1
|
Yang J, Zhang W, Dong C. Gut Microbiota Alteration with Moderate-to-Vigorous-Intensity Exercise in Middle School Female Football Athletes. BIOLOGY 2025; 14:211. [PMID: 40001979 PMCID: PMC11852635 DOI: 10.3390/biology14020211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/06/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025]
Abstract
BACKGROUND The gut microbiota significantly influences health and metabolic processes. This study aimed to investigate the impact of exercise intensity on the gut microbiota of middle school female football athletes. METHODS In this four-week controlled comparative study, twenty-nine participants were divided into three groups: non-exercise group (NEG), moderate-intensity exercise group (MIEG), and vigorous-intensity exercise group (VIEG). They followed their respective exercise regimens for four weeks. Fecal samples were collected for 16S rRNA gene sequencing to evaluate microbiota composition. RESULTS The MIEG exhibited significantly greater microbial diversity compared to the NEG, while the VIEG showed lower diversity than the MIEG. Various microbiota profiles were identified, with the MIEG having higher levels of beneficial bacteria such as Bacteroides. CONCLUSIONS Moderate-intensity exercise promotes a healthier gut microbiota compared to vigorous exercise in young female athletes. These findings underscore the potential of moderate exercise to enhance gut health and may inform training strategies for adolescent athletes.
Collapse
Affiliation(s)
- Jianlou Yang
- School of Sport Management, Shandong Sport University, Jinan 250102, China;
| | - Wei Zhang
- School of Sports Leisure, Shandong Sport University, Jinan 250102, China;
| | - Chen Dong
- School of Sport Management, Shandong Sport University, Jinan 250102, China;
| |
Collapse
|
2
|
Guidi L, Martinez-Tellez B, Ortega Santos CP. Obesity, gut bacteria, and the epigenetic control of metabolic disease. NUTRITION IN THE CONTROL OF INFLAMMATION 2025:333-368. [DOI: 10.1016/b978-0-443-18979-1.00013-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Yao M, Qu Y, Zheng Y, Guo H. The effect of exercise on depression and gut microbiota: Possible mechanisms. Brain Res Bull 2025; 220:111130. [PMID: 39557221 DOI: 10.1016/j.brainresbull.2024.111130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
Exercise can effectively prevent and treat depression and anxiety, with gut microbiota playing a crucial role in this process. Studies have shown that exercise can influence the diversity and composition of gut microbiota, which in turn affects depression through immune, endocrine, and neural pathways in the gut-brain axis. The effectiveness of exercise varies based on its type, intensity, and duration, largely due to the different changes in gut microbiota. This article summarizes the possible mechanisms by which exercise affects gut microbiota and how gut microbiota influences depression. Additionally, we reviewed literature on the effects of exercise on depression at different intensities, types, and durations to provide a reference for future exercise-based therapies for depression.
Collapse
Affiliation(s)
- Mingchen Yao
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Yaqi Qu
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Yalin Zheng
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Hao Guo
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China.
| |
Collapse
|
4
|
Wells RK, Torres A, Mau MK, Maunakea AK. Racial-Ethnic Disparities of Obesity Require Community Context-Specific Biomedical Research for Native Hawaiians and Other Pacific Islanders. Nutrients 2024; 16:4268. [PMID: 39770890 PMCID: PMC11676216 DOI: 10.3390/nu16244268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025] Open
Abstract
Compared to the general population of Hawai'i, Native Hawaiians and Other Pacific Islanders (NHPI) shoulder a disproportionately high risk for obesity-related cardiometabolic disorders, such as type 2 diabetes and cardiovascular disease. The gut microbiome is an area of rapid research interest for its role in regulating adjacent metabolic pathways, offering novel opportunities to better understand the etiology of these health disparities. Obesity and the gut microbiome are influenced by regional, racial-ethnic, and community-specific factors, limiting the generalizability of current literature for understudied populations. Additionally, anthropometric and directly measured obesity indices are variably predictive of adiposity and metabolic health risk in this diverse population. Thus, further NHPI-inclusive research is required to adequately characterize community-specific factors in the context of obesity-related disease etiology. Culturally responsible research ethics and scientific communication are crucial to conducting such research, especially among indigenous and understudied populations. In this review, we explore these limitations in current literature, emphasizing the urgent need for NHPI-inclusive research to assess community-specific factors accurately. Such accuracy in Indigenous health research may ensure that findings relevant to individual or public health recommendations and/or policies are meaningful to the communities such research aims to serve.
Collapse
Affiliation(s)
- Riley K. Wells
- Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human Resources, University of Hawai‘i at Mānoa, Honolulu, HI 96822, USA
- Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawai‘i at Mānoa, Honolulu, HI 96822, USA;
| | - Amada Torres
- Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawai‘i at Mānoa, Honolulu, HI 96822, USA;
| | - Marjorie K. Mau
- Department of Native Hawaiian Health, John A. Burns School of Medicine, University of Hawai‘i at Mānoa, Honolulu, HI 96813, USA
| | - Alika K. Maunakea
- Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, University of Hawai‘i at Mānoa, Honolulu, HI 96822, USA;
| |
Collapse
|
5
|
Zheng R, Xiang X, Shi Y, Xie J, Xing L, Zhang T, Zhou Z, Zhang D. Gut microbiota and mycobiota change with feeding duration in mice on a high-fat and high-fructose diet. BMC Microbiol 2024; 24:504. [PMID: 39609794 PMCID: PMC11606092 DOI: 10.1186/s12866-024-03663-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND Metabolic dysfunction-associated fatty liver disease (MAFLD), formerly known as nonalcoholic fatty liver disease (NAFLD), is becoming the most common chronic liver disease. The gut microbiome is regarded to play a crucial role in MAFLD, but the specific changes of gut microbiome, especially fungi, in different stages of MAFLD are not well understood. This study aimed to observe the longitudinal changes of colon bacteria and fungi of mice at different feeding duration of a high-fat and high-fructose diet (HFHFD), and explore the association between the changes and the progression of MAFLD. METHODS Twenty-eight male C57BL6J mice were randomly assigned to the normal diet (ND) group and HFHFD group. At the 8th and 16th weeks, mice were sacrificed to compare the diversity, composition, and co-abundance network of bacteria and fungi in colon contents among groups. RESULTS HFHFD-8W mice exhibited increases in Candida and Dorea, and decreases in Oscillospira and Prevotella in comparison to ND-8W mice, HFHFD-16W mice had increases in Bacteroides, Candida, Desulfovibrio, Dorea, Lactobacillus, and Rhodotorula, and decreases in Akkermansia, Aspergillus, Sterigmatomyces, and Vishniacozyma in comparison to ND-16W mice. And compared to HFHFD-8W mice, HFHFD-16W mice had increases in Desulfovibrio, Lactobacillus, Penicillium, and Rhodotorula, and decreases in Talaromyces and Wallemia. Spearman and GEE correlation analysis revealed that Bacteroides, Candida, Desulfovibrio, and Lactobacillus positively correlated with NAFLD activity score (NAS). CONCLUSION Gut microbiota and mycobiota undergo diverse changes at different stages of MAFLD. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Ruoyi Zheng
- Department of Endocrinology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Changsha, China
| | - Xingwei Xiang
- Department of Endocrinology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
| | - Ying Shi
- Department of Endocrinology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
| | - Junyan Xie
- Department of Endocrinology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
| | - Lin Xing
- Department of Endocrinology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
| | - Tao Zhang
- Department of Endocrinology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
| | - Zhijun Zhou
- Medical Animal Center, Xiangya Medical School, Central South University, Changsha, China.
| | - Dongmei Zhang
- Department of Endocrinology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China.
| |
Collapse
|
6
|
Pérez-Prieto I, Plaza-Florido A, Ubago-Guisado E, Ortega FB, Altmäe S. Physical activity, sedentary behavior and microbiome: A systematic review and meta-analysis. J Sci Med Sport 2024; 27:793-804. [PMID: 39048485 DOI: 10.1016/j.jsams.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/18/2024] [Accepted: 07/02/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND The effects of physical activity and sedentary behavior on human health are well known, however, the molecular mechanisms are poorly understood. Growing evidence points to physical activity as an important modulator of the composition and function of microbial communities, while evidence of sedentary behavior is scarce. We aimed to synthesize and meta-analyze the current evidence about the effects of physical activity and sedentary behavior on microbiome across different body sites and in different populations. METHODS A systematic search in PubMed, Web of Science, Scopus and Cochrane databases was conducted until September 2022. Random-effects meta-analyses including cross-sectional studies (active vs. inactive/athletes vs. non-athletes) or trials reporting the chronic effect of physical activity interventions on gut microbiome alpha-diversity in healthy individuals were performed. RESULTS Ninety-one studies were included in this systematic review. Our meta-analyses of 2632 participants indicated no consistent effect of physical activity on microbial alpha-diversity, although there seems to be a trend toward a higher microbial richness in athletes compared to non-athletes. Most of studies reported an increase in short-chain fatty acid-producing bacteria such as Akkermansia, Faecalibacterium, Veillonella or Roseburia in active individuals and after physical activity interventions. CONCLUSIONS Physical activity levels were positively associated with the relative abundance of short-chain fatty acid-producing bacteria. Athletes seem to have a richer microbiome compared to non-athletes. However, high heterogeneity between studies avoids obtaining conclusive information on the role of physical activity in microbial composition. Future multi-omics studies would enhance our understanding of the molecular effects of physical activity and sedentary behavior on the microbiome.
Collapse
Affiliation(s)
- Inmaculada Pérez-Prieto
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Spain.
| | - Abel Plaza-Florido
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Spain; Pediatric Exercise and Genomics Research Center, UC Irvine School of Medicine, United States.
| | - Esther Ubago-Guisado
- Instituto de Investigación Biosanitaria ibs.GRANADA, Spain; Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Spain
| | - Francisco B Ortega
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Granada, Spain; Faculty of Sport and Health Sciences, University of Jyväskylä, Finland.
| | - Signe Altmäe
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Spain; Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, Stockholm, Sweden; Department of Gynaecology and Reproductive Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden.
| |
Collapse
|
7
|
Batitucci G, Almeida OG, De Martinis ECP, Solar I, Cintra DE, de Freitas EC. Intermittent fasting and high-intensity interval training do not alter gut microbiota composition in adult women with obesity. Am J Physiol Endocrinol Metab 2024; 327:E241-E257. [PMID: 38922577 DOI: 10.1152/ajpendo.00310.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024]
Abstract
Obesity is advancing at an accelerated pace, and yet its treatment is still an emerging field. Although studies have demonstrated the role of the microbiota in the pathogenesis of obesity, this is the first study to show the effects of intermittent fasting (IF), combined or not with exercise, and high-intensity interval training (HIIT) on the gut microbiota composition in women with obesity. Our hypothesis is that IF combined with HIIT can promote the remodeling of the composition and function of the gut microbiota. Thirty-six women with obesity, aged between 18 and 40 yr, participated in the study. They were randomly divided into three groups: 1) IF associated with HIIT group [IF + exercise group (EX), n = 15]; 2) HIIT group (EX, n = 11); and 3) IF group (IF, n = 10). Interventions took place over 8 wk, and all assessments were performed preintervention and postintervention. The HIIT circuit was performed 3 times/wk, for 25 min/session. The IF protocol was a 5:2 (2 times/wk). Multiplex analysis of inflammatory cytokines, sequencing of the 16S rRNA gene, and gas chromatography to measure fecal concentrations of short-chain fatty acids (SCFAs) were performed. This study was registered on ClinicalTrials.gov (NCT05237154). Exercise increased fecal acetate concentrations (P = 0.04), but no changes were observed in the composition and functional profile of the microbiota. The interventions did not change the composition of the microbiota, but exercise may play a modulatory role in the production of acetate. This investigation provides clinical insights into the use of IF and HIIT for women with obesity.NEW & NOTEWORTHY This is the first investigation about alternate-day fasting combined with HITT on the gut microbiota of obese women. The study contributes to the advancement of human science involving IF and HIIT, popular strategies for managing obesity. Previous evidence has explored IF in modulating the microbiota in animal models or specific populations and clinical conditions. Despite the subtle outcomes, this study has relevance and originality in the field of gut microbiota knowledge.
