1
|
Zhe N, Li Q, Huang N, Li H, Chen H, Zhu P. Hotspots evolution and frontiers of immunotherapy for the treatment of acute myeloid leukemia: A bibliometric analysis. Hum Vaccin Immunother 2025; 21:2448888. [PMID: 39819314 DOI: 10.1080/21645515.2024.2448888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/10/2024] [Accepted: 12/29/2024] [Indexed: 01/19/2025] Open
Abstract
Given the growing significance of immunotherapy in addressing the limitations of conventional acute myeloid leukemia (AML) treatments, this study aimed to elucidate the hotspot evolution and frontiers of immunotherapy in AML using bibliometric analysis. With a strict retrieval strategy applied in the Web of Science Core Collection, 2411 publications were obtained and exported. The temporal and geographical distributions of these publications and the countries, institutions, journals, and authors who contributed to the field were investigated. An in-depth content analysis was performed. The United States had various research institutions dedicated to AML immunotherapy. Frontiers in Immunology had the highest number of publications, but Blood had the highest H-index. Marion Subklewe was the most productive author. The current research hotspots of AML immunotherapy included chimeric antigen receptor-T-cell therapy, antibody-based immunotherapies, immune checkpoint blockade, and combination therapy, highlighting the key aspects of immunotherapy for AML treatment and providing comprehensive insights into the research status and advances in this field. Novel immunotherapies combined with chemotherapy may become the primary focus of AML treatment.
Collapse
Affiliation(s)
- Nana Zhe
- Department of Hematology, The First Peoples' Hospital of Zunyi(The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China
| | - Qiang Li
- Department of Hematology, The First Peoples' Hospital of Zunyi(The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China
| | - Nanqu Huang
- Department of Pharmacy, The First Peoples' Hospital of Zunyi(The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China
| | - Hang Li
- Department of Hematology, The First Peoples' Hospital of Zunyi(The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China
| | - Hongyun Chen
- Department of Dermatology, The First Peoples' Hospital of Zunyi(The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China
| | - Pinwei Zhu
- Department of Hematology, The First Peoples' Hospital of Zunyi(The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China
| |
Collapse
|
2
|
Alari-Pahissa E, Federico-Vega J, Ataya M, Buxeda A, Bello-Rico V, Gimeno J, Yélamos J, Altadill M, Sanz-Ureña S, Riera M, Burballa C, Chamoun B, Pérez-Sáez MJ, Redondo-Pachón D, Vilches C, Crespo M, López-Botet M. Alloreactive adaptive natural killer cells in renal transplantation: potential contribution to allograft microvascular inflammation. Am J Transplant 2025:S1600-6135(25)00229-1. [PMID: 40340029 DOI: 10.1016/j.ajt.2025.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 04/11/2025] [Accepted: 04/29/2025] [Indexed: 05/10/2025]
Abstract
Inhibitory killer cell immunoglobulin-like receptors (iKIRs) are randomly expressed by natural killer (NK) cell subsets and recognize motifs shared by HLA class-I (HLA-I) allotypes. Such interactions prevent NK cell autoreactivity while enhancing their response against cells lacking those HLA-I molecules (missing self), a situation defined in transplantation as iKIR-HLA-I mismatch (iKIR-MM), whose genotypic prediction has been associated with microvascular inflammation (MVI). Herein, we compared iKIR-MM in kidney transplant recipients with MVI ≥2 (n = 19) and controls with MVI ≤1 (n = 36). In parallel to genetic analysis of iKIR-MM, which was more frequent in MVI ≥2 patients, putative alloreactive iKIR-MM NK cells were defined by flow cytometry as NKG2A(-) cells bearing self-specific but lacking donor-specific iKIR. Although iKIR-MM NK cells were detected in both groups, their pretransplant numbers were higher in MVI ≥2 patients (median = 11.02, interquartile range = 0-58.31 vs median = 0, interquartile range = 0-9.46), especially in the presence of donor-specific antibodies or C4d, and correlated with MVI grade. Pretransplant, a subset of MVI ≥2 patients showed high proportions and numbers of oligoclonal iKIR-MM NK cells, which displayed an NKG2C(+) adaptive phenotype associated with cytomegalovirus infection. This pilot study provides a novel perspective on the contribution of iKIR-MM NK cells to MVI, with potential practical implications.
Collapse
Affiliation(s)
- Elisenda Alari-Pahissa
- Hospital del Mar Research Institute, Barcelona, Spain; Department of Medicine and Life Sciences, Pompeu Fabra University, Barcelona, Spain; RICORS 2040-Renal, Barcelona, Spain.
| | - Judith Federico-Vega
- Hospital del Mar Research Institute, Barcelona, Spain; Department of Medicine and Life Sciences, Pompeu Fabra University, Barcelona, Spain; RICORS 2040-Renal, Barcelona, Spain
| | - Michelle Ataya
- Department of Medicine and Life Sciences, Pompeu Fabra University, Barcelona, Spain
| | - Anna Buxeda
- Hospital del Mar Research Institute, Barcelona, Spain; RICORS 2040-Renal, Barcelona, Spain; Nephrology Service, Hospital del Mar, Barcelona, Spain
| | - Víctor Bello-Rico
- Instituto de Investigación Sanitaria Puerta de Hierro, Majadahonda, Spain
| | - Javier Gimeno
- Pathology Service, Hospital del Mar, Barcelona, Spain
| | - José Yélamos
- Pathology Service, Hospital del Mar, Barcelona, Spain
| | - Mireia Altadill
- Department of Medicine and Life Sciences, Pompeu Fabra University, Barcelona, Spain
| | - Sara Sanz-Ureña
- Hospital del Mar Research Institute, Barcelona, Spain; Department of Medicine and Life Sciences, Pompeu Fabra University, Barcelona, Spain; RICORS 2040-Renal, Barcelona, Spain
| | - Marta Riera
- Hospital del Mar Research Institute, Barcelona, Spain; RICORS 2040-Renal, Barcelona, Spain
| | - Carla Burballa
- Hospital del Mar Research Institute, Barcelona, Spain; RICORS 2040-Renal, Barcelona, Spain; Nephrology Service, Hospital del Mar, Barcelona, Spain
| | - Betty Chamoun
- Hospital del Mar Research Institute, Barcelona, Spain; RICORS 2040-Renal, Barcelona, Spain; Nephrology Service, Hospital del Mar, Barcelona, Spain
| | - María José Pérez-Sáez
- Hospital del Mar Research Institute, Barcelona, Spain; RICORS 2040-Renal, Barcelona, Spain; Nephrology Service, Hospital del Mar, Barcelona, Spain
| | - Dolores Redondo-Pachón
- Hospital del Mar Research Institute, Barcelona, Spain; RICORS 2040-Renal, Barcelona, Spain; Nephrology Service, Hospital del Mar, Barcelona, Spain
| | - Carlos Vilches
- Instituto de Investigación Sanitaria Puerta de Hierro, Majadahonda, Spain; Organización Nacional de Trasplantes, Ministerio de Sanidad, Madrid, Spain
| | - Marta Crespo
- Hospital del Mar Research Institute, Barcelona, Spain; RICORS 2040-Renal, Barcelona, Spain; Nephrology Service, Hospital del Mar, Barcelona, Spain.
| | - Miguel López-Botet
- Hospital del Mar Research Institute, Barcelona, Spain; Department of Medicine and Life Sciences, Pompeu Fabra University, Barcelona, Spain; Pathology Service, Hospital del Mar, Barcelona, Spain.
| |
Collapse
|
3
|
Slattery K, Yao CH, Mylod E, Scanlan J, Scott B, Crowley JP, McGowan O, McManus G, Brennan M, O'Brien K, Glennon K, Corry E, Treacy A, Argüello RJ, Gardiner CM, Haigis MC, Brennan DJ, Lynch L. Uptake of lipids from ascites drives NK cell metabolic dysfunction in ovarian cancer. Sci Immunol 2025; 10:eadr4795. [PMID: 40344087 DOI: 10.1126/sciimmunol.adr4795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/26/2024] [Accepted: 04/16/2025] [Indexed: 05/11/2025]
Abstract
High-grade serous ovarian cancer (HGSOC) remains an urgent unmet clinical need, with more than 70% of patients presenting with metastatic disease. Many patients develop large volumes of ascites, which promotes metastasis and is associated with poor therapeutic response and survival. Immunotherapy trials have shown limited success, highlighting the need to better understand HGSOC immunology. Here, we analyzed cytotoxic lymphocytes [natural killer (NK), T, and innate T cells] from patients with HGSOC and observed widespread dysfunction across primary and metastatic sites. Although nutrient rich, ascites was immunosuppressive for all lymphocyte subsets. NK cell dysfunction was driven by uptake of polar lipids, with associated dysregulation in lipid storage. Phosphatidylcholine was a key immunosuppressive metabolite, disrupting NK cell membrane order and cytotoxicity. Blocking lipid uptake through SR-B1 protected NK cell antitumor functions in ascites. These findings offer insights into immune suppression in HGSOC and have important implications for the design of future immunotherapies.
Collapse
Affiliation(s)
- Karen Slattery
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Cong-Hui Yao
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Eimear Mylod
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - John Scanlan
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Barry Scott
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Joseph Patrick Crowley
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Orla McGowan
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Gavin McManus
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Martin Brennan
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
- Ludwig Cancer Research Institute, Princeton Branch, Princeton University, Princeton, NJ, USA
| | - Katie O'Brien
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Kate Glennon
- UCD-Gynaecological Oncology Group, School of Medicine, Mater Misericordiae University Hospital, University College Dublin, Dublin, Ireland
| | - Edward Corry
- UCD-Gynaecological Oncology Group, School of Medicine, Mater Misericordiae University Hospital, University College Dublin, Dublin, Ireland
| | - Ann Treacy
- UCD-Gynaecological Oncology Group, School of Medicine, Mater Misericordiae University Hospital, University College Dublin, Dublin, Ireland
| | - Rafael J Argüello
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Clair M Gardiner
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Marcia C Haigis
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Donal J Brennan
- UCD-Gynaecological Oncology Group, School of Medicine, Mater Misericordiae University Hospital, University College Dublin, Dublin, Ireland
- Systems Biology Ireland, UCD School of Medicine, Belfield, Dublin, Ireland
| | - Lydia Lynch
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
- Ludwig Cancer Research Institute, Princeton Branch, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
4
|
Wang M, Krueger JB, Gilkey AK, Stelljes EM, Kluesner MG, Pomeroy EJ, Skeate JG, Slipek NJ, Lahr WS, Claudio Vázquez PN, Zhao Y, Bell JB, Clement K, Eaton EJ, Laoharawee K, Chang JW, Webber BR, Moriarity BS. Precision enhancement of CAR-NK cells through non-viral engineering and highly multiplexed base editing. J Immunother Cancer 2025; 13:e009560. [PMID: 40341025 PMCID: PMC12067936 DOI: 10.1136/jitc-2024-009560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 03/20/2025] [Indexed: 05/10/2025] Open
Abstract
BACKGROUND Natural killer (NK) cells' unique ability to kill transformed cells expressing stress ligands or lacking major histocompatibility complexes (MHC) has prompted their development for immunotherapy. However, NK cells have demonstrated only moderate responses against cancer in clinical trials. METHODS Advanced genome engineering may thus be used to unlock their full potential. Multiplex genome editing with CRISPR/Cas9 base editors (BEs) has been used to enhance T cell function and has already entered clinical trials but has not been reported in human NK cells. Here, we report the first application of BE in primary NK cells to achieve both loss-of-function and gain-of-function mutations. RESULTS We observed highly efficient single and multiplex base editing, resulting in significantly enhanced NK cell function in vitro and in vivo. Next, we combined multiplex BE with non-viral TcBuster transposon-based integration to generate interleukin-15 armored CD19 chimeric antigen receptor (CAR)-NK cells with significantly improved functionality in a highly suppressive model of Burkitt's lymphoma both in vitro and in vivo. CONCLUSIONS The use of concomitant non-viral transposon engineering with multiplex base editing thus represents a highly versatile and efficient platform to generate CAR-NK products for cell-based immunotherapy and affords the flexibility to tailor multiple gene edits to maximize the effectiveness of the therapy for the cancer type being treated.
Collapse
Affiliation(s)
- Minjing Wang
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Joshua B Krueger
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Alexandria K Gilkey
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Erin M Stelljes
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mitchell G Kluesner
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Emily J Pomeroy
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Joseph G Skeate
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Nicholas J Slipek
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Walker S Lahr
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Patricia N Claudio Vázquez
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yueting Zhao
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jason B Bell
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kendell Clement
- Department of Biomedical Informatics, The University of Utah, Salt Lake City, Utah, USA
| | - Ella J Eaton
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kanut Laoharawee
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jae-Woong Chang
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Beau R Webber
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Branden S Moriarity
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
5
|
Tran TBT, Bui TVA, Tran TMT, Nguyen NM, Nguyen HTP, Tran TPD, Nguyen DMQ, Ngo TMQ, Nguyen TB, Verhoeyen E, Tran NT, Nguyen HN, Tran LS. In Vitro Expansion and Transduction of Primary NK Cells Using Feeder Cells Expressing Costimulatory Molecules and IL-21. Cancer Sci 2025. [PMID: 40325497 DOI: 10.1111/cas.70090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 04/09/2025] [Accepted: 04/22/2025] [Indexed: 05/07/2025] Open
Abstract
Natural Killer (NK) cells are an important population of the immune system, and NK cell-based therapy has shown great potential in the treatment of cancers. However, to apply NK cells clinically, producing a large number of cells with high cytotoxicity remains a challenge. Current strategies focus on employing different irradiated feeder cells to stimulate NK expansion, maturation, and cytotoxicity. While co-stimulatory signals play critical roles in promoting NK cell proliferation and activating their functions, the exploitation of these signals for expanding NK cells has not been fully explored. To identify the optimal engineered feeder cells for expanding umbilical cord blood-derived NK cells, we generated different feeder cells expressing the co-stimulatory molecules CD80, 4-1BBL, or membrane-bound IL-21 (mbIL21). We then evaluated the transduction efficacy of a chimeric antigen receptor (CAR) construct into expanded NK cells using various lentiviral vectors. Our results showed that CD80, in combination with 4-1BBL and mbIL21, induced the highest expansion of NK cells from cord blood. The expanded NK cells displayed higher cytotoxicity toward target cells compared to T cells following CAR transduction using BaEV lentivirus.
Collapse
Affiliation(s)
| | | | | | | | | | - Thi Phuong Diem Tran
- Gene Solutions, Ho Chi Minh City, Vietnam
- Medical Genetics Institute, Ho Chi Minh City, Vietnam
| | | | | | - Thanh Binh Nguyen
- Thu Dau Mot University, Thủ Dầu Một, Vietnam
- Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | - Els Verhoeyen
- CIRI, Université de Lyon, INSERM U1111; ENS de Lyon; University Lyon 1; CNRS, UMR5308, Lyon, France
- Université Côte D'azur, INSERM, C3M, Nice, France
| | | | - Hoai-Nghia Nguyen
- Gene Solutions, Ho Chi Minh City, Vietnam
- Medical Genetics Institute, Ho Chi Minh City, Vietnam
| | - Le Son Tran
- Gene Solutions, Ho Chi Minh City, Vietnam
- Medical Genetics Institute, Ho Chi Minh City, Vietnam
| |
Collapse
|
6
|
Hexner EO, DeFilipp Z. Update in GVHD Prophylaxis: Novel Pharmacologic and Graft Manipulation Strategies. Am J Hematol 2025; 100 Suppl 3:30-39. [PMID: 40123545 DOI: 10.1002/ajh.27597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/02/2025] [Accepted: 01/04/2025] [Indexed: 03/25/2025]
Abstract
Prevention of graft-versus-host disease (GVHD) is critical to successful allogeneic hematopoietic cell transplantation (HCT), but for many years was difficult to achieve. Advances in the understanding of allogeneic HCT biology and immunology have paved the way for novel clinical approaches to GVHD prophylaxis, highlighted by the broad adoption of posttransplant cyclophosphamide and the approval of abatacept by the US Food and Drug Administration to prevent acute GVHD. Patients undergoing allogeneic HCT are now experiencing severe acute GVHD at historically low rates, and significant improvements in preventing chronic GVHD are also being achieved. This review highlights key pharmacological approaches and graft manipulation strategies being used or investigated for GVHD prophylaxis. Furthermore, we discuss the ongoing unmet needs in GVHD prevention and the challenges in addressing these areas in future clinical trials.
