1
|
Dong D, Yu X, Liu H, Xu J, Guo J, Guo W, Li X, Wang F, Zhang D, Liu K, Sun Y. Study of immunosenescence in the occurrence and immunotherapy of gastrointestinal malignancies. Semin Cancer Biol 2025; 111:16-35. [PMID: 39929408 DOI: 10.1016/j.semcancer.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/18/2025] [Accepted: 01/26/2025] [Indexed: 02/25/2025]
Abstract
In human beings heterogenous, pervasive and lethal malignancies of different parts of the gastrointestinal (GI) tract viz., tumours of the oesophagus, stomach, small intestine, colon, and rectum, represent gastrointestinal malignancies. Primary treatment modality for gastric cancer includes chemotherapy, surgical interventions, radiotherapy, monoclonal antibodies and inhibitors of angiogenesis. However, there is a need to improve upon the existing treatment modality due to associated adverse events and the development of resistance towards treatment. Additionally, age has been found to contribute to increasing the incidence of tumours due to immunosenescence-associated immunosuppression. Immunosenescence is the natural process of ageing, wherein immune cells as well as organs begin to deteriorate resulting in a dysfunctional or malfunctioning immune system. Accretion of senescent cells in immunosenescence results in the creation of a persistent inflammatory environment or inflammaging, marked with elevated expression of pro-inflammatory and immunosuppressive cytokines and chemokines. Perturbation in the T-cell pools and persistent stimulation by the antigens facilitate premature senility of the immune cells, and senile immune cells exacerbate inflammaging conditions and the inefficiency of the immune system to identify the tumour antigen. Collectively, these conditions contribute positively towards tumour generation, growth and eventually proliferation. Thus, activating the immune cells to distinguish the tumour cells from normal cells and invade them seems to be a logical strategy for the treatment of cancer. Consequently, various approaches to immunotherapy, viz., programmed death ligand-1 (PD-1) inhibitors, Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) inhibitors etc are being extensively evaluated for their efficiency in gastric cancer. In fact, PD-1 inhibitors have been sanctioned as late late-line therapy modality for gastric cancer. The present review will focus on deciphering the link between the immune system and gastric cancer, and the alterations in the immune system that incur during the development of gastrointestinal malignancies. Also, the mechanism of evasion by tumour cells and immune checkpoints involved along with different approaches of immunotherapy being evaluated in different clinical trials will be discussed.
Collapse
Affiliation(s)
- Daosong Dong
- Department of Pain, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Xue Yu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Molecular Pathology and Epidemiology of Gastric Cancer in the Universities of Liaoning Province, Shenyang, Liaoning 110001, China
| | - Haoran Liu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Jingjing Xu
- Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Jiayan Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Wei Guo
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xiang Li
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Fei Wang
- Department of Otolaryngology, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Dongyong Zhang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Kaiwei Liu
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Yanbin Sun
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
2
|
Zhang Z, Zhao Q, Xu Q, Deng Q, Hua A, Wang X, Yang X, Li Z. A mitochondria-interfering nanocomplex cooperates with photodynamic therapy to boost antitumor immunity. Biomaterials 2025; 317:123094. [PMID: 39799701 DOI: 10.1016/j.biomaterials.2025.123094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/05/2025] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Immunotherapeutics against triple-negative breast cancer (TNBC) hold great promise. In this work, we provide a combination therapy for simultaneous increasing tumor immunogenicity and down-regulating programmed cell death ligand 1 (PD-L1) to boost antitumor immunity in TNBC. We prepare bis (diethyldithiocarbamate)-copper/indocyanine green nanoparticles (CuET/ICG NPs) simply in aqueous with one-pot method. CuET/ICG NPs interfere mitochondria, reduce oxygen consumption, and alleviate tumor hypoxia to potentiate photodynamic therapy (PDT) for amplifying immunogenic cell death (ICD). Meanwhile, mitochondria dysfunction leads to energy stress and activates AMPK pathway. As a result, CuET/ICG NPs downregulates membrane PD-L1 (mPD-L1) on both 4T1 cancer cells and cancer stem cells (CSCs) through AMP-activated protein kinase (AMPK)-mediated pathway in hypoxia. Cooperatively, the combinational therapy activates antitumor immunity and triggers long lasting immune memory response to resist tumor re-challenge. Our study represents an attempt that conquers tumor immunosuppressive microenvironment with simple biomedical materials and multimodality treatments.
Collapse
Affiliation(s)
- Zhijie Zhang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Qingfu Zhao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Qingqing Xu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Qingyuan Deng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Ao Hua
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Xing Wang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, PR China.
| | - Zifu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan, 430074, PR China; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, PR China.
| |
Collapse
|
3
|
Chepy A, Collet A, Launay D, Dubucquoi S, Sobanski V. Autoantibodies in systemic sclerosis: From disease bystanders to pathogenic players. J Transl Autoimmun 2025; 10:100272. [PMID: 39917316 PMCID: PMC11799969 DOI: 10.1016/j.jtauto.2025.100272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 02/09/2025] Open
Abstract
Autoantibodies (Aab) are recognized as key indicators in the diagnosis, classification, and monitoring of systemic autoimmune diseases (AID). Recent studies have expanded knowledge through the discovery of new antigenic targets, advanced methods for measuring Aab levels, and understanding their possible pathogenic roles in AID. This narrative review uses systemic sclerosis (SSc) as an example to highlight the importance of Aab associated with HEp-2 immunofluorescence assay positivity (traditionally referred as antinuclear antibodies [ANA]), exploring recent developments in the field. Firstly, we outline the various types of ANA found in SSc and their links with specific disease features. Newly discovered antibodies shed light on SSc cases where Aab had previously gone unidentified. Secondly, we emphasize the necessity for novel quantitative techniques to track Aab levels over time by gathering data regarding the timing of Aab occurrence relative to SSc symptoms and the relationships between Aab concentrations and disease severity. Finally, we discuss the experimental findings suggesting a potential direct role of Aab in the development of SSc. The advancements surrounding Aab provide insights into new disease mechanisms and may lead to innovative diagnostic and treatment approaches.
Collapse
Affiliation(s)
- Aurélien Chepy
- Univ. Lille, Inserm, CHU Lille, U1286 – INFINITE – Institute for Translational Research in Inflammation, Lille, France
- CHU Lille, Département de Médecine interne et Immunologie Clinique, Centre de Référence des Maladies Auto-immunes Systémiques Rares du Nord et Nord-Ouest, Méditerranée et Guadeloupe (CeRAINOM), Lille, France
| | - Aurore Collet
- Univ. Lille, Inserm, CHU Lille, U1286 – INFINITE – Institute for Translational Research in Inflammation, Lille, France
- CHU Lille, Institut d’Immunologie, Lille, France
| | - David Launay
- Univ. Lille, Inserm, CHU Lille, U1286 – INFINITE – Institute for Translational Research in Inflammation, Lille, France
- CHU Lille, Département de Médecine interne et Immunologie Clinique, Centre de Référence des Maladies Auto-immunes Systémiques Rares du Nord et Nord-Ouest, Méditerranée et Guadeloupe (CeRAINOM), Lille, France
| | - Sylvain Dubucquoi
- Univ. Lille, Inserm, CHU Lille, U1286 – INFINITE – Institute for Translational Research in Inflammation, Lille, France
- CHU Lille, Institut d’Immunologie, Lille, France
| | - Vincent Sobanski
- Univ. Lille, Inserm, CHU Lille, U1286 – INFINITE – Institute for Translational Research in Inflammation, Lille, France
- CHU Lille, Département de Médecine interne et Immunologie Clinique, Centre de Référence des Maladies Auto-immunes Systémiques Rares du Nord et Nord-Ouest, Méditerranée et Guadeloupe (CeRAINOM), Lille, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
4
|
Marchisio L, Gaudillat Q, Muller J, Zedet A, Tissot M, Harakat D, Sénéjoux F, Rolin G, Cardey B, Girard C, Pudlo M. Synthesis and evaluation of piceatannol derivatives as novel arginase inhibitors with radical scavenging activity and their potential for collagen reduction in dermal fibroblasts. Eur J Med Chem 2025; 287:117376. [PMID: 39952100 DOI: 10.1016/j.ejmech.2025.117376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/17/2025]
Abstract
High arginase activity is associated with several pathological conditions, including TGF-β-induced fibrosis, by increasing levels of the proline precursor l-ornithine, thereby promoting collagen biosynthesis and increasing oxidative stress due to nitric oxide synthase (NOS) uncoupling. The natural piceatannol has been shown to have beneficial effects on collagen deposition, fibrosis and oxidative stress. In this study, we present an in-depth structure-activity relationship study on arginase I, which resulted in the thioamide derivative 12a with dual catechol rings that displays potent inhibitory activity with IC₅₀ values of 9 μM and 55 μM for bovine and human arginase I, respectively. Quantum chemical modelling suggested that the sulphur atom in the thioamide group plays a crucial role in binding affinity by forming a stable hydrogen bond within the active site of the enzyme. In addition, compound 12a demonstrated high radical scavenging activity and effectively normalised collagen and procollagen levels at 5 μM in an in vitro cell model of a dermal fibrosis.
Collapse
Affiliation(s)
- Luca Marchisio
- Université de Franche-Comté, EFS, INSERM, RIGHT (UMR 1098), F-25000, Besançon, France.
| | - Quentin Gaudillat
- Université de Franche-Comté, EFS, INSERM, RIGHT (UMR 1098), F-25000, Besançon, France.
| | - Jason Muller
- Université de Franche-Comté, EFS, INSERM, RIGHT (UMR 1098), F-25000, Besançon, France.
| | - Andy Zedet
- Université de Franche-Comté, EFS, INSERM, RIGHT (UMR 1098), F-25000, Besançon, France.
| | - Marion Tissot
- Université de Franche-Comté, EFS, INSERM, RIGHT (UMR 1098), F-25000, Besançon, France.
| | - Dominique Harakat
- Université de Reims Champagne Ardenne, CNRS UMR 7312, ICMR, URCATech, 51100, Reims, France.
| | - François Sénéjoux
- Université de Franche-Comté, EFS, INSERM, RIGHT (UMR 1098), F-25000, Besançon, France.
| | - Gwenaël Rolin
- Université de Franche-Comté, EFS, INSERM, RIGHT (UMR 1098), F-25000, Besançon, France; INSERM CIC-1431, CHU Besançon, F-25000, Besançon, France.
| | - Bruno Cardey
- Université de Franche-Comté, CNRS, CHRONO-E (UMR 6249), F-25000, Besançon, France.
| | - Corine Girard
- Université de Franche-Comté, EFS, INSERM, RIGHT (UMR 1098), F-25000, Besançon, France.
| | - Marc Pudlo
- Université de Franche-Comté, EFS, INSERM, RIGHT (UMR 1098), F-25000, Besançon, France.
| |
Collapse
|
5
|
Eskandari A, Leow TC, Rahman MBA, Oslan SN. Advances in Therapeutic Cancer Vaccines, Their Obstacles, and Prospects Toward Tumor Immunotherapy. Mol Biotechnol 2025; 67:1336-1366. [PMID: 38625508 DOI: 10.1007/s12033-024-01144-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/15/2024] [Indexed: 04/17/2024]
Abstract
Over the past few decades, cancer immunotherapy has experienced a significant revolution due to the advancements in immune checkpoint inhibitors (ICIs) and adoptive cell therapies (ACTs), along with their regulatory approvals. In recent times, there has been hope in the effectiveness of cancer vaccines for therapy as they have been able to stimulate de novo T-cell reactions against tumor antigens. These tumor antigens include both tumor-associated antigen (TAA) and tumor-specific antigen (TSA). Nevertheless, the constant quest to fully achieve these abilities persists. Therefore, this review offers a broad perspective on the existing status of cancer immunizations. Cancer vaccine design has been revolutionized due to the advancements made in antigen selection, the development of antigen delivery systems, and a deeper understanding of the strategic intricacies involved in effective antigen presentation. In addition, this review addresses the present condition of clinical tests and deliberates on their approaches, with a particular emphasis on the immunogenicity specific to tumors and the evaluation of effectiveness against tumors. Nevertheless, the ongoing clinical endeavors to create cancer vaccines have failed to produce remarkable clinical results as a result of substantial obstacles, such as the suppression of the tumor immune microenvironment, the identification of suitable candidates, the assessment of immune responses, and the acceleration of vaccine production. Hence, there are possibilities for the industry to overcome challenges and enhance patient results in the coming years. This can be achieved by recognizing the intricate nature of clinical issues and continuously working toward surpassing existing limitations.
Collapse
Affiliation(s)
- Azadeh Eskandari
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| | - Thean Chor Leow
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | | | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| |
Collapse
|
6
|
Lan J, Cai D, Gou S, Bai Y, Lei H, Li Y, Chen Y, Zhao Y, Shen J, Wu X, Li M, Chen M, Li X, Sun Y, Gu L, Li W, Wang F, Cho CH, Zhang Y, Zheng X, Xiao Z, Du F. The dynamic role of ferroptosis in cancer immunoediting: Implications for immunotherapy. Pharmacol Res 2025; 214:107674. [PMID: 40020885 DOI: 10.1016/j.phrs.2025.107674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/14/2025] [Accepted: 02/23/2025] [Indexed: 03/03/2025]
Abstract
Currently, cancer immunotherapy strategies are primarily formulated based on the patient's present condition, representing a "static" treatment approach. However, cancer progression is inherently "dynamic," as the immune environment is not fixed but undergoes continuous changes. This dynamism is characterized by the ongoing interactions between tumor cells and immune cells, which ultimately lead to alterations in the tumor immune microenvironment. This process can be effectively elucidated by the concept of cancer immunoediting, which divides tumor development into three phases: "elimination," "equilibrium," and "escape." Consequently, adjusting immunotherapy regimens based on these distinct phases may enhance patient survival and improve prognosis. Targeting ferroptosis is an emerging area in cancer immunotherapy, and our findings reveal that the antioxidant systems associated with ferroptosis possess dual roles, functioning differently across the three phases of cancer immunoediting. Therefore, this review delve into the dual role of the ferroptosis antioxidant system in tumor development and progression. It also propose immunotherapy strategies targeting ferroptosis at different stages, ultimately aiming to illuminate the significant implications of targeting ferroptosis at various phases for cancer immunotherapy.
Collapse
Affiliation(s)
- Jiarui Lan
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan 646600, China
| | - Dan Cai
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan 646600, China
| | - Shuang Gou
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan 646000, China
| | - Yulin Bai
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan 646000, China
| | - Huaqing Lei
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan 646600, China
| | - Yan Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan 646600, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan 646600, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan 646600, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan 646600, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan 646600, China
| | - Meijuan Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China
| | - Xiaobing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China
| | - Yuhong Sun
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China
| | - Li Gu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China
| | - Wanping Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China
| | - Fang Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yan Zhang
- Department of Oncology, Luzhou People's Hospital, Luzhou, Sichuan 646000, China
| | - Xin Zheng
- Department of Oncology, Luzhou People's Hospital, Luzhou, Sichuan 646000, China.
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan 646600, China.
