1
|
Alkhouri N, Beyer C, Shumbayawonda E, Andersson A, Yale K, Rolph T, Chung RT, Vuppalanchi R, Cusi K, Loomba R, Pansini M, Dennis A. Decreases in cT1 and liver fat content reflect treatment-induced histological improvements in MASH. J Hepatol 2025; 82:438-445. [PMID: 39326675 DOI: 10.1016/j.jhep.2024.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND & AIMS MRI biomarkers of liver disease are robust and reproducible alternatives to liver biopsy. Emerging data suggest that absolute reduction in iron-corrected T1 (cT1) of ≥80 ms and relative reduction in liver fat content (LFC) of 30% reflect histological improvement. We aimed to validate the associations of changes to these non-invasive biomarkers with histological improvement, specifically the resolution of steatohepatitis. METHODS We performed a retrospective analysis of participants from three interventional clinical trials who underwent multiparametric MRI to measure liver cT1 and LFC (LiverMultiScan) alongside biopsies at baseline and end of study. Responders were defined as those achieving resolution of steatohepatitis with no worsening in fibrosis. Differences in the magnitude of change in cT1 and LFC between responders and non-responders were assessed. RESULTS Individual patient data from 150 participants were included. There was a significant decrease in liver cT1 (-119 ms vs. -49 ms) and LFC (-65% vs. -29%) in responders compared to non-responders (p <0.001), respectively. The diagnostic accuracy to identify responders was 0.72 (AUC) for both. The Youden's index for cT1 to separate responders from non-responders was -82 ms and for liver fat was a 58% relative reduction. Those achieving a ≥80 ms reduction in cT1 were 5-fold more likely to achieve histological response (sensitivity 0.68; specificity 0.70). Those achieving a 30% relative reduction in liver fat were ∼4-fold more likely to achieve a histological response (sensitivity 0.77; specificity 0.53). CONCLUSIONS These results, from a pooled analysis of three drug trials, demonstrate that changes in multiparametric MRI markers of liver health (cT1 and LFC) can predict histological response for steatohepatitis following therapeutic intervention. IMPACT AND IMPLICATIONS We investigated the utility of two MRI-derived non-invasive tests, iron-corrected T1 mapping (cT1) and liver fat content from proton density fat fraction (PDFF), to predict histological improvement in patients who had undergone experimental treatment for metabolic dysfunction-associated steatohepatitis. Using data from 150 people who participated in one of three clinical trials, we observed that a reduction in cT1 by over 80 ms and a relative reduction in PDFF of over 58% were the optimal thresholds for change that predicted resolution of steatohepatitis on histology. PDFF as a marker of liver fat, and cT1 as a specific measure of liver disease activity, are both effective at identifying those who are likely responding to drug interventions and experiencing improvements in overall liver health. CLINICAL TRIAL NUMBER(S) NCT02443116, NCT03976401, NCT03551522.
Collapse
Affiliation(s)
| | | | | | | | - Kitty Yale
- Akero Therapeutics Inc., South San Francisco, California, USA
| | - Timothy Rolph
- Akero Therapeutics Inc., South San Francisco, California, USA
| | - Raymond T Chung
- Liver Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Raj Vuppalanchi
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kenneth Cusi
- Division of Endocrinology, Diabetes and Metabolism, University of Florida, Gainesville, FL, USA
| | - Rohit Loomba
- MASLD Research Center, University of California at San Diego, La Jolla, CA, USA
| | - Michele Pansini
- Clinica Di Radiologia EOC, Istituto Di Imaging Della Svizzera Italiana (IIMSI), Ente Ospedaliero Cantonale, Via Tesserete 46, 6900, Lugano, Switzerland; John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, OX3 0AG, Oxford, UK
| | | |
Collapse
|
2
|
Abdel Monem MS, Adel A, Abbassi MM, Abdelaziz DH, Hassany M, Raziky ME, Sabry NA. Efficacy and safety of dapagliflozin compared to pioglitazone in diabetic and non-diabetic patients with non-alcoholic steatohepatitis: A randomized clinical trial. Clin Res Hepatol Gastroenterol 2025; 49:102543. [PMID: 39884573 DOI: 10.1016/j.clinre.2025.102543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/21/2025] [Accepted: 01/26/2025] [Indexed: 02/01/2025]
Abstract
BACKGROUND Non-alcoholic steatohepatitis (NASH) is a serious end-stage spectrum of non-alcoholic fatty liver disease (NAFLD) with associated high risk of hepatic and extrahepatic complications. Several studies showed the significant beneficial effect of dapagliflozin on body composition, hepatic and metabolic parameters on NAFLD/NASH patients. The study aimed to investigate the efficacy and safety of dapagliflozin in both diabetic and non-diabetic biopsy-proven NASH patients; compared to pioglitazone. METHODS This was a four-group, prospective, randomized, parallel, open label study in which 100 biopsy-proven NASH patients were selected, stratified to diabetics and non-diabetics and randomized with 1:1 allocation to either 30 mg pioglitazone or 10 mg dapagliflozin, once daily for 24 weeks. Histological evaluation, anthropometric measures, hepatic, metabolic biochemical markers, fibrosis non-invasive markers, quality of life (QOL) and medications adverse events were examined. RESULTS Dapagliflozin showed a comparable histological effect to pioglitazone in both diabetic and non-diabetic patients (P>0.05). As assessed by transient elastography, it also showed a comparable effect on liver fibrosis grade improvement from baseline in diabetics (P=0.287) versus a significant superiority in non-diabetics (P=0.018). Dapagliflozin showed a significant superiority in all anthropometric measures (P<0.001) and QOL (P<0.05) among both diabetics and non-diabetics. There was a significant interaction between interventions and diabetes status on change from baseline of hepatic and metabolic panel collectively (P=0.023) in favor to dapagliflozin among diabetics. CONCLUSION Compared to pioglitazone, dapagliflozin had a comparable effect histologically, superior effect biochemically among diabetics and superior effect on liver fibrosis, steatosis and insulin resistance among non-diabetics. TRIAL REGISTRATION The study was registered on clinicaltrials.gov, identifier number NCT05254626.
Collapse
Affiliation(s)
- Mona S Abdel Monem
- Department of Clinical Pharmacy, Faculty of Pharmacy, Cairo University, Egypt.
| | - Abdulmoneim Adel
- National Hepatology and Tropical Medicine Research Institute, Cairo, Egypt.
| | - Maggie M Abbassi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Cairo University, Egypt.
| | - Doaa H Abdelaziz
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Baha University, Al-Baha, Saudi Arabia/Department of Clinical Pharmacy, National Hepatology and Tropical Medicine Research Institute, Cairo, Egypt.
| | - Mohamed Hassany
- National Hepatology and Tropical Medicine Research Institute, Cairo, Egypt.
| | - Maissa El Raziky
- Endemic Medicine and Hepatogastroenterology, Faculty of Medicine, Cairo University, Egypt.
| | - Nirmeen A Sabry
- Department of Clinical Pharmacy, Faculty of Pharmacy, Cairo University, Egypt.
| |
Collapse
|
3
|
Chen F, An J, Deng L, Wang J, He R. Consistency analysis of two US techniques for evaluating hepatic steatosis in patients with metabolic dysfunction-associated steatotic liver disease. BMC Med Imaging 2025; 25:10. [PMID: 39773394 PMCID: PMC11708176 DOI: 10.1186/s12880-024-01549-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND US tools to quantify hepatic steatosis have recently been made clinically available by different manufacturers, but comparative data on their consistency are lacking. OBJECTIVE US tools to quantify hepatic steatosis have recently been made clinically available by different manufacturers, but comparative data on their consistency are lacking. The aim of our study was to compare the diagnostic consistency for evaluating hepatic steatosis by two different US techniques, hepatorenal index by B-mode Ratio and attenuation coefficient by attenuation imaging (ATI). METHODS Patients with suspicion or previously diagnosed of metabolic dysfunction-associated steatotic liver disease (MASLD) who attended fatty liver consulting room from June 2023 to September 2023 were prospectively recruited. Patients underwent two different US techniques of B-mode Ratio and ATI, and laboratory test were collected. According to previously proposed cut-off values, B-mode Ratio ≥ 1.22, 1.42, 1.54, and ATI ≥ 0.62, 0.70, and 0.78 dB/cm/MH were used for assessing of mild, moderate, and severe hepatic steatosis, respectively. Kappa consistency test was used to evaluate the consistency of hepatic steatosis. RESULTS A total of 62 patients were enrolled, including 44 males (71.0%) with an age of (41 ± 13) years and a body mass index of (27.0 ± 3.5) kg/m2. In the hyperlipidemia group, the B-mode Ratio and ATI were significantly higher than those in the non-hyperlipidemia group, with values of 1.68 ± 0.39 vs. 1.28 ± 0.35 (p = 0.001) and 0.74 ± 0.12 dB/cm/MH vs. 0.64 ± 0.11 dB/cm/MH (p = 0.005), respectively. The correlation coefficient between B-mode Ratio and ATI was 0.732 (p < 0.001). Using B-mode Ratio and ATI as diagnostic criteria for MASLD, the proportion of patients with MASLD was 79% and 82%, respectively. The Kappa coefficient for assessing MASLD was 0.90 (p < 0.001). Furthermore, these two different US techniques were used for grading hepatic steatosis, with no, mild, moderate, and severe steatosis accounting for 21%, 18%, 13%, and 48%, as well as 18%, 29%, 22%, and 31%, respectively. The linear weighted Kappa coefficient for staging hepatic steatosis was 0.78 (95% confidence interval: 0.68-0.87, p < 0.001). CONCLUSION The non-invasive methods of two different US techniques based on B-mode Ratio and ATI have good consistency for evaluating hepatic steatosis, and can be used for large-scale community screening.
Collapse
Affiliation(s)
- Fei Chen
- Department of Ultrasound, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Jingjing An
- Department of Ultrasound, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Long Deng
- Department of Ultrasound, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Jing Wang
- Department of Ultrasound, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Ruiling He
- Department of Ultrasound, Donggang Branch the First Hospital of Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
4
|
Anastasaki M, Papadakis S, Gergianaki IN, Papastamatiou L, Aligizakis E, Grillaki N, Boutzoukaki E, Sivaropoulos N, Anastasiou F, Mendive J, de Juan-Asenjo C, Hernández-Ibáñez R, Martínez-Escudé A, Garcia-Retortillo M, Koek G, Heyens L, Muris J, Lionis CD. Development and pilot evaluation of an evidence-based algorithm for MASLD (formerly NAFLD) management in primary care in Europe. Front Med (Lausanne) 2024; 11:1383112. [PMID: 39640981 PMCID: PMC11617198 DOI: 10.3389/fmed.2024.1383112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
Background Metabolic dysfunction-associated steatotic liver disease (MASLD, formerly NAFLD), emerges as major cause of morbidity and mortality globally, with chronic patients facing increased risk. Guidelines on MASLD management in primary care (PC) are limited. This study aimed to develop and evaluate a clinical care pathway for use in PC to improve MASLD screening and management, including early detection, communication and treatment, in three European countries (Greece, Spain, the Netherlands). Methods An international multidisciplinary panel of experts oversaw pathway development, which was designed as a two-step algorithm with defined and sequenced tasks. To evaluate algorithm implementation, a controlled pilot study was conducted. Patients at risk of MASLD were assigned to general practitioners (GPs) trained in algorithm implementation (active group) or usual care (control group) and followed for 4-8 weeks. Primary outcomes were the number of patients screened for MASLD, managed in PC and referred to specialists. Results In this algorithm, patients with metabolic or liver dysfunction, confirmed MASLD or cardiovascular disease are screened with FIB-4 and classified as having risk of low-level (FIB-4 < 1.3), intermediate-level (1.3 ≤ FIB-4 < 2.67) or high-level MASLD (FIB-4 ≥ 2.67). The algorithm provides evidence-based tools to support GPs manage patients with risk of low-level MASLD in PC, coordinate linkage of patients with risk of high-level MASLD to specialists and refer patients with risk of intermediate-level MASLD for elastography (low-risk if <7.9 kPa or intermediate/high-risk if ≥7.9 kPa). During pilot evaluation, N = 37 participants were recruited in Spain (54.1% women, median age: 63 years). Significantly higher rates of patients in the active group (n = 17) than the control group (n = 20) were screened with FIB-4 (94.1% vs. 5.5%, p = 0.004). Patients in the active group received significantly more frequently a PC intervention for weight loss (70.6% vs. 10.0%, p < 0.001), alcohol regulation (52.9% vs. 0%, p < 0.001) and smoking cessation (29.4% vs. 0%, p = 0.005). In Greece no algorithm implementation was observed in either the active or control group, while the evaluation was not conducted in the Netherlands for logistic reasons. Conclusion This study provides evidence on the development and implementation of a new PC algorithm for MASLD screening and management. Variations among participating settings in algorithm implementation are indicative of context-specific particularities. Further research is necessary for integrating such pathways in tailored interventions to tackle this emerging public health issue.
Collapse
Affiliation(s)
- Marilena Anastasaki
- Clinic of Social and Family Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Sophia Papadakis
- Clinic of Social and Family Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Irini N. Gergianaki
- Clinic of Social and Family Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | | | | | | | | | | | - Foteini Anastasiou
- Clinic of Social and Family Medicine, School of Medicine, University of Crete, Heraklion, Greece
- European Society for Primary Care Gastroenterology, Stockholm, Sweden
| | - Juan Mendive
- European Society for Primary Care Gastroenterology, Stockholm, Sweden
- La Mina Primary Health Care Centre—IDIAP Jordi Gol, Barcelona, Spain
| | | | - Rosario Hernández-Ibáñez
- La Marina Health Centre, Barcelona, Spain
- MASLD Working Group, Catalan Society of Family Medicine (CAMFiC), Barcelona, Spain
| | - Alba Martínez-Escudé
- MASLD Working Group, Catalan Society of Family Medicine (CAMFiC), Barcelona, Spain
- La LLagosta Primary Health Care Centre, La Llagosta, Barcelona, Spain
| | | | - Ger Koek
- Department of Gastroenterology and Hepatology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Leen Heyens
- Faculty of Health and Life Sciences, Hasselt University, Diepenbeek, Belgium
- School of Nutrition and Translational Research in Metabolism, NUTRIM, Maastricht University, Maastricht, Netherlands
- Department of Endocrinology, Ziekenhuis Oost-Limburg, Genk, Belgium
| | - Jean Muris
- European Society for Primary Care Gastroenterology, Stockholm, Sweden
- Department of Family Medicine, CAPHRI Research Institute, Maastricht University, Maastricht, Netherlands
| | - Christos D. Lionis
- Clinic of Social and Family Medicine, School of Medicine, University of Crete, Heraklion, Greece
| |
Collapse
|
5
|
Cao C, Liu W, Guo X, Weng S, Chen Y, Luo Y, Wang S, Zhu B, Liu Y, Peng D. Identification and validation of efferocytosis-related biomarkers for the diagnosis of metabolic dysfunction-associated steatohepatitis based on bioinformatics analysis and machine learning. Front Immunol 2024; 15:1460431. [PMID: 39497821 PMCID: PMC11532026 DOI: 10.3389/fimmu.2024.1460431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 10/02/2024] [Indexed: 11/07/2024] Open
Abstract
Background Metabolic dysfunction-associated steatohepatitis (MASH) is a highly prevalent liver disease globally, with a significant risk of progressing to cirrhosis and even liver cancer. Efferocytosis, a process implicated in a broad spectrum of chronic inflammatory disorders, has been reported to be associated with the pathogenesis of MASH; however, its precise role remains obscure. Thus, we aimed to identify and validate efferocytosis linked signatures for detection of MASH. Methods We retrieved gene expression patterns of MASH from the GEO database and then focused on assessing the differential expression of efferocytosis-related genes (EFRGs) between MASH and control groups. This analysis was followed by a series of in-depth investigations, including protein-protein interaction (PPI), correlation analysis, and functional enrichment analysis, to uncover the molecular interactions and pathways at play. To screen for biomarkers for diagnosis, we applied machine learning algorithm to identify hub genes and constructed a clinical predictive model. Additionally, we conducted immune infiltration and single-cell transcriptome analyses in both MASH and control samples, providing insights into the immune cell landscape and cellular heterogeneity in these conditions. Results This research pinpointed 39 genes exhibiting a robust correlation with efferocytosis in MASH. Among these, five potential diagnostic biomarkers-TREM2, TIMD4, STAB1, C1QC, and DYNLT1-were screened using two distinct machine learning models. Subsequent external validation and animal experimentation validated the upregulation of TREM2 and downregulation of TIMD4 in MASH samples. Notably, both TREM2 and TIMD4 demonstrated area under the curve (AUC) values exceeding 0.9, underscoring their significant potential in facilitating the diagnosis of MASH. Conclusion Our study comprehensively elucidated the relationship between MASH and efferocytosis, constructing a favorable diagnostic model. Furthermore, we identified potential therapeutic targets for MASH treatment and offered novel insights into unraveling the underlying mechanisms of this disease.
