1
|
Yin M, Zhang R, Lin J, Zhu S, Liu L, Liu X, Lu J, Xu C, Zhu J. Identification of gastric signet ring cell carcinoma based on endoscopic images using few-shot learning. Dig Liver Dis 2023; 55:1725-1734. [PMID: 37455154 DOI: 10.1016/j.dld.2023.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Deep learning (DL) models perform poorly when there are limited gastric signet ring cell carcinoma (SRCC) samples. Few-shot learning (FSL) can address the small sample problem. METHODS EfficientNetV2-S was first pretrained on ImageNet and then pretrained on esophageal endoscopic images (i.e., base classes: normal vs. early cancer vs. advanced cancer) using transfer learning. Second, images of gastric benign ulcers, adenocarcinoma and SRCC, i.e., novel classes (n = 50 per class), were included. Image features were extracted as vectors using the dual pretrained EfficientNetV2-S. Finally, a k-nearest neighbor classifier was used to identify SRCC. The above proposed 3-way 3-shot FSL framework was conducted in three rounds. RESULTS Dual pretrained FSL performed better than single pretrained FSL, endoscopists and traditional EfficientNetV2-S models. Dual pretrained FSL obtained the highest accuracy (79.4%), sensitivity (68.8%), recall (68.8%), precision (69.3%) and F1-score (0.691), and the senior endoscopist achieved the highest specificity of 93.6% when identifying SRCC. The macro-AUC and F1-score for dual pretraining (0.763 and 0.703, respectively) were higher than those for single pretraining (0.656 and 0.537, respectively), along with endoscopists and traditional EfficientNetV2-S models. The 2-way 3-shot FSL also performed better. CONCLUSION The proposed FSL framework showed practical performance in the differentiation of SRCC on endoscopic images, suggesting the potential of FSL in the computer-aided diagnosis for rare diseases.
Collapse
Affiliation(s)
- Minyue Yin
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China; Suzhou Clinical Center of Digestive Diseases, Suzhou, Jiangsu, 215006, China
| | - Rufa Zhang
- Department of Gastroenterology, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People's Hospital, Suzhou, Jiangsu, 215500, China
| | - Jiaxi Lin
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China; Suzhou Clinical Center of Digestive Diseases, Suzhou, Jiangsu, 215006, China
| | - Shiqi Zhu
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China; Suzhou Clinical Center of Digestive Diseases, Suzhou, Jiangsu, 215006, China
| | - Lu Liu
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China; Suzhou Clinical Center of Digestive Diseases, Suzhou, Jiangsu, 215006, China
| | - Xiaolin Liu
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China; Suzhou Clinical Center of Digestive Diseases, Suzhou, Jiangsu, 215006, China
| | - Jianying Lu
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China; Suzhou Clinical Center of Digestive Diseases, Suzhou, Jiangsu, 215006, China
| | - Chunfang Xu
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China; Suzhou Clinical Center of Digestive Diseases, Suzhou, Jiangsu, 215006, China
| | - Jinzhou Zhu
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China; Suzhou Clinical Center of Digestive Diseases, Suzhou, Jiangsu, 215006, China.
| |
Collapse
|
2
|
Xiao Y, Wang S, Ling R, Song Y. Application of artificial neural network algorithm in pathological diagnosis and prognosis prediction of digestive tract malignant tumors. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:243-248. [PMID: 37283110 DOI: 10.3724/zdxbyxb-2022-0569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The application of artificial neural network algorithm in pathological diagnosis of gastrointestinal malignant tumors has become a research hotspot. In the previous studies, the algorithm research mainly focused on the model development based on convolutional neural networks, while only a few studies used the combination of convolutional neural networks and recurrent neural networks. The research contents included classical histopathological diagnosis and molecular typing of malignant tumors, and the prediction of patient prognosis by utilizing artificial neural networks. This article reviews the research progress on artificial neural network algorithm in the pathological diagnosis and prognosis prediction of digestive tract malignant tumors.