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646600, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan 646600, China.
| |
Collapse
|
7
|
Kaiser E, Weber R, Hirschstein M, Mazid H, Kapps EMS, Hans MC, Bous M, Goedicke-Fritz S, Wagenpfeil G, Zemlin M, Solomayer EF, Müller C, Zemlin C. Dynamics of T cell subpopulations and plasma cytokines during the first year of antineoplastic therapy in patients with breast cancer: the BEGYN-1 study. Breast Cancer Res 2025; 27:50. [PMID: 40170120 DOI: 10.1186/s13058-025-01997-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 03/09/2025] [Indexed: 04/03/2025] Open
Abstract
BACKGROUND The role of T cell immunity during antineoplastic therapy is poorly understood. In the BEGYN-1 study, patients with breast cancer underwent quarterly assessments prior to and during antineoplastic therapy over a period of 12 months. METHODS We used flow cytometry and multiplex immunoassays to quantify 25 T cell subpopulations and seven T cell associated plasma cytokines in peripheral blood from 92 non-metastatic breast cancer patients, respectively. In addition, the association between T cell dynamics and the outcome of patients undergoing neoadjuvant chemotherapy was investigated. RESULTS In patients undergoing chemotherapy, a significant reduction in T helper (Th) cells, particularly naïve central and effector cells and thymus positive Th cells, was observed over time. Interestingly, Th1 immune response-associated cytokines (IL-12, TNF, IFN-γ) declined while Th2 cells and cytotoxic T cells increased over time. CONCLUSIONS We conclude that in breast cancer patients, chemotherapy is associated with a transition from a Th1 immune response towards Th2 and an increase in cytotoxic T cells, whereas in patients without chemotherapy, these alterations were less pronounced. Future studies should clarify whether patterns of T cell subsets or plasma cytokines can be used as biomarkers to monitor or even improve therapeutic interventions.
Collapse
Affiliation(s)
- Elisabeth Kaiser
- Department of General Pediatrics and Neonatology, Saarland University, Campus Homburg, 66421, Homburg/Saar, Germany
| | - Regine Weber
- Department of General Pediatrics and Neonatology, Saarland University, Campus Homburg, 66421, Homburg/Saar, Germany.
| | - Melanie Hirschstein
- Department of General Pediatrics and Neonatology, Saarland University, Campus Homburg, 66421, Homburg/Saar, Germany
| | - Hala Mazid
- Department of General Pediatrics and Neonatology, Saarland University, Campus Homburg, 66421, Homburg/Saar, Germany
| | - Emilie Marie Suzanne Kapps
- Department of General Pediatrics and Neonatology, Saarland University, Campus Homburg, 66421, Homburg/Saar, Germany
| | - Muriel Charlotte Hans
- Department of General Pediatrics and Neonatology, Saarland University, Campus Homburg, 66421, Homburg/Saar, Germany
| | - Michelle Bous
- Department of General Pediatrics and Neonatology, Saarland University, Campus Homburg, 66421, Homburg/Saar, Germany
| | - Sybelle Goedicke-Fritz
- Department of General Pediatrics and Neonatology, Saarland University, Campus Homburg, 66421, Homburg/Saar, Germany
| | - Gudrun Wagenpfeil
- Institute for Medical Biometry, Epidemiology and Medical Informatics (IMBEI), Saarland University, Campus Homburg, 66421, Homburg/Saar, Germany
| | - Michael Zemlin
- Department of General Pediatrics and Neonatology, Saarland University, Campus Homburg, 66421, Homburg/Saar, Germany
| | - Erich-Franz Solomayer
- Department of Gynecology, Obstetrics & Reproductive Medicine, Saarland University, Campus Homburg, 66421, Homburg/Saar, Germany
| | - Carolin Müller
- Department of Gynecology, Obstetrics & Reproductive Medicine, Saarland University, Campus Homburg, 66421, Homburg/Saar, Germany
- Outcomes Research Consortium, Department of Anesthesiology, Cleveland Clinic, Cleveland, OH, USA
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstraße 21-23, 91054, Erlangen, Germany
| | - Cosima Zemlin
- Department of Gynecology, Obstetrics & Reproductive Medicine, Saarland University, Campus Homburg, 66421, Homburg/Saar, Germany
| |
Collapse
|
8
|
Guo X, Bai J, Wang X, Guo S, Shang Z, Shao Z. Evoking the Cancer-immunity cycle by targeting the tumor-specific antigens in Cancer immunotherapy. Int Immunopharmacol 2025; 154:114576. [PMID: 40168803 DOI: 10.1016/j.intimp.2025.114576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/17/2025] [Accepted: 03/27/2025] [Indexed: 04/03/2025]
Abstract
Cancer-related deaths continue to rise, largely due to the suboptimal efficacy of current treatments. Fortunately, immunotherapy has emerged as a promising alternative, offering new hope for cancer patients. Among various immunotherapy approaches, targeting tumor-specific antigens (TSAs) has gained particular attention due to its demonstrated success in clinical settings. Despite these advancements, there are still gaps in our understanding of TSAs. Therefore, this review explores the life cycle of TSAs in cancer, the methods used to identify them, and recent advances in TSAs-targeted cancer therapies. Enhancing medical professionals' understanding of TSAs will help facilitate the development of more effective TSAs-based cancer treatments.
Collapse
Affiliation(s)
- Xiaomeng Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Junqiang Bai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xinmiao Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shutian Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhengjun Shang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Oral and Maxillofacial-Head and Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Zhe Shao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Day Surgery Center, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
9
|
Kumagai S, Momoi Y, Nishikawa H. Immunogenomic cancer evolution: A framework to understand cancer immunosuppression. Sci Immunol 2025; 10:eabo5570. [PMID: 40153489 DOI: 10.1126/sciimmunol.abo5570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 06/26/2024] [Accepted: 03/05/2025] [Indexed: 03/30/2025]
Abstract
The process of tumor development involves tumor cells eluding detection and suppression of immune responses, which can cause decreased tumor cell antigenicity, expression of immunosuppressive molecules, and immunosuppressive cell recruitment to the tumor microenvironment (TME). Immunologically and genomically integrated analysis (immunogenomic analysis) of patient specimens has revealed that oncogenic aberrant signaling is involved in both carcinogenesis and immune evasion. In noninflamed cancers such as epidermal growth factor receptor (EGFR)-mutated lung cancers, genetic abnormalities in cancer cells contribute to the formation of an immunosuppressive TME by recruiting immunosuppressive cells, which cannot be fully explained by the cancer immunoediting hypothesis. This review summarizes the latest findings regarding the links between cancer genetic abnormalities and immunosuppression causing clinical resistance to immunotherapy. We propose the concepts of immunogenomic cancer evolution, in which cancer cell genomic evolution shapes the immunosuppressive TME, and immunogenomic precision medicine, in which cancer immunotherapy can be combined with molecularly targeted reagents that modulate the immunosuppressive TME.
Collapse
Affiliation(s)
- Shogo Kumagai
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo 104-0045, Japan
- Division of Cancer Immunology, Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Chiba 277-8577, Japan
- Division of Cellular Signaling, Research Institute, National Cancer Center, Tokyo 104-0045, Japan
| | - Yusaku Momoi
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo 104-0045, Japan
- Department of Tumor Pathology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroyoshi Nishikawa
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo 104-0045, Japan
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Division of Cancer Immune Multicellular System Regulation, Center for Cancer Immunotherapy and Immunology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
- Kindai University Faculty of Medicine, Osaka-sayama 589-8511, Japan
| |
Collapse
|
10
|
Wang SL, Chan TA. Navigating established and emerging biomarkers for immune checkpoint inhibitor therapy. Cancer Cell 2025:S1535-6108(25)00107-2. [PMID: 40154483 DOI: 10.1016/j.ccell.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/19/2025] [Accepted: 03/04/2025] [Indexed: 04/01/2025]
Abstract
Immune checkpoint inhibitors (ICIs) have improved outcomes of patients with many different cancers. These antibodies target molecules such as programmed cell death 1 (PD-1) or cytotoxic T lymphocyte associated protein 4 (CTLA-4) which normally function to limit immune activity. Treatment with ICIs reactivates T cells to destroy tumor cells in a highly specific manner, which in some patients, results in dramatic remissions and durable disease control. Over the last decade, much effort has been directed at characterizing factors that drive efficacy and resistance to ICI therapy. Food and Drug Administration (FDA)-approved biomarkers for ICI therapy have facilitated more judicious treatment of cancer patients and transformed the field of precision oncology. Yet, adaptive immunity against cancers is complex, and newer data have revealed the potential utility of other biomarkers. In this review, we discuss the utility of currently approved biomarkers and highlight how emerging biomarkers can further improve the identification of patients who benefit from ICIs.
Collapse
Affiliation(s)
- Stephen L Wang
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA; Medical Scientist Training Program, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Timothy A Chan
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA; National Center for Regenerative Medicine, Cleveland, OH, USA.
| |
Collapse
|
11
|
Tuveri S, Brison N, Jatsenko T, Dewaele B, Melotte C, Maggen C, Vandecaveye V, Vandenberghe P, Amant F, Lenaerts L, Vermeesch JR. Copy-number alterations in cell-free DNA can be transient or harbingers of clonal hematopoiesis. NPJ Precis Oncol 2025; 9:88. [PMID: 40133611 PMCID: PMC11937393 DOI: 10.1038/s41698-025-00877-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/11/2025] [Indexed: 03/27/2025] Open
Abstract
Genome-wide plasma cfDNA pan-cancer screening of 1002 healthy elderly identified 15 individuals with CNAs of unknown origin. Nine participants were reassessed over 3-5 years through health questionnaires, WB-MRI, and cfDNA and blood analyses. CNAs resolved in two cases but persisted in seven mainly associated with low-grade clonal mosaicism. These findings suggest cfDNA CNAs may be transient or serve as early markers of clonal mosaicism, preceding clinical detection by years.
Collapse
Affiliation(s)
- Stefania Tuveri
- Laboratory for Cytogenetics and Genome Research, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Nathalie Brison
- Laboratory for Cytogenetics and Genome Research, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Tatjana Jatsenko
- Laboratory for Cytogenetics and Genome Research, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Barbara Dewaele
- Laboratory for Malignant Disorders, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Cindy Melotte
- Laboratory for Cytogenetics and Genome Research, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Charlotte Maggen
- Department of Oncology, University Hospitals Leuven, Leuven, Belgium
- Gynaecology and Obstetrics, University Hospitals Brussels, Brussels, Belgium
| | | | - Peter Vandenberghe
- Laboratory for Malignant Disorders, Department of Human Genetics, KU Leuven, Leuven, Belgium
- Department of Hematology, Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Frederic Amant
- Gynaecological Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
- Gynaecology and Obstetrics, University Hospitals Leuven, Leuven, Belgium
- Gynaecologic Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Liesbeth Lenaerts
- Gynaecological Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Joris R Vermeesch
- Laboratory for Cytogenetics and Genome Research, Department of Human Genetics, KU Leuven, Leuven, Belgium.
| |
Collapse
|
12
|
Rostami T, Ahmadvand M, Azari M, Kasaeian A, Chahardouli B, Shemshadi Nia MR, Azari M, Rostami MR, Ahangar-Sirous R, Kiumarsi A, Janbabai G. Ex vivo-expanded and activated haploidentical natural killer cells infusion before autologous stem cell transplantation in high-risk neuroblastoma: a phase I/II pilot study. Cancer Immunol Immunother 2025; 74:160. [PMID: 40131534 PMCID: PMC11936847 DOI: 10.1007/s00262-025-03990-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 02/19/2025] [Indexed: 03/27/2025]
Abstract
Given that natural killer (NK; CD3 - CD56 +) cells-mediated antibody-dependent cell cytotoxicity (ADCC) plays an important role in targeting neuroblastoma (NB) cells, adoptive cell therapy (ACT) utilizing expanded and activated haploidentical NK cells has emerged as a promising immunotherapeutic approach in pediatric patients with high-risk NB. In this pilot study, five pediatric patients with high-risk NB were enrolled. After harvesting hematopoietic progenitor cells (HPCs), patients received an intravenous infusion of high-activity iodine-131 (131I)-meta-iodobenzylguanidine (131I-MIBG). Seven days after the 131I-MIBG infusion and before the delivery of a single infusion of haploidentical purified NK cells, patients were administered a preparative regimen to establish a lymphodepleted host environment conducive to improved donor NK cell survival. Four days after the NK cell infusion, patients underwent the conditioning regimen, then received autologous hematopoietic stem cell transplantation (AHSCT). All patients achieved successful neutrophil and platelet engraftment. No adverse reactions were noted during or after the infusion of NK cells. Our study shows that incorporating NK cell infusion before AHSCT as a component of the conditioning regimen for consolidative therapy in pediatric patients with high-risk NB can be safe and well tolerated. IRCT Registration Number: IRCT20140818018842N32.
Collapse
Affiliation(s)
- Tahereh Rostami
- Hematologic Malignancies Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Ahmadvand
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Morteza Azari
- Hematologic Malignancies Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Kasaeian
- Liver and Pancreatobiliary Diseases Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Chronic Inflammatory Diseases, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Clinical Research Development Unit, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahram Chahardouli
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Shemshadi Nia
- Hematologic Malignancies Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Azari
- Hematologic Malignancies Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Rostami
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Ahangar-Sirous
- Hematologic Malignancies Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Azadeh Kiumarsi
- Department of Pediatrics, School of Medicine, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Ghasem Janbabai
- Hematologic Malignancies Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
He S, Sun S, Liu K, Pang B, Xiao Y. Comprehensive assessment of computational methods for cancer immunoediting. CELL REPORTS METHODS 2025; 5:101006. [PMID: 40132544 DOI: 10.1016/j.crmeth.2025.101006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/23/2025] [Accepted: 02/25/2025] [Indexed: 03/27/2025]
Abstract
Cancer immunoediting reflects the role of the immune system in eliminating tumor cells and shaping tumor immunogenicity, which leaves marks in the genome. In this study, we systematically evaluate four methods for quantifying immunoediting. In colorectal cancer samples from The Cancer Genome Atlas, we found that these methods identified 78.41%, 46.17%, 36.61%, and 4.92% of immunoedited samples, respectively, covering 92.90% of all colorectal cancer samples. Comparison of 10 patient-derived xenografts (PDXs) with their original tumors showed that different methods identified reduced immune selection in PDXs ranging from 44.44% to 60.0%. The proportion of such PDX-tumor pairs increases to 77.78% when considering the union of results from multiple methods, indicating the complementarity of these methods. We find that observed-to-expected ratios highly rely on neoantigen selection criteria and reference datasets. In contrast, HLA-binding mutation ratio, immune dN/dS, and enrichment score of cancer cell fraction were less affected by these factors. Our findings suggest integration of multiple methods may benefit future immunoediting analyses.
Collapse
Affiliation(s)
- Shengyuan He
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Shangqin Sun
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Kun Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Bo Pang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China.
| | - Yun Xiao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China.
| |
Collapse
|
14
|
Zhang H, Zhang J, Zhu K, Li S, Liu J, Guan B, Zhang H, Chen C, Liu Y. Identification and characterization of mitochondrial autophagy-related genes in osteosarcoma and predicting clinical prognosis. Sci Rep 2025; 15:10158. [PMID: 40128298 PMCID: PMC11933398 DOI: 10.1038/s41598-025-95173-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 03/19/2025] [Indexed: 03/26/2025] Open
Abstract
Osteosarcoma (OS), the most prevalent primary malignant bone tumor, is characterized by a poor prognosis and high metastatic potential. Mitochondrial autophagy has been implicated in cancer suppression. This study aimed to identify prognostic genes associated with mitochondrial autophagy in OS. Public datasets, including TARGET-OS, GSE99671, and GSE21257, were retrieved for analysis. Differentially expressed genes (DEGs1) between OS and normal samples were identified from GSE99671. Single-sample Gene Set Enrichment Analysis (ssGSEA) was applied to quantify the enrichment scores of 29 mitochondrial autophagy-related genes (MARGs) in OS samples from TARGET-OS, categorizing them into high- and low-score groups to extract DEGs2. The intersection of DEGs1 and DEGs2 yielded mitochondrial autophagy-associated differentially expressed genes (MDGs). Prognostic genes were subsequently screened through a multi-step regression analysis, and a risk score was computed. TARGET-OS samples were stratified into high- and low-risk groups based on the optimal cutoff value of the risk score. GSEA was conducted between the two risk groups. Additionally, associations between prognostic genes and the immune microenvironment were explored. A total of 31 MDGs were identified from the overlap of 3,207 DEGs1 and 622 DEGs2. Five prognostic genes-KLK2, NRXN1, HES5, OR2W3, and HS3ST4-were further selected. Kaplan-Meier survival analysis indicated significantly reduced survival in the high-risk group. GSEA revealed enrichment in ABC transporter activity and glycolysis/gluconeogenesis pathways. Immunoanalysis demonstrated significant differences in 11 immune cell populations and three immune functions between risk groups, notably myeloid-derived suppressor cells (MDSCs) and Type 1 T helper cells. HS3ST4 exhibited the strongest positive correlation with macrophages, whereas NRXN1 showed the most pronounced negative correlation with memory B cells. Expressions of HAVCR2 and PDCD1LG2 were elevated in the low-risk group. Functional analysis indicated significant differences in dysfunction patterns between risk groups. This study identified five mitochondrial autophagy-related prognostic genes and constructed a risk model, offering novel insights into OS diagnosis and therapeutic strategies.