Collapse
Affiliation(s)
- Elizabeth O Hexner
- Center for Cellular Immunotherapies and Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Zachariah DeFilipp
- Hematopoietic Cell Transplant and Cellular Therapy Program, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Deng Y, Liu J, Pu Z, Wang Y, Li T, Jiang Z, Xie L, Zhang X, Chen Y, Yang M, Du C, Hao S, Ji N, Zhuang Z, Feng J, Zhang L. Targeting the HLA-E-NKG2A axis in combination with MS-275 enhances NK cell-based immunotherapy against DMG. J Exp Clin Cancer Res 2025; 44:133. [PMID: 40296045 PMCID: PMC12039099 DOI: 10.1186/s13046-025-03390-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/10/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Diffuse midline glioma (DMG) is an aggressive pediatric brain tumor with limited treatment options. Although natural killer (NK) cell-based immunotherapy is promising, its efficacy remains limited, necessitating strategies to enhance NK cell cytotoxicity. Histone deacetylase (HDAC) inhibition demonstrate potential to enhance NK-mediated killing. However, the combination of HDAC inhibitors and NK cell therapy for DMG remains unexplored. METHODS Patient-derived DMG cell lines and orthotopic mouse models were used to evaluate the effects of the class I HDAC inhibitor MS-275 on cytotoxicity. NK cell-mediated lysis was measured using both luciferase and calcein AM-based assays. The downstream signaling pathways affected by MS-275 were investigated via RNA-seq, CUT&Tag assay, RT‒qPCR, and chromatin immunoprecipitation with qPCR. RESULTS Based on bioinformatic analysis, class I HDACs are identified as therapeutic targets in DMG. The corresponding HDAC inhibitor, MS-275 upregulated NK cell-mediated cytotoxicity pathway through GSEA analysis. Pretreating DMG cells with MS-275 elevated NK cell ligand gene expression and enhanced NK cell-induced lysis. In addition to NK-activating ligands, MS-275 elevated the NK-inhibitory ligand HLA-E, thereby enhancing the efficacy of immunotherapies targeting the NKG2A-HLA-E axis. Mechanistically, MS-275 increased HLA-E expression by promoting STAT3 acetylation at lysine 685. Combining MS-275 with NK cell therapy and blockade of the NKG2A-HLA-E axis extended overall survival in orthotopic mouse models. CONCLUSIONS This study is the first to demonstrate that HDAC inhibition enhances NK cell-mediated cytotoxicity in DMG. Combining HDAC inhibition with NK cell therapy represents a promising therapeutic strategy for treating DMG by targeting NKG2A-HLA-E axis.
Collapse
Affiliation(s)
- Yuxuan Deng
- Department of Neurosurgery, Fengtai District, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jinqiu Liu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Zhuonan Pu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yi Wang
- Department of Neurosurgery, Fengtai District, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tian Li
- Department of Neurosurgery, Fengtai District, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhuang Jiang
- Department of Neurosurgery, Fengtai District, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Luyang Xie
- Department of Neurosurgery, Fengtai District, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaoli Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - YingDan Chen
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Mingxu Yang
- Department of Neurosurgery, Fengtai District, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chao Du
- Department of Neurosurgery, Fengtai District, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shuyu Hao
- Department of Neurosurgery, Fengtai District, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Nan Ji
- Department of Neurosurgery, Fengtai District, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhengping Zhuang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jie Feng
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
| | - Liwei Zhang
- Department of Neurosurgery, Fengtai District, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
| |
Collapse
|
8
|
Chanchiri I, Christensen EB, Abildgaard N, Barington T, Lund T, Krejcik J. Role of NK Cells in Progression and Treatment of Multiple Myeloma. FRONT BIOSCI-LANDMRK 2025; 30:26205. [PMID: 40302319 DOI: 10.31083/fbl26205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/29/2024] [Accepted: 11/04/2024] [Indexed: 05/02/2025]
Abstract
Multiple myeloma (MM) is a haematological malignancy originating from terminally differentiated B cells, resulting in significant morbidity and mortality. Currently, MM is regarded as an incurable disease, often exhibiting a relapse-remitting pattern that necessitates multiple lines of therapy. It is now well-established that ineffective immunosurveillance plays a critical role in the progression of MM. Consequently, strategies that redirect immune effector cells against MM have emerged as effective treatment modalities, particularly in cases where standard care therapies fail. T cell-based immunotherapy has gained considerable attention in ongoing clinical trials; however, natural killer (NK) cells, known for their ability to execute cytotoxicity against infected and malignant cells with precision, may offer complementary therapeutic advantages over T cells and possess untapped therapeutic potential. This review seeks to introduce readers to the significance of NK cell-mediated immunosurveillance in the context of MM, explore the potential benefits of redirecting NK cells against MM, and illustrate how current treatment strategies are often reliant on the functionality of NK cells. Most importantly, new promising mechanisms of harnessing NK cell-based immunity against MM are reviewed and put into a clinical perspective to highlight their implications for patient treatment and outcomes.
Collapse
Affiliation(s)
- Iman Chanchiri
- Department of Haematology, Odense University Hospital, 5000 Odense, Denmark
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense University Hospital, 5000 Odense, Denmark
| | - Emil Birch Christensen
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense University Hospital, 5000 Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, 5230 Odense, Denmark
- Department of Clinical Immunology, Odense University Hospital, 5000 Odense, Denmark
| | - Niels Abildgaard
- Department of Haematology, Odense University Hospital, 5000 Odense, Denmark
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense University Hospital, 5000 Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, 5230 Odense, Denmark
| | - Torben Barington
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense University Hospital, 5000 Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, 5230 Odense, Denmark
- Department of Clinical Immunology, Odense University Hospital, 5000 Odense, Denmark
| | - Thomas Lund
- Department of Haematology, Odense University Hospital, 5000 Odense, Denmark
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense University Hospital, 5000 Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, 5230 Odense, Denmark
- Centre for Innovative Medical Technology (CIMT), Odense University Hospital, 5000 Odense, Denmark
| | - Jakub Krejcik
- Department of Haematology, Odense University Hospital, 5000 Odense, Denmark
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense University Hospital, 5000 Odense, Denmark
| |
Collapse
|
9
|
Ma S, Yu J, Caligiuri MA. Natural killer cell-based immunotherapy for cancer. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf036. [PMID: 40246292 DOI: 10.1093/jimmun/vkaf036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/18/2025] [Indexed: 04/19/2025]
Abstract
Natural killer (NK) cells are emerging as a promising tool for cancer immunotherapy due to their innate ability to selectively recognize and eliminate cancer cells. Over the past 3 decades, strategies to harness NK cells have included cytokines, small molecules, antibodies, and the adoptive transfer of autologous or allogeneic NK cells, both unmodified and genetically engineered. Despite favorable safety profiles in clinical trials, challenges such as limited in vivo persistence, exhaustion, and the suppressive tumor microenvironment continue to hinder their efficacy and durability. This review categorizes NK cell-based therapies into 3 major approaches: (i) cellular therapies, including unmodified and chimeric antigen receptor-engineered NK cells; (ii) cytokine-based strategies such as interleukin-2 and interleukin-15 derivatives; and (iii) antibody-based therapies, including immune checkpoint inhibitors and NK cell engagers. We highlight these advancements, discuss current limitations, and propose strategies to optimize NK cell-based therapies for improved cancer treatment outcomes.
Collapse
Affiliation(s)
- Shoubao Ma
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, United States
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA, United States
- City of Hope Comprehensive Cancer Center, Los Angeles, CA, United States
| | - Jianhua Yu
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, University of California, Irvine, CA, United States
- Institute for Precision Cancer Therapeutics and Immuno-Oncology, Chao Family Comprehensive Cancer Center, University of California, Irvine, CA, United States
- Clemons Family Center for Transformative Cancer Research, University of California, Irvine, Irvine, CA, United States
| | - Michael A Caligiuri
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, United States
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA, United States
- City of Hope Comprehensive Cancer Center, Los Angeles, CA, United States
| |
Collapse
|
10
|
Cho MM, Song L, Quamine AE, Szewc F, Shi L, Ebben JD, Turicek DP, Kline JM, Burpee DM, Lafeber EO, Phillips MF, Ceas AS, Bates PD, Forsberg MH, Kink JA, Erbe AK, Capitini CM. CD155 blockade enhances allogeneic natural killer cell-mediated antitumor response against osteosarcoma. J Immunother Cancer 2025; 13:e008755. [PMID: 40234092 PMCID: PMC12001373 DOI: 10.1136/jitc-2023-008755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/10/2025] [Indexed: 04/17/2025] Open
Abstract
BACKGROUND Allogeneic bone marrow transplant (alloBMT) is curative for hematologic malignancies through the graft-versus-tumor (GVT) effect but has been ineffective for solid tumors like osteosarcoma (OS). OS expresses CD155 which interacts strongly with inhibitory receptors TIGIT and CD96 but also binds to activating receptor DNAM-1 on natural killer (NK) cells. CD155 has never been targeted after alloBMT. Combining adoptively transferred allogeneic NK (alloNK) cells with CD155 blockade after alloBMT may enhance a GVT effect against OS. METHODS Murine NK cells were activated and expanded ex vivo with superagonist interleukin (IL)-15/IL-15Rα. AlloNK and syngeneic NK (synNK) cell phenotype, cytotoxicity, cytokine production, and degranulation against CD155-expressing murine OS cell line K7M2 were assessed in vitro. Mice bearing pulmonary OS metastases underwent alloBMT and alloNK cell infusion with anti-CD155 either before or after tumor induction, with select groups receiving anti-DNAM-1 pretreated alloNK cells. Tumor growth, graft-versus-host disease and survival were monitored, and differential gene expression of lung tissue was assessed by RNA microarray. RESULTS AlloNK cells exhibited superior cytotoxicity against CD155-expressing OS compared with synNK cells, and this activity was enhanced by CD155 blockade. CD155 blockade increased alloNK cell degranulation and interferon gamma production through DNAM-1. In vivo, CD155 blockade with alloNK infusion increased survival when treating OS that relapsed after alloBMT. No benefit was seen for treating established OS before alloBMT. Combining CD155 and anti-DNAM-1 pretreated alloNK did not affect survival and tumor control benefits seen with CD155 blockade alone. RNA microarray showed mice treated with alloNK and CD155 blockade had increased expression of cytotoxicity genes and the NKG2D ligand H60a, whereas mice treated with anti-DNAM-1 pretreated alloNK cells resulted in upregulation of NK cell inhibitory receptor genes. Whereas blocking DNAM-1 on alloNK abrogated cytotoxicity, blocking NKG2D had no effect, implying DNAM-1:CD155 engagement drives alloNK activation against OS. CONCLUSIONS These results demonstrate the safety and efficacy of infusing alloNK cells with CD155 blockade to mount a GVT effect against OS and show benefits are in part through DNAM-1. Defining the hierarchy of receptors that govern alloNK responses is critical to translating alloNK cell infusions and immune checkpoint inhibition for solid tumors treated with alloBMT.
Collapse
Affiliation(s)
- Monica M Cho
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Longzhen Song
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Aicha E Quamine
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Fernanda Szewc
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Lei Shi
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Johnathan D Ebben
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - David P Turicek
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Jillian M Kline
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Devin M Burpee
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Emily O Lafeber
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Madison F Phillips
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Amanda S Ceas
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Paul D Bates
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Matthew H Forsberg
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - John A Kink
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Amy K Erbe
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Christian M Capitini
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
11
|
Lee MJ, Cichocki F, Miller JS. Chimeric antigen receptor therapies: Development, design, and implementation. J Allergy Clin Immunol 2025:S0091-6749(25)00386-0. [PMID: 40220909 DOI: 10.1016/j.jaci.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/06/2025] [Accepted: 04/03/2025] [Indexed: 04/14/2025]
Abstract
Chimeric antigen receptor (CAR) T and natural killer (NK) cell therapies represent a promising strategy for the treatment of cancers and other chronic diseases. Engineered CAR constructs endow immune cells with the ability to target desired antigens with high specificity, allowing for directed responses to antigen-expressing cells. CAR T and NK cells have shown marked success in the treatment of hematologic malignancies, although there remains a large population of patients with disease that fails to respond to CAR therapies, and their efficacy in solid tumors is still limited. In this review, we provide a broad overview of the development, design, and implementation of CAR therapies from bench to bedside. We discuss the building blocks of CAR constructs and how these can be manipulated to optimize CAR functionality, review the possible sources of T and NK cells for CAR therapies, and examine the limitations of both CAR T and CAR NK cells. Finally, we discuss recent breakthroughs in the CAR field and consider how these advances may affect the success of CAR therapies in the years to come.
Collapse
Affiliation(s)
- Madeline J Lee
- Department of Medicine, University of Minnesota, Minneapolis, Minn
| | - Frank Cichocki
- Department of Medicine, University of Minnesota, Minneapolis, Minn
| | - Jeffrey S Miller
- Department of Medicine, University of Minnesota, Minneapolis, Minn.
| |
Collapse
|
12
|
Baker FL, Stokes J, Cracchiolo MJ, Davini D, Simpson RJ, Katsanis E. Impact of post-transplant cyclophosphamide with bendamustine on immune reconstitution in young patients undergoing T-cell replete haploidentical bone marrow transplantation: results from a phase Ia/Ib clinical trial. Front Immunol 2025; 16:1568862. [PMID: 40270968 PMCID: PMC12014643 DOI: 10.3389/fimmu.2025.1568862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/06/2025] [Indexed: 04/25/2025] Open
Abstract
Introduction Post-transplant cyclophosphamide (PT-CY) has been pivotal in controlling graft-versus-host disease (GvHD) following T-cell-replete haploidentical bone marrow transplantation (haplo-BMT). However, the widely adopted regimen is associated with high relapse rates, particularly in patients without GvHD. Our preclinical studies indicate that pre- or post-transplant bendamustine (PT-BEN) may reduce GvHD, enhance graft-versus-leukemia (GvL) effects, and induce significant alterations in the proportion, phenotype, and function of various immune cell subsets. Methods We initiated a Phase Ia/Ib, single-center trial with a standard 3 + 3 dose-escalation design, sequentially replacing post-transplant (PT)-CY with BEN (PT-CY/BEN). Multi-parameter flow cytometry and TCR β sequencing of genomic DNA was performed on isolated PBMCs on PT days +30, +60, +100, +180, and +365. Results Overall, the PT-CY/BEN (n=14) regimen was associated with earlier neutrophil and platelet engraftment, reduced transfusion requirements, and comparable clinical outcomes to PT-CY (n=10), including survival and relapse rates. PT-CY/BEN patients exhibited distinct immune reconstitution patterns, characterized by earlier CD4+ T-cell recovery, impaired CD8+ T-cell engraftment, and reduced NK-cell counts. Notably there were no significant changes in B-cells, Tregs, or MDSCs. Enhanced T-cell repertoire diversity in the PT-CY/BEN cohort was associated with improved CMV control. Conclusion Our Phase Ia findings demonstrate the well-tolerability of PT-CY/BEN and its association with early engraftment, a more diverse T-cell repertoire, and earlier CD4+ T-cell reconstitution. Future studies are warranted to confirm our findings and investigate potential additional benefits of PT-CY/BEN over PT-CY alone.