Collapse
Affiliation(s)
- Gabriela Batitucci
- Department of Food and Nutrition, School of Pharmaceutical Sciences of Araraquara, State University of Sao Paulo, Araraquara, Brazil
| | - Otávio G Almeida
- Ribeirão Preto School of Pharmaceutical Sciences, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Elaine C P De Martinis
- Ribeirão Preto School of Pharmaceutical Sciences, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Isabela Solar
- Faculty of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Dennys E Cintra
- Nutritional Genomics Laboratory and Nutrigenomics and Lipids Center, Faculty of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Ellen Cristini de Freitas
- Department of Food and Nutrition, School of Pharmaceutical Sciences of Araraquara, State University of Sao Paulo, Araraquara, Brazil
- Laboratory of Exercise Physiology and Metabolism, School of Physical Education and Sports of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| |
Collapse
|
8
|
Chanda W, Jiang H, Liu SJ. The Ambiguous Correlation of Blautia with Obesity: A Systematic Review. Microorganisms 2024; 12:1768. [PMID: 39338443 PMCID: PMC11433710 DOI: 10.3390/microorganisms12091768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/13/2024] [Accepted: 08/17/2024] [Indexed: 09/30/2024] Open
Abstract
Obesity is a complex and multifactorial disease with global epidemic proportions, posing significant health and economic challenges. Whilst diet and lifestyle are well-established contributors to the pathogenesis, the gut microbiota's role in obesity development is increasingly recognized. Blautia, as one of the major intestinal bacteria of the Firmicutes phylum, is reported with both potential probiotic properties and causal factors for obesity in different studies, making its role controversial. To summarize the current understanding of the Blautia-obesity correlation and to evaluate the evidence from animal and clinical studies, we used "Blautia" AND "obesity" as keywords searching through PubMed and SpringerLink databases for research articles. After removing duplicates and inadequate articles using the exclusion criteria, we observed different results between studies supporting and opposing the beneficial role of Blautia in obesity at the genus level. Additionally, several studies showed probiotic effectiveness at the species level for Blautia coccoides, B. wexlerae, B. hansenii, B. producta, and B. luti. Therefore, the current evidence does not demonstrate Blautia's direct involvement as a pathogenic microbe in obesity development or progression, which informs future research and therapeutic strategies targeting the gut Blautia in obesity management.
Collapse
Affiliation(s)
- Warren Chanda
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- Pathology and Microbiology Department, School of Medicine and Health Sciences, Mulungushi University, Livingstone P.O. Box 60009, Zambia
| | - He Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- State Key Laboratory of Microbial Resources, and Environmental Microbiology Research Center (EMRC), Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Ghaffar T, Ubaldi F, Volpini V, Valeriani F, Romano Spica V. The Role of Gut Microbiota in Different Types of Physical Activity and Their Intensity: Systematic Review and Meta-Analysis. Sports (Basel) 2024; 12:221. [PMID: 39195597 PMCID: PMC11360093 DOI: 10.3390/sports12080221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Intense exercise during training requires dietary modulation to support health and performance and differs in different types of activities. Diet, supplementation with prebiotics and probiotics, and, more recently, even physical activity can potentially improve health outcomes by modifying and protecting the gut microbiota. A systematic review and meta-analysis were conducted to investigate the modulation of gut microbiota in different types and intensities of physical activity and different lifestyles of athletes. METHODS The systematic review and meta-analysis were conducted according to the PRISMA guidelines, and the protocol was registered in PROSPERO (CRD42024500826). RESULTS Out of 1318 studies, only 10 met the criteria for inclusion in the meta-analysis. The pilot study's meta-regression analysis highlights the role of type and intensity of exercise in changing the B/B (Bacillota/Bacteroidota) ratio (p = 0.001). CONCLUSIONS As gut training becomes more popular among athletes, it is necessary to map interactions between microbiota and different types of physical activity, personalized diets, physical activities, and ergogenic supplements to enhance performance and athletic wellness.
Collapse
Affiliation(s)
| | | | | | - Federica Valeriani
- Department of Movement, Health and Human Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (T.G.); (F.U.); (V.V.); (V.R.S.)
| | | |
Collapse
|
10
|
Couvert A, Goumy L, Maillard F, Esbrat A, Lanchais K, Saugrain C, Verdier C, Doré E, Chevarin C, Adjtoutah D, Morel C, Pereira B, Martin V, Lancha AH, Barnich N, Chassaing B, Rance M, Boisseau N. Effects of a Cycling versus Running HIIT Program on Fat Mass Loss and Gut Microbiota Composition in Men with Overweight/Obesity. Med Sci Sports Exerc 2024; 56:839-850. [PMID: 38233990 DOI: 10.1249/mss.0000000000003376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
PURPOSE High-intensity interval training (HIIT) can efficiently decrease total and (intra-)abdominal fat mass (FM); however, the effects of running versus cycling HIIT programs on FM reduction have not been compared yet. In addition, the link between HIIT-induced FM reduction and gut microbiota must be better investigated. The aim of this study was to compare the effects of two 12-wk HIIT isoenergetic programs (cycling vs running) on body composition and fecal microbiota composition in nondieting men with overweight or obesity. METHODS Sixteen men (age, 54.2 ± 9.6 yr; body mass index, 29.9 ± 2.3 kg·m -2 ) were randomly assigned to the HIIT-BIKE (10 × 45 s at 80%-85% of maximal heart rate, 90-s active recovery) or HIIT-RUN (9 × 45 s at 80%-85% of maximal heart rate, 90-s active recovery) group (3 times per week). Dual-energy x-ray absorptiometry was used to determine body composition. Preintervention and postintervention fecal microbiota composition was analyzed by 16S rRNA gene sequencing, and diet was controlled. RESULTS Overall, body weight, and abdominal and visceral FM decreased over time ( P < 0.05). No difference was observed for weight, total body FM, and visceral FM between groups (% change). Conversely, abdominal FM loss was greater in the HIIT-RUN group (-16.1% vs -8.3%; P = 0.050). The α-diversity of gut microbiota did not vary between baseline and intervention end and between groups, but was associated with abdominal FM change ( r = -0.6; P = 0.02). The baseline microbiota profile and composition changes were correlated with total and abdominal/visceral FM losses. CONCLUSIONS Both cycling and running isoenergetic HIIT programs improved body composition in men with overweight/obesity. Baseline intestinal microbiota composition and its postintervention variations were correlated with FM reduction, strengthening the possible link between these parameters. The mechanisms underlying the greater abdominal FM loss in the HIIT-RUN group require additional investigations.
Collapse
Affiliation(s)
| | - Leslie Goumy
- Laboratoire des Adaptations Métaboliques à l'Exercice en conditions Physiologiques et Pathologiques (AME2P), Université Clermont Auvergne, Clermont-Ferrand, FRANCE
| | - Florie Maillard
- Laboratoire des Adaptations Métaboliques à l'Exercice en conditions Physiologiques et Pathologiques (AME2P), Université Clermont Auvergne, Clermont-Ferrand, FRANCE
| | - Alexandre Esbrat
- Laboratoire des Adaptations Métaboliques à l'Exercice en conditions Physiologiques et Pathologiques (AME2P), Université Clermont Auvergne, Clermont-Ferrand, FRANCE
| | - Kassandra Lanchais
- Laboratoire des Adaptations Métaboliques à l'Exercice en conditions Physiologiques et Pathologiques (AME2P), Université Clermont Auvergne, Clermont-Ferrand, FRANCE
| | - Célia Saugrain
- Laboratoire des Adaptations Métaboliques à l'Exercice en conditions Physiologiques et Pathologiques (AME2P), Université Clermont Auvergne, Clermont-Ferrand, FRANCE
| | - Charlotte Verdier
- Laboratoire des Adaptations Métaboliques à l'Exercice en conditions Physiologiques et Pathologiques (AME2P), Université Clermont Auvergne, Clermont-Ferrand, FRANCE
| | | | - Caroline Chevarin
- Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), UMR 1071 Inserm, USC-INRAE 1382, Université Clermont Auvergne, Clermont-Ferrand, FRANCE
| | | | - Claire Morel
- Center of Resources, Expertise and Performance in Sports (CREPS), Bellerive-sur-Allier, FRANCE
| | - Bruno Pereira
- CIC INSERM 1405/Plateforme d'Investigation Clinique CHU Gabriel Montpied, 58 Rue Montalembert, CEDEX 1, Clermont-Ferrand, FRANCE
| | | | - Antonio H Lancha
- Laboratory of Applied Nutrition and Metabolism, School of Physical Education and Sport, University of São Paulo, São Paulo, BRAZIL
| | - Nicolas Barnich
- Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), UMR 1071 Inserm, USC-INRAE 1382, Université Clermont Auvergne, Clermont-Ferrand, FRANCE
| | - Benoît Chassaing
- Inserm U1016, Team "Mucosal microbiota in chronic inflammatory diseases," CNRS UMR 8104, Université de Paris, Paris, FRANCE
| | - Mélanie Rance
- Center of Resources, Expertise and Performance in Sports (CREPS), Bellerive-sur-Allier, FRANCE
| | | |
Collapse
|
11
|
Min L, Ablitip A, Wang R, Luciana T, Wei M, Ma X. Effects of Exercise on Gut Microbiota of Adults: A Systematic Review and Meta-Analysis. Nutrients 2024; 16:1070. [PMID: 38613103 PMCID: PMC11013040 DOI: 10.3390/nu16071070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/25/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND The equilibrium between gut microbiota (GM) and the host plays a pivotal role in maintaining overall health, influencing various physiological and metabolic functions. Emerging research suggests that exercise modulates the abundance and functionality of gut bacteria, yet the comprehensive effects on GM diversity remain to be synthesized. OBJECTIVES AND DESIGN The study aims to quantitatively examine the effect of exercise on the diversity of gut microbiota of adults using a systemic review and meta-analysis approach. METHODS PubMed, Ebsco, Embase, Web of Science, Cochrane Central Register of Controlled Trials, the China National Knowledge Infrastructure, and Wanfang Data were searched from their inception to September 2023. Exercise intervention studies with a control group that describe and compare the composition of GM in adults, using 16S rRNA gene sequencing, were included in this meta-analysis. RESULTS A total of 25 studies were included in this meta-analysis with a total of 1044 participants. Based on a fixed-effects model [Chi2 = 29.40, df = 20 (p = 0.08); I2 = 32%], the pooled analysis showed that compared with the control group, exercise intervention can significantly increase the alpha diversity of adult GM, using the Shannon index as an example [WMD = 0.05, 95% CI (0.00, 0.09); Z = 1.99 (p = 0.05)]. In addition, exercise interventions were found to significantly alter GM, notably decreasing Bacteroidetes and increasing Firmicutes, indicating a shift in the Firmicutes/Bacteroidetes ratio. The subgroup analysis indicates that females and older adults appear to exhibit more significant changes in the Shannon Index and observed OTUs. CONCLUSIONS Exercise may be a promising way to improve GM in adults. In particular, the Shannon index was significantly increased after exercise. Distinct responses in GM diversity to exercise interventions based on gender and age implicated that more research was needed.