Collapse
Affiliation(s)
- Ya Xiao
- Health Science Center, Ningbo University, Ningbo 315211, Zhejiang Province, China.
| | - Shuyang Wang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, Shanghai 200032, China
| | - Ren Ling
- Shanghai Laizi Software Technology Co. Ltd., Shanghai 201499, China
| | - Yufei Song
- Department of Gastroenterology, the Affiliated Lihuili Hospital, Ningbo University, Ningbo 315046, Zhejiang Province, China.
| |
Collapse
|
3
|
Kuntz S, Krieghoff-Henning E, Kather JN, Jutzi T, Höhn J, Kiehl L, Hekler A, Alwers E, von Kalle C, Fröhling S, Utikal JS, Brenner H, Hoffmeister M, Brinker TJ. Gastrointestinal cancer classification and prognostication from histology using deep learning: Systematic review. Eur J Cancer 2021; 155:200-215. [PMID: 34391053 DOI: 10.1016/j.ejca.2021.07.012] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Gastrointestinal cancers account for approximately 20% of all cancer diagnoses and are responsible for 22.5% of cancer deaths worldwide. Artificial intelligence-based diagnostic support systems, in particular convolutional neural network (CNN)-based image analysis tools, have shown great potential in medical computer vision. In this systematic review, we summarise recent studies reporting CNN-based approaches for digital biomarkers for characterization and prognostication of gastrointestinal cancer pathology. METHODS Pubmed and Medline were screened for peer-reviewed papers dealing with CNN-based gastrointestinal cancer analyses from histological slides, published between 2015 and 2020.Seven hundred and ninety titles and abstracts were screened, and 58 full-text articles were assessed for eligibility. RESULTS Sixteen publications fulfilled our inclusion criteria dealing with tumor or precursor lesion characterization or prognostic and predictive biomarkers: 14 studies on colorectal or rectal cancer, three studies on gastric cancer and none on esophageal cancer. These studies were categorised according to their end-points: polyp characterization, tumor characterization and patient outcome. Regarding the translation into clinical practice, we identified several studies demonstrating generalization of the classifier with external tests and comparisons with pathologists, but none presenting clinical implementation. CONCLUSIONS Results of recent studies on CNN-based image analysis in gastrointestinal cancer pathology are promising, but studies were conducted in observational and retrospective settings. Large-scale trials are needed to assess performance and predict clinical usefulness. Furthermore, large-scale trials are required for approval of CNN-based prediction models as medical devices.
Collapse
Affiliation(s)
- Sara Kuntz
- Digital Biomarkers for Oncology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Eva Krieghoff-Henning
- Digital Biomarkers for Oncology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jakob N Kather
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Tanja Jutzi
- Digital Biomarkers for Oncology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julia Höhn
- Digital Biomarkers for Oncology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lennard Kiehl
- Digital Biomarkers for Oncology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Achim Hekler
- Digital Biomarkers for Oncology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elizabeth Alwers
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christof von Kalle
- Department of Clinical-Translational Sciences, Charité University Medicine and Berlin Institute of Health (BIH), Berlin, Germany
| | - Stefan Fröhling
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jochen S Utikal
- Department of Dermatology, Heidelberg University, Mannheim, Germany; Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany; Division of Preventive Oncology, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), Heidelberg, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Titus J Brinker
- Digital Biomarkers for Oncology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
4
|
Zhang S, Yuan Z, Wang Y, Bai Y, Chen B, Wang H. REUR: A unified deep framework for signet ring cell detection in low-resolution pathological images. Comput Biol Med 2021; 136:104711. [PMID: 34388466 DOI: 10.1016/j.compbiomed.2021.104711] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 11/15/2022]
Abstract
Detecting signet ring cells (SRCs) in pathological images is essential for carcinoma diagnosis. However, it is time consuming for pathologists to detect SRCs manually from pathological images, and the accuracy of detecting them is also relatively low because of their small sizes. Recently, the exploration of deep learning methods in pathology analysis has been widely investigated by researchers. Nevertheless, the automatic detection of SRCs from real pathological images faces two problems. One is that labeled pathological images are insufficient and usually incomplete. The other is that the training data and the real clinical data have a large difference in resolution. Hence, adopting the transfer learning method affects the performance of deep learning methods. To address these two problems, we present a unified framework named REUR [RetinaNet combining USRNet (unfolding super-resolution network) with the RGHMC (revised gradient harmonizing mechanism classification) loss] that can accurately detect SRCs in low-resolution (LR) pathological images. First, the framework with the super-resolution (SR) module can address the difference in resolution between the training data and the real clinical data. Second, the framework with the label correction module can obtain the revised ground-truth labels from noisy examples, which are embedded into the gradient harmonizing mechanism to acquire the RGHMC loss. The results of the numerical experiments showed that the framework can perform better than other one-stage detectors based on the RetinaNet architecture in the high-resolution (HR) noisy dataset. It achieved a kappa value of 0.74 and an accuracy of 0.89 in the test with 27 randomly selected whole slide images (WSIs), and, thus, it can assist pathologists in better analyzing WSIs. The framework provides an essential method in computer-aided diagnosis for medical applications.
