1
|
Del Bene A, D'Aniello A, Mottola S, Mazzarella V, Cutolo R, Campagna E, Benedetti R, Altucci L, Cosconati S, Di Maro S, Messere A. From genetic code to global health: the impact of nucleic acid vaccines on disease prevention and treatment. RSC Med Chem 2025:d5md00032g. [PMID: 40337306 PMCID: PMC12053015 DOI: 10.1039/d5md00032g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 04/19/2025] [Indexed: 05/09/2025] Open
Abstract
Vaccinology has revolutionized modern medicine, delivering groundbreaking solutions to prevent and control infectious diseases while pioneering innovative strategies to tackle non-infectious challenges, including cancer. Traditional vaccines faced inherent limitations, driving the evolution of next-generation vaccines such as subunit vaccines, peptide-based vaccines, and nucleic acid-based platforms. Among these, nucleic acid-based vaccines, including DNA and mRNA technologies, represent a major innovation. Pioneering studies in the 1990s demonstrated their ability to elicit immune responses by encoding specific antigens. Recent advancements in delivery systems and molecular engineering have overcome initial challenges, enabling their rapid development and clinical success. This review explores nucleic acid-based vaccines, including chemically modified variants, by examining their mechanisms, structural features, and therapeutic potential, while underscoring their pivotal role in modern immunization strategies and expanding applications across contemporary medicine.
Collapse
Affiliation(s)
- Alessandra Del Bene
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli" Caserta Italy
| | | | - Salvatore Mottola
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli" Caserta Italy
| | - Vincenzo Mazzarella
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli" Caserta Italy
| | - Roberto Cutolo
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli" Caserta Italy
| | - Erica Campagna
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli" Vico Luigi De Crecchio 1 80138 Naples Italy
- Program of Medical Epigenetics, Vanvitelli Hospital 80138 Naples Italy
| | - Rosaria Benedetti
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli" Vico Luigi De Crecchio 1 80138 Naples Italy
- Program of Medical Epigenetics, Vanvitelli Hospital 80138 Naples Italy
- Biogem Institute of Molecular and Genetic Biology 83031 Ariano Irpino Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli" Vico Luigi De Crecchio 1 80138 Naples Italy
| | - Sandro Cosconati
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli" Caserta Italy
| | - Salvatore Di Maro
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli" Caserta Italy
| | - Anna Messere
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli" Caserta Italy
| |
Collapse
|
2
|
Tadic S, Martínez A. Nucleic acid cancer vaccines targeting tumor related angiogenesis. Could mRNA vaccines constitute a game changer? Front Immunol 2024; 15:1433185. [PMID: 39081320 PMCID: PMC11286457 DOI: 10.3389/fimmu.2024.1433185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Tumor related angiogenesis is an attractive target in cancer therapeutic research due to its crucial role in tumor growth, invasion, and metastasis. Different agents were developed aiming to inhibit this process; however they had limited success. Cancer vaccines could be a promising tool in anti-cancer/anti-angiogenic therapy. Cancer vaccines aim to initiate an immune response against cancer cells upon presentation of tumor antigens which hopefully will result in the eradication of disease and prevention of its recurrence by inducing an efficient and long-lasting immune response. Different vaccine constructs have been developed to achieve this and they could include either protein-based or nucleic acid-based vaccines. Nucleic acid vaccines are simple and relatively easy to produce, with high efficiency and safety, thus prompting a high interest in the field. Different DNA vaccines have been developed to target crucial regulators of tumor angiogenesis. Most of them were successful in pre-clinical studies, mostly when used in combination with other therapeutics, but had limited success in the clinic. Apparently, different tumor evasion mechanisms and reduced immunogenicity still limit the potential of these vaccines and there is plenty of room for improvement. Nowadays, mRNA cancer vaccines are making remarkable progress due to improvements in the manufacturing technology and represent a powerful potential alternative. Apart from their efficiency, mRNA vaccines are simple and cheap to produce, can encompass multiple targets simultaneously, and can be quickly transferred from bench to bedside. mRNA vaccines have already accomplished amazing results in cancer clinical trials, thus ensuring a bright future in the field, although no anti-angiogenic mRNA vaccines have been described yet. This review aims to describe recent advances in anti-angiogenic DNA vaccine therapy and to provide perspectives for use of revolutionary approaches such are mRNA vaccines for anti-angiogenic treatments.