Collapse
Affiliation(s)
- Leizi Min
- Division of Sports Science and Physical Education, Tsinghua University, Beijing 100084, China; (L.M.); (A.A.)
| | - Alimjan Ablitip
- Division of Sports Science and Physical Education, Tsinghua University, Beijing 100084, China; (L.M.); (A.A.)
| | - Rui Wang
- Division of Sports Science and Physical Education, Tsinghua University, Beijing 100084, China; (L.M.); (A.A.)
| | - Torquati Luciana
- Department of Public Health and Sport Sciences, Medical School, University of Exeter, Exeter EX1 2HZ, UK;
| | - Mengxian Wei
- Division of Sports Science and Physical Education, Tsinghua University, Beijing 100084, China; (L.M.); (A.A.)
| | - Xindong Ma
- Division of Sports Science and Physical Education, Tsinghua University, Beijing 100084, China; (L.M.); (A.A.)
| |
Collapse
|
12
|
Hogue T, Hampton‐Marcell J, Carroll IM, Purdom T, Colleran H, Exford TJ, Brown M, Cook MD. Gut microbiota are differentially correlated with blood pressure status in African American collegiate athletes: A pilot study. Physiol Rep 2024; 12:e15982. [PMID: 38514894 PMCID: PMC10957718 DOI: 10.14814/phy2.15982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/23/2024] Open
Abstract
Hypertension (HTN) is common among athletes and the most recent epidemiologic data reports that cardiovascular (CV) sudden death is significantly greater in African Americans (AAs). Gut microbial dysbiosis (a poorly diverse stool microbial profile) has been associated with HTN in sedentary people but microbial characteristics of athletes with HTN are unknown. Our purpose was to differentiate microbiome characteristics associated with BP status in AA collegiate athletes. Thirty AA collegiate athletes were stratified by normal BP (systolic BP (SBP) ≤130 mmHg; n = 15) and HTN (SBP ≥130 mmHg; n = 15). 16S rRNA gene sequencing was performed on stool samples to identify microbes at the genus level. We did not observe any significant differences in alpha diversity, but beta diversity was different between groups. Principal coordinate analysis was significantly different (PERMANOVA, p < 0.05, R = 0.235) between groups. Spearman rank correlations showed a significant (p < 0.05) correlation between systolic BP and abundances for Adlercreutzia (R = 0.64), Coprococcus (R = 0.49), Granulicatella (R = 0.63), and Veillonella (R = 0.41). Gut microbial characteristics were associated with differentially abundant microbial genus' and BP status. These results will direct future studies to define the functions of these microbes associated with BP in athletes.
Collapse
Affiliation(s)
- Taylor Hogue
- Department of KinesiologyNorth Carolina Agriculture and Technical State UniversityGreensboroNorth CarolinaUSA
| | | | - Ian M. Carroll
- Department of NutritionUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Troy Purdom
- Department of KinesiologyNorth Carolina Agriculture and Technical State UniversityGreensboroNorth CarolinaUSA
| | - Heather Colleran
- Department of NutritionNorth Carolina Agriculture and Technical State UniversityGreensboroNorth CarolinaUSA
| | - T. J. Exford
- Education & Research DepartmentDayton VA Medical CenterDaytonOhioUSA
| | - Michael Brown
- Department of KinesiologyUniversity of MarylandCollege ParkMarylandUSA
| | - Marc D. Cook
- Department of KinesiologyNorth Carolina Agriculture and Technical State UniversityGreensboroNorth CarolinaUSA
- Center for Integrative Health Disparity & Equity Research (CIHDER)North Carolina Agricultural and Technical State UniversityGreensboroNorth CarolinaUSA
| |
Collapse
|
13
|
Gao C, Wei J, Lu C, Wang L, Dong D, Sun M. A new perspective in intestinal microecology: lifting the veil of exercise regulation of cardiometabolic diseases. Gut Microbes 2024; 16:2404141. [PMID: 39305272 PMCID: PMC11418258 DOI: 10.1080/19490976.2024.2404141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
Cardiometabolic diseases (CMDs), encompassing cardiovascular and metabolic dysfunctions, characterized by insulin resistance, dyslipidemia, hepatic steatosis, and inflammation, have been identified with boosting morbidity and mortality due to the dearth of efficacious therapeutic interventions. In recent years, studies have shown that variations in gut microbiota and its own metabolites can influence the occurrence of CMDs. Intriguingly, the composition and function of the gut microbiota are susceptible to exercise patterns, thus affecting inflammatory, immune, and metabolic responses within the host. In this review, we introduce the key mechanisms of intestinal microecology involved in the onset and development of CMDs, discuss the relationship between exercise and intestinal microecology, and then analyze the role of intestinal microecology in the beneficial effects of exercise on CMDs, aiming at elucidating the gut-heart axis mechanisms of exercise mediated protective effect on CMDs, building avenues for the application of exercise in the management of CMDs.
Collapse
Affiliation(s)
- Can Gao
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, P. R. China
| | - Jinwen Wei
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, P. R. China
| | - Changxu Lu
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, P. R. China
| | - Lijie Wang
- Department of Cardiology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, P. R. China
| | - Dan Dong
- College of Basic Medical Science, China Medical University, Shenyang, Liaoning, P. R. China
| | - Mingli Sun
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, P. R. China
| |
Collapse
|
14
|
Boytar AN, Skinner TL, Wallen RE, Jenkins DG, Dekker Nitert M. The Effect of Exercise Prescription on the Human Gut Microbiota and Comparison between Clinical and Apparently Healthy Populations: A Systematic Review. Nutrients 2023; 15:nu15061534. [PMID: 36986264 PMCID: PMC10054511 DOI: 10.3390/nu15061534] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
This study systematically reviewed all human longitudinal exercise interventions that reported changes in the gut microbiota; frequency, intensity, duration and type of exercise were assessed to determine the influence of these variables on changes to the gut microbiota in both healthy individuals and clinical populations (PROPERO registration: CRD42022309854). Using PRISMA guidelines, trials analysing gut microbiota change with exercise interventions were included independent of trial randomisation, population, trial duration or analysis technique. Studies were excluded when microbiota abundance was not reported or when exercise was combined with other interventions. Twenty-eight trials were included, of which twelve involved healthy populations only and sixteen involved mixed or clinical-only populations. The findings show that participation in exercise of moderate to high-intensity for 30-90 min ≥3 times per week (or between 150-270 min per week) for ≥8 weeks is likely to produce changes in the gut microbiota. Exercise appears to be effective in modifying the gut microbiota in both clinical and healthy populations. A more robust methodology is needed in future studies to improve the certainty of the evidence.
Collapse
Affiliation(s)
- Alexander N Boytar
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Tina L Skinner
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ruby E Wallen
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David G Jenkins
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Health, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
- Applied Sports Science Technology and Medicine Research Centre, Swansea University, Wales SA1 8EN, UK
| | - Marloes Dekker Nitert
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
15
|
Wang R, Cai Y, Lu W, Zhang R, Shao R, Yau SY, Stubbs B, McIntyre RS, Su KP, Xu G, Qi L, So KF, Lin K. Exercise effect on the gut microbiota in young adolescents with subthreshold depression: A randomized psychoeducation-controlled Trial. Psychiatry Res 2023; 319:115005. [PMID: 36565548 DOI: 10.1016/j.psychres.2022.115005] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/28/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
This 3-month randomized psychoeducation-controlled trial (RCT) of exercise was undertaken in young adolescents with subthreshold depression to examine the impact on gut microbiota. Participants (aged 12-14 years) were randomly assigned to an exercise or a psychoeducation-controlled group. The exercise intervention arm took moderate-intensity exercise, comprised of 30 min of running per day, 4 days a week for 3 months. Psychoeducation intervention consisted of 6 sessions of group activity including gaming, reading, and singing. The gut microbiota was assessed by metagenomic sequencing. After 3-month moderate-intensity exercise, the intervention group increased the relative abundance of Coprococcus, Blautia, Dorea, Tyzzerella at the genus level, as well as Tyzzerella nexilis, Ruminococcus obeum at species level when compared to the psychoeducation-controlled group. Moreover, EggNOG analyses showed that the defense and signal transduction mechanism were highly enriched after the active intervention, and changes were correlated with improvements in depressive symptoms measured by Chinese Patient Depression Questionnaire 9. The KEGG pathway of neurodegenerative diseases was depleted in the microbiome in young adolescents with subthreshold depression after exercise intervention. This 3-month RCT suggests that at both the genus and species levels, aerobic group exercise intervention improved in depressive symptoms and revealed changes in gut microbiota suggesting beneficial effects.
Collapse
Affiliation(s)
- Runhua Wang
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuanyuan Cai
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Weicong Lu
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ruoxi Zhang
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Robin Shao
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Suk-Yu Yau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong
| | - Brendon Stubbs
- Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Canada
| | - Kuan-Pin Su
- Department of Psychiatry and MBI-Lab, China Medical University Hospital, Taichung, China
| | - Guiyun Xu
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Liangwen Qi
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Kwok-Fai So
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, China; Ministry of Education Joint International Research Laboratory of CNS Regeneration, Jinan University, Guangzhou, China
| | - Kangguang Lin
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, China.
| |
Collapse
|
16
|
Holzhausen EA, Malecki KC, Sethi AK, Gangnon R, Cadmus-Bertram L, Deblois CL, Suen G, Safdar N, Peppard PE. Assessing the relationship between physical activity and the gut microbiome in a large, population-based sample of Wisconsin adults. PLoS One 2022; 17:e0276684. [PMID: 36288361 PMCID: PMC9605031 DOI: 10.1371/journal.pone.0276684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/11/2022] [Indexed: 11/18/2022] Open
Abstract
The gut microbiome is an important factor in human health and disease. While preliminary studies have found some evidence that physical activity is associated with gut microbiome richness, diversity, and composition, this relationship is not fully understood and has not been previously characterized in a large, population-based cohort. In this study, we estimated the association between several measures of physical activity and the gut microbiota in a cohort of 720 Wisconsin residents. Our sample had a mean age of 55 years (range: 18, 94), was 42% male, and 83% of participants self-identified as White. Gut microbial composition was assessed using gene sequencing of the V3-V4 region of 16S rRNA extracted from stool. We found that an increase of one standard deviation in weekly minutes spent in active transportation was associated with an increase in alpha diversity, particularly in Chao1's richness (7.57, 95% CI: 2.55, 12.59) and Shannon's diversity (0.04, 95% CI: 0.0008, 0.09). We identified interactions in the association between Inverse Simpson's diversity and physical activity, wherein active transportation for individuals living in a rural environment was associated with additional increases in diversity (4.69, 95% CI: 1.64, 7.73). We also conducted several permutational ANOVAs (PERMANOVA) and negative binomial regression analyses to estimate the relationship between physical activity and microbiome composition. We found that being physically active and increased physical activity time were associated with increased abundance of bacteria in the family Erysipelotrichaceae. Active transportation was associated with increased abundance of bacteria in the genus Phascolarctobacterium, and decreased abundance of Clostridium. Minutes in active transportation was associated with a decreased abundance of the family Clostridiaceae.
