1
|
Zheng XQ, Wang DB, Jiang YR, Song CL. Gut microbiota and microbial metabolites for osteoporosis. Gut Microbes 2025; 17:2437247. [PMID: 39690861 DOI: 10.1080/19490976.2024.2437247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/13/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024] Open
Abstract
Osteoporosis is an age-related bone metabolic disease. As an essential endocrine organ, the skeletal system is intricately connected with extraosseous organs. The crosstalk between bones and other organs supports this view. In recent years, the link between the gut microecology and bone metabolism has become an important research topic, both in preclinical studies and in clinical trials. Many studies have shown that skeletal changes are accompanied by changes in the composition and structure of the gut microbiota (GM). At the same time, natural or artificial interventions targeting the GM can subsequently affect bone metabolism. Moreover, microbiome-related metabolites may have important effects on bone metabolism. We aim to review the relationships among the GM, microbial metabolites, and bone metabolism and to summarize the potential mechanisms involved and the theory of the gut‒bone axis. We also describe existing bottlenecks in laboratory studies, as well as existing challenges in clinical settings, and propose possible future research directions.
Collapse
Affiliation(s)
- Xuan-Qi Zheng
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Ding-Ben Wang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Yi-Rong Jiang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Chun-Li Song
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
| |
Collapse
|
2
|
Di Rienzi SC, Danhof HA, Forshee MD, Roberts A, Britton RA. Limosilactobacillus reuteri promotes the expression and secretion of enteroendocrine- and enterocyte-derived hormones. FASEB J 2025; 39:e70408. [PMID: 40098558 PMCID: PMC11914943 DOI: 10.1096/fj.202401669r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 01/20/2025] [Accepted: 02/10/2025] [Indexed: 03/19/2025]
Abstract
Intestinal microbes can beneficially impact host physiology, prompting investigations into the therapeutic usage of such microbes in a range of diseases. For example, human intestinal microbe Limosilactobacillus reuteri strains ATCC PTA 6475 and DSM 17938 are being considered for use for intestinal ailments, including colic, infection, and inflammation, as well as for non-intestinal ailments, including osteoporosis, wound healing, and autism spectrum disorder. While many of their beneficial properties are attributed to suppressing inflammatory responses, we postulated that L. reuteri may also regulate intestinal hormones to affect physiology within and outside of the gut. To determine if L. reuteri secreted factors impact the secretion of enteric hormones, we treated an engineered jejunal organoid line, NGN3-HIO, which can be induced to be enriched in enteroendocrine cells, with L. reuteri 6475 or 17938 conditioned medium and performed transcriptomics. Our data suggest that these L. reuteri strains affect the transcription of many gut hormones, including vasopressin and luteinizing hormone subunit beta, which have not been previously recognized as produced in the gut epithelium. Moreover, we find that these hormones appear to be produced in enterocytes, in contrast to canonical gut hormones produced in enteroendocrine cells. Finally, we show that L. reuteri conditioned media promote the secretion of enteric hormones, including serotonin, GIP, PYY, vasopressin, and luteinizing hormone subunit beta, and identify by metabolomics metabolites potentially mediating these effects on hormones. These results support L. reuteri affecting host physiology through intestinal hormone secretion, thereby expanding our understanding of the mechanistic actions of this microbe.