Collapse
Affiliation(s)
- Chenghui Cao
- Department of Cardiology, Research Institute of Blood Lipids and Atherosclerosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Wenwu Liu
- Department of Cardiology, Research Institute of Blood Lipids and Atherosclerosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xin Guo
- Department of Cardiology, Research Institute of Blood Lipids and Atherosclerosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuwei Weng
- Department of Cardiology, Research Institute of Blood Lipids and Atherosclerosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yang Chen
- Department of Cardiology, Research Institute of Blood Lipids and Atherosclerosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yonghong Luo
- Department of Cardiology, Research Institute of Blood Lipids and Atherosclerosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuai Wang
- Department of Cardiology, Research Institute of Blood Lipids and Atherosclerosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Botao Zhu
- Department of Cardiology, Research Institute of Blood Lipids and Atherosclerosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yuxuan Liu
- Department of Cardiology, Research Institute of Blood Lipids and Atherosclerosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Daoquan Peng
- Department of Cardiology, Research Institute of Blood Lipids and Atherosclerosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
6
|
Liu H, Mao H, Ouyang X, Lu R, Li L. Intercellular Mitochondrial Transfer: The Novel Therapeutic Mechanism for Diseases. Traffic 2024; 25:e12951. [PMID: 39238078 DOI: 10.1111/tra.12951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 09/07/2024]
Abstract
Mitochondria, the dynamic organelles responsible for energy production and cellular metabolism, have the metabolic function of extracting energy from nutrients and synthesizing crucial metabolites. Nevertheless, recent research unveils that intercellular mitochondrial transfer by tunneling nanotubes, tumor microtubes, gap junction intercellular communication, extracellular vesicles, endocytosis and cell fusion may regulate mitochondrial function within recipient cells, potentially contributing to disease treatment, such as nonalcoholic steatohepatitis, glioblastoma, ischemic stroke, bladder cancer and neurodegenerative diseases. This review introduces the principal approaches to intercellular mitochondrial transfer and examines its role in various diseases. Furthermore, we provide a comprehensive overview of the inhibitors and activators of intercellular mitochondrial transfer, offering a unique perspective to illustrate the relationship between intercellular mitochondrial transfer and diseases.
Collapse
Affiliation(s)
- Huimei Liu
- Institute of Pharmacy and Pharmacology, College of Basic Medical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Hui Mao
- Institute of Pharmacy and Pharmacology, College of Basic Medical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Xueqian Ouyang
- Institute of Pharmacy and Pharmacology, College of Basic Medical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Ruirui Lu
- Institute of Pharmacy and Pharmacology, College of Basic Medical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Lanfang Li
- Institute of Pharmacy and Pharmacology, College of Basic Medical Science, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
7
|
Carvalho LCF, Ferreira FM, Dias BV, Azevedo DCD, de Souza GHB, Milagre MM, de Lana M, Vieira PMDA, Carneiro CM, Paula-Gomes SD, Cangussu SD, Costa DC. Silymarin inhibits the lipogenic pathway and reduces worsening of non-alcoholic fatty liver disease (NAFLD) in mice. Arch Physiol Biochem 2024; 130:460-474. [PMID: 36328030 DOI: 10.1080/13813455.2022.2138445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/17/2022] [Accepted: 09/08/2022] [Indexed: 11/06/2022]
Abstract
CONTEXT The role of silymarin in hepatic lipid dysfunction and its possible mechanisms of action were investigated. OBJECTIVE To evaluate the effects of silymarin on hepatic and metabolic profiles in mice fed with 30% fructose for 8 weeks. METHODS We evaluated the antioxidant profile of silymarin; mice consumed 30% fructose and were treated with silymarin (120 mg/kg/day or 240 mg/kg/day). We performed biochemical, redox status, and histopathological assays. RT-qPCR was performed to detect ACC-1, ACC-2, FAS, and CS expression, and western blotting to detect PGC-1α levels. RESULTS Silymarin contains high levels of phenolic compounds and flavonoids and exhibited significant antioxidant capacity in vitro. In vivo, the fructose-fed groups showed increased levels of AST, ALT, SOD/CAT, TBARS, hepatic TG, and cholesterol, as well as hypertriglyceridaemia, hypercholesterolaemia, and increased ACC-1 and FAS. Silymarin treatment reduced these parameters and increased mRNA levels and activity of hepatic citrate synthase. CONCLUSIONS These results suggest that silymarin reduces worsening of NAFLD.
Collapse
Affiliation(s)
| | | | - Bruna Vidal Dias
- Laboratório de Bioquímica Metabólica, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | | | | | - Matheus Marque Milagre
- Laboratório Doença de Chagas, Universidade Federal de Ouro Preto, UFOP, Ouro Preto, Brazil
| | - Marta de Lana
- Laboratório Doença de Chagas, Universidade Federal de Ouro Preto, UFOP, Ouro Preto, Brazil
| | | | | | - Sílvia de Paula-Gomes
- Laboratório de Bioquímica e Biologia Molecular, Universidade Federal de Ouro Preto, UFOP, Ouro Preto, Brazil
| | - Silvia Dantas Cangussu
- Laboratório de Fisiopatologia Experimental, Universidade Federal de Ouro Preto, UFOP, Ouro Preto, Brazil
| | - Daniela Caldeira Costa
- Laboratório de Bioquímica Metabólica, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| |
Collapse
|
8
|
Yashaswini CN, Qin T, Bhattacharya D, Amor C, Lowe S, Lujambio A, Wang S, Friedman SL. Phenotypes and ontogeny of senescent hepatic stellate cells in metabolic dysfunction-associated steatohepatitis. J Hepatol 2024; 81:207-217. [PMID: 38508241 PMCID: PMC11269047 DOI: 10.1016/j.jhep.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND & AIMS Hepatic stellate cells (HSCs) are the key drivers of fibrosis in metabolic dysfunction-associated steatohepatitis (MASH), the fastest growing cause of hepatocellular carcinoma (HCC) worldwide. HSCs are heterogenous, and a senescent subset of HSCs is implicated in hepatic fibrosis and HCC. Administration of anti-uPAR (urokinase-type plasminogen activator receptor) CAR T cells has been shown to deplete senescent HSCs and attenuate fibrosis in murine models. However, the comprehensive features of senescent HSCs in MASH, as well as their cellular ontogeny have not been characterized; hence, we aimed to comprehensively characterize and define the origin of HSCs in human and murine MASH. METHODS To comprehensively characterize the phenotype and ontogeny of senescent HSCs in human and murine MASH, we integrated senescence-associated beta galactosidase activity with immunostaining, flow cytometry and single-nucleus RNA sequencing (snRNAseq). We integrated the immunohistochemical profile with a senescence score applied to snRNAseq data to characterize senescent HSCs and mapped the evolution of uPAR expression in MASH. RESULTS Using pseudotime trajectory analysis, we establish that senescent HSCs arise from activated HSCs. While uPAR is expressed in MASH, the magnitude and cell-specificity of its expression evolve with disease stage. In early disease, uPAR is more specific to activated and senescent HSCs, while it is also expressed by myeloid-lineage cells, including Trem2+ macrophages and myeloid-derived suppressor cells, in late disease. Furthermore, we identify novel surface proteins expressed on senescent HSCs in human and murine MASH that could be exploited as therapeutic targets. CONCLUSIONS These data define features of HSC senescence in human and murine MASH, establishing an important blueprint to target these cells as part of future antifibrotic therapies. IMPACT AND IMPLICATIONS Hepatic stellate cells (HSCs) are the primary drivers of scarring in chronic liver diseases. As injury develops, a subset of HSCs become senescent; these cells are non-proliferative and pro-inflammatory, thereby contributing to worsening liver injury. Here we show that senescent HSCs are expanded in MASH (metabolic dysfunction-associated steatohepatitis) in humans and mice, and we trace their cellular origin from the activated HSC subset. We further characterize expression of uPAR (urokinase plasminogen activated receptor), a protein that marks senescent HSCs, and report that uPAR is also expressed by activated HSCs in early injury, and in immune cells as liver injury advances. We have integrated high-resolution single-nucleus RNA sequencing with immunostaining and flow cytometry to identify five other novel proteins expressed by senescent HSCs, including mannose receptor CD206, which will facilitate future therapeutic development.
Collapse
Affiliation(s)
- Chittampalli N Yashaswini
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Medical Scientist Training Program, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Tianyue Qin
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Dipankar Bhattacharya
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Corina Amor
- Cold Spring Harbor Laboratory. Cold Spring Harbor, NY, United States
| | - Scott Lowe
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States; Howard Hughes Medical Institute, Chevy Chase, MD, United States
| | - Amaia Lujambio
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Shuang Wang
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Scott L Friedman
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
9
|
Ye C, Jiang W, Hu T, Liang J, Chen Y. The Regulatory Impact of CFLAR Methylation Modification on Liver Lipid Metabolism. Int J Mol Sci 2024; 25:7897. [PMID: 39063139 PMCID: PMC11277202 DOI: 10.3390/ijms25147897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has emerged as the leading cause of chronic liver disease worldwide. Caspase 8 and FADD-like apoptosis regulator (CFLAR) has been identified as a potent factor in mitigating non-alcoholic steatohepatitis (NASH) by inhibiting the N-terminal dimerization of apoptosis signal-regulating kinase 1 (ASK1). While arginine methyltransferase 1 (PRMT1) was previously reported to be associated with increased hepatic glucose production, its involvement in hepatic lipid metabolism remains largely unexplored. The interaction between PRMT1 and CFLAR and the methylation of CFLAR were verified by Co-IP and immunoblotting assays. Recombinant adenoviruses were generated for overexpression or knockdown of PRMT1 in hepatocytes. The role of PRMT1 in NAFLD was investigated in normal and high-fat diet-induced obese mice. In this study, we found a significant upregulation of PRMT1 and downregulation of CFLAR after 48h of fasting, while the latter significantly rebounded after 12h of refeeding. The expression of PRMT1 increased in the livers of mice fed a methionine choline-deficient (MCD) diet and in hepatocytes challenged with oleic acid (OA)/palmitic acid (PA). Overexpression of PRMT1 not only inhibited the expression of genes involved in fatty acid oxidation (FAO) and promoted the expression of genes involved in fatty acid synthesis (FAS), resulting in increased triglyceride accumulation in primary hepatocytes, but also enhanced the gluconeogenesis of primary hepatocytes. Conversely, knockdown of hepatic PRMT1 significantly alleviated MCD diet-induced hepatic lipid metabolism abnormalities and liver injury in vivo, possibly through the upregulation of CFLAR protein levels. Knockdown of PRMT1 suppressed the expression of genes related to FAS and enhanced the expression of genes involved in FAO, causing decreased triglyceride accumulation in OA/PA-treated primary hepatocytes in vitro. Although short-term overexpression of PRMT1 had no significant effect on hepatic triglyceride levels under physiological conditions, it resulted in increased serum triglyceride and fasting blood glucose levels in normal C57BL/6J mice. More importantly, PRMT1 was observed to interact with and methylate CFLAR, ultimately leading to its ubiquitination-mediated protein degradation. This process subsequently triggered the activation of c-Jun N-terminal kinase 1 (JNK1) and lipid deposition in primary hepatocytes. Together, these results suggested that PRMT1-mediated methylation of CFLAR plays a critical role in hepatic lipid metabolism. Targeting PRMT1 for drug design may represent a promising strategy for the treatment of NAFLD.
Collapse
Affiliation(s)
| | | | | | - Jichao Liang
- National & Local Joint Engineering Research Center of High throughput Drug Screening Technology, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, College of Health Science and Engineering, Hubei University, Wuhan 430062, China; (C.Y.); (W.J.); (T.H.)
| | - Yong Chen
- National & Local Joint Engineering Research Center of High throughput Drug Screening Technology, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, College of Health Science and Engineering, Hubei University, Wuhan 430062, China; (C.Y.); (W.J.); (T.H.)
| |
Collapse
|
10
|
Chen J, Zhang J, Xia Y, Li J, Jia Q, Zhang Z, Jing X, Xu Y, Zou L, Wang L, Song H, Li J, Liu Q, Xiong Y, Tang Q, Chen W, Yang N, Xu H, Li Y, He J. Reactive Oxygen Species-Responsive Delivery of a Notch Inhibitor to Alleviate Nonalcoholic Steatohepatitis by Inhibiting Hepatic de Novo Lipogenesis and Inflammation. Mol Pharm 2024; 21:2922-2936. [PMID: 38751169 DOI: 10.1021/acs.molpharmaceut.4c00070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
With the increased prevalence of nonalcoholic steatohepatitis (NASH) in the world, effective pharmacotherapy in clinical practice is still lacking. Previous studies have shown that dibenzazepine (DBZ), a Notch inhibitor, could alleviate NASH development in a mouse model. However, low bioavailability, poor water solubility, and extrahepatic side effects restrict its clinical application. To overcome these barriers, we developed a reactive oxygen species (ROS)-sensitive nanoparticle based on the conjugation of bilirubin to poly(ethylene glycol) (PEG) chains, taking into account the overaccumulation of hepatic ROS in the pathologic state of nonalcoholic steatohepatitis (NASH). The PEGylated bilirubin can self-assemble into nanoparticles in an aqueous solution and encapsulate insoluble DBZ into its hydrophobic cavity. DBZ nanoparticles (DBZ Nps) had good stability, rapidly released DBZ in response to H2O2, and effectively scavenged intracellular ROS of hepatocytes. After systemic administration, DBZ Nps could accumulate in the liver of the NASH mice, extend persistence in circulation, and improve the bioavailability of DBZ. Furthermore, DBZ Nps significantly improved glucose intolerance, relieved hepatic lipid accumulation and inflammation, and ameliorated NASH-induced liver fibrosis. Additionally, DBZ Nps had no significant extrahepatic side effects. Taken together, our results highlight the potential of the ROS-sensitive DBZ nanoparticle as a promising therapeutic strategy for NASH.
Collapse
Affiliation(s)
- Jiahao Chen
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital,Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Jinhang Zhang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital,Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Yan Xia
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital,Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Jiahui Li
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital,Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Qingyi Jia
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital,Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Zijing Zhang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital,Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Xiandan Jing
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital,Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Ying Xu
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital,Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Ling Zou
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital,Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Lingling Wang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital,Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Haiying Song
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital,Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Jingwei Li
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital,Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Qinhui Liu
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital,Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Yimin Xiong
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital,Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Qin Tang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital,Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Wenfei Chen
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital,Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Na Yang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital,Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Haixia Xu
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital,Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Yanping Li
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital,Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Jinhan He
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital,Sichuan University, Chengdu, Sichuan Province 610041, China
| |
Collapse
|
11
|
Yu W, Zhang Y, Sun L, Huang W, Li X, Xia N, Chen X, Wikana LP, Xiao Y, Chen M, Han S, Wang Z, Pu L. Myeloid Trem2 ameliorates the progression of metabolic dysfunction-associated steatotic liver disease by regulating macrophage pyroptosis and inflammation resolution. Metabolism 2024; 155:155911. [PMID: 38609037 DOI: 10.1016/j.metabol.2024.155911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/06/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) is increasing year by year and has become one of the leading causes of end-stage liver disease worldwide. Triggering Receptor Expressed on Myeloid Cells 2 (Trem2) has been confirmed to play an essential role in the progression of MASLD, but its specific mechanism still needs to be clarified. This study aims to explore the role and mechanism of Trem2 in MASLD. METHODS Human liver tissues were obtained from patients with MASLD and controls. Myeloid-specific knockout mice (Trem2mKO) and myeloid-specific overexpression mice (Trem2TdT) were fed a high-fat diet, either AMLN or CDAHFD, to establish the MASLD model. Relevant signaling molecules were assessed through lipidomics and RNA-seq analyses after that. RESULTS Trem2 is upregulated in human MASLD/MASH-associated macrophages and is associated with hepatic steatosis and inflammation progression. Hepatic steatosis and inflammatory responses are exacerbated with the knockout of myeloid Trem2 in MASLD mice, while mice overexpressing Trem2 exhibit the opposite phenomenon. Mechanistically, Trem2mKO can aggravate macrophage pyroptosis through the PI3K/AKT signaling pathway and amplify the resulting inflammatory response. At the same time, Trem2 promotes the inflammation resolution phenotype transformation of macrophages through TGFβ1, thereby promoting tissue repair. CONCLUSIONS Myeloid Trem2 ameliorates the progression of Metabolic dysfunction-associated steatotic liver disease by regulating macrophage pyroptosis and inflammation resolution. We believe targeting myeloid Trem2 could represent a potential avenue for treating MASLD.