Collapse
Affiliation(s)
| | - Alfredo Martínez
- Angiogenesis Unit, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| |
Collapse
|
3
|
Sharma S, Singh N, Turk AA, Wan I, Guttikonda A, Dong JL, Zhang X, Opyrchal M. Molecular insights into clinical trials for immune checkpoint inhibitors in colorectal cancer: Unravelling challenges and future directions. World J Gastroenterol 2024; 30:1815-1835. [PMID: 38659481 PMCID: PMC11036501 DOI: 10.3748/wjg.v30.i13.1815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/22/2024] [Accepted: 03/13/2024] [Indexed: 04/03/2024] Open
Abstract
Colorectal cancer (CRC) is a complex disease with diverse etiologies and clinical outcomes. Despite considerable progress in development of CRC therapeutics, challenges remain regarding the diagnosis and management of advanced stage metastatic CRC (mCRC). In particular, the five-year survival rate is very low since mCRC is currently rarely curable. Over the past decade, cancer treatment has significantly improved with the introduction of cancer immunotherapies, specifically immune checkpoint inhibitors. Therapies aimed at blocking immune checkpoints such as PD-1, PD-L1, and CTLA-4 target inhibitory pathways of the immune system, and thereby enhance anti-tumor immunity. These therapies thus have shown promising results in many clinical trials alone or in combination. The efficacy and safety of immunotherapy, either alone or in combination with CRC, have been investigated in several clinical trials. Clinical trials, including KEYNOTE-164 and CheckMate 142, have led to Food and Drug Administration approval of the PD-1 inhibitors pembrolizumab and nivolumab, respectively, for the treatment of patients with unresectable or metastatic microsatellite instability-high or deficient mismatch repair CRC. Unfortunately, these drugs benefit only a small percentage of patients, with the benefits of immunotherapy remaining elusive for the vast majority of CRC patients. To this end, primary and secondary resistance to immunotherapy remains a significant issue, and further research is necessary to optimize the use of immunotherapy in CRC and identify biomarkers to predict the response. This review provides a comprehensive overview of the clinical trials involving immune checkpoint inhibitors in CRC. The underlying rationale, challenges faced, and potential future steps to improve the prognosis and enhance the likelihood of successful trials in this field are discussed.
Collapse
Affiliation(s)
- Samantha Sharma
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Naresh Singh
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Anita Ahmed Turk
- Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Isabella Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Akshay Guttikonda
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Julia Lily Dong
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Xinna Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, United States
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Mateusz Opyrchal
- Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, United States
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| |
Collapse
|
4
|
Pandya A, Shah Y, Kothari N, Postwala H, Shah A, Parekh P, Chorawala MR. The future of cancer immunotherapy: DNA vaccines leading the way. Med Oncol 2023; 40:200. [PMID: 37294501 PMCID: PMC10251337 DOI: 10.1007/s12032-023-02060-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/22/2023] [Indexed: 06/10/2023]
Abstract
Immuno-oncology has revolutionized cancer treatment and has opened up new opportunities for developing vaccination methods. DNA-based cancer vaccines have emerged as a promising approach to activating the bodily immune system against cancer. Plasmid DNA immunizations have shown a favorable safety profile and there occurs induction of generalized as well as tailored immune responses in preclinical and early-phase clinical experiments. However, these vaccines have notable limitations in immunogenicity and heterogeneity and these require refinements. DNA vaccine technology has been focusing on improving vaccine efficacy and delivery, with parallel developments in nanoparticle-based delivery systems and gene-editing technologies such as CRISPR/Cas9. This approach has showcased great promise in enhancing and tailoring the immune response to vaccination. Strategies to enhance the efficacy of DNA vaccines include the selection of appropriate antigens, optimizing insertion in a plasmid, and studying combinations of vaccines with conventional strategies and targeted therapies. Combination therapies have attenuated immunosuppressive activities in the tumor microenvironment and enhanced the capability of immune cells. This review provides an overview of the current framework of DNA vaccines in oncology and focuses on novel strategies, including established combination therapies and those still under development.The challenges that oncologists, scientists, and researchers need to overcome to establish DNA vaccines as an avant-garde approach to defeating cancer, are also emphasized. The clinical implications of the immunotherapeutic approaches and the need for predictive biomarkers have also been reviewed upon. We have also tried to extend the role of Neutrophil extracellular traps (NETs) to the DNA vaccines. The clinical implications of the immunotherapeutic approaches have also been reviewed upon. Ultimately, refining and optimizing DNA vaccines will enable harnessing the immune system's natural ability to recognize and eliminate cancer cells, leading the world towards a revolution in cancer cure.
