Hospital of Ningxia Medical University, Yinchuang, China
| | - Aimin Zhong
- The Department of Nephrology, People's Hospital of Jiangxi Province, Nanchang, China
| | - Xiaoling Wang
- The Department of Nephrology, Lanzhou University Second Hospital, Lanzhou, China
| | - Zhanzheng Zhao
- The Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hua Zhou
- The Department of Nephrology, Shengjing Hospital of China Medicine University, Shengyang, China
| | - Guisen Li
- The Department of Nephrology, Sichuan Academy of Medical Sciences – Sichuan Provincial People's Hospital (SAMSPH), Chengdu, China
| | - Yueqin Ren
- The Department of Nephrology, LinYi People's Hospital, Linyi, China
| | - Qun Luo
- The Department of Nephrology, Hwamei Hospital, University of Chinese Academy of Sciences, China
| | - Aicheng Yang
- The Department of Nephrology, Wuyi Hospital of T.C.M, Jiangmen City (Affiliated Jiangmen TCM Hospital of Jinan University), China
| | - Ping Luo
- The Department of Nephrology, The Second Norman Bethune Hospital of Jilin University, Changchun, China
| | - Shuifu Tang
- The Department of Nephrology, The First Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chengyun Xu
- The Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qin Wang
- The Department of Nephrology, Shanghai Fengxian Center Hospital, Shanghai, China
| | - Xiaoxia Wang
- The Department of Nephrology, Tong Ren Hospital Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tiekun Yan
- The Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, China
| | - Wei He
- The Department of Nephrology, Traditional Chinese Medical Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Shuguang Qin
- The Department of Nephrology, Guangzhou First People's Hospital, Guangzhou, China
| | - Weili Zhang
- The Department of Nephrology, The First Hospital of Qiqihar, Qiqihar, China
| | - Lu Lv
- The Department of Nephrology, The First Affiliated Hospital/The First Clinical Medicine School of Guangdong Pharmaceutical University, Guangzhou, China
| | - Cheng Wang
- The Department of Nephrology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Hong Liu
- The Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jing Li
- The Department of Nephrology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Qiong Wu
- Hansoh Pharmaceutical Group Co, Ltd, Shanghai, China
| | - Chao Pan
- Hansoh Pharmaceutical Group Co, Ltd, Shanghai, China
| | - Chuan Li
- Hansoh Pharmaceutical Group Co, Ltd, Shanghai, China
| | - Liangliang He
- Hansoh Pharmaceutical Group Co, Ltd, Shanghai, China
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, Medical School of Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Dower WJ, Park AI, Bakker AV, Cwirla SE, Pongtornpipat P, Williams BM, Joshi P, Baxter BA, Needels MC, Barrett RW. A mechanistically novel peptide agonist of the IL-7 receptor that addresses limitations of IL-7 cytokine therapy. PLoS One 2023; 18:e0286834. [PMID: 37874823 PMCID: PMC10597491 DOI: 10.1371/journal.pone.0286834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/06/2023] [Indexed: 10/26/2023] Open
Abstract
Interleukin (IL)-7 is broadly active on T-cell populations, and modified versions have been clinically evaluated for a variety of therapeutic applications, including cancer, lymphopenia, and infectious diseases; and found to be relatively well-tolerated and biologically active. Here we describe novel IL-7R agonists that are unrelated in structure to IL-7, bind to the receptor subunits differently from IL-7, but closely emulate IL-7 biology. The small size, low structural complexity, and the natural amino acid composition of the pharmacologically active peptide MDK1472 allows facile incorporation into protein structures, such as the IgG2-Fc fusion MDK-703. This molecule possesses properties potentially better suited to therapeutic applications than native IL-7 or its derivatives. We compared these compounds with IL-7 for immune cell selectivity, induction of IL-7R signaling, receptor-mediated internalization, proliferation, and generation of immune cell phenotypes in human and non-human primate (NHP) peripheral blood cells in vitro; and found them to be similar in biological activity to IL-7. In cynomolgus macaques, MDK-703 exhibits a circulating half-life of 46 hr and produces sustained T-cell expansion characteristic of IL-7 treatment. In the huCD34+-engrafted NSG mouse model of the human immune system, MDK-703 induces an immune cell profile very similar to that generated by IL-7-derived compounds; including the pronounced expansion of memory T-cells, particularly the population of stem-like memory T-cells (Tscm) which may be important for anti-tumor activities reported with IL-7 treatment. Clinical administration of IL-7 and modified variants has been reported to induce anti-drug antibodies (ADAs), including IL-7 neutralizing antibodies. The novel peptide agonist reported here scores very low in predicted immunogenicity, and because the peptide lacks sequence similarity with IL-7, the problematic immunogenic neutralization of endogenous cytokine should not occur. The properties we report here implicate MDK-703 as a candidate for clinical evaluation in oncology, anti-viral and other infectious disease, vaccine enhancement, and treatment of lymphopenia.
Collapse
Affiliation(s)
- William J. Dower
- Medikine, Inc., Menlo Park, California, United States of America
| | | | - Alice V. Bakker
- Medikine, Inc., Menlo Park, California, United States of America
| | - Steven E. Cwirla
- Medikine, Inc., Menlo Park, California, United States of America
| | | | - Blake M. Williams
- Medikine, Inc., Menlo Park, California, United States of America
- Department of Biomedical Engineering, and Center for Quantitative Bioinformatics and Quantitative Biology, Colleges of Engineering and Medicine, University of Illinois Chicago, IL, United States of America
| | - Prarthana Joshi
- Medikine, Inc., Menlo Park, California, United States of America
| | - Bryan A. Baxter
- Medikine, Inc., Menlo Park, California, United States of America
| | | | | |
Collapse
|
9
|
Fan YL, Zhang NY, Hou DY, Hao Y, Zheng R, Yang J, Fan Z, An HW, Wang H. Programmable Peptides Activated Macropinocytosis for Direct Cytosolic Delivery. Adv Healthc Mater 2023; 12:e2301162. [PMID: 37449948 DOI: 10.1002/adhm.202301162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/02/2023] [Indexed: 07/18/2023]
Abstract
Bioactive macromolecules show great promise for the treatment of various diseases. However, the cytosolic delivery of peptide-based drugs remains a challenging task owing to the existence of multiple intracellular barriers and ineffective endosomal escape. To address these issues, herein, programmable self-assembling peptide vectors are reported to amplify cargo internalization into the cytoplasm through receptor-activated macropinocytosis. Programmable self-assembling peptide vector-active human epidermal growth factor receptor-2 (HER2) signaling induces the receptor-activated macropinocytosis pathway, achieving efficient uptake in tumor cells. Shrinking macropinosomes accelerate the process of assembly dynamics and form nanostructures in the cytoplasm to increase peptide-based cargo accumulation and retention. Inductively coupled plasma mass (ICP-MS) spectrometry quantitative analysis indicates that the Gd delivery efficiency in tumor tissue through the macropinocytosis pathway is improved 2.5-fold compared with that through the use of active targeting molecular delivery. Finally, compared with nanoparticles and active targeting delivery, the delivery of bioactive peptide drugs through the self-assembly of peptide vectors maintains high drug activity (the IC50 decreased twofold) in the cytoplasm and achieves effective inhibition of tumor cell growth. Programmable self-assembling peptide vectors represent a promising platform for the intracellular delivery of diverse bioactive drugs, including molecular drugs, peptides, and biologics.
Collapse
Affiliation(s)
- Yan-Lei Fan
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Beijing, 100190, P. R. China
| | - Ni-Yuan Zhang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Beijing, 100190, P. R. China
| | - Da-Yong Hou
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Beijing, 100190, P. R. China
| | - Yi Hao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Beijing, 100190, P. R. China
| | - Rui Zheng
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Beijing, 100190, P. R. China
| | - Jia Yang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Beijing, 100190, P. R. China
| | - Zhi Fan
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| | - Hong-Wei An
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Beijing, 100190, P. R. China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
10
|
Kumari S, Singh K, Singh N, Khan S, Kumar A. Phage display and human disease detection. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 201:151-172. [PMID: 37770169 DOI: 10.1016/bs.pmbts.2023.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Phage display is a significant and active molecular method and has continued crucial for investigative sector meanwhile its unearthing in 1985. This practice has numerous benefits: the association among physiology and genome, the massive variety of variant proteins showed in sole collection and the elasticity of collection that can be achieved. It suggests a diversity of stages for manipulating antigen attachment; yet, variety and steadiness of exhibited library are an alarm. Additional improvements, like accumulation of non-canonical amino acids, resulting in extension of ligands that can be recognized through collection, will support in expansion of the probable uses and possibilities of technology. Epidemic of COVID-19 had taken countless lives, and while indicative prescriptions were provided to diseased individuals, still no prevention was observed for the contamination. Phage demonstration has presented an in-depth understanding into protein connections included in pathogenesis. Phage display knowledge is developing as an influential, inexpensive, quick, and effectual method to grow novel mediators for the molecular imaging and analysis of cancer.