Collapse
Affiliation(s)
- Wenjie Yu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary cancers, Nanjing 210029, Jiangsu Province, China
| | - Yu Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary cancers, Nanjing 210029, Jiangsu Province, China
| | - Linfeng Sun
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary cancers, Nanjing 210029, Jiangsu Province, China
| | - Wei Huang
- Department of General Surgery, The Friendship Hospital of Ili Kazakh Autonomous Prefecture, Ili & Jiangsu Joint Institute of Health, Ili, China
| | - Xiangdong Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary cancers, Nanjing 210029, Jiangsu Province, China
| | - Nan Xia
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary cancers, Nanjing 210029, Jiangsu Province, China
| | - Xuejiao Chen
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary cancers, Nanjing 210029, Jiangsu Province, China
| | - Likalamu Pascalia Wikana
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary cancers, Nanjing 210029, Jiangsu Province, China
| | - Yuhao Xiao
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary cancers, Nanjing 210029, Jiangsu Province, China
| | - Minhao Chen
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary cancers, Nanjing 210029, Jiangsu Province, China
| | - Sheng Han
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary cancers, Nanjing 210029, Jiangsu Province, China
| | - Ziyi Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary cancers, Nanjing 210029, Jiangsu Province, China
| | - Liyong Pu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary cancers, Nanjing 210029, Jiangsu Province, China.
| |
Collapse
|
12
|
Ajayi T, Moon G, Chen S, Pan S, Oseini A, Houchen C. Surging Liver Transplantation for Nonalcoholic Steatohepatitis from 2000-2022: A National Database Study. South Med J 2024; 117:302-310. [PMID: 38830583 PMCID: PMC11160975 DOI: 10.14423/smj.0000000000001699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
OBJECTIVES Our aim was to provide an up-to-date, large-scale overview of the trends and clinicodemographics for NASH LTs performed in the United States compared with all other LT indications between 2000 and 2022. We also examined the demographic factors that will predict future demand for NASH LT. METHODS Our analysis of NASH LT from the Organ Procurement & Transplantation Network database spanning 2000-2022 consisted primarily of descriptive statistics and hypothesis testing with corrections for multiple testing when necessary. Trend lines and linear correlations were also explored. RESULTS NASH LTs have experienced a remarkable surge, escalating from 0.12% of all LTs in 2000 to a substantial 14.7% in 2022, marking a 100-fold increase. Examining demographic trends, a significant proportion of NASH LTs recipients fall within the 50- to 64-year-old age group. Moreover, 52% of these recipients concurrently exhibit type 2 diabetes mellitus, a notably higher percentage than the 19% observed in all LT recipients. Type 2 diabetes mellitus emerges as a prominent risk factor for NASH progressing to end-stage liver disease. The phenomenon of repeat transplantation is noteworthy; although 6% of all LTs necessitate repeat procedures, this figure dramatically drops to 0.6% for NASH LTs. Ethnic disparities are apparent, with African Americans representing a mere 2% of NASH LT recipients, significantly lower than their representation in the overall population. Regionally, the East Coast has a higher proportion of NASH LT recipients compared with waitlist additions. This trend holds true across demographics. CONCLUSIONS Our findings underscore the need for increased resources, particularly for minority, uninsured, or noncitizen individuals requiring LT for NASH. This analysis provides valuable insights into the dynamic landscape of LTs in the context of NASH, shaping the trajectory of medical interventions in the 21st century.
Collapse
Affiliation(s)
- Tokunbo Ajayi
- Section of Digestive Diseases and Nutrition, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Gina Moon
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Sixia Chen
- Section of Biostatistics and Epidemiology, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Steven Pan
- Section of Biostatistics and Epidemiology, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Abdul Oseini
- Department of Transplant Surgery, Section of Transplant, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Courtney Houchen
- Section of Digestive Diseases and Nutrition, University of Oklahoma Health Sciences Center, Oklahoma City
| |
Collapse
|
13
|
Nemer M, Osman F, Said A. Dietary macro and micronutrients associated with MASLD: Analysis of a national US cohort database. Ann Hepatol 2024; 29:101491. [PMID: 38412922 DOI: 10.1016/j.aohep.2024.101491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/30/2023] [Accepted: 01/04/2024] [Indexed: 02/29/2024]
Abstract
INTRODUCTION AND OBJECTIVES Our objective was to measure and compare the intake of macro and micronutrients in a cohort of individuals with Metabolic Syndrome Associated Steatotic Liver Disease (MASLD) compared with matched controls to identify areas of further research in this area; we identified nutrition-associated associations with MASLD in the United States general population. MATERIALS AND METHODS We used the 2017 - 2018 NHANES dataset. Elastography Controlled Attenuation Parameter (CAP score>280) in the absence of other liver disease was defined as MASLD in adults (>18). Advanced fibrosis was defined by transient elastography >10 kPa. Controls were adults without liver disease. RESULTS 1648 MASLD cases (11.4 % advanced fibrosis) and 2527 controls were identified. MASLD cases were older (P<0.001), more likely males (P = 0.01), less likely to have a college education (P = 0.04) and more likely married (P = 0.002). MASLD cases were more likely to be of Mexican American or Hispanic ethnicity (P = 0.002), have higher BMI, and have higher prevalence of diabetes, hyperlipidemia and hypertension (P<0.001 for all). MASLD cases had higher hs-CRP (P = 0.02) and ferritin (P = 0.02). MASLD cases had lower total (P = 0.004) and added vitamin E in their diet (P = 0.002), lower vitamin K intake (P = 0.005), and higher selenium intake (P = 0.03). Caloric intake (P = 0.04), carbohydrate intake (P = 0.02), cholesterol intake (P = 0.03) and saturated fatty acid intake (P = 0.05) were higher in MASLD. Individuals with MASLD were more likely to be on a diet (P<0.001), sedentary (P = 0.008) and less likely to participate in moderate or vigorous recreational activities (P<0.001). CONCLUSIONS The deficiencies of micronutrients and excess of macronutrients point to oxidative stress, pro-inflammatory state, and lipotoxicity as pathways linking the US diet to MASLD. MASLD patients are more often on special diets, which may reflect prior provider counseling on diet changes to improve health.
Collapse
Affiliation(s)
- Mary Nemer
- Department of Medicine, Gastroenterology and Hepatology. Medical College of Wisconsin, Milwaukee, WI, United States
| | - Fauzia Osman
- Department of Medicine, Biostatistics. University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Adnan Said
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; Wm. S Middleton VA Medical Center, Madison, WI, United States.
| |
Collapse
|
14
|
Ryoo H, Giovanni R, Kimmel H, Jain I, Underhill GH. Combinatorial Microgels for 3D ECM Screening and Heterogeneous Microenvironmental Culture of Primary Human Hepatic Stellate Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303128. [PMID: 38348560 PMCID: PMC11022709 DOI: 10.1002/advs.202303128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/03/2023] [Indexed: 02/15/2024]
Abstract
Nonalcoholic fatty liver disease affects 30% of the United States population and its progression can lead to nonalcoholic steatohepatitis (NASH), and increased risks for cirrhosis and hepatocellular carcinoma. NASH is characterized by a highly heterogeneous liver microenvironment created by the fibrotic activity of hepatic stellate cells (HSCs). While HSCs have been widely studied in 2D, further advancements in physiologically relevant 3D culture platforms for the in vitro modeling of these heterogeneous environments are needed. In this study, the use of stiffness-variable, extracellular matrix (ECM) protein-conjugated polyethylene glycol microgels as 3D cell culture scaffolds to modulate HSC activation is demonstrated. These microgels as a high throughput ECM screening system to identify HSC matrix remodeling and metabolic activities in distinct heterogeneous microenvironmental conditions are further employed. The 6 kPa fibronectin microgels are shown to significantly increase HSC matrix remodeling and metabolic activities in single or multiple-component microenvironments. Overall, heterogeneous microenvironments consisting of multiple distinct ECM microgels promoted a decrease in HSC matrix remodeling and metabolic activities compared to homogeneous microenvironments. The study envisions this ECM screening platform being adapted to a broad number of cell types to aid the identification of ECM microenvironments that best recapitulate the desired phenotype, differentiation, or drug efficacy.
Collapse
Affiliation(s)
- Hyeon Ryoo
- Department of BioengineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Regina Giovanni
- Department of BioengineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Hannah Kimmel
- Department of BioengineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Ishita Jain
- Department of BioengineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Gregory H. Underhill
- Department of BioengineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| |
Collapse
|
15
|
Chen X, Deng SZ, Sun Y, Bai Y, Wang Y, Yang Y. Key genes involved in nonalcoholic steatohepatitis improvement after bariatric surgery. Front Endocrinol (Lausanne) 2024; 15:1338889. [PMID: 38469144 PMCID: PMC10925704 DOI: 10.3389/fendo.2024.1338889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/22/2024] [Indexed: 03/13/2024] Open
Abstract
Background Nonalcoholic steatohepatitis (NASH) is the advanced stage of nonalcoholic fatty liver disease (NAFLD), one of the most prevalent chronic liver diseases. The effectiveness of bariatric surgery in treating NASH and preventing or even reversing liver fibrosis has been demonstrated in numerous clinical studies, but the underlying mechanisms and crucial variables remain unknown. Methods Using the GSE135251 dataset, we examined the gene expression levels of NASH and healthy livers. Then, the differentially expressed genes (DEGs) of patients with NASH, at baseline and one year after bariatric surgery, were identified in GSE83452. We overlapped the hub genes performed by protein-protein interaction (PPI) networks and DEGs with different expression trends in both datasets to obtain key genes. Genomic enrichment analysis (GSEA) and genomic variation analysis (GSVA) were performed to search for signaling pathways of key genes. Meanwhile, key molecules that regulate the key genes are found through the construction of the ceRNA network. NASH mice were induced by a high-fat diet (HFD) and underwent sleeve gastrectomy (SG). We then cross-linked the DEGs in clinical and animal samples using quantitative polymerase chain reaction (qPCR) and validated the key genes. Results Seven key genes (FASN, SCD, CD68, HMGCS1, SQLE, CXCL10, IGF1) with different expression trends in GSE135251 and GSE83452 were obtained with the top 30 hub genes selected by PPI. The expression of seven key genes in mice after SG was validated by qPCR. Combined with the qPCR results from NASH mice, the four genes FASN, SCD, HMGCS1, and CXCL10 are consistent with the biological analysis. The GSEA results showed that the 'cholesterol homeostasis' pathway was enriched in the FASN, SCD, HMGCS1, and SQLE high-expression groups. The high-expression groups of CD68 and CXCL10 were extremely enriched in inflammation-related pathways. The construction of the ceRNA network obtained microRNAs and ceRNAs that can regulate seven key genes expression. Conclusion In summary, this study contributes to our understanding of the mechanisms by which bariatric surgery improves NASH, and to the development of potential biomarkers for the treatment of NASH.
Collapse
Affiliation(s)
- Xiyu Chen
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Shi-Zhou Deng
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Yuze Sun
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Yunhu Bai
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi’an, China
- Department of General Surgery, 988 Hospital of Joint Logistic Support Force, Zhengzhou, China
| | - Yayun Wang
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Demonstration Center for Experimental Preclinical Medicine Education, The Fourth Military Medical University, Xi’an, China
| | - Yanling Yang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
16
|
Ding X, He X, Tang B, Lan T. Integrated traditional Chinese and Western medicine in the prevention and treatment of non-alcoholic fatty liver disease: future directions and strategies. Chin Med 2024; 19:21. [PMID: 38310315 PMCID: PMC10838467 DOI: 10.1186/s13020-024-00894-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/23/2024] [Indexed: 02/05/2024] Open
Abstract
Traditional Chinese medicine (TCM) has been widely used for several centuries for metabolic diseases, including non-alcoholic fatty liver disease (NAFLD). At present, NAFLD has become the most prevalent form of chronic liver disease worldwide and can progress to non-alcoholic steatohepatitis (NASH), cirrhosis, and even hepatocellular carcinoma. However, there is still a lack of effective treatment strategies in Western medicine. The development of NAFLD is driven by multiple mechanisms, including genetic factors, insulin resistance, lipotoxicity, mitochondrial dysfunction, endoplasmic reticulum stress, inflammation, gut microbiota dysbiosis, and adipose tissue dysfunction. Currently, certain drugs, including insulin sensitizers, statins, vitamin E, ursodeoxycholic acid and betaine, are proven to be beneficial for the clinical treatment of NAFLD. Due to its complex pathogenesis, personalized medicine that integrates various mechanisms may provide better benefits to patients with NAFLD. The holistic view and syndrome differentiation of TCM have advantages in treating NAFLD, which are similar to the principles of personalized medicine. In TCM, NAFLD is primarily classified into five types based on clinical experience. It is located in the liver and is closely related to spleen and kidney functions. However, due to the multi-component characteristics of traditional Chinese medicine, its application in the treatment of NAFLD has been considerably limited. In this review, we summarize the advances in the pathogenesis and treatment of NAFLD, drawn from both the Western medicine and TCM perspectives. We highlight that Chinese and Western medicine have complementary advantages and should receive increased attention in the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Xin Ding
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, 280 Wai Huan Dong Road, Guangzhou, 510006, China
| | - Xu He
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, 280 Wai Huan Dong Road, Guangzhou, 510006, China
| | - Bulang Tang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, 280 Wai Huan Dong Road, Guangzhou, 510006, China
| | - Tian Lan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, 280 Wai Huan Dong Road, Guangzhou, 510006, China.
- School of Pharmacy, Harbin Medical University, Harbin, 150086, China.
| |
Collapse
|
17
|
Adeghate EA. GLP-1 receptor agonists in the treatment of diabetic non-alcoholic steatohepatitis patients. Expert Opin Pharmacother 2024; 25:223-232. [PMID: 38458647 DOI: 10.1080/14656566.2024.2328796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/06/2024] [Indexed: 03/10/2024]
Abstract
INTRODUCTION Nonalcoholic fatty liver disease (NAFLD) is the most common hepatic disease affecting almost 30% of the world population. Approximately 25% of people with NAFLD develop nonalcoholic steatohepatitis (NASH), the fulminant version of the disease. Diabetes mellitus is present in 22.5% of people with NAFLD and 44.60% of individuals with NASH. This review was undertaken to examine the current contribution of glucagon-like peptide 1 (GLP-1) receptor agonists to the pharmacotherapy of diabetic nonalcoholic steatohepatitis. AREAS COVERED The author analyzed the current status of GLP-1 receptor agonists for pharmacotherapy of diabetic NASH. Research data and literature reports were taken from the database and or websites of Diabetes UK, American Diabetes Association, ClinicalTrials.gov, PubMed, and Scopus. The keywords utilized included type 2 diabetes, GLP-1, NASH, NAFLD, and clinical trials. EXPERT OPINION Since diabetic NASH is associated with obesity, diabetes mellitus, oxidative stress and inflammation, drugs capable of mitigating all of these conditions simultaneously, are most ideal for the treatment of diabetic NASH. These drugs include (in order of relevance), GLP-1 receptor agonists, GLP-1 and GIP dual receptor agonists, sodium-glucose co-transporter-2 (SGLT2) inhibitors, and pioglitazone. The future, FDA-approved drug for diabetic NASH treatment will likely be GLP-1 agonist, which could be used as monotherapy or in combination with other drugs.