Collapse
Affiliation(s)
- Aanshi Pandya
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Yesha Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Nirjari Kothari
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Humzah Postwala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Aayushi Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Priyajeet Parekh
- AV Pharma LLC, 1545 University Blvd N Ste A, Jacksonville, FL, 32211, USA
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India.
| |
Collapse
|
5
|
Tumor antigens and vaccines in colorectal cancer. MEDICINE IN DRUG DISCOVERY 2022. [DOI: 10.1016/j.medidd.2022.100144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
6
|
Dong L, Feng M, Qiao Y, Liu C, Zhou Y, Xing S, Zhang K, Cai Z, Wu H, Wu J, Yu X, Zhang H, Kong W. Preclinical safety and Biodistribution in mice following single dose intramuscular inoculation of tumor DNA vaccine by electroporation. Hum Gene Ther 2022; 33:757-764. [DOI: 10.1089/hum.2022.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Ling Dong
- Jilin University, 12510, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Changchun, Jilin, China
| | - Mengfan Feng
- Jilin University, 12510, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Changchun, Jilin, China
| | - Yaru Qiao
- Jilin University, 12510, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Changchun, Jilin, China
| | - Chenlu Liu
- Jilin University, 12510, Department of Biobank, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yi Zhou
- Jilin University, 12510, Changchun, China
| | - Shanshan Xing
- Jilin University, 12510, Changchun, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, China
| | - Ke Zhang
- Jilin University, 12510, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Changchun, Jilin, China
| | - Zongyu Cai
- Jilin University, 12510, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Changchun, Jilin, China
| | - Hui Wu
- Jilin University, 12510, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Changchun, Jilin, China
| | - Jiaxin Wu
- Jilin University, 12510, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Changchun, Jilin, China
| | - Xianghui Yu
- Jilin University, 12510, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, School of Life Sciences, Jilin University, Changchun, Changchun, Jilin, China, 130012
- Jilin University, 12510, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, School of Life Sciences, Jilin University, Changchun, Changchun, Jilin, China, 130012
| | - Haihong Zhang
- Jilin University, 12510, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Changchun, Jilin, China
| | - Wei Kong
- Jilin University, 12510, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Changchun, Jilin, China
- Jilin University, 12510, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Changchun, China
| |
Collapse
|
7
|
Liu C, Cong X, Wang Y, Guo Q, Xie Y, Geng F, Guo J, Dong L, Zhou Y, Wu H, Yu B, Wu J, Zhang H, Yu X, Kong W. Fast DNA Vaccination Strategy Elicits a Stronger Immune Response Dependent on CD8 +CD11c + Cell Accumulation. Front Oncol 2021; 11:752444. [PMID: 34950581 PMCID: PMC8691261 DOI: 10.3389/fonc.2021.752444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022] Open
Abstract
Conventional DNA vaccine strategies usually employ a regimen of immunizations at 2-week or longer intervals to induce effective memory cell-dependent immune responses. Clinical cancer treatment requires a faster immunization strategy to contend with tumor progression. In this study, a novel fast immunization strategy was established, wherein a DNA vaccine was intramuscularly administered on days 0, 2, and 5 in a murine lung cancer model. Effector cells peaked 7 to 10 days after the last vaccination. Compared with traditional 2-week-interval immunization strategies, antigen-specific cytolysis and INF-γ secretion were significantly enhanced under the fast vaccination approach. As a result, the rapidly administered DNA vaccine elicited stronger and more prompt antitumor effects. The probable underlying mechanism of fast immunization was the accumulation of CD8+CD11c+ antigen-presenting cells at the injection site, which enhanced subsequent antigen presentation. In conclusion, the fast DNA vaccination strategy shortened vaccination time to 5 days and elicited a stronger antitumor immune response.