Collapse
Affiliation(s)
- Hongliang Zhang
- Department of Bone and Soft Tissue Tumor, Tianjin Hospital, Tianjin University, Tianjin, 300211, China
| | - Jingyu Zhang
- Department of Bone and Soft Tissue Tumor, Tianjin Hospital, Tianjin University, Tianjin, 300211, China
| | - Kai Zhu
- Department of Bone and Soft Tissue Tumor, Tianjin Hospital, Tianjin University, Tianjin, 300211, China
| | - Shuang Li
- Department of Bone and Soft Tissue Tumor, Tianjin Hospital, Tianjin University, Tianjin, 300211, China
| | - Jinwei Liu
- Department of Bone and Soft Tissue Tumor, Tianjin Hospital, Tianjin University, Tianjin, 300211, China
| | - Boya Guan
- Department of Pharmacy, Tianjin Hospital, Tianjin University, Tianjin, 300211, China
| | - Hong Zhang
- Department of Bone and Soft Tissue Tumor, Tianjin Hospital, Tianjin University, Tianjin, 300211, China
| | - Changbao Chen
- Department of Spinal Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China
| | - Yancheng Liu
- Department of Bone and Soft Tissue Tumor, Tianjin Hospital, Tianjin University, Tianjin, 300211, China.
| |
Collapse
|
15
|
Gao Q, Cui Y, Gao F, Yang Y, Huangfu W, Wang M. Pan-cancer analysis of PDGFRB: Laying the foundation for the development of targeted immunotherapy drugs. Medicine (Baltimore) 2025; 104:e41797. [PMID: 40128057 PMCID: PMC11936643 DOI: 10.1097/md.0000000000041797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 02/20/2025] [Indexed: 03/26/2025] Open
Abstract
PDGFRB is a type III tyrosine-protein kinase that is abnormally expressed in various cancers and can serve as a biomarker for cancer prognosis, as studies have demonstrated. However, a pan-cancer analysis of PDGFRB has not yet been carried out. The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases were utilized to analyze PDGFRB expression levels. Differential expression of PDGFRB in standard, tumor, and different clinical stage samples was calculated using R software (version 3.6.4). Immunohistochemical staining for Cholangiocarcinoma (CHOL) and Esophageal carcinoma (ESCA) was conducted on clinical patient samples. High-quality prognostic datasets from TCGA have been published in previous studies. Additionally, the TARGET follow-up data were obtained as supplementary information, excluding models with a follow-up period of less than 30 days. After conducting a rain analysis of PDGFRB, Kaplan-Meier and univariate Cox regression analyses were performed using the R software package. The DNA tumor stemness scores, derived from methylation signatures for each tumor, were obtained from previous studies. Finally, the infiltration of immune cells was analyzed, and the Pearson correlation between PDGFRB and five immune pathway marker genes was assessed. PDGFRB exhibited differential expression across most tumor types in TCGA, indicating a correlation with poor survival outcomes. The expression of PDGFRB influences the regulation of the immune system and is closely associated with immune cell infiltration, immune checkpoints, immune-activating genes, immune suppressor genes, chemokines, and chemokine receptors. PDGFRB is a cancer gene closely associated with prognosis and immunity in cancer patients, and it may serve as an immune checkpoint.
Collapse
Affiliation(s)
- Qian Gao
- Medical Experiment Center, School of Basic Medicine, Inner Mongolia Medical University, Key Laboratory of Quality Research and Efficacy Evaluation of Traditional Chinese Medicine (Mongolian Medicine), Inner Mongolia Medical University, Huhhot, China
| | - Yan Cui
- School of Humanities Education, Inner Mongolia Medical University, Huhhot, China
| | - Feng Gao
- School of Pharmacy, Inner Mongolia Medical University, Huhhot, China
| | - Yan Yang
- School of Pharmacy, Inner Mongolia Medical University, Huhhot, China
| | - Weizhong Huangfu
- The Affiliated Hospital of Inner Mongolia Medical University (Inner Mongolia Institute of Cardiovascular Diseases), Huhhot, China
| | - Minjie Wang
- Medical Experiment Center, School of Basic Medicine, Inner Mongolia Medical University, Key Laboratory of Quality Research and Efficacy Evaluation of Traditional Chinese Medicine (Mongolian Medicine), Inner Mongolia Medical University, Huhhot, China
| |
Collapse
|
16
|
Wang MX, Mauch BE, Williams AF, Barazande-Pour T, Hoffmann FA, Harris SH, Lathrop CP, Turkal CE, Yung BS, Paw MH, Gervasio DAG, Tran T, Stuhlfire AE, Guo T, Daniels GA, Park SJ, Gutkind JS, Hangauer MJ. Antigenic cancer persister cells survive direct T cell attack. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.14.643359. [PMID: 40166148 PMCID: PMC11956947 DOI: 10.1101/2025.03.14.643359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Drug-tolerant persister cancer cells were first reported fifteen years ago as a quiescent, reversible cell state which tolerates unattenuated cytotoxic drug stress. It remains unknown whether a similar phenomenon contributes to immune evasion. Here we report a persister state which survives weeks of direct cytotoxic T lymphocyte (CTL) attack. In contrast to previously known immune evasion mechanisms that avoid immune attack, antigenic persister cells robustly activate CTLs which deliver Granzyme B, secrete IFNγ, and induce tryptophan starvation resulting in apoptosis initiation. Instead of dying, persister cells paradoxically leverage apoptotic caspase activity to avoid inflammatory death. Furthermore, persister cells acquire mutations and epigenetic changes which enable outgrowth of CTL-resistant cells. Persister cell features are enriched in inflamed tumors which regressed during immunotherapy in vivo and in surgically resected human melanoma tissue under immune stress ex vivo . These findings reveal a persister cell state which is a barrier to immune-mediated tumor clearance. Graphical abstract
Collapse
|
17
|
Ding Z, Chen Y, Huang G, Liao R, Zhang H, Zhou S, Liu X. Global, regional, and national burden of neuroblastoma and peripheral nervous system tumours in individuals aged over 60 from 1990 to 2021: a trend analysis of global burden of disease study. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2025; 44:78. [PMID: 40098211 PMCID: PMC11916991 DOI: 10.1186/s41043-025-00810-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 02/25/2025] [Indexed: 03/19/2025]
Abstract
PURPOSE Elderly individuals diagnosed with neuroblastoma and peripheral nervous system tumours often have a poor prognosis. However, there is currently a lack of comprehensive analysis on these conditions in older adults. This study aims to determine the global epidemiological trends of neuroblastoma and peripheral nervous system tumours (in individuals aged 60 and above). METHODS We obtained cross-sectional data from the 2021 Global Burden of Disease, Injuries, and Risk Factors Study (GBD) ( https://vizhub.healthdata.org/gbd-results/ ). We assessed the burden of neuroblastoma and peripheral nervous system tumours in the elderly from 1990 to 2021 using indicators such as prevalence and incidence. These indicators were classified by global, national, and regional levels, further stratified by Socio-Demographic Index (SDI), age, and gender. The results are organized by SDI, age, and gender categories. RESULTS From 1990 to 2021, the global age-standardised prevalence and incidence rates of neuroblastoma and peripheral nervous system tumours among the elderly increased from 0.06 (95% UI 0.05, 0.08) and 0.12 (95% UI 0.09, 0.15) per 100,000 to 0.11 (95% UI 0.09, 0.13) and 0.22 (95% UI 0.17, 0.26) per 100,000, respectively. Age-standardised mortality and DALY rates also rose. Central Europe had the highest age-standardised prevalence and incidence rates in 2021, while Eastern Europe had the highest DALY rate. East Asia reported the highest number of total cases and experienced the fastest growth, with significant increases in prevalence, incidence, mortality, and DALY rates. Gender disparities were evident, with elderly men showing higher rates than women, and greater EAPC values indicating a higher increase in disease burden over time. The highest age-specific rates were found in the 90-94 age group, while the 70-74 age group had the highest DALY burden. CONCLUSION The continuous rise in the incidence of neuroblastoma and peripheral nervous system tumours among the elderly highlights a pressing the necessity for focused public health measures and improved treatment approaches. Addressing the regional, gender, and age-related disparities requires a comprehensive approach that integrates medical advancements, social support, and public health policies. Future research should explore potential risk factors and innovative therapies to mitigate this growing global health challenge.
Collapse
Affiliation(s)
- Zihan Ding
- Department of Trauma and Acute Care Surgery, the 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Street, Nanchang, 330006, Jiangxi, China.
| | - Yun Chen
- Department of Neurosurgery, the 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Street, Nanchang, 330006, Jiangxi, China.
| | - Genbo Huang
- Department of Trauma and Acute Care Surgery, the 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Street, Nanchang, 330006, Jiangxi, China
| | - Rongbo Liao
- Department of Trauma and Acute Care Surgery, the 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Street, Nanchang, 330006, Jiangxi, China
| | - Houting Zhang
- Department of Trauma and Acute Care Surgery, the 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Street, Nanchang, 330006, Jiangxi, China
| | - Shifa Zhou
- Department of Trauma and Acute Care Surgery, the 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Street, Nanchang, 330006, Jiangxi, China
| | - XuKai Liu
- Department of Neurosurgery, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan Province, 412000, People's Republic of China.
| |
Collapse
|
18
|
Demarchis L, Chiloiro S, Giampietro A, De Marinis L, Bianchi A, Fleseriu M, Pontecorvi A. Cancer screening in patients with acromegaly: a plea for a personalized approach and international registries. Rev Endocr Metab Disord 2025:10.1007/s11154-025-09957-6. [PMID: 40088375 DOI: 10.1007/s11154-025-09957-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/25/2025] [Indexed: 03/17/2025]
Abstract
Acromegaly is a rare condition, and often diagnosis is delayed by several years, for most patients. Acromegaly is characterized by short and long-term respiratory, cardiovascular and metabolic comorbidities, with possible impact on mortality. In the last two decades, life expectancy has progressively increased in part due to a reduction in biochemically active disease, multidisciplinary treatment approaches and a reduction in complications, and the availability of new drugs. Of note, a leading cause of mortality, cardiovascular comorbidity, has been replaced by cancer(s). As such, neoplasms more frequently observed (colon, thyroid, breast, prostate, and stomach) in patients with acromegaly are receiving increased attention. Chronic exposure to increased growth hormone serum levels may contribute to an increase in the occurrence and progression of cancers. Various efforts have been made to determine the pathogenetic mechanisms involved. However, there are no clear medical-related societal agreement(s) in relation to screening methods or timing regarding neoplasm(s) diagnosis in patients with acromegaly. Additionally, independent and dependent risk factor data in patients with acromegaly is lacking. International/national registries could help lay the groundwork to better study the impact of cancer(s) in patients with acromegaly and subsequently lead to and validate the most appropriate diagnostic and therapeutic path forward.
Collapse
Affiliation(s)
- Luigi Demarchis
- Dipartimento Di Medicina Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento Di Medicina Interna, Endocrinologia E Diabetologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Sabrina Chiloiro
- Dipartimento Di Medicina Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy.
- Dipartimento Di Medicina Interna, Endocrinologia E Diabetologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Antonella Giampietro
- Dipartimento Di Medicina Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento Di Medicina Interna, Endocrinologia E Diabetologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Laura De Marinis
- Dipartimento Di Medicina Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento Di Medicina Interna, Endocrinologia E Diabetologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Antonio Bianchi
- Dipartimento Di Medicina Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento Di Medicina Interna, Endocrinologia E Diabetologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maria Fleseriu
- Pituitary Center, and Departments of Medicine, and Neurological Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Alfredo Pontecorvi
- Dipartimento Di Medicina Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento Di Medicina Interna, Endocrinologia E Diabetologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
19
|
Zhang X, Xue H, Lv Y, Zhou Y, Sha K, Liu T. Pan-cancer bioinformatics analysis of TIPRL in human tumors. Discov Oncol 2025; 16:320. [PMID: 40088344 PMCID: PMC11910451 DOI: 10.1007/s12672-025-02070-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 03/05/2025] [Indexed: 03/17/2025] Open
Abstract
INTRODUCTION The TOR signaling pathway regulator-like (TIPRL) gene plays a multifaceted role in cancer, yet its pan-cancer profile remains underexplored. This study investigates TIPRL expression across multiple cancers and its associations with survival, genetic alterations, immune infiltration, and functional pathways, providing insights into TIPRL's role as a potential prognostic and therapeutic target. METHODS TIPRL expression and prognostic significance across tumor types were analyzed using TCGA_GTEx and CPTAC data in R software and platforms like GEPIA2 and UALCAN. Genetic alterations and 3D structures were evaluated through cBioPortal. Associations with RNA modifications, immune checkpoints, immune cell infiltration, TMB, MSI, HRD, and enriched pathways were assessed via R and STRING databases, employing survival analysis, ssGSEA, and enrichment analyses. RESULTS TIPRL expression was elevated in most cancers, with significant stage-specific associations observed in KICH, KIRP, and LUSC. High TIPRL expression correlated with worse overall survival in ACC, BRCA, HNSC, KICH, LIHC, and MESO, suggesting its role in prognosis. Genetic analysis identified amplifications as the main alteration, with varied clinical relevance across cancers. RNA modifications in TIPRL, particularly m1A, m5C, and m6A, suggested potential regulatory mechanisms. Immune infiltration analysis revealed TIPRL's varied correlations with immune cell types and immune scores, differing by cancer type. TIPRL also positively correlated with TMB, MSI, and HRD in several cancers, indicating its association with genomic instability. Enrichment analyses highlighted TIPRL's involvement in processes like oxidative phosphorylation and autophagy, underscoring its influence in tumorigenesis. CONCLUSION These findings establish TIPRL as a significant biomarker in cancer progression and immune regulation, warranting further exploration into its therapeutic implications across diverse tumor types.