Collapse
Affiliation(s)
- Ernest A Adeghate
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Centre for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
18
|
Jung IR, Ahima RS, Kim SF. Time-Restricted Feeding Ameliorates Methionine-Choline Deficient Diet-Induced Steatohepatitis in Mice. Int J Mol Sci 2024; 25:1390. [PMID: 38338668 PMCID: PMC10855189 DOI: 10.3390/ijms25031390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/20/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is an inflammatory form of non-alcoholic fatty liver disease (NAFLD), closely associated with disease progression, cirrhosis, liver failure, and hepatocellular carcinoma. Time-restricted feeding (TRF) has been shown to decrease body weight and adiposity and improve metabolic outcomes; however, the effect of TRF on NASH has not yet been fully understood. We had previously reported that inositol polyphosphate multikinase (IPMK) mediates hepatic insulin signaling. Importantly, we have found that TRF increases hepatic IPMK levels. Therefore, we investigated whether there is a causal link between TRF and IPMK in a mouse model of NASH, i.e., methionine- and choline-deficient diet (MCDD)-induced steatohepatitis. Here, we show that TRF alleviated markers of NASH, i.e., reduced hepatic steatosis, liver triglycerides (TG), serum alanine transaminase (ALT) and aspartate aminotransferase (AST), inflammation, and fibrosis in MCDD mice. Interestingly, MCDD led to a significant reduction in IPMK levels, and the deletion of hepatic IPMK exacerbates the NASH phenotype induced by MCDD, accompanied by increased gene expression of pro-inflammatory chemokines. Conversely, TRF restored IPMK levels and significantly reduced gene expression of proinflammatory cytokines and chemokines. Our results demonstrate that TRF attenuates MCDD-induced NASH via IPMK-mediated changes in hepatic steatosis and inflammation.
Collapse
Affiliation(s)
| | - Rexford S. Ahima
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University, Baltimore, MD 21218, USA;
| | - Sangwon F. Kim
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University, Baltimore, MD 21218, USA;
| |
Collapse
|
19
|
Pagire HS, Pagire SH, Jeong BK, Choi WI, Oh CJ, Lim CW, Kim M, Yoon J, Kim SS, Bae MA, Jeon JH, Song S, Lee HJ, Lee EY, Goughnour PC, Kim D, Lee IK, Loomba R, Kim H, Ahn JH. Discovery of a peripheral 5HT 2A antagonist as a clinical candidate for metabolic dysfunction-associated steatohepatitis. Nat Commun 2024; 15:645. [PMID: 38245505 PMCID: PMC10799935 DOI: 10.1038/s41467-024-44874-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 01/09/2024] [Indexed: 01/22/2024] Open
Abstract
Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) is currently the leading cause of chronic liver disease worldwide. Metabolic Dysfunction-Associated Steatohepatitis (MASH), an advanced form of MASLD, can progress to liver fibrosis, cirrhosis, and hepatocellular carcinoma. Based on recent findings by our team that liver 5HT2A knockout male mice suppressed steatosis and reduced fibrosis-related gene expression, we developed a peripheral 5HT2A antagonist, compound 11c for MASH. It shows good in vitro activity, stability, and in vivo pharmacokinetics (PK) in rats and dogs. Compound 11c also shows good in vivo efficacy in a diet-induced obesity (DIO) male mice model and in a choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD) male mice model, effectively improving histologic features of MASH and fibrosis. According to the tissue distribution study using [14C]-labeled 11c, the compound was determined to be a peripheral 5HT2A antagonist. Collectively, first-in-class compound 11c shows promise as a therapeutic agent for the treatment of MASLD and MASH.
Collapse
Affiliation(s)
- Haushabhau S Pagire
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
- JD Bioscience Inc., TJS Knowledge Industrial Center Suite 801, 208 Beon-gil Cheomdangwagi-ro, Buk-gu, Gwangju, 61011, Republic of Korea
| | - Suvarna H Pagire
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
- JD Bioscience Inc., TJS Knowledge Industrial Center Suite 801, 208 Beon-gil Cheomdangwagi-ro, Buk-gu, Gwangju, 61011, Republic of Korea
| | - Byung-Kwan Jeong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Won-Il Choi
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Chang Joo Oh
- Research Institute of Aging and Metabolism, Kyungpook National University School of Medicine, Daegu, 41404, Republic of Korea
| | - Chae Won Lim
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, 41404, Republic of Korea
| | - Minhee Kim
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Jihyeon Yoon
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Seong Soon Kim
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, 34114, Korea
| | - Myung Ae Bae
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, 34114, Korea
| | - Jae-Han Jeon
- Research Institute of Aging and Metabolism, Kyungpook National University School of Medicine, Daegu, 41404, Republic of Korea
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, 41404, Republic of Korea
| | - Sungmin Song
- JD Bioscience Inc., TJS Knowledge Industrial Center Suite 801, 208 Beon-gil Cheomdangwagi-ro, Buk-gu, Gwangju, 61011, Republic of Korea
| | - Hee Jong Lee
- JD Bioscience Inc., TJS Knowledge Industrial Center Suite 801, 208 Beon-gil Cheomdangwagi-ro, Buk-gu, Gwangju, 61011, Republic of Korea
| | - Eun Young Lee
- JD Bioscience Inc., TJS Knowledge Industrial Center Suite 801, 208 Beon-gil Cheomdangwagi-ro, Buk-gu, Gwangju, 61011, Republic of Korea
| | - Peter C Goughnour
- JD Bioscience Inc., TJS Knowledge Industrial Center Suite 801, 208 Beon-gil Cheomdangwagi-ro, Buk-gu, Gwangju, 61011, Republic of Korea
| | - Dooseop Kim
- JD Bioscience Inc., TJS Knowledge Industrial Center Suite 801, 208 Beon-gil Cheomdangwagi-ro, Buk-gu, Gwangju, 61011, Republic of Korea
| | - In-Kyu Lee
- Research Institute of Aging and Metabolism, Kyungpook National University School of Medicine, Daegu, 41404, Republic of Korea
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
| | - Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology and Hepatology, Department of Medicine, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Hail Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
- Biomedical Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Jin Hee Ahn
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea.
- JD Bioscience Inc., TJS Knowledge Industrial Center Suite 801, 208 Beon-gil Cheomdangwagi-ro, Buk-gu, Gwangju, 61011, Republic of Korea.
| |
Collapse
|
20
|
Zhang F, Wu R, Liu Y, Dai S, Xue X, Gong X, Li Y. Comparative Pharmacokinetic Study of Rhubarb Anthraquinones in Normal and Nonalcoholic Fatty Liver Disease Rats. Eur J Drug Metab Pharmacokinet 2024; 49:111-121. [PMID: 38112917 DOI: 10.1007/s13318-023-00875-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND AND OBJECTIVES Rhubarb anthraquinones contain five main components, that is, rhein, emodin, aloe-emodin, chrysophanol, and physcion, which demonstrate good therapeutic effects on nonalcoholic fatty liver disease (NAFLD). However, research on its pharmacokinetics in NAFLD remains lacking. This study aimed to investigate the pharmacokinetic differences of rhubarb anthraquinones in normal and NAFLD rats. METHODS This study developed an NAFLD rat model by high-fat diet feeding for 6 weeks. Normal and NAFLD groups were orally administered different rhubarb anthraquinones doses (37.5, 75, and 150 mg/kg). The concentration of the rhein, emodin, aloe-emodin, chrysophanol, and physcion in plasma was determined by high-performance liquid chromatography-ultraviolet. RESULTS The results revealed significant differences in pharmacokinetic behavior between normal and NAFLD rats. Compared with normal rats, NAFLD rats demonstrated significantly increased maximum plasma concentration (Cmax) and area under the plasma concentration-time curve (AUC0 → ∞) of rhubarb anthraquinones (P < 0.05), as well as significantly prolonged time to reach maximum plasma concentration (Tmax), terminal elimination half-life (t1/2), and mean residence time (MRT) of rhubarb anthraquinones (P < 0.05). CONCLUSIONS This study indicates significant differences in the pharmacokinetics of rhubarb anthraquinones between the physiological and NAFLD states of rats. Rhubarb anthraquinone demonstrated a longer retention time and slower absorption rate in NAFLD rats and exhibited higher bioavailability and peak concentration. This finding provides important information for guiding the clinical use of rhubarb anthraquinones under pathological conditions.
Collapse
Affiliation(s)
- Fang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liu Tai Avenue, Wenjiang District, Chengdu, 611137, China
| | - Rui Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liu Tai Avenue, Wenjiang District, Chengdu, 611137, China
| | - Yanfang Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liu Tai Avenue, Wenjiang District, Chengdu, 611137, China
| | - Shu Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liu Tai Avenue, Wenjiang District, Chengdu, 611137, China
| | - Xinyan Xue
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liu Tai Avenue, Wenjiang District, Chengdu, 611137, China
| | - Xiaohong Gong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liu Tai Avenue, Wenjiang District, Chengdu, 611137, China.
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liu Tai Avenue, Wenjiang District, Chengdu, 611137, China.
| |
Collapse
|
21
|
Song Y, Chen B, Jiang L, Zhao F, Feng X. Global Trends of Treatment for NAFLD from 2012 to 2021: A Bibliometric and Mapping Analysis. Endocr Metab Immune Disord Drug Targets 2024; 24:573-584. [PMID: 37855283 DOI: 10.2174/0118715303230418230925060312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 07/02/2023] [Accepted: 08/06/2023] [Indexed: 10/20/2023]
Abstract
AIM The present study aimed to map publication trends and explore research hotspots of treatment for NAFLD study by bibliometric analysis. BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a multi-system metabolic disorder involving the liver. Thousands of papers have been published on the treatment of NAFLD, but no comprehensive statistical and intuitive analysis has been made. The present study aimed to map publication trends and explore research hotspots of treatment for NAFLD study by bibliometric analysis. OBJECTIVE (1) The pathogenesis of NAFLD and the possible treatment mechanism; (2) prevalence, risk factors, and traditional therapies for NAFLD; (3) frontier therapies for NAFLD. Method; This paper conducted a bibliometric analysis based on the Web of Science Core Collection (WoSCC). The knowledge map was constructed by VOS viewer v.1.6.10 to visualize the annual publication number, the distribution of countries, international collaborations, author productivity, source journals, cited references, and keywords in this field. RESULTS From 2012 to 2021, 2,437 peer-reviewed publications on the treatment of NAFLD were retrieved. China contributed the most publications, while the United States received the most citations. Journal of Hepatology was the most prolific journal in this field. Prof. Rohit Loomba. CONCLUSION Our study provides a comprehensive and objective analysis of NAFLD treatment that allows researchers to quickly locate research hotspots in a large number of relevant literatures. Meanwhile, it may also provide valuable information for researchers looking for potential partners and institutions.
Collapse
Affiliation(s)
- Yuling Song
- The Fourth Affiliated Hospital of China Medical University, Shenyang, 110000, Liaoning, China
| | - Boru Chen
- The Fourth Affiliated Hospital of China Medical University, Shenyang, 110000, Liaoning, China
| | - Lu Jiang
- The Fourth Affiliated Hospital of China Medical University, Shenyang, 110000, Liaoning, China
| | - Fangkun Zhao
- The Fourth Affiliated Hospital of China Medical University, Shenyang, 110000, Liaoning, China
| | - Xiuqin Feng
- The Fourth Affiliated Hospital of China Medical University, Shenyang, 110000, Liaoning, China
| |
Collapse
|
22
|
Wu X, Zhang Y, Zheng D, Yin Y, Peng M, Wang J, Zhu X. Prediction of the mechanisms of action of Qutan Huoxue decoction in non-alcoholic steatohepatitis (NASH): a network pharmacology study and experimental validation. PHARMACEUTICAL BIOLOGY 2023; 61:520-530. [PMID: 36908041 PMCID: PMC10013566 DOI: 10.1080/13880209.2023.2182892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 12/20/2022] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
CONTEXT Qutan Huoxue decoction (QTHX) is used to treat non-alcoholic steatohepatitis (NASH) with good efficacy in the clinic. However, the mechanism is not clear yet. OBJECTIVE This study investigates the mechanism of QTHX in the treatment of NASH. MATERIALS AND METHODS Potential pathways of QTHX were predicted by network pharmacology. Fourty Sprague Dawley (SD) rats (half normal diet, half high-fat diet) were fed six to eight weeks, primary hepatocytes and Kupffer cells were extracted and co-cultured by the 0.4-micron trans well culture system. Then, the normal co-cultured cells were treated by normal serum, the NASH co-cultured cells were treated with various concentrations of QTHX-containing serum (0, 5, 7.5 or 10 μg/mL) for 24 h. The expression of targets were measured with Activity Fluorometric Assay, Western blot and PCR assay. RESULTS Network pharmacology indicated that liver-protective effect of QTHX was associated with its anti-inflammation response, oxidative stress, and lipid receptor signalling. 10 μg/mL QTHX significantly reduced the inflammation response and lipid levels in primary hepatocytes (ALT: 46.43 ± 2.76 U/L, AST: 13.96 ± 1.08 U/L, TG: 0.25 ± 0.01 mmol/L, TC: 0.14 ± 0.05 mmol/L), comparing with 0 μg/mL NASH group (ALT: 148 ± 9.22 U/L, AST: 53.02 ± 2.30 U/L, TG: 0.74 ± 0.07 mmol/L, TC: 0.91 ± 0.07 mmol/L) (p < 0.01). Meanwhile, QTHX increased expression of SOCS1 and decreased expression of TLR4, Myd88, NF-κB. CONCLUSIONS The study suggested that QTHX treats NASH in rats by activating the SCOS1/NF-κB/TLR4 pathway, suggesting QTHX could be further developed as a potential liver-protecting agent.
Collapse
Affiliation(s)
- Xia Wu
- Department of Integrated Traditional Chinese & Western Medicine, Southwest Medical University, Luzhou, China
| | - Yurong Zhang
- Hepatobiliary Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Ding Zheng
- Hepatobiliary Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Yue Yin
- Hepatobiliary Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Mengyun Peng
- Hepatobiliary Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Jing Wang
- Hepatobiliary Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Xiaoning Zhu
- Hepatobiliary Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
23
|
Jung IR, Ahima RS, Kim SF. Time-restricted feeding ameliorates MCDD-induced steatohepatitis in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.15.567214. [PMID: 38014152 PMCID: PMC10680721 DOI: 10.1101/2023.11.15.567214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Non-Alcoholic Steatohepatitis (NASH) is an inflammatory form of Non-Alcoholic Fatty Liver Disease (NAFLD), closely associated with disease progression, cirrhosis, liver failure, and hepatocellular carcinoma. Time-restricted feeding (TRF) has been shown to decrease body weight and adiposity and improve metabolic outcomes, however, the effect of TRF on NASH has not yet been fully understood. We had previously reported that inositol polyphosphate multikinase (IPMK) mediates hepatic insulin signaling. Importantly, we have found that TRF increases hepatic IPMK levels. Therefore, we investigated whether there is a causal link between TRF and IPMK in a mouse model of NASH, i.e., methionine and choline deficient diet (MCDD)-induced steatohepatitis. Here, we show that TRF alleviated markers of NASH, i.e., reduced hepatic steatosis, liver triglycerides (TG), serum alanine transaminase (ALT) and aspartate aminotransferase (AST), inflammation and fibrosis in MCDD mice. Interestingly, MCDD led to a significant reduction in IPMK levels, and the deletion of hepatic IPMK exacerbates the NASH phenotype induced by MCDD, accompanied by increased gene expression of pro-inflammatory chemokines. Conversely, TRF restored IPMK levels and significantly reduced gene expression of proinflammatory cytokines and chemokines. Our results demonstrate that TRF attenuates MCDD-induced NASH via IPMK-mediated changes in hepatic steatosis and inflammation.