Collapse
Affiliation(s)
- Shuchang Zhang
- Department of Mathematics, National University of Defense Technology, Changsha, China.
| | - Ziyang Yuan
- Department of Mathematics, National University of Defense Technology, Changsha, China.
| | - Yadong Wang
- Department of Laboratory Pathology, Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yang Bai
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bo Chen
- Suzhou Research Center, Institute of Automation, Chinese Academy of Sciences, Suzhou, China
| | - Hongxia Wang
- Department of Mathematics, National University of Defense Technology, Changsha, China.
| |
Collapse
|
5
|
Berbís MA, Aneiros-Fernández J, Mendoza Olivares FJ, Nava E, Luna A. Role of artificial intelligence in multidisciplinary imaging diagnosis of gastrointestinal diseases. World J Gastroenterol 2021; 27:4395-4412. [PMID: 34366612 PMCID: PMC8316909 DOI: 10.3748/wjg.v27.i27.4395] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/14/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023] Open
Abstract
The use of artificial intelligence-based tools is regarded as a promising approach to increase clinical efficiency in diagnostic imaging, improve the interpretability of results, and support decision-making for the detection and prevention of diseases. Radiology, endoscopy and pathology images are suitable for deep-learning analysis, potentially changing the way care is delivered in gastroenterology. The aim of this review is to examine the key aspects of different neural network architectures used for the evaluation of gastrointestinal conditions, by discussing how different models behave in critical tasks, such as lesion detection or characterization (i.e. the distinction between benign and malignant lesions of the esophagus, the stomach and the colon). To this end, we provide an overview on recent achievements and future prospects in deep learning methods applied to the analysis of radiology, endoscopy and histologic whole-slide images of the gastrointestinal tract.
Collapse
Affiliation(s)
| | - José Aneiros-Fernández
- Department of Pathology, Hospital Universitario Clínico San Cecilio, Granada 18012, Spain
| | | | - Enrique Nava
- Department of Communications Engineering, University of Málaga, Malaga 29016, Spain
| | - Antonio Luna
- MRI Unit, Department of Radiology, HT Médica, Jaén 23007, Spain
| |
Collapse
|
6
|
Lino-Silva LS, Xinaxtle DL. Artificial intelligence technology applications in the pathologic diagnosis of the gastrointestinal tract. Future Oncol 2020; 16:2845-2851. [PMID: 32892631 DOI: 10.2217/fon-2020-0678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/03/2020] [Indexed: 11/21/2022] Open
Abstract
Artificial intelligence (AI) is a complex technology with a steady flow of new applications, including in the pathology laboratory. Applications of AI in pathology are scarce but increasing; they are based on complex software-based machine learning with deep learning trained by pathologists. Their uses are based on tissue identification on histologic slides for classification into categories of normal, nonneoplastic and neoplastic conditions. Most AI applications are based on digital pathology. This commentary describes the role of AI in the pathological diagnosis of the gastrointestinal tract and provides insights into problems and future applications by answering four fundamental questions.
Collapse
Affiliation(s)
| | - Diana L Xinaxtle
- Anatomic Pathology, Instituto Nacional de Cancerología, Mexico City, 14080, Mexico
| |
Collapse
|
7
|
Kudou M, Kosuga T, Otsuji E. Artificial intelligence in gastrointestinal cancer: Recent advances and future perspectives. Artif Intell Gastroenterol 2020; 1:71-85. [DOI: 10.35712/aig.v1.i4.71] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/28/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
Artificial intelligence (AI) using machine or deep learning algorithms is attracting increasing attention because of its more accurate image recognition ability and prediction performance than human-aid analyses. The application of AI models to gastrointestinal (GI) clinical oncology has been investigated for the past decade. AI has the capacity to automatically detect and diagnose GI tumors with similar diagnostic accuracy to expert clinicians. AI may also predict malignant potential, such as tumor histology, metastasis, patient survival, resistance to cancer treatments and the molecular biology of tumors, through image analyses of radiological or pathological imaging data using complex deep learning models beyond human cognition. The introduction of AI-assisted diagnostic systems into clinical settings is expected in the near future. However, limitations associated with the evaluation of GI tumors by AI models have yet to be resolved. Recent studies on AI-assisted diagnostic models of gastric and colorectal cancers in the endoscopic, pathological, and radiological fields were herein reviewed. The limitations and future perspectives for the application of AI systems in clinical settings have also been discussed. With the establishment of a multidisciplinary team containing AI experts in each medical institution and prospective studies, AI-assisted medical systems will become a promising tool for GI cancer.