Collapse
Affiliation(s)
- Xuezhong Zhang
- Department of Laboratory Medicine, Zibo Central Hospital, Zibo, Shandong, China
| | - Hao Xue
- Department of Neurology, Zibo Central Hospital, Zibo, Shandong, China
| | - Yuanyuan Lv
- Department of Cardiology, Zibo Central Hospital, Zibo, Shandong, China
| | - Yuntao Zhou
- Department of Laboratory Medicine, Zibo Central Hospital, Zibo, Shandong, China.
| | - Kaihui Sha
- Binzhou Medical University School of Nursing, Binzhou, Shandong, China.
| | - Tonggang Liu
- Department of Infectious Diseases, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| |
Collapse
|
20
|
Tsuji Y, Namisaki T, Takaya H, Nishimura N, Noguchi R, Asada S, Shibamoto A, Kubo T, Iwai S, Tomooka F, Koizumi A, Matsuda T, Tanaka M, Yorioka N, Inoue T, Fujinaga Y, Nishimura N, Kitagawa K, Sato S, Kaji K, Asada K, Mitoro A, Yoshiji H. Risk Factors for Intrahepatic Distant Recurrence After Radiofrequency Ablation for Hepatocellular Carcinoma. Dig Dis Sci 2025:10.1007/s10620-025-08884-5. [PMID: 40072765 DOI: 10.1007/s10620-025-08884-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 01/18/2025] [Indexed: 03/14/2025]
Abstract
AIM The incidence of intrahepatic distant recurrence (IDR) of hepatocellular carcinoma (HCC) still remains high after radiofrequency ablation (RFA). However, serum alpha-fetoprotein (AFP) has insufficient screening power. This study aimed to identify risk factors for IDR in patients with post-RFA HCC. METHOD A total of 112 patients with early-stage HCC who underwent RFA were divided into the IDR (n = 51) and non-IDR groups (n = 61). Serum samples were analyzed within 2 months after RFA. RESULTS The mean follow-up duration was 30.1 months. The recurrence-free survival rates at 1, 3, and 5 years were 20.8%, 42.4%, and 54.2%, respectively. The 1- and 5-year overall survival rates were 97.3% and 87.3%, respectively. Univariate and multivariate analyses revealed that the neutrophil-to-lymphocyte ratio [NLR, hazard ratio (HR) 2.40; 95% confidence interval (CI) 1.44-3.99] and lens culinaris agglutinin a-reactive fraction of alpha-fetoprotein (AFP-L3, (HR 1.02; 95% CI 1.01-1.04) were independently associated with post-RFA IDR. The cumulative recurrence rates at 5 years in the high NLR (≥ 2.24) and high AFP-L3 (≥ 0.2 ng/mL) groups were significantly higher than those in the low NLR (< 2.24) and low AFP-L3 (< 0.2 ng/mL) groups, respectively. The predictive accuracies of NLR, AFP-L3, and a composite index based on AFP-L3, and NLR for IDR were 66.2% (37.3% sensitivity, 95.1% specificity), 64.3% (47.1% sensitivity, 80.3% specificity), and 75.6% (68.6% sensitivity, 75.4% specificity), respectively. CONCLUSION The combined model had significantly better prediction performance than either NLR or AFP-L3 alone. The NLR combined with an absolute AFP-L3 level is an effective marker for IDR in patients with post-RFA HCC.
Collapse
Affiliation(s)
- Yuki Tsuji
- Department of Gastroenterology of Nara Medical University, 840 Shijo-cho, Kashihara, Nara, Japan
| | - Tadashi Namisaki
- Department of Gastroenterology of Nara Medical University, 840 Shijo-cho, Kashihara, Nara, Japan.
| | - Hiroaki Takaya
- Department of Gastroenterology of Nara Medical University, 840 Shijo-cho, Kashihara, Nara, Japan
| | | | - Ryuichi Noguchi
- Department of Gastroenterology of Nara Medical University, 840 Shijo-cho, Kashihara, Nara, Japan
| | - Shohei Asada
- Department of Gastroenterology of Nara Medical University, 840 Shijo-cho, Kashihara, Nara, Japan
| | - Akihiko Shibamoto
- Department of Gastroenterology of Nara Medical University, 840 Shijo-cho, Kashihara, Nara, Japan
| | - Takahiro Kubo
- Department of Gastroenterology of Nara Medical University, 840 Shijo-cho, Kashihara, Nara, Japan
| | - Satoshi Iwai
- Department of Gastroenterology of Nara Medical University, 840 Shijo-cho, Kashihara, Nara, Japan
| | - Fumimasa Tomooka
- Department of Gastroenterology of Nara Medical University, 840 Shijo-cho, Kashihara, Nara, Japan
| | - Aritoshi Koizumi
- Department of Gastroenterology of Nara Medical University, 840 Shijo-cho, Kashihara, Nara, Japan
| | - Takuya Matsuda
- Department of Gastroenterology of Nara Medical University, 840 Shijo-cho, Kashihara, Nara, Japan
| | - Misako Tanaka
- Department of Gastroenterology of Nara Medical University, 840 Shijo-cho, Kashihara, Nara, Japan
| | - Nobuyuki Yorioka
- Department of Gastroenterology of Nara Medical University, 840 Shijo-cho, Kashihara, Nara, Japan
| | - Takashi Inoue
- Department of Evidence-Based Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, Japan
| | - Yukihisa Fujinaga
- Department of Gastroenterology of Nara Medical University, 840 Shijo-cho, Kashihara, Nara, Japan
| | - Norihisa Nishimura
- Department of Gastroenterology of Nara Medical University, 840 Shijo-cho, Kashihara, Nara, Japan
| | - Koh Kitagawa
- Department of Gastroenterology of Nara Medical University, 840 Shijo-cho, Kashihara, Nara, Japan
| | - Shinya Sato
- Department of Gastroenterology of Nara Medical University, 840 Shijo-cho, Kashihara, Nara, Japan
| | - Kosuke Kaji
- Department of Gastroenterology of Nara Medical University, 840 Shijo-cho, Kashihara, Nara, Japan
| | - Kiyoshi Asada
- Clinical Research Center, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, Japan
| | - Akira Mitoro
- Department of Gastroenterology of Nara Medical University, 840 Shijo-cho, Kashihara, Nara, Japan
| | - Hitoshi Yoshiji
- Department of Gastroenterology of Nara Medical University, 840 Shijo-cho, Kashihara, Nara, Japan
| |
Collapse
|
21
|
George S, Saju H, Jaikumar T, Raj R, Nisarga R, Sontakke S, Sangshetti J, Paul MK, Arote RB. Deciphering a crosstalk between biological cues and multifunctional nanocarriers in lung cancer therapy. Int J Pharm 2025; 674:125395. [PMID: 40064384 DOI: 10.1016/j.ijpharm.2025.125395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/08/2025] [Accepted: 02/21/2025] [Indexed: 03/17/2025]
Abstract
In recent years, the utilization of nanocarriers has significantly broadened across a diverse spectrum of biomedical applications. However, the clinical translation of these tiny carriers is limited and encounters hurdles, particularly in the intricate landscape of the tumor microenvironment. Lung cancer poses unique hurdles for nanocarrier design. Multiple physiological barriers hinder the efficient drug delivery to the lungs, such as the complex anatomy of the lung, the presence of mucus, immune responses, and rapid clearance mechanisms. Overcoming these obstacles necessitates a targeted approach that minimizes off-target effects while effectively penetrating nanoparticles/cargo into specific lung tissues or cells. Furthermore, understanding the cellular uptake mechanisms of these nano carriers is also essential. This knowledge aids in developing nanocarriers that efficiently enter cells and transfer their payload for the most effective therapeutic outcome. Hence, a thorough understanding of biological cues becomes crucial in designing multifunctional nanocarriers tailored for treating lung cancer. This review explores the essential biological cues critical for developing a flexible nanocarrier specifically intended to treat lung cancer. Additionally, it discusses advancements in nanotheranostics in lung cancer.
Collapse
Affiliation(s)
- Sharon George
- Centre for Nano and Material Sciences, Jain (Deemed to be) University, Jain Global Campus, Bangalore, Karnataka 562112, India
| | - Hendry Saju
- Centre for Nano and Material Sciences, Jain (Deemed to be) University, Jain Global Campus, Bangalore, Karnataka 562112, India
| | - Tharun Jaikumar
- Centre for Nano and Material Sciences, Jain (Deemed to be) University, Jain Global Campus, Bangalore, Karnataka 562112, India
| | - Reshma Raj
- Centre for Nano and Material Sciences, Jain (Deemed to be) University, Jain Global Campus, Bangalore, Karnataka 562112, India
| | - R Nisarga
- Centre for Nano and Material Sciences, Jain (Deemed to be) University, Jain Global Campus, Bangalore, Karnataka 562112, India
| | - Samruddhi Sontakke
- Centre for Nano and Material Sciences, Jain (Deemed to be) University, Jain Global Campus, Bangalore, Karnataka 562112, India
| | - Jaiprakash Sangshetti
- Y. B. Chavan College of Pharmacy, Dr. Rafiq Zakaria Campus, Rauza Baugh, Aurangabad 431001, India
| | - Manash K Paul
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India; Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), 90095 CA, USA.
| | - Rohidas B Arote
- Centre for Nano and Material Sciences, Jain (Deemed to be) University, Jain Global Campus, Bangalore, Karnataka 562112, India; Dental Research Institute, School of Dentistry, Seoul National University, Gwanak-ku, Seoul 08826, Republic of Korea.
| |
Collapse
|
22
|
Hirata M, Nomura T, Inoue YH. Anti-Tumor Effects of Cecropin A and Drosocin Incorporated into Macrophage-like Cells Against Hematopoietic Tumors in Drosophila mxc Mutants. Cells 2025; 14:389. [PMID: 40136638 PMCID: PMC11940895 DOI: 10.3390/cells14060389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/25/2025] [Accepted: 03/04/2025] [Indexed: 03/27/2025] Open
Abstract
Five major antimicrobial peptides (AMPs) in Drosophila are induced in multiple sex combs (mxc) mutant larvae harboring lymph gland (LG) tumors, and they exhibit anti-tumor effects. The effects of other well-known AMPs, Cecropin A and Drosocin, remain unexplored. We investigated the tumor-elimination mechanism of these AMPs. A half-dose reduction in either the Toll or Imd gene reduced the induction of these AMPs and enhanced tumor growth in mxcmbn1 mutant larvae, indicating that their anti-tumor effects depend on the innate immune pathway. Overexpression of these AMPs in the fat body suppressed tumor growth without affecting cell proliferation. Apoptosis was promoted in the mutant but not in normal LGs. Conversely, knockdown of them inhibited apoptosis and enhanced tumor growth; therefore, they inhibit LG tumor growth by inducing apoptosis. The AMPs from the fat body were incorporated into the hemocytes of mutant but not normal larvae. Another AMP, Drosomycin, was taken up via phagocytosis factors. Enhanced phosphatidylserine signals were observed on the tumor surface. Inhibition of the signals exposed on the cell surface enhanced tumor growth. AMPs may target phosphatidylserine in tumors to induce apoptosis and execute their tumor-specific effects. AMPs could be beneficial anti-cancer drugs with minimal side effects for clinical development.
Collapse
Affiliation(s)
- Marina Hirata
- Biomedical Research Center, Kyoto Institute of Technology, Kyoto 606-0962, Japan (T.N.)
- Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Tadashi Nomura
- Biomedical Research Center, Kyoto Institute of Technology, Kyoto 606-0962, Japan (T.N.)
- Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Yoshihiro H. Inoue
- Biomedical Research Center, Kyoto Institute of Technology, Kyoto 606-0962, Japan (T.N.)
| |
Collapse
|
23
|
Zhang L, Fan S, Wang J, Ren H, Guan H. Antibody-positive paraneoplastic neurological syndromes associated with immune checkpoint inhibitors: a systematic review. J Neurol 2025; 272:249. [PMID: 40042691 DOI: 10.1007/s00415-025-12992-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/19/2025]
Abstract
BACKGROUND AND OBJECTIVES This study aimed to describe the clinical and prognostic characteristics of antibody-positive paraneoplastic neurological syndrome (PNS) associated with immune checkpoint inhibitors (ICIs). METHODS We conducted a systematic review of relevant publications in PubMed and Embase from inception to December 2023. Patients with positive anti-neuronal antibodies who had a definite, probable, or possible diagnosis of PNS based on the 2021 PNS-Care Score criteria were included. RESULTS A total of 76 records with 108 antibody-positive ICI-PNS patients were included in this systematic review. According to the updated 2021 criteria, 60.2% of patients were classified as definite PNS, 29.6% as probable PNS, and 10.2% as possible PNS. The median age was 66 years (range: 26-82), and 56.5% of patients were male. The most frequently associated tumors included lung cancer, melanoma, and Merkel cell carcinoma, and 72.2% of patients developed neurological symptoms within 6 months after ICIs treatment. The most common clinical phenotypes were limbic encephalitis (35.2%), rapidly progressive cerebellar syndrome (19.4%), and Lambert-Eaton myasthenic syndrome (13.0%), while the most common autoantibodies were anti-Hu (34.3%), anti-Ma2 (16.7%), and anti-P/Q VGCC (14.8%) antibodies. CSF inflammation was observed in 63.0% patients, predominantly lymphocytic. Corticosteroids were the mainstay of immunotherapy (90.9%), followed by intravenous immunoglobulin (IVIG) and plasma exchange. Outcome information was reported for 103 patients. The median follow-up was 4 months (IQR: 2, 10), and 56.3% of patients showed improvement, while 37.0% of patients died at the last follow-up. Patients with anti-Hu or anti-Ma2 antibodies had a higher proportion of deterioration and mortality (P < 0.05). CONCLUSION Limbic encephalitis and anti-Hu antibody are relatively common in antibody-positive ICI-PNS, and most patients present with CSF inflammation. Discontinuation of ICIs and corticosteroids are the main treatments. High-risk antibodies may be a risk factor for an unfavorable prognosis, particularly anti-Hu and anti-Ma2 antibodies.
Collapse
Affiliation(s)
- Le Zhang
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Siyuan Fan
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Jiawei Wang
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Haitao Ren
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Hongzhi Guan
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
24
|
Lehmann J, Thelen M, Kreer C, Schran S, Garcia-Marquez MA, Cisic I, Siepmann K, Hagen EM, Eckel HNC, Lohneis P, Kruger S, Boeck S, Ormanns S, Rudelius M, Werner J, Popp F, Klein F, von Bergwelt-Baildon MS, Bruns CJ, Quaas A, Wennhold K, Schlößer HA. Tertiary Lymphoid Structures in Pancreatic Cancer are Structurally Homologous, Share Gene Expression Patterns and B-cell Clones with Secondary Lymphoid Organs, but Show Increased T-cell Activation. Cancer Immunol Res 2025; 13:323-336. [PMID: 39661055 DOI: 10.1158/2326-6066.cir-24-0299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/02/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024]
Abstract
Tertiary lymphoid structures (TLS) in cancer are considered ectopic hotspots for immune activation that are similar to lymphoid follicles in secondary lymphoid organs (SLO). This study elucidates shared and TLS/SLO-specific features in pancreatic ductal adenocarcinoma (PDAC). TLS abundance was related to superior survival and T-cell abundance in 110 treatment-naïve PDAC samples, underlining their clinical relevance. Immunofluorescence microscopy identified structural homologies between TLSs and SLOs. In RNA expression analyses of laser-microdissected TLSs and paired SLOs, we observed largely overlapping expression patterns of immune-related gene clusters but distinct expression patterns of T-cell and complement-associated genes. Immune cells in TLS expressed essential markers of germinal center formation. Increased activation of tumor-draining lymph nodes in patients with high numbers of TLSs highlights the relevance of these tumor-related structures to systemic immune response. In line with this, we identified an overlap of expanded B-cell receptor clonotypes in TLSs and SLOs, which suggests a vivid cross-talk between the two compartments. We conclude that combined therapeutic approaches exploiting TLS-mediated antitumor immune responses may improve susceptibility of PDAC to immunotherapy.