Collapse
Affiliation(s)
- Elizabeth A. Holzhausen
- Department of Integrative Physiology, University of Colorado-Boulder, Boulder, Colorado, United States of America
| | - Kristen C. Malecki
- Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ajay K. Sethi
- Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ronald Gangnon
- Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Lisa Cadmus-Bertram
- Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Courtney L. Deblois
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Garret Suen
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Nasia Safdar
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- The William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, United States of America
| | - Paul E. Peppard
- Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
17
|
Wang L, Wang S, Zhang Q, He C, Fu C, Wei Q. The role of the gut microbiota in health and cardiovascular diseases. MOLECULAR BIOMEDICINE 2022; 3:30. [PMID: 36219347 PMCID: PMC9554112 DOI: 10.1186/s43556-022-00091-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
The gut microbiota is critical to human health, such as digesting nutrients, forming the intestinal epithelial barrier, regulating immune function, producing vitamins and hormones, and producing metabolites to interact with the host. Meanwhile, increasing evidence indicates that the gut microbiota has a strong correlation with the occurrence, progression and treatment of cardiovascular diseases (CVDs). In patients with CVDs and corresponding risk factors, the composition and ratio of gut microbiota have significant differences compared with their healthy counterparts. Therefore, gut microbiota dysbiosis, gut microbiota-generated metabolites, and the related signaling pathway may serve as explanations for some of the mechanisms about the occurrence and development of CVDs. Several studies have also demonstrated that many traditional and latest therapeutic treatments of CVDs are associated with the gut microbiota and its generated metabolites and related signaling pathways. Given that information, we summarized the latest advances in the current research regarding the effect of gut microbiota on health, the main cardiovascular risk factors, and CVDs, highlighted the roles and mechanisms of several metabolites, and introduced corresponding promising treatments for CVDs regarding the gut microbiota. Therefore, this review mainly focuses on exploring the role of gut microbiota related metabolites and their therapeutic potential in CVDs, which may eventually provide better solutions in the development of therapeutic treatment as well as the prevention of CVDs.
Collapse
Affiliation(s)
- Lu Wang
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Shiqi Wang
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Qing Zhang
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Chengqi He
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Chenying Fu
- grid.412901.f0000 0004 1770 1022National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,grid.412901.f0000 0004 1770 1022Aging and Geriatric Mechanism Laboratory, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Quan Wei
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| |
Collapse
|
18
|
The Effects of Physical Activity on the Gut Microbiota and the Gut–Brain Axis in Preclinical and Human Models: A Narrative Review. Nutrients 2022; 14:nu14163293. [PMID: 36014798 PMCID: PMC9413457 DOI: 10.3390/nu14163293] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
Increasing evidence supports the importance of the gut microbiota (GM) in regulating multiple functions related to host physical health and, more recently, through the gut–brain axis (GBA), mental health. Similarly, the literature on the impact of physical activity (PA), including exercise, on GM and GBA is growing. Therefore, this narrative review summarizes and critically appraises the existing literature that delves into the benefits or adverse effects produced by PA on physical and mental health status through modifications of the GM, highlighting differences and similarities between preclinical and human studies. The same exercise in animal models, whether performed voluntarily or forced, has different effects on the GM, just as, in humans, intense endurance exercise can have a negative influence. In humans and animals, only aerobic PA seems able to modify the composition of the GM, whereas cardiovascular fitness appears related to specific microbial taxa or metabolites that promote a state of physical health. The PA favors bacterial strains that can promote physical performance and that can induce beneficial changes in the brain. Currently, it seems useful to prioritize aerobic activities at a moderate and not prolonged intensity. There may be greater benefits if PA is undertaken from a young age and the effects on the GM seem to gradually disappear when the activity is stopped. The PA produces modifications in the GM that can mediate and induce mental health benefits.
Collapse
|
19
|
Dziewiecka H, Buttar HS, Kasperska A, Ostapiuk-Karolczuk J, Domagalska M, Cichoń J, Skarpańska-Stejnborn A. Physical activity induced alterations of gut microbiota in humans: a systematic review. BMC Sports Sci Med Rehabil 2022; 14:122. [PMID: 35799284 PMCID: PMC9264679 DOI: 10.1186/s13102-022-00513-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/22/2022] [Indexed: 12/16/2022]
Abstract
Background Gut microbiota is considered to have a great impact on human health and disease. While it is widely recognized that the gut microbiota of healthy individuals differs from those with obesity, inflammatory bowel disease, metabolic syndrome, and other chronic diseases, the alterations of gut microbiota with physical activity are not fully understood. Accordingly, we performed this systematic review to address the question regarding the effects of mild and intense exercise on the gut microbiota in humans.
Methods The comparative analyses of gut microbiota were conducted following the PRISMA protocol to determine the differences in the active vs. non-active individuals (phenotypes) (n = 11), including the influence of physical activity intervention on the human gut microbiota (n = 13); the differences in the gut microbiota of athletes vs. non-athletes (n = 8); and the microbiota status at different stages of athletic performance or intervention (n = 7), with various of physical activities, sport disciplines, and activity duration. Literature searches were completed using four databases: PubMed, Web of Science, Scopus, and EBSCO, and 2090 articles were retrieved by using appropriate keywords. The low heterogeneity of the studies hasn’t allowed us to prepare a meta-analysis. After excluding 2052 articles, we ultimately selected 38 articles that met the eligibility criteria for this review. Results The data analyses revealed that in non-athletes rising physical activity markedly influenced the relative abundance of short-chain fatty acid (SCFA). Aerobic training that lasted 60 min, and physical activity that characterized 60% HRmax or more also influenced beta diversity indexes. The results showed that athletes harbor a more diverse type of intestinal microflora than non-athletes, but with a relatively reduced abundance of SCFA- and lactic acid-producing bacteria, thereby suggesting an adverse effect of intense exercise on the population of gut microbiota. Conclusion It is concluded that the level of physical activity modulates the gastrointestinal microbiota in humans. For a long period, increasing the intensity and volume of exercise may lead to gut dysbiosis. Perhaps, proper supplementation should be considered to keep gut microbiota in large biodiversity and richness, especially under unfavorable gut conditions associated with intense exercise. Trial registration Prospero CRD42021264064.
Collapse
Affiliation(s)
- Hanna Dziewiecka
- Department of Biological Sciences, Faculty of Physical Culture in Gorzow Wielkopolski, Poznan University of Physical Education, Estkowskiego 13, 66-400, Gorzów Wielkopolski, Poland.
| | - Harpal S Buttar
- Department of Pathology & Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Anna Kasperska
- Department of Biological Sciences, Faculty of Physical Culture in Gorzow Wielkopolski, Poznan University of Physical Education, Estkowskiego 13, 66-400, Gorzów Wielkopolski, Poland
| | - Joanna Ostapiuk-Karolczuk
- Department of Biological Sciences, Faculty of Physical Culture in Gorzow Wielkopolski, Poznan University of Physical Education, Estkowskiego 13, 66-400, Gorzów Wielkopolski, Poland
| | - Małgorzata Domagalska
- Department of Biological Sciences, Faculty of Physical Culture in Gorzow Wielkopolski, Poznan University of Physical Education, Estkowskiego 13, 66-400, Gorzów Wielkopolski, Poland
| | - Justyna Cichoń
- Department of Biological Sciences, Faculty of Physical Culture in Gorzow Wielkopolski, Poznan University of Physical Education, Estkowskiego 13, 66-400, Gorzów Wielkopolski, Poland
| | - Anna Skarpańska-Stejnborn
- Department of Biological Sciences, Faculty of Physical Culture in Gorzow Wielkopolski, Poznan University of Physical Education, Estkowskiego 13, 66-400, Gorzów Wielkopolski, Poland
| |
Collapse
|
20
|
Bielik V, Hric I, Ugrayová S, Kubáňová L, Putala M, Grznár Ľ, Penesová A, Havranová A, Šardzíková S, Grendar M, Baranovičová E, Šoltys K, Kolisek M. Effect of High-intensity Training and Probiotics on Gut Microbiota Diversity in Competitive Swimmers: Randomized Controlled Trial. SPORTS MEDICINE - OPEN 2022; 8:64. [PMID: 35536489 PMCID: PMC9091066 DOI: 10.1186/s40798-022-00453-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/20/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND Physical exercise has favorable effects on the structure of gut microbiota and metabolite production in sedentary subjects. However, little is known whether adjustments in an athletic program impact overall changes of gut microbiome in high-level athletes. We therefore characterized fecal microbiota and serum metabolites in response to a 7-week, high-intensity training program and consumption of probiotic Bryndza cheese. METHODS Fecal and blood samples and training logs were collected from young competitive male (n = 17) and female (n = 7) swimmers. Fecal microbiota were categorized using specific primers targeting the V1-V3 region of 16S rDNA, and serum metabolites were characterized by NMR-spectroscopic analysis and by multivariate statistical analysis, Spearman rank correlations, and Random Forest models. RESULTS We found higher α-diversity, represented by the Shannon index value (HITB-pre 5.9 [± 0.4]; HITB-post 6.4 [± 0.4], p = 0.007), (HIT-pre 5.5 [± 0.6]; HIT-post 5.9 [± 0.6], p = 0.015), after the end of the training program in both groups independently of Bryndza cheese consumption. However, Lactococcus spp. increased in both groups, with a higher effect in the Bryndza cheese consumers (HITB-pre 0.0021 [± 0.0055]; HITB-post 0.0268 [± 0.0542], p = 0.008), (HIT-pre 0.0014 [± 0.0036]; HIT-post 0.0068 [± 0.0095], p = 0.046). Concomitant with the increase of high-intensity exercise and the resulting increase of anaerobic metabolism proportion, pyruvate (p[HITB] = 0.003; p[HIT] = 0.000) and lactate (p[HITB] = 0.000; p[HIT] = 0.030) increased, whereas acetate (p[HITB] = 0.000; p[HIT] = 0.002) and butyrate (p[HITB] = 0.091; p[HIT] = 0.019) significantly decreased. CONCLUSIONS Together, these data demonstrate a significant effect of high-intensity training (HIT) on both gut microbiota composition and serum energy metabolites. Thus, the combination of intensive athletic training with the use of natural probiotics is beneficial because of the increase in the relative abundance of lactic acid bacteria.