Collapse
Affiliation(s)
- Sonu Kumari
- Department of Biotechnology, Faculty of Engineering and Technology, Rama University, Kanpur, Uttar Pradesh, India
| | - Krati Singh
- Department of Biotechnology, Banasthali University, Newai, Rajasthan, India
| | - Neha Singh
- Department of Biotechnology, Banasthali University, Newai, Rajasthan, India
| | - Suphiya Khan
- Department of Biotechnology, Banasthali University, Newai, Rajasthan, India
| | - Ajay Kumar
- Department of Biotechnology, Faculty of Engineering and Technology, Rama University, Kanpur, Uttar Pradesh, India.
| |
Collapse
|
11
|
McFarlane A, Pohler E, Moraga I. Molecular and cellular factors determining the functional pleiotropy of cytokines. FEBS J 2023; 290:2525-2552. [PMID: 35246947 PMCID: PMC10952290 DOI: 10.1111/febs.16420] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/26/2022] [Accepted: 03/03/2022] [Indexed: 11/30/2022]
Abstract
Cytokines are soluble factors vital for mammalian physiology. Cytokines elicit highly pleiotropic activities, characterized by their ability to induce a wide spectrum of functional responses in a diverse range of cell subsets, which makes their study very challenging. Cytokines activate signalling via receptor dimerization/oligomerization, triggering activation of the JAK (Janus kinase)/STAT (signal transducer and activator of transcription) signalling pathway. Given the strong crosstalk and shared usage of key components of cytokine signalling pathways, a long-standing question in the field pertains to how functional diversity is achieved by cytokines. Here, we discuss how biophysical - for example, ligand-receptor binding affinity and topology - and cellular - for example, receptor, JAK and STAT protein levels, endosomal compartment - parameters contribute to the modulation and diversification of cytokine responses. We review how these parameters ultimately converge into a common mechanism to fine-tune cytokine signalling that involves the control of the number of Tyr residues phosphorylated in the receptor intracellular domain upon cytokine stimulation. This results in different kinetics of STAT activation, and induction of specific gene expression programs, ensuring the generation of functional diversity by cytokines using a limited set of signalling intermediaries. We describe how these first principles of cytokine signalling have been exploited using protein engineering to design cytokine variants with more specific and less toxic responses for immunotherapy.
Collapse
Affiliation(s)
- Alison McFarlane
- Division of Cell Signalling and ImmunologySchool of Life SciencesUniversity of DundeeUK
| | - Elizabeth Pohler
- Division of Cell Signalling and ImmunologySchool of Life SciencesUniversity of DundeeUK
| | - Ignacio Moraga
- Division of Cell Signalling and ImmunologySchool of Life SciencesUniversity of DundeeUK
| |
Collapse
|
12
|
Sharma K, Sharma KK, Sharma A, Jain R. Peptide-based drug discovery: Current status and recent advances. Drug Discov Today 2023; 28:103464. [PMID: 36481586 DOI: 10.1016/j.drudis.2022.103464] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
The progressive development of peptides from reaction vessels to life-saving drugs via rigorous preclinical and clinical assessments is fascinating. Peptide therapeutics have gained momentum with the evolution of techniques in peptide chemistry, such as microwave irradiation in solid- and solution-phase synthesis, ligation chemistry, recombinant synthesis, and amalgamation with synthetic tools, including metal catalysis. Diverse emerging technologies, such as DNA-encoded libraries (DELs) and display techniques, are changing the status quo in the discovery of peptide therapeutics. In this review, we analyzed US Food and Drug Administration (FDA)-approved peptide drugs and those in clinical trials, highlighting recent advances in peptide-based drug discovery.
Collapse
Affiliation(s)
- Komal Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab 160 062, India
| | - Krishna K Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab 160 062, India
| | - Anku Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab 160 062, India
| | - Rahul Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab 160 062, India.
| |
Collapse
|
13
|
Lu X, Li X, Yu J, Ding B. Nanofibrous hemostatic materials: Structural design, fabrication methods, and hemostatic mechanisms. Acta Biomater 2022; 154:49-62. [PMID: 36265792 DOI: 10.1016/j.actbio.2022.10.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/16/2022] [Accepted: 10/12/2022] [Indexed: 12/14/2022]
Abstract
Development of rapid and effective hemostatic materials has always been the focus of research in the healthcare field. Nanofibrous materials which recapitulate the delicate nano-topography feature of fibrin fibers produced during natural hemostatic process, offer large length-to-diameter ratio and surface area, tunable porous structure, and precise control in architecture, showing great potential for staunching bleeding. Here we present a comprehensive review of advances in nanofibrous hemostatic materials, focusing on the following three important parts: structural design, fabrication methods, and hemostatic mechanisms. This review begins with an introduction to the physiological hemostatic mechanism and current commercial hemostatic agents. Then, it focuses on recent progress in electrospun nanofibrous hemostatic materials in terms of composition and structure control, surface modification, and in-situ deposition. The article emphasizes the development of three-dimensional (3D) electrospun nanofibrous materials and their emerging evolution for improving hemostatic function. Next, it discusses the fabrication of self-assembling peptide or protein-mimetic peptide nanofibers, co-assembling supramolecular nanofibers, as well as other nanofibrous hemostatic agents. Further, the article highlights the external and intracavitary hemostatic management based on various nanofiber aggregates. In the end, this review concludes with the current challenges and future perspectives of nanofibrous hemostatic materials. STATEMENT OF SIGNIFICANCE: This article reviews recent advances in nanofibrous hemostatic materials including fabrication methods, composition and structural control, performance improvement, and hemostatic mechanisms. A variety of methods including electrospinning, self-assembly, grinding and refining, template synthesis, and chemical vapor deposition, have been developed to prepare nanofibrous materials. These methods provide robustness in control of the nanofiber architecture in the forms of hydrogels, two-dimensional (2D) membranes, 3D sponges, or composites, showing promising potential in the external and intracavitary hemostasis and wound healing applications. This review will be of great interest to the broad readers in the field of hemostatic materials and multifunctional biomaterials.
Collapse
Affiliation(s)
- Xuyan Lu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Xiaoran Li
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China.
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Bin Ding
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China.
| |
Collapse
|
14
|
Anand U, Bandyopadhyay A, Jha NK, Pérez de la Lastra JM, Dey A. Translational aspect in peptide drug discovery and development: An emerging therapeutic candidate. Biofactors 2022; 49:251-269. [PMID: 36326181 DOI: 10.1002/biof.1913] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/11/2022] [Indexed: 11/06/2022]
Abstract
In the last two decades, protein-protein interactions (PPIs) have been used as the main target for drug development. However, with larger or superficial binding sites, it has been extremely difficult to disrupt PPIs with small molecules. On the other hand, intracellular PPIs cannot be targeted by antibodies that cannot penetrate the cell membrane. Peptides that have a combination of conformational rigidity and flexibility can be used to target difficult binding interfaces with appropriate binding affinity and specificity. Since the introduction of insulin nearly a century ago, more than 80 peptide drugs have been approved to treat a variety of diseases. These include deadly diseases such as cancer and human immunodeficiency virus infection. It is also useful against diabetes, chronic pain, and osteoporosis. Today, more research is being done on these drugs as lessons learned from earlier approaches, which are still valid today, complement newer approaches such as peptide display libraries. At the same time, integrated genomics and peptide display libraries are new strategies that open new avenues for peptide drug discovery. The purpose of this review is to examine the problems in elucidating the peptide-protein recognition mechanism. This is important to develop peptide-based interventions that interfere with endogenous protein interactions. New approaches are being developed to improve the binding affinity and specificity of existing approaches and to develop peptide agents as potentially useful drugs. We also highlight the key challenges that must be overcome in peptide drug development to realize their potential and provide an overview of recent trends in peptide drug development. In addition, we take an in-depth look at early efforts in human hormone discovery, smart medicinal chemistry and design, natural peptide drugs, and breakthrough advances in molecular biology and peptide chemistry.