Collapse
Affiliation(s)
- Forrest L. Baker
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, AZ, United States
- Department of Pediatrics, University of Arizona, Tucson, AZ, United States
- The University of Arizona Cancer Center, Tucson, AZ, United States
| | - Jessica Stokes
- Department of Pediatrics, University of Arizona, Tucson, AZ, United States
| | | | - Dan Davini
- Department of Pediatrics, University of Arizona, Tucson, AZ, United States
| | - Richard J. Simpson
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, AZ, United States
- Department of Pediatrics, University of Arizona, Tucson, AZ, United States
- The University of Arizona Cancer Center, Tucson, AZ, United States
- Department of Immunobiology, University of Arizona, Tucson, AZ, United States
| | - Emmanuel Katsanis
- Department of Pediatrics, University of Arizona, Tucson, AZ, United States
- The University of Arizona Cancer Center, Tucson, AZ, United States
- Department of Immunobiology, University of Arizona, Tucson, AZ, United States
- Banner University Medical Center, Tucson, AZ, United States
| |
Collapse
|
13
|
Balkhi S, Zuccolotto G, Di Spirito A, Rosato A, Mortara L. CAR-NK cell therapy: promise and challenges in solid tumors. Front Immunol 2025; 16:1574742. [PMID: 40260240 PMCID: PMC12009813 DOI: 10.3389/fimmu.2025.1574742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 03/17/2025] [Indexed: 04/23/2025] Open
Abstract
Over the past few years, cellular immunotherapy has emerged as a promising treatment for certain hematologic cancers, with various CAR-T therapies now widely used in clinical settings. However, challenges related to the production of autologous cell products and the management of CAR-T cell toxicity highlight the need for new cell therapy options that are universal, safe, and effective. Natural killer (NK) cells, which are part of the innate immune system, offer unique advantages, including the potential for off-the-shelf therapy. A recent first-in-human trial of CD19-CAR-NK infusion in patients with relapsed/refractory lymphoid malignancies demonstrated safety and promising clinical activity. Building on these positive clinical outcomes, current research focuses on enhancing CAR-NK cell potency by increasing their in vivo persistence and addressing functional exhaustion. There is also growing interest in applying the successes seen in hematologic malignancies to solid tumors. This review discusses current trends and emerging concepts in the engineering of next-generation CAR- NK therapies. It will cover the process of constructing CAR-NK cells, potential targets for their manufacturing, and their role in various solid tumors. Additionally, it will examine the mechanisms of action and the research status of CAR-NK therapies in the treatment of solid tumors, along with their advantages, limitations, and future challenges. The insights provided may guide future investigations aimed at optimizing CAR-NK therapy for a broader range of malignancies.
Collapse
Affiliation(s)
- Sahar Balkhi
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Gaia Zuccolotto
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
| | - Anna Di Spirito
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Antonio Rosato
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Lorenzo Mortara
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
14
|
Deuse T, Schrepfer S. Progress and challenges in developing allogeneic cell therapies. Cell Stem Cell 2025; 32:513-528. [PMID: 40185072 DOI: 10.1016/j.stem.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/28/2025] [Accepted: 03/05/2025] [Indexed: 04/07/2025]
Abstract
The new era of cell therapeutics has started with autologous products to avoid immune rejection. However, therapeutics derived from allogeneic cells could be scaled and made available for a much larger patient population if immune rejection could reliably be overcome. In this review, we outline gene engineering concepts aimed at generating immune-evasive cells. First, we summarize the current state of allogeneic immune cell therapies, and second, we compile the still limited data for allogeneic cell replacement therapies. We emphasize the advances in this fast-developing field and provide an optimistic outlook for future allogeneic cell therapies.
Collapse
Affiliation(s)
- Tobias Deuse
- Department of Surgery, Division of Cardiothoracic Surgery, Transplant and Stem Cell Immunobiology (TSI)-Lab, University of California, San Francisco, San Francisco, CA, USA
| | - Sonja Schrepfer
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
15
|
Yu K, Liu X, Wu G, An Z, Wang X, Liu Y, Wang H, Huang M, Zhao L, Shi C, Sun X, Xu L, Qi S, Zhang X, Teng Y, Zheng SG, Zhang Z, Wang Z. Targeting SHP-1-Mediated Inhibition of STAT3 and ERK Signalling Pathways Rescues the Hyporesponsiveness of MHC-I-Deficient NK-92MI. Cell Prolif 2025:e70035. [PMID: 40167020 DOI: 10.1111/cpr.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/18/2025] [Accepted: 03/21/2025] [Indexed: 04/02/2025] Open
Abstract
Natural Killer (NK) cells have shown promising prospects in 'off-the-shelf' cell therapy, particularly the NK-92 cell line, which can serve as a foundation for the next generation of universal chimeric antigen receptor (CAR)-engineered NK products. A key strategy for generating universal cellular products is the elimination of the beta-2-microglobulin (B2M) gene, which encodes a component of MHC class I molecules (MHC-I) that plays a role in the presentation of foreign antigens and in the 'licensing' or 'education' of NK cells. To functionally study the impacts of MHC-I deficiency on NK-92, we generated a B2M knockout (KO) NK-92MI (B-92) cell line and compared the multidimensional properties of B2M KO and wild-type NK-92MI cells in terms of biological phenotypes, effector functions, and transcriptomic signatures. We observed a decrease in activating receptors, cytokine production, and cytotoxicity in B-92 cells. Further analysis of signalling events revealed that the upregulated expression and phosphorylation of SHP-1 in B-92 cells inhibited the phosphorylation levels of STAT3 and ERK, thereby affecting their killing function. By knocking out SHP-1 (PTPN6), we partially restored the cytotoxic function of B-92 cells. Notably, we also found that CAR modification can overcome the hyporesponsiveness of B-92 cells. These findings will facilitate further exploration in the development of NK cell-based products.
Collapse
Affiliation(s)
- Kuo Yu
- NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Harbin, China
- Central Laboratory, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xiaolong Liu
- NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Harbin, China
- Central Laboratory, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Guangyuan Wu
- NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Harbin, China
- Central Laboratory, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Zhongyao An
- NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Harbin, China
- Central Laboratory, First Affiliated Hospital, Harbin Medical University, Harbin, China
- ZKcell Biotechnology (Heilongjiang) Co., Ltd, Harbin, China
| | - Xin Wang
- NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Harbin, China
- Central Laboratory, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yang Liu
- NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Harbin, China
- Central Laboratory, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Hailong Wang
- NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Harbin, China
- Central Laboratory, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Mingli Huang
- NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Harbin, China
- Obstetrical Department, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Linlin Zhao
- Department of Blood Transfusion, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Ce Shi
- NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Harbin, China
- Central Laboratory, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xin Sun
- NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Harbin, China
- Obstetrical Department, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Lu Xu
- NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Harbin, China
- Central Laboratory, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Sen Qi
- Department of Pathology, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xin Zhang
- NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Harbin, China
- Central Laboratory, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yueqiu Teng
- NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Harbin, China
| | - Song Guo Zheng
- Department of Immunology, School of Cell and Gene Therapy, Songjiang Research Institute, Shanghai Songjiang District Central Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhiren Zhang
- NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Harbin, China
- Central Laboratory, First Affiliated Hospital, Harbin Medical University, Harbin, China
- Department of Cardiology and Pharmacy and Breast Cancer Surgery, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorder and Cancer Related Cardiovascular Diseases, Harbin, China
| | - Zhenkun Wang
- NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Harbin, China
- Central Laboratory, First Affiliated Hospital, Harbin Medical University, Harbin, China
- Department of Hematology, First Affiliated Hospital of Harbin Medical University, the Institute of the Hematology and Oncology of Heilongjiang Province, Harbin, China
- The Somatic Cells Bioengineering Technology Research Center of Qinhuangdao, Qinhuangdao, China
| |
Collapse
|
16
|
Li J, Xu W, Luo S, Zhang H, Qiu X, Zhang H, Liu Z, Pang Q. Improving the production of BaEV lentivirus by comprehensive optimization. J Virol Methods 2025; 333:115106. [PMID: 39736416 DOI: 10.1016/j.jviromet.2024.115106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/01/2025]
Abstract
With the rapid development of the cell and gene therapy industry, there is an increasing demand for lentiviral vectors that can efficiently infect cells of different purposes. BaEV lentiviruses have been shown to efficiently infect hematopoietic stem cells, primary B cells, and NK cells, which traditional VSV-G lentiviruses cannot infect. However, there is a problem of low virus yield in the production of BaEV lentivirus. The formation of syncytium and apoptosis occur after plasmid transfection, and resulting in a reduction in virus production. In this study, the issue of low production of BaEV lentivirus was comprehensively improved. By increasing the cell density of inoculation, reducing the amount of BaEV plasmid, and adjusting the harvest time, the maximum titer of BaEV lentivirus reached 4.43E+ 06 IU/ml, representing an increase of 369 times compared to the unoptimized condition. Further, the purification method of lentivirus solution was optimized, and the infection titer of lentivirus reached 1.00E+ 08 IU/ml, which is 10300 times higher than pre-optimization levels.
Collapse
Affiliation(s)
- Jinxue Li
- Shandong Lishan Biotechnology Co., Ltd, Jinan 250013, PR China.
| | - Wenqiang Xu
- Shandong Lishan Biotechnology Co., Ltd, Jinan 250013, PR China.
| | - Shengtao Luo
- Shandong Lishan Biotechnology Co., Ltd, Jinan 250013, PR China.
| | - Hairong Zhang
- Shandong Lishan Biotechnology Co., Ltd, Jinan 250013, PR China.
| | - Xueliang Qiu
- Shandong Lishan Biotechnology Co., Ltd, Jinan 250013, PR China.
| | - Hao Zhang
- Shandong Lishan Biotechnology Co., Ltd, Jinan 250013, PR China.
| | - Zhichao Liu
- Shandong Lishan Biotechnology Co., Ltd, Jinan 250013, PR China.
| | - Qingxiao Pang
- Shandong Lishan Biotechnology Co., Ltd, Jinan 250013, PR China.
| |
Collapse
|
17
|
Rea A, Santana-Hernández S, Villanueva J, Sanvicente-García M, Cabo M, Suarez-Olmos J, Quimis F, Qin M, Llorens E, Blasco-Benito S, Torralba-Raga L, Perez L, Bhattarai B, Alari-Pahissa E, Georgoudaki AM, Balaguer F, Juan M, Pardo J, Celià-Terrassa T, Rovira A, Möker N, Zhang C, Colonna M, Spanholtz J, Malmberg KJ, Montagut C, Albanell J, Güell M, López-Botet M, Muntasell A. Enhancing human NK cell antitumor function by knocking out SMAD4 to counteract TGFβ and activin A suppression. Nat Immunol 2025; 26:582-594. [PMID: 40119192 PMCID: PMC11957989 DOI: 10.1038/s41590-025-02103-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 01/30/2025] [Indexed: 03/24/2025]
Abstract
Transforming growth factor beta (TGFβ) and activin A suppress natural killer (NK) cell function and proliferation, limiting the efficacy of adoptive NK cell therapies. Inspired by the partial resistance to TGFβ of NK cells with SMAD4 haploinsufficiency, we used CRISPR-Cas9 for knockout of SMAD4 in human NK cells. Here we show that SMAD4KO NK cells were resistant to TGFβ and activin A inhibition, retaining their cytotoxicity, cytokine secretion and interleukin-2/interleukin-15-driven proliferation. They showed enhanced tumor penetration and tumor growth control, both as monotherapy and in combination with tumor-targeted therapeutic antibodies. Notably, SMAD4KO NK cells outperformed control NK cells treated with a TGFβ inhibitor, underscoring the benefit of maintaining SMAD4-independent TGFβ signaling. SMAD4KO conferred TGFβ resistance across diverse NK cell platforms, including CD19-CAR NK cells, stem cell-derived NK cells and ADAPT-NK cells. These findings position SMAD4 knockout as a versatile and compelling strategy to enhance NK cell antitumor activity, providing a new avenue for improving NK cell-based cancer immunotherapies.
Collapse
Grants
- 765104 EC | EC Seventh Framework Programm | FP7 People: Marie-Curie Actions (FP7-PEOPLE - Specific Programme "People" Implementing the Seventh Framework Programme of the European Community for Research, Technological Development and Demonstration Activities (2007 to 2013))
- ICI24/00041 Ministry of Economy and Competitiveness | Instituto de Salud Carlos III (Institute of Health Carlos III)
- SGR863 Generalitat de Catalunya (Government of Catalonia)
- 765104 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 Marie Sklodowska-Curie Actions (H2020 Excellent Science - Marie Sklodowska-Curie Actions)
- PI21/00002 Ministry of Economy and Competitiveness | Instituto de Salud Carlos III (Institute of Health Carlos III)
- PI22/00040 Ministry of Economy and Competitiveness | Instituto de Salud Carlos III (Institute of Health Carlos III)
- 2024PROD00089 Departament d'Innovació, Universitats i Empresa, Generalitat de Catalunya (Department of Innovation, Education and Enterprise, Government of Catalonia)
- FI23/00075 Ministry of Economy and Competitiveness | Instituto de Salud Carlos III (Institute of Health Carlos III)
- P01 CA111412 NCI NIH HHS
- Ministerio de Ciencia, Innovación y Universidades/FEDER CNS2023-144487
- AECC postdoctoral fellowship POSTD234709BLAS
- Ministerio de Ciencia, Innovación y Universidades PID2020-113963RBI00 Gobierno de Aragón B29-23R
- Ministerio de Ciencia, Innovación y Universidades PID2023-147310OB-I00
- Research Council of Norway 275469, 237579, the Research Council of Norway through its Centres of Excellence scheme 332727, the Norwegian Cancer Society-190386, 223310, The South-Eastern Norway Regional Health Authority 2021-073, 2024-053, Knut and Alice Wallenberg Foundation 2018.0106, Swedish Foundation for Strategic Research, and the US National Cancer Institute P01 CA111412, P009500901.
- CRIS EXCELLENCE 19-30, funded by CRIS Contra el Cáncer
- CIBERONC: CB16/12/00241
Collapse
Affiliation(s)
- Anna Rea
- University Pompeu Fabra (UPF), Barcelona, Spain
| | - Sara Santana-Hernández
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- Institut de Biotecnologia i Biomedicina, Cell Biology, Physiology and Immunology Deptartments, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Javier Villanueva
- University Pompeu Fabra (UPF), Barcelona, Spain
- Institut de Biotecnologia i Biomedicina, Cell Biology, Physiology and Immunology Deptartments, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | - Mariona Cabo
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | | | - Fabricio Quimis
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Mengjuan Qin
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Eduard Llorens
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | | | - Lamberto Torralba-Raga
- Precision Immunotherapy Alliance, The University of Oslo, Oslo, Norway
- Department of Cancer Immunology, Institute for Cancer Research Oslo, Oslo University Hospital, Oslo, Norway
| | - Lorena Perez
- Department of Immunology, Hospital Clínic de Barcelona (HCB), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Joint Platform of Immunotherapy Hospital Sant Joan de Deu - HCB, University of Barcelona, Barcelona, Spain
| | - Bishan Bhattarai
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | - Francesc Balaguer
- Department of Gastroenterology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), University of Barcelona, Barcelona, Spain
| | - Manel Juan
- Department of Immunology, Hospital Clínic de Barcelona (HCB), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Joint Platform of Immunotherapy Hospital Sant Joan de Deu - HCB, University of Barcelona, Barcelona, Spain
| | - Julián Pardo
- IIS Aragon Foundation/ Dpt. Microbiology, Radiology Pediatry and Public Health, University of Zaragoza, Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERinfec), Zaragoza, Spain
| | - Toni Celià-Terrassa
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Ana Rovira
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Department of Oncology, Hospital del Mar, Barcelona, Spain
| | - Nina Möker
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Congcong Zhang
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Karl-Johan Malmberg
- Precision Immunotherapy Alliance, The University of Oslo, Oslo, Norway
- Department of Cancer Immunology, Institute for Cancer Research Oslo, Oslo University Hospital, Oslo, Norway
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Clara Montagut
- University Pompeu Fabra (UPF), Barcelona, Spain
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Department of Oncology, Hospital del Mar, Barcelona, Spain
| | - Joan Albanell
- University Pompeu Fabra (UPF), Barcelona, Spain
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Department of Oncology, Hospital del Mar, Barcelona, Spain
| | - Marc Güell
- University Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, ICREA, Barcelona, Spain
| | - Miguel López-Botet
- University Pompeu Fabra (UPF), Barcelona, Spain
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Aura Muntasell
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain.