Collapse
Grants
- 1/0554/19 The Ministry of Education, Science, Research and Sport of the Slovak Republic
- 1/0129/20 The Ministry of Education, Science, Research and Sport of the Slovak Republic
- 1/0260/21 The Ministry of Education, Science, Research and Sport of the Slovak Republic
- APVV-17-0099 Agentúra Ministerstva Školstva, Vedy, Výskumu a Športu SR
- APVV-19-0222 Agentúra Ministerstva Školstva, Vedy, Výskumu a Športu SR
- The Ministry of Education, Science, Research and Sport of the Slovak Republic
Collapse
Affiliation(s)
- Viktor Bielik
- Department of Biological and Medical Sciences, Faculty of Physical Education and Sport, Comenius University in Bratislava, 814 69, Bratislava, Slovakia.
| | - Ivan Hric
- Department of Biological and Medical Sciences, Faculty of Physical Education and Sport, Comenius University in Bratislava, 814 69, Bratislava, Slovakia
| | - Simona Ugrayová
- Department of Biological and Medical Sciences, Faculty of Physical Education and Sport, Comenius University in Bratislava, 814 69, Bratislava, Slovakia
| | - Libuša Kubáňová
- Department of Biological and Medical Sciences, Faculty of Physical Education and Sport, Comenius University in Bratislava, 814 69, Bratislava, Slovakia
- Biomedical Center, Institute of Clinical and Translational Research, Slovak Academy of Sciences, 845 05, Bratislava, Slovakia
| | - Matúš Putala
- Department of Outdoor Sports and Swimming, Faculty of Physical Education and Sport, Comenius University in Bratislava, 814 69, Bratislava, Slovakia
| | - Ľuboš Grznár
- Department of Outdoor Sports and Swimming, Faculty of Physical Education and Sport, Comenius University in Bratislava, 814 69, Bratislava, Slovakia
| | - Adela Penesová
- Biomedical Center, Institute of Clinical and Translational Research, Slovak Academy of Sciences, 845 05, Bratislava, Slovakia
| | - Andrea Havranová
- Biomedical Center, Institute of Clinical and Translational Research, Slovak Academy of Sciences, 845 05, Bratislava, Slovakia
| | - Sára Šardzíková
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15, Bratislava, Slovakia
| | - Marián Grendar
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01, Martin, Slovakia
| | - Eva Baranovičová
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01, Martin, Slovakia
| | - Katarína Šoltys
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15, Bratislava, Slovakia
- Comenius University Science Park, Comenius University in Bratislava, 841 04, Bratislava, Slovakia
| | - Martin Kolisek
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01, Martin, Slovakia
| |
Collapse
|
21
|
Silva JSC, Seguro CS, Naves MMV. Gut microbiota and physical exercise in obesity and diabetes - A systematic review. Nutr Metab Cardiovasc Dis 2022; 32:863-877. [PMID: 35227549 DOI: 10.1016/j.numecd.2022.01.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND AIM The gut microbiota (GM) plays an essential role in maintaining health, and imbalance in its composition is associated with the physiopathogenesis of metabolic diseases, such as obesity and type 2 diabetes mellitus (T2DM). Diet and antibiotics are known modulators of GM, but the influence of physical exercise in modulating the diversity and abundance of hindgut bacteria is still poorly understood. The aim of this systematic review was to investigate the scientific evidence about the effect of physical exercise on GM modulation in subjects with obesity and T2DM. METHODS AND RESULTS A search in PubMed, Web of Science, Scopus, Cochrane and Embase databases using keywords related to gut microbiota, physical exercise and metabolic diseases was performed. Eight clinical studies met the inclusion criteria, six in subjects with obesity and two in individuals with T2DM. In three studies carried out in individuals with obesity, exercise was able to positively modulate the diversity of GM and the abundance of some species of bacteria, mostly by increasing the Bifidobacteriaceae family, and the Bacteroides and Akkermansia genera, and by decreasing the Proteobacteria phylum. The studies in subjects with T2DM found that physical exercise may reduce metabolic endotoxemia markers. CONCLUSIONS Physical exercise may be a beneficial modulation strategy of GM composition in metabolic diseases, specifically aerobic exercises carried out for at least 6 weeks with moderate or high intensity. Nevertheless, well-designed clinical trials are needed to clarify the role of physical exercise on GM in subjects with obesity and T2DM.
Collapse
Affiliation(s)
- John S C Silva
- Scholl of Nutrition, Federal University of Goiás, Goiânia, GO, Brazil
| | - Camila S Seguro
- Scholl of Nutrition, Federal University of Goiás, Goiânia, GO, Brazil
| | | |
Collapse
|
22
|
Cataldi S, Bonavolontà V, Poli L, Clemente FM, De Candia M, Carvutto R, Silva AF, Badicu G, Greco G, Fischetti F. The Relationship between Physical Activity, Physical Exercise, and Human Gut Microbiota in Healthy and Unhealthy Subjects: A Systematic Review. BIOLOGY 2022; 11:479. [PMID: 35336852 PMCID: PMC8945171 DOI: 10.3390/biology11030479] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 02/06/2023]
Abstract
Several studies have been conducted to find at least an association between physical activity (PA)/ physical exercise (PE) and the possibility to modulate the gut microbiome (GM). However, the specific effects produced on the human GM by different types of PA/PE, different training modalities, and their age-related effects are not yet fully understood. Therefore, this systematic review aims to evaluate and summarize the current scientific evidence investigating the bi-directional relationship between PA/PE and the human GM, with a specific focus on the different types/variables of PA/PE and age-related effects, in healthy and unhealthy people. A systematic search was conducted across four databases (Web of Science, Medline (PubMed), Google Scholar, and Cochrane Library). Information was extracted using the populations, exposure, intervention, comparison, outcomes (PICOS) format. The Oxford Quality Scoring System Scale, the Risk of Bias in Non-Randomized Studies of Interventions (ROBINS-I) tool, and the JBI Critical Appraisal Checklist for Analytical Cross-Sectional Studies were used as a qualitative measure of the review. The protocol was registered in PROSPERO (code: CRD42022302725). The following data items were extracted: author, year of publication, study design, number and age of participants, type of PA/PE carried out, protocol/workload and diet assessment, duration of intervention, measurement tools used, and main outcomes. Two team authors reviewed 694 abstracts for inclusion and at the end of the screening process, only 76 full texts were analyzed. Lastly, only 25 research articles met the eligibility criteria. The synthesis of these findings suggests that GM diversity is associated with aerobic exercise contrary to resistance training; abundance of Prevotella genus seems to be correlated with training duration; no significant change in GM richness and diversity are detected when exercising according to the minimum dose recommended by the World Health Organizations; intense and prolonged PE can induce a higher abundance of pro-inflammatory bacteria; PA does not lead to significant GM α/β-diversity in elderly people (60+ years). The heterogeneity of the training parameters used in the studies, diet control, and different sequencing methods are the main confounders. Thus, this systematic review can provide an in-depth overview of the relationship between PA/PE and the human intestinal microbiota and, at the same time, provide indications from the athletic and health perspective.
Collapse
Affiliation(s)
- Stefania Cataldi
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Study of Bari, 70124 Bari, Italy; (S.C.); (V.B.); (L.P.); (M.D.C.); (R.C.); (F.F.)
| | - Valerio Bonavolontà
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Study of Bari, 70124 Bari, Italy; (S.C.); (V.B.); (L.P.); (M.D.C.); (R.C.); (F.F.)
| | - Luca Poli
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Study of Bari, 70124 Bari, Italy; (S.C.); (V.B.); (L.P.); (M.D.C.); (R.C.); (F.F.)
| | - Filipe Manuel Clemente
- Escola Superior Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun’Álvares, 4900-347 Viana do Castelo, Portugal; (F.M.C.); (A.F.S.)
- Research Center in Sports Performance, Recreation, Innovation and Technology (SPRINT), 4960-320 Melgaço, Portugal
- Instituto de Telecomunicações, Delegação da Covilhã, 1049-001 Lisboa, Portugal
| | - Michele De Candia
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Study of Bari, 70124 Bari, Italy; (S.C.); (V.B.); (L.P.); (M.D.C.); (R.C.); (F.F.)
| | - Roberto Carvutto
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Study of Bari, 70124 Bari, Italy; (S.C.); (V.B.); (L.P.); (M.D.C.); (R.C.); (F.F.)
| | - Ana Filipa Silva
- Escola Superior Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun’Álvares, 4900-347 Viana do Castelo, Portugal; (F.M.C.); (A.F.S.)
- Research Center in Sports Performance, Recreation, Innovation and Technology (SPRINT), 4960-320 Melgaço, Portugal
- The Research Centre in Sports Sciences, Health Sciences and Human Development (CIDESD), 5001-801 Vila Real, Portugal
| | - Georgian Badicu
- Department of Physical Education and Special Motricity, Transilvania University of Brasov, 500068 Brasov, Romania;
| | - Gianpiero Greco
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Study of Bari, 70124 Bari, Italy; (S.C.); (V.B.); (L.P.); (M.D.C.); (R.C.); (F.F.)
| | - Francesco Fischetti
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Study of Bari, 70124 Bari, Italy; (S.C.); (V.B.); (L.P.); (M.D.C.); (R.C.); (F.F.)
| |
Collapse
|
23
|
Suryani D, Subhan Alfaqih M, Gunadi JW, Sylviana N, Goenawan H, Megantara I, Lesmana R. Type, Intensity, and Duration of Exercise as Regulator of Gut Microbiome Profile. Curr Sports Med Rep 2022; 21:84-91. [PMID: 35245243 DOI: 10.1249/jsr.0000000000000940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
ABSTRACT Gut microbiome profile is related to individual health. In metabolic syndrome, there is a change in the gut microbiome profile, indicated by an increase in the ratio of Firmicutes to Bacteroidetes. Many studies have been conducted to determine the effect of exercise on modifying the gut microbiome profile. The effectiveness of exercise is influenced by its type, intensity, and duration. Aerobic training decreases splanchnic blood flow and shortens intestinal transit time. High-intensity exercise improves mitochondrial function and increases the essential bacteria in lactate metabolism and urease production. Meanwhile, exercise duration affects the hypothalamic-pituitary-adrenal axis. All of these mechanisms are related to each other in producing the effect of exercise on the gut microbiome profile.
Collapse
Affiliation(s)
| | | | - Julia Windi Gunadi
- Department of Physiology, Faculty of Medicine, Universitas Kristen Maranatha, Bandung, INDONESIA
| | | | | | | | | |
Collapse
|
24
|
Imdad S, Lim W, Kim JH, Kang C. Intertwined Relationship of Mitochondrial Metabolism, Gut Microbiome and Exercise Potential. Int J Mol Sci 2022; 23:ijms23052679. [PMID: 35269818 PMCID: PMC8910986 DOI: 10.3390/ijms23052679] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 02/04/2023] Open
Abstract
The microbiome has emerged as a key player contributing significantly to the human physiology over the past decades. The potential microbial niche is largely unexplored in the context of exercise enhancing capacity and the related mitochondrial functions. Physical exercise can influence the gut microbiota composition and diversity, whereas a sedentary lifestyle in association with dysbiosis can lead to reduced well-being and diseases. Here, we have elucidated the importance of diverse microbiota, which is associated with an individual's fitness, and moreover, its connection with the organelle, the mitochondria, which is the hub of energy production, signaling, and cellular homeostasis. Microbial by-products, such as short-chain fatty acids, are produced during regular exercise that can enhance the mitochondrial capacity. Therefore, exercise can be employed as a therapeutic intervention to circumvent or subside various metabolic and mitochondria-related diseases. Alternatively, the microbiome-mitochondria axis can be targeted to enhance exercise performance. This review furthers our understanding about the influence of microbiome on the functional capacity of the mitochondria and exercise performance, and the interplay between them.
