1
|
Wang X, Duan W, Ma Z, Wen H, Mao X, Liu C. ETV4/ALYREF-mediated glycolytic metabolism through PKM2 enhances resistance to ferroptosis and promotes the development of intrahepatic cholangiocarcinoma. Cancer Metab 2025; 13:19. [PMID: 40264211 DOI: 10.1186/s40170-025-00387-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 04/07/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (ICC) is the second most common primary hepatocellular cancer. This study investigated whether ETV4, ALYREF, and PKM2 affect glycolytic metabolism and ferroptosis, thereby potentially influencing ICC. METHODS Bioinformatic analysis was used to explore the expression levels and prognosis of ETV4, ALYREF, and PKM2 in ICC and their regulatory relationships were confirmed using in vitro experiments. Glycolytic metabolism and ferroptosis were examined, and chromatin immunoprecipitation and RNA immunoprecipitation experiments were performed to verify whether the ETV4, PKM2, and ALYREF could bind. The effect of ETV4/ALYREF on ICC was further confirmed by in vivo experiments. RESULTS ETV4, ALYREF, and PKM2 were highly expressed in ICC. Overexpressed (oe)-ETV4 and oe-PKM2 promoted cell migration and increased glucose (GLU) utilization and lactate and intracellular adenosine triphosphate (ATP) production. Addition of the ferroptosis inducer Erastin to the above groups revealed that sh-ETV4 and sh-ALYREF increased lipid reactive oxygen species (ROS), malondialdehyde (MDA), and Fe2+ levels, and oe-PKM2 reversed these effects in the sh-ETV4 and sh-ALYREF groups. Oe-ETV4 promoted the expression of PKM2, whereas sh-ALYREF inhibited the same. ETV4 could bind to ALYREF and PKM2 promoter, and ALYREF could promote the stability of PKM2 in an m5C-dependent manner. In vivo, ETV4 promotes tumor growth and the expression of proteins related to glycolytic metabolism by regulating ALYREF. CONCLUSION ETV4 promotes ICC development and ferroptosis resistance by facilitating glycolytic metabolism, and regulating PKM2 transcription by directly binding to the PKM2 promoter. Additionally, it mediates m5C-dependent PKM2 stabilization by directly binding to ALYREF. This study identified a new potential therapeutic target for ICC.
Collapse
Affiliation(s)
- Xiaohui Wang
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, No. 61, Jiefang West Road, Furong District, Changsha, 410000, Hunan, China
| | - Wenbin Duan
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, No. 61, Jiefang West Road, Furong District, Changsha, 410000, Hunan, China
| | - Zhongzhi Ma
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, No. 61, Jiefang West Road, Furong District, Changsha, 410000, Hunan, China
| | - Haoquan Wen
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, No. 61, Jiefang West Road, Furong District, Changsha, 410000, Hunan, China
| | - Xianhai Mao
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, No. 61, Jiefang West Road, Furong District, Changsha, 410000, Hunan, China
- Department of Hepatobiliary and Intestinal Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410013, Changsha, China
| | - Changjun Liu
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, No. 61, Jiefang West Road, Furong District, Changsha, 410000, Hunan, China.
| |
Collapse
|
2
|
Direksunthorn T, T Ahmed A, Pluetrattanabha N, Uthirapathy S, Ballal S, Singh A, Al-Hetty HRAK, Devi A, Sharma GC, Yumashev A. Ferroptosis in immune chaos: Unraveling its impact on disease and therapeutic potential. J Physiol Biochem 2025:10.1007/s13105-025-01078-7. [PMID: 40237936 DOI: 10.1007/s13105-025-01078-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/24/2025] [Indexed: 04/18/2025]
Abstract
Since its introduction in 2012, ferroptosis has garnered significant attention from researchers over the past decade. Unlike autophagy and apoptosis, ferroptosis is an atypical iron-dependent programmed cell death that falls under necrosis. It is regulated by various cellular metabolic and signaling processes, which encompass amino acid, lipid, iron, and mitochondrial metabolism. The initiation of ferroptosis occurs through iron-dependent phospholipid peroxidation. Notably, ferroptosis exhibits a dual effect and is associated with various diseases. A significant challenge lies in managing autoimmune disorders with unknown origins that stem from the reactivation of the immune system. Two contributing factors to autoimmunity are the aberrant stimulation of cell death and the inadequate clearance of dead cells, which can expose or release intracellular components that activate the immune response. Ferroptosis is distinct from other forms of cell death, such as apoptosis, necroptosis, autophagy, and pyroptosis, due to its unique morphological, biochemical, and genetic characteristics and specific relationship with cellular iron levels. Recent studies indicate that immune cells can both induce and undergo ferroptosis. To better understand how ferroptosis influences immune responses and its imbalance in disease, a molecular understanding of the relationship between ferroptosis and immunity is essential. Consequently, further research is needed to develop immunotherapeutics that target ferroptosis. This review primarily focuses on the role of ferroptosis in immune-related disorders.
Collapse
Affiliation(s)
| | | | | | - Subasini Uthirapathy
- Pharmacy Department, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Abhayveer Singh
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | | | - Anita Devi
- Department of Chemistry, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - Girish Chandra Sharma
- Department of Applied Sciences-Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | - Alexey Yumashev
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
3
|
Moura JP, Oliveira PJ, Urbano AM. Mitochondrial classic metabolism and its often-underappreciated facets. Biochim Biophys Acta Mol Basis Dis 2025:167839. [PMID: 40220877 DOI: 10.1016/j.bbadis.2025.167839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 04/07/2025] [Indexed: 04/14/2025]
Abstract
For many decades, mitochondria were essentially regarded as the main providers of the adenosine triphosphate (ATP) required to maintain the viability and function of eukaryotic cells, thus the widely popular metaphor "powerhouses of the cell". Besides ATP generation - via intermediary metabolism - these organelles have also traditionally been known, albeit to a lesser degree, for their notable role in biosynthesis, both as generators of biosynthetic intermediates and/or as the sites of biosynthesis. From the 1990s onwards, the concept of mitochondria as passive organelles providing the rest of the cell, from which they were otherwise isolated, with ATP and biomolecules on an on-demand basis has been challenged by a series of paradigm-shifting discoveries. Namely, it was shown that mitochondria act as signaling effectors to upregulate ATP generation in response to growth-promoting stimuli and that they are actively engaged, through signaling and epigenetics, in the regulation of a plethora of cellular processes, ultimately deciding cell function and fate. With the focus of mitochondrial research increasingly placed in these "non-classical" functions, the centrality of mitochondrial intermediary metabolism to biosynthesis and other mitochondrial functions tends to be overlooked. In this article, we revisit mitochondrial intermediary metabolism and illustrate how its intermediates, by-products and molecular machinery underpin other mitochondrial functions. A certain emphasis is given to frequently overlooked functions, namely the biosynthesis of iron‑sulfur (FeS) clusters, the only known function shared by all mitochondria and mitochondrion-related organelles. The generation of reactive oxygen species (ROS) and their putative role in signaling is also discussed in detail.
Collapse
Affiliation(s)
- João P Moura
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Paulo J Oliveira
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CIBB, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal.
| | - Ana M Urbano
- Molecular Physical-Chemistry R&D Unit, Centre for Investigation in Environment, Genetics and Oncobiology (CIMAGO), Department of Life Sciences, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
4
|
Mihajlović E, Biancalana L, Mojić M, Jelača S, Chiaverini L, Zacchini S, Mijatović S, Maksimović-Ivanić D, Marchetti F. Anticancer activity promoted by ligand diversity in diiron thiocarbyne complexes. Eur J Med Chem 2025; 287:117364. [PMID: 39923532 DOI: 10.1016/j.ejmech.2025.117364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/31/2025] [Accepted: 02/02/2025] [Indexed: 02/11/2025]
Abstract
Mononuclear iron (II) complexes have been intensively investigated with the aim of developing efficacious anticancer drugs that can overcome the serious limitations associated with the platinum complexes currently employed in chemotherapy. Combining a promising antitumor potential with appropriate physicochemical properties, such as aqueous stability and a balanced hydrophilic/lipophilic character, is essential for clinical progression. We prepared six highly functionalized diiron(I) complexes from the μ-thiocarbyne precursor [Fe2Cp2(CO)2(μ-CO)(μ-CSMe)]CF3SO3, 1 (Cp = η5-C5H5), through the substitution of one carbonyl ligand with isocyanides (2-4) and the subsequent substitution of a second CO with N- or P-ligands (5-7). All products 2-7 were structurally characterized using IR and multinuclear NMR spectroscopy. One compound from series (7) was also characterized by single crystal X-ray diffraction. Complexes 2-7 exhibit outstanding stability in physiological-like solutions, with 92-97 % of the compounds unchanged after storing in DMEM at 37 °C for 24 h, and substantial amphiphilicity, with most of Log Pow values falling in the range -1 to +1. Complexes 3, 4, 5 and 7 exhibited cytotoxic activity against human (HCT 116, MCF-7, A2780) and murine (CT26, 4T1, B16-F1, B16-F10) cancer cell lines with IC50 values up to the nanomolar range, along with moderate selectivity toward the malignant phenotype. The induction of cell differentiation, senescence, and apoptotic cell death with cell-specific redox response were in the background of cytotoxic activity. However, limited tumor volume reduction and observed systemic toxicity in vivo indicated the need for additional structure-activity relationship studies to optimize the compounds anticancer profile.
Collapse
Affiliation(s)
- Ekatarina Mihajlović
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11108 Belgrade, Serbia
| | - Lorenzo Biancalana
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, I-56124 Pisa, Italy.
| | - Marija Mojić
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11108 Belgrade, Serbia
| | - Sanja Jelača
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11108 Belgrade, Serbia
| | - Lorenzo Chiaverini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, I-56124 Pisa, Italy
| | - Stefano Zacchini
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Via Piero Gobetti 85, I-40129 Bologna, Italy
| | - Sanja Mijatović
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11108 Belgrade, Serbia
| | - Danijela Maksimović-Ivanić
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11108 Belgrade, Serbia.
| | - Fabio Marchetti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, I-56124 Pisa, Italy.
| |
Collapse
|
5
|
Wang W, Li Z, Lyu C, Wang T, Han C, Cui S, Wang J, Xu R. Mechanism of a Novel Complex: Zinc Oxide Nanoparticles-Luteolin to Promote Ferroptosis in Human Acute Myeloid Leukemia Cells in Vitro. Int J Nanomedicine 2025; 20:4035-4050. [PMID: 40191047 PMCID: PMC11972579 DOI: 10.2147/ijn.s509007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 03/20/2025] [Indexed: 04/09/2025] Open
Abstract
Purpose Acute myeloid leukemia (AML) is a hematological malignancy. Zinc oxide nanoparticles (ZnO NPs) and Luteolin are commonly used to fight cancer. In this study, we synthesized a new complex: zinc oxide nanoparticles-luteolin (ZnONPs-Lut) and aimed to investigate its effects on cell death in the AML cell line (MOLM-13) in vitro and to elucidate the underlying mechanisms. Methods We assessed cell viability, quantified changes in gene expression using real-time quantitative PCR (qRT-PCR), and measured changes in ferrous (Fe2+) content, glutathione (GSH) content, malondialdehyde (MDA) content, reactive oxygen species (ROS), and mitochondrial membrane potential (MMP) levels following treatment with different concentrations of MOLM-13 cells with different concentrations of ZnONPs-Lut. Western blotting was used to detect the protein expression levels of ACSL4, GPX4, FTH1, and SLC7A11, while the cell morphology was observed by transmission electron microscopy (TEM). Meanwhile, the effect of Ferrostatin-1 (Fer-1), a ferroptosis inhibitor, on the expression of the aforementioned ferroptosis-related proteins and cell morphology was evaluated. Results The results showed that ZnONPs-Lut was able to significantly inhibit the proliferation of MOLM-13 cells in a time- and dose-dependent manner. Additionally, it increased the concentrations of Fe2+ and MDA, reduced the expression levels of GSH and MMP, and induced ROS generation. Furthermore, it also enhanced the expression of ACSL4 protein while decreasing the expression of GPX4, FTH1, and SLC7A11 proteins. Notably, Fer-1 was able to significantly restrain the changes in protein levels and mitochondrial morphology damage induced by ZnONPs-Lut after its action on cells. Conclusion ZnONPs-Lut inhibits the proliferation of MOLM-13 cells, likely through promoting the cellular ferroptosis signaling pathway. These findings suggest that ZnONPs-Lut could be a potential therapeutic approach for AML.
Collapse
Affiliation(s)
- Wenhao Wang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Zonghong Li
- Department of Hematology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Chunyi Lyu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Teng Wang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Chen Han
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Siyuan Cui
- Department of Hematology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, People’s Republic of China
| | - Jinxin Wang
- Department of Hematology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, People’s Republic of China
| | - Ruirong Xu
- Department of Hematology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, People’s Republic of China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Hematology, Health Commission of Shandong Province, Jinan, People’s Republic of China
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| |
Collapse
|
6
|
Rao Y, Pan Q, Liu S, Yao S, Li L, Yan J, Chen L, Xu L, Yan H, Ma A, Wang F, Mao X, Wang Z, Zhang J, Guo J, Sun Z. Tissue Inhibitor of Metalloproteinase 1 promotes ferroptosis and suppresses prostate cancer metastasis. J Biol Chem 2025:108473. [PMID: 40185230 DOI: 10.1016/j.jbc.2025.108473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/10/2025] [Accepted: 03/25/2025] [Indexed: 04/07/2025] Open
Abstract
Tissue inhibitor of metalloproteinase 1 (TIMP1) has been implicated in prostate cancer metastasis. In this study, PC-3M-2B4 cells with TIMP1 knockdown (PC-3M-2B4-shTIMP1) or over-expression (PC-3M-2B4-TIMP1) were generated and an inverse correlation was found between TIMP1 expression and cell migration and invasion which was confirmed in vitro and in vivo. Differential TIMP1 expression was accompanied by variations in the expression of the ferroptosis-related proteins, glutathione peroxidase 4 (GPX4), transferrin receptor (TFRC), transferrin (TF), glutamine cysteine ligase catalytic subunit (GCLC) and glutamine cysteine ligase modifier subunit (GCLM). In comparison with TIMP1-overexpressing cells, TIMP1-knockdown cells demonstrated a 12.3% decrease in Fe2+ concentration after erastin treatment, a 37.8% reduction in malondialdehyde (MDA) levels, an 113.7% increase in GPX4 expression, and a 78.9% rise in the GSH/GSSG ratio. Our findings indicate that TIMP1 overexpression promotes ferroptosis by modulating critical markers such as GPX4 and TFRC, thereby significantly reducing metastatic potential in prostate cancer cells. Our results highlight TIMP1's role in regulating ferroptosis pathways, which are crucial for tumor progression, and exposes a potential therapeutic target for prostate cancer management.