Collapse
Affiliation(s)
- Jonas Lehmann
- Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Martin Thelen
- Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Christoph Kreer
- Laboratory of Experimental Immunology, Faculty of Medicine and University Hospital Cologne, Institute of Virology, University of Cologne Cologne, Germany
| | - Simon Schran
- Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Maria A Garcia-Marquez
- Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Igor Cisic
- Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Klara Siepmann
- Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Elena M Hagen
- Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Hans Nikolaus Caspar Eckel
- Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Cologne, Cologne, Germany
| | - Philipp Lohneis
- Institute of Pathology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Stephan Kruger
- Department of Internal Medicine III, University Hospital, Ludwig Maximilians University, Munich, Germany
| | - Stefan Boeck
- Department of Internal Medicine III, University Hospital, Ludwig Maximilians University, Munich, Germany
- Department of Hematology and Oncology, München Klinik Neuperlach, Munich, Germany
| | - Steffen Ormanns
- Faculty of Medicine, Institute of Pathology, Ludwig Maximilians University, Munich, Germany
- Innpath Institute of Pathology, Tirol Kliniken, Innsbruck, Austria
| | - Martina Rudelius
- Faculty of Medicine, Institute of Pathology, Ludwig Maximilians University, Munich, Germany
| | - Jens Werner
- Department of General, Visceral and Transplant Surgery, University Hospital, Ludwig Maximilians University, Munich, Germany
| | - Felix Popp
- Department of General, Visceral, Cancer and Transplantation Surgery, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Florian Klein
- Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Laboratory of Experimental Immunology, Faculty of Medicine and University Hospital Cologne, Institute of Virology, University of Cologne Cologne, Germany
- German Center for Infection Research (DZIF), Partner site Bonn-Cologne, Cologne, Germany
| | - Michael S von Bergwelt-Baildon
- Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Department of Internal Medicine III, University Hospital, Ludwig Maximilians University, Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Christiane J Bruns
- Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Department of General, Visceral, Cancer and Transplantation Surgery, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Alexander Quaas
- Institute of Pathology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Kerstin Wennhold
- Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Hans A Schlößer
- Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Department of General, Visceral, Cancer and Transplantation Surgery, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| |
Collapse
|
25
|
Almawash S. Revolutionary Cancer Therapy for Personalization and Improved Efficacy: Strategies to Overcome Resistance to Immune Checkpoint Inhibitor Therapy. Cancers (Basel) 2025; 17:880. [PMID: 40075727 PMCID: PMC11899125 DOI: 10.3390/cancers17050880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/09/2025] [Accepted: 02/12/2025] [Indexed: 03/14/2025] Open
Abstract
Cancer remains a significant public health issue worldwide, standing as a primary contributor to global mortality, accounting for approximately 10 million fatalities in 2020 [...].
Collapse
Affiliation(s)
- Saud Almawash
- Department of Pharmaceutics, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia
| |
Collapse
|
26
|
Pei Y, Liang H, Guo Y, Wang B, Wu H, Jin Z, Lin S, Zeng F, Wu Y, Shi Q, Xu J, Huang Y, Ren T, Liu J, Guo W. Liquid-liquid phase separation drives immune signaling transduction in cancer: a bibliometric and visualized study from 1992 to 2024. Front Oncol 2025; 15:1509457. [PMID: 40104511 PMCID: PMC11913689 DOI: 10.3389/fonc.2025.1509457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/28/2025] [Indexed: 03/20/2025] Open
Abstract
Background Liquid-liquid phase separation (LLPS) is a novel concept that could explain how living cells precisely modulate internal spatial and temporal functions. However, a comprehensive bibliometric analysis on LLPS and immune signaling processes in cancer is still scarce. This study aims to perform a bibliometric assessment of research to explore the landscape of LLPS research in immune signaling pathways for cancer. Methods Utilizing the Web of Science Core Collection database and multiple analysis software, we performed quantitative and qualitative analyses of the study situation between LLPS and immune signaling in cancer from 1992 to 2024. Results The corresponding authors were primarily from China and the USA. The most relevant references were the "International Journal of Molecular Sciences", "Proteomics". The annual number of publications exhibited a fast upward tendency from 2020 to 2024. The most frequent key terms included expression, separation, activation, immunotherapy, and mechanisms. Qualitative evaluation emphasized the TCR, BCR, cGAS-STING, RIG-1, NF-κB signaling pathways associated with LLPS processes. Conclusion This research is the first to integratively map out the knowledge structure and forward direction in the area of immune transduction linked with LLPS over the past 30 years. In summary, although this research area is still in its infancy, illustrating the coordinated structures and communications between cancer and immune signaling with LLPS within a spatial framework will offer deeper insights into the molecular mechanisms of cancer development and further enhance the effectiveness of existing immunotherapies.
Collapse
Affiliation(s)
- Yanhong Pei
- Department of Bone Tumor, Peking University People's Hospital, Beijing, China
| | - Haijie Liang
- Department of Bone Tumor, Peking University People's Hospital, Beijing, China
| | - Yu Guo
- Department of Bone Tumor, Peking University People's Hospital, Beijing, China
| | - Boyang Wang
- Department of Bone Tumor, Peking University People's Hospital, Beijing, China
| | - Han Wu
- Department of Bone Tumor, Peking University People's Hospital, Beijing, China
| | - Zhijian Jin
- Department of Bone Tumor, Peking University People's Hospital, Beijing, China
| | - Shanyi Lin
- Department of Bone Tumor, Peking University People's Hospital, Beijing, China
| | - Fanwei Zeng
- Department of Bone Tumor, Peking University People's Hospital, Beijing, China
| | - Yifan Wu
- Department of Bone Tumor, Peking University People's Hospital, Beijing, China
| | - Qianyu Shi
- Department of Bone Tumor, Peking University People's Hospital, Beijing, China
| | - Jiuhui Xu
- Department of Bone Tumor, Peking University People's Hospital, Beijing, China
| | - Yi Huang
- Department of Bone Tumor, Peking University People's Hospital, Beijing, China
| | - Tingting Ren
- Department of Bone Tumor, Peking University People's Hospital, Beijing, China
| | - Jiarui Liu
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
- Neuroscience Research Institute, Peking University, Beijing, China
| | - Wei Guo
- Department of Bone Tumor, Peking University People's Hospital, Beijing, China
| |
Collapse
|
27
|
Fan P, Qi Z, Liu Z, Wang S, Wang Y, Kuai J, Zhang N, Xu W, Qin S, Candi E, Huang Y. High baseline levels of PD-L1 reduce the heterogeneity of immune checkpoint signature and sensitize anti-PD1 therapy in lung and colorectal cancers. Cell Death Dis 2025; 16:152. [PMID: 40038236 DOI: 10.1038/s41419-025-07471-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 02/20/2025] [Indexed: 03/06/2025]
Abstract
Immune checkpoint blockade (ICB) therapy only induces durable responses in a subset of cancer patients. The underlying mechanisms of such selective efficacy remain largely unknown. By analyzing the expression profiles of immune checkpoint molecules in different statuses of murine tumors, we found that tumor progression generally randomly upregulated multiple immune checkpoints, thus increased the Heterogeneity of Immune checkpoint Signature (HIS) and resulted in immunotherapeutic resistance. Interestingly, overexpressing one pivotal immune checkpoint in a tumor hindered the upregulation of a majority of other immune checkpoint genes during tumor progression via suppressing interferon γ, resulting in HIS-low. Indeed, PD-L1 high-expression sensitized baseline large tumors to anti-PD1 therapy without altering the sensitivity of baseline small tumors. In line with these preclinical results, a retrospective analysis of a phase III study involving patients with non-small cell lung cancer (NSCLC) revealed that PD-L1 tumor proportion score (TPS) ≥ 50% more reliably predicted therapeutic response in NSCLC patients with baseline tumor volume (BTV)-large compared to patients with BTV-small. Notably, TPS combined with BTV significantly improved the predictive accuracy. Collectively, the data suggest that HIS reflects the dynamic features of tumor immune evasion and dictates the selective efficacy of ICB in a tumor size-dependent manner, providing a potential novel strategy to improve precision ICB. These findings highlight the application of ICB to earlier stages of cancer patients. The integration of PD-L1 with BTV may immediately improve patient stratification and prediction performance in the clinic.
Collapse
Affiliation(s)
- Peng Fan
- Cyrus Tang Medical Institute, State Key Laboratory of Radiation Medicine and Prevention, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Cancer Institute, Suzhou Medical College, Soochow University, Suzhou, China
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome, Italy
- National Center of Technology Innovation for Biopharmaceuticals, Suzhou Biomedical Industry Innovation Center, Suzhou, China
| | - Ziwei Qi
- Cyrus Tang Medical Institute, State Key Laboratory of Radiation Medicine and Prevention, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Zhenhua Liu
- Department of Radiotherapy, the First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Radiotherapy, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, China
| | - Shanshan Wang
- Cyrus Tang Medical Institute, State Key Laboratory of Radiation Medicine and Prevention, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Ying Wang
- Cyrus Tang Medical Institute, State Key Laboratory of Radiation Medicine and Prevention, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Jiajie Kuai
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Naidong Zhang
- Cyrus Tang Medical Institute, State Key Laboratory of Radiation Medicine and Prevention, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome, Italy
| | - Wei Xu
- New Drug Biology and Translational Medicine, Innovent Biologics Inc., Suzhou, China
| | - Songbing Qin
- Department of Radiotherapy, the First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome, Italy
| | - Yuhui Huang
- Cyrus Tang Medical Institute, State Key Laboratory of Radiation Medicine and Prevention, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.
- Cancer Institute, Suzhou Medical College, Soochow University, Suzhou, China.
- National Center of Technology Innovation for Biopharmaceuticals, Suzhou Biomedical Industry Innovation Center, Suzhou, China.
| |
Collapse
|
28
|
Karjalainen A, Witalisz-Siepracka A, Prchal-Murphy M, Martin D, Sternberg F, Krunic M, Dolezal M, Fortelny N, Farlik M, Macho-Maschler S, Lassnig C, Meissl K, Amenitsch L, Lederer T, Pohl E, Gotthardt D, Bock C, Decker T, Strobl B, Müller M. Cell-type-specific requirement for TYK2 in murine immune cells under steady state and challenged conditions. Cell Mol Life Sci 2025; 82:98. [PMID: 40025196 PMCID: PMC11872851 DOI: 10.1007/s00018-025-05625-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/31/2025] [Accepted: 02/17/2025] [Indexed: 03/04/2025]
Abstract
Tyrosine kinase 2 (TYK2) deficiency and loss or inhibition of kinase activity in men and mice leads to similar immune compromised phenotypes, predominantly through impairment of interferon (IFN) and interleukin 12 family responses. Here we relate the transcriptome changes to phenotypical changes observed in TYK2-deficient (Tyk2-/-) and TYK2 kinase-inactive (Tyk2K923E) mice in naïve splenic immune cells and upon ex vivo IFN treatment or in vivo tumor transplant infiltration. The TYK2 activities under homeostatic and both challenged conditions are highly cell-type-specific with respect to quantity and quality of transcriptionally dependent genes. The major impact of loss of TYK2 protein or kinase activity in splenic homeostatic macrophages, NK and CD8+ T cells and tumor-derived cytolytic cells is on IFN responses. While reportedly TYK2 deficiency leads to partial impairment of IFN-I responses, we identified cell-type-specific IFN-I-repressed gene sets completely dependent on TYK2 kinase activity. Reported kinase-inactive functions of TYK2 relate to signaling crosstalk, metabolic functions and cell differentiation or maturation. None of these phenotypes relates to respective enriched gene sets in the TYK2 kinase-inactive cell types. Nonetheless, the scaffolding functions of TYK2 are capable to change transcriptional activities at single gene levels and chromatin accessibility at promoter-distal regions upon cytokine treatment most prominently in CD8+ T cells. The cell-type-specific transcriptomic and epigenetic effects of TYK2 shed new light on the biology of this JAK family member and are relevant for current and future treatment of autoimmune and inflammatory diseases with TYK2 inhibitors.
Collapse
Affiliation(s)
- Anzhelika Karjalainen
- Animal Breeding and Genetics, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Agnieszka Witalisz-Siepracka
- Animal Breeding and Genetics, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
- Division Pharmacology, Karl Landsteiner University of Health Sciences, Krems an Der Donau, Austria
| | - Michaela Prchal-Murphy
- Pharmacology and Toxicology, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - David Martin
- Animal Breeding and Genetics, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Felix Sternberg
- Physiology and Biophysics, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Milica Krunic
- Campus Tulln, University of Applied Sciences Wiener Neustadt, Wiener Neustadt, Austria
| | - Marlies Dolezal
- Platform Biostatistics and Bioinformatics, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Nikolaus Fortelny
- Department of Biosciences and Medical Biology, Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, Austria
| | - Matthias Farlik
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Sabine Macho-Maschler
- Animal Breeding and Genetics, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Caroline Lassnig
- Core Facility VetBiomodels, University of Veterinary Medicine, Vienna, Austria
| | - Katrin Meissl
- Animal Breeding and Genetics, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Lena Amenitsch
- Animal Breeding and Genetics, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Therese Lederer
- Animal Breeding and Genetics, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Elena Pohl
- Physiology and Biophysics, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Dagmar Gotthardt
- Division Pharmacology, Karl Landsteiner University of Health Sciences, Krems an Der Donau, Austria
| | - Christoph Bock
- Cemm Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Institute of Artificial Intelligence, Center for Medical Data Science, Medical University of Vienna, Vienna, Austria
| | - Thomas Decker
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna, Austria
| | - Birgit Strobl
- Animal Breeding and Genetics, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Mathias Müller
- Animal Breeding and Genetics, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria.
| |
Collapse
|
29
|
Li X, Ufret-Vincenty C, Robinson-Hamm J, Kuo L, Park H, Shanmugam VK. Insights into autoimmunity and cancer. Nat Immunol 2025; 26:342-344. [PMID: 39920360 DOI: 10.1038/s41590-025-02078-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Affiliation(s)
- Xinrui Li
- Office of Autoimmune Disease Research, Office of Research on Women's Health, Office of the Director, National Institutes of Health, Bethesda, MD, USA
| | - Carmen Ufret-Vincenty
- Office of Autoimmune Disease Research, Office of Research on Women's Health, Office of the Director, National Institutes of Health, Bethesda, MD, USA
| | - Jacqueline Robinson-Hamm
- Office of Autoimmune Disease Research, Office of Research on Women's Health, Office of the Director, National Institutes of Health, Bethesda, MD, USA
| | - Lillian Kuo
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Heiyoung Park
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Victoria K Shanmugam
- Office of Autoimmune Disease Research, Office of Research on Women's Health, Office of the Director, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
30
|
Zhang X, Chen Y, Liu X, Li G, Zhang S, Zhang Q, Cui Z, Qin M, Simon HU, Terzić J, Kocic G, Polić B, Yin C, Li X, Zheng T, Liu B, Zhu Y. STING in cancer immunoediting: Modeling tumor-immune dynamics throughout cancer development. Cancer Lett 2025; 612:217410. [PMID: 39826670 DOI: 10.1016/j.canlet.2024.217410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/16/2024] [Accepted: 12/21/2024] [Indexed: 01/22/2025]
Abstract
Cancer immunoediting is a dynamic process of tumor-immune system interaction that plays a critical role in cancer development and progression. Recent studies have highlighted the importance of innate signaling pathways possessed by both cancer cells and immune cells in this process. The STING molecule, a pivotal innate immune signaling molecule, mediates DNA-triggered immune responses in both cancer cells and immune cells, modulating the anti-tumor immune response and shaping the efficacy of immunotherapy. Emerging evidence has shown that the activation of STING signaling has dual opposing effects in cancer progression, simultaneously provoking and restricting anti-tumor immunity, and participating in every phase of cancer immunoediting, including immune elimination, equilibrium, and escape. In this review, we elucidate the roles of STING in the process of cancer immunoediting and discuss the dichotomous effects of STING agonists in the cancer immunotherapy response or resistance. A profound understanding of the sophisticated roles of STING signaling pathway in cancer immunoediting would potentially inspire the development of novel cancer therapeutic approaches and overcome the undesirable protumor effects of STING activation.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, People's Republic of China; Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Yan Chen
- Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Xi Liu
- Department of Cardiology, ordos central hospital, Ordos, People's Republic of China
| | - Guoli Li
- Department of Colorectal and Anal Surgery, Chifeng Municipal Hospital, Chifeng Clinical Medical School of Inner Mongolia Medical University, Chifeng, People's Republic of China
| | - Shuo Zhang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, People's Republic of China
| | - Qi Zhang
- Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Zihan Cui
- Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Minglu Qin
- Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland; Institute of Biochemistry, Brandenburg Medical School, Neuruppin, 16816, Germany
| | - Janoš Terzić
- Laboratory for Cancer Research, University of Split School of Medicine, Split, Croatia
| | - Gordana Kocic
- Department of Biochemistry, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
| | - Bojan Polić
- University of Rijeka Faculty of Medicine, Croatia
| | - Chengliang Yin
- Faculty of Medicine, Macau University of Science and Technology, 999078, Macao.
| | - Xiaobo Li
- Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China.
| | - Tongsen Zheng
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, Heilongjiang, People's Republic of China.
| | - Bing Liu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, People's Republic of China; School of Stomatology, Harbin Medical University, Harbin, 150001, People's Republic of China.
| | - Yuanyuan Zhu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, People's Republic of China; Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China.
| |
Collapse
|
31
|
Giesler S, Riemer R, Lowinus T, Zeiser R. Immune-mediated colitis after immune checkpoint inhibitor therapy. Trends Mol Med 2025; 31:265-280. [PMID: 39477757 DOI: 10.1016/j.molmed.2024.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 03/15/2025]
Abstract
Immune checkpoint inhibitors (ICIs) have led to improved outcome in patients with various types of cancer. Due to inhibition of physiological anti-inflammatory mechanisms, patients treated with ICIs may develop autoimmune inflammation of the colon, associated with morbidity, decreased quality of life (QoL), and mortality. In this review, we summarize clinical and pathophysiological aspects of immune-mediated colitis (ImC), highlighting novel treatment options. In the colon, ICIs trigger resident and circulating T cell activation and infiltration of myeloid cells. In addition, the gut microbiota critically contribute to intestinal immune dysregulation and loss of barrier function, thereby propagating local and systemic inflammation. Currently available therapies for ImC include corticosteroids, antitumor necrosis factor-α (TNF-α)- and anti-integrin α4β7 antibodies. Given that systemic immunosuppression might impair antitumor immune responses, novel therapeutic approaches are urgently needed.