Collapse
Affiliation(s)
- Chenlu Liu
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, Changchun, China.,Biobank, China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China.,Key Laboratory for Molecular Enzymology and Engineering, College of Life Science, Jilin University, Changchun, China
| | - Xianling Cong
- Biobank, China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China
| | - Yuqian Wang
- Biobank, China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China
| | - Qianqian Guo
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, Changchun, China.,Key Laboratory for Molecular Enzymology and Engineering, College of Life Science, Jilin University, Changchun, China
| | - Yu Xie
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, Changchun, China.,Key Laboratory for Molecular Enzymology and Engineering, College of Life Science, Jilin University, Changchun, China
| | - Fei Geng
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, Changchun, China.,Key Laboratory for Molecular Enzymology and Engineering, College of Life Science, Jilin University, Changchun, China
| | - Jie Guo
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, Changchun, China.,Key Laboratory for Molecular Enzymology and Engineering, College of Life Science, Jilin University, Changchun, China
| | - Ling Dong
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, Changchun, China.,Key Laboratory for Molecular Enzymology and Engineering, College of Life Science, Jilin University, Changchun, China
| | - Yi Zhou
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, Changchun, China.,Key Laboratory for Molecular Enzymology and Engineering, College of Life Science, Jilin University, Changchun, China
| | - Hui Wu
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, Changchun, China.,Key Laboratory for Molecular Enzymology and Engineering, College of Life Science, Jilin University, Changchun, China
| | - Bin Yu
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, Changchun, China.,Key Laboratory for Molecular Enzymology and Engineering, College of Life Science, Jilin University, Changchun, China
| | - Jiaxin Wu
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, Changchun, China.,Key Laboratory for Molecular Enzymology and Engineering, College of Life Science, Jilin University, Changchun, China
| | - Haihong Zhang
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, Changchun, China.,Key Laboratory for Molecular Enzymology and Engineering, College of Life Science, Jilin University, Changchun, China
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, Changchun, China.,Key Laboratory for Molecular Enzymology and Engineering, College of Life Science, Jilin University, Changchun, China
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, Changchun, China.,Key Laboratory for Molecular Enzymology and Engineering, College of Life Science, Jilin University, Changchun, China
| |
Collapse
|
8
|
Hu LF, Lan HR, Huang D, Li XM, Jin KT. Personalized Immunotherapy in Colorectal Cancers: Where Do We Stand? Front Oncol 2021; 11:769305. [PMID: 34888246 PMCID: PMC8649954 DOI: 10.3389/fonc.2021.769305] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer death in the world. Immunotherapy using monoclonal antibodies, immune-checkpoint inhibitors, adoptive cell therapy, and cancer vaccines has raised great hopes for treating poor prognosis metastatic CRCs that are resistant to the conventional therapies. However, high inter-tumor and intra-tumor heterogeneity hinder the success of immunotherapy in CRC. Patients with a similar tumor phenotype respond differently to the same immunotherapy regimen. Mutation-based classification, molecular subtyping, and immunoscoring of CRCs facilitated the multi-aspect grouping of CRC patients and improved immunotherapy. Personalized immunotherapy using tumor-specific neoantigens provides the opportunity to consider each patient as an independent group deserving of individualized immunotherapy. In the recent decade, the development of sequencing and multi-omics techniques has helped us classify patients more precisely. The expansion of such advanced techniques along with the neoantigen-based immunotherapy could herald a new era in treating heterogeneous tumors such as CRC. In this review article, we provided the latest findings in immunotherapy of CRC. We elaborated on the heterogeneity of CRC patients as a bottleneck of CRC immunotherapy and reviewed the latest advances in personalized immunotherapy to overcome CRC heterogeneity.