Collapse
Affiliation(s)
- Yuliang Rao
- School of Pharmacy, School of Basic Medical Sciences, Fudan University, Shanghai, 201203, China; National Evaluation Centre for the Toxicology of Fertility Regulating Drug, Shanghai Institute for Bio-medical and Pharmaceutical Technologies (SIBPT), Shanghai, 201203, China; NHC Key Laboratory of Reproduction Regulation, Shanghai, 201203, China; Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai
| | - Qi Pan
- National Evaluation Centre for the Toxicology of Fertility Regulating Drug, Shanghai Institute for Bio-medical and Pharmaceutical Technologies (SIBPT), Shanghai, 201203, China; NHC Key Laboratory of Reproduction Regulation, Shanghai, 201203, China; Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai
| | - Siyu Liu
- National Evaluation Centre for the Toxicology of Fertility Regulating Drug, Shanghai Institute for Bio-medical and Pharmaceutical Technologies (SIBPT), Shanghai, 201203, China; NHC Key Laboratory of Reproduction Regulation, Shanghai, 201203, China; Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai
| | - Shunheng Yao
- National Evaluation Centre for the Toxicology of Fertility Regulating Drug, Shanghai Institute for Bio-medical and Pharmaceutical Technologies (SIBPT), Shanghai, 201203, China; NHC Key Laboratory of Reproduction Regulation, Shanghai, 201203, China; Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai
| | - Lei Li
- National Evaluation Centre for the Toxicology of Fertility Regulating Drug, Shanghai Institute for Bio-medical and Pharmaceutical Technologies (SIBPT), Shanghai, 201203, China; NHC Key Laboratory of Reproduction Regulation, Shanghai, 201203, China; Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai
| | - Jianyan Yan
- National Evaluation Centre for the Toxicology of Fertility Regulating Drug, Shanghai Institute for Bio-medical and Pharmaceutical Technologies (SIBPT), Shanghai, 201203, China; NHC Key Laboratory of Reproduction Regulation, Shanghai, 201203, China; Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai
| | - Lifen Chen
- National Evaluation Centre for the Toxicology of Fertility Regulating Drug, Shanghai Institute for Bio-medical and Pharmaceutical Technologies (SIBPT), Shanghai, 201203, China; NHC Key Laboratory of Reproduction Regulation, Shanghai, 201203, China; Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai
| | - Li Xu
- National Evaluation Centre for the Toxicology of Fertility Regulating Drug, Shanghai Institute for Bio-medical and Pharmaceutical Technologies (SIBPT), Shanghai, 201203, China; NHC Key Laboratory of Reproduction Regulation, Shanghai, 201203, China; Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai
| | - Han Yan
- National Evaluation Centre for the Toxicology of Fertility Regulating Drug, Shanghai Institute for Bio-medical and Pharmaceutical Technologies (SIBPT), Shanghai, 201203, China; NHC Key Laboratory of Reproduction Regulation, Shanghai, 201203, China; Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai
| | - Aicui Ma
- National Evaluation Centre for the Toxicology of Fertility Regulating Drug, Shanghai Institute for Bio-medical and Pharmaceutical Technologies (SIBPT), Shanghai, 201203, China; NHC Key Laboratory of Reproduction Regulation, Shanghai, 201203, China; Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai
| | - Fen Wang
- National Evaluation Centre for the Toxicology of Fertility Regulating Drug, Shanghai Institute for Bio-medical and Pharmaceutical Technologies (SIBPT), Shanghai, 201203, China; NHC Key Laboratory of Reproduction Regulation, Shanghai, 201203, China; Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai
| | - Xiaoyan Mao
- National Evaluation Centre for the Toxicology of Fertility Regulating Drug, Shanghai Institute for Bio-medical and Pharmaceutical Technologies (SIBPT), Shanghai, 201203, China; NHC Key Laboratory of Reproduction Regulation, Shanghai, 201203, China; Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai
| | - Zhonghui Wang
- National Evaluation Centre for the Toxicology of Fertility Regulating Drug, Shanghai Institute for Bio-medical and Pharmaceutical Technologies (SIBPT), Shanghai, 201203, China; NHC Key Laboratory of Reproduction Regulation, Shanghai, 201203, China; Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai
| | - Junfang Zhang
- National Evaluation Centre for the Toxicology of Fertility Regulating Drug, Shanghai Institute for Bio-medical and Pharmaceutical Technologies (SIBPT), Shanghai, 201203, China; NHC Key Laboratory of Reproduction Regulation, Shanghai, 201203, China; Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai
| | - Jun Guo
- National Evaluation Centre for the Toxicology of Fertility Regulating Drug, Shanghai Institute for Bio-medical and Pharmaceutical Technologies (SIBPT), Shanghai, 201203, China; NHC Key Laboratory of Reproduction Regulation, Shanghai, 201203, China; Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai.
| | - Zuyue Sun
- School of Pharmacy, School of Basic Medical Sciences, Fudan University, Shanghai, 201203, China; National Evaluation Centre for the Toxicology of Fertility Regulating Drug, Shanghai Institute for Bio-medical and Pharmaceutical Technologies (SIBPT), Shanghai, 201203, China; NHC Key Laboratory of Reproduction Regulation, Shanghai, 201203, China; Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai.
| |
Collapse
|
7
|
Varlamova EG. Roles of selenium-containing glutathione peroxidases and thioredoxin reductases in the regulation of processes associated with glioblastoma progression. Arch Biochem Biophys 2025; 766:110344. [PMID: 39956249 DOI: 10.1016/j.abb.2025.110344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/07/2025] [Accepted: 02/12/2025] [Indexed: 02/18/2025]
Abstract
Glioblastoma remains the most common and aggressive primary tumor of the central nervous system in adults. Current treatment options include standard surgical resection combined with radiation/chemotherapy, but such protocol most likely only delays the inevitable. Therefore, the problem of finding therapeutic targets to prevent the occurrence and development of this severe oncological disease is currently acute. It is known that the functions of selenoproteins in the regulation of carcinogenesis processes are not unambiguous. Either they exhibit cytotoxic activity on cancer cells, or cytoprotective. A special place in the progression of oncological diseases of various etiologies is occupied by proteins of the thioredoxin and glutathione systems. These are two cellular antioxidant systems that regulate redox homeostasis, counteracting the increased production of reactive oxygen species in cells. The review reflects the latest data on the role of key enzymes of these redox systems in the regulation of processes associated with the progression of glioblastoma. A thorough consideration of these issues will expand fundamental knowledge about the functions of selenium-containing thioredoxin reductases and glutathione peroxidases in the therapy of glioblastomas and provide an understanding of the prospects for the treatment of this aggressive oncological disease.
Collapse
Affiliation(s)
- Elena G Varlamova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", St. Institutskaya 3, Pushchino, 142290, Russia.
| |
Collapse
|
8
|
Liang Y, Zhao Y, Qi Z, Li X, Zhao Y. Ferroptosis: CD8 +T cells' blade to destroy tumor cells or poison for self-destruction. Cell Death Discov 2025; 11:128. [PMID: 40169575 PMCID: PMC11962101 DOI: 10.1038/s41420-025-02415-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 02/19/2025] [Accepted: 03/19/2025] [Indexed: 04/03/2025] Open
Abstract
Ferroptosis represents an emerging, iron-dependent form of cell death driven by lipid peroxidation. In recent years, it has garnered significant attention in the realm of cancer immunotherapy, particularly in studies involving immune checkpoint inhibitors. This form of cell death not only enhances our comprehension of the tumor microenvironment but is also considered a promising therapeutic strategy to address tumor resistance, investigate immune activation mechanisms, and facilitate the development of cancer vaccines. The combination of immunotherapy with ferroptosis provides innovative targets and fresh perspectives for advancing cancer treatment. Nevertheless, tumor cells appear to possess a wider array of ferroptosis evasion strategies compared to CD8+T cells, which have been conclusively shown to be more vulnerable to ferroptosis. Furthermore, ferroptosis in the TME can create a favorable environment for tumor survival and invasion. Under this premise, both inducing tumor cell ferroptosis and inhibiting T cell ferroptosis will impact antitumor immunity to some extent, and even make the final result run counter to our therapeutic purpose. This paper systematically elucidates the dual-edged sword role of ferroptosis in the antitumor process of T cells, briefly outlining the complexity of ferroptosis within the TME. It explores potential side effects associated with ferroptosis-inducing therapies and critically considers the combined application of ferroptosis-based therapies with ICIs. Furthermore, it highlights the current challenges faced by this combined therapeutic approach and points out future directions for development.
Collapse
Affiliation(s)
- Yuan Liang
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Yixin Zhao
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhaoyang Qi
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Xinru Li
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Yuguang Zhao
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
9
|
Power K, Leandri R, Federico G, De Vico G, Leonardi L. Ferritinophagy: a possible new iron-related metabolic target in canine osteoblastic osteosarcoma. Front Vet Sci 2025; 12:1546872. [PMID: 40196812 PMCID: PMC11973301 DOI: 10.3389/fvets.2025.1546872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/06/2025] [Indexed: 04/09/2025] Open
Abstract
Canine osteosarcomas (COS) are the most common bone tumors in dogs, characterized by high metastatic rates, poor prognosis, and poor responsiveness to routine therapies, which highlights the need for new treatment targets. In this context, the metabolism of neoplastic cells represents an increasingly studied element, as cancer cells depend on particular metabolic pathways that are also elements of vulnerability. Among these, tumor cells (TCs) show higher iron requirements to sustain proliferation (so-called iron addiction), which are achieved by increasing iron uptake and/or by activating ferritinophagy, a process mediated by the Nuclear receptor Co-Activator 4 (NCOA4) leading to iron mobilization from ferritin (Ft) deposits. Previous studies have shown that COS cells overexpress Transferrin Receptor 1 (TfR1) to increase iron uptake. In this study we evaluated the immunohistochemical expression of ferritinophagy-related proteins, namely Ferritin Heavy chain (FTH1) and NCOA4, and proliferating cell nuclear antigen (PCNA) in canine normal bone and canine osteoblastic osteosarcoma (COOS) samples. Normal samples revealed negative/weak immunoreactivity for FTH1, NCOA4 and PCNA in <10% of osteocytes. In COOS samples the majority of neoplastic cells showed immunoreactivity to FTH1, NCOA4 and PCNA. Our data suggest that the activation of ferritinophagy by COOS cells responds to the need for feed their "iron addiction." These data, though preliminary, further suggest that targeting iron metabolism represents a new potential strategy worthy of further study to be transferred into clinical practice.
Collapse
Affiliation(s)
- Karen Power
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Rebecca Leandri
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Giorgia Federico
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Gionata De Vico
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Leonardo Leonardi
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
10
|
Song S, Zhang G, Yao Z, Chen R, Liu K, Zhang T, Zeng G, Wang Z, Liu R. Deep learning based on intratumoral heterogeneity predicts histopathologic grade of hepatocellular carcinoma. BMC Cancer 2025; 25:497. [PMID: 40102774 PMCID: PMC11917083 DOI: 10.1186/s12885-025-13781-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/20/2025] [Indexed: 03/20/2025] Open
Abstract
OBJECTIVES The potential of medical imaging to non-invasively assess intratumoral heterogeneity (ITH) is increasingly being recognized. This study aimed to investigate the value of the ITH-based deep learning model for preoperative prediction of histopathologic grade in hepatocellular carcinoma (HCC). MATERIALS AND METHODS A total of 858 patients from primary cohort and two external cohorts were included. 3.0T or 1.5T axial portal venous phase MRI images were collected. We conducted radiomics feature-driven K-means clustering for automatic partition to reveal ITH. 2.5D and 3D deep learning models based on ResNet architecture were trained to extract deep learning hidden features of each subregion. The selected features were used to train Random Forest classifier, which constructed the feature-fusion model. RESULTS The extracted voxel-level radiomics features were unsupervised clustered by K-means to generate three subregions. In the 2.5D deep learning, the feature-fusion model based on ITH had superior predictive efficacy than the whole-tumor model (AUC: 0.82 vs. 0.72; p = 0.004). Even in the validation and external test sets, this model maintained a high AUC of 0.78-0.83, and net reclassification indices indicated that it could improve prediction by 25-28%. Regarding the prognostic value, overall survival (OS) and recurrence-free survival (RFS) could be significantly stratified by the 2.5D feature-fusion model, and multivariable Cox regressions indicated its signature was identified as a risk predictor for OS and RFS (p < 0.05). CONCLUSION The ITH-based feature-fusion model provided a non-invasive method for classifying tumor differentiation in HCC, which may serve as a promising strategy for stratification management.
Collapse
Affiliation(s)
- Shaoming Song
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Gong Zhang
- Faculty of Hepatopancreatobiliary Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
- Key Laboratory of Digital Hepatobiliary Surgery, Chinese PLA General Hospital, Beijing, 100853, China
| | - Zhiyuan Yao
- Faculty of Hepatopancreatobiliary Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
- Department of Hepatobiliary Surgery, The Sixth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| | - Ruiqiu Chen
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Kai Liu
- Faculty of Hepatopancreatobiliary Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Tianchen Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Guineng Zeng
- Faculty of Hepatopancreatobiliary Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
- Nankai University School of Medicine, Nankai University, Tianjin, 300071, China
| | - Zizheng Wang
- Department of Hepatobiliary Surgery, Senior Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
| | - Rong Liu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China.