Collapse
Affiliation(s)
- Ik-Rak Jung
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University, Baltimore, Maryland, USA
| | - Rexford S. Ahima
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sangwon F. Kim
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
24
|
Meza-Rios A, López-Villalobos EF, Anguiano-Sevilla LA, Ruiz-Quezada SL, Velazquez-Juarez G, López-Roa RI, Marin-Molina AL, Zepeda-Morales ASM. Effects of Foods of Mesoamerican Origin in Adipose Tissue and Liver-Related Metabolism. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1907. [PMID: 38003956 PMCID: PMC10672752 DOI: 10.3390/medicina59111907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/10/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023]
Abstract
Adipose tissue and liver metabolism play a key role in maintaining body homeostasis; therefore, their impairment conduces a pathological state. Nowadays, occidental lifestyle is a common etiological issue among a variety of chronic diseases, while diet is a unique strategy to prevent obesity and liver metabolism impairment and is a powerful player in the treatment of metabolic-related diseases. Mesoamerican foods are rich in bioactive molecules that enhance and improve adipose tissue and liver performance and represent a prophylactic and therapeutic alternative for disorders related to the loss of homeostasis in the metabolism of these two important tissues.
Collapse
Affiliation(s)
- Alejandra Meza-Rios
- Laboratorio de Análisis Clínicos y Bacteriológicos (Vinculación), Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Universidad de Guadalajara, Boulevard Marcelino García Barragán, No. 1421, Guadalajara 44430, Mexico; (A.M.-R.); (E.F.L.-V.); (A.L.M.-M.)
| | - Erika Fabiola López-Villalobos
- Laboratorio de Análisis Clínicos y Bacteriológicos (Vinculación), Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Universidad de Guadalajara, Boulevard Marcelino García Barragán, No. 1421, Guadalajara 44430, Mexico; (A.M.-R.); (E.F.L.-V.); (A.L.M.-M.)
| | - Luis Alberto Anguiano-Sevilla
- Departamento de Farmacobiología, CUCEI, Universidad de Guadalajara, Blvd. M. García Barragán, No. 1421, Guadalajara 44430, Mexico; (L.A.A.-S.); (S.L.R.-Q.)
| | - Sandra Luz Ruiz-Quezada
- Departamento de Farmacobiología, CUCEI, Universidad de Guadalajara, Blvd. M. García Barragán, No. 1421, Guadalajara 44430, Mexico; (L.A.A.-S.); (S.L.R.-Q.)
| | - Gilberto Velazquez-Juarez
- Laboratorio de Análisis Fisicoquímicos Externos, Departamento de Química, CUCEI, Universidad de Guadalajara, Blvd. M. García Barragán, No. 1421, Guadalajara 44430, Mexico;
| | - Rocío Ivette López-Roa
- Laboratorio de Investigación y Desarrollo Farmacéutico, Departamento de Farmacobiología, CUCEI, Universidad de Guadalajara, Blvd. M. García Barragán, No. 1421, Guadalajara 44430, Mexico;
| | - Ana Laura Marin-Molina
- Laboratorio de Análisis Clínicos y Bacteriológicos (Vinculación), Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Universidad de Guadalajara, Boulevard Marcelino García Barragán, No. 1421, Guadalajara 44430, Mexico; (A.M.-R.); (E.F.L.-V.); (A.L.M.-M.)
| | - Adelaida Sara Minia Zepeda-Morales
- Laboratorio de Análisis Clínicos y Bacteriológicos (Vinculación), Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Universidad de Guadalajara, Boulevard Marcelino García Barragán, No. 1421, Guadalajara 44430, Mexico; (A.M.-R.); (E.F.L.-V.); (A.L.M.-M.)
| |
Collapse
|
25
|
Torre A, Córdova-Gallardo J, Frati Munari AC. Rifaximin Alfa and Liver Diseases: More Than a Treatment for Encephalopathy, a Disease Modifier. Ther Clin Risk Manag 2023; 19:839-851. [PMID: 37899985 PMCID: PMC10612522 DOI: 10.2147/tcrm.s425292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/17/2023] [Indexed: 10/31/2023] Open
Abstract
RFX, a rifamycin-based antibacterial agent obtained by the culture of the actinomycete Streptomyces mediterranei, has a broad antibacterial spectrum covering gram- positive, gram-negative, aerobic, and anaerobic bacteria. RFX is an antibiotic that elicits its effect by inhibiting bacterial RNA synthesis. When administered orally, its intestinal absorption is extremely low (<0.4%), restricting antibacterial activity mainly in the intestinal tract, with few systemic side effects. RFX has been recommended by the American Association for the Study of Liver Diseases and the European Association for the Study of the Liver guidelines for the treatment of HE. RFX may contribute to restore hepatic function and to decrease the development of liver fibrosis. Its efficacy has been shown in patients with previous hepatic encephalopathy and several complications, such as infections, including spontaneous bacterial peritonitis, ascites and oesophageal variceal bleeding. Thus, RFX has an outstanding role in the therapeutic arsenal in hepatic cirrhosis, under the concept of disease modifier.
Collapse
Affiliation(s)
- Aldo Torre
- Guest Research, Metabolic Unit Department, Instituto Nacional de Ciencias Médicas Y Nutrición “Salvador Zubirán”, México City, Mexico
- Guest Research, Liver Unit Department, Hospital General de México, México City, Mexico
| | | | | |
Collapse
|
26
|
Zhang C, Teng Y, Li F, Ho W, Bai X, Xu X, Zhang XQ. Nanoparticle-Mediated RNA Therapy Attenuates Nonalcoholic Steatohepatitis and Related Fibrosis by Targeting Activated Hepatic Stellate Cells. ACS NANO 2023; 17:14852-14870. [PMID: 37490628 DOI: 10.1021/acsnano.3c03217] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Chronic liver injury and inflammation triggered by metabolic abnormalities initiate the activation of hepatic stellate cells (HSCs), driving fibrosis and parenchymal dysfunction, culminating in disorders such as nonalcoholic steatohepatitis (NASH). Unfortunately, there are currently no approved drugs capable of effectively treating NASH due to the challenges in addressing fibrosis and restoring extracellular matrix (ECM) homeostasis. We discovered a significant up-regulation of interleukin-11 (IL-11) in fibrotic livers using two well-established murine models of NASH. To leverage this signaling pathway, we developed a nanoparticle (NP)-assisted RNA interfering approach that specifically targets activated HSCs (aHSCs), blocking IL-11/ERK signaling to regulate HSC transdifferentiation along with fibrotic remodeling. The most potent NP, designated NP-AEAA, showed enhanced accumulation in fibrotic livers with NASH and was primarily enriched in aHSCs. We further investigated the therapeutic efficacy of aHSC-targeting NP-AEAA encapsulating small interfering RNA (siRNA) against IL11 or its cognate receptor IL11ra1 (termed siIL11@NP-AEAA or siIL11ra1@NP-AEAA, respectively) for resolving fibrosis and NASH. Our results demonstrate that both siIL11@NP-AEAA and siIL11ra1@NP-AEAA effectively inhibit HSC activation and resolve fibrosis and inflammation in two well-established murine models of NASH. Notably, siIL11ra1@NP-AEAA exhibits a superior therapeutic effect over siIL11@NP-AEAA, in terms of reducing liver steatosis and fibrosis as well as recovering liver function. These results constitute a targeted nanoparticulate siRNA therapeutic approach against the IL-11 signaling pathway of aHSCs in the fibrotic liver, offering a promising therapeutic intervention for NASH and other diseases.
Collapse
Affiliation(s)
- Chenshuang Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmacy, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Yilong Teng
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmacy, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | | | | | - Xin Bai
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmacy, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | | | - Xue-Qing Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmacy, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| |
Collapse
|
27
|
Ma K, Hu X, Nambu K, Ueda D, Ichimaru N, Fujino M, Li XK. Coral calcium carried hydrogen ameliorates the severity of non-alcoholic steatohepatitis induced by a choline deficient high carbohydrate fat-free diet in elderly rats. Sci Rep 2023; 13:11646. [PMID: 37468618 DOI: 10.1038/s41598-023-38856-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023] Open
Abstract
Hydrogen has been reported to act as an antioxidant, anti-apoptosis and anti-inflammatory agent. Coral calcium carried hydrogen (G2-SUISO) is a safer and more convenient form of hydrogen agent than others. The mechanism underlying the hepatoprotective effects of G2-SUISO using an elderly non-alcoholic steatohepatitis (NASH) rat model was investigated. Two days after fasting, six-month-old elderly male F344/NSlc rats were given a choline deficient high carbohydrate fat-free (CDHCFF) diet from day 0 to day 3 as CDHCFF control group, and then switched to a normal diet from days 4 to 7 with or without 300 mg/kg G2-SUISO. Rats in each group were finally being sacrificed on day 3 or day 7. In the CDHCFF diet group, G2-SUISO decreased the liver weight-to-body weight ratio, the serum AST, ALT, total cholesterol levels, inflammatory infiltration, pro-inflammatory cytokine expression and lipid droplets with inhibiting lipogenic pathways by reducing sterol regulatory element-binding protein-1c, acetyl-CoA carboxylase and fatty acid synthase gene expression compared with the CDHCFF diet alone. G2-SUISO had beneficial effects of anti-apoptosis as well the down-regulation of pro-apoptotic molecules including NF-κB, caspase-3, caspase-9 and Bax. These findings suggest that G2-SUISO treatment exerts a significant hepatoprotective effect against steatosis, inflammation and apoptosis in elderly NASH rats.
Collapse
Affiliation(s)
- Kuai Ma
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Xin Hu
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | | | - Daisuke Ueda
- Division of Hepato-Pancreato-Biliary Surgery and Transplantation, Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | - Masayuki Fujino
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan.
- Management Department of Biosafety, Laboratory Animal, and Pathogen Bank, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.
| | - Xiao-Kang Li
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan.
| |
Collapse
|
28
|
Wang G, Huang Y, Yang H, Lin H, Zhou S, Qian J. Impacts of bariatric surgery on adverse liver outcomes: a systematic review and meta-analysis. Surg Obes Relat Dis 2023; 19:717-726. [PMID: 36890087 DOI: 10.1016/j.soard.2022.12.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/11/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Bariatric surgery has been reported to improve degeneration, inflammation, and fibrosis in nonalcoholic fatty liver disease, but the effects of bariatric surgery on the associated clinical outcomes is not known. OBJECTIVES This work aimed to assess the impacts of bariatric surgery on adverse liver outcomes in people with obesity. SETTING An electronic search was performed on EMBASE, PubMed, and Cochrane Central Register of Controlled Trials (CENTRAL). METHODS The primary outcome was the incidence of adverse liver outcomes following bariatric surgery. Liver cancer, cirrhosis, liver transplantation, liver failure, and liver-related mortality were defined as adverse hepatic outcomes. RESULTS We analyzed data from 18 studies comprising 16,800,287 post bariatric surgical patients and 10,595,752 control patients. We found that bariatric surgery reduced the risk of adverse liver outcomes in people with obesity (hazard ratio [HR] = .33, 95% confidence interval [CI] = .31-.34; I2 = 98.1%). The subgroup analysis showed that bariatric surgery reduced the risk of nonalcoholic cirrhosis (HR = .07, 95% CI = .06-.08; I2 = 99.3%) and liver cancer (HR = .37, 95% CI = .35-.39; I2 = 97.8%), although bariatric surgery may also increase the risk of postoperative alcoholic cirrhosis (HR = 1.32, 95% CI = 1.35-1.59). CONCLUSIONS This systematic review and meta-analysis revealed that bariatric surgery lowered the incidence of adverse hepatic outcomes. However, bariatric surgery may also increase the risk of alcoholic cirrhosis after surgery. Future randomized controlled trials are required to further investigate the effects of bariatric surgery on liver of people with obesity.
Collapse
Affiliation(s)
- Guocheng Wang
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China; Department of Gastrointestinal Surgery, Graduate School of Dalian Medical University, Dalian, China
| | - Yan Huang
- Department of Head and Neck Surgery, Graduate School of Dalian Medical University, Dalian, China
| | - Haojun Yang
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Huang Lin
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Shengfang Zhou
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Jun Qian
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China.
| |
Collapse
|
29
|
Huang X, Chen H, Wen S, Dong M, Zhou L, Yuan X. Therapeutic Approaches for Nonalcoholic Fatty Liver Disease: Established Targets and Drugs. Diabetes Metab Syndr Obes 2023; 16:1809-1819. [PMID: 37366486 PMCID: PMC10290856 DOI: 10.2147/dmso.s411400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), as a multisystemic disease, is the most prevalent chronic liver disease characterized by extremely complex pathogenic mechanisms and multifactorial etiology, which often develops as a consequence of obesity, metabolic syndrome. Pathophysiological mechanisms involved in the development of NAFLD include diet, obesity, insulin resistance (IR), genetic and epigenetic determinants, intestinal dysbiosis, oxidative/nitrosative stress, autophagy dysregulation, hepatic inflammation, gut-liver axis, gut microbes, impaired mitochondrial metabolism and regulation of hepatic lipid metabolism. Some of the new drugs for the treatment of NAFLD are introduced here. All of them achieve therapeutic objectives by interfering with certain pathophysiological pathways of NAFLD, including fibroblast growth factors (FGF) analogues, peroxisome proliferator-activated receptors (PPARs) agonists, glucagon-like peptide-1 (GLP-1) agonists, G protein-coupled receptors (GPCRs), sodium-glucose cotransporter-2 inhibitors (SGLT-2i), farnesoid X receptor (FXR), fatty acid synthase inhibitor (FASNi), antioxidants, etc. This review describes some pathophysiological mechanisms of NAFLD and established targets and drugs.
Collapse
Affiliation(s)
- Xiaojing Huang
- Graduate School of Fudan University, Shanghai, People’s Republic of China
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People’s Republic of China
| | - Huiling Chen
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People’s Republic of China
| | - Song Wen
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People’s Republic of China
| | - Meiyuan Dong
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People’s Republic of China
| | - Ligang Zhou
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People’s Republic of China
| | - Xinlu Yuan
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People’s Republic of China
| |
Collapse
|
30
|
Chen Y, Wang W, Morgan MP, Robson T, Annett S. Obesity, non-alcoholic fatty liver disease and hepatocellular carcinoma: current status and therapeutic targets. Front Endocrinol (Lausanne) 2023; 14:1148934. [PMID: 37361533 PMCID: PMC10286797 DOI: 10.3389/fendo.2023.1148934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2023] Open
Abstract
Obesity is a global epidemic and overwhelming evidence indicates that it is a risk factor for numerous cancers, including hepatocellular carcinoma (HCC), the third leading cause of cancer-related deaths worldwide. Obesity-associated hepatic tumorigenesis develops from nonalcoholic fatty liver disease (NAFLD), progressing to nonalcoholic steatohepatitis (NASH), cirrhosis and ultimately to HCC. The rising incidence of obesity is resulting in an increased prevalence of NAFLD and NASH, and subsequently HCC. Obesity represents an increasingly important underlying etiology of HCC, in particular as the other leading causes of HCC such as hepatitis infection, are declining due to effective treatments and vaccines. In this review, we provide a comprehensive overview of the molecular mechanisms and cellular signaling pathways involved in the pathogenesis of obesity-associated HCC. We summarize the preclinical experimental animal models available to study the features of NAFLD/NASH/HCC, and the non-invasive methods to diagnose NAFLD, NASH and early-stage HCC. Finally, since HCC is an aggressive tumor with a 5-year survival of less than 20%, we will also discuss novel therapeutic targets for obesity-associated HCC and ongoing clinical trials.