Collapse
Affiliation(s)
- Li-Feng Hu
- Department of Colorectal Surgery, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Huan-Rong Lan
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Dong Huang
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Xue-Min Li
- Department of Hepatobiliary Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Ke-Tao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| |
Collapse
|
9
|
Bilge-Dagalp S, Farzani TA, Dogan F, Akkutay Yoldar Z, Ozkul A, Alkan F, Donofrio G. Development of a BoHV-4 viral vector expressing tgD of BoHV-1 and evaluation of its immunogenicity in mouse model. Braz J Microbiol 2021; 52:1119-1133. [PMID: 34255309 PMCID: PMC8275906 DOI: 10.1007/s42770-021-00525-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 05/08/2021] [Indexed: 11/28/2022] Open
Abstract
In recent years, Bovine herpesvirus 4 (BoHV-4) has emerged as an attractive gene delivery viral vector, mainly for vaccination purposes in the veterinary field. In the present study, a new infectious clone of the BoHV-4 genome carrying a bacterial artificial chromosome vector (BoHV-4-BAC) was developed by homologous recombination in mammalian cell culture and bacterial systems, and exploited to express a truncated form of glycoprotein D (tgD) of Bovine herpesvirus 1 (BoHV-1) (BoHV-4-tgD∆TK) as a vaccine candidate. This construct's immunogenicity was compared to a DNA vector expressing the same antigen (pC-tgD) in a BALB/c mouse model. After the mice were immunized, total and specific antibody responses, cytokine responses, total splenocyte cells proliferation/cytotoxicity, and virus neutralization assays were conducted to analyze the immune response elicited by both constructs. Mice from both vaccine groups developed significant humoral and cellular immune responses after a booster dose regime was conducted on day 28 post-injection. In almost all immunological assays, BoHV-4-tgDΔTK induced as high an immune response as pC-tgD. In both vaccine constructs, neutralizing antibodies were a significant determining factor in protection against BoHV-1, even after the first injection. We conclude that a BoHV-4-based viral vector offers an effective immunization strategy as an alternative to DNA-based immunization platforms, at least to combat BoHV-1.
Collapse
Affiliation(s)
- Seval Bilge-Dagalp
- Department of Virology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey.
| | - Touraj Aligholipour Farzani
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Firat Dogan
- Department of Virology, Faculty of Veterinary Medicine, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Zeynep Akkutay Yoldar
- Department of Virology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Aykut Ozkul
- Department of Virology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey.,Biotechnology Institute, Ankara University, Ankara, Turkey
| | - Feray Alkan
- Department of Virology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Gaetano Donofrio
- Department of Medical Veterinary Science, University of Parma, Parma, Italy
| |
Collapse
|
10
|
Azadi A, Golchini A, Delazar S, Abarghooi Kahaki F, Dehnavi SM, Payandeh Z, Eyvazi S. Recent Advances on Immune Targeted Therapy of Colorectal Cancer Using bi-Specific Antibodies and Therapeutic Vaccines. Biol Proced Online 2021; 23:13. [PMID: 34193050 PMCID: PMC8245152 DOI: 10.1186/s12575-021-00147-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/12/2021] [Indexed: 12/22/2022] Open
Abstract
Colorectal cancer (CRC) is a universal heterogeneous disease that is characterized by genetic and epigenetic alterations. Immunotherapy using monoclonal antibodies (mAb) and cancer vaccines are substitute strategies for CRC treatment. When cancer immunotherapy is combined with chemotherapy, surgery, and radiotherapy, the CRC treatment would become excessively efficient. One of the compelling immunotherapy approaches to increase the efficiency of CRC therapy is the deployment of therapeutic mAbs, nanobodies, bi-specific antibodies and cancer vaccines, which improve clinical outcomes in patients. Also, among the possible therapeutic approaches for CRC patients, gene vaccines in combination with antibodies are recently introduced as a new perspective. Here, we aimed to present the current progress in CRC immunotherapy, especially using Bi-specific antibodies and dendritic cells mRNA vaccines. For this aim, all data were extracted from Google Scholar, PubMed, Scopus, and Elsevier, using keywords cancer vaccines; CRC immunotherapy and CRC mRNA vaccines. About 97 articles were selected and investigated completely based on the latest developments and novelties on bi-specific antibodies, mRNA vaccines, nanobodies, and MGD007.