- Faculty of Hepatopancreatobiliary Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
11
|
Qian LH, Wen KL, Guo Y, Liao YN, Li MY, Li ZQ, Li SX, Nie HZ. Nutrient deficiency-induced downregulation of SNX1 inhibits ferroptosis through PPARs-ACSL1/4 axis in colorectal cancer. Apoptosis 2025:10.1007/s10495-025-02088-y. [PMID: 40095264 DOI: 10.1007/s10495-025-02088-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2025] [Indexed: 03/19/2025]
Abstract
Colorectal cancer (CRC) is among the most prevalent and deadly gastrointestinal malignancies, with advanced-stage tumors often exhibiting resistance to both chemotherapy and targeted therapies, underscoring the urgent need for novel therapeutic targets to improve clinical outcomes. Sorting nexin 1 (SNX1), previously implicated in receptor trafficking between early and late endosomes/lysosomes in cancer studies, has an unclear role in CRC tumorigenesis and progression. Our study revealed that SNX1 expression was downregulated in CRC, and its low levels correlated with advanced tumor stages and unfavorable clinical outcomes. Functionally, SNX1 significantly inhibited tumor cell growth both in vitro and in vivo. Further experiments showed that SNX1 induced ferroptosis in CRC cells by modulating the PPARs-ACSL1/4 pathway downstream of EGFR signaling. Moreover, glucose deprivation suppressed the Hippo pathway, promoted YAP nuclear translocation, and activated the transcription factor Yin Yang 1 (YY1), leading to SNX1 downregulation. This subsequently activated EGFR signaling and ultimately suppressed ferroptosis in CRC cells. Notably, the combination of SNX1 overexpression and 5-fluorouracil (5-FU) treatment exhibited a synergistic anti-tumor effect in a cell-derived xenograft (CDX) model. These findings underscore the critical role of SNX1 in regulating ferroptosis and tumor progression in CRC and highlight its potential as a therapeutic target to enhance chemotherapy effectiveness in CRC.
Collapse
Affiliation(s)
- Li-Heng Qian
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kai-Ling Wen
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ying Guo
- Radiology Department, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Ying-Na Liao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ming-Yue Li
- Innomodels Biotechnology Co., Ltd., Building 14, 79 Shuangying Xi Road, Changping District, Beijing, 102299, China
| | - Zuo-Qing Li
- Innomodels Biotechnology Co., Ltd., Building 14, 79 Shuangying Xi Road, Changping District, Beijing, 102299, China
| | - Shu-Xin Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Hui-Zhen Nie
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
12
|
Wang Y, Zhao D, Nong X. Artesunate alleviates radiation-induced submandibular gland epithelial cell damage in rats by reducing inflammation and apoptosis. Cell Biol Int 2025; 49:250-261. [PMID: 39607036 DOI: 10.1002/cbin.12261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/09/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024]
Abstract
Salivary hypofunction is a common complication in patients with head and neck cancers following radiotherapy (RT). RT-induced inflammation in salivary gland cells leads to apoptosis and fibrosis. Artesunate (ART) is a bioactive compound with anti-inflammatory and anti-fibrosis properties. This study aimed to investigate the protective effects of ART on X-ray-induced injury of submandibular gland (SMG) epithelial cells in rats. Second-generation SMG epithelial cells were randomly divided into five groups: natural control group (NC), irradiated group (IR), and irradiated groups treated with ART at concentrations of 5, 10, and 20 μM. Cells were harvested 48 h postirradiation for analysis. The results demonstrated that ART attenuated the damage to AQP5, a crucial indicator of salivary gland function, as evidenced by the decreased expression of AQP5 at both mRNA and protein levels. Additionally, ART decreased the expression of inflammatory cytokines: IL-6 and TNF-α. TUNEL staining revealed reduced apoptosis in the ART groups, particularly the IR + 10 μM group. RT-PCR and Western blot analysis of apoptosis cytokines Bax/Bcl-2 and Caspase-3 confirmed these findings. Furthermore, ART inhibited the expression of NF-κB at both mRNA and protein levels. In conclusion, these results suggest that ART may reduce inflammation and apoptosis in SMG epithelial cells following radiation by inhibiting the NF-κB pathway.
Collapse
Affiliation(s)
- Yuchen Wang
- College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Danni Zhao
- College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaolin Nong
- College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, Guangxi, China
| |
Collapse
|
13
|
D’Aprile S, Denaro S, Gervasi A, Vicario N, Parenti R. Targeting metabolic reprogramming in glioblastoma as a new strategy to overcome therapy resistance. Front Cell Dev Biol 2025; 13:1535073. [PMID: 40078366 PMCID: PMC11897528 DOI: 10.3389/fcell.2025.1535073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/04/2025] [Indexed: 03/14/2025] Open
Abstract
Glioblastoma (GBM) is one of the deadliest tumors due to its high aggressiveness and resistance to standard therapies, resulting in a dismal prognosis. This lethal tumor carries out metabolic reprogramming in order to modulate specific pathways, providing metabolites that promote GBM cells proliferation and limit the efficacy of standard treatments. Indeed, GBM remodels glucose metabolism and undergoes Warburg effect, fuelling glycolysis even when oxygen is available. Moreover, recent evidence revealed a rewiring in nucleotide, lipid and iron metabolism, resulting not only in an increased tumor growth, but also in radio- and chemo-resistance. Thus, while on the one hand metabolic reprogramming is an advantage for GBM, on the other hand it may represent an exploitable target to hamper GBM progression. Lately, a number of studies focused on drugs targeting metabolism to uncover their effects on tumor proliferation and therapy resistance, demonstrating that some of these are effective, in combination with conventional treatments, sensitizing GBM to radiotherapy and chemotherapy. However, GBM heterogeneity could lead to a plethora of metabolic alterations among subtypes, hence a metabolic treatment might be effective for proneural tumors but not for mesenchymal ones, which are more aggressive and resistant to conventional approaches. This review explores key mechanisms of GBM metabolic reprogramming and their involvement in therapy resistance, highlighting how metabolism acts as a double-edged sword for GBM, taking into account metabolic pathways that seem to offer promising treatment options for GBM.
Collapse
Affiliation(s)
| | | | | | | | - Rosalba Parenti
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
14
|
Rostami Ravari N, Sadri F, Mahdiabadi MA, Mohammadi Y, Ourang Z, Rezaei Z. Ferroptosis and noncoding RNAs: exploring mechanisms in lung cancer treatment. Front Cell Dev Biol 2025; 13:1522873. [PMID: 40078365 PMCID: PMC11897296 DOI: 10.3389/fcell.2025.1522873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/31/2025] [Indexed: 03/14/2025] Open
Abstract
Lung cancer (LC) is a highly prevalent and deadly type of cancer characterized by intricate molecular pathways that drive tumor development, metastasis, and resistance to conventional treatments. Recently, ferroptosis, a controlled mechanism of cell death instigated by iron-dependent lipid peroxidation, has gained attention for its role in LC progression and treatment. Noncoding RNAs (ncRNAs), such as microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), are emerging as key modulators of ferroptosis, significantly influencing LC biology. This review explores how ncRNAs control ferroptotic pathways and affect tumor growth, metastasis, and therapy resistance in LC. By understanding the dual functions of ncRNAs in both activating and inhibiting ferroptosis, we aim to uncover new therapeutic targets and strategies for LC. These insights provide a promising direction for the development of ncRNA-based treatments designed to induce ferroptosis, potentially improving therapeutic outcomes for patients with LC.
Collapse
Affiliation(s)
- Nadi Rostami Ravari
- Department of Animal Science Researches, Agriculture and Natural Resources Education and Research Center of Kerman, Agriculture and Natural Resources Education and Research Organization (AREEO), Kerman, Iran
| | - Farzad Sadri
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
- Geriatric Health Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Ali Mahdiabadi
- Department of Internal Medicine, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Yaser Mohammadi
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Ourang
- Department of Biochemistry, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Zohreh Rezaei
- Geriatric Health Research Center, Birjand University of Medical Sciences, Birjand, Iran
- Department of Biology, University of Sistan and Baluchestan, Zahedan, Iran
| |
Collapse
|
15
|
He W, Tan X, Yang W, Huang D, Zhang H, Liu H. Exploring modifiable risk factors: insights from Mendelian randomization analyses of gastric cancer in East Asian populations. Discov Oncol 2025; 16:210. [PMID: 39971821 PMCID: PMC11839552 DOI: 10.1007/s12672-025-01953-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 02/07/2025] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND The incidence of gastric cancer (GC) shows strong geographic variation, with the highest incidence occurring in East Asia. Epidemiological studies have linked lifestyle, diet, and inflammatory factors to the risk of GC. However, their causal relationship is subject to debate due to the potential presence of bias. Addressing these uncertainties is vital for guiding effective preventive strategies. METHODS We used genetic variants as instruments via two-sample univariate and multivariate Mendelian randomization analyses to examine the relationships between 40 potentially modifiable risk factors and gastric cancer in 6563 patients with gastric cancer and 195,745 controls. These population data came from a genome-wide association study of people of Asian ancestry and were obtained from BioBank Japan. RESULTS Our multivariable Mendelian randomization analyses provided suggestive evidence of a potential association between genetically predicted concentrations of serum hemoglobin (ORSD 0.62 [95% CI 0.41 ~ 0.93]; p = 0.02), lactate dehydrogenase (LDH) (ORSD 0.30 [95% CI 0.16 ~ 0.56]; p < 0.001) and alkaline phosphatase (ALP) (ORSD 0.80 [95% CI 0.73 ~ 0.88]; p < 0.001) and a decreased risk of GC. Furthermore, our study revealed a causal link between type 2 diabetes mellitus (T2DM) (ORSD 0.83, 95% CI = 0.73 ~ 0.93, p value = 0.002) and GC incidence. CONCLUSIONS This analysis identified several potential modifiable factors for gastric cancer, including hemoglobin, LDH, ALP and T2DM. These findings should be considered when formulating strategies for the primary prevention of GC, thereby informing evidence-based public health policies.
Collapse
Affiliation(s)
- Wenjun He
- Department of General Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| | - Xin Tan
- Department of General Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| | - Weihao Yang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| | - Donghua Huang
- Department of Health Management, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hengyi Zhang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| | - Hao Liu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China.
| |
Collapse
|
16
|
Fan S, Hu Y, Shi J. Role of ferroptosis in atrial fibrillation: a review. Front Pharmacol 2025; 16:1362060. [PMID: 39981174 PMCID: PMC11839810 DOI: 10.3389/fphar.2025.1362060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 01/13/2025] [Indexed: 02/22/2025] Open
Abstract
Cardiovascular disease remains the leading cause of mortality, with atrial fibrillation emerging as one of the most common conditions encountered in clinical practice. However, its underlying mechanisms remain poorly understood, prompting ongoing research. Ferroptosis, a recently discovered form of regulated cell death characterized by lipid peroxidation and disrupted cellular redox balance leading to cell death due to iron overload, has attracted significant attention. Since its identification, ferroptosis has been extensively studied in various contexts, including cancer, stroke, myocardial ischemia/reperfusion injury, and heart failure. Growing evidence suggests that ferroptosis may also play a critical role in the onset and progression of atrial fibrillation, though research in this area is still limited. This article provides a concise overview of the potential mechanisms by which ferroptosis may contribute to the pathogenesis of atrial fibrillation.
Collapse
Affiliation(s)
- Shaowei Fan
- Lugouqiao Second Community Health Service Center, China Aerospace Science & Industry Corporation 731 Hospital, Beijing, China
| | - Yuanhui Hu
- Department of Cardiological Medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| | - Jingjing Shi
- Department of Cardiological Medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| |
Collapse
|
17
|
Piccolo M, Russo C, Arciuolo V, Ferraro MG, Abbate V, Di Porzio A, Cinquegrana E, Di Leva FS, Pagano B, Randazzo A, Hider RC, Irace C, Amato J, Giustiniano M. Design, Synthesis, and Anticancer Activity of Drug-like Iron Chelators/G-Quadruplex Binders as Synergic Dual Targeting Agents. J Med Chem 2025; 68:1245-1259. [PMID: 39743313 DOI: 10.1021/acs.jmedchem.4c01665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Iron homeostasis is strictly related to numerous physiological pathways including cell cycle progression and cell growth. The newest anticancer strategies focus on either depleting the cells with a suitable chelator or increasing their loading by administering iron complexes to induce ferroptosis. Iron depletion inhibits cell proliferation, while iron overload induces the damage of guanine nucleobases in G-quadruplex structures via ROS generation, leading to genome instability. Here, we demonstrated that designing a molecular chimera embodying structural requirements for both iron chelation and G-quadruplex binding can result in dual-targeting compounds endowed with synergistic anticancer effects. We designed, synthesized, and tested a library of such compounds through biophysical and biological experiments. Compound 16 emerged as a lead candidate and a pharmacological tool able to chelate iron and stabilize G-quadruplexes in human leukemia Jurkat cells. Notably, it also localizes in the cell nucleus, serving as an intrinsically fluorescent nuclear tracer for the labile iron pool.
Collapse
Affiliation(s)
- Marialuisa Piccolo
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, Naples 80131, Italy
| | - Camilla Russo
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, Naples 80131, Italy
| | - Valentina Arciuolo
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, Naples 80131, Italy
| | - Maria Grazia Ferraro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, via Pansini 5, Naples 80131, Italy
| | - Vincenzo Abbate
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street London SE1 9NH, United Kingdom of Great Britain and Northern Ireland
| | - Anna Di Porzio
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, Naples 80131, Italy
| | - Elpidio Cinquegrana
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, Naples 80131, Italy
| | | | - Bruno Pagano
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, Naples 80131, Italy
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, Naples 80131, Italy
| | - Robert Charles Hider
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street London SE1 9NH, United Kingdom of Great Britain and Northern Ireland
| | - Carlo Irace
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, Naples 80131, Italy
| | - Jussara Amato
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, Naples 80131, Italy
| | - Mariateresa Giustiniano
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, Naples 80131, Italy
| |
Collapse
|
18
|
Liu Y, Tang A, Liu M, Luo Z, Cao F, Yang C. The effectiveness of sanggenon c in alleviating SLC7A11-induced ferroptosis in lung cancer was evaluated using in vivo, in vitro, and computational approaches. Int Immunopharmacol 2025; 145:113819. [PMID: 39657537 DOI: 10.1016/j.intimp.2024.113819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/12/2024]
Abstract
Sanggenon c, a component in Morus alba L, has been proved to possess various biological activities. The aim of this study is to investigate whether sanggenon c can target SLC7A11 and inhibit lung cancer by regulating the ferroptosis mechanism. The levels of antioxidant factor, Fe 2+, and SLC7A11 were measured in the lungs of cancerous mice and human A 549 lung cancer cells. The computer-aided techniques were employed to validate the molecular docking and molecular dynamics simulations of sanggenon c and SLC7A11. The sanggenon c significantly inhibits lung cancer cell metastasis in vivo and A 549 cell proliferation in vitro by targeting the over-expression of SLC7A11, which inhibits GPX 4 and induces the release of ROS and MDA, effectively triggering ferroptosis. The interaction between sanggenon c and SLC7A11 exhibits a strong binding affinity, leading to the significant inhibition of the key protein SLC7A11. This restriction of system xc- transport induces ferroptosis in lung cancer. It epitomizes a groundbreaking inhibitor specifically designed to target SLC7A11.