Collapse
Affiliation(s)
- Sophie Giesler
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Roxane Riemer
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Theresa Lowinus
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Robert Zeiser
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
32
|
Ma M, Jin C, Dong Q. Intratumoral Heterogeneity and Immune Microenvironment in Hepatoblastoma Revealed by Single-Cell RNA Sequencing. J Cell Mol Med 2025; 29:e70482. [PMID: 40099956 PMCID: PMC11915626 DOI: 10.1111/jcmm.70482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 02/21/2025] [Accepted: 02/27/2025] [Indexed: 03/20/2025] Open
Abstract
Hepatoblastoma (HB) is a common paediatric liver malignancy characterised by significant intratumoral heterogeneity and a complex tumour microenvironment (TME). Using single-cell RNA sequencing (scRNA-seq), we analysed 43,592 cells from three tumour regions and adjacent normal tissue of an HB patient. Our study revealed distinct cellular compositions and varying degrees of malignancy across different tumour regions, with the T1 region showing the highest malignancy and overexpression of HMGB2 and TOP2A. Survival analysis demonstrated that high HMGB2 expression is associated with poor prognosis and increased recurrence, suggesting its potential as a prognostic marker. Additionally, we identified a diverse immune microenvironment enriched with regulatory T cells (Tregs) and CD8+ effector memory T cells (Tem), indicating potential immune evasion mechanisms. Notably, CTLA-4 and PD-1 were highly expressed in Tregs and Tem cells, highlighting their potential as immunotherapy targets. Myeloid cells, including Kupffer cells and dendritic cells, also exhibited distinct functional roles in different tumour regions. This study provides the first comprehensive single-cell atlas of HB, revealing critical insights into its intratumoral heterogeneity and immune microenvironment. Our findings not only advance the understanding of HB biology but also offer new directions for precision medicine, including the development of targeted therapies and immunotherapeutic strategies to improve patient outcomes.
Collapse
Affiliation(s)
- Mingdi Ma
- Department of Pediatric Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chen Jin
- Department of Pediatric Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qian Dong
- Department of Pediatric Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- Shandong Key Laboratory of Digital Medicine and Computer Assisted Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
33
|
Chen J, Hu S, Liu J, Jiang H, Wang S, Yang Z. Exosomes: a double-edged sword in cancer immunotherapy. MedComm (Beijing) 2025; 6:e70095. [PMID: 39968497 PMCID: PMC11831209 DOI: 10.1002/mco2.70095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 02/20/2025] Open
Abstract
Over the past few decades, immunotherapy has emerged as a powerful strategy to overcome the limitations of conventional cancer treatments. The use of extracellular vesicles, particularly exosomes, which carry cargoes capable of modulating the immune response, has been extensively explored as a potential therapeutic approach in cancer immunotherapy. Exosomes can deliver their cargo to target cells, thereby influencing their phenotype and immunomodulatory functions. They exhibit either immunosuppressive or immune-activating characteristics, depending on their internal contents. These exosomes originate from diverse cell sources, and their internal contents can vary, suggesting that there may be a delicate balance between immune suppression and stimulation when utilizing them for immunotherapy. Therefore, a thorough understanding of the molecular mechanisms underlying the role of exosomes in cancer progression is essential. This review focuses on the molecular mechanisms driving exosome function and their impact on the tumor microenvironment (TME), highlighting the intricate balance between immune suppression and activation that must be navigated in exosome-based therapies. Additionally, it underscores the challenges and ongoing efforts to optimize exosome-based immunotherapies, thereby making a significant contribution to the advancement of cancer immunotherapy research.
Collapse
Affiliation(s)
- Jiayi Chen
- School of Life SciencesJilin UniversityChangchunChina
| | - Siyuan Hu
- School of Life SciencesJilin UniversityChangchunChina
| | - Jiayi Liu
- School of Life SciencesJilin UniversityChangchunChina
| | - Hao Jiang
- School of Life SciencesJilin UniversityChangchunChina
| | - Simiao Wang
- School of Life SciencesJilin UniversityChangchunChina
| | - Zhaogang Yang
- School of Life SciencesJilin UniversityChangchunChina
| |
Collapse
|
34
|
Shrestha P, Ghoreyshi ZS, George JT. How modulation of the tumor microenvironment drives cancer immune escape dynamics. Sci Rep 2025; 15:7308. [PMID: 40025156 PMCID: PMC11873109 DOI: 10.1038/s41598-025-91396-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 02/20/2025] [Indexed: 03/04/2025] Open
Abstract
Metastatic disease is the leading cause of cancer-related death, despite recent advances in therapeutic interventions. Prior modeling approaches have accounted for the adaptive immune system's role in combating tumors, which has led to the development of stochastic models that explain cancer immunoediting and tumor-immune co-evolution. However, cancer immune-mediated dormancy, wherein the adaptive immune system maintains a micrometastatic population by keeping its growth in check, remains poorly understood. Immune-mediated dormancy can significantly delay the emergence (and therefore detection) of metastasis. An improved quantitative understanding of this process will thereby improve our ability to identify and treat cancer during the micrometastatic period. Here, we introduce a generalized stochastic model that incorporates the dynamic effects of immunomodulation within the tumor microenvironment on T cell-mediated cancer killing. This broad class of nonlinear birth-death model can account for a variety of cytotoxic T cell immunosuppressive effects, including regulatory T cells, cancer-associated fibroblasts, and myeloid-derived suppressor cells. We develop analytic expressions for the likelihood and mean time of immune escape. We also develop a method for identifying a corresponding diffusion approximation applicable to estimating population dynamics across a wide range of nonlinear birth-death processes. Lastly, we apply our model to estimate the nature and extent of immunomodulation that best explains the timing of disease recurrence in bladder and breast cancer patients. Our findings quantify the effects that stochastic tumor-immune interaction dynamics can play in the timing and likelihood of disease progression. Our analytical approximations provide a method of studying population escape in other ecological contexts involving nonlinear transition rates.
Collapse
Affiliation(s)
- Pujan Shrestha
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
- Translational Medical Sciences, Texas A&M Health Science Center, Houston, TX, 77030, USA
| | - Zahra S Ghoreyshi
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
- Translational Medical Sciences, Texas A&M Health Science Center, Houston, TX, 77030, USA
| | - Jason T George
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA.
- Translational Medical Sciences, Texas A&M Health Science Center, Houston, TX, 77030, USA.
- Center for Theoretical Biological Physics, Rice University, Houston, TX, 77005, USA.
| |
Collapse
|
35
|
Ruan L, Wang L. Adoptive cell therapy against tumor immune evasion: mechanisms, innovations, and future directions. Front Oncol 2025; 15:1530541. [PMID: 40094019 PMCID: PMC11906336 DOI: 10.3389/fonc.2025.1530541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/06/2025] [Indexed: 03/19/2025] Open
Abstract
Tumors employ a range of strategies to evade detection and eradication by the host's immune system. These include downregulating antigen expression, altering antigen presentation processes, and inhibiting immune checkpoint pathways. etc. Adoptive Cell Therapy (ACT) represents a strategy that boosts anti-tumor immunity. This is achieved by amplifying or genetically engineering immune cells, which are either sourced from the patient or a donor, in a laboratory setting. Subsequently, these cells are reintroduced into the patient to bolster their immune response against cancer. ACT has successfully restored anti-tumor immune responses by amplifying the activity of T cells from patients or donors. This review focuses on the mechanisms underlying tumor escape, including alterations in tumor cell antigens, the immunosuppressive tumor microenvironment (TME), and modulation of immune checkpoint pathways. It further explores how ACT can avddress these factors to enhance therapeutic efficacy. Additionally, the review discusses the application of gene-editing technologies (such as CRISPR) in ACT, highlighting their potential to strengthen the anti-tumor capabilities of T cells. Looking forward, the personalized design of ACT, combined with immune checkpoint inhibitors and targeted therapies, is expected to significantly improve treatment outcomes, positioning this approach as a key strategy in the field of cancer immunotherapy.
Collapse
Affiliation(s)
- Liqin Ruan
- Department of Hepatobiliary Surgery, JiuJiang City Key Laboratory of Cell Therapy, JiuJiang No.1 People's Hospital, Jiujiang, Jiangxi, China
| | - Lu Wang
- Department of Oncology, JiuJiang City Key Laboratory of Cell Therapy, JiuJiang No.1 People's Hospital, Jiujiang, Jiangxi, China
| |
Collapse
|
36
|
Ortega-Batista A, Jaén-Alvarado Y, Moreno-Labrador D, Gómez N, García G, Guerrero EN. Single-Cell Sequencing: Genomic and Transcriptomic Approaches in Cancer Cell Biology. Int J Mol Sci 2025; 26:2074. [PMID: 40076700 PMCID: PMC11901077 DOI: 10.3390/ijms26052074] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/18/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
This article reviews the impact of single-cell sequencing (SCS) on cancer biology research. SCS has revolutionized our understanding of cancer and tumor heterogeneity, clonal evolution, and the complex interplay between cancer cells and tumor microenvironment. SCS provides high-resolution profiling of individual cells in genomic, transcriptomic, and epigenomic landscapes, facilitating the detection of rare mutations, the characterization of cellular diversity, and the integration of molecular data with phenotypic traits. The integration of SCS with multi-omics has provided a multidimensional view of cellular states and regulatory mechanisms in cancer, uncovering novel regulatory mechanisms and therapeutic targets. Advances in computational tools, artificial intelligence (AI), and machine learning have been crucial in interpreting the vast amounts of data generated, leading to the identification of new biomarkers and the development of predictive models for patient stratification. Furthermore, there have been emerging technologies such as spatial transcriptomics and in situ sequencing, which promise to further enhance our understanding of tumor microenvironment organization and cellular interactions. As SCS and its related technologies continue to advance, they are expected to drive significant advances in personalized cancer diagnostics, prognosis, and therapy, ultimately improving patient outcomes in the era of precision oncology.
Collapse
Affiliation(s)
- Ana Ortega-Batista
- Faculty of Science and Technology, Technological University of Panama, Ave Justo Arosemena, Entre Calle 35 y 36, Corregimiento de Calidonia, Panama City, Panama; (A.O.-B.)
| | - Yanelys Jaén-Alvarado
- Faculty of Science and Technology, Technological University of Panama, Ave Justo Arosemena, Entre Calle 35 y 36, Corregimiento de Calidonia, Panama City, Panama; (A.O.-B.)
- Gorgas Memorial Institute for Health Studies, Ave Justo Arosemena, Entre Calle 35 y 36, Corregimiento de Calidonia, Panama City, Panama
| | - Dilan Moreno-Labrador
- Faculty of Science and Technology, Technological University of Panama, Ave Justo Arosemena, Entre Calle 35 y 36, Corregimiento de Calidonia, Panama City, Panama; (A.O.-B.)
| | - Natasha Gómez
- Faculty of Science and Technology, Technological University of Panama, Ave Justo Arosemena, Entre Calle 35 y 36, Corregimiento de Calidonia, Panama City, Panama; (A.O.-B.)
| | - Gabriela García
- Faculty of Science and Technology, Technological University of Panama, Ave Justo Arosemena, Entre Calle 35 y 36, Corregimiento de Calidonia, Panama City, Panama; (A.O.-B.)
| | - Erika N. Guerrero
- Gorgas Memorial Institute for Health Studies, Ave Justo Arosemena, Entre Calle 35 y 36, Corregimiento de Calidonia, Panama City, Panama
- Sistema Nacional de Investigación, Secretaria Nacional de Ciencia y Tecnología, Edificio 205, Ciudad del Saber, Panama City, Panama
| |
Collapse
|
37
|
Wu F, Feng X, Gao W, Zeng L, Xu B, Chen Z, Zheng C, Hu X, Xu S, Song H, Zhou X, Liu Z. Engineering a Self-Delivery Nanoplatform for Chemo-Photodynamic-Immune Synergistic Therapies against Aggressive Melanoma. ACS APPLIED MATERIALS & INTERFACES 2025; 17:11634-11652. [PMID: 39960055 DOI: 10.1021/acsami.4c18469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
The effectiveness of immunotherapy in killing melanoma is hindered by a T-cell deficiency and the lack of tumor immunogenicity. Consequently, there is an urgent need for a platform that can further activate the immune system and boost the immune response of the host to tumors. Compared with monotherapy, combination therapy shows promise in improving treatment efficacy and response rates. This study introduces the pioneering use of a rationally designed active targeting nanoplatform to bind axitinib, paclitaxel, and verteporfin to human serum albumin (APV@HSA NPs). APV@HSA NPs have demonstrated the capability to induce dual-induced apoptosis in tumor cells through chemo- and photodynamic effects, while also enhancing immunogenic cell death and promoting dendritic cell maturation. Additionally, the platform promoted the production of CD8+ T cells and memory T cells and inhibited vascular endothelial growth factor via axitinib, facilitating the infiltration of immune effector cells and optimizing chemo-photodynamic immunotherapy. Hence, amplified chemo-photodynamic-immunological nanomedicines with excellent biocompatibility have been redesigned to inhibit the tumor microenvironment and combat the growth of primary tumor and lung metastasis. This approach initiates a series of immune responses, presenting a promising therapeutic strategy for melanoma.