Collapse
Affiliation(s)
- Ali Azadi
- Department of Medicine, De La Salle Health Sciences Institute, Dasmariñas, Philippines
| | - Alireza Golchini
- Cancer surgery Department; Shiraz Medical School, Shiraz University of medical Sciences, Shiraz, Iran
| | - Sina Delazar
- Department of Radiology, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Abarghooi Kahaki
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohsen Dehnavi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Zahra Payandeh
- Immunology Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Eyvazi
- Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
- Biotechnology Research Center, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| |
Collapse
|
11
|
Park KS, Sun X, Aikins ME, Moon JJ. Non-viral COVID-19 vaccine delivery systems. Adv Drug Deliv Rev 2021; 169:137-151. [PMID: 33340620 PMCID: PMC7744276 DOI: 10.1016/j.addr.2020.12.008] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/20/2020] [Accepted: 12/13/2020] [Indexed: 02/08/2023]
Abstract
The novel corona virus termed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread throughout the globe at a formidable speed, causing tens of millions of cases and more than one million deaths in less than a year of its report in December 2019. Since then, companies and research institutions have raced to develop SARS-CoV-2 vaccines, ranging from conventional viral and protein-based vaccines to those that are more cutting edge, including DNA- and mRNA-based vaccines. Each vaccine exhibits a different potency and duration of efficacy, as determined by the antigen design, adjuvant molecules, vaccine delivery platforms, and immunization method. In this review, we will introduce a few of the leading non-viral vaccines that are under clinical stage development and discuss delivery strategies to improve vaccine efficacy, duration of protection, safety, and mass vaccination.
Collapse
Affiliation(s)
- Kyung Soo Park
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xiaoqi Sun
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marisa E Aikins
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - James J Moon
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
12
|
Feng M, Zhao Z, Yang M, Ji J, Zhu D. T-cell-based immunotherapy in colorectal cancer. Cancer Lett 2020; 498:201-209. [PMID: 33129958 DOI: 10.1016/j.canlet.2020.10.040] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/08/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is the leading cause of cancer death worldwide. CRC therapeutic strategies include surgical resection, chemotherapy, radiotherapy, and other approaches. However, patients with metastatic CRC have worse prognoses. In recent years, T-cell-based immunotherapy has elicited promising responses in B-cell malignancies, melanoma, and lung cancer, but most CRC patients are resistant to immunotherapy, chemotherapy, and targeted therapy. Immune checkpoint inhibitors have shown encouraging results in non-small cell lung cancer, melanoma, and other cancers, but immune checkpoint blockade is only effective for CRC subset with microsatellite instability. Other immunotherapies, such as cytokines, cancer vaccines, small molecules, oncolytic viruses, and chimeric antigen-receptor therapy, are currently in use against CRC. This review analyzes recent developments in immunotherapy for CRC treatment as well as the challenges in overcoming resistance.
Collapse
Affiliation(s)
- Mei Feng
- Minhang Hospital and Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Zhongwei Zhao
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Affiliated Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Mengxuan Yang
- Minhang Hospital and Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Affiliated Lishui Hospital of Zhejiang University, Lishui, 323000, China.
| | - Di Zhu
- Minhang Hospital and Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China; Key Laboratory of Smart Drug Delivery, Ministry of Education, & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy, Fudan University, Shanghai, 201203, China; Shanghai Engineering Research Center of ImmunoTherapeutics, Fudan University, 201203, China.
| |
Collapse
|
13
|
Gao T, Cen Q, Lei H. A review on development of MUC1-based cancer vaccine. Biomed Pharmacother 2020; 132:110888. [PMID: 33113416 DOI: 10.1016/j.biopha.2020.110888] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/05/2020] [Accepted: 10/12/2020] [Indexed: 12/30/2022] Open
Abstract
Mucin 1 (MUC1) is a transmembrane mucin glycoprotein expressed on the surface of almost all epithelial cells. Aberrantly glycosylated MUC1 is associated with cellular transformation from a normal to malignant phenotype in human cancers. Therefore, MUC1 is the major target for the design and development of cancer vaccines. MUC1-based cancer vaccines are a promising strategy for preventing cancer progression and metastasis. This review summarizes the most significant milestones achieved to date in the development of different MUC-1-based vaccine approaches in clinical trials. Further, it provides perspectives for future research that may promote clinical advances in infection-associated cancers.