Collapse
Affiliation(s)
- Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, Punjab, India
- Department of Biotechnology, School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - José M Pérez de la Lastra
- Biotechnology of Macromolecules Research Group, Instituto de Productos Naturales y Agrobiología, IPNA-CSIC, Tenerife, Spain
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| |
Collapse
|
15
|
Structural Basis of Peptide-Based Antimicrobial Inhibition of a Resistance-Nodulation-Cell Division Multidrug Efflux Pump. Microbiol Spectr 2022; 10:e0299022. [PMID: 36121287 PMCID: PMC9603588 DOI: 10.1128/spectrum.02990-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Bacterial efflux pumps in the resistance-nodulation-cell division (RND) family of Gram-negative bacteria contribute significantly to the development of antimicrobial resistance by many pathogens. In this study, we selected the MtrD transporter protein of Neisseria gonorrhoeae as it is the sole RND pump possessed by this strictly human pathogen and can export multiple antimicrobials, including antibiotics, bile salts, detergents, dyes, and antimicrobial peptides. Using knowledge from our previously published structures of MtrD in the presence or absence of bound antibiotics as a model and the known ability of MtrCDE to export cationic antimicrobial peptides, we hypothesized that cationic peptides could be accommodated within MtrD binding sites. Furthermore, we thought that MtrD-bound peptides lacking antibacterial action could sensitize bacteria to an antibiotic normally exported by the MtrCDE efflux pump or other similar RND-type pumps possessed by different Gram-negative bacteria. We now report the identification of a novel nonantimicrobial cyclic cationic antimicrobial peptide, which we termed CASP (cationic antibiotic-sensitizing peptide). By single-particle cryo-electron microscopy, we found that CASP binds within the periplasmic cleft region of MtrD using overlapping and distinct amino acid contact sites that interact with another cyclic peptide (colistin) or a linear human cationic antimicrobial peptide derived from human LL-37. While CASP could not sensitize Neisseria gonorrhoeae to an antibiotic (novobiocin) that is a substrate for RND pumps, it could do so against multiple Gram-negative, rod-shaped bacteria. We propose that CASP (or future derivatives) could serve as an adjuvant for the antibiotic treatment of certain Gram-negative infections previously thwarted by RND transporters. IMPORTANCE RND efflux pumps can export numerous antimicrobials that enter Gram-negative bacteria, and their action can reduce the efficacy of antibiotics and provide decreased susceptibility to various host antimicrobials. Here, we identified a cationic antibiotic-sensitizing peptide (CASP) that binds within the periplasmic cleft of an RND transporter protein (MtrD) produced by Neisseria gonorrhoeae. Surprisingly, CASP was able to render rod-shaped Gram-negative bacteria, but not gonococci, susceptible to an antibiotic that is a substrate for the gonococcal MtrCDE efflux pump. CASP (or its future derivatives) could be used as an adjuvant to treat infections for which RND efflux contributes to multidrug resistance.
Collapse
|
16
|
A Nano Erythropoiesis Stimulating Agent (Nano-ESA) for the Treatment of Anemia and Associated Disorders. iScience 2022; 25:105021. [PMID: 36111254 PMCID: PMC9468392 DOI: 10.1016/j.isci.2022.105021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/20/2022] [Accepted: 08/19/2022] [Indexed: 11/24/2022] Open
|
17
|
You T, Ding Y, Chen H, Song G, Huang L, Wang M, Hua X. Development of competitive and noncompetitive immunoassays for clothianidin with high sensitivity and specificity using phage-displayed peptides. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:128011. [PMID: 34896720 DOI: 10.1016/j.jhazmat.2021.128011] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/23/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Clothianidin is a widely used pesticide that has been banned from outdoor use by the European Union due to its toxicity. To improve the sensitivity and specificity of existing clothianidin immunoassays, we developed competitive and noncompetitive immunoassays for clothianidin based on phage-displayed peptides. Cyclic 8-, 9-, and 10-residue peptide libraries were constructed using an optimized phagemid pComb-pVIII to prevent the loss of theoretical library diversity. Twenty-eight peptidomimetics and two anti-immunocomplex peptides were isolated through a blended panning process and used to develop competitive and noncompetitive phage enzyme-linked immunosorbent assays (P-ELISAs), respectively. After optimization, the half inhibition concentration (IC50) and half saturation concentration (SC50) of competitive and noncompetitive P-ELISAs were 3.83 ± 0.23 and 0.45 ± 0.02 ng/mL, respectively. Competitive P-ELISA showed 2.6-18.2% cross-reactivity with imidaclothiz, nitenpyram and imidacloprid. Importantly, noncompetitive P-ELISA, which has the best specificity and great sensitivity for clothianidin, showed no cross-reactivity with the analogs. The average recoveries of competitive and noncompetitive P-ELISAs were 73.8-104.1% and 76.6-102.2%, respectively, while the relative standard deviations were ≤ 11.0%. In addition, the results of P-ELISAs in the analysis of blind samples were consistent with those of high-performance liquid chromatography.
Collapse
Affiliation(s)
- Tianyang You
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Yuan Ding
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - He Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Guangyue Song
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Lianrun Huang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Minghua Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Xiude Hua
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China.
| |
Collapse
|
18
|
Khan H, Nazir S, Farooq RK, Khan IN, Javed A. Fabrication and Assessment of Diosgenin Encapsulated Stearic Acid Solid Lipid Nanoparticles for Its Anticancer and Antidepressant Effects Using in vitro and in vivo Models. Front Neurosci 2022; 15:806713. [PMID: 35221890 PMCID: PMC8866708 DOI: 10.3389/fnins.2021.806713] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/29/2021] [Indexed: 11/17/2022] Open
Abstract
Inflammatory cascade plays a pivotal role in the onset and progression of major depressive disorder (MDD) and glioblastoma multiforme (GBM). Therefore, questing natural compounds with anti-inflammatory activity such as diosgenin can act as a double-edged sword targeting cancer and cancer-induced inflammation simultaneously. The blood–brain barrier limits the therapeutic efficiency of the drugs against intracranial pathologies including depression and brain cancers. Encapsulating a drug molecule in lipid nanoparticles can overcome this obstacle. The current study has thus investigated the anticancer and antidepressant effect of Tween 80 (P80) coated stearic acid solid lipid nanoparticles (SLNPs) encapsulating the diosgenin. Physio-chemical characterizations of SLNPs were performed to assess their stability, monodispersity, and entrapment efficiency. In vitro cytotoxic analysis of naked and drug encapsulated SLNPs on U-87 cell line indicated diosgenin IC50 value to be 194.4 μM, while diosgenin encapsulation in nanoparticles slightly decreases the toxicity. Antidepressant effects of encapsulated and non-encapsulated diosgenin were comprehensively evaluated in the concanavalin-A–induced sickness behavior mouse model. Behavior test results indicate that diosgenin and diosgenin encapsulated nanoparticles significantly alleviated anxiety-like and depressive behavior. Diosgenin incorporated SLNPs also improved grooming behavior and social interaction as well as showed normal levels of neutrophils and leukocytes with no toxicity indication. In conclusion, diosgenin and diosgenin encapsulated solid lipid nanoparticles proved successful in decreasing in vitro cancer cell proliferation and improving sickness behavioral phenotype and thus merit further exploration.
Collapse
Affiliation(s)
- Hina Khan
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Sadia Nazir
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Rai Khalid Farooq
- Department of Neuroscience Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Ishaq N. Khan
- Department of Molecular Biology and Genetics, Institute of Basic Medical Sciences (IBMS), Khyber Medical University, Peshawar, Pakistan
| | - Aneela Javed
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
- Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Science and Technology (NUST), Islamabad, Pakistan
- *Correspondence: Aneela Javed,
| |
Collapse
|
19
|
Ito K, Matsuda Y, Mine A, Shikida N, Takahashi K, Miyairi K, Shimbo K, Kikuchi Y, Konishi A. Single-chain tandem macrocyclic peptides as a scaffold for growth factor and cytokine mimetics. Commun Biol 2022; 5:56. [PMID: 35031676 PMCID: PMC8760323 DOI: 10.1038/s42003-022-03015-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/28/2021] [Indexed: 11/28/2022] Open
Abstract
Mimetics of growth factors and cytokines are promising tools for culturing large numbers of cells and manufacturing regenerative medicine products. In this study, we report single-chain tandem macrocyclic peptides (STaMPtides) as mimetics in a new multivalent peptide format. STaMPtides, which contain two or more macrocyclic peptides with a disulfide-closed backbone and peptide linkers, are successfully secreted into the supernatant by Corynebacterium glutamicum-based secretion technology. Without post-secretion modification steps, such as macrocyclization or enzymatic treatment, bacterially secreted STaMPtides form disulfide bonds, as designed; are biologically active; and show agonistic activities against respective target receptors. We also demonstrate, by cell-based assays, the potential of STaMPtides, which mimic growth factors and cytokines, in cell culture. The STaMPtide technology can be applied to the design, screening, and production of growth factor and cytokine mimetics.