Collapse
Affiliation(s)
- Saba Imdad
- Molecular Metabolism in Health & Disease, Exercise Physiology Laboratory, Sport Science Research Institute, Inha University, Incheon 22212, Korea;
- Department of Biomedical Laboratory Science, College of Health Science, Cheongju University, Cheongju 28503, Korea
| | - Wonchung Lim
- Department of Sports Medicine, College of Health Science, Cheongju University, Cheongju 28503, Korea;
| | - Jin-Hee Kim
- Department of Biomedical Laboratory Science, College of Health Science, Cheongju University, Cheongju 28503, Korea
- Correspondence: (J.-H.K.); (C.K.)
| | - Chounghun Kang
- Molecular Metabolism in Health & Disease, Exercise Physiology Laboratory, Sport Science Research Institute, Inha University, Incheon 22212, Korea;
- Department of Physical Education, College of Education, Inha University, Incheon 22212, Korea
- Correspondence: (J.-H.K.); (C.K.)
| |
Collapse
|
25
|
Mc Gettigan N, O'Toole A, Boland K. “Role of exercise in preventing and restoring gut dysbiosis in patients with inflammatory bowel disease”: A letter to the editor. World J Gastroenterol 2022; 28:878-880. [PMID: 35317102 PMCID: PMC8900572 DOI: 10.3748/wjg.v28.i8.878] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/10/2021] [Accepted: 01/20/2022] [Indexed: 02/06/2023] Open
Abstract
Exercise-induced changes of the microbiome in inflammatory bowel diseases (IBD) is a promising field of research with the potential for personalized exercise regimes as a promising therapeutic adjunct for restoring gut dysbiosis and additionally for regulating immunometabolic pathways in the management of IBD patients. Structured exercise programmes in IBD patients of at least of 12 wk duration are more likely to result in disease-altering changes in the gut microbiome and to harness potential anti-inflammatory effects through these changes along with immunometabolic pathways.
Collapse
Affiliation(s)
- Neasa Mc Gettigan
- Department of Gastroenterology, Beaumont Hospital, Dublin D09V2N0, Leinster, Ireland
- School of Medicine, Royal College of Surgeons, Dublin D02YN77, Ireland
| | - Aoibhlinn O'Toole
- Department of Gastroenterology, Beaumont Hospital, Dublin D09V2N0, Leinster, Ireland
- School of Medicine, Royal College of Surgeons, Dublin D02YN77, Ireland
| | - Karen Boland
- Department of Gastroenterology, Beaumont Hospital, Dublin D09V2N0, Leinster, Ireland
- School of Medicine, Royal College of Surgeons, Dublin D02YN77, Ireland
| |
Collapse
|
26
|
Niu M, Zhao Y, Xiang L, Jia Y, Yuan J, Dai X, Chen H. 16S rRNA gene sequencing analysis of gut microbiome in a mini-pig diabetes model. Animal Model Exp Med 2022; 5:81-88. [PMID: 35213788 PMCID: PMC8879634 DOI: 10.1002/ame2.12202] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/23/2021] [Accepted: 01/05/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Currently, increasing attention is being paid to the important role of intestinal microbiome in diabetes. However, few studies have evaluated the characteristics of gut microbiome in diabetic miniature pigs, despite it being a good model animal for assessing diabetes. METHODS In this study, a mini-pig diabetes model (DM) was established by 9-month high-fat diet (HFD) combined with low-dose streptozotocin, while the animals fed standard chow diet constituted the control group. 16S ribosomal RNA (rRNA) gene sequencing was performed to assess the characteristics of the intestinal microbiome in diabetic mini-pigs. RESULTS The results showed that microbial structure in diabetic mini-pigs was altered, reflected by increases in levels of Coprococcus_3 and Clostridium_sensu_stricto_1, which were positively correlated with diabetes, and decreases in levels of the bacteria Rikenellaceae, Clostridiales_vadinBB60_group, and Bacteroidales_RF16_group, which were inversely correlated with blood glucose and insulin resistance. Moreover, PICRUSt-predicted pathways related to the glycolysis and Entner-Doudoroff superpathway, enterobactin biosynthesis, and the l-tryptophan biosynthesis were significantly elevated in the DM group. CONCLUSION These results reveal the composition and predictive functions of the intestinal microbiome in the mini-pig diabetes model, further verifying the relationship between HFD, gut microbiome, and diabetes, and providing novel insights into the application of the mini-pig diabetes model in gut microbiome research.
Collapse
Affiliation(s)
- Miaomiao Niu
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing, PR China
| | - Yuqiong Zhao
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing, PR China
| | - Lei Xiang
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing, PR China
| | - Yunxiao Jia
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing, PR China
| | - Jifang Yuan
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing, PR China
| | - Xin Dai
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing, PR China
| | - Hua Chen
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing, PR China
| |
Collapse
|
27
|
The Nutrition-Microbiota-Physical Activity Triad: An Inspiring New Concept for Health and Sports Performance. Nutrients 2022; 14:nu14050924. [PMID: 35267899 PMCID: PMC8912693 DOI: 10.3390/nu14050924] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 12/12/2022] Open
Abstract
The human gut microbiota is currently the focus of converging interest in many diseases and sports performance. This review presents gut microbiota as a real “orchestra conductor” in the host’s physio(patho)logy due to its implications in many aspects of health and disease. Reciprocally, gut microbiota composition and activity are influenced by many different factors, such as diet and physical activity. Literature data have shown that macro- and micro-nutrients influence gut microbiota composition. Cumulative data indicate that gut bacteria are sensitive to modulation by physical activity, as shown by studies using training and hypoactivity models. Sports performance studies have also presented interesting and promising results. Therefore, gut microbiota could be considered a “pivotal” organ for health and sports performance, leading to a new concept: the nutrition-microbiota-physical activity triad. The next challenge for the scientific and medical communities is to test this concept in clinical studies. The long-term aim is to find the best combination of the three elements of this triad to optimize treatments, delay disease onset, or enhance sports performance. The many possibilities offered by biotic supplementation and training modalities open different avenues for future research.
Collapse
|
28
|
Zheng C, Chen XK, Tian XY, Ma ACH, Wong SHS. Does the gut microbiota contribute to the antiobesity effect of exercise? A systematic review and meta-analysis. Obesity (Silver Spring) 2022; 30:407-423. [PMID: 35088557 DOI: 10.1002/oby.23345] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/07/2021] [Accepted: 10/31/2021] [Indexed: 12/26/2022]
Abstract
OBJECTIVE The aim of this study was to assess gut microbiota modifications after exercise in humans and animal models with obesity or type 2 diabetes and their role in exercise-induced weight loss. METHODS A systematic search of six databases was conducted on July 31, 2021. The extracted data on body fat or body weight from human and animal studies were analyzed using random-effects meta-analysis. RESULTS A total of 28 studies were included, with all studies reporting exercise-induced gut microbiota modifications; however, the modified taxa varied among studies. Proteobacteria was the only taxa reported to be altered by exercise in more than one human and one animal study. Taxa belonging to Firmicutes were the most responsive to exercise in humans and mice, whereas Proteobacteria taxa were the most responsive to exercise in rats. A meta-analysis was conducted to examine the weight-lowering effect of exercise based on data subgrouped by altered or unaltered α-diversity or β-diversity. The association between the weight-lowering effect of exercise and altered β-diversity was observed in humans with obesity but not in animals. CONCLUSIONS These findings suggest that gut microbiota modifications contribute to exercise-induced weight loss in obesity; however, their precise contributions, especially those of taxon-level variations, remain to be investigated.
Collapse
Affiliation(s)
- Chen Zheng
- Department of Sports Science and Physical Education, The Chinese University of Hong Kong, Sha Tin, Hong Kong, China
| | - Xiang-Ke Chen
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Xiao Yu Tian
- School of Biomedical Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong, China
| | - Alvin Chun-Hang Ma
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Stephen Heung-Sang Wong
- Department of Sports Science and Physical Education, The Chinese University of Hong Kong, Sha Tin, Hong Kong, China
| |
Collapse
|
29
|
Abstract
Identifying ways to deal with the challenges presented by aging is an urgent task, as we are facing an aging society. External factors such as diet, exercise and drug therapy have proven to be major elements in controlling healthy aging and prolonging life expectancy. More recently, the intestinal microbiota has also become a key factor in the anti-aging process. As the intestinal microbiota changes with aging, an imbalance in intestinal microorganisms can lead to many age-related degenerative diseases and unhealthy aging. This paper reviews recent research progress on the relationship between intestinal microorganisms and anti-aging effects, focusing on the changes and beneficial effects of intestinal microorganisms under dietary intervention, exercise and drug intervention. In addition, bacteriotherapy has been used to prevent frailty and unhealthy aging. Most of these anti-aging approaches improve the aging process and age-related diseases by regulating the homeostasis of intestinal flora and promoting a healthy intestinal environment. Intervention practices based on intestinal microorganisms show great potential in the field of anti-aging medicine.
Collapse
Affiliation(s)
- Yanjiao Du
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yue Gao
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bo Zeng
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaolan Fan
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Deying Yang
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mingyao Yang
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,CONTACT Mingyao Yang Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan611130, P. R. China
| |
Collapse
|
30
|
Donati Zeppa S, Amatori S, Sisti D, Gervasi M, Agostini D, Piccoli G, Pazienza V, Gobbi P, Rocchi MBL, Sestili P, Stocchi V. Nine weeks of high-intensity indoor cycling training induced changes in the microbiota composition in non-athlete healthy male college students. J Int Soc Sports Nutr 2021; 18:74. [PMID: 34922581 PMCID: PMC8684107 DOI: 10.1186/s12970-021-00471-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/19/2021] [Indexed: 12/20/2022] Open
Abstract
Background The gut microbiota constitutes a dynamic microbial system constantly challenged by environmental conditions, including physical exercise. Limited human studies suggest that exercise could play a beneficial role for gut health, increasing microbial diversity, even if the effects of exercise on gut microbial microorganisms depends on its intensity and duration. This study aimed to investigate the effects of nine weeks of high-intensity interval exercise on gut microbiota composition in healthy young adults. Methods The gut microbiota composition of seventeen healthy male college students was analysed before and after nine weeks of high-intensity interval cycling training by 16S rRNA amplicon sequencing. PERMANOVA for repeated measures was used to test pre-post differences in the relative abundance of all taxonomic levels, and correlations between variations in microbial composition and physical and dietary features were also assessed. Results Physical exercise induced changes in microbiota composition, at all taxonomic levels analysed (phyla: F [1, 32]=3.97, p=0.029; classes: F [1, 32]=3.39, p=0.033, orders: F [1, 32]=3.17, p=0.044, families: F [1, 32]=1.54, p=0.037, genera: F [1, 32]=1.46, p=0.015, species: F [1, 32]=1.38, p=0.007). Conversely, no differences were found between pre and post-training conditions for microbial community richness (Chao1: V=105, p=0.06) or diversity (Shannon index: V=62, p=0.52; Simpson index: V=59, p=0.43). Changes in the relative abundance of eighteen genera were correlated to changes of twenty environmental factors grouped in physical features, sport-related features, and dietary features. Conclusions Nine weeks of high-intensity exercise induced modifications in gut microbiota composition in healthy male college students, shifting the gut microbial population towards a healthier microbiome with benefit to human health in general. Supplementary Information The online version contains supplementary material available at 10.1186/s12970-021-00471-z.