Collapse
Affiliation(s)
- Yang Liu
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou, China
| | - Amei Tang
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou, China
| | - Meng Liu
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, 999078, China
| | - Zhenliang Luo
- School of Health Care, Guizhou University of Traditional Chinese Medicine, Guiyang,550025, Guizhou, China
| | - Feng Cao
- School of Health Care, Guizhou University of Traditional Chinese Medicine, Guiyang,550025, Guizhou, China.
| | - Changfu Yang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou, China.
| |
Collapse
|
19
|
Badran O, Cohen I, Bar-Sela G. The Impact of Iron on Cancer-Related Immune Functions in Oncology: Molecular Mechanisms and Clinical Evidence. Cancers (Basel) 2024; 16:4156. [PMID: 39766056 PMCID: PMC11674619 DOI: 10.3390/cancers16244156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Iron metabolism plays a dual role in cancer, serving as an essential nutrient for cellular functions and a potential catalyst for tumor growth and immune evasion. Here, we cover the complex interplay between iron levels within the serum or in the microenvironment and cancer therapy, focusing on how iron deficiency and overload can impact immune function, tumor progression, and treatment efficacy. On the one hand, we highlight iron deficiency as a factor of primary immune responses and its adverse effects on anti-cancer immunotherapy efficacy. On the other hand, we also stress the impact of iron overload as an essential factor contributing to tumor growth, creating a suppressive tumor microenvironment that hinders immune checkpoint inhibitor immunotherapy. Overall, we emphasize the necessity of the personalized management of iron levels in oncology patients as a critical element in treatment optimization to achieve favorable outcomes. Based on these considerations, we believe that close and careful monitoring and the tailored balancing of iron supplementation strategies should be the subject of further clinical studies, and routine iron management should be implemented in oncology clinical practice and integrated into cancer therapy protocols.
Collapse
Affiliation(s)
- Omar Badran
- Department of Oncology, Emek Medical Center, Afula 1834111, Israel; (O.B.); (I.C.)
- Technion Integrated Cancer Center, Faculty of Medicine, Technion, Haifa 3525422, Israel
| | - Idan Cohen
- Department of Oncology, Emek Medical Center, Afula 1834111, Israel; (O.B.); (I.C.)
| | - Gil Bar-Sela
- Department of Oncology, Emek Medical Center, Afula 1834111, Israel; (O.B.); (I.C.)
- Technion Integrated Cancer Center, Faculty of Medicine, Technion, Haifa 3525422, Israel
| |
Collapse
|
20
|
Tan J, Chen J, Roxby D, Chooi WH, Nguyen TD, Ng SY, Han J, Chew SY. Using magnetic resonance relaxometry to evaluate the safety and quality of induced pluripotent stem cell-derived spinal cord progenitor cells. Stem Cell Res Ther 2024; 15:465. [PMID: 39639398 PMCID: PMC11622678 DOI: 10.1186/s13287-024-04070-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND The emergence of induced pluripotent stem cells (iPSCs) offers a promising approach for replacing damaged neurons and glial cells, particularly in spinal cord injuries (SCI). Despite its merits, iPSC differentiation into spinal cord progenitor cells (SCPCs) is variable, necessitating reliable assessment of differentiation and validation of cell quality and safety. Phenotyping is often performed via label-based methods including immunofluorescent staining or flow cytometry analysis. These approaches are often expensive, laborious, time-consuming, destructive, and severely limits their use in large scale cell therapy manufacturing settings. On the other hand, cellular biophysical properties have demonstrated a strong correlation to cell state, quality and functionality and can be measured with ingenious label-free technologies in a rapid and non-destructive manner. METHOD In this study, we report the use of Magnetic Resonance Relaxometry (MRR), a rapid and label-free method that indicates iron levels based on its readout (T2). Briefly, we differentiated human iPSCs into SCPCs and compared key iPSC and SCPC cellular markers to their intracellular iron content (Fe3+) at different stages of the differentiation process. RESULTS With MRR, we found that intracellular iron of iPSCs and SCPCs were distinctively different allowing us to accurately reflect varying levels of residual undifferentiated iPSCs (i.e., OCT4+ cells) in any given population of SCPCs. MRR was also able to predict Day 10 SCPC OCT4 levels from Day 1 undifferentiated iPSC T2 values and identified poorly differentiated SCPCs with lower T2, indicative of lower neural progenitor (SOX1) and stem cell (Nestin) marker expression levels. Lastly, MRR was able to provide predictive indications for the extent of differentiation to Day 28 spinal cord motor neurons (ISL-1/SMI-32) based on the T2 values of Day 10 SCPCs. CONCLUSION MRR measurements of iPSCs and SCPCs has clearly indicated its capabilities to identify and quantify key phenotypes of iPSCs and SCPCs for end-point validation of safety and quality parameters. Thus, our technology provides a rapid label-free method to determine critical quality attributes in iPSC-derived progenies and is ideally suited as a quality control tool in cell therapy manufacturing.
Collapse
Affiliation(s)
- Jerome Tan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
- HealthTech @ NTU, Interdisciplinary Graduate Programme, Nanyang Technological University, Singapore, Singapore
- CAMP IRG, SMART Centre, CREATE, Singapore, Singapore
| | - Jiahui Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Daniel Roxby
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
- CAMP IRG, SMART Centre, CREATE, Singapore, Singapore
| | - Wai Hon Chooi
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | | | - Shi Yan Ng
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jongyoon Han
- CAMP IRG, SMART Centre, CREATE, Singapore, Singapore.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, USA.
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, USA.
| | - Sing Yian Chew
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore.
- CAMP IRG, SMART Centre, CREATE, Singapore, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
21
|
Gao C, Zhang H, Wang X. Current advances on the role of ferroptosis in tumor immune evasion. Discov Oncol 2024; 15:736. [PMID: 39621177 PMCID: PMC11612115 DOI: 10.1007/s12672-024-01573-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/11/2024] [Indexed: 12/06/2024] Open
Abstract
Ferroptosis is a non-apoptotic form of regulated cell death characterized by iron accumulation and uncontrolled lipid peroxidation, leading to plasma membrane rupture and intracellular content release. Cancer immunotherapy, especially immune checkpoint inhibitors (ICIs) targeting PD-1 and PD-L1, has been considered a breakthrough in cancer treatment, achieving encouraging clinical anti-tumor effects in a variety of cancers. However, tumor immune evasion is indispensable to immunotherapy failure. The mechanisms of tumor immune evasion are quite complex, and its occurrence is inseparable from the ferroptosis in tumor microenvironment (TME). Thus, a comprehensive understanding of the role of ferroptosis in tumor immune evasion is crucial to enhance the efficacy of immunotherapy. In this review, we provide an overview of the recent advancements in understanding ferroptosis in cancer, covering molecular mechanisms and interactions with the TME. We also summarize the potential applications of ferroptosis induction in immunotherapy, as well as ferroptosis inhibition for cancer treatment in various conditions. We finally discuss ferroptosis as a double-edged sword, including the current challenges and future directions regarding its potential for cancer treatment.
Collapse
Affiliation(s)
- Changlin Gao
- Graduate School of Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Haoran Zhang
- Central Hospital Affiliated to Dalian University of Technology, Dalian, 116000, Liaoning, China
- Graduate School of Dalian Medical University, Dalian, 116000, Liaoning, China
| | - Xianwei Wang
- Central Hospital Affiliated to Dalian University of Technology, Dalian, 116000, Liaoning, China.
| |
Collapse
|
22
|
Zheng XJ, Chen Y, Yao L, Li XL, Sun D, Li YQ. Identification of new hub- ferroptosis-related genes in Lupus Nephritis. Autoimmunity 2024; 57:2319204. [PMID: 38409788 DOI: 10.1080/08916934.2024.2319204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/11/2024] [Indexed: 02/28/2024]
Abstract
Background: Lupus Nephritis (LN) is the primary causation of kidney injury in systemic lupus erythematosus (SLE). Ferroptosis is a programmed cell death. Therefore, understanding the crosstalk between LN and ferroptosis is still a significant challenge. Methods: We obtained the expression profile of LN kidney biopsy samples from the Gene Expression Omnibus database and utilised the R-project software to identify differentially expressed genes (DEGs). Then, we conducted a functional correlation analysis. Ferroptosis-related genes (FRGs) and differentially expressed genes (DEGs) crossover to select FRGs with LN. Afterwards, we used CIBERSORT to assess the infiltration of immune cells in both LN tissues and healthy control samples. Finally, we performed immunohistochemistry on LN human renal tissue. Results: 10619 DEGs screened from the LN biopsy tissue were identified. 22 hub-ferroptosis-related genes with LN (FRGs-LN) were screened out. The CIBERSORT findings revealed that there were significant statistical differences in immune cells between healthy control samples and LN tissues. Immunohistochemistry further demonstrated a significant difference in HRAS, TFRC, ATM, and SRC expression in renal tissue between normal and control groups. Conclusion: We developed a signature that allowed us to identify 22 new biomarkers associated with FRGs-LN. These findings suggest new insights into the pathology and therapeutic potential of LN ferroptosis inhibitors and iron chelators.
Collapse
Affiliation(s)
- Xiao-Jie Zheng
- Department of Nephrology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ying Chen
- Department of Nephrology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Li Yao
- Department of Nephrology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiao-Li Li
- Department of Nephrology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Da Sun
- Department of Nephrology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yan-Qiu Li
- Department of Nephrology, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
23
|
Hushmandi K, Klionsky DJ, Aref AR, Bonyadi M, Reiter RJ, Nabavi N, Salimimoghadam S, Saadat SH. Ferroptosis contributes to the progression of female-specific neoplasms, from breast cancer to gynecological malignancies in a manner regulated by non-coding RNAs: Mechanistic implications. Noncoding RNA Res 2024; 9:1159-1177. [PMID: 39022677 PMCID: PMC11250880 DOI: 10.1016/j.ncrna.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/27/2024] [Accepted: 05/19/2024] [Indexed: 07/20/2024] Open
Abstract
Ferroptosis, a recently identified type of non-apoptotic cell death, triggers the elimination of cells in the presence of lipid peroxidation and in an iron-dependent manner. Indeed, ferroptosis-stimulating factors have the ability of suppressing antioxidant capacity, leading to the accumulation of reactive oxygen species (ROS) and the subsequent oxidative death of the cells. Ferroptosis is involved in the pathophysiological basis of different maladies, such as multiple cancers, among which female-oriented malignancies have attracted much attention in recent years. In this context, it has also been unveiled that non-coding RNA transcripts, including microRNAs, long non-coding RNAs, and circular RNAs have regulatory interconnections with the ferroptotic flux, which controls the pathogenic development of diseases. Furthermore, the potential of employing these RNA transcripts as therapeutic targets during the onset of female-specific neoplasms to modulate ferroptosis has become a research hotspot; however, the molecular mechanisms and functional alterations of ferroptosis still require further investigation. The current review comprehensively highlights ferroptosis and its association with non-coding RNAs with a focus on how this crosstalk affects the pathogenesis of female-oriented malignancies, from breast cancer to ovarian, cervical, and endometrial neoplasms, suggesting novel therapeutic targets to decelerate and even block the expansion and development of these tumors.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Daniel J. Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Amir Reza Aref
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Translational Sciences, Xsphera Biosciences Inc., Boston, MA, USA
| | - Mojtaba Bonyadi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX, USA
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Seyed Hassan Saadat
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Guo Z, Zhuang H, Shi X. Therapeutic efficacy of ferroptosis in the treatment of colorectal cancer (Review). Oncol Lett 2024; 28:563. [PMID: 39390976 PMCID: PMC11465226 DOI: 10.3892/ol.2024.14697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024] Open
Abstract
Colorectal cancer (CRC) is the third most common malignancy worldwide, and the second leading cause of cancer-associated mortality. The incidence and mortality rates of CRC remain high, posing a significant threat to humans and overall quality of life. Current therapeutic strategies, such as surgery and chemotherapy, are limited due to disease recurrence, chemotherapeutic drug resistance and toxicity. Thus, research is focused on the development of novel treatment approaches. In 2012, ferroptosis was identified as a form of regulated cell death that is iron-dependent and driven by lipid peroxidation. Notably, therapies targeting ferroptosis exhibit potential in the treatment of disease; however, their role in CRC treatment remains controversial. The present study aimed to systematically review the mechanisms and signaling pathways of ferroptosis in CRC, and the specific role within the tumor microenvironment. Moreover, the present study aimed to review the role of ferroptosis in drug resistance, offering novel perspectives for the diagnosis and treatment of CRC.
Collapse
Affiliation(s)
- Zhao Guo
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Haoyan Zhuang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Xuewen Shi
- Department of Anorectal, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| |
Collapse
|
25
|
Veglia Tranchese R, Battista S, Cerchia L, Fedele M. Ferroptosis in Cancer: Epigenetic Control and Therapeutic Opportunities. Biomolecules 2024; 14:1443. [PMID: 39595619 PMCID: PMC11592303 DOI: 10.3390/biom14111443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/06/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024] Open
Abstract
Ferroptosis, an iron-dependent form of regulated cell death driven by lipid peroxidation, has emerged as a critical pathway in cancer biology. This review delves into the epigenetic mechanisms that modulate ferroptosis in cancer cells, focusing on how DNA methylation, histone modifications, and non-coding RNAs influence the expression and function of essential genes involved in this process. By unraveling the complex interplay between these epigenetic mechanisms and ferroptosis, the article sheds light on novel gene targets and functional insights that could pave the way for innovative cancer treatments to enhance therapeutic efficacy and overcome resistance in cancer therapy.
Collapse
Affiliation(s)
| | | | | | - Monica Fedele
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council—CNR, 80131 Naples, Italy; (R.V.T.); (S.B.); (L.C.)
| |
Collapse
|
26
|
Razi S, Khojini JY, Norioun H, Hayati MJ, Naseri N, Tajbaksh A, Gheibihayat SM. MicroRNA-mediated regulation of Ferroptosis: Implications for disease pathogenesis and therapeutic interventions. Cell Signal 2024; 125:111503. [PMID: 39510403 DOI: 10.1016/j.cellsig.2024.111503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/05/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024]
Abstract
Ferroptosis, a form of iron-dependent regulated cell death, is characterized by the accumulation of lipid peroxides and distinctive morphological features. Moreover, the reduction of intracellular antioxidant enzyme expression or activity, specifically glutathione peroxidase 4 (GPX4) results in activation of the endogenous pathway of ferroptosis. In this review, we aimed to explore the intricate interplay between microRNAs (miRNAs) and ferroptosis, shedding light on its implications in various disease pathologies. This review delves into the role of miRNAs in modulating key regulators of ferroptosis, including genes involved in iron metabolism, lipid peroxidation, and antioxidant defenses. Furthermore, the potential of targeting miRNAs for therapeutic interventions in ferroptosis-related diseases, such as cancer, neurodegenerative disorders, and ischemia/reperfusion injury, is highlighted.