Collapse
Affiliation(s)
- Kenichiro Ito
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-8681, Japan.
| | - Yoshihiko Matsuda
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-8681, Japan
| | - Ayako Mine
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-8681, Japan
| | - Natsuki Shikida
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-8681, Japan
| | - Kazutoshi Takahashi
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-8681, Japan
| | - Kyohei Miyairi
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-8681, Japan
| | - Kazutaka Shimbo
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-8681, Japan
| | - Yoshimi Kikuchi
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-8681, Japan
| | - Atsushi Konishi
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-8681, Japan
| |
Collapse
|
20
|
Gu Y, Iannuzzelli JA, Fasan R. MOrPH-PhD: A Phage Display System for the Functional Selection of Genetically Encoded Macrocyclic Peptides. Methods Mol Biol 2022; 2371:261-286. [PMID: 34596853 PMCID: PMC8493807 DOI: 10.1007/978-1-0716-1689-5_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Macrocyclic peptides represent promising scaffolds for targeting biomolecules with high affinity and selectivity, making methods for the diversification and functional selection of these macrocycles highly valuable for drug discovery purposes. We recently reported a novel phage display platform (called MOrPH-PhD) for the creation and functional exploration of combinatorial libraries of genetically encoded cyclic peptides. In this system, spontaneous, posttranslational peptide cyclization by means of a cysteine-reactive non-canonical amino acid is integrated with M13 bacteriophage display, enabling the creation of genetically encoded macrocyclic peptide libraries displayed on phage particles. Using this system, it is possible to rapidly generate and screen large libraries of phage-displayed macrocyclic peptides (up to 108 to 1010 members) in order to identify high-affinity binders of a target protein of interest. Herein, we describe step-by-step protocols for the production of MOrPH-PhD libraries, the screening of these libraries against an immobilized protein target, and the isolation and characterization of functional macrocyclic peptides from these genetically encoded libraries.
Collapse
Affiliation(s)
- Yu Gu
- Department of Chemistry, University of Rochester, Rochester, NY, USA
| | | | - Rudi Fasan
- Department of Chemistry, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
21
|
Anzai H, Terai T, Wakabayashi-Nakao K, Noguchi T, Kumachi S, Tsuchiya M, Nemoto N. Interleukin-17A Peptide Aptamers with an Unexpected Binding Moiety Selected by cDNA Display under Heterogenous Conditions. ACS Med Chem Lett 2021; 12:1427-1434. [PMID: 34531951 DOI: 10.1021/acsmedchemlett.1c00217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 08/19/2021] [Indexed: 12/18/2022] Open
Abstract
Peptide-based drugs are an attractive new modality of therapeutics, and in vitro selection from a large-scale library is a powerful way to identify new lead sequences. In conventional screenings, peptide specificity and stability in physiological heterogenous environments are not evaluated, which sometimes makes subsequent optimization difficult. Here we show that selection using a cDNA display system can be performed in a high percentage of serum and that this might be an option to select molecules with high potency and stability in a biological context. Specifically, we chose interleukin-17A as a target protein and performed in vitro selection of cyclic peptide aptamers from a library of approximately 1012 members in the presence of serum. The selected molecules had nanomolar affinity to the target and were stable in serum. Interestingly, we found that a component of the DNA linker that connected the peptide and cDNA may play a pivotal role in target binding.
Collapse
Affiliation(s)
- Hiroki Anzai
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan
| | - Takuya Terai
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan
| | - Kanako Wakabayashi-Nakao
- Epsilon Molecular Engineering, Inc., 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan
| | - Taro Noguchi
- Epsilon Molecular Engineering, Inc., 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan
| | - Shigefumi Kumachi
- Epsilon Molecular Engineering, Inc., 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan
| | - Masayuki Tsuchiya
- Epsilon Molecular Engineering, Inc., 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan
| | - Naoto Nemoto
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan
- Epsilon Molecular Engineering, Inc., 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan
| |
Collapse
|
22
|
Hashemi ZS, Zarei M, Fath MK, Ganji M, Farahani MS, Afsharnouri F, Pourzardosht N, Khalesi B, Jahangiri A, Rahbar MR, Khalili S. In silico Approaches for the Design and Optimization of Interfering Peptides Against Protein-Protein Interactions. Front Mol Biosci 2021; 8:669431. [PMID: 33996914 PMCID: PMC8113820 DOI: 10.3389/fmolb.2021.669431] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/06/2021] [Indexed: 01/01/2023] Open
Abstract
Large contact surfaces of protein-protein interactions (PPIs) remain to be an ongoing issue in the discovery and design of small molecule modulators. Peptides are intrinsically capable of exploring larger surfaces, stable, and bioavailable, and therefore bear a high therapeutic value in the treatment of various diseases, including cancer, infectious diseases, and neurodegenerative diseases. Given these promising properties, a long way has been covered in the field of targeting PPIs via peptide design strategies. In silico tools have recently become an inevitable approach for the design and optimization of these interfering peptides. Various algorithms have been developed to scrutinize the PPI interfaces. Moreover, different databases and software tools have been created to predict the peptide structures and their interactions with target protein complexes. High-throughput screening of large peptide libraries against PPIs; "hotspot" identification; structure-based and off-structure approaches of peptide design; 3D peptide modeling; peptide optimization strategies like cyclization; and peptide binding energy evaluation are among the capabilities of in silico tools. In the present study, the most recent advances in the field of in silico approaches for the design of interfering peptides against PPIs will be reviewed. The future perspective of the field and its advantages and limitations will also be pinpointed.
Collapse
Affiliation(s)
- Zahra Sadat Hashemi
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, Academic Center for Education, Culture and Research, Tehran, Iran
| | - Mahboubeh Zarei
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mahmoud Ganji
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahboube Shahrabi Farahani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Afsharnouri
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Navid Pourzardosht
- Cellular and Molecular Research Center, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Department of Biochemistry, Guilan University of Medical Sciences, Rasht, Iran
| | - Bahman Khalesi
- Department of Research and Production of Poultry Viral Vaccine, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization, Karaj, Iran
| | - Abolfazl Jahangiri
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Rahbar
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| |
Collapse
|
23
|
Knorr DY, Hartung D, Schneider K, Hintz L, Pies HS, Heinrich R. Locust Hemolymph Conveys Erythropoietin-Like Cytoprotection via Activation of the Cytokine Receptor CRLF3. Front Physiol 2021; 12:648245. [PMID: 33897456 PMCID: PMC8063046 DOI: 10.3389/fphys.2021.648245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/15/2021] [Indexed: 12/15/2022] Open
Abstract
The cytokine receptor-like factor 3 (CRLF3) is an evolutionary conserved class 1 cytokine receptor present in all major eumetazoan groups. Endogenous CRLF3 ligands have not been identified and the physiological responses mediated by mammalian CRLF3 are poorly characterized. Insect CRLF3 is activated by erythropoietin (Epo) and several related molecules that protect mammalian neurons from stress-induced apoptosis. However, insects neither express Epo nor “classical” Epo receptor. Cell-protective effects of insect hemolymph have been described for several species. In this study, we explored the possibility that the endogenous CRLF3 ligand is contained in locust hemolymph. PCR analyses confirmed expression of crfl3-transcripts in neurons and hemocytes of Locusta migratoria and Tribolium castaneum. Survival of locust hemocytes in primary cultures was significantly increased by supplementation of culture medium with locust hemolymph serum. Locust primary neuron cultures were also protected by locust hemolymph, though preceding exposure to fetal bovine serum changed the hemolymph dose-dependency of neuroprotection. Direct comparison of 10% hemolymph serum with recombinant human Epo in its optimal neuroprotective concentration revealed equivalent anti-apoptotic effects on hypoxia-exposed locust neurons. The same concentration of locust hemolymph serum also protected hypoxia-exposed T. castaneum neurons. This indicates that the neuroprotective factor in locust hemolymph is sufficiently conserved in insects to allow activation of neuroprotective receptors in different species. Locust hemolymph-induced neuroprotection in both L. migratoria and T. castaneum was abolished after RNAi-mediated suppression of crlf3-expression. In summary, we report the presence of a conserved endogenous cytokine in locust hemolymph that activates CRLF3 and connected anti-apoptotic processes in hemocytes and neurons. Identification and characterization of the CRLF3 ligand will promote knowledge about cytokine evolution and may unravel cell-protective agents with potential clinical application.
Collapse
Affiliation(s)
- Debbra Y Knorr
- Department of Cellular Neurobiology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, Georg-August-University Göttingen, Göttingen, Germany
| | - Denise Hartung
- Department of Cellular Neurobiology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, Georg-August-University Göttingen, Göttingen, Germany
| | - Kristin Schneider
- Department of Cellular Neurobiology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, Georg-August-University Göttingen, Göttingen, Germany
| | - Luzia Hintz
- Department of Cellular Neurobiology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, Georg-August-University Göttingen, Göttingen, Germany
| | - Hanna S Pies
- Department of Cellular Neurobiology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, Georg-August-University Göttingen, Göttingen, Germany
| | - Ralf Heinrich
- Department of Cellular Neurobiology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
24
|
Abstract
Since the introduction of insulin almost a century ago, more than 80 peptide drugs have reached the market for a wide range of diseases, including diabetes, cancer, osteoporosis, multiple sclerosis, HIV infection and chronic pain. In this Perspective, we summarize key trends in peptide drug discovery and development, covering the early efforts focused on human hormones, elegant medicinal chemistry and rational design strategies, peptide drugs derived from nature, and major breakthroughs in molecular biology and peptide chemistry that continue to advance the field. We emphasize lessons from earlier approaches that are still relevant today as well as emerging strategies such as integrated venomics and peptide-display libraries that create new avenues for peptide drug discovery. We also discuss the pharmaceutical landscape in which peptide drugs could be particularly valuable and analyse the challenges that need to be addressed for them to reach their full potential.