Collapse
Affiliation(s)
- Sara C. Di Rienzi
- Department of Molecular Virology and MicrobiologyBaylor College of MedicineHoustonTexasUSA
- Alkek Center for Metagenomics and Microbiome ResearchBaylor College of MedicineHoustonTexasUSA
| | - Heather A. Danhof
- Department of Molecular Virology and MicrobiologyBaylor College of MedicineHoustonTexasUSA
- Alkek Center for Metagenomics and Microbiome ResearchBaylor College of MedicineHoustonTexasUSA
| | - Micah D. Forshee
- Department of Molecular Virology and MicrobiologyBaylor College of MedicineHoustonTexasUSA
- Alkek Center for Metagenomics and Microbiome ResearchBaylor College of MedicineHoustonTexasUSA
| | - Ari Roberts
- Department of Molecular Virology and MicrobiologyBaylor College of MedicineHoustonTexasUSA
- Alkek Center for Metagenomics and Microbiome ResearchBaylor College of MedicineHoustonTexasUSA
| | - Robert A. Britton
- Department of Molecular Virology and MicrobiologyBaylor College of MedicineHoustonTexasUSA
- Alkek Center for Metagenomics and Microbiome ResearchBaylor College of MedicineHoustonTexasUSA
| |
Collapse
|
3
|
Jha SS, Jeyaraman N, Jeyaraman M, Ramasubramanian S, Muthu S, Santos GS, da Fonseca LF, Lana JF. Cross-talks between osteoporosis and gut microbiome. World J Orthop 2025; 16:102274. [PMID: 40124724 PMCID: PMC11924030 DOI: 10.5312/wjo.v16.i3.102274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/06/2025] [Accepted: 02/06/2025] [Indexed: 03/12/2025] Open
Abstract
The gut microbiome comprises a vast community of microbes inhabiting the human alimentary canal, playing a crucial role in various physiological functions. These microbes generally live in harmony with the host; however, when dysbiosis occurs, it can contribute to the pathogenesis of diseases, including osteoporosis. Osteoporosis, a systemic skeletal disease characterized by reduced bone mass and increased fracture risk, has attracted significant research attention concerning the role of gut microbes in its development. Advances in molecular biology have highlighted the influence of gut microbiota on osteoporosis through mechanisms involving immunoregulation, modulation of the gut-brain axis, and regulation of the intestinal barrier and nutrient absorption. These microbes can enhance bone mass by inhibiting osteoclast differentiation, inducing apoptosis, reducing bone resorption, and promoting osteoblast proliferation and maturation. Despite these promising findings, the therapeutic effectiveness of targeting gut microbes in osteoporosis requires further investigation. Notably, gut microbiota has been increasingly studied for their potential in early diagnosis, intervention, and as an adjunct therapy for osteoporosis, suggesting a growing utility in improving bone health. Further research is essential to fully elucidate the therapeutic potential and clinical application of gut microbiome modulation in the management of osteoporosis.
Collapse
Affiliation(s)
- Shiva Shankar Jha
- Department of Orthopaedics, Harishchandra Orthopaedic Research Institute, Patna 880023, Bihar, India
| | - Naveen Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600077, Tamil Nadu, India
- Department of Orthopaedics, Orthopaedic Research Group, Coimbatore 641045, Tamil Nadu, India
| | - Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600077, Tamil Nadu, India
- Department of Orthopaedics, Orthopaedic Research Group, Coimbatore 641045, Tamil Nadu, India
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, São Paulo, Brazil
| | - Swaminathan Ramasubramanian
- Department of Orthopaedics, Government Medical College, Omandurar Government Estate, Chennai 600002, Tamil Nadu, India
| | - Sathish Muthu
- Department of Orthopaedics, Government Medical College and Hospital, Karur 639004, Tamil Nadu, India
- Department of Orthopaedics, Orthopaedic Research Group, Coimbatore 641045, Tamil Nadu, India
- Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India
| | - Gabriel Silva Santos
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, São Paulo, Brazil
| | - Lucas Furtado da Fonseca
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, São Paulo, Brazil
| | - José Fábio Lana
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, São Paulo, Brazil
| |
Collapse
|
4
|
Bashir HH, Hasnain MA, Abbas A, Lee JH, Moon GS. The Impact of Fermented Dairy Products and Probiotics on Bone Health Improvement. Food Sci Anim Resour 2025; 45:449-467. [PMID: 40093630 PMCID: PMC11907416 DOI: 10.5851/kosfa.2025.e7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/12/2025] [Accepted: 02/03/2025] [Indexed: 03/19/2025] Open
Abstract
The bone is an important body organ due to its role in locomotion, protection and mineral homeostasis. Bone health is affected by various intrinsic and extrinsic factors like genetics, diet, environment and immune status of an individual. Being a dynamic organ, bones are continuously being remodeled and the remodeling is mediated by an intricate balance of bone formation and resorption which, in turn, are regulated by environmental, genetic, hormonal and neural factors. Lack of balance in any of these factors leads to bone disorders such as osteoporosis. Fermented dairy products along with their probiotics content play a significant role in bone remodeling process ensuring the maintenance of intricate balance in bone forming cells (osteoblasts) and bone resorbing cells (osteoclasts). Proteins and various minerals are important constituents of bone. Dairy products, especially fermented ones, are significant because of being a good source of proteins and minerals required to make and maintain a healthy bone. In addition, these provide the body with probiotics which are involved in bone health improvement by enhancing the bioavailability of dietary constituents, production of short chain fatty acids and reducing the inflammatory components. Hence, fermented dairy products should be a regular part of our diet to keep our bone healthy.