Collapse
Affiliation(s)
- Yinshuang Chen
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Weipeng Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Maria P. Morgan
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Tracy Robson
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Stephanie Annett
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| |
Collapse
|
31
|
Ryoo H, Underhill GH. Combinatorial Microgels for 3D ECM Screening and Heterogeneous Microenvironmental Culture of Primary Human Hepatic Stellate Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.05.539608. [PMID: 37214995 PMCID: PMC10197534 DOI: 10.1101/2023.05.05.539608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Non-alcoholic fatty liver disease affects 30% of the United States population and its progression can lead to non-alcoholic steatohepatitis (NASH), which can result in cirrhosis and hepatocellular carcinoma. NASH is characterized by a highly heterogeneous liver microenvironment created by the fibrotic activity of hepatic stellate cells (HSCs). While HSCs have been widely studied in 2D, further advancements in physiologically-relevant 3D culture platforms for the in vitro modeling of these heterogeneous environments are needed. In this study, we have demonstrated the use of stiffness-variable, ECM protein-conjugated polyethylene glycol microgels as 3D cell culture scaffolds to modulate HSC activation. We further employed these microgels as a high throughput ECM screening system to identify HSC matrix remodeling and metabolic activities in distinct heterogeneous microenvironmental conditions. In particular, 6 kPa fibronectin microgels were shown to significantly increase HSC matrix remodeling and metabolic activities in single or multiple component microenvironments. Overall, heterogeneous microenvironments consisting of multiple distinct ECM microgels promoted a decrease in HSC matrix remodeling and metabolic activities compared to homogeneous microenvironments. We envision this ECM screening platform being adapted to a broad number of cell types to aid the identification of ECM microenvironments that best recapitulate the desired phenotype, differentiation, or drug efficacy.
Collapse
Affiliation(s)
- Hyeon Ryoo
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Gregory H. Underhill
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
32
|
Kim H, Park C, Kim TH. Targeting Liver X Receptors for the Treatment of Non-Alcoholic Fatty Liver Disease. Cells 2023; 12:cells12091292. [PMID: 37174692 PMCID: PMC10177243 DOI: 10.3390/cells12091292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/29/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) refers to a range of conditions in which excess lipids accumulate in the liver, possibly leading to serious hepatic manifestations such as steatohepatitis, fibrosis/cirrhosis and cancer. Despite its increasing prevalence and significant impact on liver disease-associated mortality worldwide, no medication has been approved for the treatment of NAFLD yet. Liver X receptors α/β (LXRα and LXRβ) are lipid-activated nuclear receptors that serve as master regulators of lipid homeostasis and play pivotal roles in controlling various metabolic processes, including lipid metabolism, inflammation and immune response. Of note, NAFLD progression is characterized by increased accumulation of triglycerides and cholesterol, hepatic de novo lipogenesis, mitochondrial dysfunction and augmented inflammation, all of which are highly attributed to dysregulated LXR signaling. Thus, targeting LXRs may provide promising strategies for the treatment of NAFLD. However, emerging evidence has revealed that modulating the activity of LXRs has various metabolic consequences, as the main functions of LXRs can distinctively vary in a cell type-dependent manner. Therefore, understanding how LXRs in the liver integrate various signaling pathways and regulate metabolic homeostasis from a cellular perspective using recent advances in research may provide new insights into therapeutic strategies for NAFLD and associated metabolic diseases.
Collapse
Affiliation(s)
- Hyejin Kim
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Chaewon Park
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Tae Hyun Kim
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
- Drug Information Research Institute, Sookmyung Women's University, Seoul 04310, Republic of Korea
- Muscle Physiome Research Center, Sookmyung Women's University, Seoul 04310, Republic of Korea
| |
Collapse
|
33
|
Yao M, Zhou P, Qin YY, Wang L, Yao DF. Mitochondrial carnitine palmitoyltransferase-II dysfunction: A possible novel mechanism for nonalcoholic fatty liver disease in hepatocarcinogenesis. World J Gastroenterol 2023; 29:1765-1778. [PMID: 37032731 PMCID: PMC10080702 DOI: 10.3748/wjg.v29.i12.1765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/04/2022] [Accepted: 03/13/2023] [Indexed: 03/28/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) or metabolic-associated fatty liver disease has been characterized by the lipid accumulation with injury of hepatocytes and has become one of the most common chronic liver diseases in the world. The complex mechanisms of NAFLD formation are still under identification. Carnitine palmitoyltransferase-II (CPT-II) on inner mitochondrial membrane (IMM) regulates long chain fatty acid β-oxidation, and its abnormality has had more and more attention paid to it by basic and clinical research in NAFLD. The sequences of its peptide chain and DNA nucleotides have been identified, and the catalytic activity of CPT-II is affected on its gene mutations, deficiency, enzymatic thermal instability, circulating carnitine level and so on. Recently, the CPT-II dysfunction has been discovered in models of liver lipid accumulation. Meanwhile, the malignant transformation of hepatocyte-related CD44+ stem T cell activation, high levels of tumor-related biomarkers (AFP, GPC3) and abnormal activation of Wnt3a expression as a key signal molecule of the Wnt/β-catenin pathway run parallel to the alterations of hepatocyte pathology. This review focuses on some of the progress of CPT-II inactivity on IMM with liver fatty accumulation as a possible novel pathogenesis for NAFLD in hepatocarcinogenesis.
Collapse
Affiliation(s)
- Min Yao
- Department of Medical Immunology, Medical School of Nantong University & Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Ping Zhou
- Department of Medical Immunology, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Yan-Yan Qin
- Department of Medical Immunology, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Li Wang
- Research Center for Intelligent Information Technology, Nantong University, Nantong 226019, Jiangsu Province, China
| | - Deng-Fu Yao
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| |
Collapse
|
34
|
Torres-Peña JD, Arenas-de Larriva AP, Alcala-Diaz JF, Lopez-Miranda J, Delgado-Lista J. Different Dietary Approaches, Non-Alcoholic Fatty Liver Disease and Cardiovascular Disease: A Literature Review. Nutrients 2023; 15:nu15061483. [PMID: 36986213 PMCID: PMC10058124 DOI: 10.3390/nu15061483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/14/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the first cause of chronic liver disease and is also associated with other harmful entities such as obesity, metabolic syndrome, dyslipidemia, and diabetes. NAFLD is a significant public health concern worldwide, impacting individuals of all ages, and its prevalence is projected to increase in the near future due to its connection with obesity. Intrinsic (genetics) and external (lifestyle) factors may also modulate NAFLD, and, in turn, may partly explain the observed relationship between NAFLD and cardiovascular disease (CVD). Although many drugs are been tested to treat NAFLD, to date, no drug has indication to specifically treat this disorder. Thus, the current management of NAFLD relies on lifestyle modifications and specifically on weight loss, physical activity, and the intake of a healthy diet. In the present narrative review, we will discuss the effects of certain dietary patterns on NAFLD incidence and progression.
Collapse
Affiliation(s)
- Jose D Torres-Peña
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Av. Menéndez Pidal s/n, 14004 Cordoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Antonio P Arenas-de Larriva
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Av. Menéndez Pidal s/n, 14004 Cordoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Juan F Alcala-Diaz
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Av. Menéndez Pidal s/n, 14004 Cordoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Jose Lopez-Miranda
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Av. Menéndez Pidal s/n, 14004 Cordoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Javier Delgado-Lista
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Av. Menéndez Pidal s/n, 14004 Cordoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
35
|
Mitra S, Halder AK, Ghosh N, Mandal SC, Cordeiro MNDS. Multi-model in silico characterization of 3-benzamidobenzoic acid derivatives as partial agonists of Farnesoid X receptor in the management of NAFLD. Comput Biol Med 2023; 157:106789. [PMID: 36963353 DOI: 10.1016/j.compbiomed.2023.106789] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/19/2023] [Accepted: 03/11/2023] [Indexed: 03/16/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a pathological condition which is strongly correlated with fat accumulation in the liver that has become a major health hazard globally. So far, limited treatment options are available for the management of NAFLD and partial agonism of Farnesoid X receptor (FXR) has proven to be one of the most promising strategies for treatment of NAFLD. In present work, a range of validated predictive cheminformatics and molecular modeling studies were performed with a series of 3-benzamidobenzoic acid derivatives in order to recognize their structural requirements for possessing higher potency towards FXR. 2D-QSAR models were able to extract the most significant structural attributes determining the higher activity towards the receptor. Ligand-based pharmacophore model was created with a novel and less-explored open access tool named QPhAR to acquire information regarding important 3D-pharmacophoric features that lead to higher agonistic potential towards the FXR. The alignment of the dataset compounds based on pharmacophore mapping led to 3D-QSAR models that pointed out the most crucial steric and electrostatic influence. Molecular dynamics (MD) simulation performed with the most potent and the least potent derivatives of the current dataset helped us to understand how to link the structural interpretations obtained from 2D-QSAR, 3D-QSAR and pharmacophore models with the involvement of specific amino acid residues in the FXR protein. The current study revealed that hydrogen bond interactions with carboxylate group of the ligands play an important role in the ligand receptor binding but higher stabilization of different helices close to the binding site of FXR (e.g., H5, H6 and H8) through aromatic scaffolds of the ligands should lead to higher activity for these ligands. The present work affords important guidelines towards designing novel FXR partial agonists for new therapeutic options in the management of NAFLD. Moreover, we relied mainly on open-access tools to develop the in-silico models in order to ensure their reproducibility as well as utilization.
Collapse
Affiliation(s)
- Soumya Mitra
- Dr. B.C. Roy College of Pharmacy & Allied Health Sciences, Durgapur, 713206, India
| | - Amit Kumar Halder
- Dr. B.C. Roy College of Pharmacy & Allied Health Sciences, Durgapur, 713206, India; LAQV@REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal
| | - Nilanjan Ghosh
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Subhash C Mandal
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - M Natália D S Cordeiro
- LAQV@REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal.
| |
Collapse
|
36
|
Sun T, Wang C, Huo L, Wang Y, Liu K, Wei C, Zhao H, Chen S, Ren L. Serum Cortistatin Level in Type 2 Diabetes Mellitus and Its Relationship with Nonalcoholic Fatty Liver Disease. Int J Gen Med 2023; 16:631-639. [PMID: 36851999 PMCID: PMC9960706 DOI: 10.2147/ijgm.s396315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/23/2023] [Indexed: 02/23/2023] Open
Abstract
Purpose To evaluate serum cortistatin (CST) levels in type 2 diabetes mellitus (T2DM) patients with or without non-alcoholic fatty liver disease (NAFLD) and to examine the relationship between CST and NAFLD. Methods A total of 90 T2DM patients, which included 56 NAFLD patients (referred to as DM+NAFLD group) and 34 patients without NAFLD (DM-only group), and 83 non-diabetes individuals that included 39 NAFLD patients (NAFLD-only group) and 44 without NAFLD that acted as the normal-control group (NC group). The differences in the serum CST levels between the groups were compared, and the correlations between CST and other variables were calculated by applying both correlational analysis and multiple linear regression analysis. Results The mean serum CST levels were significantly lower in the DM+NAFLD and DM groups than in the NC group (P < 0.05). In addition, the CST levels were lower in the DM group relative to that in the NAFLD group (P < 0.05). However, no statistical difference was noted in the serum CST between diabetic patients with and without NAFLD (P > 0.05). Similarly, in the non-diabetic group, the serum CST level was not significantly different between individuals with and without NAFLD (P > 0.05). Furthermore, the serum CST levels were negatively associated with the levels of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), fasting plasma glucose (FPG), homeostasis model assessment-insulin resistance (HOMA-IR), and insulin cell function index (HOMA-β). Conversely, the serum CST levels were positively associated with high-density lipoprotein cholesterol (HDL-C). The data obtained through multiple linear regression implied that LDL-C and HOMA-β, but not HOMA-IR, were closely related to serum CST levels. Conclusion T2DM was related to decreased serum CST. However, serum CST was correlated with HOMA-β in T2DM patients, while HOMA-IR was not. There was no correlation between CST and NAFLD.
Collapse
Affiliation(s)
- Tiantian Sun
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People's Republic of China
| | - Chang Wang
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People's Republic of China.,North China University of Science and Technology, Tangshan, People's Republic of China
| | - Lijing Huo
- Department of Clinical Laboratory, Hebei General Hospital, Shijiazhuang, People's Republic of China
| | - Yichao Wang
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People's Republic of China
| | - Ke Liu
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People's Republic of China
| | - Changmei Wei
- Department of Clinical Laboratory, Hebei General Hospital, Shijiazhuang, People's Republic of China
| | - Hang Zhao
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People's Republic of China
| | - Shuchun Chen
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People's Republic of China
| | - Luping Ren
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People's Republic of China
| |
Collapse
|
37
|
Pal Chaudhary S, Reyes S, Chase ML, Govindan A, Zhao L, Luther J, Bhan I, Bethea E, Franses JW, Paige Walsh E, Anne Dageford L, Kimura S, Elias N, Yeh H, Markman J, Bozorgzadeh A, Tanabe K, Ferrone C, Zhu AX, Andersson K, Thiim M, Antonio Catalano O, Kambadakone A, Vagefi PA, Qadan M, Pratt D, Hashemi N, Corey KE, Misdraji J, Goyal L, Clark JW. Resection of NAFLD/NASH-related Hepatocellular Carcinoma (HCC): Clinical Features and Outcomes Compared with HCC Due to Other Etiologies. Oncologist 2023; 28:341-350. [PMID: 36763374 PMCID: PMC10078904 DOI: 10.1093/oncolo/oyac251] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/19/2022] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are the leading causes of hepatocellular carcinoma (HCC) worldwide. Limited data exist on surgical outcomes for NAFLD/NASH-related HCC compared with other HCC etiologies. We evaluated differences in clinicopathological characteristics and outcomes of patients undergoing surgical resection for NAFLD/NASH-associated HCC compared with other HCC etiologies. METHODS Demographic, clinicopathological features, and survival outcomes of patients with surgically resected HCC were collected. NAFLD activity score (NAS) and fibrosis score were assessed by focused pathologic review in a subset of patients. RESULTS Among 492 patients screened, 260 met eligibility (NAFLD/NASH [n = 110], and other etiologies [n = 150]). Median age at diagnosis was higher in the NAFLD/NASH HCC cohort compared with the other etiologies cohort (66.7 vs. 63.4 years, respectively, P = .005), with an increased percentage of female patients (36% vs. 18%, P = .001). NAFLD/NASH-related tumors were more commonly >5 cm (66.0% vs. 45%, P = .001). There were no significant differences in rates of lymphovascular or perineural invasion, histologic grade, or serum AFP levels. The NAFLD/NASH cohort had lower rates of background liver fibrosis, lower AST and ALT levels, and higher platelet counts (P < .01 for all). Median overall survival (OS) was numerically shorter in NAFLD/NASH vs other etiology groups, however, not statistically significant. CONCLUSIONS Patients with NAFLD/NASH-related HCC more commonly lacked liver fibrosis and presented with larger HCCs compared with patients with HCC from other etiologies. No differences were seen in rates of other high-risk features or survival. With the caveat of sample size and retrospective analysis, this supports a similar decision-making approach regarding surgical resection for NAFLD/NASH and other etiology-related HCCs.