Collapse
Affiliation(s)
- Michihiro Kudou
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
- Department of Surgery, Kyoto Okamoto Memorial Hospital, Kyoto 613-0034, Japan
| | - Toshiyuki Kosuga
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
- Department of Surgery, Saiseikai Shiga Hospital, Ritto 520-3046, Japan
| | - Eigo Otsuji
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| |
Collapse
|
8
|
Jin P, Ji X, Kang W, Li Y, Liu H, Ma F, Ma S, Hu H, Li W, Tian Y. Artificial intelligence in gastric cancer: a systematic review. J Cancer Res Clin Oncol 2020; 146:2339-2350. [PMID: 32613386 DOI: 10.1007/s00432-020-03304-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 06/26/2020] [Indexed: 02/08/2023]
Abstract
OBJECTIVE This study aims to systematically review the application of artificial intelligence (AI) techniques in gastric cancer and to discuss the potential limitations and future directions of AI in gastric cancer. METHODS A systematic review was performed that follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Pubmed, EMBASE, the Web of Science, and the Cochrane Library were used to search for gastric cancer publications with an emphasis on AI that were published up to June 2020. The terms "artificial intelligence" and "gastric cancer" were used to search for the publications. RESULTS A total of 64 articles were included in this review. In gastric cancer, AI is mainly used for molecular bio-information analysis, endoscopic detection for Helicobacter pylori infection, chronic atrophic gastritis, early gastric cancer, invasion depth, and pathology recognition. AI may also be used to establish predictive models for evaluating lymph node metastasis, response to drug treatments, and prognosis. In addition, AI can be used for surgical training, skill assessment, and surgery guidance. CONCLUSIONS In the foreseeable future, AI applications can play an important role in gastric cancer management in the era of precision medicine.
Collapse
Affiliation(s)
- Peng Jin
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Xiaoyan Ji
- Department of Emergency Ward, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Wenzhe Kang
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Yang Li
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Hao Liu
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Fuhai Ma
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Shuai Ma
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Haitao Hu
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Weikun Li
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Yantao Tian
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
9
|
Gonçalves WGE, dos Santos MHDP, Lobato FMF, Ribeiro-dos-Santos Â, de Araújo GS. Deep learning in gastric tissue diseases: a systematic review. BMJ Open Gastroenterol 2020; 7:e000371. [PMID: 32337060 PMCID: PMC7170401 DOI: 10.1136/bmjgast-2019-000371] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/14/2020] [Accepted: 02/24/2020] [Indexed: 12/24/2022] Open
Abstract
Background In recent years, deep learning has gained remarkable attention in medical image analysis due to its capacity to provide results comparable to specialists and, in some cases, surpass them. Despite the emergence of deep learning research on gastric tissues diseases, few intensive reviews are addressing this topic. Method We performed a systematic review related to applications of deep learning in gastric tissue disease analysis by digital histology, endoscopy and radiology images. Conclusions This review highlighted the high potential and shortcomings in deep learning research studies applied to gastric cancer, ulcer, gastritis and non-malignant diseases. Our results demonstrate the effectiveness of gastric tissue analysis by deep learning applications. Moreover, we also identified gaps of evaluation metrics, and image collection availability, therefore, impacting experimental reproducibility.
Collapse
Affiliation(s)
- Wanderson Gonçalves e Gonçalves
- Laboratório de Genética Humana e Médica - Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, Pará, Brazil
| | | | | | - Ândrea Ribeiro-dos-Santos
- Laboratório de Genética Humana e Médica - Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Gilderlanio Santana de Araújo
- Laboratório de Genética Humana e Médica - Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| |
Collapse
|