- Institut de Biotecnologia i Biomedicina, Cell Biology, Physiology and Immunology Deptartments, Universitat Autònoma de Barcelona, Bellaterra, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
18
|
Marr B, Jo D, Jang M, Lee SH. Cytokines in Focus: IL-2 and IL-15 in NK Adoptive Cell Cancer Immunotherapy. Immune Netw 2025; 25:e17. [PMID: 40342841 PMCID: PMC12056295 DOI: 10.4110/in.2025.25.e17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/02/2025] [Accepted: 03/06/2025] [Indexed: 05/11/2025] Open
Abstract
NK cell adoptive cell therapy (ACT) has emerged as a promising strategy for cancer immunotherapy, offering advantages in scalability, accessibility, efficacy, and safety. Ex vivo activation and expansion protocols, incorporating feeder cells and cytokine cocktails, have enabled the production of highly functional NK cells in clinically relevant quantities. Advances in NK cell engineering, including CRISPR-mediated gene editing and chimeric Ag receptor technologies, have further enhanced cytotoxicity, persistence, and tumor targeting. Cytokine support post-adoptive transfer, particularly with IL-2 and IL-15, remains critical for promoting NK cell survival, proliferation, and anti-tumor activity despite persistent challenges such as regulatory T cell expansion and cytokine-related toxicities. This review explores the evolving roles of IL-2 and IL-15 in NK cell-based ACT, evaluating their potential and limitations, and highlights strategies to optimize these cytokines for effective cancer immunotherapy.
Collapse
Affiliation(s)
- Bryan Marr
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Donghyeon Jo
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Mihue Jang
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea
| | - Seung-Hwan Lee
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, Faculty of Medicine and Centre for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
19
|
Tarannum M, Ding X, Barisa M, Hu S, Anderson J, Romee R, Zhang J. Engineering innate immune cells for cancer immunotherapy. Nat Biotechnol 2025; 43:516-533. [PMID: 40229380 DOI: 10.1038/s41587-025-02629-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/05/2025] [Indexed: 04/16/2025]
Abstract
Innate immune cells, including natural killer cells, macrophages and γδ T cells, are gaining prominence as promising candidates for cancer immunotherapy. Unlike conventional T cells, these cells possess attributes such as inherent antitumor activity, rapid immune responses, favorable safety profiles and the ability to target diverse malignancies without requiring prior antigen sensitization. In this Review, we examine the engineering strategies used to enhance their anticancer potential. We discuss challenges associated with each cell type and summarize insights from preclinical and clinical work. We propose strategies to address existing barriers, providing a perspective on the advancement of innate immune engineering as a powerful modality in anticancer treatment.
Collapse
Affiliation(s)
- Mubin Tarannum
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Xizhong Ding
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Marta Barisa
- Cancer Section, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Sabrina Hu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - John Anderson
- Cancer Section, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK.
| | - Rizwan Romee
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA.
| | - Jin Zhang
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
20
|
Cox PA, Pradana F, Noble E, Lucas SJE, Pratt G, Drayson MT, Amin K, Kinsella FAM, Wadley AJ. Examining the effect of intermittent cycling throughout a 3-h period on peripheral blood concentrations of haemopoietic stem and progenitor cells and cytolytic natural killer cells. Stem Cell Res Ther 2025; 16:155. [PMID: 40155997 PMCID: PMC11951530 DOI: 10.1186/s13287-025-04261-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/04/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Peripheral blood stem cell (PBSC) donation is the primary procedure used to collect haemopoietic stem and progenitor cells (HSPCs) for haemopoietic stem cell transplants (HSCT), however there is a clinical need to reduce collection times and achieve sufficient HSPC doses for successful engraftment. Short bouts of interval cycling transiently enrich peripheral blood with HSPCs and cytolytic natural killer (CD56dim NK) cells, which predict engraftment success and prevent post-transplant complications respectively. Despite this, feasible protocols for use during PBSC collections (≈ 3 h) have yet to be evaluated. METHODS In a randomised crossover design, 18 adults (9 young: 22.7 ± 3.2 years, 9 older: 65.2 ± 12.9 years) completed 3 × 3-h trials: high-intensity interval exercise (HIIE, 9 × 2-min cycling at 80-85% heart rate (HR)max/9 × 18 min rest), moderate-intensity interval exercise (MIIE, 9 × 4-min cycling at 65-70% HRmax/9 × 16 min rest) and REST (180 min). Immune cell subsets, including HSPCs and CD56dim NK concentrations (cells/µL) were determined across 18 timepoints and area under the curve (AUC, cells/µL x minutes) and total cell dose (cells/kg) were estimated. RESULTS By design, MIIE elicited lower average and peak HR and rating of perceived exertion than HIIE and was reported as more enjoyable. All cell subset concentrations increased following each interval of MIIE and HIIE. Across all participants, the estimated cell dose of total lymphocytes, monocytes, T cells, CD56bright and CD56dim NK was greater in MIIE and HIIE versus REST (p < 0.03), but there were no differences between MIIE and HIIE. The magnitude of change versus REST was greatest for CD56dim NK versus all cell subsets, and AUC was significantly greater in HIIE versus REST for this cell type only (p < 0.0001). There were no statistically significant differences in HSPC AUC (p = 0.77) or cell dose (p = 0.0732) in MIIE and HIIE versus REST. Age did not predict any changes across trials or timepoints for any cell type. CONCLUSION Persistent mobilisation of peripheral blood immune cells throughout 3 h of MIIE and HIIE evoked sustained numbers of CD56dim NK cells, but there was no reliable difference in HSPCs compared to a time-matched period of rest.
Collapse
Affiliation(s)
- Phoebe A Cox
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Fendi Pradana
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
- Nutrition Study Program, Tadulako University, Palu, Indonesia
| | - Ella Noble
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Samuel J E Lucas
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Guy Pratt
- Birmingham Centre for Cellular Therapy and Transplantation, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Mark T Drayson
- Clinical Immunology Service, University of Birmingham, Birmingham, UK
| | - Kevin Amin
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Francesca A M Kinsella
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- Birmingham Centre for Cellular Therapy and Transplantation, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Alex J Wadley
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
21
|
Jørgensen LV, Christensen EB, Barnkob MB, Barington T. The clinical landscape of CAR NK cells. Exp Hematol Oncol 2025; 14:46. [PMID: 40149002 PMCID: PMC11951618 DOI: 10.1186/s40164-025-00633-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 03/04/2025] [Indexed: 03/29/2025] Open
Abstract
Chimeric antigen receptor (CAR) NK cell therapy has emerged as a promising alternative to CAR T cell therapy, offering significant advantages in terms of safety and versatility. Here we explore the current clinical landscape of CAR NK cells, and their application in hematologic malignancies and solid cancers, as well as their potential for treating autoimmune disorders. Our analysis draws from data collected from 120 clinical trials focused on CAR NK cells, and presents insights into the demographics and characteristics of these studies. We further outline the specific targets and diseases under investigation, along with the major cell sources, genetic modifications, combination strategies, preconditioning- and dosing regimens, and manufacturing strategies being utilized. Initial results from 16 of these clinical trials demonstrate promising efficacy of CAR NK cells, particularly in B cell malignancies, where response rates are comparable to those seen with CAR T cells but with lower rates of severe adverse effects, such as cytokine release syndrome (CRS), immune effector cell-associated neurotoxicity syndrome (ICANS), and graft-versus-host disease (GvHD). However, challenges remain in solid tumor applications, where only modest efficacy has been observed to date. Our analysis reveals that research is increasingly focused on enhancing CAR NK cell persistence, broadening their therapeutic targets, and refining manufacturing processes to improve accessibility and scalability. With recent advancements in NK cell engineering and their increased clinical applications, CAR NK cells are predicted to become an integral component of next-generation immunotherapies, not only for cancer but potentially for immune-mediated diseases as well.
Collapse
Affiliation(s)
- Lasse Vedel Jørgensen
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense, Denmark
| | - Emil Birch Christensen
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense, Denmark
| | - Mike Bogetofte Barnkob
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense, Denmark
| | - Torben Barington
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark.
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense, Denmark.
| |
Collapse
|
22
|
Astigarraga CC, Mpms K, Iovino L, Milano F. Haploidentical transplantation: An optimal platform for graft manipulation and cellular therapies. Blood Rev 2025:101286. [PMID: 40133165 DOI: 10.1016/j.blre.2025.101286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/11/2025] [Accepted: 03/20/2025] [Indexed: 03/27/2025]
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HCT) remains a curative therapeutic option for patients with high-risk hematologic malignancies. When a fully matched donor is unavailable, haploidentical hematopoietic stem cell transplantation (haplo-HCT) provides a viable alternative. Over time, haplo-HCT procedures have significantly evolved, improving outcomes in treatment related mortality (TRM), especially in graft-versus-host disease (GvHD). However, challenges such as delayed immune reconstitution and disease relapse persist. Advances in in vivo graft manipulation techniques, such as post-transplant cyclophosphamide (PTCy) and ex vivo approaches, including TCRα/β and CD19 depletion, have shown promise in reducing the risk of severe GvHD without increasing the relapse rates. Innovative strategies, such as haploidentical donor lymphocyte infusions, "suicide-switch" mechanisms, ORCA-Q product infusions, and CAR based therapies offer potential to further optimize outcomes. This review examines the graft manipulation modalities in the haplo-HCT setting, highlighting their role in advancing cellular therapies and providing new hope in the fight against life-threatening diseases.
Collapse
Affiliation(s)
- C C Astigarraga
- Fred Hutchinson Cancer Center, Seattle, WA, USA; Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil; Universidade Federal do Rio grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Klauberg Mpms
- Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
| | - L Iovino
- Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - F Milano
- Fred Hutchinson Cancer Center, Seattle, WA, USA.
| |
Collapse
|
23
|
Rassek K, Misiak J, Ołdak T, Rozwadowska N, Basak G, Kolanowski T. New player in CAR-T manufacture field: comparison of umbilical cord to peripheral blood strategies. Front Immunol 2025; 16:1561174. [PMID: 40191201 PMCID: PMC11968755 DOI: 10.3389/fimmu.2025.1561174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 02/28/2025] [Indexed: 04/09/2025] Open
Abstract
One of the most successful treatments in hematologic cancer is chimeric antigen receptor (CAR)-T cell-based immunotherapy. However, CAR-T therapy is not without challenges like the costly manufacturing process required to personalize each treatment for individual patients or graft-versus-host disease. Umbilical cord blood (UCB) has been most commonly used for hematopoietic cell transplant as it offers several advantages, including its rich source of hematopoietic stem cells, lower risk of graft-versus-host disease, and easier matching for recipients due to less stringent HLA requirements compared to bone marrow or peripheral blood stem cells. In this review, we have discussed the advantages and disadvantages of different CAR-T cell manufacturing strategies with the use of allogeneic and autologous peripheral blood cells. We compare them to the UCB approach and discuss ongoing pre-clinical and clinical trials in the field. Finally, we propose a cord blood bank as a readily available source of CAR-T cells.
Collapse
Affiliation(s)
- Karolina Rassek
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | | | - Tomasz Ołdak
- FamicordTx, Warsaw, Poland
- Polish Stem Cell Bank (PBKM), Warsaw, Poland
| | - Natalia Rozwadowska
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
- FamicordTx, Warsaw, Poland
| | - Grzegorz Basak
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Tomasz Kolanowski
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
- FamicordTx, Warsaw, Poland
| |
Collapse
|
24
|
Kim C, Han M, Kim G, Son W, Kim J, Gil M, Rhee YH, Sim NS, Kim CG, Kim HR. Preclinical investigation of anti-tumor efficacy of allogeneic natural killer cells combined with cetuximab for head and neck squamous cell carcinoma. Cancer Immunol Immunother 2025; 74:144. [PMID: 40063100 PMCID: PMC11893940 DOI: 10.1007/s00262-025-03959-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 01/27/2025] [Indexed: 03/14/2025]
Abstract
Head and neck squamous cell carcinoma (HNSCC) presents a significant therapeutic challenge because of the limited effectiveness of current treatments including immunotherapy and chemotherapy. This study investigated the potential of a novel combination therapy using allogeneic natural killer (NK) cells and cetuximab, an anti-epidermal growth factor receptor monoclonal antibody, to enhance anti-tumor efficacy in HNSCC. Allogeneic NK cells were tested against HNSCC cells in vitro and NOG (NOD/Shi-scid/IL-2Rγ null) xenograft mouse models for cytotoxicity. In vitro assays demonstrated enhanced cytotoxicity against HNSCC cells when NK cells were combined with cetuximab, a phenomenon attributed to antibody-dependent cellular cytotoxicity. In vivo, the combination therapy exhibited a significant anti-tumor effect compared to either monotherapy, with high NK cell infiltration and cytotoxic activity in the tumor microenvironment. Tumor infiltration by NK cells was confirmed using flow cytometry and immunohistochemistry, highlighting the increased presence of NK cells (CD3- CD56+). These findings suggest that combination allogeneic NK cells and cetuximab could be a potential therapeutic modality for HNSCC and provide a foundation for future clinical trials to improve patient outcomes.
Collapse
MESH Headings
- Cetuximab/pharmacology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/transplantation
- Animals
- Humans
- Head and Neck Neoplasms/therapy
- Head and Neck Neoplasms/immunology
- Head and Neck Neoplasms/pathology
- Mice
- Xenograft Model Antitumor Assays
- Carcinoma, Squamous Cell/therapy
- Carcinoma, Squamous Cell/immunology
- Carcinoma, Squamous Cell/pathology
- Squamous Cell Carcinoma of Head and Neck
- Cell Line, Tumor
- Mice, Inbred NOD
- Mice, SCID
- Antineoplastic Agents, Immunological/pharmacology
- Antineoplastic Agents, Immunological/therapeutic use
- Combined Modality Therapy
- Immunotherapy, Adoptive/methods
Collapse
Affiliation(s)
- Chaeyeon Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Mina Han
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Gamin Kim
- Department of Oncology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Wonrak Son
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jeongah Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Minchan Gil
- NKMAX Co., Ltd., Seongnam, Republic of Korea
| | | | - Nam Suk Sim
- Department of Otorhinolaryngology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chang Gon Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Hye Ryun Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
25
|
Martin Corredera M, Paillet J, Gaudeaux P, Blein T, Sadek H, Rault P, Berriche A, Roche-Naude J, Lagresle-Peyrou C, Soheili TS, André I, Moirangthem RD, Negre O. Feeder-cell-free system for ex vivo production of natural killer cells from cord blood hematopoietic stem and progenitor cells. Front Immunol 2025; 16:1531736. [PMID: 40051631 PMCID: PMC11883473 DOI: 10.3389/fimmu.2025.1531736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/23/2025] [Indexed: 03/09/2025] Open
Abstract
Introduction Natural Killer (NK) cells hold significant promise as therapeutic agents in immuno-oncology due to their ability to target and eliminate cancerous and infected cells without causing graft-versus-host disease or cytokine release syndrome. However, the limited availability of robust, scalable methods for generating clinical-grade NK cells remains a limiting factor to broader clinical application. Methods Here we report the development of a novel feeder-cell-free culture system optimized for producing NK cells from cord blood-derived CD34+ hematopoietic stem and progenitor cells (HSPCs). Our method eliminates the need for feeder cells while achieving high yields of NK cells that exhibit unique marker expression and cytotoxic functions. Cord blood CD34+ HSPCs were cultured in our established hDLL 4 culture system and generated large numbers of human T lymphoid progenitors (ProTcells) in 7 days. ProTcells were further cultured in a hDLL4-free, feeder-cell-free system for NK cell differentiation and supplemented with cytokines. Following a 7- or 14-day culture, this method produced highly pure NK cell populations (>90% CD3-CD56+). Results Flow and mass cytometric analysis confirmed the expression of activating receptors, transcription factors (ID2, T-bet) and cytotoxic molecules (perforin, granzyme A/B), all essential for ProT-NK cell functionality. These cells are in an immature state, indicated by the absence of maturation markers (CD16, KIRs). Functional assays demonstrated that these ProT-NK cells are capable of degranulation and cytokines production (TNFα) upon stimulation with K562 target cells and showed cytotoxicity against K562 cells superior to that of Peripheral Blood (PB)-NK. In NSG-Tg(hIL-15) mice, ProT-NK cells colonize bone marrow, the liver, and the spleen and persist and mature in bone marrow for at least 9 days post-injection. Compared to ProT-NK D21, ProT-NK D14 was superior in functional and homing potential. In vivo, an anti-tumor assay that uses a subcutaneous K562 model has demonstrated the anti-tumor potential of ProT-NK cells. Discussion Our ex vivo culture process supports scalable ProT-NK cell production in high yields, reducing dependency on feeder cells and mitigating contamination risks. Our findings demonstrate the feasibility of generating large, functional NK cell populations from HSPCs isolated from readily available cord blood sources and offer an efficient alternative to PB-NK cell therapies.