Collapse
|
25
|
Chemistry of Molecular Imaging: An Overview. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00029-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
26
|
Saha I, Dang EK, Svatunek D, Houk KN, Harran PG. Computational generation of an annotated gigalibrary of synthesizable, composite peptidic macrocycles. Proc Natl Acad Sci U S A 2020; 117:24679-24690. [PMID: 32948694 PMCID: PMC7547232 DOI: 10.1073/pnas.2007304117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Peptidomimetic macrocycles have the potential to regulate challenging therapeutic targets. Structures of this type having precise shapes and drug-like character are particularly coveted, but are relatively difficult to synthesize. Our laboratory has developed robust methods that integrate small-peptide units into designed scaffolds. These methods create macrocycles and embed condensed heterocycles to diversify outcomes and improve pharmacological properties. The hypothetical scope of the methodology is vast and far outpaces the capacity of our experimental format. We now describe a computational rendering of our methodology that creates an in silico three-dimensional library of composite peptidic macrocycles. Our open-source platform, CPMG (Composite Peptide Macrocycle Generator), has algorithmically generated a library of 2,020,794,198 macrocycles that can result from the multistep reaction sequences we have developed. Structures are generated based on predicted site reactivity and filtered on the basis of physical and three-dimensional properties to identify maximally diverse compounds for prioritization. For conformational analyses, we also introduce ConfBuster++, an RDKit port of the open-source software ConfBuster, which allows facile integration with CPMG and ready parallelization for better scalability. Our approach deeply probes ligand space accessible via our synthetic methodology and provides a resource for large-scale virtual screening.
Collapse
Affiliation(s)
- Ishika Saha
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Eric K Dang
- Department of Computer Science, University of California, Los Angeles, CA 90095
| | - Dennis Svatunek
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Kendall N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095;
| | - Patrick G Harran
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095;
| |
Collapse
|
27
|
Enriquez-Ochoa D, Robles-Ovalle P, Mayolo-Deloisa K, Brunck MEG. Immobilization of Growth Factors for Cell Therapy Manufacturing. Front Bioeng Biotechnol 2020; 8:620. [PMID: 32637403 PMCID: PMC7317031 DOI: 10.3389/fbioe.2020.00620] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/20/2020] [Indexed: 12/21/2022] Open
Abstract
Cell therapy products exhibit great therapeutic potential but come with a deterring price tag partly caused by their costly manufacturing processes. The development of strategies that lead to cost-effective cell production is key to expand the reach of cell therapies. Growth factors are critical culture media components required for the maintenance and differentiation of cells in culture and are widely employed in cell therapy manufacturing. However, they are expensive, and their common use in soluble form is often associated with decreased stability and bioactivity. Immobilization has emerged as a possible strategy to optimize growth factor use in cell culture. To date, several immobilization techniques have been reported for attaching growth factors onto a variety of biomaterials, but these have been focused on tissue engineering. This review briefly summarizes the current landscape of cell therapy manufacturing, before describing the types of chemistry that can be used to immobilize growth factors for cell culture. Emphasis is placed to identify strategies that could reduce growth factor usage and enhance bioactivity. Finally, we describe a case study for stem cell factor.
Collapse
Affiliation(s)
| | | | - Karla Mayolo-Deloisa
- Tecnologico de Monterrey, School of Engineering and Science, FEMSA Biotechnology Center, Monterrey, Mexico
| | - Marion E. G. Brunck
- Tecnologico de Monterrey, School of Engineering and Science, FEMSA Biotechnology Center, Monterrey, Mexico
| |
Collapse
|
28
|
Owens A, Iannuzzelli JA, Gu Y, Fasan R. MOrPH-PhD: An Integrated Phage Display Platform for the Discovery of Functional Genetically Encoded Peptide Macrocycles. ACS CENTRAL SCIENCE 2020; 6:368-381. [PMID: 32232137 PMCID: PMC7099587 DOI: 10.1021/acscentsci.9b00927] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Indexed: 05/04/2023]
Abstract
Macrocyclic peptides represent attractive scaffolds for targeting protein-protein interactions, making methods for the diversification and functional selection of these molecules highly valuable for molecular discovery purposes. Here, we report the development of a novel strategy for the generation and high-throughput screening of combinatorial libraries of macrocyclic peptides constrained by a nonreducible thioether bridge. In this system, spontaneous, posttranslational peptide cyclization by means of a cysteine-reactive noncanonical amino acid was integrated with M13 bacteriophage display, enabling the creation of genetically encoded macrocyclic peptide libraries displayed on phage particles. This platform, named MOrPH-PhD, was successfully applied to produce and screen 105- to 108-member libraries of peptide macrocycles against three different protein targets, resulting in the discovery of a high-affinity binder for streptavidin (K D: 20 nM) and potent inhibitors of the therapeutically relevant proteins Kelch-like ECH-associated protein 1 (K D: 40 nM) and Sonic Hedgehog (K D: 550 nM). This work introduces and validates an efficient and general platform for the discovery and evolution of functional, conformationally constrained macrocyclic peptides useful for targeting proteins and protein-mediated interactions.
Collapse
|
29
|
Affiliation(s)
- Gerhard M. Gahl
- Department of Nephrology and Medical Intensive Care, Virchow Klinikum, Humboldt University, Berlin, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Virchow Klinikum, Humboldt University, Berlin, Germany
| |
Collapse
|
30
|
Methods for generating and screening libraries of genetically encoded cyclic peptides in drug discovery. Nat Rev Chem 2020; 4:90-101. [PMID: 37128052 DOI: 10.1038/s41570-019-0159-2] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2019] [Indexed: 12/14/2022]
Abstract
Drug discovery has traditionally focused on using libraries of small molecules to identify therapeutic drugs, but new modalities, especially libraries of genetically encoded cyclic peptides, are increasingly used for this purpose. Several technologies now exist for the production of libraries of cyclic peptides, including phage display, mRNA display and split-intein circular ligation of peptides and proteins. These different approaches are each compatible with particular methods of screening libraries, such as functional or affinity-based screening, and screening in vitro or in cells. These techniques allow the rapid preparation of libraries of hundreds of millions of molecules without the need for chemical synthesis, and have therefore lowered the entry barrier to generating and screening for inhibitors of a given target. This ease of use combined with the inherent advantages of the cyclic-peptide scaffold has yielded inhibitors of targets that have proved difficult to drug with small molecules. Multiple reports demonstrate that cyclic peptides act as privileged scaffolds in drug discovery, particularly against 'undruggable' targets such as protein-protein interactions. Although substantial challenges remain in the clinical translation of hits from screens of cyclic-peptide libraries, progress continues to be made in this area, with an increasing number of cyclic peptides entering clinical trials. Here, we detail the various platforms for producing and screening libraries of genetically encoded cyclic peptides and discuss and evaluate the advantages and disadvantages of each approach when deployed for drug discovery.
Collapse
|
31
|
Gao L, Ji Z, Zhao Y, Cai Y, Li X, Tu Y. Synthesis and Solution Self-Assembly Properties of Cyclic Rod-Coil Diblock Copolymers. ACS Macro Lett 2019; 8:1564-1569. [PMID: 35619391 DOI: 10.1021/acsmacrolett.9b00747] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Typical cyclic diblock polymers are synthesized from their linear precursors via the ring-closure strategy in dilute conditions. Here we demonstrate a pseudo-high-dilution condition strategy for the efficient synthesis of cyclic rod-coil diblock copolymer from its linear precursor in selective solvents. The critical association concentration (CAC) of linear precursor is used for the control of unimer concentration during cyclization, while high copolymer synthetic concentrations are achieved via the dynamic equilibrium between unimers and micelles. The effects of CAC and micelle concentration on cyclization yield are studied and pure cyclic rod-coil diblock copolymer was obtained after azide resin treatment. Property investigations show the cyclic rod-coil copolymer has a larger second virial coefficient than its linear counterpart and self-assembles in selective solvents to form larger but looser spherical micelles due to its constraint topological structure.