Collapse
Affiliation(s)
- Sabrina Donati Zeppa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo Piazza Rinascimento 7, 61029, Urbino, Italy
| | - Stefano Amatori
- Department of Biomolecular Sciences, University of Urbino Carlo Bo Piazza Rinascimento 7, 61029, Urbino, Italy
| | - Davide Sisti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo Piazza Rinascimento 7, 61029, Urbino, Italy.
| | - Marco Gervasi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo Piazza Rinascimento 7, 61029, Urbino, Italy
| | - Deborah Agostini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo Piazza Rinascimento 7, 61029, Urbino, Italy
| | - Giovanni Piccoli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo Piazza Rinascimento 7, 61029, Urbino, Italy
| | - Valerio Pazienza
- Division of Gastroenterology "Casa Sollievo della Sofferenza" Hospital, 71013, San Giovanni Rotondo, Italy
| | - Pietro Gobbi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo Piazza Rinascimento 7, 61029, Urbino, Italy
| | - Marco B L Rocchi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo Piazza Rinascimento 7, 61029, Urbino, Italy
| | - Piero Sestili
- Department of Biomolecular Sciences, University of Urbino Carlo Bo Piazza Rinascimento 7, 61029, Urbino, Italy
| | | |
Collapse
|
31
|
The Relationship among Physical Activity, Intestinal Flora, and Cardiovascular Disease. Cardiovasc Ther 2021; 2021:3364418. [PMID: 34729078 PMCID: PMC8526197 DOI: 10.1155/2021/3364418] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 09/22/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases (CVDs), which are associated with high morbidity and mortality worldwide, include atherosclerosis (AS), hypertension, heart failure (HF), atrial fibrillation, and myocardial fibrosis. CVDs are influenced by the diversity, distribution, and metabolites of intestinal microflora, and their risk can be reduced through physical activity (PA) such as regular exercise. PA benefits the metabolic changes that occur in the gut microbiota (GM). The major metabolites of the GM influence pathogenesis of CVDs through various pathways. However, the relationship between PA and GM is less well understood. In this review, we discuss the impacts of different types of PA on intestinal microflora including the diversity, distribution, metabolites, and intestinal barrier function including intestinal permeability, with a focus on the mechanisms by which PA affects GM. We also discuss how GM influences CVDs. Finally, we summarize current research and knowledge on the effects of PA on CVD via regulation of the GM and intestinal function. More understanding of relevant relationship between PA and GM may provide hope for the prevention or treatment of CVDs. Furthermore, a better understanding of regulation of the GM and intestinal function may lead to novel diagnostic and therapeutic strategies, improving the clinical care of CVD patients.
Collapse
|
32
|
Moore TM, Terrazas A, Strumwasser AR, Lin AJ, Zhu X, Anand ATS, Nguyen CQ, Stiles L, Norheim F, Lang JM, Hui ST, Turcotte LP, Zhou Z. Effect of voluntary exercise upon the metabolic syndrome and gut microbiome composition in mice. Physiol Rep 2021; 9:e15068. [PMID: 34755487 PMCID: PMC8578881 DOI: 10.14814/phy2.15068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/01/2021] [Accepted: 09/13/2021] [Indexed: 12/18/2022] Open
Abstract
The metabolic syndrome is a cluster of conditions that increase an individual's risk of developing diseases. Being physically active throughout life is known to reduce the prevalence and onset of some aspects of the metabolic syndrome. Furthermore, previous studies have demonstrated that an individual's gut microbiome composition has a large influence on several aspects of the metabolic syndrome. However, the mechanism(s) by which physical activity may improve metabolic health are not well understood. We sought to determine if endurance exercise is sufficient to prevent or ameliorate the development of the metabolic syndrome and its associated diseases. We also analyzed the impact of physical activity under metabolic syndrome progression upon the gut microbiome composition. Utilizing whole-body low-density lipoprotein receptor (LDLR) knockout mice on a "Western Diet," we show that long-term exercise acts favorably upon glucose tolerance, adiposity, and liver lipids. Exercise increased mitochondrial abundance in skeletal muscle but did not reduce liver fibrosis, aortic lesion area, or plasma lipids. Lastly, we observed several changes in gut bacteria and their novel associations with metabolic parameters of clinical importance. Altogether, our results indicate that exercise can ameliorate some aspects of the metabolic syndrome progression and alter the gut microbiome composition.
Collapse
Affiliation(s)
- Timothy M. Moore
- Division of CardiologyDepartment of MedicineUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Anthony Terrazas
- Division of CardiologyDepartment of MedicineUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Alexander R. Strumwasser
- Division of Endocrinology, Diabetes, and HypertensionUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Amanda J. Lin
- Division of Endocrinology, Diabetes, and HypertensionUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Xiaopeng Zhu
- Division of Pediatric EndocrinologyDepartment of Pediatrics UCLA Children's Discovery and Innovation InstituteDepartment of MedicineUniversity of CaliforniaLos AngelesCaliforniaUSA
- Present address:
Department of Endocrinology and Metabolism. Zhongshan HospitalFudan UniversityShanghaiP.R.China
| | - Akshay T. S. Anand
- Division of Endocrinology, Diabetes, and HypertensionUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Christina Q. Nguyen
- Division of Endocrinology, Diabetes, and HypertensionUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Linsey Stiles
- Division of Endocrinology, Diabetes, and HypertensionUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Frode Norheim
- Department of Human GeneticsUniversity of CaliforniaLos AngelesCaliforniaUSA
- Present address:
Department of NutritionFaculty of MedicineInstitute of Basic Medical SciencesUniversity of OsloOsloNorway
| | - Jennifer M. Lang
- Department of Human GeneticsUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Simon T. Hui
- Division of CardiologyDepartment of MedicineUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Lorraine P. Turcotte
- Department of Biological SciencesDana & David Dornsife College of Letters, Arts, and SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Zhenqi Zhou
- Division of Endocrinology, Diabetes, and HypertensionUniversity of CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
33
|
Gut Microbiota, Microbial Metabolites and Human Physical Performance. Metabolites 2021; 11:metabo11110716. [PMID: 34822374 PMCID: PMC8619554 DOI: 10.3390/metabo11110716] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/12/2021] [Accepted: 10/16/2021] [Indexed: 01/02/2023] Open
Abstract
Trillions of microbes inhabiting the gut modulate the metabolism of the host. Cross-sectional studies have reported associations between physical performance and the gut microbiota (GM). Physical activity seems to increase GM diversity and the abundance of certain health-beneficial microbes. We reviewed the evidence from longitudinal studies on the connection between physically active lifestyle or long-term exercise interventions and the GM. We made literature searches using databases of Web of Science and PubMed Medline to collect human studies showing or not the associations between the GM and exercise. Many controversies exist in the studies. However, the longitudinal studies show that frequently, medium-intensity endurance exercise has yielded most beneficial effects on the GM, but the results vary depending on the study population and exercise protocol. In addition, the literature shows that certain microbes own the potency to increase physical activity and performance. Generally, a physically active lifestyle and exercise associate with a “healthy” GM. However, in previously sedentary subjects, the exercise-induced improvements in the GM seem to disappear unless the active lifestyle is continued. Unfortunately, several studies are not controlled for the diet. Thus, in the future, more longitudinal studies on the GM and physical performance are needed, with detailed dietary information.
Collapse
|
34
|
Dupuit M, Rance M, Morel C, Bouillon P, Boscaro A, Martin V, Vazeille E, Barnich N, Chassaing B, Boisseau N. Impact of Concurrent Training on Body Composition and Gut Microbiota in Postmenopausal Women with Overweight or Obesity. Med Sci Sports Exerc 2021; 54:517-529. [PMID: 34628447 DOI: 10.1249/mss.0000000000002809] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Menopause tends to be associated with an increased risk of obesity and abdominal fat mass (FM) and is associated with lower intestinal species diversity. The aim of this study was to determine the effects of a high-intensity interval training and resistance training (HIIT + RT) program on body composition and intestinal microbiota composition in overweight or obese postmenopausal women. METHODS Participants (n = 17) were randomized in two groups: HIIT + RT group (3 × / week, 12 weeks) and control group without any training. Dual-energy X-ray absorptiometry was used to measure whole-body and abdominal/visceral FM and fat-free mass. Intestinal microbiota composition was determined by 16S rRNA gene sequencing at baseline and at the study end, and the diet controlled. RESULTS Compared with sedentary controls, physical fitness (Maximal Oxygen Consumption, Peak Power Output) increased, total abdominal and visceral FM decreased, and segmental muscle mass increased in the training group. Although the HIIT + RT protocol did not modify α-diversity and taxonomy, it significantly influenced microbiota composition. Moreover, various intestinal microbiota members were correlated with HIIT + RT-induced body composition changes, and baseline microbiota composition predicted the response to the HIIT + RT program. CONCLUSIONS HIIT + RT is an effective modality to reduce abdominal/visceral FM and improve physical capacity in non-dieting overweight or obese postmenopausal women. Training modified intestinal microbiota composition and the response to training seems to depend on the initial microbiota profile. More studies are needed to determine whether microbiota composition could predict the individual training response.
Collapse
Affiliation(s)
- Marine Dupuit
- Laboratory of the Metabolic Adaptations to Exercise under Physiological and Pathological Conditions (AME2P), Clermont Auvergne University, Clermont-Ferrand, France Center of Resources, Expertise and Performance in Sports (CREPS), Bellerive-sur-Allier, France Department of Cardiology, Vichy Hospital, Vichy, France University Institute of France (IUF), Paris, France Department of Cardiology, University Hospital of Clermont-Ferrand, 63000 Clermont-Ferrand, France Microbes, Intestine, Inflammation and Susceptibility of the Host (M2iSH), UMR 1071, USC INRAE 2018, Université Clermont Auvergne, Clermont-Ferrand, France Inserm U1016, Team 'Mucosal microbiota in chronic inflammatory diseases', CNRS UMR 8104, Paris University, Paris, France Human Nutrition Research Center of Auvergne - Rhône-Alpes (CNRH-AURA), Clermont-Ferrand, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Verheggen RJHM, Konstanti P, Smidt H, Hermus ARMM, Thijssen DHJ, Hopman MTE. Eight-week exercise training in humans with obesity: Marked improvements in insulin sensitivity and modest changes in gut microbiome. Obesity (Silver Spring) 2021; 29:1615-1624. [PMID: 34467673 PMCID: PMC9291576 DOI: 10.1002/oby.23252] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/15/2021] [Accepted: 06/06/2021] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Obesity is associated with impaired gut microbiota diversity, which has been linked to the development of type 2 diabetes. This study aims to examine the effects of an 8-week aerobic exercise intervention on insulin sensitivity, visceral adiposity, and gut microbiota diversity and composition in participants with obesity. METHODS Fourteen participants (mean [SD], age 51 [11] years; BMI 34.9 [4.9] kg/m2 ) performed an 8-week exercise intervention (2 to 4 times/week on 65% to 85% of heart rate reserve). Insulin sensitivity (hyperinsulemic euglycemic clamp), cardiorespiratory fitness (maximal oxygen uptake), visceral adiposity (dual-energy X-ray absorptiometry scan) and gut microbiota composition (16S rRNA gene sequencing) were measured before and after the intervention. RESULTS Insulin sensitivity showed a significant increase (pre: 3.8 [1.9] mg/min/kg; post: 4.5 [1.7] mg/min/kg; p = 0.007) after training, whereas visceral adiposity decreased (pre: 959 [361] cm3 ; post: 897 [364] cm3 ; p = 0.02). No change in gut microbiota α- or β-diversity was found. At the genus level, the abundance of Ruminococcus gauvreauii (p = 0.02); Lachnospiraceae FCS020 group (p = 0.04), and Anaerostipes (p = 0.04) significantly increased after exercise training. Significant positive correlations were present for M-value (R. gauvreauii) and VO2 max (R. gauvreauii and Anaerostipes). CONCLUSIONS Eight-week exercise training in humans with obesity leads to marked improvements in insulin sensitivity and body composition and is accompanied by modest changes in 3 gut microbiome genera, all belonging to the Firmicutes phylum.