Collapse
Affiliation(s)
- Marta Martin Corredera
- Smart Immune, Research & Development department, Paris, France
- Laboratory of Human Lymphohematopoieisis, Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris, France
| | - Juliette Paillet
- Smart Immune, Research & Development department, Paris, France
- Laboratory of Human Lymphohematopoieisis, Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris, France
| | - Pierre Gaudeaux
- Smart Immune, Research & Development department, Paris, France
- Laboratory of Human Lymphohematopoieisis, Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris, France
| | - Tifanie Blein
- Laboratory of Human Lymphohematopoieisis, Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris, France
| | - Hanem Sadek
- Smart Immune, Research & Development department, Paris, France
| | - Pauline Rault
- Smart Immune, Research & Development department, Paris, France
| | - Asma Berriche
- Smart Immune, Research & Development department, Paris, France
| | | | - Chantal Lagresle-Peyrou
- Laboratory of Human Lymphohematopoieisis, Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris, France
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, AP-HP, INSERM, Paris, France
| | | | - Isabelle André
- Laboratory of Human Lymphohematopoieisis, Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris, France
| | - Ranjita Devi Moirangthem
- Smart Immune, Research & Development department, Paris, France
- Laboratory of Human Lymphohematopoieisis, Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris, France
| | - Olivier Negre
- Smart Immune, Research & Development department, Paris, France
| |
Collapse
|
26
|
Tharakan S, Tremblay D, Azzi J. Adoptive cell therapy in acute myeloid leukemia: the current landscape and emerging strategies. Leuk Lymphoma 2025; 66:204-217. [PMID: 39453877 DOI: 10.1080/10428194.2024.2414112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/24/2024] [Accepted: 10/03/2024] [Indexed: 10/27/2024]
Abstract
Efforts to produce adoptive cell therapies in AML have been largely unfruitful, despite the success seen in lymphoid malignancies. Identifying targetable antigens on leukemic cells that are absent on normal progenitor cells remains a major obstacle, as is the hostile tumor microenvironment created by AML blasts. In this review, we summarize the challenges in the development of adoptive cell therapies such as CAR-T, CAR-NK, and TCR-T cells in AML, discussing both autologous and allogeneic therapies. We also discuss methods to address myelotoxicity associated with these therapies, including rapidly switchable CAR platforms and CRISPR-Cas9 genetic engineering of hematopoietic stem cells. Finally, we present the current clinical landscape in these areas, along with future directions in the field.
Collapse
MESH Headings
- Humans
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/adverse effects
- Immunotherapy, Adoptive/trends
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/immunology
- Tumor Microenvironment/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Animals
- Hematopoietic Stem Cell Transplantation
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
Collapse
Affiliation(s)
- Serena Tharakan
- Department of Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Douglas Tremblay
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jacques Azzi
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
27
|
Sabahi M, Fathi Jouzdani A, Sadeghian Z, Dabbagh Ohadi MA, Sultan H, Salehipour A, Maniakhina L, Rezaei N, Adada B, Mansouri A, Borghei-Razavi H. CAR-engineered NK cells versus CAR T cells in treatment of glioblastoma; strength and flaws. J Neurooncol 2025; 171:495-530. [PMID: 39538038 DOI: 10.1007/s11060-024-04876-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Glioblastoma (GBM) is a highly aggressive primary brain tumor that carries a grim prognosis. Because of the dearth of treatment options available for treatment of GBM, Chimeric Antigen Receptor (CAR)-engineered T cell and Natural Killer (NK) therapy could provide alternative strategies to address the challenges in GBM treatment. In these approaches, CAR T and NK cells are engineered for cancer-specific immunotherapy by recognizing surface antigens independently of major histocompatibility complex (MHC) molecules. However, the efficacy of CAR T cells is hindered by GBM's downregulation of its targeted antigens. CAR NK cells face similar challenges, but, in contrast, they offer advantages as off-the-shelf allogeneic products, devoid of graft-versus-host disease (GVHD) risk as well as anti-cancer activity beyond CAR specificity, potentially reducing the risk of relapse or resistance. Despite CAR T cell therapies being extensively studied in clinical settings, the use of CAR-modified NK cells in GBM treatment remains largely in the preclinical stage. This review aims to discuss recent advancements in NK cell and CAR T cell therapies for GBM, including methods for introducing CARs into both NK cells and T cells, addressing manufacturing challenges, and providing evidence supporting the efficacy of these approaches from preclinical and early-phase clinical studies. The comprehensive evaluation of CAR-engineered NK cells and CAR T cells seeks to identify the optimal therapeutic approach for GBM, contributing to the development of effective immunotherapies for this devastating disease.
Collapse
Affiliation(s)
- Mohammadmahdi Sabahi
- Department of Neurological Surgery, Pauline Braathen Neurological Center, Cleveland Clinic Florida, Weston, FL, USA
| | - Ali Fathi Jouzdani
- Neurosurgery Research Group (NRG), Hamadan University of Medical Sciences, Hamadan, Iran
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zohre Sadeghian
- Department of Pathology & Laboratory Medicine, Cleveland Clinic Florida, Weston, FL, USA
| | | | - Hadi Sultan
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Arash Salehipour
- Neurosurgery Research Group (NRG), Hamadan University of Medical Sciences, Hamadan, Iran
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Lana Maniakhina
- Department of Neurosurgery, Geisinger and Geisinger Commonwealth School of Medicine, Wilkes-Barre, PA, USA
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Badih Adada
- Department of Neurological Surgery, Pauline Braathen Neurological Center, Cleveland Clinic Florida, Weston, FL, USA
| | - Alireza Mansouri
- Department of Neurosurgery, Penn State Milton S. Hershey Medical Center, Hershey, PA, USA.
| | - Hamid Borghei-Razavi
- Department of Neurological Surgery, Pauline Braathen Neurological Center, Cleveland Clinic Florida, Weston, FL, USA
| |
Collapse
|
28
|
van Ooijen H, Verron Q, Zhang H, Sandoz PA, Frisk TW, Carannante V, Olofsson K, Wagner AK, Sandström N, Önfelt B. A thermoplastic chip for 2D and 3D correlative assays combining screening and high-resolution imaging of immune cell responses. CELL REPORTS METHODS 2025; 5:100965. [PMID: 39826552 PMCID: PMC11841093 DOI: 10.1016/j.crmeth.2025.100965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/02/2024] [Accepted: 12/31/2024] [Indexed: 01/22/2025]
Abstract
We present an easy-to-use, disposable, thermoplastic microwell chip designed to support screening and high-resolution imaging of single-cell behavior in two- and three-dimensional (2D and 3D) cell cultures. We show that the chip has excellent optical properties and provide simple protocols for efficient long-term cell culture of suspension and adherent cells, the latter grown either as monolayers or as hundreds of single, uniformly sized spheroids. We then demonstrate the applicability of the system for single-cell analysis by correlating the dynamic cytotoxic response of single immune cells grown under different metabolic conditions to their intracellular cytolytic load at the end of the assay. Additionally, we illustrate highly multiplex cytotoxicity screening of tumor spheroids in the chip, comparing the effect of environment cues characteristic of the tumor microenvironment on natural killer (NK)-cell-induced killing. Following the functional screening, we perform high-resolution 3D immunofluorescent imaging of infiltrating NK cells within the spheroid volumes.
Collapse
Affiliation(s)
- Hanna van Ooijen
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Quentin Verron
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Hanqing Zhang
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Patrick A Sandoz
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Thomas W Frisk
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Valentina Carannante
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Karl Olofsson
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Arnika K Wagner
- Department of Medicine, Center for Hematology and Regenerative Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden; Haematology Center, Karolinska University Hospital, Stockholm, Sweden
| | - Niklas Sandström
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Björn Önfelt
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden; Department of Medicine, Center for Infectious Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
29
|
Hu Q, Xuan J, Wang L, Shen K, Gao Z, Zhou Y, Wei C, Gu J. Application of adoptive cell therapy in malignant melanoma. J Transl Med 2025; 23:102. [PMID: 39844295 PMCID: PMC11752767 DOI: 10.1186/s12967-025-06093-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/07/2025] [Indexed: 01/24/2025] Open
Abstract
Cutaneous melanoma is one of the most aggressive skin cancers originating from skin pigment cells. Patients with advanced melanoma suffer a poor prognosis and generally cannot benefit well from surgical resection and chemo/target therapy due to metastasis and drug resistance. Thus, adoptive cell therapy (ACT), employing immune cells with specific tumor-recognizing receptors, has emerged as a promising therapeutic approach to display on-tumor toxicity. This review discusses the application, efficacy, limitations, as well as future prospects of four commonly utilized approaches -including tumor-infiltrating lymphocytes, chimeric antigen receptor (CAR) T cell, engineered T-cell receptor T cells, and chimeric antigen receptor NK cells- in the context of malignant melanoma.
Collapse
Affiliation(s)
- Qianrong Hu
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Jiangying Xuan
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Lu Wang
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Kangjie Shen
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Zixu Gao
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Yuhong Zhou
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Chuanyuan Wei
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Jianying Gu
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
30
|
Wu F, Xu H, Zhang B. Transcription factor KLF2 is associated with the dysfunctional status of NK cells and the prognosis of pediatric B-ALL patients. Front Oncol 2025; 14:1456004. [PMID: 39906661 PMCID: PMC11791537 DOI: 10.3389/fonc.2024.1456004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/25/2024] [Indexed: 02/06/2025] Open
Abstract
Background Natural killer cells, an important component of the innate immune system, can directly recognize and lyse virally infected or transformed cells. However, NK cells fail to restrain the growth of malignancies, such as B-cell acute lymphoblastic leukemia (B-ALL). The molecular genetics of NK cells in the B-ALL bone marrow microenvironment and the mechanisms underlying the inhibited function of NK cells at the single-cell level remain largely elusive. Methods In this study, we studied the frequency and absolute number of NK cells in peripheral blood samples collected from 43 healthy volunteers and 104 pediatric B-ALL patients diagnosed at Hunan Children's Hospital. We also analyzed published single-cell RNA sequencing (scRNAseq) data from B-ALL and normal bone marrow samples using unsupervised clustering. Our findings were further validated using bulk transcriptomic data and clinical data from a cohort of 139 B-ALL bone marrow samples. Results We found that the frequency and number of NK cells were significantly decreased in the bone marrow and peripheral blood of B-ALL patients. In-depth analysis of scRNAseq data identified 12 NK cell clusters. Among them, the C2 cluster, which is present in healthy bone marrow but reduced in B-ALL bone marrow, displays overexpression of a transcription factor KLF2 and a significant downregulation of the "leukocyte proliferation" pathway. Furthermore, we found that the expression of KLF2 in B-ALL at diagnosis was positively correlated with the percentage of leukemia cells and the positive rate of minimal residual disease (MRD), indicating that KLF2 is a marker of poor prognosis. Conclusion There are dramatic differences at the single-cell level in the transcriptomics of NK cells between healthy donors and B-ALL patients. A transcription factor, KLF2, which is enriched in the C2 cluster of NK cells, has been suggested to regulate the proliferation of NK cells and is associated with poor prognosis of pediatric B-ALL.
Collapse
Affiliation(s)
| | | | - Benshan Zhang
- Department of Hematology and Oncology, The Affiliated Children’s Hospital of Xiangya School of Medicine, Central South University (Hunan Children’s Hospital), Changsha, Hunan, China
| |
Collapse
|
31
|
Agarwal D, Sharma G, Khadwal A, Toor D, Malhotra P. Advances in Vaccines, Checkpoint Blockade, and Chimeric Antigen Receptor-Based Cancer Immunotherapeutics. Crit Rev Immunol 2025; 45:65-80. [PMID: 39612278 DOI: 10.1615/critrevimmunol.2024053025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Increase in cancer cases and research driven by understanding its causes, facilitated development of novel targeted immunotherapeutic strategies to overcome nonspecific cytotoxicity associated with conventional chemotherapy and radiotherapy. These target specific immunotherapeutic regimens have been evaluated for their efficacy, including: (1) vaccines harnessing tumor specific/associated antigens, (2) checkpoint blockade therapy using monoclonal antibodies against PD1, CTLA-4 and others, and (3) adoptive cell transfer approaches viz. chimeric antigen receptor (CAR)-cell-based therapies. Here, we review recent advancements on these target specific translational immunotherapeutic strategies against cancer/s and concerned limitations.
Collapse
Affiliation(s)
- Disha Agarwal
- Department of Translational & Regenerative Medicine, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | | | - Alka Khadwal
- Department of Clinical Hematology and Medical Oncology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Devinder Toor
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Sector-125, Noida, 201313, Uttar Pradesh, India
| | - Pankaj Malhotra
- Department of Clinical Hematology and Medical Oncology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| |
Collapse
|
32
|
Lee S, Yoon JH, Kwag D, Min GJ, Park SS, Park S, Lee SE, Cho BS, Eom KS, Kim YJ, Kim HJ, Min CK, Cho SG, Lee S. Comparison of Long-Term Outcomes of Double Unit Cord Blood Versus Haploidentical Donor Transplantation in Adult Patients With Acute Lymphoblastic Leukemia Regarding KIR-Ligand Mismatch. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2025; 25:e11-e25.e1. [PMID: 39643563 DOI: 10.1016/j.clml.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Haploidentical donor transplantation (HIDT) or cord blood transplantation (CBT) are common alternatives for patients lacking human-leukocyte antigen (HLA)-matched donors. In addition to the donor source, NK cell alloreactivity due to HLA-mismatch setting may affect outcomes in alternative-donor hematopoietic cell transplantation (HCT). However, a limited number of studies have evaluated their impacts in adult acute lymphoblastic leukemia (ALL). OBJECTIVES We aimed to assess the effects of donor source and KIRL-MM on outcomes of alternative-donor HCT, with a special focus on adult ALL. STUDY DESIGN We retrospectively compared clinical outcomes between HIDT (n=47) and double unit CBT (DCBT) (n=134). Patients received fludarabine and busulfan-based reduced toxicity conditioning before HIDT, and TBI-based myeloablative conditioning before DCBT. KIR ligands were determined using a web-based calculator. For DCBT, donor KIR ligand groups were defined by the dominant CB unit after engraftment. RESULTS After a median follow-up of 39.4 months, DCBT showed higher 3-year non-relapse mortality (NRM) (22.8% vs. 9.0%, p=0.038), whereas the cumulative incidence of relapse (CIR) was significantly higher in HIDT (47.9% vs. 18.9%, p<0.001). Estimated disease-free survival (DFS) was comparable (DCBT 58.5% vs. HIDT 44.3%, p=0.106). GVH direction KIRL-MM showed lower incidence of acute GVHD in both HIDT and DCBT. However, GVH direction KIRL-MM was associated with poorer DFS (37.2% vs. 66.0%, p=0.008) only in the DCBT subgroup, mostly due to specifically higher NRM rate (35.0% vs 18.4%, p=0.057). CONCLUSION Our study supports the usefulness of DCBT in the HIDT-dominant era and suggests potential ways to improve survival outcomes of DCBT.