Collapse
Affiliation(s)
- Lingfeng Gao
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhichao Ji
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yiming Zhao
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yuanli Cai
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiaohong Li
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yingfeng Tu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
32
|
Abstract
Approximately 75% of all disease-relevant human proteins, including those involved in intracellular protein-protein interactions (PPIs), are undruggable with the current drug modalities (i.e., small molecules and biologics). Macrocyclic peptides provide a potential solution to these undruggable targets because their larger sizes (relative to conventional small molecules) endow them the capability of binding to flat PPI interfaces with antibody-like affinity and specificity. Powerful combinatorial library technologies have been developed to routinely identify cyclic peptides as potent, specific inhibitors against proteins including PPI targets. However, with the exception of a very small set of sequences, the vast majority of cyclic peptides are impermeable to the cell membrane, preventing their application against intracellular targets. This Review examines common structural features that render most cyclic peptides membrane impermeable, as well as the unique features that allow the minority of sequences to enter the cell interior by passive diffusion, endocytosis/endosomal escape, or other mechanisms. We also present the current state of knowledge about the molecular mechanisms of cell penetration, the various strategies for designing cell-permeable, biologically active cyclic peptides against intracellular targets, and the assay methods available to quantify their cell-permeability.
Collapse
Affiliation(s)
- Patrick G. Dougherty
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Avenue, Columbus, Ohio 43210, United States
| | - Ashweta Sahni
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Avenue, Columbus, Ohio 43210, United States
| | - Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
33
|
Peltomaa R, Benito-Peña E, Barderas R, Moreno-Bondi MC. Phage Display in the Quest for New Selective Recognition Elements for Biosensors. ACS OMEGA 2019; 4:11569-11580. [PMID: 31460264 PMCID: PMC6682082 DOI: 10.1021/acsomega.9b01206] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/21/2019] [Indexed: 05/10/2023]
Abstract
Phages are bacterial viruses that have gained a significant role in biotechnology owing to their widely studied biology and many advantageous characteristics. Perhaps the best-known application of phages is phage display that refers to the expression of foreign peptides or proteins outside the phage virion as a fusion with one of the phage coat proteins. In 2018, one half of the Nobel prize in chemistry was awarded jointly to George P. Smith and Sir Gregory P. Winter "for the phage display of peptides and antibodies." The outstanding technology has evolved and developed considerably since its first description in 1985, and today phage display is commonly used in a wide variety of disciplines, including drug discovery, enzyme optimization, biomolecular interaction studies, as well as biosensor development. A cornerstone of all biosensors, regardless of the sensor platform or transduction scheme used, is a sensitive and selective bioreceptor, or a recognition element, that can provide specific binding to the target analyte. Many environmentally or pharmacologically interesting target analytes might not have naturally appropriate binding partners for biosensor development, but phage display can facilitate the production of novel receptors beyond known biomolecular interactions, or against toxic or nonimmunogenic targets, making the technology a valuable tool in the quest of new recognition elements for biosensor development.
Collapse
Affiliation(s)
- Riikka Peltomaa
- Chemical
Optosensors & Applied Photochemistry Group (GSOLFA), Department
of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Elena Benito-Peña
- Chemical
Optosensors & Applied Photochemistry Group (GSOLFA), Department
of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Rodrigo Barderas
- Chronic
Disease Programme (UFIEC), Instituto de
Salud Carlos III, Ctra.
Majadahonda-Pozuelo Km 2.2, 28220 Madrid, Spain
| | - María C. Moreno-Bondi
- Chemical
Optosensors & Applied Photochemistry Group (GSOLFA), Department
of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
34
|
Chow HY, Zhang Y, Matheson E, Li X. Ligation Technologies for the Synthesis of Cyclic Peptides. Chem Rev 2019; 119:9971-10001. [PMID: 31318534 DOI: 10.1021/acs.chemrev.8b00657] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cyclic peptides have been attracting a lot of attention in recent decades, especially in the area of drug discovery, as more and more naturally occurring cyclic peptides with diverse biological activities have been discovered. Chemical synthesis of cyclic peptides is essential when studying their structure-activity relationships. Conventional peptide cyclization methods via direct coupling have inherent limitations, like the susceptibility to epimerization at the C-terminus, poor solubility of fully protected peptide precursors, and low yield caused by oligomerization. In this regard, chemoselective ligation-mediated cyclization methods have emerged as effective strategies for cyclic peptide synthesis. The toolbox for cyclic peptide synthesis has been expanded substantially in the past two decades, allowing more efficient synthesis of cyclic peptides with various scaffolds and modifications. This Review will explore different chemoselective ligation technologies used for cyclic peptide synthesis that generate both native and unnatural peptide linkages. The practical issues and limitations of different methods will be discussed. The advance in cyclic peptide synthesis will benefit the biological and medicinal study of cyclic peptides, an important class of macrocycles with potentials in numerous fields, notably in therapeutics.
Collapse
Affiliation(s)
- Hoi Yee Chow
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong SAR , P. R. China
| | - Yue Zhang
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong SAR , P. R. China
| | - Eilidh Matheson
- School of Chemistry , University of Edinburgh , Edinburgh EH8 9LE , United Kingdom
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong SAR , P. R. China.,Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory for Marine Science and Technology , Qingdao 266237 , P. R. China
| |
Collapse
|
35
|
Watari H, Nakajima H, Atsuumi W, Nakamura T, Nanya T, Ise Y, Sakai R. A novel sponge-derived protein thrombocorticin is a new agonist for thrombopoietin receptor. Comp Biochem Physiol C Toxicol Pharmacol 2019; 221:82-88. [PMID: 30978513 DOI: 10.1016/j.cbpc.2019.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 12/18/2022]
Abstract
We screened 868 marine extracts in search of hematopoietic molecules resulted in findings of several extracts that proliferated Ba/F3-HuMpl cells but not the cells expressed with other hematopoietic cytokine receptors, EPO and G-CSF. Separation of the most potent extract of a Micronesian sponge Corticium sp., guided by the cell proliferation assay using Ba/F3-HuMpl cells resulted in an isolation of thrombocorticin (ThC), a novel 14 kDa protein as an active principal. ThC displayed concentration-dependent proliferation of Ba/F3-HuMpl cells, and had a stronger activity than that of eltrombopag, a small molecule drug used to treat thrombocytopenia. ThC induced phosphorylation of STAT5, suggesting that it activates Jak/STAT pathway as in the case of TPO. These results together indicated that ThC is a specific agonist for c-Mpl, although the size and shape differs largely from TPO. Here we present isolation, characterization and biological activity of ThC.
Collapse
Affiliation(s)
- Hiromi Watari
- Hokkaido University, Graduate School and Faculty of Fisheries Sciences, 3-1-1 Minato-cho, Hakodate 041-8611, Japan
| | - Hiroya Nakajima
- Hokkaido University, Graduate School and Faculty of Fisheries Sciences, 3-1-1 Minato-cho, Hakodate 041-8611, Japan
| | - Wataru Atsuumi
- Hokkaido University, Graduate School and Faculty of Fisheries Sciences, 3-1-1 Minato-cho, Hakodate 041-8611, Japan
| | - Takanori Nakamura
- Biological Research Laboratories, Nissan Chemical Corporation, Shiraoka-shi, Saitama 349-0294, Japan
| | - Takeshi Nanya
- Biological Research Laboratories, Nissan Chemical Corporation, Shiraoka-shi, Saitama 349-0294, Japan
| | - Yuji Ise
- Centre for Marine & Coastal Studies, Universiti Sains Malaysia, USM, 11800 Penang, Malaysia
| | - Ryuichi Sakai
- Hokkaido University, Graduate School and Faculty of Fisheries Sciences, 3-1-1 Minato-cho, Hakodate 041-8611, Japan.
| |
Collapse
|
36
|
Malde AK, Hill TA, Iyer A, Fairlie DP. Crystal Structures of Protein-Bound Cyclic Peptides. Chem Rev 2019; 119:9861-9914. [DOI: 10.1021/acs.chemrev.8b00807] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alpeshkumar K. Malde
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Timothy A. Hill
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Abishek Iyer
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - David P. Fairlie
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
37
|
Scheide-Noeth JP, Rosen M, Baumstark D, Dietz H, Mueller TD. Structural Basis of Interleukin-5 Inhibition by the Small Cyclic Peptide AF17121. J Mol Biol 2018; 431:714-731. [PMID: 30529748 DOI: 10.1016/j.jmb.2018.11.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/21/2018] [Accepted: 11/28/2018] [Indexed: 10/27/2022]
Abstract
Interleukin-5 (IL-5) is a T-helper cell of subtype 2 cytokine involved in many aspects of eosinophil life. Eosinophilic granulocytes play a pathogenic role in the progression of atopic diseases, such as allergy, asthma and atopic dermatitis and hypereosinophilic syndromes. Here, eosinophils upon activation degranulate leading to the release of proinflammatory proteins and mediators stored in intracellular vesicles termed granula thereby causing local inflammation, which when persisting leads to tissue damage and organ failure. As a key regulator of eosinophil function, IL-5 therefore presents a major pharmaceutical target and approaches to interfere with IL-5 receptor activation are of great interest. Here we present the structure of the IL-5 inhibiting peptide AF17121 bound to the extracellular domain of the IL-5 receptor IL-5Rα. The small 18mer cyclic peptide snugly fits into the wrench-like cleft of the IL-5 receptor, thereby blocking access of key residues for IL-5 binding. While AF17121 and IL-5 seemingly bind to a similar epitope at IL-5Rα, functional studies show that recognition and binding of both ligands differ. Using the structure data, peptide variants with improved IL-5 inhibition have been generated, which might present valuable starting points for superior peptide-based IL-5 antagonists.