Collapse
Affiliation(s)
- Rebecca J. H. M. Verheggen
- Department of PhysiologyRadboud University Medical CenterRadboud Institute for Health SciencesNijmegenthe Netherlands
| | - Prokopis Konstanti
- Laboratory of MicrobiologyWageningen UniversityWageningenthe Netherlands
| | - Hauke Smidt
- Laboratory of MicrobiologyWageningen UniversityWageningenthe Netherlands
| | - Ad R. M. M. Hermus
- Department of Internal MedicineDivision of EndocrinologyRadboud University Medical CenterRadboud Institute for Health SciencesNijmegenthe Netherlands
| | - Dick H. J. Thijssen
- Department of PhysiologyRadboud University Medical CenterRadboud Institute for Health SciencesNijmegenthe Netherlands
- Research Institute for Sport and Exercise SciencesLiverpool John Moores UniversityLiverpoolUK
| | - Maria T. E. Hopman
- Department of PhysiologyRadboud University Medical CenterRadboud Institute for Health SciencesNijmegenthe Netherlands
| |
Collapse
|
36
|
The role of a Mediterranean diet and physical activity in decreasing age-related inflammation through modulation of the gut microbiota composition. Br J Nutr 2021; 128:1299-1314. [PMID: 34423757 DOI: 10.1017/s0007114521003251] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chronic inflammation is known to be a predominant factor in the development of many age-related conditions including CVD, type II diabetes and neurodegenerative diseases. Previous studies have demonstrated that during the ageing process there is an increase in inflammatory biomarkers, which may be partially brought about by detrimental changes in the gut microbiota. The Mediterranean diet (MedDiet) and physical activity (PA) are protective against inflammation and chronic disease, and emerging evidence has shown that these effects may be partially mediated through favourable changes in the gut microbiota. In this review, we have evaluated the published literature on the effect of a MedDiet and PA on the gut microbiota. We also discuss the relationship between the gut microbiota and inflammation with a focus on healthy ageing. While inconsistent study designs make forming definitive conclusions challenging, the current evidence suggests that both a MedDiet and PA are capable of modifying the gut microbiota in a way that is beneficial to host health. For example, the increases in the relative abundance of SCFA producing bacteria that are considered to possess anti-inflammatory properties. Modification of the gut microbiota through a MedDiet and PA presents as a potential method to attenuate age-related increases in inflammation, and additional studies utilising older individuals are needed to fill the knowledge gaps existing in current literature.
Collapse
|
37
|
Koutouratsas T, Philippou A, Kolios G, Koutsilieris M, Gazouli M. Role of exercise in preventing and restoring gut dysbiosis in patients with inflammatory bowel diseases: A review. World J Gastroenterol 2021; 27:5037-5046. [PMID: 34497433 PMCID: PMC8384738 DOI: 10.3748/wjg.v27.i30.5037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/19/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel diseases (IBD) include a spectrum of chronic inflammatory disorders of the gastrointestinal tract whose pathogenesis is yet to be elucidated. The intestinal microbiome has been studied as a causal component, with certain microbiotic alterations having been observed in subtypes of IBD. Physical exercise is a modulator of the intestinal microbiome, causing shifts in its composition that are partially corrective of those observed in IBD; furthermore, physical exercise may be beneficial in patients with certain IBD subtypes. This review studies the effects of physical exercise on the human gut microbiome while investigating pathophysiologic mechanisms that could explain physical activity's clinical effects on patients with IBD.
Collapse
Affiliation(s)
- Tilemachos Koutouratsas
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Anastassios Philippou
- Department of Basic Medical Sciences, Laboratory of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - George Kolios
- Department of Medicine, Laboratory of Pharmacology, Democritus University of Thrace, Alexandroupolis 68100, Greece
| | - Michael Koutsilieris
- Department of Basic Medical Sciences, Laboratory of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Maria Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| |
Collapse
|
38
|
Differences in Gut Microbiome Composition and Antibiotic Resistance Gene Distribution between Chinese and Pakistani University Students from a Common Peer Group. Microorganisms 2021; 9:microorganisms9061152. [PMID: 34072124 PMCID: PMC8229524 DOI: 10.3390/microorganisms9061152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 12/13/2022] Open
Abstract
Gut microbiomes play important functional roles in human health and are also affected by many factors. However, few studies concentrate on gut microbiomes under exercise intervention. Additionally, antibiotic resistance genes (ARGs) carried by gut microbiomes may constantly pose a threat to human health. Here, ARGs and microbiomes of Chinese and Pakistanis participants were investigated using 16S rRNA gene sequencing and high-throughput quantitative PCR techniques. The exercise had no impact on gut microbiomes in the 12 individuals investigated during the observation period, while the different distribution of gut microbiomes was found in distinct nationalities. Overall, the dominant microbial phyla in the participants’ gut were Bacteroidota, Firmicutes and Proteobacteria. Some genera such as Prevotella and Dialister were more abundant in Pakistani participants and some other genera such as Bacteroides and Faecalibacterium were more abundant in Chinese participants. The microbial diversity in Chinese was higher than that in Pakistanis. Furthermore, microbial community structures were also different between Chinese and Pakistanis. For ARGs, the distribution of all detected ARGs is not distinct at each time point. Among these ARGs, floR was distributed differently in Chinese and Pakistani participants, and some ARGs such as tetQ and sul2 are positively correlated with several dominant microbiomes, particularly Bacteroidota and Firmicutes bacteria that did not fluctuate over time.
Collapse
|
39
|
Aya V, Flórez A, Perez L, Ramírez JD. Association between physical activity and changes in intestinal microbiota composition: A systematic review. PLoS One 2021; 16:e0247039. [PMID: 33630874 PMCID: PMC7906424 DOI: 10.1371/journal.pone.0247039] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/31/2021] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION The intestinal microbiota comprises bacteria, fungi, archaea, protists, helminths and viruses that symbiotically inhabit the digestive system. To date, research has provided limited data on the possible association between an active lifestyle and a healthy composition of human microbiota. This review was aimed to summarize the results of human studies comparing the microbiome of healthy individuals with different physical activity amounts. METHODS We searched Medline/Ovid, NIH/PubMed, and Academic Search Complete between August-October 2020. Inclusion criteria comprised: (a) cross-sectional studies focused on comparing gut microbiome among subjects with different physical activity levels; (b) studies describing human gut microbiome responses to any type of exercise stimulus; (c) studies containing healthy adult women and men. We excluded studies containing diet modifications, probiotic or prebiotic consumption, as well as studies focused on diabetes, hypertension, cancer, hormonal dysfunction. Methodological quality and risk of bias for each study were assessed using the Risk Of Bias In Non-randomized Studies-of Interventions tool. The results from cross-sectional and longitudinal studies are shown independently. RESULTS A total of 17 articles were eligible for inclusion: ten cross-sectional and seven longitudinal studies. Main outcomes vary significantly according to physical activity amounts in longitudinal studies. We identified discrete changes in diversity indexes and relative abundance of certain bacteria in active people. CONCLUSION As literature in this field is rapidly growing, it is important that studies incorporate diverse methods to evaluate other aspects related to active lifestyles such as sleep and dietary patterns. Exploration of other groups such as viruses, archaea and parasites may lead to a better understanding of gut microbiota adaptation to physical activity and sports and its potentially beneficial effects on host metabolism and endurance.
Collapse
Affiliation(s)
- Viviana Aya
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Alberto Flórez
- Grupo In-Novum Educatio, Facultad de Educación, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Luis Perez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
40
|
Ahmed B, Sultana R, Greene MW. Adipose tissue and insulin resistance in obese. Biomed Pharmacother 2021; 137:111315. [PMID: 33561645 DOI: 10.1016/j.biopha.2021.111315] [Citation(s) in RCA: 413] [Impact Index Per Article: 103.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 02/08/2023] Open
Abstract
Currently, obesity has become a global health issue and is referred to as an epidemic. Dysfunctional obese adipose tissue plays a pivotal role in the development of insulin resistance. However, the mechanism of how dysfunctional obese-adipose tissue develops insulin-resistant circumstances remains poorly understood. Therefore, this review attempts to highlight the potential mechanisms behind obesity-associated insulin resistance. Multiple risk factors are directly or indirectly associated with the increased risk of obesity; among them, environmental factors, genetics, aging, gut microbiota, and diets are prominent. Once an individual becomes obese, adipocytes increase in their size; therefore, adipose tissues become larger and dysfunctional, recruit macrophages, and then these polarize to pro-inflammatory states. Enlarged adipose tissues release excess free fatty acids (FFAs), reactive oxygen species (ROS), and pro-inflammatory cytokines. Excess systemic FFAs and dietary lipids enter inside the cells of non-adipose organs such as the liver, muscle, and pancreas, and are deposited as ectopic fat, generating lipotoxicity. Toxic lipids dysregulate cellular organelles, e.g., mitochondria, endoplasmic reticulum, and lysosomes. Dysregulated organelles release excess ROS and pro-inflammation, resulting in systemic inflammation. Long term low-grade systemic inflammation prevents insulin from its action in the insulin signaling pathway, disrupts glucose homeostasis, and results in systemic dysregulation. Overall, long-term obesity and overnutrition develop into insulin resistance and chronic low-grade systemic inflammation through lipotoxicity, creating the circumstances to develop clinical conditions. This review also shows that the liver is the most sensitive organ undergoing insulin impairment faster than other organs, and thus, hepatic insulin resistance is the primary event that leads to the subsequent development of peripheral tissue insulin resistance.
Collapse
Affiliation(s)
- Bulbul Ahmed
- Department of Nutrition, Auburn University, Auburn, AL, 36849, United States.
| | - Rifat Sultana
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, United States
| | - Michael W Greene
- Department of Nutrition, Auburn University, Auburn, AL, 36849, United States
| |
Collapse
|