Collapse
Affiliation(s)
- Shokufeh Razi
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Javad Yaghmoorian Khojini
- Department of Medical Biotechnology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hamid Norioun
- Medical Genetics Department, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Mohammad Javad Hayati
- Department of Medical Biotechnology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Nasim Naseri
- Department of Animal Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Amir Tajbaksh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Yazd Cardiovascular Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
27
|
Fernandes B, Antunes IF, Prasad K, Vazquez-Matias DA, De Mattos EP, Szymanski W, Jeckel CMM, de Vries EFJ, Elsinga PH. Synthesis and preclinical evaluation of [ 18F]AlF-NODA-MP-C6-CTHRSSVVC as a PET tracer for CD163-positive tumor-infiltrating macrophages. Nucl Med Biol 2024; 138-139:108946. [PMID: 39151305 DOI: 10.1016/j.nucmedbio.2024.108946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
Positron emission tomography (PET) can provide information about tumor-associated macrophage (TAM) infiltration, as long as a suitable tracer is available. This study aimed to evaluate the radiolabeled peptide [18F]AlF-NODA-MP-C6-CTHRSSVVC as a potential PET tracer for imaging of the CD163 receptor, which is expressed on M2-type tumor-associated macrophages. The conjugated peptide NODA-MP-C6-CTHRSSVVC was labeled with aluminum [18F]fluoride. Tracer binding and its biodistribution were evaluated in an in vitro binding assay and in healthy BALB/c mice, respectively. In addition, different treatments with cyclophosphamide in tumor-bearing mice were used to assess whether the tracer could detect differences in CD163 expression caused by differential TAM infiltration. After 7 days of treatment, animals were injected with [18F]AlF-NODA-MP-C6-CTHRSSVVC, and a 60-min dynamic PET scan was performed, followed by an ex vivo biodistribution study. [18F]AlF-NODA-MP-C6-CTHRSSVVC was prepared in 23 ± 6 % radiochemical yield and showed approximately 50 % of specific receptor-mediated binding in an in vitro binding assay on human CD163-expressing tissue homogenates. No CD163-mediated binding of [18F]AlF-NODA-MP-C6-CTHRSSVVC was detected by PET under normal physiological conditions in healthy BALB/c mice. On the other hand, CD163-positive xenograft tumors were clearly visualized with PET and a positive correlation was found between CD163 levels and the [18F]AlF-NODA-MP-C6-CTHRSSVVC tumor-to-muscle ratio (TMR) obtained from the PET images (Pearson r = 0.76, p = 0.002). No significant differences in the CD163 protein level and in the tracer uptake between treatment groups were found in the tumors. Taken together, [18F]AlF-NODA-MP-C6-CTHRSSVVC appears a promising candidate PET tracer for M2-type TAM, as it binds specifically to CD163 in vitro and its tumor uptake correlates well with CD163 expression in vivo.
Collapse
Affiliation(s)
- Bruna Fernandes
- Dept. of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Graduate Program in Biomedical Gerontology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Ines F Antunes
- Dept. of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Kavya Prasad
- Dept. of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Daniel Aaron Vazquez-Matias
- Dept. of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Eduardo Preusser De Mattos
- Dept. of Biomedical Sciences of Cells & Systems, Section Molecular Cell Biology, University of Groningen, Groningen, the Netherlands
| | - Wiktor Szymanski
- Department of Radiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Cristina Maria Moriguchi Jeckel
- Graduate Program in Biomedical Gerontology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Erik F J de Vries
- Dept. of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Philip H Elsinga
- Dept. of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
28
|
Hayashi M, Okazaki K, Papgiannakopoulos T, Motohashi H. The Complex Roles of Redox and Antioxidant Biology in Cancer. Cold Spring Harb Perspect Med 2024; 14:a041546. [PMID: 38772703 PMCID: PMC11529857 DOI: 10.1101/cshperspect.a041546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Redox reactions control fundamental biochemical processes, including energy production, metabolism, respiration, detoxification, and signal transduction. Cancer cells, due to their generally active metabolism for sustained proliferation, produce high levels of reactive oxygen species (ROS) compared to normal cells and are equipped with antioxidant defense systems to counteract the detrimental effects of ROS to maintain redox homeostasis. The KEAP1-NRF2 system plays a major role in sensing and regulating endogenous antioxidant defenses in both normal and cancer cells, creating a bivalent contribution of NRF2 to cancer prevention and therapy. Cancer cells hijack the NRF2-dependent antioxidant program and exploit a very unique metabolism as a trade-off for enhanced antioxidant capacity. This work provides an overview of redox metabolism in cancer cells, highlighting the role of the KEAP1-NRF2 system, selenoproteins, sulfur metabolism, heme/iron metabolism, and antioxidants. Finally, we describe therapeutic approaches that can be leveraged to target redox metabolism in cancer.
Collapse
Affiliation(s)
- Makiko Hayashi
- Department of Pathology, New York University School of Medicine, New York, New York 10016, USA
| | - Keito Okazaki
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | | | - Hozumi Motohashi
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| |
Collapse
|
29
|
Jawed R, Bhatti H, Khan A. Genetic profile of ferroptosis in non-small cell lung carcinoma and pharmaceutical options for ferroptosis induction. Clin Transl Oncol 2024:10.1007/s12094-024-03754-4. [PMID: 39460894 DOI: 10.1007/s12094-024-03754-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024]
Abstract
Lung cancer (LC) is the leading cause of cancer-related deaths and the second most commonly diagnosed malignancy worldwide. Lung adenocarcinoma (LUAD) and lung squamous cell LC (LUSCC) are the most common subtypes of non-small cell LC (NSCLC). Early diagnosis of LC can be challenging due to a lack of biomarkers. The overall survival (OS) of patients with NSCLC is still poor despite the enormous efforts that have been made to develop novel treatments. Understanding fundamental molecular and genetic mechanisms is necessary to develop new therapeutic approaches for NSCLC. A recently identified type of programmed cell death known as ferroptosis is one potential approach. Ferroptosis causes oxidative damage and the death of cancerous cells by peroxidizing unsaturated phospholipids and accumulating reactive oxygen species (ROS) in an iron-dependent manner. Ferroptosis-related gene (FRG) signatures have recently been evaluated for their ability to predict patient OS and prognosis. These analyses show FRGs are involved in cancer progression, and may serve as promising biomarkers for tumor diagnosis and therapy. Moreover, we summarize the current pharmaceutical options of ferroptosis induction and their underlying molecular mechanism in LC. Therefore, this review aims to provide a comprehensive summary of FRG-based prognostic models, their associated metabolic and signaling pathways, and promising therapeutic options for ferroptosis induction in NSCLC.
Collapse
Affiliation(s)
- Rohil Jawed
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China.
| | - Huma Bhatti
- School of Chemistry and Chemical Engineering, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Adnan Khan
- Clinical and Molecular Labs, Karachi Institute of Radiotherapy and Nuclear Medicine (KIRAN), KDA Scheme 33 Near Safoora Chowk, Karachi, Pakistan
| |
Collapse
|
30
|
Xie H, Cao C, Shu D, Liu T, Zhang T. The important role of ferroptosis in inflammatory bowel disease. Front Med (Lausanne) 2024; 11:1449037. [PMID: 39434776 PMCID: PMC11491328 DOI: 10.3389/fmed.2024.1449037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/23/2024] [Indexed: 10/23/2024] Open
Abstract
Ferroptosis is a type of regulated cell death that occurs due to the iron-dependent accumulation of lethal reactive oxygen species (ROS) from lipids. Ferroptosis is characterized by distinct morphological, biochemical, and genetic features that differentiate it from other regulated cell death (RCD) types, which include apoptosis, various necrosis types, and autophagy. Recent reports show that ferritin formation is correlated to many disorders, such as acute injury, infarction, inflammation, and cancer. Iron uptake disorders have also been associated with intestinal epithelial dysfunction, particularly inflammatory bowel disease (IBD). Studies of iron uptake disorders may provide new insights into the pathogenesis of IBD, thereby improving the efficacy of medical interventions. This review presents an overview of ferroptosis, elucidating its fundamental mechanisms and highlighting its significant involvement in IBD.
Collapse
Affiliation(s)
- Hanhan Xie
- The Second Affiliated Hospital of Chengdu Medical College, China Nation Nuclear Corporation 416 Hospital, Chengdu, China
| | - Chun Cao
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Dan Shu
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| | - Tong Liu
- The Third Affiliated Hospital of Chengdu Medical College, Chengdu Pidu District People’s Hospital, Chengdu, China
| | - Tao Zhang
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| |
Collapse
|
31
|
Gwenzi T, Schrotz-King P, Anker SC, Schöttker B, Hoffmeister M, Brenner H. Prognostic value of post-operative iron biomarkers in colorectal cancer: population-based patient cohort. Br J Cancer 2024; 131:1195-1201. [PMID: 39191894 PMCID: PMC11442944 DOI: 10.1038/s41416-024-02814-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Post-operative anaemia is linked to iron deficiency. We investigated the prognostic value of post-operative iron biomarkers in colorectal cancer (CRC). METHODS Ferritin, transferrin, iron, and transferrin saturation (TS%) were measured from blood collected at a single time-point post-surgery in 2769 CRC patients. Associations between iron biomarkers with cancer-specific survival (CSS) and overall survival (OS) were assessed using Cox regression with hazard ratios (HR), stratified by post-operative time of blood collection (<1-month/≥1-month). RESULTS After a median follow-up of 9.5 years, 52.6% of patients had died. For iron biomarkers assessed <1-month post-surgery, higher compared to normal TS% was associated with shorter CSS (HR [95% CI] = 2.36 [1.25-4.46]), and higher iron levels with better OS (upper vs. median tertile: HR [95% CI] = 0.79 [0.65-0.97]). When assessed ≥1-month post-surgery, elevated ferritin was associated with poor CSS (high vs. normal: HR [95% CI] = 1.44 [1.10-1.87]), and low TS% with worse CSS (low vs. normal: HR [95% CI] = 1.60 [1.24-2.06]). Similar but weaker associations were observed for OS. CONCLUSION Monitoring of serum ferritin and TS% beyond 1-month post-surgery may be relevant for risk stratification of patients with operable CRC. Future studies should validate our findings.
Collapse
Grants
- The DACHS study was supported by the German Research Council (BR 1704/6-1, BR 1704/6-3, BR 1704/6-4, CH 117/1-1, HO 5117/2-1, HE 5998/2-1, KL 2354/3-1, RO 2270/8-1 and BR 1704/17-1), the Interdisciplinary Research Program of the National Center for Tumor Diseases (NCT), Germany, and the German Federal Ministry of Education and Research (01KH0404, 01ER0814, 01ER0815, 01ER1505A, 01ER1505B and 01KD2104A).
Collapse
Affiliation(s)
- Tafirenyika Gwenzi
- German Cancer Research Center (DKFZ) Heidelberg, Division of Preventive Oncology, Heidelberg, Germany
- Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Petra Schrotz-King
- German Cancer Research Center (DKFZ) Heidelberg, Division of Preventive Oncology, Heidelberg, Germany
| | - Sophie C Anker
- Department of Internal Medicine and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
| | - Ben Schöttker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Network Aging Research, Heidelberg University, Heidelberg, Germany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hermann Brenner
- German Cancer Research Center (DKFZ) Heidelberg, Division of Preventive Oncology, Heidelberg, Germany.
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Network Aging Research, Heidelberg University, Heidelberg, Germany.
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
32
|
Caverzan MD, Ibarra LE. Advancing glioblastoma treatment through iron metabolism: A focus on TfR1 and Ferroptosis innovations. Int J Biol Macromol 2024; 278:134777. [PMID: 39153669 DOI: 10.1016/j.ijbiomac.2024.134777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Glioblastoma (GBM) represents a formidable challenge in oncology, characterized by aggressive proliferation and poor prognosis. Iron metabolism plays a critical player in GBM progression, with dysregulated iron uptake and utilization contributing to tumor growth and therapeutic resistance. Iron's pivotal role in DNA synthesis, oxidative stress, and angiogenesis underscores its significance in GBM pathogenesis. Elevated expression of iron transporters, such as transferrin receptor 1 (TfR1), highlights the tumor's reliance on iron for survival. Innovative treatment strategies targeting iron dysregulation hold promise for overcoming therapeutic challenges in GBM management. Approaches such as iron chelation therapies, induction of ferroptosis to nanoparticle-based drug delivery systems exploit iron-dependent vulnerabilities, offering avenues for enhance treatment efficacy and improve patient outcomes. As research advances, understanding the complexities of iron-mediated carcinogenesis provides a foundation for developing precision medicine approaches tailored to combat GBM effectively. This review explores the intricate relationship between iron metabolism and GBM, elucidating its multifaceted implications and therapeutic opportunities. By consolidating the latest insights into iron metabolism in GBM, this review underscores its potential as a therapeutic target for improving patient care in combination with the standard of care approach.