Collapse
Affiliation(s)
- Jan-Philipp Scheide-Noeth
- Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute of the University Wuerzburg, Julius-von-Sachs-Platz 2, D-97082, Wuerzburg, Germany
| | - Maximilian Rosen
- Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute of the University Wuerzburg, Julius-von-Sachs-Platz 2, D-97082, Wuerzburg, Germany
| | - David Baumstark
- Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute of the University Wuerzburg, Julius-von-Sachs-Platz 2, D-97082, Wuerzburg, Germany
| | - Harald Dietz
- Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute of the University Wuerzburg, Julius-von-Sachs-Platz 2, D-97082, Wuerzburg, Germany
| | - Thomas D Mueller
- Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute of the University Wuerzburg, Julius-von-Sachs-Platz 2, D-97082, Wuerzburg, Germany.
| |
Collapse
|
38
|
Feng S, Chang S, Yan L, Dong H, Xu X, Wang C, Liang Y, Liu K. Design, synthesis, and activity evaluation of novel erythropoietin mimetic peptides. Bioorg Med Chem Lett 2018; 28:3038-3041. [PMID: 30097369 DOI: 10.1016/j.bmcl.2018.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/27/2018] [Accepted: 08/01/2018] [Indexed: 11/19/2022]
Abstract
The approval of the erythropoietin (EPO) mimetic peptide drug peginesatide in 2012 was a breakthrough for the treatment of secondary anemia. However, due to severe allergic reactions, peginesatide was recalled a year later. In this study, 12 novel peptides were designed and synthesized by substituting specific amino acids of the monomeric peptide in peginesatide, with the aim of obtaining new EPO mimetic peptides with higher activities and lower side effects than the parent compound. Their cell proliferation activities were evaluated, and the structure-activity relationships were analyzed. Five compounds had equal cell proliferation activity to the control peptide. Among them, one compound showed a higher in vivo activity than the control peptide, with no obvious side effects.
Collapse
Affiliation(s)
- Siliang Feng
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Shaohua Chang
- Beijing Prowincan Pharmaceutical Technology Co. Ltd., Beijing 102600, China
| | - Lingdi Yan
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Huajin Dong
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Xiaoyu Xu
- Beijing Prowincan Pharmaceutical Technology Co. Ltd., Beijing 102600, China
| | - Chenhong Wang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Yuanjun Liang
- Beijing Prowincan Pharmaceutical Technology Co. Ltd., Beijing 102600, China.
| | - Keliang Liu
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China.
| |
Collapse
|
39
|
Cis/trans isomerization of proline peptide bonds in the backbone of cyclic disulfide‐bridged peptides. Pept Sci (Hoboken) 2018. [DOI: 10.1002/pep2.24088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
40
|
Erythropoietin mimetic peptides and erythropoietin fusion proteins for treating anemia of chronic kidney disease. Curr Opin Nephrol Hypertens 2018; 27:345-350. [PMID: 29746307 DOI: 10.1097/mnh.0000000000000430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW First generation erythropoiesis stimulating agents (ESAs) have short duration of action which requires administration once weekly or greater. Second generation ESAs were developed which have longer duration of action and can be administered one to two times monthly. Erythropoietin (EPO) mimetic peptides (EMPs) activate the EPO receptor but have no structural analogy to EPO, offering the potential for lower cost as they are not biologic drugs. The first approved EMP, peginesatide, was withdrawn from the market within a year of its approval because of fatal anaphylactic reactions. In this review, we summarize recent progress regarding the development of newer, possibly less toxic, EMPs. We also summarize the development of EPO fusion proteins which fuse EPO with a portion of an immunoglobulin molecule or another EPO molecule, achieving a longer duration of action and less frequent dosing. RECENT FINDINGS AGEM400(hydroxyethyl starch) and pegolsihematide are EMPs in phase II clinical trials. Three EPO fusion proteins are under development, two in phase I and one in phase II. SUMMARY The future success of EMPs is limited by the prior experience with peginesatide and EPO fusion proteins do not offer cost savings or longer duration of action than currently available ESAs.
Collapse
|
41
|
Zhang W, Yu X, Li Y, Su Z, Jandt KD, Wei G. Protein-mimetic peptide nanofibers: Motif design, self-assembly synthesis, and sequence-specific biomedical applications. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2017.12.001] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
42
|
Salamin O, Kuuranne T, Saugy M, Leuenberger N. Erythropoietin as a performance-enhancing drug: Its mechanistic basis, detection, and potential adverse effects. Mol Cell Endocrinol 2018; 464:75-87. [PMID: 28119134 DOI: 10.1016/j.mce.2017.01.033] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/20/2017] [Accepted: 01/20/2017] [Indexed: 02/01/2023]
Abstract
Erythropoietin (EPO) is the main hormone regulating red blood cell (RBC) production. The large-scale production of a recombinant human erythropoietin (rHuEPO) by biotechnological methods has made possible its widespread therapeutic use as well as its misuse in sports. Since the marketing of the first epoetin in 1989, the development has progressed to the third-generation analogs. However, the production of rHuEPO is costly, and the frequent administration of an injectable formula is not optimal for compliance of therapeutic patients. Hence, pharmaceutical industries are currently developing alternative approaches to stimulate erythropoiesis, which might offer new candidates for doping purposes. The hypoxia inducible factors (HIF) pathway is of particular interest. The introduction of new erythropoiesis-stimulating agents (ESAs) for clinical use requires subsequent development of anti-doping methods for detecting the abuse of these substances. The detection of ESAs is based on two different approaches, namely, the direct detection of exogenous substances and the indirect detection, for which the effects of the substances on specific biomarkers are monitored. Omics technologies, such as ironomics or transcriptomics, are useful for the development of new promising biomarkers for the detection of ESAs. Finally, the illicit use of ESAs associates with multiple health risks that can be irreversible, and an essential facet of anti-doping work is to educate athletes of these risks. The aim of this review is to provide an overview of the evolution of ESAs, the research and implementation of the available detection methods, and the side effects associated with the misuse of ESAs.
Collapse
Affiliation(s)
- Olivier Salamin
- Center for Research and Expertise in Anti-Doping Sciences - REDs, University of Lausanne, Switzerland
| | - Tiia Kuuranne
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne and Geneva, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Switzerland
| | - Martial Saugy
- Center for Research and Expertise in Anti-Doping Sciences - REDs, University of Lausanne, Switzerland
| | - Nicolas Leuenberger
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne and Geneva, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Switzerland.
| |
Collapse
|
43
|
David M, Lécorché P, Masse M, Faucon A, Abouzid K, Gaudin N, Varini K, Gassiot F, Ferracci G, Jacquot G, Vlieghe P, Khrestchatisky M. Identification and characterization of highly versatile peptide-vectors that bind non-competitively to the low-density lipoprotein receptor for in vivo targeting and delivery of small molecules and protein cargos. PLoS One 2018; 13:e0191052. [PMID: 29485998 PMCID: PMC5828360 DOI: 10.1371/journal.pone.0191052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/27/2017] [Indexed: 01/09/2023] Open
Abstract
Insufficient membrane penetration of drugs, in particular biotherapeutics and/or low target specificity remain a major drawback in their efficacy. We propose here the rational characterization and optimization of peptides to be developed as vectors that target cells expressing specific receptors involved in endocytosis or transcytosis. Among receptors involved in receptor-mediated transport is the LDL receptor. Screening complex phage-displayed peptide libraries on the human LDLR (hLDLR) stably expressed in cell lines led to the characterization of a family of cyclic and linear peptides that specifically bind the hLDLR. The VH411 lead cyclic peptide allowed endocytosis of payloads such as the S-Tag peptide or antibodies into cells expressing the hLDLR. Size reduction and chemical optimization of this lead peptide-vector led to improved receptor affinity. The optimized peptide-vectors were successfully conjugated to cargos of different nature and size including small organic molecules, siRNAs, peptides or a protein moiety such as an Fc fragment. We show that in all cases, the peptide-vectors retain their binding affinity to the hLDLR and potential for endocytosis. Following i.v. administration in wild type or ldlr-/- mice, an Fc fragment chemically conjugated or fused in C-terminal to peptide-vectors showed significant biodistribution in LDLR-enriched organs. We have thus developed highly versatile peptide-vectors endowed with good affinity for the LDLR as a target receptor. These peptide-vectors have the potential to be further developed for efficient transport of therapeutic or imaging agents into cells -including pathological cells-or organs that express the LDLR.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Karine Varini
- VECT-HORUS SAS, Marseille, France
- Aix Marseille Univ, CNRS, NICN, Marseille, France
| | | | - Géraldine Ferracci
- Aix Marseille Univ, CNRS, CRN2M, Marseille, France
- Aix Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | | | | | - Michel Khrestchatisky
- Aix Marseille Univ, CNRS, NICN, Marseille, France
- Aix Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| |
Collapse
|
44
|
Peptide Derivatives of Erythropoietin in the Treatment of Neuroinflammation and Neurodegeneration. THERAPEUTIC PROTEINS AND PEPTIDES 2018; 112:309-357. [DOI: 10.1016/bs.apcsb.2018.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
45
|
Ferreira Amaral MM, Frigotto L, Hine AV. Beyond the Natural Proteome: Nondegenerate Saturation Mutagenesis-Methodologies and Advantages. Methods Enzymol 2017; 585:111-133. [PMID: 28109425 DOI: 10.1016/bs.mie.2016.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Beyond the natural proteome, high-throughput mutagenesis offers the protein engineer an opportunity to "tweak" the wild-type activity of a protein to create a recombinant protein with required attributes. Of the various approaches available, saturation mutagenesis is one of the core techniques employed by protein engineers, and in recent times, nondegenerate saturation mutagenesis is emerging as the approach of choice. This review compares the current methodologies available for conducting nondegenerate saturation mutagenesis with traditional, degenerate saturation and briefly outlines the options available for screening the resulting libraries, to discover a novel protein with the required activity and/or specificity.