Collapse
Affiliation(s)
- Hafiza Hira Bashir
- Department of Biotechnology, Korea National University of Transportation, Jeungpyeong 27909, Korea
| | - Muhammad Adeel Hasnain
- Major in IT·Biohealth Convergence, Department of IT·Energy Convergence, Graduate School, Korea National University of Transportation, Chungju 27469, Korea
| | - Aoun Abbas
- Department of Biotechnology, Korea National University of Transportation, Jeungpyeong 27909, Korea
| | - Jae-Hyuk Lee
- Department of Biotechnology, Korea National University of Transportation, Jeungpyeong 27909, Korea
| | - Gi-Seong Moon
- Department of Biotechnology, Korea National University of Transportation, Jeungpyeong 27909, Korea
- Major in IT·Biohealth Convergence, Department of IT·Energy Convergence, Graduate School, Korea National University of Transportation, Chungju 27469, Korea
- 4D Convergence Technology Institute, Korea National University of Transportation, Jeungpyeong 27909, Korea
| |
Collapse
|
5
|
Kang YY, Song HJ, Park SY, Oh DN, Kim GY, Been NY, Kim DY, Lee EJ, Nam BH, Lee JM. Comparative Effects of Probiotics and Paraprobiotics Derived from Lactiplantibacillus plantarum, Latilactobacillus sakei, and Limosilactobacillus reuteri in a DSS-Induced Ulcerative Colitis Mouse Model. J Microbiol Biotechnol 2025; 35:e2411045. [PMID: 40016142 PMCID: PMC11896797 DOI: 10.4014/jmb.2411.11045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 03/01/2025]
Abstract
Live biotherapeutic products, represented by probiotics with disease-mitigating or therapeutic effects, face significant limitations in achieving stable colonization in the gut through oral administration. However, paraprobiotics, which consist of dead or inactivated microbial cells derived from probiotics, can provide comparable health benefits while overcoming the limitations associated with live biotherapeutic products. Therefore, the purpose of this study was to quantitatively compare and analyze the effects of probiotics, which are gaining attention as treatments for inflammatory bowel diseases, and their paraprobiotic counterparts on the alleviation of ulcerative colitis. In in vitro evaluations revealed that the paraprobiotics derived from Lactiplantibacillus plantarum MGEL20154, Latilactobacillus sakei MGEL23040, and Limosilactobacillus reuteri MGEL21001 exhibited equal or significantly enhanced activities in terms of antioxidant properties, anti-inflammatory effects, and barrier integrity enhancement compared to their probiotic counterparts. Furthermore, consistent with in vitro findings, both probiotics and paraprobiotics effectively improved histological scores and reduced myeloperoxidase levels in a DSS-induced ulcerative colitis mouse model. Notably, paraprobiotics derived from L. plantarum MGEL20154 and L. reuteri MGEL21001 demonstrated significantly enhanced efficacy in restoring tight junctions, promoting mucin secretion, and reducing inflammation in colonic lesion tissues compared to their probiotic forms. Our results suggest that these paraprobiotics may serve as more suitable agents for alleviating and treating ulcerative colitis, addressing limitations associated with probiotics, such as low survival rates, instability, antibiotic susceptibility, and the potential induction of excessive inflammatory responses.