Collapse
Affiliation(s)
- Surendra Pal Chaudhary
- Division of Oncology, Mass General Cancer Center and Harvard Medical School, Boston, MA, USA
| | | | | | | | - Lei Zhao
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jay Luther
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Irun Bhan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Emily Bethea
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Joseph W Franses
- Division of Oncology, Mass General Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Elizabeth Paige Walsh
- Division of Oncology, Mass General Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Leigh Anne Dageford
- Transplantation Unit, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Shoko Kimura
- Transplantation Unit, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Nahel Elias
- Transplantation Unit, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Heidi Yeh
- Transplantation Unit, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - James Markman
- Transplantation Unit, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Adel Bozorgzadeh
- Transplantation Unit, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kenneth Tanabe
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Cristina Ferrone
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Andrew X Zhu
- Jiahui Health, Jiahui International Cancer Center, Shanghai, People's Republic of China
| | - Karin Andersson
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael Thiim
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Onofrio Antonio Catalano
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Avinash Kambadakone
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Parsia A Vagefi
- Division of Surgical Transplantation, University of Texas Southwestern, Dallas, TX, USA
| | - Motaz Qadan
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Daniel Pratt
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Nikroo Hashemi
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kathleen E Corey
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Joseph Misdraji
- Department of Pathology, Yale New Haven Hospital, Yale University, New Haven, CT, USA
| | - Lipika Goyal
- Division of Oncology, Mass General Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Jeffrey W Clark
- Division of Oncology, Mass General Cancer Center and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
38
|
Pericàs JM, Tacke F, Anstee QM, Di Prospero NA, Kjær MS, Mesenbrink P, Koenig F, Genescà J, Ratziu V. Platform trials to overcome major shortcomings of traditional clinical trials in non-alcoholic steatohepatitis? Pros and cons. J Hepatol 2023; 78:442-447. [PMID: 36216134 DOI: 10.1016/j.jhep.2022.09.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/07/2022] [Accepted: 09/20/2022] [Indexed: 12/04/2022]
Abstract
Non-alcoholic fatty liver disease is a condition that affects 25% of the population. Non-alcoholic steatohepatitis (NASH) is a progressive form of the disease that can lead to severe complications such as cirrhosis and hepatocellular carcinoma. Despite its high prevalence, no drugs are currently approved for the treatment of NASH. The drug development pipeline in NASH is very active, yet most assets do not progress to phase III trials and those that do reach phase III often fail to achieve the endpoints necessary for approval by regulatory agencies. Amongst other reasons, the methodological and operational features of traditional clinical trials in NASH might impede optimal drug development. In this regard, platform trials might be an attractive complement or alternative to conventional clinical trials. Platform trials use a master protocol which enables evaluation of multiple investigational medicinal products concurrently or sequentially with a single, shared control arm. Through Bayesian interim analyses, these trials allow for early exit of drugs from the trial based on success or futility, while providing participants better chances of receiving active compounds through adaptive randomisation. Overall, platform trials represent an alternative for patients, pharmaceutical companies, and clinicians in the quest to accelerate the approval of pharmacologic treatments for NASH.
Collapse
Affiliation(s)
- Juan M Pericàs
- Liver Unit, Internal Medicine Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute for Research (VHIR), Universitat Autònoma de Barcelona, Centros de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain.
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Quentin M Anstee
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle NIHR Biomedical Research Centre, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | | | | | - Peter Mesenbrink
- Analytics Department, Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA
| | - Franz Koenig
- Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Joan Genescà
- Liver Unit, Internal Medicine Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute for Research (VHIR), Universitat Autònoma de Barcelona, Centros de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Vlad Ratziu
- Department of Hepatology, Pitié-Salpêtrière Hospital, University Paris 6, France
| |
Collapse
|
39
|
Li H, Cao Z, Wang L, Li J, Cheng X, Tang Y, Xing M, Yao P. Chronic high-fat diet induces galectin-3 and TLR4 to activate NLRP3 inflammasome in NASH. J Nutr Biochem 2023; 112:109217. [PMID: 36402251 DOI: 10.1016/j.jnutbio.2022.109217] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 05/01/2022] [Accepted: 09/27/2022] [Indexed: 11/19/2022]
Abstract
NOD-like receptor protein 3 (NLRP3) inflammasome activation triggers inflammation progression in some metabolism disorders, frequently accompanying the up-regulation of galectin-3 (Gal-3). However, the precise mechanisms of Gal-3 activating NLRP3 inflammasome remain unclear in nonalcoholic steatohepatitis (NASH). Here, male C57BL/6J mice were fed by high-fat diet (HFD) for 32 weeks to induce NASH and then the hepatic damage, cytokines, Gal-3 and TLR4 expression, and NLRP3 inflammasome activation were examined. Such indicators were similarly determined when HepG2 cells were co-incubated with palmitic acid (PA, 200 μM), β-lactose, and TAK-242, or pre-transfected with TLR4. Immunofluorescence, immunohistochemistry, and co-immunoprecipitation were conducted to confirm the potential interaction between Gal-3 and TLR4. To further identify the inflammatory regulation roles of Gal-3 and its terminals in TLR4/NLRP3, HepG2 cells were transfected with Gal-3 and its variants. Chronic HFD induced sustained hepatic steatosis and inflammatory injury, with increased inflammatory cytokines, Gal-3 and TLR4 expression, and NLRP3 inflammasome activation. Similar changes were found in PA-dosed HepG2 cells, which were rescued by β-lactose but deteriorated with TLR4 overexpression. However, TAK-242 treatment decreased AST, ALT, cytokines, and normalized NLRP3, caspase-1, and ASC expression. Furthermore, TLR4 was pulled down when Gal-3 was enriched. Only full-length Gal-3 and its carbohydrate recognition domain (CRD) promoted cytokines, TLR4 expression, and NLRP3 inflammasome activation. Thus, gal-3 may induce chronic HFD-derived NASH progression by activating TLR4-mediating NLRP3 inflammasome via its CRD, which sheds new light on candidate target for the treatment and prevention of NASH inflammation despite further research for its precise roles in the future.
Collapse
Affiliation(s)
- Hongxia Li
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiqiang Cao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lili Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Li
- Key Laboratory of Environmental Health, Ministry of Education, Department of Toxicology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xueer Cheng
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhan Tang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingyou Xing
- Department of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ping Yao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
40
|
Giri SR, Bhoi B, Trivedi C, Rath A, Rathod R, Sharma A, Ranvir R, Kadam S, Ingale K, Patel H, Nyska A, Jain MR. Saroglitazar suppresses the hepatocellular carcinoma induced by intraperitoneal injection of diethylnitrosamine in C57BL/6 mice fed on choline deficient, l-amino acid- defined, high-fat diet. BMC Cancer 2023; 23:59. [PMID: 36650455 PMCID: PMC9843913 DOI: 10.1186/s12885-023-10530-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Saroglitazar is a novel PPAR-α/γ agonist with predominant PPAR-α activity. In various preclinical models, saroglitazar has been shown to prevent & reverse symptoms of NASH. In view of these observations, and the fact that NASH is a progressive disease leading to HCC, we hypothesized that saroglitazar may prevent the development of HCC in rodents. METHODS HCC was induced in C57BL/6 mice by a single intraperitoneal injection of 25 mg/kg diethylnitrosamine (DEN) at the age of 4 weeks and then feeding the animal a choline-deficient, L-amino acid- defined, high-fat diet (CDAHFD) for the entire study duration. Eight weeks after initiation of CDAHFD, saroglitazar (1 and 3 mg/kg) treatment was started and continued for another 27 weeks. RESULTS Saroglitazar treatment significantly reduced the liver injury markers (serum ALT and AST), reversed hepatic steatosis and decreased the levels of pro-inflammatory cytokines like TNF-α in liver. It also resulted in a marked increase in serum adiponectin and osteopontin levels. All disease control animals showed hepatic tumors, which was absent in saroglitazar (3 mg/kg)- treatment group indicating 100% prevention of hepatic tumorigenesis. This is the first study demonstrating a potent PPARα agonist causing suppression of liver tumors in rodents, perhaps due to a strong anti-NASH activity of Saroglitazar that overrides its rodent-specific peroxisome proliferation activity. CONCLUSION The data reveals potential of saroglitazar for chemoprevention of hepatocellular carcinoma in patients with NAFLD/NASH.
Collapse
Affiliation(s)
- Suresh R. Giri
- grid.465119.e0000 0004 1768 0532Department of Pharmacology and Toxicology, Zydus Research Centre, Zydus Lifesciences Limited (formerly known as Cadila Healthcare Limited), Sarkhej-Bavla N.H.No. 8A, Moraiya, Ahmedabad, Gujarat 382213 India
| | - Bibhuti Bhoi
- grid.465119.e0000 0004 1768 0532Department of Pharmacology and Toxicology, Zydus Research Centre, Zydus Lifesciences Limited (formerly known as Cadila Healthcare Limited), Sarkhej-Bavla N.H.No. 8A, Moraiya, Ahmedabad, Gujarat 382213 India
| | - Chitrang Trivedi
- grid.465119.e0000 0004 1768 0532Department of Pharmacology and Toxicology, Zydus Research Centre, Zydus Lifesciences Limited (formerly known as Cadila Healthcare Limited), Sarkhej-Bavla N.H.No. 8A, Moraiya, Ahmedabad, Gujarat 382213 India
| | - Akshyaya Rath
- grid.465119.e0000 0004 1768 0532Department of Pharmacology and Toxicology, Zydus Research Centre, Zydus Lifesciences Limited (formerly known as Cadila Healthcare Limited), Sarkhej-Bavla N.H.No. 8A, Moraiya, Ahmedabad, Gujarat 382213 India
| | - Rohan Rathod
- grid.465119.e0000 0004 1768 0532Department of Pharmacology and Toxicology, Zydus Research Centre, Zydus Lifesciences Limited (formerly known as Cadila Healthcare Limited), Sarkhej-Bavla N.H.No. 8A, Moraiya, Ahmedabad, Gujarat 382213 India
| | - Anish Sharma
- grid.465119.e0000 0004 1768 0532Department of Pharmacology and Toxicology, Zydus Research Centre, Zydus Lifesciences Limited (formerly known as Cadila Healthcare Limited), Sarkhej-Bavla N.H.No. 8A, Moraiya, Ahmedabad, Gujarat 382213 India
| | - Ramchandra Ranvir
- grid.465119.e0000 0004 1768 0532Department of Pharmacology and Toxicology, Zydus Research Centre, Zydus Lifesciences Limited (formerly known as Cadila Healthcare Limited), Sarkhej-Bavla N.H.No. 8A, Moraiya, Ahmedabad, Gujarat 382213 India
| | - Shekhar Kadam
- grid.465119.e0000 0004 1768 0532Department of Pharmacology and Toxicology, Zydus Research Centre, Zydus Lifesciences Limited (formerly known as Cadila Healthcare Limited), Sarkhej-Bavla N.H.No. 8A, Moraiya, Ahmedabad, Gujarat 382213 India
| | - Kailash Ingale
- grid.465119.e0000 0004 1768 0532Department of Pharmacology and Toxicology, Zydus Research Centre, Zydus Lifesciences Limited (formerly known as Cadila Healthcare Limited), Sarkhej-Bavla N.H.No. 8A, Moraiya, Ahmedabad, Gujarat 382213 India
| | - Hiren Patel
- grid.465119.e0000 0004 1768 0532Department of Pharmacology and Toxicology, Zydus Research Centre, Zydus Lifesciences Limited (formerly known as Cadila Healthcare Limited), Sarkhej-Bavla N.H.No. 8A, Moraiya, Ahmedabad, Gujarat 382213 India
| | - Abraham Nyska
- grid.12136.370000 0004 1937 0546Tel Aviv University, Yehuda HaMaccabi 31, floor 5, 6200515 Tel Aviv, Israel
| | - Mukul R. Jain
- grid.465119.e0000 0004 1768 0532Department of Pharmacology and Toxicology, Zydus Research Centre, Zydus Lifesciences Limited (formerly known as Cadila Healthcare Limited), Sarkhej-Bavla N.H.No. 8A, Moraiya, Ahmedabad, Gujarat 382213 India
| |
Collapse
|
41
|
Aleman RS, Moncada M, Aryana KJ. Leaky Gut and the Ingredients That Help Treat It: A Review. Molecules 2023; 28:619. [PMID: 36677677 PMCID: PMC9862683 DOI: 10.3390/molecules28020619] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/31/2022] [Accepted: 01/01/2023] [Indexed: 01/11/2023] Open
Abstract
The human body is in daily contact with potentially toxic and infectious substances in the gastrointestinal tract (GIT). The GIT has the most significant load of antigens. The GIT can protect the intestinal integrity by allowing the passage of beneficial agents and blocking the path of harmful substances. Under normal conditions, a healthy intestinal barrier prevents toxic elements from entering the blood stream. However, factors such as stress, an unhealthy diet, excessive alcohol, antibiotics, and drug consumption can compromise the composition of the intestinal microbiota and the homeostasis of the intestinal barrier function of the intestine, leading to increased intestinal permeability. Intestinal hyperpermeability can allow the entry of harmful agents through the junctions of the intestinal epithelium, which pass into the bloodstream and affect various organs and systems. Thus, leaky gut syndrome and intestinal barrier dysfunction are associated with intestinal diseases, such as inflammatory bowel disease and irritable bowel syndrome, as well as extra-intestinal diseases, including heart diseases, obesity, type 1 diabetes mellitus, and celiac disease. Given the relationship between intestinal permeability and numerous conditions, it is convenient to seek an excellent strategy to avoid or reduce the increase in intestinal permeability. The impact of dietary nutrients on barrier function can be crucial for designing new strategies for patients with the pathogenesis of leaky gut-related diseases associated with epithelial barrier dysfunctions. In this review article, the role of functional ingredients is suggested as mediators of leaky gut-related disorders.
Collapse
Affiliation(s)
- Ricardo Santos Aleman
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 28081, USA
| | - Marvin Moncada
- Department of Food, Bioprocessing & Nutrition Sciences and the Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC 27599, USA
| | - Kayanush J. Aryana
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 28081, USA
| |
Collapse
|
42
|
Mechanisms of Action of Mesenchymal Stem Cells in Metabolic-Associated Fatty Liver Disease. Stem Cells Int 2023; 2023:3919002. [PMID: 36644008 PMCID: PMC9839417 DOI: 10.1155/2023/3919002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 11/15/2022] [Accepted: 12/09/2022] [Indexed: 01/09/2023] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is currently the most common chronic liver disease worldwide. However, its pathophysiological mechanism is complicated, and currently, it has no FDA-approved pharmacological therapies. In recent years, mesenchymal stem cell (MSC) therapy has attracted increasing attention in the treatment of hepatic diseases. MSCs are multipotent stromal cells that originated from mesoderm mesenchyme, which have self-renewal and multipotent differentiation capability. Recent experiments and studies have found that MSCs have the latent capacity to be used for MAFLD treatment. MSCs have the potential to differentiate into hepatocytes, which could be induced into hepatocyte-like cells (HLCs) with liver-specific morphology and function under appropriate conditions to promote liver tissue regeneration. They can also reduce liver tissue injury and reverse the development of MAFLD by regulating immune response, antifibrotic activities, and lipid metabolism. Moreover, several advantages are attributed to MSC-derived exosomes (MSC-exosomes), such as targeted delivery, reliable reparability, and poor immunogenicity. After entering the target cells, MSC-exosomes help regulate cell function and signal transduction; thus, it is expected to become an emerging treatment for MAFLD. In this review, we comprehensively discussed the roles of MSCs in MAFLD, main signaling pathways of MSCs that affect MAFLD, and mechanisms of MSC-exosomes on MAFLD.
Collapse
|
43
|
Wang W, Yang L, Hu M, Yang Y, Ma Q, Chen J. Network Pharmacology to Reveal the Molecular Mechanisms of Rutaceous Plant-derived Limonin Ameliorating Non-alcoholic Steatohepatitis. Crit Rev Immunol 2023; 43:11-23. [PMID: 37831520 DOI: 10.1615/critrevimmunol.2023050080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
BACKGROUND Limonin shows promise in alleviating non-alcoholic fatty liver disease. We investigated the mechanisms of limonin against non-alcoholic steatohepatitis (NASH) using network pharmacology and molecular docking. METHODS Public databases provided NASH- and limonin-associated targets. VennDiagram identified potential limonin targets for NASH. Enrichment analysis explored the limonin-NASH relationship. PPI network analysis, CytoHubba models, and bioinformatics identified hub genes for NASH treatment. Molecular docking assessed limonin's binding ability to hub targets. RESULTS We found 37 potential limonin targets in NASH, involved in oxidative stress, inflammation, and signaling pathways. PPI network analysis revealed seven hub genes (STAT3, NFKBIA, MTOR, TLR4, CASP8, PTGS2, NFKB1) as NASH treatment targets. Molecular docking confirmed limonin's binding to STAT3, CASP8, and PTGS2. Animal experiments on high-fat diet mice showed limonin reduced hepatic steatosis, lipid accumulation, and expression of p-STAT3/STAT3, CASP8, and PTGS2. CONCLUSION Limonin's therapeutic effects in NASH may stem from its antioxidant and anti-inflammatory properties. STAT3, CASP8, and PTGS2 are potential key targets for NASH treatment, warranting further investigation.