Collapse
Affiliation(s)
- Matías D Caverzan
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Rio Cuarto (UNRC) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Cuarto X5800BIA, Argentina; Departamento de Patología Animal, Facultad de Agronomía y Veterinaria, Universidad Nacional de Rio Cuarto, Rio Cuarto X5800BIA, Argentina
| | - Luis E Ibarra
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, Universidad Nacional de Rio Cuarto, Rio Cuarto X5800BIA, Argentina; Instituto de Biotecnología Ambiental y Salud (INBIAS), Universidad Nacional de Rio Cuarto (UNRC) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rio Cuarto X5800BIA, Argentina.
| |
Collapse
|
33
|
Chai YM, Zhou ZB, Liu RZ, Cui YS, Zhang Y. SNX4 Is Correlated With Immune Infiltration and Prognosis in Clear Cell Renal Cell Carcinoma. World J Oncol 2024; 15:809-824. [PMID: 39328330 PMCID: PMC11424112 DOI: 10.14740/wjon1868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/18/2024] [Indexed: 09/28/2024] Open
Abstract
Background Clear cell renal cell carcinoma (ccRCC) is known as the most common and malignant histologic subtype of renal carcinoma. Sorting nexin 4 (SNX4) plays a regulatory role in recycling from endosomes to the plasma membrane and promotes autophagosome assembly and transport, which may exert the cancerous growth and progression. This study aimed to assess the biological role of SNX4 in ccRCC and their clinical association via public biological data platforms combined with experimental verification. Methods In our study, we analyzed the mRNA and protein expression of SNX4 in ccRCC under different clinicopathological characteristics through The Cancer Genome Atlas (TCGA), Human Protein Atlas (HPA) and Clinical Proteomic Tumor Analysis Consortium (CPTAC) databases. We used the Gene Expression Profiling Interactive Analysis (GEPIA) platform to conduct the survival analysis and figure out the immune cell infiltration level under different expression levels of SNX4 combined with Tumor Immune Estimation Resource (TIMER) database. Furthermore, we predicted competing endogenous RNA (ceRNA) regulatory network using TargetScan, miRDB, starBase and miRTarBase online databases. We totally collected six paired ccRCC tissues and adjacent tissues and applied quantitative real-time polymerase chain reaction (qRT-PCR) and western blot (WB) to detect the expression of SNX4 in the collected clinical specimens. Results The mRNA and protein expression level of SNX4 was significantly lower in ccRCC than those in normal tissues. The results proposed that lower SNX4 was expressed in patients with higher histologic grade and in male patients. Kaplan-Meier analysis demonstrated that lower mRNA expression level of SNX4 was correlated with poorer prognosis. SNX4 had positive correlation with immune cell infiltrating levels and programmed cell death-ligand 1 (PD-L1) expression. Furthermore, we constructed the SNX4/miR-221-3p/miR-222-3p/DHRS4-AS1 axis, which may be the underlying ceRNA interaction network. Finally, we verified the reduced expression of SNX4 in ccRCC by qRT-PCR and WB. Conclusion The expression of SNX4 in ccRCC was lower than adjacent tissues and its downregulated expression was associated with poor prognosis of ccRCC patients. SNX4 may exert critical roles in the tumorigenesis, development and migration of ccRCC via various mechanisms.
Collapse
Affiliation(s)
- Yu Meng Chai
- Department of Urology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- These authors contributed equally to this article
| | - Zhong Bao Zhou
- Department of Urology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- These authors contributed equally to this article
| | - Run Ze Liu
- Department of Urology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yuan Shan Cui
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Yong Zhang
- Department of Urology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| |
Collapse
|
34
|
Szupryczyński K, Czeleń P, Jeliński T, Szefler B. What is the Reason That the Pharmacological Future of Chemotherapeutics in the Treatment of Lung Cancer Could Be Most Closely Related to Nanostructures? Platinum Drugs in Therapy of Non-Small and Small Cell Lung Cancer and Their Unexpected, Possible Interactions. The Review. Int J Nanomedicine 2024; 19:9503-9547. [PMID: 39296940 PMCID: PMC11410046 DOI: 10.2147/ijn.s469217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/19/2024] [Indexed: 09/21/2024] Open
Abstract
Over the course of several decades, anticancer treatment with chemotherapy drugs for lung cancer has not changed significantly. Unfortunately, this treatment prolongs the patient's life only by a few months, causing many side effects in the human body. It has also been proven that drugs such as Cisplatin, Carboplatin, Oxaliplatin and others can react with other substances containing an aromatic ring in which the nitrogen atom has a free electron group in its structure. Thus, such structures may have a competitive effect on the nucleobases of DNA. Therefore, scientists are looking not only for new drugs, but also for new alternative ways of delivering the drug to the cancer site. Nanotechnology seems to be a great hope in this matter. Creating a new nanomedicine would reduce the dose of the drug to an absolute minimum, and thus limit the toxic effect of the drug; it would allow for the exclusion of interactions with competitive compounds with a structure similar to nucleobases; it would also permit using the so-called targeted treatment and bypassing healthy cells; it would allow for the introduction of other treatment options, such as radiotherapy directly to the cancer site; and it would provide diagnostic possibilities. This article is a review that aims to systematize the knowledge regarding the anticancer treatment of lung cancer, but not only. It shows the clear possibility of interactions of chemotherapeutics with compounds competitive to the nitrogenous bases of DNA. It also shows the possibilities of using nanostructures as potential Platinum drug carriers, and proves that nanomedicine can easily become a new medicinal product in personalized medicine.
Collapse
Affiliation(s)
- Kamil Szupryczyński
- Doctoral School of Medical and Health Sciences, Faculty of Pharmacy, Collegium Medicum, Nicolaus, Copernicus University, Bydgoszcz, Poland
| | - Przemysław Czeleń
- Department of Physical Chemistry, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Tomasz Jeliński
- Department of Physical Chemistry, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Beata Szefler
- Department of Physical Chemistry, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| |
Collapse
|
35
|
Leandri R, Power K, Buonocore S, De Vico G. Preliminary Evidence of the Possible Roles of the Ferritinophagy-Iron Uptake Axis in Canine Testicular Cancer. Animals (Basel) 2024; 14:2619. [PMID: 39272404 PMCID: PMC11394645 DOI: 10.3390/ani14172619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
Iron is a key element in spermatogenesis; its metabolic pathway in the testis is strictly regulated. Alterations in iron metabolism are linked to various diseases, including cancer, and changes in iron metabolism-related proteins have been observed in multiple human, mouse and canine tumors. There is limited knowledge about iron metabolism in canine non-neoplastic and neoplastic testes. This study aimed to explore the immunohistochemical expression of molecules involved in iron uptake and storage [Transferrin Receptor 1 (TfR1), ferritin (FTH1), nuclear receptor coactivator 4 (NCOA4)] and PCNA in canine non-neoplastic and neoplastic testicular samples. Non-neoplastic testes showed moderate TfR1 expression in developing germ cells and Sertoli cells, high NCOA4 cytoplasmic immunostaining in the Sertoli cells and occasional cytoplasmic immunopositivity for FTH1 in the spermatogonia and Sertoli cells. In contrast, Leydig cell tumors (LCTs) and Diffuse Type Seminoma (DSEM) exhibited increased expression of TfR1, along with higher PCNA expression, suggesting a higher iron need for proliferation. Intratubular Type Seminoma (ITSEM) showed a higher FTH1 expression, indicating greater iron storage, while the increased NCOA4 expression in the LCTs and DSEM suggested ferritinophagy to release iron for proliferation. Sertoli cell tumors (SCTs) showed only NCOA4 expression. These preliminary findings highlight potential molecular targets for developing new anti-neoplastic treatments in canine testicular tumors.
Collapse
Affiliation(s)
- Rebecca Leandri
- Department of Biology, University of Naples 'Federico II', Via Vicinale Cupa Cinthia 21, 80216 Napoli, Italy
| | - Karen Power
- Department of Biology, University of Naples 'Federico II', Via Vicinale Cupa Cinthia 21, 80216 Napoli, Italy
| | - Sara Buonocore
- Department of Biology, University of Naples 'Federico II', Via Vicinale Cupa Cinthia 21, 80216 Napoli, Italy
| | - Gionata De Vico
- Department of Biology, University of Naples 'Federico II', Via Vicinale Cupa Cinthia 21, 80216 Napoli, Italy
| |
Collapse
|
36
|
Wen Y, Lei W, Zhang J, Liu Q, Li Z. Advances in understanding the role of lncRNA in ferroptosis. PeerJ 2024; 12:e17933. [PMID: 39210921 PMCID: PMC11361268 DOI: 10.7717/peerj.17933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
LncRNA is a type of transcript with a length exceeding 200 nucleotides, which was once considered junk transcript with no biological function during the transcription process. In recent years, lncRNA has been shown to act as an important regulatory factor at multiple levels of gene expression, affecting various programmed cell death modes including ferroptosis. Ferroptosis, as a new form of programmed cell death, is characterized by a deficiency of cysteine or inactivation of glutathione peroxidase, leading to depletion of glutathione, aggregation of iron ions, and lipid peroxidation. These processes are influenced by many physiological processes, such as the Nrf2 pathway, autophagy, p53 pathway and so on. An increasing number of studies have shown that lncRNA can block the expression of specific molecules through decoy effect, guide specific proteins to function, or promote interactions between molecules as scaffolds. These modes of action regulate the expression of key factors in iron metabolism, lipid metabolism, and antioxidant metabolism through epigenetic or genetic regulation, thereby regulating the process of ferroptosis. In this review, we snapshotted the regulatory mechanism of ferroptosis as an example, emphasizing the regulation of lncRNA on these pathways, thereby helping to fully understand the evolution of ferroptosis in cell fate.
Collapse
Affiliation(s)
- Yating Wen
- Pathogenic Biology Institute, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Wenbo Lei
- Pathogenic Biology Institute, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Jie Zhang
- Pathogenic Biology Institute, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Qiong Liu
- Pathogenic Biology Institute, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Zhongyu Li
- Pathogenic Biology Institute, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| |
Collapse
|
37
|
Roufosse B, Serbu C, Marschner C, Prince S, Blom B. Homo and heteromultimetallic complexes containing a group 8 transition metal and μ-diphosphine bridging ligands involved in anticancer research: A review. Eur J Med Chem 2024; 274:116528. [PMID: 38805938 DOI: 10.1016/j.ejmech.2024.116528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024]
Abstract
Herein, we present a comprehensive review focusing on synthetic strategies, detailed structural analysis, and anticancer activity investigations of complexes following the general formula [LnM(μ-diphosphine)M'Lm] where M = group 8 metal; M' = any transition metal; μ-diphosphine = bridging ligand; Ln and Lm = ligand spheres). Both homo- and heteromultimetallic complexes will be discussed in detail. We review in vitro, in vivo and in silico anticancer activity investigations, in an attempt to draw comparisons between the various complexes and derive structure-activity relationships (SAR). This review solely focuses on complexes falling under the general formula stated above that have been studied for their anticancer activities, other complexes falling into that scheme but which have not undergone anticancer testing are not included in this review. We compare the anticancer activities of these complexes to their mononuclear counterparts, and a positive control (cisplatin) when possible and present a summary of all existing data to date and attempt to draw some conclusions on the future development of these complexes.
Collapse
Affiliation(s)
- Basile Roufosse
- Maastricht Science Programme, Faculty of Science and Engineering, Maastricht University, Paul-Henri Spaaklaan 1, 6229 EN, Maastricht, the Netherlands
| | - Christi Serbu
- Maastricht Science Programme, Faculty of Science and Engineering, Maastricht University, Paul-Henri Spaaklaan 1, 6229 EN, Maastricht, the Netherlands
| | - Christoph Marschner
- Institut für Anorganische Chemie, Technische Universität Graz, Stremayrgasse 9, A-8010, Graz, Austria
| | - Sharon Prince
- Department of Human Biology, University of Cape Town, Observatory, 7925, South Africa
| | - Burgert Blom
- Maastricht Science Programme, Faculty of Science and Engineering, Maastricht University, Paul-Henri Spaaklaan 1, 6229 EN, Maastricht, the Netherlands.
| |
Collapse
|
38
|
Qin J, Li Z, Su L, Wen X, Tang X, Huang M, Wu J. Expression of transferrin receptor/TFRC protein in bladder cancer cell T24 and its role in inducing iron death in bladder cancer. Int J Biol Macromol 2024; 274:133323. [PMID: 38908617 DOI: 10.1016/j.ijbiomac.2024.133323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/06/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Bladder cancer (BC) is a very common malignant tumor in the urinary system. However, the incidence rate, recurrence rate, progression rate and metastasis rate of bladder cancer are still very high, leading to poor long-term prognosis of patients. This study was to investigate the expression of transferrin receptor/TFRC protein in bladder cancer tissue and its role in inducing iron death of T24 human bladder cancer cells. Based on the intersection of 259 FerrDb genes in the iron death database with GSE13507 and GSE13167 data sets, 54 genes related to iron death in bladder cancer were obtained. Analyzing 54 genes, KEGG enrichment analysis showed that the pathways involved were mainly focused on iron death, autophagy, and tumor center carbon metabolism. GO analysis found that the molecular functions mainly gather in ubiquitin like protein ligase binding, ubiquitin protein ligase binding, and antioxidant activity. In the cellular components, it is mainly distributed in pigment granules, melanosomes, and the basal lateral plasma membrane. In biological processes, it is enriched in nutrient level responses, responses to extracellular stimuli, and cellular redox homeostasis. Screen out the top 10 core genes. The 10 core genes are SLC2A1, TFRC, EGFR, KRAS, CAV1, HSPA5, NFE2L2, VEGFA, PIK3CA, and HRAS. Finally, TFRC was selected as the research object. TCGA analysis showed that the expression level in bladder cancer tissue was higher than that in normal tissue, and the difference was statistically significant (P < 0.001). Conclusion (1) TFRC is highly expressed in many kinds of tumors, and it is more highly expressed in bladder cancer than in normal bladder tissue. (2) TFRC has certain diagnostic and prognostic value in bladder cancer. (3) Erastin, an iron death inducer, induced the iron death of T24 human bladder cancer cells, knocked down the expression of TFRC in T24 human bladder cancer cells, and preliminarily verified that silencing TFRC could inhibit the iron death of T24 human bladder cancer cells.
Collapse
Affiliation(s)
- Junkai Qin
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Zhidan Li
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Lize Su
- Department of Urology, Baidong Hospital, Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, Guangxi 533000, China
| | - Xilin Wen
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Xingzhi Tang
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Minyu Huang
- Department of Urology, Baidong Hospital, Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, Guangxi 533000, China.
| | - Jun Wu
- Department of Urology, Baidong Hospital, Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, Guangxi 533000, China.
| |
Collapse
|
39
|
Pan B, Kang J, Zheng R, Wei C, Zhi Y. Molecular mechanism of ferroptosis and its application in the treatment of clear cell renal cell carcinoma. Pathol Res Pract 2024; 260:155324. [PMID: 38905897 DOI: 10.1016/j.prp.2024.155324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 06/23/2024]
Abstract
Clear cell renal cell carcinoma (ccRCC) is a common malignant tumor of the urinary tract, the incidence of which is continuously increasing and affects human health worldwide. Despite advances in existing treatments, treatment outcomes still need to be improved due to higher rates of postoperative recurrence, chemotherapy resistance, etc.; thus, there is an urgent need for innovative therapeutic approaches. Ferroptosis is a recently found type of regulated cell death that is characterized primarily by the buildup of lipid peroxidation products and fatal reactive oxygen species created by iron metabolism, which plays a crucial role in tumor progression and therapy.With the molecular mechanisms associated with ferroptosis being increasingly studied and refined, triggering ferroptosis by regulators that target ferroptosis and ccRCC may be the key to developing potential therapeutic strategies for ccRCC. Therefore, ferroptosis is expected to be a new breakthrough in treating ccRCC. This paper examines the mechanism of ferroptosis, the regulatory mechanism of ferroptosis in ccRCC, and the potential application of ferroptosis in combination with other therapies for the treatment of ccRCC. The goal is to offer novel perspectives for the research and clinical application of ferroptosis in the treatment of ccRCC.