Collapse
Affiliation(s)
- Tong Gao
- College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Qianhong Cen
- College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Han Lei
- College of Medicine, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
14
|
Shahnazari M, Samadi P, Pourjafar M, Jalali A. Therapeutic vaccines for colorectal cancer: The progress and future prospect. Int Immunopharmacol 2020; 88:106944. [PMID: 33182032 DOI: 10.1016/j.intimp.2020.106944] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023]
Abstract
Cancer vaccines are usually derived from the patient's tumor cells or the antigens found on their surface, which may help the immune system to identify and kill these malignant cells. Current focus of many researches is designing vaccines with the hope of triggering the immune system to attack cancer cells in a more effective, reliable and safe manner. Although colorectal cancer (CRC) is recognized as the third leading cause of death by cancer, but significant advances in therapy strategies have been made in recent years, including cancer vaccine. In this review, we present various vaccine platforms that have been used in the border battle against CRC, some of which have been approved for clinical use and some are in late-stage clinical trials. Until September 2020 there is approximately 1940 clinical trials of cancer vaccines on patients with different cancer types, and also many more trials are in the planning stages, which makes it the most important period of therapeutic cancer vaccines studies in the history of the immunotherapy. In cancer vaccines clinical trials, there are several considerations that must be taken into account including engineering of antigen-presenting cells, potential toxicity of antigenic areas, pharmacokinetics and pharmacodynamics of vaccines, and monitoring of the patients' immune response. Therefore, the need to overcome immunosuppression mechanisms/immune tolerance is a critical step for the success of introducing therapeutic vaccines into the widely used drugs on market. In this way, better understanding of neoantigens, tumor immune surveillance escape mechanisms and host-tumor interactions are required to develop more effective and safe cancer vaccines.
Collapse
Affiliation(s)
- Mina Shahnazari
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Pouria Samadi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Mona Pourjafar
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Akram Jalali
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
15
|
Han Y, Na R, Jiang X, Wu J, Han Y, Zeng Y, E. G, Liang A, Yang L, Zhao Y, Huang Y. Effect of a novel somatostatin-14 DNA vaccine fused to tPA signal peptide and CpG adjuvant on goat lactation and milk composition. Small Rumin Res 2020. [DOI: 10.1016/j.smallrumres.2020.106107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Höglund P. Natural killer cells and solid tumours: New therapies ahead? Scand J Immunol 2020; 91:e12878. [DOI: 10.1111/sji.12878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Petter Höglund
- Department of Medicine Huddinge Karolinska Institutet Stockholm Sweden
| |
Collapse
|
17
|
Jiang S, Good D, Wei MQ. Vaccinations for Colorectal Cancer: Progress, Strategies, and Novel Adjuvants. Int J Mol Sci 2019; 20:ijms20143403. [PMID: 31373300 PMCID: PMC6678766 DOI: 10.3390/ijms20143403] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/09/2019] [Accepted: 07/09/2019] [Indexed: 12/24/2022] Open
Abstract
Although cancer is a leading cause of death, significant breakthroughs have been made in its treatment in recent years. In particular, increasingly effective cancer vaccines are being developed, including some for colorectal cancer. There are also currently a variety of compounds that can act as adjuvants, such as signalling molecules called cytokines. Other adjuvants target and inhibit the specific mechanisms by which cancers evade the immune system. One of them is a galectin inhibitor, which targets galectins—proteins produced by cancer cells that can cause the death of immune cells. Likewise, immune checkpoint inhibitors affect immune checkpoints—natural host proteins that usually control inflammation but can be exploited by cancers to weaken the body’s defences. Equally, regulatory T cells may contribute to the progression of cancer by inhibiting the functions of other T cells. The main advantages of cancer vaccines include their low toxicity and their ability to strengthen the immune system. Nevertheless, significant limitations include their slow effects and their inability to treat cancer at times due to immunosuppression. Ultimately, ongoing trials provide hope for the development of more effective methods of immunotherapeutic inoculation that can target a greater variety of cancers.