Collapse
Affiliation(s)
- Wei Wang
- Department of Gastroenterology, 940th Hospital of Joint Support Force, Lanzhou, Gansu, China
| | - Li Yang
- Northwest Minzu University, Lanzhou, Gansu, China
| | - Minjie Hu
- Department of Gastroenterology, 940th Hospital of Joint Support Force, Lanzhou, Gansu, China
| | - Yonglin Yang
- Department of Gastroenterology, 940th Hospital of Joint Support Force, Lanzhou, Gansu, China
| | - Qiang Ma
- Department of Gastroenterology, 940th Hospital of Joint Support Force, Lanzhou, Gansu, China
| | - Jiayu Chen
- Department of Gastroenterology, 940th Hospital of Joint Support Force, Lanzhou, Gansu, China
| |
Collapse
|
44
|
Aljobaily N, Krutsinger K, Viereckl MJ, Joly R, Menlove B, Cone B, Suppes A, Han Y. Low-Dose Administration of Cannabigerol Attenuates Inflammation and Fibrosis Associated with Methionine/Choline Deficient Diet-Induced NASH Model via Modulation of Cannabinoid Receptor. Nutrients 2022; 15:nu15010178. [PMID: 36615835 PMCID: PMC9823433 DOI: 10.3390/nu15010178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/25/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Non-Alcoholic Steatohepatitis (NASH) is the progressive form of Non-Alcoholic Fatty Liver Disease (NAFLD). NASH is distinguished by severe hepatic fibrosis and inflammation. The plant-derived, non-psychotropic compound cannabigerol (CBG) has potential anti-inflammatory effects similar to other cannabinoids. However, the impact of CBG on NASH pathology is still unknown. This study demonstrated the therapeutic potential of CBG in reducing hepatic steatosis, fibrosis, and inflammation. METHODS 8-week-old C57BL/6 male mice were fed with methionine/choline deficient (MCD) diet or control (CTR) diets for five weeks. At the beginning of week 4, mice were divided into three sub-groups and injected with either a vehicle, a low or high dose of CBG for two weeks. Overall health of the mice, Hepatic steatosis, fibrosis, and inflammation were evaluated. RESULTS Increased liver-to-body weight ratio was observed in mice fed with MCD diet, while a low dose of CBG treatment rescued the liver-to-body weight ratio. Hepatic ballooning and leukocyte infiltration were decreased in MCD mice with a low dose of CBG treatment, whereas the CBG treatment did not change the hepatic steatosis. The high dose CBG administration increased inflammation and fibrosis. Similarly, the expression of cannabinoid receptor (CB)1 and CB2 showed decreased expression with the low CBG dose but not with the high CBG dose intervention in the MCD group and were co-localized with mast cells. Additionally, the decreased mast cells were accompanied by decreased expression of transforming growth factor (TGF)-β1. CONCLUSIONS Collectively, the low dose of CBG alleviated hepatic fibrosis and inflammation in MCD-induced NASH, however, the high dose of CBG treatment showed enhanced liver damage when compared to MCD only group. These results will provide pre-clinical data to guide future intervention studies in humans addressing the potential uses of CBG for inflammatory liver pathologies, as well as open the door for further investigation into systemic inflammatory pathologies.
Collapse
Affiliation(s)
- Nouf Aljobaily
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Kelsey Krutsinger
- Department of Biological Sciences, University of Northern Colorado, Greeley, CO 80639, USA
| | - Michael J. Viereckl
- Department of Biological Sciences, University of Northern Colorado, Greeley, CO 80639, USA
| | - Raznin Joly
- Department of Biological Sciences, University of Northern Colorado, Greeley, CO 80639, USA
| | - Bridger Menlove
- Department of Biological Sciences, University of Northern Colorado, Greeley, CO 80639, USA
| | - Brexton Cone
- Department of Biological Sciences, University of Northern Colorado, Greeley, CO 80639, USA
| | - Ailaina Suppes
- Department of Biological Sciences, University of Northern Colorado, Greeley, CO 80639, USA
| | - Yuyan Han
- Department of Biological Sciences, University of Northern Colorado, Greeley, CO 80639, USA
- Correspondence: ; Tel.: +1-970-351-2004
| |
Collapse
|
45
|
Bariatric Surgery Associates with Nonalcoholic Steatohepatitis/Hepatocellular Carcinoma Amelioration via SPP1 Suppression. Metabolites 2022; 13:metabo13010011. [PMID: 36676937 PMCID: PMC9867453 DOI: 10.3390/metabo13010011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is one of the most common chronic liver diseases worldwide and no effective drugs or treatments have been approved for disease management. Recently, bariatric surgery (BS) is considered to be a novel disease-modifying therapy for NASH and liver metabolic diseases, according to clinical follow-up studies. Despite the revealment of physiopathological alterations, underlying mechanisms and key factors remain indeterminate. This study included multiple bulk RNA-sequencing datasets to investigate transcriptome variation in one-year follow-up BS and diet management (Diet) NASH patients' liver biopsies. Liver functions, fibrosis, and carcinogenesis were predicted in liver samples via hallmark-based function enrichment analysis. Key factors generated from multi-dataset comparison were further assessed with hepatocellular carcinoma (HCC) progression and prognosis. BS leads to active gene expression alterations in NASH liver in comparison to diet management (Diet). Both approaches reduce cell stress and immune response, whereas BS contributes to higher metabolic levels and lower apoptosis levels. The macrophage infiltration, adipose accumulation, and fibroblast activation were revealed to be lower in post-BS NASH livers, further demonstrating positive correlations mutually. Seven key genes (MNDA, ALOX5AP, PECAM1, SPP1, CD86, FGF21, CSTA) were screened out as potential macrophage-associated and carcinogenetic factors suppressed by BS. SPP1 was identified as a crucial factor participating in BS intervened NASH-HCC progression. This study determined that BS exerts potentially superior protective functions in NASH livers compared to diet management. SPP1 may serve as a novel factor to study the functionalities of BS on NASH patients.
Collapse
|
46
|
Lin YK, Lin YH, Chiang CF, Yeh TM, Shih WL. Lactobacillus delbrueckii subsp. bulgaricus strain TCI904 reduces body weight gain, modulates immune response, improves metabolism and anxiety in high fat diet-induced obese mice. 3 Biotech 2022; 12:341. [PMCID: PMC9636364 DOI: 10.1007/s13205-022-03356-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/06/2022] [Indexed: 11/06/2022] Open
Abstract
AbstractThe multiple probiotic characteristics of strain TCI904 isolated in this study from natural fermented milk were investigated using a mouse model. TCI904 was identified as Lactobacillus delbrueckii subsp. bulgaricu (LDB), a well-known lactic acid starter bacterium found in yogurt. TCI904 exhibited an outstanding pancreatic lipase inhibition activity among several strains of lactic acid bacteria in vitro. Its in vivo effects were further studied. In a comparison of mice fed a high-fat diet (HFD) and those fed a HFD combined with TCI904 for 9 weeks, differences were observed in various aspects of health, and the adverse effects of a HFD were prevented in the latter group. TCI904 effectively prevented fat and body weight accumulation without reducing food intake; it also modulated innate immunity and increased the level of IgA in feces, reversing the increased blood sugar and insulin levels and attenuated the hyperlipidemia caused by a HFD. Based on biochemical test data, compared with the HFD group, a HFD combined with TCI904 induced significant lowering of insulin resistance indicator, homeostasis model assessment-insulin resistance (HOMA-IR) and atherogenic indices of plasma (AIP), the atherogenic coefficient (AC) and cardiac risk ratio (CRR) and increased the cardioprotective index (CPI). In addition, the administration of TCI904 alleviated mood disorders caused by a HFD. Taking the recommended human dose of TCI904 did not affect the liver or kidney function, indicating that TCI904 has sufficient in vivo safety. Taken together, the results of the present study contributed towards validation of the probiotic benefits of lactic acid starter microflora. Orally taken TCI904 exhibited positive immune- and metabolic-modulating, and anxiolytic properties, especially in HFD-induced obesity.
Collapse
|
47
|
Wang YY, Lu SJ, Gui R, Wu JP, Li J, He XA, Zhang W, Deng GM, Wang WX, Long HP, Wei XF, Zeng GY, Zhang N, Zang SM, Yao Y, Chen ZH, Fei C, Wang YK, Xu KP. Hepatic lipidomics and proteomics analysis reveals the mechanism of Cyclocarya paliurus flavonoids in preventing non-alcoholic steatohepatitis in mice. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
48
|
Role of Oxidative Stress and Lipid Peroxidation in the Pathophysiology of NAFLD. Antioxidants (Basel) 2022; 11:antiox11112217. [PMID: 36358589 PMCID: PMC9686676 DOI: 10.3390/antiox11112217] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterised by an excess of hepatic fat that can progress to steatohepatitis, fibrosis, cirrhosis and hepatocarcinoma. The imbalance between lipid uptake/lipogenesis and lipid oxidation/secretion in the liver is a major feature of NAFLD. Given the lack of a non-invasive and reliable methods for the diagnosis of non-alcoholic steatohepatitis (NASH), it is important to find serum markers that are capable of discriminating or defining patients with this stage of NASH. Blood samples were obtained from 152 Caucasian subjects with biopsy-proven NAFLD due to persistently elevated liver enzyme levels. Metabolites representative of oxidative stress were assessed. The findings derived from this work revealed that NAFLD patients with a NASH score of ≥ 4 showed significantly higher levels of lipid peroxidation (LPO). Indeed, LPO levels above the optimal operating point (OOP) of 315.39 μM are an independent risk factor for presenting a NASH score of ≥ 4 (OR: 4.71; 95% CI: 1.68−13.19; p = 0.003). The area under the curve (AUC = 0.81, 95% CI = 0.73−0.89, p < 0.001) shows a good discrimination ability of the model. Therefore, understanding the molecular mechanisms underlying the basal inflammation present in these patients is postulated as a possible source of biomarkers and therapeutic targets in NASH.
Collapse
|
49
|
Ikewaki N, Levy GA, Kurosawa G, Iwasaki M, Dedeepiya VD, Vaddi S, Senthilkumar R, Preethy S, Abraham SJ. Hepatoprotective Effects of Aureobasidium pullulans Derived β 1,3-1,6 Glucans in a Murine Model of Non-alcoholic Steatohepatitis. J Clin Exp Hepatol 2022; 12:1428-1437. [PMID: 36340302 PMCID: PMC9630018 DOI: 10.1016/j.jceh.2022.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/21/2022] [Indexed: 12/12/2022] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are highly prevalent conditions characterized by inflammation and fibrosis of the liver, which can progress to cirrhosis and hepatocellular carcinoma if left untreated. Conventional modalities are mainly symptomatic, with no definite solution. Beta-glucan-based biological response modifiers are a potential strategy in lieu of their beneficial metabolic effects. Aureobasidium pullulans strains AFO-202 and N-163 beta-glucans were evaluated for anti-fibrotic and anti-inflammatory hepatoprotective potentials in a NASH animal model in this study. Methods In the STAM™ murine model of NASH, five groups were studied for 8 weeks: (1) vehicle (RO water), (2) AFO-202 beta-glucan; (3) N-163 beta-glucan, (4) AFO-202+N-163 beta-glucan, and (5) telmisartan (standard pharmacological intervention). Evaluation of biochemical parameters in plasma and hepatic histology including Sirius red staining and F4/80 immunostaining were performed. Results AFO-202 beta-glucan significantly decreased inflammation-associated hepatic cell ballooning and steatosis. N-163 beta-glucan decreased fibrosis and inflammation significantly (P value < 0.05). The combination of AFO-202 with N-163 significantly decreased the NAFLD Activity Score (NAS) compared with other groups. Conclusion This preclinical study supports the potential of N-163 and AFO-202 beta-glucans alone or in combination as potential preventive and therapeutic agent(s), for NASH.
Collapse
Key Words
- ALT, Alanine aminotransferase
- ARRIVE, Animal Research: Reporting of In Vivo Experiments
- IL, Interleukin
- MCP-1, Monocyte chemoattractant protein-1
- NAFLD, Non-alcoholic fatty liver disease
- NAS, NAFLD Activity Score
- NASH, Non-alcoholic steatohepatitis
- PPAR, Peroxisome proliferator-activated receptor
- STAM, Stelic Animal Model
- TGF-β, Transforming growth factor beta
- TIMPs, Tissue inhibitors of matrix metalloproteinases
- TNF-α, Tumor necrosis factor alpha
- anti-fibrotic
- anti-inflammatory
- beta-glucans
- hepatoprotective
- non-alcoholic fatty liver disease (NAFLD)
- non-alcoholic steatohepatitis (NASH)
- telmisartan
- αSMA, Smooth muscle alpha-actin
Collapse
Affiliation(s)
- Nobunao Ikewaki
- Department of Medical Life Science, Kyushu University of Health and Welfare, Japan
- Institute of Immunology, Junsei Educational Institute, Nobeoka, Miyazaki, Japan
| | - Gary A. Levy
- Medicine and Immunology, University of Toronto, Ontario, Canada
| | - Gene Kurosawa
- Department of Academic Research Support Promotion Facility, Center for Research Promotion and Support, Fujita Health University, Aichi, Japan
- MabGenesis KK, Nagoya, Japan
| | - Masaru Iwasaki
- Centre for Advancing Clinical Research (CACR), University of Yamanashi - School of Medicine, Chuo, Japan
| | - Vidyasagar D. Dedeepiya
- Mary-Yoshio Translational Hexagon (MYTH), Nichi-In Centre for Regenerative Medicine (NCRM), Chennai, India
| | | | - Rajappa Senthilkumar
- Fujio-Eiji Academic Terrain (FEAT), Nichi-In Centre for Regenerative Medicine (NCRM), Chennai, India
| | - Senthilkumar Preethy
- Fujio-Eiji Academic Terrain (FEAT), Nichi-In Centre for Regenerative Medicine (NCRM), Chennai, India
| | - Samuel J.K. Abraham
- Centre for Advancing Clinical Research (CACR), University of Yamanashi - School of Medicine, Chuo, Japan
- Mary-Yoshio Translational Hexagon (MYTH), Nichi-In Centre for Regenerative Medicine (NCRM), Chennai, India
- Antony- Xavier Interdisciplinary Scholastics (AXIS), GN Corporation Co. Ltd., Kofu, Japan
| |
Collapse
|
50
|
Verma AK, Sharma A, Subramaniyam N, Gandhi CR. Augmenter of liver regeneration: Mitochondrial function and steatohepatitis. J Hepatol 2022; 77:1410-1421. [PMID: 35777586 DOI: 10.1016/j.jhep.2022.06.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/24/2022] [Accepted: 06/09/2022] [Indexed: 12/15/2022]
Abstract
Augmenter of liver regeneration (ALR), a ubiquitous fundamental life protein, is expressed more abundantly in the liver than other organs. Expression of ALR is highest in hepatocytes, which also constitutively secrete it. ALR gene transcription is regulated by NRF2, FOXA2, SP1, HNF4α, EGR-1 and AP1/AP4. ALR's FAD-linked sulfhydryl oxidase activity is essential for protein folding in the mitochondrial intermembrane space. ALR's functions also include cytochrome c reductase and protein Fe/S maturation activities. ALR depletion from hepatocytes leads to increased oxidative stress, impaired ATP synthesis and apoptosis/necrosis. Loss of ALR's functions due to homozygous mutation causes severe mitochondrial defects and congenital progressive multiorgan failure, suggesting that individuals with one functional ALR allele might be susceptible to disorders involving compromised mitochondrial function. Genetic ablation of ALR from hepatocytes induces structural and functional mitochondrial abnormalities, dysregulation of lipid homeostasis and development of steatohepatitis. High-fat diet-fed ALR-deficient mice develop non-alcoholic steatohepatitis (NASH) and fibrosis, while hepatic and serum levels of ALR are lower than normal in human NASH and NASH-cirrhosis. Thus, ALR deficiency may be a critical predisposing factor in the pathogenesis and progression of NASH.
Collapse
Affiliation(s)
- Alok Kumar Verma
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Cincinnati VA Medical Center, Cincinnati, Ohio, USA
| | - Akanksha Sharma
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Cincinnati VA Medical Center, Cincinnati, Ohio, USA
| | - Nithyananthan Subramaniyam
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Chandrashekhar R Gandhi
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Cincinnati VA Medical Center, Cincinnati, Ohio, USA; Department of Surgery, University of Cincinnati, Cincinnati, Ohio, USA.
| |
Collapse
|