Collapse
Affiliation(s)
- Beifen Pan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiali Kang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Rongxin Zheng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Cuiping Wei
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yong Zhi
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| |
Collapse
|
40
|
Panwar A, Lye A, Musib D, Upadhyay A, Karankumar I, Devi PB, Pal M, Maity B, Roy M. Strategic design and development of a siderophore mimic: pioneering anticancer therapy via ROS generation and ferroptosis. Dalton Trans 2024; 53:12119-12127. [PMID: 38979715 DOI: 10.1039/d4dt01461h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
We designed a tris-catecholate-based siderophore mimic, H6-T-CATL, to selectively chelate iron(III) from mitochondrial cytochromes and other iron-containing proteins within cellular matrices. This strategic sequestration aims to trigger apoptosis or ferroptosis in cancer cells through the glutathione (GSH)-dependent release of reduced iron and subsequent ROS-mediated cytotoxicity. Synthesis of H6-T-CATL involved precise peptide coupling reactions. Using the Fe(III)-porphyrin model (Fe-TPP-Cl), akin to cytochrome c, we studied H6-T-CATL's ability to extract iron(III), yielding a binding constant (Krel) of 1014 for the resulting iron(III) complex (FeIII-T-CATL)3-. This complex readily underwent GSH-mediated reduction to release bioavailable iron(II), which catalyzed Fenton-like reactions generating hydroxyl radicals (˙OH), confirmed by spectroscopic analyses. Our research underscores the potential of H6-T-CATL to induce cancer cell death by depleting iron(III) from cellular metalloproteins, releasing pro-apoptotic iron(II). Evaluation across various cancer types, including normal cells, demonstrated H6-T-CATL's cytotoxicity through ROS production, mitochondrial dysfunction, and activation of ferroptosis and DNA damage pathways. These findings propose a novel mechanism for cancer therapy, leveraging endogenous iron stores within cells. H6-T-CATL emerges as a promising next-generation anticancer agent, exploiting iron metabolism vulnerabilities to induce selective cancer cell death through ferroptosis induction.
Collapse
Affiliation(s)
- Abhishek Panwar
- Department of Chemistry, National Institute of Technology Manipur, Langol, Imphal West, 795004, Manipur, India.
| | - Anushree Lye
- Department of Systems Biology, Center of Biomedical Research (CBMR), Raebareli Road, Lucknow 226014, Uttar Pradesh, India.
| | - Dulal Musib
- Department of Chemistry, National Institute of Technology Manipur, Langol, Imphal West, 795004, Manipur, India.
| | - Aarti Upadhyay
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore, Bangalore-50012, Karnataka, India
| | - Irungbam Karankumar
- Department of Chemistry, National Institute of Technology Manipur, Langol, Imphal West, 795004, Manipur, India.
| | - Paonam Bebika Devi
- Department of Chemistry, National Institute of Technology Manipur, Langol, Imphal West, 795004, Manipur, India.
| | - Maynak Pal
- Department of Chemistry, National Institute of Technology Manipur, Langol, Imphal West, 795004, Manipur, India.
| | - Biswanath Maity
- Department of Systems Biology, Center of Biomedical Research (CBMR), Raebareli Road, Lucknow 226014, Uttar Pradesh, India.
- Department of Biological Sciences, Bose Institute Unified Academic Campus, EN80, Sector V, Bidhan Nagar, Kolkata - 700091, West Bengal, India
| | - Mithun Roy
- Department of Chemistry, National Institute of Technology Manipur, Langol, Imphal West, 795004, Manipur, India.
- Department of Chemistry, National Institute of Technology Agartala, Jirania, West Tripura, Agartala, 799046, India
| |
Collapse
|
41
|
Zhang J, Zhang S, Liu M, Yang Z, Huang R. Research Progress on Ferroptosis and Nanotechnology-Based Treatment in Triple-Negative Breast Cancer. BREAST CANCER (DOVE MEDICAL PRESS) 2024; 16:347-358. [PMID: 39050766 PMCID: PMC11268712 DOI: 10.2147/bctt.s475199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024]
Abstract
In recent years, more and more researches on cell death mode in breast cancer, including apoptosis, ferroptosis, etc. Ferroptosisis a regulated form of cell death characterized by iron-dependent accumulation of lipid peroxidation to lethal levels, and numerous studies have shown that ferroptosis is closely associated with tumor cells. Breast cancer is one of the malignant tumors with the highest incidence in women, and TNBC accounts for about 15-20% of all types of breast cancer. Due to the poor prognosis, strong aggressiveness, high drug resistance and lack of molecular targeting characteristics of TNBC, the treatment of TNBC faces many difficulties and great challenges. A large number of studies have shown that ferroptosis plays an important role in the occurrence and development of TNBC, tumor diagnosis, treatment and prognosis, among which the main mechanisms inducing ferroptosis include oxidative stress pathway, iron metabolism pathway and lipid metabolism pathway. Since TNBC is highly sensitive to oxidative stress pathways, intracellular GSH reduces reactive oxygen species under the action of GSH peroxidase (GPX), and when intracellular lipid peroxidase (LPO) accumulates to a certain level, ferroptosis will be induced, thus achieving the purpose of killing TNBC cells. In addition, lipid metabolism is highly consistent with the high lipid level of TNBC tumor cells. As a new therapeutic method, nanotechnology has added security to the treatment of cancer with its high safety and excellent biocompatibility. Therefore, the combination of nanotechnology with iron-based radiotherapy, chemotherapy, targeting and immunization has great research value for the treatment of TNBC In addition, the novel idea of treating TNBC with ethnopharmacology combined with ferroptosis is also involved. This article reviews the mechanism of ferroptosis and the recent research on the treatment prospects of TNBC based on ferroptosis and nanotechnology, hoping to provide references for the treatment of diseases based on ferroptosis.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Medical College of Yan’an University, Yan ‘an, People’s Republic of China
| | - Shengjun Zhang
- Department of General Surgery, Affiliated Hospital of Yan ‘an University, Yan ‘an, People’s Republic of China
| | - Minli Liu
- Department of Medical College of Yan’an University, Yan ‘an, People’s Republic of China
| | - Zhe Yang
- Department of Medical College of Yan’an University, Yan ‘an, People’s Republic of China
| | - Rong Huang
- Department of Medical College of Yan’an University, Yan ‘an, People’s Republic of China
| |
Collapse
|
42
|
Pezacki AT, Gonciarz RL, Okamura T, Matier CD, Torrente L, Cheng K, Miller SG, Ralle M, Ward NP, DeNicola GM, Renslo AR, Chang CJ. A tandem activity-based sensing and labeling strategy reveals antioxidant response element regulation of labile iron pools. Proc Natl Acad Sci U S A 2024; 121:e2401579121. [PMID: 38968123 PMCID: PMC11252945 DOI: 10.1073/pnas.2401579121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/29/2024] [Indexed: 07/07/2024] Open
Abstract
Iron is an essential element for life owing to its ability to participate in a diverse array of oxidation-reduction reactions. However, misregulation of iron-dependent redox cycling can also produce oxidative stress, contributing to cell growth, proliferation, and death pathways underlying aging, cancer, neurodegeneration, and metabolic diseases. Fluorescent probes that selectively monitor loosely bound Fe(II) ions, termed the labile iron pool, are potentially powerful tools for studies of this metal nutrient; however, the dynamic spatiotemporal nature and potent fluorescence quenching capacity of these bioavailable metal stores pose challenges for their detection. Here, we report a tandem activity-based sensing and labeling strategy that enables imaging of labile iron pools in live cells through enhancement in cellular retention. Iron green-1 fluoromethyl (IG1-FM) reacts selectively with Fe(II) using an endoperoxide trigger to release a quinone methide dye for subsequent attachment to proximal biological nucleophiles, providing a permanent fluorescent stain at sites of elevated labile iron. IG1-FM imaging reveals that degradation of the major iron storage protein ferritin through ferritinophagy expands the labile iron pool, while activation of nuclear factor-erythroid 2-related factor 2 (NRF2) antioxidant response elements (AREs) depletes it. We further show that lung cancer cells with heightened NRF2 activation, and thus lower basal labile iron, have reduced viability when treated with an iron chelator. By connecting labile iron pools and NRF2-ARE activity to a druggable metal-dependent vulnerability in cancer, this work provides a starting point for broader investigations into the roles of transition metal and antioxidant signaling pathways in health and disease.
Collapse
Affiliation(s)
- Aidan T. Pezacki
- Department of Chemistry, University of California, Berkeley, CA94720
| | - Ryan L. Gonciarz
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA94158
| | - Toshitaka Okamura
- Department of Chemistry, University of California, Berkeley, CA94720
| | - Carson D. Matier
- Department of Chemistry, University of California, Berkeley, CA94720
| | - Laura Torrente
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL33612
| | - Ke Cheng
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA94158
| | - Sophia G. Miller
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR97239
| | - Martina Ralle
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR97239
| | - Nathan P. Ward
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL33612
| | - Gina M. DeNicola
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL33612
| | - Adam R. Renslo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA94158
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA94158
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, CA94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA94720
| |
Collapse
|
43
|
Kciuk M, Gielecińska A, Kałuzińska-Kołat Ż, Yahya EB, Kontek R. Ferroptosis and cuproptosis: Metal-dependent cell death pathways activated in response to classical chemotherapy - Significance for cancer treatment? Biochim Biophys Acta Rev Cancer 2024; 1879:189124. [PMID: 38801962 DOI: 10.1016/j.bbcan.2024.189124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Apoptosis has traditionally been regarded as the desired cell death pathway activated by chemotherapeutic drugs due to its controlled and non-inflammatory nature. However, recent discoveries of alternative cell death pathways have paved the way for immune-stimulatory treatment approaches in cancer. Ferroptosis (dependent on iron) and cuproptosis (dependent on copper) hold promise for selective cancer cell targeting and overcoming drug resistance. Copper ionophores and iron-bearing nano-drugs show potential for clinical therapy as single agents and as adjuvant treatments. Here we review up-to-date evidence for the involvement of metal ion-dependent cell death pathways in the cytotoxicity of classical chemotherapeutic agents (alkylating agents, topoisomerase inhibitors, antimetabolites, and mitotic spindle inhibitors) and their combinations with cuproptosis and ferroptosis inducers, indicating the prospects, advantages, and obstacles of their use.
Collapse
Affiliation(s)
- M Kciuk
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Molecular Biotechnology and Genetics, Banacha St. 12/16, 90-237 Lodz, Poland.
| | - A Gielecińska
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Molecular Biotechnology and Genetics, Banacha St. 12/16, 90-237 Lodz, Poland; University of Lodz, Doctoral School of Exact and Natural Sciences, Banacha Street 12/16, 90-237 Lodz, Poland
| | - Ż Kałuzińska-Kołat
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
| | - E B Yahya
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - R Kontek
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Molecular Biotechnology and Genetics, Banacha St. 12/16, 90-237 Lodz, Poland
| |
Collapse
|
44
|
Gao GB, Chen L, Pan JF, Lei T, Cai X, Hao Z, Wang Q, Shan G, Li J. LncRNA RGMB-AS1 inhibits HMOX1 ubiquitination and NAA10 activation to induce ferroptosis in non-small cell lung cancer. Cancer Lett 2024; 590:216826. [PMID: 38574881 DOI: 10.1016/j.canlet.2024.216826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 04/06/2024]
Abstract
Ferroptosis, an iron-dependent regulated cell death caused by excessive lipid peroxide accumulation, has emerged as a promising therapeutic target in various cancers, including non-small cell lung cancer (NSCLC). In this study, we identified the long non-coding RNA RGMB-AS1 as a key regulator of ferroptosis in NSCLC. Mechanistically, RGMB-AS1 interacted with heme oxygenase 1 (HMOX1) and prevented its ubiquitination by the E3 ligase TRC8, leading to increased HMOX1 stability and enhanced ferroptosis. Additionally, RGMB-AS1 bound to the 82-87 amino acid region of N-alpha-acetyltransferase 10 (NAA10), stimulating its acetyltransferase activity and promoting the conversion of acetyl-CoA to HMG-CoA, further contributing to ferroptosis. The RGMB-AS1-HMOX1 and RGMB-AS1-NAA10 axes synergistically inhibited NSCLC growth both in vitro and in vivo. Clinically, low RGMB-AS1 expression was associated with advanced tumor stage and poor overall survival in NSCLC patients. Furthermore, adeno-associated virus-mediated RGMB-AS1 overexpression significantly suppressed tumor growth in mouse xenograft models. Our findings uncover a novel lncRNA-mediated regulatory mechanism of ferroptosis and highlight the potential of RGMB-AS1 as a prognostic biomarker and therapeutic target in NSCLC.
Collapse
Affiliation(s)
- Gui-Bin Gao
- The Key Laboratory of Advanced Interdisciplinary Studies, The State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510530, China
| | - Liang Chen
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Jia-Feng Pan
- The Key Laboratory of Advanced Interdisciplinary Studies, The State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510530, China
| | - Tao Lei
- The Key Laboratory of Advanced Interdisciplinary Studies, The State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510530, China
| | - Xin Cai
- The Key Laboratory of Advanced Interdisciplinary Studies, The State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510530, China
| | - Zhexue Hao
- Department of Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510530, China
| | - Qi Wang
- The Key Laboratory of Advanced Interdisciplinary Studies, The State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510530, China
| | - Ge Shan
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Science, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Jin Li
- The Key Laboratory of Advanced Interdisciplinary Studies, The State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510530, China; Department of Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510530, China; The People's Hospital of Anshun City, Anshun, Guizhou, 561000, China.
| |
Collapse
|
45
|
Nechushtai R, Rowland L, Karmi O, Marjault HB, Nguyen TT, Mittal S, Ahmed RS, Grant D, Manrique-Acevedo C, Morcos F, Onuchic JN, Mittler R. CISD3/MiNT is required for complex I function, mitochondrial integrity, and skeletal muscle maintenance. Proc Natl Acad Sci U S A 2024; 121:e2405123121. [PMID: 38781208 PMCID: PMC11145280 DOI: 10.1073/pnas.2405123121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Mitochondria play a central role in muscle metabolism and function. A unique family of iron-sulfur proteins, termed CDGSH Iron Sulfur Domain-containing (CISD/NEET) proteins, support mitochondrial function in skeletal muscles. The abundance of these proteins declines during aging leading to muscle degeneration. Although the function of the outer mitochondrial CISD/NEET proteins, CISD1/mitoNEET and CISD2/NAF-1, has been defined in skeletal muscle cells, the role of the inner mitochondrial CISD protein, CISD3/MiNT, is currently unknown. Here, we show that CISD3 deficiency in mice results in muscle atrophy that shares proteomic features with Duchenne muscular dystrophy. We further reveal that CISD3 deficiency impairs the function and structure of skeletal muscles, as well as their mitochondria, and that CISD3 interacts with, and donates its [2Fe-2S] clusters to, complex I respiratory chain subunit NADH Ubiquinone Oxidoreductase Core Subunit V2 (NDUFV2). Using coevolutionary and structural computational tools, we model a CISD3-NDUFV2 complex with proximal coevolving residue interactions conducive of [2Fe-2S] cluster transfer reactions, placing the clusters of the two proteins 10 to 16 Å apart. Taken together, our findings reveal that CISD3/MiNT is important for supporting the biogenesis and function of complex I, essential for muscle maintenance and function. Interventions that target CISD3 could therefore impact different muscle degeneration syndromes, aging, and related conditions.