Collapse
Affiliation(s)
- M M Ferreira Amaral
- School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - L Frigotto
- Isogenica Ltd., The Mansion, Chesterford Research Park, Essex, United Kingdom
| | - A V Hine
- School of Life and Health Sciences, Aston University, Birmingham, United Kingdom.
| |
Collapse
|
46
|
Deyle K, Kong XD, Heinis C. Phage Selection of Cyclic Peptides for Application in Research and Drug Development. Acc Chem Res 2017; 50:1866-1874. [PMID: 28719188 DOI: 10.1021/acs.accounts.7b00184] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cyclic peptides can bind to protein targets with high affinities and selectivities, which makes them an attractive modality for the development of research reagents and therapeutics. Additional properties, including low inherent toxicity, efficient chemical synthesis, and facile modification with labels or immobilization reagents, increase their attractiveness. Cyclic peptide ligands against a wide range of protein targets have been isolated from natural sources such as bacteria, fungi, plants, and animals. Many of them are currently used as research tools, and several have found application as therapeutics, such as the peptide hormones oxytocin and vasopressin and the antibiotics vancomycin and daptomycin, proving the utility of cyclic peptides in research and medicine. With the advent of phage display and other in vitro evolution techniques, it has become possible to generate cyclic peptide binders to diverse protein targets for which no natural peptides have been discovered. A highly robust and widely applied approach is based on the cyclization of peptides displayed on phage via a disulfide bridge. Disulfide-cyclized peptide ligands to more than a hundred different proteins have been reported in the literature. Technology advances achieved over the last three decades, including methods for generating larger phage display libraries, improved phage panning protocols, new cyclic peptide formats, and high-throughput sequencing, have enabled the generation of cyclic peptides with ever better binding affinities to more challenging targets. A relatively new cyclic peptide format developed using phage display involves bicyclic peptides. These molecules consist of two macrocyclic peptide rings cyclized through a chemical linker. Compared to monocyclic peptides of comparable molecular mass, bicyclic peptides are more constrained in their conformation. As a result, they can bind to their targets with a higher affinity and are more resistant to proteolytic degradation. Phage-encoded bicyclic peptides are generated by chemically cyclizing random peptide libraries on phage. Binders are identified by conventional phage panning and DNA sequencing. Next-generation sequencing and new sequence alignment tools have enabled the rapid identification of bicyclic peptides. Bicyclic peptide ligands were developed against a range of diverse target classes including enzymes, receptors, and cytokines. Most ligands bind with nanomolar affinities, with some reaching the picomolar range. To date, several bicyclic peptides have been positively evaluated in preclinical studies, and the first clinical tests are in sight. While bicyclic peptide phage display was developed with therapeutic applications in mind, these peptides are increasingly used as research tools for target evaluation or as basic research probes as well. Given the efficient development method, the ease of synthesis and handling, and the favorable binding and biophysical properties, bicyclic peptides are being developed against more and more targets, ever increasing their potential applications in research and medicine.
Collapse
Affiliation(s)
- Kaycie Deyle
- Institute of Chemical Sciences
and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Xu-Dong Kong
- Institute of Chemical Sciences
and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Christian Heinis
- Institute of Chemical Sciences
and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
47
|
Abstract
Erythropoietin (EPO) is a hormone that is important for regulating red blood cell production. It is functional through binding to its receptor-EpoR. EpoR is a single-span membrane protein. It contains an extracellular region, a transmembrane domain, and a C-terminus. The extracellular region is important for binding to EPO, and its conformation is critical for signal transduction. The transmembrane domain contains 21 residues forming a helix which plays an important role in transferring ligand-induced conformational changes of the extracellular domain across the cell membrane. The C-terminal region contains the Janus kinase 2-binding sites and eight tyrosine residues that can be phosphorylated to become binding sites for transcription factors to active the downstream pathways. This chapter focuses on structural description of the domains of the EpoR. The recent progress in the structural determination of these domains is summarized, which will be useful for understanding their function in signal transduction.
Collapse
|
48
|
Significance of Erythropoietin Receptor Antagonist EMP9 in Cancers. VITAMINS AND HORMONES 2017. [PMID: 28629523 DOI: 10.1016/bs.vh.2017.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
We have clarified that cancer cells express their own erythropoietin (Epo) and its receptor (EpoR) mRNA levels, and the respective proteins, which are under the control of Epo-EpoR signaling. Then we explored to inhibit the Epo-EpoR signaling with an EpoR antagonist Epo mimetic peptide 9 (EMP9) that is a derivative of an Epo-mimicking peptide EMP1. In the study of the cancer cell lines in vitro, rhEpo accelerated the cancer cell growth, whereas the EMP9 inhibited the cell growth along with the inhibition of STAT5 tyrosine phosphorylation. Moreover, in vitro study of surgically resected histoculture of lung cancers revealed that EMP9 diminishes the expression of myoglobin in the cancer cells and destroys the feeding vessels. Additionally, in the xenografts of lung cancer histoculture, the EMP9 destroyed the xenografts by inducing apoptosis and suppressing proliferation of cancer cells in concomitant with macrophage accumulation. Furthermore, two types of perforations were detected in their cytoplasm: the one is mediated by nNOS in the cancer cells and the other one is by iNOS in the innate immune cells. These findings suggest that the inhibition of the Epo-EpoR signaling by EMP9 induces the cancer cell death that is mediated by the apoptosis and calcification of the cancer cells as well as the oxygen deficiency through the feeding vessels. Taken together, EMP9-based therapy may be a promising strategy to treat cancer patients.
Collapse
|
49
|
Zorzi A, Deyle K, Heinis C. Cyclic peptide therapeutics: past, present and future. Curr Opin Chem Biol 2017; 38:24-29. [PMID: 28249193 DOI: 10.1016/j.cbpa.2017.02.006] [Citation(s) in RCA: 525] [Impact Index Per Article: 65.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 01/27/2017] [Accepted: 02/06/2017] [Indexed: 01/07/2023]
Abstract
Cyclic peptides combine several favorable properties such as good binding affinity, target selectivity and low toxicity that make them an attractive modality for the development of therapeutics. Over 40 cyclic peptide drugs are currently in clinical use and around one new cyclic peptide drug enters the market every year on average. The vast majority of clinically approved cyclic peptides are derived from natural products, such as antimicrobials or human peptide hormones. New powerful techniques based on rational design and in vitro evolution have enabled the de novo development of cyclic peptide ligands to targets for which nature does not offer solutions. A look at the cyclic peptides currently under clinical evaluation shows that several have been developed using such techniques. This new source for cyclic peptide ligands introduces a freshness to the field, and it is likely that de novo developed cyclic peptides will be in clinical use in the near future.
Collapse
Affiliation(s)
- Alessandro Zorzi
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Kaycie Deyle
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Christian Heinis
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| |
Collapse
|
50
|
Liu Y, Tian F, Zhi D, Wang H, Zhao C, Li H. Novel thrombopoietin mimetic peptides bind c-Mpl receptor: Synthesis, biological evaluation and molecular modeling. Bioorg Med Chem 2017; 25:1113-1121. [DOI: 10.1016/j.bmc.2016.12.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/15/2016] [Accepted: 12/16/2016] [Indexed: 11/29/2022]
|