Collapse
Affiliation(s)
- Seonghan Lee
- Department of Hematology, Catholic Hematology Hospital and Leukemia Research Institute, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul, Republic of Korea
| | - Jae-Ho Yoon
- Department of Hematology, Catholic Hematology Hospital and Leukemia Research Institute, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul, Republic of Korea
| | - Daehun Kwag
- Department of Hematology, Catholic Hematology Hospital and Leukemia Research Institute, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul, Republic of Korea
| | - Gi-June Min
- Department of Hematology, Catholic Hematology Hospital and Leukemia Research Institute, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul, Republic of Korea
| | - Sung-Soo Park
- Department of Hematology, Catholic Hematology Hospital and Leukemia Research Institute, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul, Republic of Korea
| | - Silvia Park
- Department of Hematology, Catholic Hematology Hospital and Leukemia Research Institute, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul, Republic of Korea
| | - Sung-Eun Lee
- Department of Hematology, Catholic Hematology Hospital and Leukemia Research Institute, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul, Republic of Korea
| | - Byung-Sik Cho
- Department of Hematology, Catholic Hematology Hospital and Leukemia Research Institute, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul, Republic of Korea
| | - Ki-Seong Eom
- Department of Hematology, Catholic Hematology Hospital and Leukemia Research Institute, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul, Republic of Korea
| | - Yoo-Jin Kim
- Department of Hematology, Catholic Hematology Hospital and Leukemia Research Institute, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul, Republic of Korea
| | - Hee-Je Kim
- Department of Hematology, Catholic Hematology Hospital and Leukemia Research Institute, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul, Republic of Korea
| | - Chang-Ki Min
- Department of Hematology, Catholic Hematology Hospital and Leukemia Research Institute, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul, Republic of Korea
| | - Seok-Goo Cho
- Department of Hematology, Catholic Hematology Hospital and Leukemia Research Institute, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul, Republic of Korea
| | - Seok Lee
- Department of Hematology, Catholic Hematology Hospital and Leukemia Research Institute, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul, Republic of Korea.
| |
Collapse
|
33
|
Li W, Feng J, Peng J, Zhang X, Aziz AUR, Wang D. Chimeric antigen receptor-natural killer (CAR-NK) cell immunotherapy: A bibliometric analysis from 2004 to 2023. Hum Vaccin Immunother 2024; 20:2415187. [PMID: 39414236 PMCID: PMC11486046 DOI: 10.1080/21645515.2024.2415187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/25/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024] Open
Abstract
Chimeric antigen receptor-natural killer (CAR-NK) cells represent a breakthrough in cancer immunotherapy, making this a highly popular research area. However, comprehensive analyses of this field using bibliometric methods are rare. To our knowledge, this study has collected highest number of publications (1,259) on CAR-NK therapy from January 1, 2004, to December 31, 2023, and utilized CiteSpace and VOSviewer to analyze regions, institutions, journals, authors, and keywords to forecast the latest trends in CAR-NK therapy research. The United States and China, contributing over 60% of publications, are the primary drivers in this field. The Helmholtz Association and Harvard University are the most active institutions, with most publications appearing in Frontiers in Immunology. Winfried S. Wels is the most prolific author, while EL Liu is the most frequently co-cited author. "Immunotherapy," "T-cells," and "Cancer" are the most extensively covered topics in CAR-NK therapy research. Our study reveals current CAR-NK research trends, identifies potential research hotspots, and visualizes references through bibliometric methods, providing valuable guidance for future research in this field.
Collapse
Affiliation(s)
- Wangshu Li
- Key Laboratory for Early Diagnosis and Biotherapy of Malignant Tumors in Children and Women in Liaoning Province, Dalian Women and Children’s Medical Group, Dalian, Liaoning, China
| | - Jiuxiang Feng
- Key Laboratory for Early Diagnosis and Biotherapy of Malignant Tumors in Children and Women in Liaoning Province, Dalian Women and Children’s Medical Group, Dalian, Liaoning, China
| | - Jianan Peng
- General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xu Zhang
- The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Aziz Ur Rehman Aziz
- Key Laboratory for Early Diagnosis and Biotherapy of Malignant Tumors in Children and Women in Liaoning Province, Dalian Women and Children’s Medical Group, Dalian, Liaoning, China
| | - Daqing Wang
- Key Laboratory for Early Diagnosis and Biotherapy of Malignant Tumors in Children and Women in Liaoning Province, Dalian Women and Children’s Medical Group, Dalian, Liaoning, China
| |
Collapse
|
34
|
Mathews JA, Borovsky DT, Reid KT, Murphy JM, Colpitts SJ, Carreira AS, Moya TA, Chung DC, Novitzky-Basso I, Mattsson J, Ohashi PS, Crome SQ. Single cell profiling of hematopoietic stem cell transplant recipients reveals TGF-β1 and IL-2 confer immunoregulatory functions to NK cells. iScience 2024; 27:111416. [PMID: 39720529 PMCID: PMC11667056 DOI: 10.1016/j.isci.2024.111416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/07/2024] [Accepted: 11/14/2024] [Indexed: 12/26/2024] Open
Abstract
Natural killer (NK) cell activity is influenced by cytokines and microenvironment factors, resulting in remarkably diverse functions, by contributing to inflammatory responses or serving as rheostats of adaptive immunity. Using single cell RNA sequencing (scRNA-seq), we identified a TGFβ1 highCD56brightNK cell population associated with hematopoietic stem cell transplant recipients protected from acute graft-versus-host disease (GVHD). We further define a role for the combination of interleukin-2 (IL-2) and transforming growth factor β1 (TGF-β1) in promoting a regulatory phenotype in NK cells. "Induced" regulatory NK cells produce high amounts of TGF-β1, inhibited T cells, could promote naive T cells differentiation into regulatory T cells, and exhibited a unique transcriptional program that includes expression of IKZF2 (HELIOS) and ZNF683 (HOBIT). This phenotype was not stable, and "induced" regulatory NK cells lost the ability to secrete TGF-β1 upon exposure to different cytokines. These findings define protective CD56brightNK cells post-hematopoietic stem cell transplantation, and demonstrate the combination of IL-2 and TGF-β1 promotes regulatory activity in NK cells.
Collapse
Affiliation(s)
- Jessica A. Mathews
- Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Dorota T. Borovsky
- Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, ON M5G 1L7, Canada
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Kyle T. Reid
- Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, ON M5G 1L7, Canada
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Julia M. Murphy
- Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, ON M5G 1L7, Canada
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sarah J. Colpitts
- Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, ON M5G 1L7, Canada
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Abel Santos Carreira
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G2C4, Canada
| | - Tommy Alfaro Moya
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G2C4, Canada
| | - Douglas C. Chung
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G2C4, Canada
| | - Igor Novitzky-Basso
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G2C4, Canada
| | - Jonas Mattsson
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G2C4, Canada
| | - Pamela S. Ohashi
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G2C4, Canada
| | - Sarah Q. Crome
- Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, ON M5G 1L7, Canada
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
35
|
Kayser S, Salzmann-Manrique E, Serve H, Bader P, Klusmann JH, Seidl C, Schwäble J, Bug G, Ullrich E. Impact of inhibitory KIR ligand mismatch and other variables on outcomes following myeloablative posttransplant cyclophosphamide-based T-cell-replete haploidentical bone marrow transplantation. Front Immunol 2024; 15:1413927. [PMID: 39737173 PMCID: PMC11683009 DOI: 10.3389/fimmu.2024.1413927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 11/14/2024] [Indexed: 01/01/2025] Open
Abstract
Introduction Posttransplant cyclophosphamide (PTCy) has revolutionized the landscape of human leukocyte antigen (HLA)-haploidentical hematopoietic cell transplantation (haplo-HCT), providing a pivotal therapeutic option for patients with hematological malignancies who lack an HLA-matched donor. Methods In this retrospective analysis involving 54 adult patients undergoing PTCy-based haplo-HCT, we evaluated the impact of inhibitory killer immunoglobulin-like receptor (KIR)/HLA mismatch, alongside patient, donor, and transplant factors, on clinical outcomes within a homogeneous cohort characterized by a myeloablative conditioning regimen and bone marrow graft. Results With a median follow-up of 73.2 months, our findings reveal promising outcomes: 6-year overall survival, relapse-free survival, and graft-versus-host disease (GVHD) and relapse-free survival rates were 63% (95% CI: 51-79), 58% (95% CI: 46-74), and 42% (95% CI: 30-58), respectively. Notably, the cumulative incidence rates of relapse and non-relapse mortality at 6 years post-haplo-HCT were 29% (95% CI: 19-45) and 12% (95% CI: 6-26), respectively. Acute GVHD at day 100 posttransplantation occurred with a cumulative incidence of 33% (95% CI: 22- 49) for grades II-IV and 9% (95% CI: 3-23) for grades III-IV. Furthermore, 41% of patients developed chronic GVHD within 1 year posttransplantation, distributed as follows: 28% mild, 9% moderate, and 4% severe. Conclusion Within our cohort, several variables were associated with outcomes following PTCy-based haplo-HCT. However, inhibitory KIR/HLA mismatch did not influence these outcomes.
Collapse
Affiliation(s)
- Sarah Kayser
- Department of Medicine 2, University Hospital, Goethe University Frankfurt, Frankfurt, Germany
- Department of Hematology, Oncology and Cancer Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner site Frankfurt/Mainz, a partnership between DKFZ and University Medical Center Frankfurt, Frankfurt, Germany
| | | | - Hubert Serve
- Department of Medicine 2, University Hospital, Goethe University Frankfurt, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner site Frankfurt/Mainz, a partnership between DKFZ and University Medical Center Frankfurt, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| | - Peter Bader
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| | - Jan-Henning Klusmann
- German Cancer Consortium (DKTK), Partner site Frankfurt/Mainz, a partnership between DKFZ and University Medical Center Frankfurt, Frankfurt, Germany
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| | - Christian Seidl
- Institute for Transfusion Medicine and Immunohematology, German Red Cross Blood Donor Service, Goethe University Hospital Medical School, Frankfurt, Germany
| | - Joachim Schwäble
- Institute for Transfusion Medicine and Immunohematology, German Red Cross Blood Donor Service, Goethe University Hospital Medical School, Frankfurt, Germany
| | - Gesine Bug
- Department of Medicine 2, University Hospital, Goethe University Frankfurt, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner site Frankfurt/Mainz, a partnership between DKFZ and University Medical Center Frankfurt, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| | - Evelyn Ullrich
- German Cancer Consortium (DKTK), Partner site Frankfurt/Mainz, a partnership between DKFZ and University Medical Center Frankfurt, Frankfurt, Germany
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| |
Collapse
|
36
|
Pashkina E, Blinova E, Bykova M, Aktanova A, Denisova V. Cell Therapy as a Way to Increase the Effectiveness of Hematopoietic Stem Cell Transplantation. Cells 2024; 13:2056. [PMID: 39768148 PMCID: PMC11675046 DOI: 10.3390/cells13242056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/07/2024] [Accepted: 12/10/2024] [Indexed: 01/04/2025] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) is a standard method for treating a number of pathologies, primarily blood diseases. Timely restoration of the immune system after HSCT is a critical factor associated with the development of complications such as relapses or secondary tumors and various infections, as well as the graft-versus-host reaction in allogeneic transplantation, which ultimately affects the survival of patients. Introduction into the recipient's body of immune system cells that are incapable of sensitization by recipient antigens during the period of immune reconstitution can increase the rate of restoration of the immune system, as well as reduce the risk of complications. This review presents the results of studies on cell therapy with various cell subpopulations of both bone marrow and mesenchymal origin during HSCT.
Collapse
Affiliation(s)
- Ekaterina Pashkina
- Research Institute of Fundamental and Clinical Immunology, 14, Yadrintsevskaya st., 630099 Novosibirsk, Russia; (E.B.); (M.B.); (A.A.); (V.D.)
- Department of Clinical Immunology, Novosibirsk State Medical University, 52, Krasny Prospect, 630091 Novosibirsk, Russia
| | - Elena Blinova
- Research Institute of Fundamental and Clinical Immunology, 14, Yadrintsevskaya st., 630099 Novosibirsk, Russia; (E.B.); (M.B.); (A.A.); (V.D.)
| | - Maria Bykova
- Research Institute of Fundamental and Clinical Immunology, 14, Yadrintsevskaya st., 630099 Novosibirsk, Russia; (E.B.); (M.B.); (A.A.); (V.D.)
| | - Alina Aktanova
- Research Institute of Fundamental and Clinical Immunology, 14, Yadrintsevskaya st., 630099 Novosibirsk, Russia; (E.B.); (M.B.); (A.A.); (V.D.)
- Department of Clinical Immunology, Novosibirsk State Medical University, 52, Krasny Prospect, 630091 Novosibirsk, Russia
| | - Vera Denisova
- Research Institute of Fundamental and Clinical Immunology, 14, Yadrintsevskaya st., 630099 Novosibirsk, Russia; (E.B.); (M.B.); (A.A.); (V.D.)
| |
Collapse
|
37
|
Mancusi A, Ruggeri L, Pierini A. Novel conditioning and prophylaxis regimens for relapse prevention. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2024; 2024:627-634. [PMID: 39644026 DOI: 10.1182/hematology.2024000590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
The last 20 years witnessed relevant clinical advancements in the field of hematopoietic cell transplantation (HCT) for leukemia patients. The introduction of novel conditioning regimens, a better prophylaxis and management of graft- versus-host disease, and an ameliorated posttransplant support system improved safety and, therefore, outcomes. On the other hand, leukemia relapse remains the major cause of allogeneic HCT failure. Efforts have been made to understand the mechanisms of leukemia relapse, and new insights that clarify how donor immunity exerts graft-versus- leukemia (GVL) activity are available. Such studies set the base to design novel transplant strategies that can improve disease control. In our review we begin by discussing the most relevant criteria to choose a donor that provides a strong GVL effect. We also report some of the novel conditioning regimens that aim to deliver and extend myeloablation in order to reduce the disease burden at time of graft infusion. Finally, we discuss how the graft can be manipulated to limit the use of immune suppression and ensure potent antileukemic activity.
Collapse
Affiliation(s)
- Antonella Mancusi
- Division of Hematology, Department of Medicine and Surgery, University of Perugia, Italy
| | | | - Antonio Pierini
- Division of Hematology, Department of Medicine and Surgery, University of Perugia, Italy
| |
Collapse
|
38
|
Mohty R, Al Kadhimi Z, Kharfan-Dabaja M. Post-transplant cyclophosphamide or cell selection in haploidentical allogeneic hematopoietic cell transplantation? Hematology 2024; 29:2326384. [PMID: 38597828 DOI: 10.1080/16078454.2024.2326384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/28/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND One major limitation for broader applicability of allogeneic hematopoietic cell transplantation (allo-HCT) in the past was the lack of HLA-matched histocompatible donors. Preclinical mouse studies using T-cell depleted haploidentical grafts led to an increased interest in the use of ex vivo T-cell depleted (TCD) haploidentical allo-HCT. TCD grafts through negative (T-cell depletion) or positive (CD34+ cell selection) techniques have been investigated to reduce the risk of graft-versus-host disease (GVHD) given the known implications of alloreactive T cells. A more practical approach to deplete alloreactive T cells in vivo using high doses of cyclophosphamide after allografting has proved to be feasible in overcoming the HLA barrier. Such approach has extended allo-HCT feasibility to patients for whom donors could not be found in the past. Nowadays, haploidentical donors represent a common donor source for patients in need of an allo-HCT. The broad application of haploidentical donors became possible by understanding the importance of depleting alloreactive donor T cells to facilitate engraftment and reduce incidence and severity of GVHD. These techniques involve ex vivo graft manipulation or in vivo utilization of pharmacologic agents, notably post-transplant cyclophosphamide (PTCy). DISCUSSION While acknowledging that no randomized controlled prospective studies have been yet conducted comparing TCD versus PTCy in haploidentical allo-HCT recipients, there are two advantages that would favor the PTCy, namely ease of application and lower cost. However, emerging data on adverse events associated with PTCy including, but not limited to cardiac associated toxicities or increased incidence of post-allograft infections, and others, are important to recognize.