Collapse
Affiliation(s)
- Stephen Jiang
- School of Medical Science and Menzies Health Institute Queensland, Gold Coast campus, Griffith University, Southport, QLD 4222, Australia
| | - David Good
- School of Allied Health, Australian Catholic University, Banyo, QLD 4014, Australia
| | - Ming Q Wei
- School of Medical Science and Menzies Health Institute Queensland, Gold Coast campus, Griffith University, Southport, QLD 4222, Australia.
| |
Collapse
|
18
|
Suo Z, Chen J, Hou X, Hu Z, Xing F, Feng L. Growing prospects of DNA nanomaterials in novel biomedical applications. RSC Adv 2019; 9:16479-16491. [PMID: 35516377 PMCID: PMC9064466 DOI: 10.1039/c9ra01261c] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/07/2019] [Indexed: 01/01/2023] Open
Abstract
As an important genetic material for life, DNA has been investigated widely in recent years, especially in interdisciplinary fields crossing nanomaterials and biomedical applications. It plays an important role because of its extraordinary molecular recognition capability and novel conformational polymorphism. DNA is also a powerful and versatile building block for the fabrication of nanostructures and nanodevices. Such DNA-based nanomaterials have also been successfully applied in various aspects ranging from biosensors to biomedicine and special logic gates, as well as in emerging molecular nanomachines. In this present mini-review, we briefly overview the recent progress in these fields. Furthermore, some challenges are also discussed in the conclusions and perspectives section, which aims to stimulate broader scientific interest in DNA nanotechnology and its biomedical applications.
Collapse
Affiliation(s)
- Zhiguang Suo
- Materials Genome Institute, Shanghai University Shanghai 200444 China
| | - Jingqi Chen
- Materials Genome Institute, Shanghai University Shanghai 200444 China
| | - Xialing Hou
- Materials Genome Institute, Shanghai University Shanghai 200444 China
| | - Ziheng Hu
- Materials Genome Institute, Shanghai University Shanghai 200444 China
| | - Feifei Xing
- Department of Chemistry, College of Science, Shanghai University Shanghai 200444 China
| | - Lingyan Feng
- Materials Genome Institute, Shanghai University Shanghai 200444 China
| |
Collapse
|
19
|
Lopes A, Vandermeulen G, Préat V. Cancer DNA vaccines: current preclinical and clinical developments and future perspectives. J Exp Clin Cancer Res 2019; 38:146. [PMID: 30953535 PMCID: PMC6449928 DOI: 10.1186/s13046-019-1154-7] [Citation(s) in RCA: 269] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/26/2019] [Indexed: 12/22/2022] Open
Abstract
The recent developments in immuno-oncology have opened an unprecedented avenue for the emergence of vaccine strategies. Therapeutic DNA cancer vaccines are now considered a very promising strategy to activate the immune system against cancer. In the past, several clinical trials using plasmid DNA vaccines demonstrated a good safety profile and the activation of a broad and specific immune response. However, these vaccines often demonstrated only modest therapeutic effects in clinical trials due to the immunosuppressive mechanisms developed by the tumor. To enhance the vaccine-induced immune response and the treatment efficacy, DNA vaccines could be improved by using two different strategies. The first is to increase their immunogenicity by selecting and optimizing the best antigen(s) to be inserted into the plasmid DNA. The second strategy is to combine DNA vaccines with other complementary therapies that could improve their activity by attenuating immunosuppression in the tumor microenvironment or by increasing the activity/number of immune cells. A growing number of preclinical and clinical studies are adopting these two strategies to better exploit the potential of DNA vaccination. In this review, we analyze the last 5-year preclinical studies and 10-year clinical trials using plasmid DNA vaccines for cancer therapy. We also investigate the strategies that are being developed to overcome the limitations in cancer DNA vaccination, revisiting the rationale for different combinations of therapy and the different possibilities in antigen choice. Finally, we highlight the most promising developments and critical points that need to be addressed to move towards the approval of therapeutic cancer DNA vaccines as part of the standard of cancer care in the future.
Collapse
Affiliation(s)
- Alessandra Lopes
- Université Catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier, 73, B1.73.12, B-1200 Brussels, Belgium
| | - Gaëlle Vandermeulen
- Université Catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier, 73, B1.73.12, B-1200 Brussels, Belgium
| | - Véronique Préat
- Université Catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier, 73, B1.73.12, B-1200 Brussels, Belgium
| |
Collapse
|