Collapse
Affiliation(s)
- Fei Wu
- Department of Pharmacy, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou 350025, China
| | - Xianquan Feng
- Fujian Provincial Key Laboratory of Transplant Biology, Laboratory of Basic Medicine, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou 350025, China
| | - Wenhao Gao
- Department of Pharmacy, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou 350025, China
| | - Lingjun Zeng
- Department of Pharmacy, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou 350025, China
| | - Bingbing Xu
- Department of Pharmacy, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou 350025, China
| | - Zhenzhen Chen
- Department of Clinical Pharmacy, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, Fujian Province 350025, China
| | - Changqing Zheng
- Department of Pharmacy, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou 350025, China
| | - Xiaomu Hu
- Department of Pharmacy, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou 350025, China
| | - Shiying Xu
- Department of Pharmacy, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou 350025, China
| | - Hongtao Song
- Department of Pharmacy, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou 350025, China
| | - Xin Zhou
- Department of Pharmacy, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou 350025, China
| | - Zhihong Liu
- Department of Pharmacy, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou 350025, China
| |
Collapse
|
38
|
Jaume JC. Thyroid Cancer-The Tumor Immune Microenvironment (TIME) over Time and Space. Cancers (Basel) 2025; 17:794. [PMID: 40075642 PMCID: PMC11899416 DOI: 10.3390/cancers17050794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
In thyroid cancer, the tumor immune microenvironment (TIME) plays a crucial role in cancer development, progression and response to treatment. Like many other cancers, thyroid cancer creates a complex network of interactions with immune cells directly (cell-to-cell) and via humoral mediators (i.e., cytokines). This dynamic microenvironment undergoes constant modification, which can lead to changes in the immunophenotype that might explain cancer progression, dedifferentiation and resistance to treatment. According to the cancer immunoediting hypothesis, cancerous tumors can shape their immune microenvironment to create an immunosuppressive milieu that allows them to evade classic immune surveillance. One mechanism by which this occurs is through the reprogramming of immune cells, often shifting their phenotypes from cytotoxic to regulatory. Recent research has shed light on cellular components and molecular interactions within the thyroid cancer TIME. Immune cells such as Tumor-Associated Lymphocytes (TALs), myeloid-derived suppressor cells (MDSCs), Tumor-Associated Macrophages (TAMs) and Double-Negative (DN) T cells seem to play key roles in shaping the immune response to thyroid cancer. Additionally, cytokines, chemokines and other signaling molecules contribute to the communication and regulation of immune cells within that microenvironment. By studying these interactions, researchers aim to uncover not just potential therapeutic targets but also biomarkers of thyroid cancer that could provide clues on severity and progression. Based on that knowledge, strategies such as the use of immune checkpoint inhibitors, antigen-specific targeted immunotherapies, and immunomodulatory agents are being explored to enhance the anti-tumor immune response and overcome cancer immunosuppressive mechanisms. In this review, we analyze the available literature and provide our own experience to unravel the complexity of the thyroid immune microenvironment. Continued research in this area holds promise for improving outcomes through the identification of immune markers of severity/progression of thyroid cancer and the development of innovative immunotherapeutic approaches.
Collapse
Affiliation(s)
- Juan Carlos Jaume
- Department of Medicine, Edward Hines Jr. VA Hospital Hines, Hines, IL 60141, USA; or
- Department of Medicine, Loyola University Chicago, Chicago, IL 60660, USA
| |
Collapse
|
39
|
Mousavi S, Nouri S, Sadeghipour A, Atashi A. Tumor microenvironment as a novel therapeutic target for lymphoid leukemias. Ann Hematol 2025:10.1007/s00277-025-06237-w. [PMID: 39994019 DOI: 10.1007/s00277-025-06237-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 01/29/2025] [Indexed: 02/26/2025]
Abstract
Lymphoid leukemias represent a significant global health burden, leading to substantial morbidity and mortality. The intricate interplay between leukemic cells and their surrounding tumor microenvironment (TME) is pivotal in disease initiation, progression, and therapeutic resistance. Comprising a dynamic milieu of stromal, immune, and leukemic cell populations, the TME orchestrates a complex network of signaling pathways and molecular interactions that foster leukemic cell survival and proliferation while evading immune surveillance. The crosstalk between these diverse cellular components within the TME not only fuels tumor progression but also confers resistance to conventional therapies, including the development of multi-drug resistance (MDR). Recognizing the pivotal role of the TME in shaping disease outcomes, novel therapeutic approaches targeting this dynamic ecosystem have emerged as promising strategies to complement existing anti-leukemic treatments. As a result, drugs that target the TME have been developed as complementary strategies to those that directly attack tumor cells. Thus, a detailed understanding of the TME components and their interactions with tumor cells is critical. Such knowledge can guide the design and implementation of novel targeted therapies for lymphoid leukemias.
Collapse
Affiliation(s)
- Shahrzad Mousavi
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115-111, Tehran, Iran
| | - Soheil Nouri
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115-111, Tehran, Iran
| | - Arezoo Sadeghipour
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Amir Atashi
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Iran.
| |
Collapse
|
40
|
Hsieh ML, Nishizaki D, Adashek JJ, Kato S, Kurzrock R. Toll-like receptor 3: a double-edged sword. Biomark Res 2025; 13:32. [PMID: 39988665 PMCID: PMC11849352 DOI: 10.1186/s40364-025-00739-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 02/02/2025] [Indexed: 02/25/2025] Open
Abstract
The discovery of Toll-like receptors (TLRs) and their role in dendritic cells earned the Nobel Prize for 2011 because TLRs profoundly enhanced our understanding of the immune system. Specifically, TLR3 is located within the endosomal compartments of dendritic cells and plays a crucial role in the immune response by acting as a pattern recognition receptor that detects both exogenous (viral) and endogenous (mammalian) double-stranded RNA. However, TLR3 activation is a double-edged sword in various immune-mediated diseases. On one hand, it can enhance anti-viral defenses and promote pathogen clearance, contributing to host protection. On the other hand, excessive or dysregulated TLR3 signaling can lead to chronic inflammation and tissue damage, exacerbating conditions such as autoimmune diseases, chronic viral infections, and cancer. In cancer, TLR3 expression has been linked to both favorable and poor prognoses, though the underlying mechanisms remain unclear. Recent clinical and preclinical advances have explored the use of TLR3 agonists in cancer immunotherapy, attempting to capitalize on their potential to enhance anti-tumor responses. The dual role of TLR3 highlights its complexity as a therapeutic target, necessitating careful modulation to maximize its protective effects while minimizing potential pathological consequences. In this review, we explore the intricate roles of TLR3 in immune responses across different disease contexts, including cancer, infections, autoimmune disorders, and allergies, highlighting both its protective and detrimental effects in these disorders, as well as progress in developing TLR3 agonists as part of the immunotherapy landscape.
Collapse
Affiliation(s)
| | - Daisuke Nishizaki
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Jacob J Adashek
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Hospital, Baltimore, MD, USA
| | - Shumei Kato
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Razelle Kurzrock
- Medical College of Wisconsin, Milwaukee, WI, USA.
- MCW Cancer Center and Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
41
|
Gupta S, Singh A, Deorah S, Tomar A. Immunotherapy in OSCC: Current trend and challenges. Crit Rev Oncol Hematol 2025; 209:104672. [PMID: 39993651 DOI: 10.1016/j.critrevonc.2025.104672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 02/26/2025] Open
Abstract
OBJECTIVES Oral Cancer is one of the most prevalent malignant tumors of the head and neck. The three primary clinical treatments available till now for oral cancer are chemotherapy, radiation, and surgery. The goal of this review was to outline the basic principles of immunotherapy along with various immunotherapeutic agents on Oral Squamous Cell Carcinoma. MATERIALS AND METHODS A comprehensive search in PubMed, Scopus, and Google Scholar was performed using relevant keywords. All the articles, both English as well as non-English were included also with inclusion data from high-incidence countries (South-east Asia) and the compilation was ten done after getting the data reviewed from two pathologists who were blinded to the data. RESULTS All the data has been compiled and the various sections in the manuscript provides an insight into the current trends in immunotherapy. CONCLUSIONS Advanced research studies are needed to counteract the hurdles associated with immunotherapy so that a greater proportion of patients can be treated. CLINICAL RELEVANCE One of the more recent developments that is promising is immunotherapy, which can be quite beneficial when used as a monotherapy or an adjuvant treatment. This more recent treatment approach could serve as the fourth pillar in cancer care, alongside radiation, chemotherapy, and surgery. Because immunotherapy relies on the patient's immunological environment, careful patient selection is essential to its effectiveness.
Collapse
Affiliation(s)
- Shalini Gupta
- Department of Oral Pathology and Microbiology, King George's Medical University, Lucknow 226003, India.
| | - Akanchha Singh
- Department of Oral Pathology and Microbiology, King George's Medical University, Lucknow 226003, India
| | - Sakshi Deorah
- Department of Oral Pathology and Microbiology, King George's Medical University, Lucknow 226003, India
| | - Arushi Tomar
- Department of Oral Pathology and Microbiology, King George's Medical University, Lucknow 226003, India
| |
Collapse
|
42
|
Cheng L, Wang Y, Zhang Y. Dying to survive: harnessing inflammatory cell death for better immunotherapy. Trends Cancer 2025:S2405-8033(25)00013-5. [PMID: 39986988 DOI: 10.1016/j.trecan.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/20/2025] [Accepted: 01/24/2025] [Indexed: 02/24/2025]
Abstract
Immunotherapy has transformed cancer treatment paradigms, but its effectiveness depends largely on the immunogenicity of the tumor. Unfortunately, the high resemblance of cancer to normal tissues makes most tumors immunologically 'cold', with a poor response to immunotherapy. Danger signals are critical for breaking immune tolerance and mobilizing robust, long-lasting antitumor immunity. Recent studies have identified inflammatory cell death modalities and their power in providing danger signals to trigger optimal tumor suppression. However, key mediators of inflammatory cell death are preferentially silenced during early tumor immunoediting. Strategies to rejuvenate inflammatory cell death hold great promise for broadening immunotherapy-responsive tumors. In this review, we examine how inflammatory cell death enhances tumor immunogenicity, how it is suppressed during immunoediting, and the potential of harnessing it for improved immunotherapy.
Collapse
Affiliation(s)
- Long Cheng
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Yibo Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Ying Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
43
|
Xiong X, Zheng LW, Ding Y, Chen YF, Cai YW, Wang LP, Huang L, Liu CC, Shao ZM, Yu KD. Breast cancer: pathogenesis and treatments. Signal Transduct Target Ther 2025; 10:49. [PMID: 39966355 PMCID: PMC11836418 DOI: 10.1038/s41392-024-02108-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/27/2024] [Accepted: 12/08/2024] [Indexed: 02/20/2025] Open
Abstract
Breast cancer, characterized by unique epidemiological patterns and significant heterogeneity, remains one of the leading causes of malignancy-related deaths in women. The increasingly nuanced molecular subtypes of breast cancer have enhanced the comprehension and precision treatment of this disease. The mechanisms of tumorigenesis and progression of breast cancer have been central to scientific research, with investigations spanning various perspectives such as tumor stemness, intra-tumoral microbiota, and circadian rhythms. Technological advancements, particularly those integrated with artificial intelligence, have significantly improved the accuracy of breast cancer detection and diagnosis. The emergence of novel therapeutic concepts and drugs represents a paradigm shift towards personalized medicine. Evidence suggests that optimal diagnosis and treatment models tailored to individual patient risk and expected subtypes are crucial, supporting the era of precision oncology for breast cancer. Despite the rapid advancements in oncology and the increasing emphasis on the clinical precision treatment of breast cancer, a comprehensive update and summary of the panoramic knowledge related to this disease are needed. In this review, we provide a thorough overview of the global status of breast cancer, including its epidemiology, risk factors, pathophysiology, and molecular subtyping. Additionally, we elaborate on the latest research into mechanisms contributing to breast cancer progression, emerging treatment strategies, and long-term patient management. This review offers valuable insights into the latest advancements in Breast Cancer Research, thereby facilitating future progress in both basic research and clinical application.
Collapse
Affiliation(s)
- Xin Xiong
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Le-Wei Zheng
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Yu Ding
- Department of Breast and Thyroid, Guiyang Maternal and Child Health Care Hospital & Guiyang Children's Hospital, Guiyang, P. R. China
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, P. R. China
| | - Yu-Fei Chen
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Yu-Wen Cai
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Lei-Ping Wang
- Department of Breast and Urologic Medical Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Liang Huang
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Cui-Cui Liu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Zhi-Ming Shao
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Ke-Da Yu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P. R. China.
| |
Collapse
|
44
|
Li J, Zhou X, Wu L, Ma J, Tan Y, Wu S, Zhu J, Wang Q, Shi Q. Optimal early endpoint for second-line or subsequent immune checkpoint inhibitors in previously treated advanced solid cancers: a systematic review. BMC Cancer 2025; 25:293. [PMID: 39966752 PMCID: PMC11837729 DOI: 10.1186/s12885-025-13712-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 02/11/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND The administration of second-line or subsequent immune checkpoint inhibitors (ICIs) in previously treated patients with advanced solid cancers has been clinically investigated. However, previous clinical trials lacked an appropriate primary endpoint for efficacy assessment. This systematic review aimed to explore the most optimal early efficacy endpoint for such trials. METHODS Phase 2 or 3 clinical trials involving patients with advanced solid cancers with disease progression following standard first-line therapy receiving second-line or subsequent ICI administration, with adequate survival outcome data, were included from PubMed, Embase, Web of Science, and Cochrane Library databases before February 2023. Quality assessment was conducted using the Cochrane tool and Newcastle-Ottawa Quality Assessment Scale for Cohort Studies for randomized controlled trials (RCTs) and non-randomized trials, respectively. Objective response rate (ORR) and progression-free survival (PFS) at 3, 6, and 9 months were investigated as potential early efficacy endpoint candidates for 12-month overall survival (OS), with a strong correlation defined as Pearson's correlation coefficient r ≥ 0.8. RESULTS A total of 64 RCTs comprising 22,725 patients and 106 non-randomized prospective trials involving 10,608 participants were eligible for modeling and external validation, respectively. RCTs examined 15 different cancer types, predominantly non-small-cell lung cancer (NSCLC) (17, 28%), melanoma (9, 14%), and esophageal squamous cell carcinoma (5, 8%). The median sample size of RCTs was 124 patients, and the median follow-up time was 3.2-57.7 months. The ORR (r = 0.38; 95% confidence interval [CI], 0.18-0.54) and PFS (r = 0.42; 95% CI, 0.14-0.64) exhibited weak trial-level correlations with OS. Within ICI treatment arms, the r values of ORR and 3-, 6-, and 9-month PFS with 12-month OS were 0.61 (95% CI, 0.37-0.79), 0.78 (95% CI, 0.62-0.88), 0.84 (95% CI, 0.77-0.90), and 0.86 (95% CI, 0.79-0.90), respectively. External validation of 6-month PFS indicated an acceptable discrepancy between actual and predicted 12-month OS. CONCLUSIONS In non-randomized phase 2 trials on second-line or subsequent ICI therapy in patients with advanced solid cancers, 6-month PFS could serve as an early efficacy endpoint. However, early efficacy endpoints are not recommended in RCTs to replace OS.