Collapse
Affiliation(s)
- Razan Mohty
- Division of Hematology Oncology, Department of Medicine, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Zaid Al Kadhimi
- Division of Hematology Oncology, Department of Medicine, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Mohamed Kharfan-Dabaja
- Division of Hematology-Oncology, Blood and Marrow Transplantation Program, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
39
|
Rados M, Landegger A, Schmutzler L, Rabidou K, Taschner-Mandl S, Fetahu IS. Natural killer cells in neuroblastoma: immunological insights and therapeutic perspectives. Cancer Metastasis Rev 2024; 43:1401-1417. [PMID: 39294470 PMCID: PMC11554946 DOI: 10.1007/s10555-024-10212-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/10/2024] [Indexed: 09/20/2024]
Abstract
Natural killer (NK) cells have multifaceted roles within the complex tumor milieu. They are pivotal components of innate immunity and shape the dynamic landscape of tumor-immune cell interactions, and thus can be leveraged for use in therapeutic interventions. NK-based immunotherapies have had remarkable success in hematological malignancies, but these therapies are met with many challenges in solid tumors, including neuroblastoma (NB), a childhood tumor arising from the sympathetic nervous system. With a focus on NB, this review outlines the mechanisms employed by NK cells to recognize and eliminate malignant cells, delving into the dynamic relationship between ligand-receptor interactions, cytokines, and other molecules that facilitate the cross talk between NK and NB cells. We discuss the immunomodulatory functions of NK cells and the mechanisms that contribute to loss of this immunosurveillance in NB, with a focus on how this dynamic has been utilized in recent immunotherapy advancements for NB.
Collapse
Affiliation(s)
- Magdalena Rados
- St. Anna Children's Cancer Research Institute, Vienna, Austria
| | | | - Lukas Schmutzler
- Department of Otorhinolaryngology - Head and Neck Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Kimberlie Rabidou
- Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, USA
| | | | - Irfete S Fetahu
- Department of Neurology, Division of Neuropathology and Neurochemistry, Medical University of Vienna, Vienna, Austria.
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
40
|
Duléry R, Piccinelli S, Beg MS, Jang JE, Romee R. Haploidentical hematopoietic cell transplantation as a platform for natural killer cell immunotherapy. Am J Hematol 2024; 99:2340-2350. [PMID: 39248561 DOI: 10.1002/ajh.27471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/19/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024]
Abstract
An innovative approach is crucially needed to manage relapse after allogeneic hematopoietic cell transplantation (HCT) in patients with advanced hematological malignancies. This review explores key aspects of haploidentical HCT with post-transplant cyclophosphamide, highlighting the potential and suitability of this platform for natural killer (NK) cell immunotherapy. NK cells, known for their unique abilities to eliminate cancer cells, can also exhibit memory-like features and enhanced cytotoxicity when activated by cytokines. By discussing promising results from clinical trials, the review delves into the recent major advances: donor-derived NK cells can be expanded ex vivo in large numbers, cytokine activation may enhance NK cell persistence and efficacy in vivo, and post-HCT NK cell infusion can improve outcomes in high-risk and/or relapsed myeloid malignancies without increasing the risk of graft-versus-host disease, severe cytokine release syndrome, or neurotoxicity. Looking ahead, cytokine-activated NK cells can be synergized with immunomodulatory agents and/or genetically engineered to enhance their tumor-targeting specificity, cytotoxicity, and persistence while preventing exhaustion. The ongoing exploration of these strategies holds promising preliminary results and could be rapidly translated into clinical applications for the benefit of the patients.
Collapse
Affiliation(s)
- Rémy Duléry
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Sara Piccinelli
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Ji Eun Jang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Department of Hematology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Rizwan Romee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
41
|
Vittayawacharin P, Kongtim P, Ciurea SO. Future directions in haploidentical hematopoietic stem cell transplantation. Hematology 2024; 29:2366718. [PMID: 38889342 DOI: 10.1080/16078454.2024.2366718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
Outcomes of haploidentical hematopoietic stem cell transplantation (haplo-SCT) have improved over time. Graft failure and graft-versus-host disease (GVHD), which were important complications in major human leukocyte antigen (HLA)-disparity stem cell transplantation, have significantly decreased. These improvements have led to an exponential increase in the use of haploidentical donors for transplantation, as well as in the number of publications evaluating haplo-SCT outcomes. Many studies focused on factors important in donor selection, novel conditioning regimens or GVHD prophylaxis, the impact of donor-specific anti-HLA antibodies (DSA), as well as strategies to prevent disease relapse post-transplant. DSA represents an important limitation and multimodality desensitization protocols, including plasma exchange, rituximab, intravenous immunoglobulin and donor buffy coat infusion, can contribute to the successful engraftment in patients with high DSA levels and is currently the standard therapy for highly allosensitized individuals. With regards to donor selection, younger donors are preferred due to lower risk of complications and better transplant outcomes. Moreover, recent studies also showed that younger haploidentical donors may be a better choice than older-matched unrelated donors. Improvement of disease relapse remains a top priority, and several studies have demonstrated that higher natural killer (NK) cell numbers early post-transplant are associated with improved outcomes. Prospective studies have started to assess the role of NK cell administration in decreasing post-transplant relapse. These studies suggest that the incorporation of other cell products post-transplant, including the administration of chimeric antigen receptor T-cells, should be explored in the future.
Collapse
Affiliation(s)
- Pongthep Vittayawacharin
- Hematopoietic Stem Cell Transplantation and Cellular Therapy Program, Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, CA, USA
- Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand
| | - Piyanuch Kongtim
- Hematopoietic Stem Cell Transplantation and Cellular Therapy Program, Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, CA, USA
| | - Stefan O Ciurea
- Hematopoietic Stem Cell Transplantation and Cellular Therapy Program, Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, CA, USA
| |
Collapse
|
42
|
Stubbins RJ, Cherniawsky H, Karsan A. Cellular and immunotherapies for myelodysplastic syndromes. Semin Hematol 2024; 61:397-408. [PMID: 39426936 DOI: 10.1053/j.seminhematol.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 09/17/2024] [Indexed: 10/21/2024]
Abstract
In this review article, we outline the current landscape of immune and cell therapy-based approaches for patients with myelodysplastic syndromes (MDS). Given the well characterized graft-versus-leukemia (GVL) effect observed with allogeneic hematopoietic cell transplantation, and the known immune escape mechanisms observed in MDS cells, significant interest exists in developing immune-based approaches to treat MDS. These attempts have included antibody-based drugs that block immune escape molecules, such as inhibitors of the PD-1/PD-L1 and TIM-3/galectin-9 axes that mediate interactions between MDS cells and T-lymphocytes, as well as antibodies that block the CD47/SIRPα interaction, which mediates macrophage phagocytosis. Unfortunately, these approaches have been largely unsuccessful. There is significant potential for T-cell engaging therapies and chimeric antigen receptor T (CAR-T) cells, but there are also several limitations to these approaches that are unique to MDS. However, many of these limitations may be overcome by the next generation of cellular therapies, including those with engineered T-cell receptors or natural killer (NK)-cell based platforms. Regardless of the approach, all these immune cells are subject to the complex bone marrow microenvironment in MDS, which harbours a variable and heterogeneous mix of pro-inflammatory cytokines and immunosuppressive elements. Understanding this interaction will be paramount to ensuring the success of immune and cellular therapies in MDS.
Collapse
Affiliation(s)
- Ryan J Stubbins
- Leukemia/BMT Program of BC, BC Cancer, Vancouver V5Z 1M9, BC, Canada; Division of Hematology, Department of Medicine, University of British Columbia, Vancouver V5Z 1M9, BC, Canada.
| | - Hannah Cherniawsky
- Leukemia/BMT Program of BC, BC Cancer, Vancouver V5Z 1M9, BC, Canada; Division of Hematology, Department of Medicine, University of British Columbia, Vancouver V5Z 1M9, BC, Canada
| | - Aly Karsan
- Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 1L3, Canada.
| |
Collapse
|
43
|
Qiao W, Dong P, Chen H, Zhang J. Advances in Induced Pluripotent Stem Cell-Derived Natural Killer Cell Therapy. Cells 2024; 13:1976. [PMID: 39682724 PMCID: PMC11640743 DOI: 10.3390/cells13231976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Natural killer (NK) cells are cytotoxic lymphocytes of the innate immune system capable of killing virus-infected cells and/or cancer cells. The commonly used NK cells for therapeutic applications include primary NK cells and immortalized NK cell lines. However, primary NK cell therapy faces limitations due to its restricted proliferation capacity and challenges in stable storage. Meanwhile, the immortalized NK-92 cell line requires irradiation prior to infusion, which reduces its cytotoxic activity, providing a ready-made alternative and overcoming these bottlenecks. Recent improvements in differentiation protocols for iPSC-derived NK cells have facilitated the clinical production of iPSC-NK cells. Moreover, iPSC-NK cells can be genetically modified to enhance tumor targeting and improve the expansion and persistence of iPSC-NK cells, thereby achieving more robust antitumor efficacy. This paper focuses on the differentiation-protocols efforts of iPSC-derived NK cells and the latest progress in iPSC-NK cell therapy. Additionally, we discuss the current challenges faced by iPSC-NK cells and provide an outlook on future applications and developments.
Collapse
Affiliation(s)
- Wenhua Qiao
- CAMS Key Laboratory for T Cell and Immunotherapy, State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China;
| | - Peng Dong
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou 213000, China;
| | - Hui Chen
- CAMS Key Laboratory for T Cell and Immunotherapy, State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China;
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou 213000, China;
| | - Jianmin Zhang
- CAMS Key Laboratory for T Cell and Immunotherapy, State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China;
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou 213000, China;
| |
Collapse
|
44
|
Portale F, Carriero R, Iovino M, Kunderfranco P, Pandini M, Marelli G, Morina N, Lazzeri M, Casale P, Colombo P, De Simone G, Camisaschi C, Lugli E, Basso G, Cibella J, Marchini S, Bordi M, Meregalli G, Garbin A, Dambra M, Magrini E, Rackwitz W, Cecconi F, Corbelli A, Fiordaliso F, Eitler J, Tonn T, Di Mitri D. C/EBPβ-dependent autophagy inhibition hinders NK cell function in cancer. Nat Commun 2024; 15:10343. [PMID: 39609420 PMCID: PMC11604937 DOI: 10.1038/s41467-024-54355-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 11/05/2024] [Indexed: 11/30/2024] Open
Abstract
NK cells are endowed with tumor killing ability, nevertheless most cancers impair NK cell functionality, and cell-based therapies have limited efficacy in solid tumors. How cancers render NK cell dysfunctional is unclear, and overcoming resistance is an important immune-therapeutic aim. Here, we identify autophagy as a central regulator of NK cell anti-tumor function. Analysis of differentially expressed genes in tumor-infiltrating versus non-tumor NK cells from our previously published scRNA-seq data of advanced human prostate cancer shows deregulation of the autophagic pathway in tumor-infiltrating NK cells. We confirm this by flow cytometry in patients and in diverse cancer models in mice. We further demonstrate that exposure of NK cells to cancer deregulates the autophagic process, decreases mitochondrial polarization and impairs effector functions. Mechanistically, CCAAT enhancer binding protein beta (C/EBPβ), downstream of CXCL12-CXCR4 interaction, acts as regulator of NK cell metabolism. Accordingly, inhibition of CXCR4 and C/EBPβ restores NK cell fitness. Finally, genetic and pharmacological activation of autophagy improves NK cell effector and cytotoxic functions, which enables tumour control by NK and CAR-NK cells. In conclusion, our study identifies autophagy as an intracellular checkpoint in NK cells and introduces autophagy regulation as an approach to strengthen NK-cell-based immunotherapies.
Collapse
Affiliation(s)
- Federica Portale
- IRCCS Humanitas Research Hospital, Tumor Microenviroment Unit, 20089, Via Manzoni 56, Rozzano, Milan, Italy
| | - Roberta Carriero
- IRCCS Humanitas Research Hospital, Bioinformatics Unit, 20089, Via Manzoni 56, Rozzano, Milan, Italy
| | - Marta Iovino
- IRCCS Humanitas Research Hospital, Tumor Microenviroment Unit, 20089, Via Manzoni 56, Rozzano, Milan, Italy
| | - Paolo Kunderfranco
- IRCCS Humanitas Research Hospital, Bioinformatics Unit, 20089, Via Manzoni 56, Rozzano, Milan, Italy
| | - Marta Pandini
- IRCCS Humanitas Research Hospital, Tumor Microenviroment Unit, 20089, Via Manzoni 56, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, 20072, Via Rita Levi Montalcini 4, Pieve Emanuele, Milan, Italy
| | - Giulia Marelli
- IRCCS Humanitas Research Hospital, Tumor Microenviroment Unit, 20089, Via Manzoni 56, Rozzano, Milan, Italy
| | - Nicolò Morina
- IRCCS Humanitas Research Hospital, Tumor Microenviroment Unit, 20089, Via Manzoni 56, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, 20072, Via Rita Levi Montalcini 4, Pieve Emanuele, Milan, Italy
| | - Massimo Lazzeri
- IRCCS Humanitas Research Hospital, Urology Unit, 20089, Via Manzoni 56, Rozzano, Milan, Italy
| | - Paolo Casale
- IRCCS Humanitas Research Hospital, Urology Unit, 20089, Via Manzoni 56, Rozzano, Milan, Italy
| | - Piergiuseppe Colombo
- IRCCS Humanitas Research Hospital, Department of Pathology, 20089, Via Manzoni 56, Rozzano, Milan, Italy
| | - Gabriele De Simone
- IRCCS Humanitas Research Hospital, Flow Cytometry Core, 20089, Via Manzoni 56, Rozzano, Milan, Italy
| | - Chiara Camisaschi
- IRCCS Humanitas Research Hospital, Flow Cytometry Core, 20089, Via Manzoni 56, Rozzano, Milan, Italy
| | - Enrico Lugli
- IRCCS Humanitas Research Hospital, Flow Cytometry Core, 20089, Via Manzoni 56, Rozzano, Milan, Italy
| | - Gianluca Basso
- IRCCS Humanitas Research Hospital, Genomics Unit, 20089, Via Manzoni 56, Rozzano, Milan, Italy
| | - Javier Cibella
- IRCCS Humanitas Research Hospital, Genomics Unit, 20089, Via Manzoni 56, Rozzano, Milan, Italy
| | - Sergio Marchini
- IRCCS Humanitas Research Hospital, Genomics Unit, 20089, Via Manzoni 56, Rozzano, Milan, Italy
| | - Matteo Bordi
- Department of Basic Biological science, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Greta Meregalli
- IRCCS Humanitas Research Hospital, Tumor Microenviroment Unit, 20089, Via Manzoni 56, Rozzano, Milan, Italy
| | - Anna Garbin
- IRCCS Humanitas Research Hospital, Tumor Microenviroment Unit, 20089, Via Manzoni 56, Rozzano, Milan, Italy
| | - Monica Dambra
- IRCCS Humanitas Research Hospital, Immunopathology Lab, 20089, Via Manzoni 56, Rozzano, Milan, Italy
| | - Elena Magrini
- IRCCS Humanitas Research Hospital, Immunopathology Lab, 20089, Via Manzoni 56, Rozzano, Milan, Italy
| | - Wiebke Rackwitz
- Experimental Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
- Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, Dresden, Germany
| | - Francesco Cecconi
- Department of Basic Biological science, Università Cattolica del Sacro Cuore, Rome, Italy
- IRCCS, Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
| | - Alessandro Corbelli
- Unit of Bio-imaging, Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Fabio Fiordaliso
- Unit of Bio-imaging, Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Jiri Eitler
- Experimental Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
- Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
| | - Torsten Tonn
- Experimental Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
- Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
| | - Diletta Di Mitri
- IRCCS Humanitas Research Hospital, Tumor Microenviroment Unit, 20089, Via Manzoni 56, Rozzano, Milan, Italy.