Collapse
Affiliation(s)
- Rachel Nechushtai
- Plant & Environmental Sciences, The Alexander Silberman Institute of Life Science and The Wolfson Centre for Applied Structural Biology, Faculty of Science and Mathematics, The Edmond J. Safra Campus at Givat Ram, The Hebrew University of Jerusalem, Jerusalem91904, Israel
| | - Linda Rowland
- Department of Surgery, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO65201
| | - Ola Karmi
- Plant & Environmental Sciences, The Alexander Silberman Institute of Life Science and The Wolfson Centre for Applied Structural Biology, Faculty of Science and Mathematics, The Edmond J. Safra Campus at Givat Ram, The Hebrew University of Jerusalem, Jerusalem91904, Israel
| | - Henri-Baptiste Marjault
- Department of Surgery, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO65201
| | - Thi Thao Nguyen
- Gehrke Proteomics Center, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO65211
| | - Shubham Mittal
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX75080
| | - Raheel S. Ahmed
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX75080
| | - DeAna Grant
- Electron Microscopy Core Facility, University of Missouri, NextGen Precision Health Institute, Columbia, MO65211
| | - Camila Manrique-Acevedo
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, MO 65201
- NextGen Precision Health, University of Missouri, Columbia, MO 65201
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65201
| | - Faruck Morcos
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX75080
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX75080
- Department of Physics, University of Texas at Dallas, Richardson, TX75080
- Center for Systems Biology, University of Texas at Dallas, Richardson, TX75080
| | - José N. Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX77005
- Department of Physics and Astronomy, Rice University, Houston, TX77005
- Department of Chemistry, Rice University, Houston, TX77005
- Department of Biosciences, Rice University, Houston, TX77005
| | - Ron Mittler
- Department of Surgery, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO65201
| |
Collapse
|
46
|
Song K, Liu X, Xu H, Li M, Zheng Q, Qi C, Wang X, Liu Y, Zheng P, Liu J. Cr(VI) induces ferroptosis in DF-1 cells by simultaneously perturbing iron homeostasis of ferritinophagy and mitophagy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171818. [PMID: 38508245 DOI: 10.1016/j.scitotenv.2024.171818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/14/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
Hexavalent chromium [Cr(VI)] is an environmental pollutant known for its strong oxidizing and carcinogenic effects. However, its potential to induce ferroptosis in poultry remains poorly understood. This study aims to investigate the induction of ferroptosis by Cr(VI) in DF-1 cells and elucidate the underlying mechanisms. DF-1 cells exposed to Cr(VI) showed increased lipid reactive oxygen species and changes in ferroptosis marker genes (decreased expression of GPX4 and increased expression of COX2). Notably, the addition of the ferroptosis-specific inhibitor ferrostatin-1 (Fer-1) can reverse this effect. During the cell death process, Cr(VI) induced ferritinophagy, disrupting iron homeostasis and releasing labile iron ions. We predicted by docking that these iron ions would bind to mitochondrial membrane proteins through virtual docking. This binding was validated through colocalization analysis. In addition, Cr(VI) caused mitophagy, which releases additional ferrous ions. Therefore, Cr(VI) can induce the simultaneous release of ferrous ions through these pathways, thereby exacerbating lipid peroxidation and ultimately triggering ferroptosis in DF-1 cells. This study demonstrates that Cr(VI) can induce ferroptosis in DF-1 cells by disrupting intracellular iron homeostasis and providing valuable insights into the toxic effects of Cr(VI) in poultry and potentially other organisms.
Collapse
Affiliation(s)
- Kaimin Song
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Xiaoting Liu
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Huiling Xu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Muzi Li
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Qi Zheng
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Changxi Qi
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Xiaozhou Wang
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yongxia Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Pimiao Zheng
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Jianzhu Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| |
Collapse
|
47
|
Ma W, Hu N, Xu W, Zhao L, Tian C, Kamei KI. Ferroptosis inducers: A new frontier in cancer therapy. Bioorg Chem 2024; 146:107331. [PMID: 38579614 DOI: 10.1016/j.bioorg.2024.107331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Ferroptosis represents a non-apoptotic form of programmed cell death characterized by iron-dependent lipid peroxidation. This cell death modality not only facilitates the direct elimination of cancer cells, but also enhances their susceptibility to other pharmacological anti-cancer agents. The burgeoning interest in ferroptosis has been driven by a growing body of evidence that underscores the efficiency and minimal toxicity of ferroptosis inducers. Traditional inducers, such as erastin and RSL3 have shown substantial promise in clinical applications due to their potent therapeutic effects. Their significant potential of these inducers has spurred the development of a variety of small molecule ferroptosis inducers. These novel inducers boast an enhanced structural variety, improved metabolic stability, the capability to initiate ferroptosis without triggering apoptosis, making them well-suited for in vivo use. Despite these advancements, challenges still remain, particularly concerning the drug delivery, tumor specificity, and circulation duration of these small molecules in vivo. Addressing these challenges, contemporary research has pivoted towards innovative delivery systems tailored for ferroptosis inducers to facilitate precise, targeted, and synegestic therapeutic delivery. This review scrutinizes the latest progress in small molecule ferroptosis inducers and nano drug delivery systems geared towards ferroptosis sensitization. Furthermore, it delineated the prospective therapeutic advantages and the existing hurdles in the development of ferroptosis inducers for malignant tumor treatment.
Collapse
Affiliation(s)
- Wenjing Ma
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Naiyuan Hu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Wenqian Xu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Linxi Zhao
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Chutong Tian
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China; Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, Hangzhou 310058, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China.
| | - Ken-Ichiro Kamei
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan; Program of Biology, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates; Program of Bioengineering, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates; Department of Biomedical Engineering, Tandon School of Engineering, New York University, MetroTech, Brooklyn, NY 11201, United States.
| |
Collapse
|
48
|
Chen J, Wang Z, Fu J, Cai Y, Cheng H, Cui X, Sun M, Liu M, Zhang X. Ginsenoside compound K induces ferroptosis via the FOXO pathway in liver cancer cells. BMC Complement Med Ther 2024; 24:174. [PMID: 38664638 PMCID: PMC11044296 DOI: 10.1186/s12906-024-04471-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Liver cancer is a common malignant tumor worldwide, traditional Chinese medicine is one of the treatment measures for liver cancer because of its good anti-tumor effects and fewer toxic side effects. Ginsenoside CK (CK) is an active component of ginseng. This study explored the mechanism by which CK induced ferroptosis in liver cancer cells. We found that CK inhibited the proliferation of HepG2 and SK-Hep-1 cells, induced ferroptosis of cells. Ferrostatin-1, an ferroptosis inhibitor, was used to verify the role of CK in inducing ferroptosis of liver cancer cells. Network pharmacological analysis identified the FOXO pathway as a potential mechanism of CK, and western blot showed that CK inhibited p-FOXO1. In cells treated with the FOXO1 inhibitor AS1842856, further verify the involvement of the FOXO pathway in regulating CK-induced ferroptosis in HepG2 and SK-Hep-1 cells. A HepG2 cell-transplanted tumor model was established in nude mice, and CK inhibited the growth of transplanted tumors in nude mice, p-FOXO1 was decreased in tumor tissues, and SLC7A11 and GPX4 expressions were also down-regulated after CK treatment. These findings suggested that CK induces ferroptosis in liver cancer cells by inhibiting FOXO1 phosphorylation and activating the FOXO signaling pathway, thus playing an antitumor role.
Collapse
Affiliation(s)
- Jiaxin Chen
- College of Medicine, Yanbian University, Yanji, China
| | - Zhuoshi Wang
- College of Medicine, Yanbian University, Yanji, China
| | - Jinghao Fu
- College of Medicine, Yanbian University, Yanji, China
| | - Yuesong Cai
- College of Medicine, Yanbian University, Yanji, China
| | - Haoyi Cheng
- College of Medicine, Yanbian University, Yanji, China
| | - Xinmu Cui
- College of Medicine, Yanbian University, Yanji, China
| | - Manqing Sun
- College of Medicine, Yanbian University, Yanji, China
| | - Mingyue Liu
- College of Medicine, Yanbian University, Yanji, China
| | - Xuewu Zhang
- College of Medicine, Yanbian University, Yanji, China.
| |
Collapse
|
49
|
Zhang M, Yao X, Xu J, Song J, Mai S, Zhu W, Zhang Y, Zhu L, Yang W. Biodegradable zwitterionic polymer-cloaked defective metal-organic frameworks for ferroptosis-inducing cancer therapy. Int J Pharm 2024; 655:124032. [PMID: 38521374 DOI: 10.1016/j.ijpharm.2024.124032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/26/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Ferroptosis inhibits tumor growth by iron-dependently accumulating lipid peroxides (LPO) to a lethal extent, which can result from iron overload and glutathione peroxidase 4 (GPX4) inactivation. In this study, we developed biodegradable zwitterionic polymer-cloaked atorvastatin (ATV)-loaded ferric metal-organic frameworks (Fe-MOFs) for cancer treatment. Fe-MOFs served as nanoplatforms to co-deliver ferrous ions and ATV to cancer cells; the zwitterionic polymer membrane extended the circulation time of the nanoparticles and increased their accumulation at tumor sites. In cancer cells, the structure of the Fe-MOFs collapsed in the presence of glutathione (GSH), leading to the depletion of GSH and the release of ATV and Fe2+. The released ATV decreased mevalonate biosynthesis and GSH, resulting in GPX4 attenuation. A large number of reactive oxygen species were generated by the Fe2+-triggered Fenton reaction. This synergistic effect ultimately contributed to a lethal accumulation of LPO, causing cancer cell death. The findings both in vitro and in vivo suggested that this ferroptosis-inducing nanoplatform exhibited enhanced anticancer efficacy and preferable biocompatibility, which could provide a feasible strategy for anticancer therapy.
Collapse
Affiliation(s)
- Minghua Zhang
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, 220 Handan Road, Shanghai 200433, PR China
| | - Xianxian Yao
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, 220 Handan Road, Shanghai 200433, PR China
| | - Jian Xu
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, 220 Handan Road, Shanghai 200433, PR China
| | - Jiaying Song
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, 220 Handan Road, Shanghai 200433, PR China
| | - Shuting Mai
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, 220 Handan Road, Shanghai 200433, PR China
| | - Weichu Zhu
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, 220 Handan Road, Shanghai 200433, PR China
| | - Yichen Zhang
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, 220 Handan Road, Shanghai 200433, PR China
| | - Liangliang Zhu
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, 220 Handan Road, Shanghai 200433, PR China
| | - Wuli Yang
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, 220 Handan Road, Shanghai 200433, PR China.
| |
Collapse
|
50
|
Wang L, Zhao S, Wang Y, Liu J, Wang X. UBE2C promotes the proliferation of acute myeloid leukemia cells through PI3K/AKT activation. BMC Cancer 2024; 24:497. [PMID: 38637730 PMCID: PMC11027220 DOI: 10.1186/s12885-024-12212-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/01/2024] [Indexed: 04/20/2024] Open
Abstract
This study aims to investigate the role and mechanism of tubiquitin-conjugating enzyme E2 C (UBE2C) in acute myeloid leukemia (AML). Initially, UBE2C expression in leukemia was analyzed using the Cancer Genome Atlas database. Further, we silenced UBE2C expression using small-hairpin RNA (sh-RNA). UBE2C expression was detected via the quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) and Western blot analysis. Apoptotic events and reactive oxygen species (ROS) levels were detected by flow cytometry. A xenograft model of leukemia cells were established, and the protein levels of UBE2C, KI-67, and cleaved-caspase 3 were detected by immunohistochemistry. We reported an overexpression of UBE2C in leukemia patients and cell lines (HL60, THP-1, U937, and KG-1 cells). Moreover, a high expression level of UBE2C was correlated with a dismal prognosis in AML patients. UBE2C knockdown inhibited the viability and promoted apoptosis in AML cells by regulating the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT) signaling pathway. Furthermore, UBE2C knockdown increased cellular Fe2+ and ROS levels, and enhanced erastin-induced ferroptosis in a proteasome-dependent manner. UBE2C knockdown also suppressed the tumor formation of AML cells in the mouse model. In summary, our findings suggest that UBE2C overexpression promotes the proliferation and inhibits ferroptosis in AML cells by activating the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Li Wang
- Department of Pediatrics, Yantai Yuhuangding Hospital, No. 20 Yudong Road, Zhifu District, Yantai City, Shandong, 264099, China
| | - Shuqin Zhao
- Department of Pediatrics, Yantai Yuhuangding Hospital Laishan Branch, No. 59, Shuanghe West Road, Laishan District, Yantai City, Shandong, 264099, China
| | - Yongling Wang
- Department of Pediatrics, Yantai Yuhuangding Hospital, No. 20 Yudong Road, Zhifu District, Yantai City, Shandong, 264099, China
| | - Jianying Liu
- Department of Pediatrics, Yantai Yuhuangding Hospital, No. 20 Yudong Road, Zhifu District, Yantai City, Shandong, 264099, China
| | - Xiaoli Wang
- Department of Pediatrics, Yantai Yuhuangding Hospital, No. 20 Yudong Road, Zhifu District, Yantai City, Shandong, 264099, China.
| |
Collapse
|