Collapse
Affiliation(s)
- Jingqiu Li
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoding Zhou
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lei Wu
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiabao Ma
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Yan Tan
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Songke Wu
- Department of Oncology, People'S Hospital of Cangxi County, Guangyuan, China.
| | - Jie Zhu
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China.
| | - Qifeng Wang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China.
| | - Qiuling Shi
- Center for Cancer Prevention Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| |
Collapse
|
45
|
Mestrallet G, Brown M, Vaninov N, Cho NW, Velazquez L, Ananthanarayanan A, Spitzer M, Vabret N, Cimen Bozkus C, Samstein RM, Bhardwaj N. Coordinated macrophage and T cell interactions mediate response to checkpoint blockade in colorectal cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.637954. [PMID: 40027748 PMCID: PMC11870396 DOI: 10.1101/2025.02.12.637954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Mismatch repair deficiency (MMRd), either due to inherited or somatic mutation, is prevalent in colorectal cancer (CRC) and other cancers. While anti-PD-1 therapy is utilized in both local and advanced disease, up to 50% of MMRd CRC fail to respond. Using animal and human models of MMRd, we determined that interactions between MHC+ C1Q+ CXCL9+ macrophages and TCF+ BHLHE40+ PRF1+ T cell subsets are associated with control of MMRd tumor growth, during anti-PD-1 treatment. In contrast, resistance is associated with upregulation of TIM3, LAG3, TIGIT, and PD-1 expression on T cells, and infiltration of the tumor with immunosuppressive TREM2+ macrophages and monocytes. By combining anti-PD-1 with anti-LAG3/CTLA4/TREM2, up to 100% tumor eradication was achieved in MMRd CRC and remarkably, in >70% in MMRp CRC. This study identifies key T cell and macrophage subsets mediating the efficacy of immunotherapy in overcoming immune escape in both MMRd and MMRp CRC settings. Abstract Figure Highlights Anti-PD-1 therapy leads to the accumulation and colocalization of MHCI/II+ C1Q+ CXCL9+ macrophages and DCs with TCF+ CCL5+ T cells that have high TCR diversity.Resistance to anti-PD-1 therapy involves multiple T cell checkpoints, TREM2+ macrophages, IL1B+ TREM1+ monocytes and neutrophils, and IFITM+ tumor cells.Simultaneous blockade of PD-1, LAG3, CTLA-4 and TREM2 dramatically prevents progression of both MMRd and MMRp tumors.Combination therapy completely eliminates tumors by leveraging MHC+ macrophage, CD4+ and CD8+ T cell interactions, facilitating durable anti-tumor effects.
Collapse
|
46
|
Zhang X, Li N, Chu T, Zhao H, Liu T. Comprehensive pan-cancer analysis of ENOPH1 in human tumors. Discov Oncol 2025; 16:190. [PMID: 39955431 PMCID: PMC11829882 DOI: 10.1007/s12672-025-01965-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 02/10/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND ENOPH1 (Enolase-phosphatase 1), a member of the HAD-like hydrolase superfamily, has been linked to a range of physiological conditions, including neurological disorders. However, its involvement in tumorigenesis remains underexplored. This study is the first to conduct a pan-cancer analysis of ENOPH1, aiming to elucidate its role in multiple cancers through various bioinformatics platforms. METHODS We conducted a thorough analysis using data from UCSC databases. ENOPH1 expression in tumor and normal tissues was evaluated using R language software. Survival analyses, genetic alterations, and RNA modifications were assessed through the GEPIA2 and cBioPortal platforms. The relationships between ENOPH1 and immune infiltration, tumor mutational burden (TMB), microsatellite instability (MSI), and homologous recombination deficiency (HRD) were examined using TIMER2 and R software. ENOPH1-related gene enrichment analysis was performed using the STRING and GEPIA2 databases, followed by Gene Ontology (GO) and KEGG pathway enrichment analyses. RESULTS ENOPH1 expression was significantly upregulated in various cancers, including ACC, BLCA, BRCA, and COAD. High ENOPH1 expression was associated with poor overall survival (OS) in cancers such as KICH, LIHC, BRCA and LUAD. High ENOPH1 expression was associated with poor disease specific survival (DSS) in cancers such as KICH, LIHC, BRCA and MESO. Genetic alterations of ENOPH1, primarily mutations and deep deletions, were identified in UCEC, BLCA, and OV. ENOPH1 showed significant correlations with RNA modifications (m1A, m5C, m6A), immune checkpoints, and immune modulators across multiple cancer types. ENOPH1 was positively correlated with TMB, MSI, and HRD in cancers like BLCA, BRCA, and STAD. Furthermore, enrichment analysis revealed that ENOPH1 interacts with proteins involved in critical pathways such as AMPK, Hippo, and PI3K-AKT, suggesting its role in cancer progression. CONCLUSION This pan-cancer analysis reveals ENOPH1's potential as a prognostic biomarker and its involvement in key signaling pathways across multiple cancers. Our findings provide new insights into the role of ENOPH1 in tumorigenesis and highlight its potential as a therapeutic target in cancer treatment.
Collapse
Affiliation(s)
- Xuezhong Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Laboratory Medicine, Zibo Central Hospital, Zibo, Shandong, China
- Shandong Jincheng Pharmaceutical Group Co., Ltd., Zibo, Shandong, China
| | - Ning Li
- Department of Pulmonary and Critical Care Medicine, Zibo Central Hospital, Zibo, Shandong, China
| | - Tingting Chu
- Department of Laboratory Medicine, Zibo Central Hospital, Zibo, Shandong, China
| | - Haijun Zhao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Tonggang Liu
- Department of Infectious Diseases, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| |
Collapse
|
47
|
Kuang L, Wu L, Li Y. Extracellular vesicles in tumor immunity: mechanisms and novel insights. Mol Cancer 2025; 24:45. [PMID: 39953480 PMCID: PMC11829561 DOI: 10.1186/s12943-025-02233-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/14/2025] [Indexed: 02/17/2025] Open
Abstract
Extracellular vesicles (EVs), nanoscale vesicles secreted by cells, have attracted considerable attention in recent years due to their role in tumor immunomodulation. These vesicles facilitate intercellular communication by transporting proteins, nucleic acids, and other biologically active substances, and they exhibit a dual role in tumor development and immune evasion mechanisms. Specifically, EVs can assist tumor cells in evading immune surveillance and attack by impairing immune cell function or modulating immunosuppressive pathways, thereby promoting tumor progression and metastasis. Conversely, they can also transport and release immunomodulatory factors that stimulate the activation and regulation of the immune system, enhancing the body's capacity to combat malignant diseases. This dual functionality of EVs presents promising avenues and targets for tumor immunotherapy. By examining the biological characteristics of EVs and their influence on tumor immunity, novel therapeutic strategies can be developed to improve the efficacy and relevance of cancer treatment. This review delineates the complex role of EVs in tumor immunomodulation and explores their potential implications for cancer therapeutic approaches, aiming to establish a theoretical foundation and provide practical insights for the advancement of future EVs-based cancer immunotherapy strategies.
Collapse
Affiliation(s)
- Liwen Kuang
- School of Medicine, Chongqing University, Chongqing, China
| | - Lei Wu
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Yongsheng Li
- School of Medicine, Chongqing University, Chongqing, China.
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, China.
| |
Collapse
|
48
|
Ren Z, Wang Y, Jiang D, Liu Y, Yang X, Wang T, Zhu J, Wang W, Chen Q, Zhang Y. PD1 + Treg cell remodeling promotes immune homeostasis within peripheral blood and tumor microenvironment after microparticles-transarterial chemoembolization in hepatocellular carcinoma. Cancer Immunol Immunother 2025; 74:109. [PMID: 39937280 PMCID: PMC11822157 DOI: 10.1007/s00262-025-03962-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 01/28/2025] [Indexed: 02/13/2025]
Abstract
The effects of transarterial chemoembolization (TACE) on the systemic immune in hepatocellular carcinoma (HCC) are not well understood. We aimed to reveal the temporal and spatial changes in the immune profile of peripheral blood and tumor tissues in HCC patients following TACE. Eighty-four HCC patients were included, 20 of whom received TACE with a median follow-up of 28 months. Immune cell proportion within peripheral blood was profiled with flow cytometry, and therapeutic efficacy was evaluated by imaging examinations. Additionally, cell distribution within tumor microenvironment (TME) were compared between the necrotic tumor infiltration zone (N-IZ) and the residual tumor infiltration zone (R-IZ) by multiplex immunofluorescence. Among 20 patients, 25% (5/20) achieved complete response, and 75% (15/20) showed partial response. Fourteen patients received combinational targeted therapy and immunotherapy and the median progression-free survival was 15.5 months. Compared to healthy individuals, HCC exhibited significantly higher proportions of regulatory T cells (Tregs) and programmed death-1 receptor (PD1)+ Tregs within peripheral blood. PD1+ Treg cells, PD1+ CD4+ T cells and PD1+ CD8+ T cells decreased significantly within peripheral blood after TACE. In TME, N-IZ showed significantly lower CD4+ T, CD8+ T and FOXP3+ Tregs, higher PD1+ CD8+/CD8+ and PD1+ CD8+/ PD1+ FOXP3+. Moreover, the spatial distance between CD8+ T cells and the nearest FOXP3+ Tregs in N-IZ was significantly greater than in R-IZ. Our findings demonstrated that TACE could both remodel the immune components in peripheral blood and TME, strengthening the rationale for developing immunotherapy alongside TACE.
Collapse
Affiliation(s)
- Zhizhong Ren
- Department of Hepatobiliary Intervention, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Yaqin Wang
- Department of Hepatobiliary Intervention, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | | | - Ying Liu
- Department of Hepatobiliary Intervention, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Xiaowei Yang
- Department of Hepatobiliary Intervention, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Tianxiao Wang
- Department of Hepatobiliary Intervention, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Junqi Zhu
- Thorgene Co., Ltd., Beijing, 100176, China
| | - Wenya Wang
- Medical Research Center, Beijing Tsinghua Changgung Hospital Affiliated to Tsinghua University, Beijing, 102218, China.
| | - Qian Chen
- Thorgene Co., Ltd., Beijing, 100176, China.
| | - Yuewei Zhang
- Department of Hepatobiliary Intervention, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China.
| |
Collapse
|
49
|
Gao K, Wei Z, Liu Z, Pei Y, Li H, Song G, Xiang J, Ge J, Qing Y, Wei Y, Ai P, Chen Y, Peng X. Neutrophil-to-Lymphocyte Ratio as a Predictor for PD-L1 Inhibitor Treatment in Recurrent or Metastatic Nasopharyngeal Carcinoma. Head Neck 2025. [PMID: 39943747 DOI: 10.1002/hed.28101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 01/14/2025] [Accepted: 01/30/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND Neutrophil-to-lymphocyte ratio (NLR) can be treated as a simple indicator of patients' immune status by representing the state of the systemic inflammatory response. Immunotherapy now is the accepted second-line treatment for recurrent or metastatic nasopharyngeal carcinoma (R/M NPC). However, the significance of NLR in patients with R/M NPC undergoing treatment with PD-L1 (programmed cell death-ligand 1) inhibitors is still uncertain. METHODS We analyzed the relationship between baseline NLR with 153 patients' efficacy and survival from a multicenter, prospective, Phase 2 study. We employed restricted cubic spline plots to get the nonlinear relationship between NLR and progression-free survival (PFS) or overall survival (OS). We identified the ideal cut-off value through the analysis of the receiver operating characteristic curve (ROC curve). We used Logistic regression, Cox regression, Log-rank test, and Kaplan-Meier method to analyze the association between NLR and patients' disease control rate (DCR) and PFS or OS. RESULTS The ideal threshold value for NLR was 2.826. NLR was identified as a significant independent predictor of DCR (OR = 0.17, 95% CI = 0.05-0.48, p = 0.001), indicating that a higher NLR is associated with worse DCR. NLR (AUC = 0.634) showed superior predictive capability for DCR in comparison to lymphocytes (AUC = 0.602) and neutrophils (AUC = 0.593). High NLR values were risk factors both for poor PFS (HR = 2.53, 95% CI = 1.58-4.06, p < 0.001) and OS (HR = 3.89, 95% CI = 2.09-7.24, p < 0.001). CONCLUSION Elevated NLR is strongly associated with lower response to treatment and reduced survival rates in patients with R/M NPC being treated with PD-L1 inhibitors. Patients with high NLR values have poor efficacy and survival.
Collapse
Affiliation(s)
- Kun Gao
- Division of Head & Neck Tumor Multimodality Treatment, Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhigong Wei
- Department of Targeting Therapy & Immunology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zheran Liu
- Department of Targeting Therapy & Immunology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yiyan Pei
- Department of Targeting Therapy & Immunology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Huilin Li
- Department of Targeting Therapy & Immunology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ge Song
- Department of Targeting Therapy & Immunology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jin Xiang
- West China Lecheng Hospital, Sichuan University, Chengdu, China
| | - Junyou Ge
- Sichuan Kelun-Biotech Biopharmaceutical Co. Ltd, Chengdu, China
| | - Yan Qing
- Sichuan Kelun-Biotech Biopharmaceutical Co. Ltd, Chengdu, China
| | - Youneng Wei
- Sichuan Kelun-Biotech Biopharmaceutical Co. Ltd, Chengdu, China
| | - Ping Ai
- Division of Head & Neck Tumor Multimodality Treatment, Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ye Chen
- Division of Abdominal Tumor Multimodality Treatment, Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xingchen Peng
- Department of Targeting Therapy & Immunology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
50
|
Nishinakamura H, Shinya S, Irie T, Sakihama S, Naito T, Watanabe K, Sugiyama D, Tamiya M, Yoshida T, Hase T, Yoshida T, Karube K, Koyama S, Nishikawa H. Coactivation of innate immune suppressive cells induces acquired resistance against combined TLR agonism and PD-1 blockade. Sci Transl Med 2025; 17:eadk3160. [PMID: 39937883 DOI: 10.1126/scitranslmed.adk3160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/02/2024] [Accepted: 01/03/2025] [Indexed: 02/14/2025]
Abstract
Immune checkpoint blockade therapy has been successfully applied in clinical settings as a standard therapy for many cancer types, but its clinical efficacy is restricted to patients with immunologically hot tumors. Various strategies to modify the tumor microenvironment (TME), such as Toll-like receptor (TLR) agonists that can stimulate innate immunity, have been explored but have not been successful. Here, we show a mechanism of acquired resistance to combination treatment consisting of an agonist for multiple TLRs, OK-432 (Picibanil), and programmed cell death protein 1 (PD-1) blockade. Adding the TLR agonist failed to convert the TME from immunogenically cold to hot and did not augment antitumor immunity, particularly CD8+ T cell responses, in multiple animal models. The failure was attributed to the coactivation of innate suppressive cells, such as polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) expressing CXCR2, through high CXCL1 production by macrophages in the TME upon OK-432 treatment. A triple combination treatment with OK-432, PD-1 blockade, and a CXCR2 neutralizing antibody overcame the resistance induced by PMN-MDSCs, resulting in a stronger antitumor effect than that of any dual combinations or single treatments. The accumulation of PMN-MDSCs was similarly observed in the pleural effusions of patients with lung cancer after OK-432 administration. We propose that successful combination cancer immunotherapy intended to stimulate innate antitumor immunity requires modulation of unwanted activation of innate immune suppressive cells, including PMN-MDSCs.
Collapse
Affiliation(s)
- Hitomi Nishinakamura
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center Japan, Tokyo, 104-0045/Chiba 277-8577, Japan
| | - Sayoko Shinya
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center Japan, Tokyo, 104-0045/Chiba 277-8577, Japan
- Discovery and Research, Ono Pharmaceutical Co. Ltd., Osaka, 618-8585, Japan
| | - Takuma Irie
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center Japan, Tokyo, 104-0045/Chiba 277-8577, Japan
| | - Shugo Sakihama
- Laboratory of Hemato-Immunology, Graduate School of Health Sciences, University of the Ryukyus, Nishihara, 903-0125, Japan
| | - Takeo Naito
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center Japan, Tokyo, 104-0045/Chiba 277-8577, Japan
| | - Keisuke Watanabe
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center Japan, Tokyo, 104-0045/Chiba 277-8577, Japan
| | - Daisuke Sugiyama
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Motohiro Tamiya
- Respiratory Medicine, Osaka International Cancer Institute, Osaka 541-8567, Japan
| | - Tatsuya Yoshida
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Tetsunari Hase
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Takao Yoshida
- Discovery and Research, Ono Pharmaceutical Co. Ltd., Osaka, 618-8585, Japan
| | - Kennosuke Karube
- Department of Pathology and Laboratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Shohei Koyama
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center Japan, Tokyo, 104-0045/Chiba 277-8577, Japan
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
| | - Hiroyoshi Nishikawa
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center Japan, Tokyo, 104-0045/Chiba 277-8577, Japan
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Division of Cancer Immune Multicellular System Regulation, Center for Cancer Immunotherapy and Immunobiology (CCII), Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|