- Department of Biomedical Sciences, Humanitas University, 20072, Via Rita Levi Montalcini 4, Pieve Emanuele, Milan, Italy.
| |
Collapse
|
45
|
Chen S, Zhu H, Jounaidi Y. Comprehensive snapshots of natural killer cells functions, signaling, molecular mechanisms and clinical utilization. Signal Transduct Target Ther 2024; 9:302. [PMID: 39511139 PMCID: PMC11544004 DOI: 10.1038/s41392-024-02005-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/25/2024] [Accepted: 09/17/2024] [Indexed: 11/15/2024] Open
Abstract
Natural killer (NK) cells, initially identified for their rapid virus-infected and leukemia cell killing and tumor destruction, are pivotal in immunity. They exhibit multifaceted roles in cancer, viral infections, autoimmunity, pregnancy, wound healing, and more. Derived from a common lymphoid progenitor, they lack CD3, B-cell, or T-cell receptors but wield high cytotoxicity via perforin and granzymes. NK cells orchestrate immune responses, secreting inflammatory IFNγ or immunosuppressive TGFβ and IL-10. CD56dim and CD56bright NK cells execute cytotoxicity, while CD56bright cells also regulate immunity. However, beyond the CD56 dichotomy, detailed phenotypic diversity reveals many functional subsets that may not be optimal for cancer immunotherapy. In this review, we provide comprehensive and detailed snapshots of NK cells' functions and states of activation and inhibitions in cancer, autoimmunity, angiogenesis, wound healing, pregnancy and fertility, aging, and senescence mediated by complex signaling and ligand-receptor interactions, including the impact of the environment. As the use of engineered NK cells for cancer immunotherapy accelerates, often in the footsteps of T-cell-derived engineering, we examine the interactions of NK cells with other immune effectors and relevant signaling and the limitations in the tumor microenvironment, intending to understand how to enhance their cytolytic activities specifically for cancer immunotherapy.
Collapse
Affiliation(s)
- Sumei Chen
- Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China.
| | - Haitao Zhu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Youssef Jounaidi
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
46
|
Jahan F, Penna L, Luostarinen A, Veltman L, Hongisto H, Lähteenmäki K, Müller S, Ylä-Herttuala S, Korhonen M, Vettenranta K, Laitinen A, Salmenniemi U, Kerkelä E. Automated and closed clinical-grade manufacturing protocol produces potent NK cells against neuroblastoma cells and AML blasts. Sci Rep 2024; 14:26678. [PMID: 39496674 PMCID: PMC11535237 DOI: 10.1038/s41598-024-76791-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/16/2024] [Indexed: 11/06/2024] Open
Abstract
Natural killer (NK) cells are a promising allogeneic immunotherapy option due to their natural ability to kill tumor cells, and due to their apparent safety. This study describes the development of a GMP-compliant manufacturing protocol for the local production of functionally potent NK cells tailored for high-risk acute myeloid leukemia (AML) and neuroblastoma (NBL) patients. Moreover, the quality control strategy and considerations for product batch specifications in early clinical development are described. The protocol is based on the CliniMACS Prodigy platform and Natural Killer Cell Transduction (NKCT) (Miltenyi Biotec). NK cells are isolated from leukapheresis through CD3 depletion and CD56 enrichment, followed by a 12-hour activation with IL-2 and IL-15 cytokines. Three CliniMACS Prodigy processes demonstrated the feasibility and consistency of the modified NKCT process. A three-step process without expansion, however, compromised the NK cell yield. T cells were depleted effectively, indicating excellent safety of the product. Characterization of the NK cells before and after cytokine activation revealed a notable increase in the expression of activation markers, particularly CD69, consistent with enhanced functionality. Intriguingly, the NK cells exhibited increased killing efficacy against patient-derived CD33 + AML blasts and NBL cells in vitro, suggesting a potential therapeutic benefit in AML and NBL.
Collapse
MESH Headings
- Humans
- Killer Cells, Natural/immunology
- Neuroblastoma/pathology
- Neuroblastoma/immunology
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/therapy
- Cell Line, Tumor
- Cytotoxicity, Immunologic
- Interleukin-15/metabolism
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Interleukin-2/metabolism
- Leukapheresis/methods
- Cytokines/metabolism
Collapse
Affiliation(s)
- Farhana Jahan
- Finnish Red Cross Blood Service, Research and Development, Helsinki, Finland
| | - Leena Penna
- Finnish Red Cross Blood Service, Advanced Cell Therapy Centre, Vantaa, Finland
| | - Annu Luostarinen
- Finnish Red Cross Blood Service, Advanced Cell Therapy Centre, Vantaa, Finland
| | - Laurens Veltman
- Finnish Red Cross Blood Service, Research and Development, Helsinki, Finland
| | - Heidi Hongisto
- Finnish Red Cross Blood Service, Advanced Cell Therapy Centre, Vantaa, Finland
| | | | - Sabine Müller
- Miltenyi Biotec B.V. & Co. KG, R&D Reagents, Bergisch Gladbach, Germany
| | - Seppo Ylä-Herttuala
- Translational Cancer Medicine Research Program, University of Eastern Finland, Kuopio, Finland
| | - Matti Korhonen
- Finnish Red Cross Blood Service, Research and Development, Helsinki, Finland
| | - Kim Vettenranta
- Finnish Red Cross Blood Service, Research and Development, Helsinki, Finland
- University of Helsinki and the Children's Hospital, Helsinki, Finland
| | - Anita Laitinen
- Finnish Red Cross Blood Service, Advanced Cell Therapy Centre, Vantaa, Finland
| | - Urpu Salmenniemi
- Stem Cell Transplantation Unit, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - Erja Kerkelä
- Finnish Red Cross Blood Service, Advanced Cell Therapy Centre, Vantaa, Finland.
| |
Collapse
|
47
|
Diop MP, van der Stegen SJC. The Pluripotent Path to Immunotherapy. Exp Hematol 2024; 139:104648. [PMID: 39251182 DOI: 10.1016/j.exphem.2024.104648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/14/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024]
Abstract
Adoptive cell therapy (ACT) enhances the patient's own immune cells' ability to identify and eliminate cancer cells. Several immune cell types are currently being applied in autologous ACT, including T cells, natural killer (NK) cells, and macrophages. The cells' inherent antitumor capacity can be used, or they can be targeted toward tumor-associated antigen through expression of a chimeric antigen receptor (CAR). Although CAR-based ACT has achieved great results in hematologic malignancies, the accessibility of ACT is limited by the autologous nature of the therapy. Induced pluripotent stem cells (iPSCs) hold the potential to address this challenge, because they can provide an unlimited source for the in vitro generation of immune cells. Various immune subsets have been generated from iPSC for application in ACT, including several T-cell subsets (αβT cells, mucosal-associated invariant T cells, invariant NKT [iNKT] cells, and γδT cells), as well as NK cells, macrophages, and neutrophils. iPSC-derived αβT, NK, and iNKT cells are currently being tested in phase I clinical trials. The ability to perform (multiplexed) gene editing at the iPSC level and subsequent differentiation into effector populations not only expands the arsenal of ACT but allows for development of ACT utilizing cell types which cannot be efficiently obtained from peripheral blood or engineered and expanded in vitro.
Collapse
Affiliation(s)
- Mame P Diop
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | | |
Collapse
|
48
|
Rambaldi B, Rizzuto G, Rambaldi A, Introna M. Genetically modified and unmodified cellular approaches to enhance graft versus leukemia effect, without increasing graft versus host disease: the use of allogeneic cytokine-induced killer cells. Front Immunol 2024; 15:1459175. [PMID: 39512351 PMCID: PMC11540647 DOI: 10.3389/fimmu.2024.1459175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/30/2024] [Indexed: 11/15/2024] Open
Abstract
Although allogeneic hematopoietic cell transplantation (HCT) represents a curative approach for many patients with hematological diseases, post-transplantation relapse occurs in 20-50% of cases, representing the primary cause of treatment failure and mortality. Alloreactive donor T cells are responsible for the graft versus leukemia (GvL) effect, which represents the key mechanism for the long-term curative effect of HCT. However, the downside is represented by graft versus host disease (GvHD), largely contributing to transplant-related mortality (TRM). Multiple factors play a role in regulating the delicate balance between GvL and GvHD, such as the optimization of the donor HLA and KIR match, the type of graft source, and the adaptive use of post-transplant cellular therapy. In addition to the standard donor lymphocyte infusion (DLI), several attempts were made to favor the GvL effect without increasing the GvHD risk. Selected DLI, NK DLI, activated DLI and more sophisticated genetically engineered cells can be employed. In this scenario, cytokine-induced killer (CIK) cells represent a suitable tool to boost GvL while minimizing GvHD. CIK cells are T lymphocytes activated in culture in the presence of monoclonal antibodies against CD3 (OKT3), interferon-gamma (IFN-g), and interleukin-2 (IL-2), characterized by the expression of markers typical of NK cells and T cells (CD3+, CD56+, with a prevalent CD8+ phenotype). CIK cells can mediate cytotoxicity through both MHC and non-MHC restricted recognition, which is the so-called "dual-functional capability" and display minimum alloreactivity. Allogeneic CIK cells showed a favorable rate of response, especially in the setting of minimal residual disease, with a rate of GvHD not exceeding 25%. Finally, the CIK cell platform can be adapted for chimeric antigen receptor (CAR) cell strategy, showing promising results in both preclinical and clinical settings. In this review, we describe the main immunological basis for the development of the GvL and the possible cellular therapy approaches used to boost it, with a particular focus on the use of CIK cells.
Collapse
Affiliation(s)
- Benedetta Rambaldi
- Dipartimento di Oncologia ed Ematologia, Ospedale Papa Giovanni XXIII, Bergamo, Italy
| | - Giuliana Rizzuto
- Dipartimento di Oncologia ed Ematologia, Ospedale Papa Giovanni XXIII, Bergamo, Italy
- Molecular and Translational Medicine Doctoral Program (DIMET), University of Milano-Bicocca, Monza, Italy
| | - Alessandro Rambaldi
- Dipartimento di Oncologia ed Ematologia, Ospedale Papa Giovanni XXIII, Bergamo, Italy
- Department of Oncology and Hematology, Università degli Studi di Milano, Milan, Italy
| | - Martino Introna
- Dipartimento di Oncologia ed Ematologia, Ospedale Papa Giovanni XXIII, Bergamo, Italy
| |
Collapse
|
49
|
Zhu X, Xue J, Jiang H, Xue D. CAR-NK cells for gastrointestinal cancer immunotherapy: from bench to bedside. Mol Cancer 2024; 23:237. [PMID: 39443938 PMCID: PMC11515662 DOI: 10.1186/s12943-024-02151-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Gastrointestinal (GI) cancers represent a significant health burden worldwide. Their incidence continues to increase, and their management remains a clinical challenge. Chimeric antigen receptor (CAR) natural killer (NK) cells have emerged as a promising alternative to CAR-T cells for immunotherapy of GI cancers. Notably, CAR-NK cells offer several advantages, including reduced risk of graft-versus-host disease, lower cytokine release syndrome, and the ability to target cancer cells through both CAR-dependent and natural cytotoxic mechanisms. MAIN BODY This review comprehensively discusses the development and applications of CAR-NK cells in the treatment of GI cancers. We explored various sources of NK cells, CAR design strategies, and the current state of CAR-NK cell therapy for GI cancers, highlighting recent preclinical and clinical trials. Additionally, we addressed existing challenges and propose potential strategies to enhance the efficacy and safety of CAR-NK cell therapy. CONCLUSIONS Our findings highlight the potential of CAR-NK cells to revolutionize GI cancer treatment and pave the way for future clinical applications.
Collapse
Affiliation(s)
- Xingwang Zhu
- Department of Urinary Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, 110032, P.R. China
| | - Jieyun Xue
- China Medical University, Shenyang, Liaoning Province, 110000, P.R. China
| | - Hongzhou Jiang
- Department of Neurosurgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, 110032, P.R. China
| | - Dongwei Xue
- Department of Urinary Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, 110032, P.R. China.
| |
Collapse
|
50
|
Acharya S, Basar R, Daher M, Rafei H, Li P, Uprety N, Ensley E, Shanley M, Kumar B, Banerjee PP, Melo Garcia L, Lin P, Mohanty V, Kim KH, Jiang X, Pan Y, Li Y, Liu B, Nunez Cortes AK, Zhang C, Fathi M, Rezvan A, Montalvo MJ, Cha SL, Reyes-Silva F, Shrestha R, Guo X, Kundu K, Biederstadt A, Muniz-Feliciano L, Deyter GM, Kaplan M, Jiang XR, Liu E, Jain A, Roszik J, Fowlkes NW, Solis Soto LM, Raso MG, Khoury JD, Lin P, Vega F, Varadarajan N, Chen K, Marin D, Shpall EJ, Rezvani K. CD28 Costimulation Augments CAR Signaling in NK Cells via the LCK/CD3ζ/ZAP70 Signaling Axis. Cancer Discov 2024; 14:1879-1900. [PMID: 38900051 PMCID: PMC11452288 DOI: 10.1158/2159-8290.cd-24-0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/16/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024]
Abstract
Multiple factors in the design of a chimeric antigen receptor (CAR) influence CAR T-cell activity, with costimulatory signals being a key component. Yet, the impact of costimulatory domains on the downstream signaling and subsequent functionality of CAR-engineered natural killer (NK) cells remains largely unexplored. Here, we evaluated the impact of various costimulatory domains on CAR-NK cell activity, using a CD70-targeting CAR. We found that CD28, a costimulatory molecule not inherently present in mature NK cells, significantly enhanced the antitumor efficacy and long-term cytotoxicity of CAR-NK cells both in vitro and in multiple xenograft models of hematologic and solid tumors. Mechanistically, we showed that CD28 linked to CD3ζ creates a platform that recruits critical kinases, such as lymphocyte-specific protein tyrosine kinase (LCK) and zeta-chain-associated protein kinase 70 (ZAP70), initiating a signaling cascade that enhances CAR-NK cell function. Our study provides insights into how CD28 costimulation enhances CAR-NK cell function and supports its incorporation in NK-based CARs for cancer immunotherapy. Significance: We demonstrated that incorporation of the T-cell-centric costimulatory molecule CD28, which is normally absent in mature natural killer (NK) cells, into the chimeric antigen receptor (CAR) construct recruits key kinases including lymphocyte-specific protein tyrosine kinase and zeta-chain-associated protein kinase 70 and results in enhanced CAR-NK cell persistence and sustained antitumor cytotoxicity.
Collapse
Affiliation(s)
- Sunil Acharya
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rafet Basar
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - May Daher
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hind Rafei
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ping Li
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nadima Uprety
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Emily Ensley
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mayra Shanley
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bijender Kumar
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pinaki P. Banerjee
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Luciana Melo Garcia
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paul Lin
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vakul Mohanty
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kun Hee Kim
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xianli Jiang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuchen Pan
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ye Li
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bin Liu
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ana Karen Nunez Cortes
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chenyu Zhang
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mohsen Fathi
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
- CellChorus, Inc., Houston, TX, USA
| | - Ali Rezvan
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Melisa J. Montalvo
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Sophia L Cha
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Francia Reyes-Silva
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rejeena Shrestha
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xingliang Guo
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kiran Kundu
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexander Biederstadt
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Medicine III: Hematology and Oncology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Luis Muniz-Feliciano
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gary M. Deyter
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mecit Kaplan
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xin Ru Jiang
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Enli Liu
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Antrix Jain
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX, USA
| | - Janos Roszik
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Natalie W. Fowlkes
- Department of Veterinary Medicine & Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Luisa M. Solis Soto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maria Gabriela Raso
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joseph D. Khoury
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Pei Lin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Francisco Vega
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Navin Varadarajan
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David Marin
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elizabeth J. Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|