Collapse
Affiliation(s)
- Yun Young Kang
- Department of Biotechnology, Pukyong National University, Busan 48513, Republic of Korea
| | - Hyo Jeong Song
- Department of Biotechnology, Pukyong National University, Busan 48513, Republic of Korea
| | - So Young Park
- Department of Biotechnology, Pukyong National University, Busan 48513, Republic of Korea
| | - Dong Nyoung Oh
- Department of Biotechnology, Pukyong National University, Busan 48513, Republic of Korea
| | - Ga Yeong Kim
- Department of Biotechnology, Pukyong National University, Busan 48513, Republic of Korea
| | - Na Yeong Been
- Department of Biotechnology, Pukyong National University, Busan 48513, Republic of Korea
| | - Da Yeong Kim
- Department of Biotechnology, Pukyong National University, Busan 48513, Republic of Korea
| | - Eun Ji Lee
- Department of Biotechnology, Pukyong National University, Busan 48513, Republic of Korea
| | - Bo-Hye Nam
- Aquaculture Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| | - Jong-Min Lee
- Department of Biotechnology, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
6
|
Ohlsson C, Lawenius L, Jiang Y, Horkeby K, Wu J, Nilsson KH, Koskela A, Tuukkanen J, Movérare-Skrtic S, Henning P, Sjögren K. The beneficial effects of a probiotic mix on bone and lean mass are dependent on the diet in female mice. Sci Rep 2025; 15:6182. [PMID: 39979617 PMCID: PMC11842756 DOI: 10.1038/s41598-025-91056-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/18/2025] [Indexed: 02/22/2025] Open
Abstract
Bone mass and lean mass decrease with age and these changes are associated with increased fracture risk and sarcopenia. Previous studies demonstrated that a probiotic mixture of Lacticaseibacillus paracasei DSM13434, Lactiplantibacillus plantarum DSM 15312 and DSM 15313 (L. Mix) prevents bone loss in ovariectomized (ovx) female mice. The purpose of the present study is to test if the beneficial effect of L. Mix is modified by the diet. Female mice were fed either a high-fat (HFD, 60% kcal from fat) or a low-fat (LFD, 10% kcal from fat) diet and subjected to either sham or ovx surgery and treated with L. Mix for 12 weeks. L. Mix treatment increased total body bone mineral density (p ≤ 0.01), by increasing cortical bone area, and total body lean mass (p = 0.035) in mice on LFD but not in mice on HFD. Metagenome sequencing of cecal content showed that L. Mix treatment increased the relative abundance of Lacticaseibacillus paracasei and, Lactiplantibacillus plantarum, demonstrating successful treatment. In addition, the probiotic treatment affected the overall gut microbiota composition and functionality. These findings demonstrate that the L. Mix in combination with a healthy diet is beneficial for musculoskeletal health in female mice.
Collapse
Affiliation(s)
- Claes Ohlsson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lina Lawenius
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Yiwen Jiang
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Karin Horkeby
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jianyao Wu
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Karin H Nilsson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Antti Koskela
- Department of Anatomy and Cell Biology, Faculty of Medicine, Translational Medicine Research Unit, University of Oulu, Oulu, Finland
| | - Juha Tuukkanen
- Department of Anatomy and Cell Biology, Faculty of Medicine, Translational Medicine Research Unit, University of Oulu, Oulu, Finland
| | - Sofia Movérare-Skrtic
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Petra Henning
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Klara Sjögren
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
7
|
Wang Y, Lei P. Efficacy of probiotic supplements in the treatment of sarcopenia: A systematic review and meta-analysis. PLoS One 2025; 20:e0317699. [PMID: 39913546 PMCID: PMC11801621 DOI: 10.1371/journal.pone.0317699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 01/02/2025] [Indexed: 02/09/2025] Open
Abstract
Although some studies have confirmed the efficacy of probiotics in the treatment of sarcopenia, the intervention of sarcopenia is a comprehensive consideration of many factors, and the efficacy of probiotics is still controversial. Therefore, this study systematically evaluated the efficacy of probiotics in the intervention of sarcopenia via high-quality meta-analysis, providing a basis for the clinical diagnosis and treatment of sarcopenia. Randomized controlled trials related to probiotics in the treatment of sarcopenia were searched in PubMed, Embase, the Cochrane Library and Web of Science. The search time was from inception to 2024-07-17. Two investigators independently screened the articles, extracted data, and assessed the risk of bias of the included studies. Meta-analysis was performed using RevMan 5.4 and Stata 14.0 software. A total of 22 eligible studies were included. The results showed that there was no statistically significant difference between probiotics and placebo in improving muscle mass and Lean body mass in sarcopenia patients; MD: 0.66, 95%CI: - 0.01-1.33; Z = 1.93, P > 0.05; MD: - 0.13, 95%CI: -0.81-0.55; Z = 0.38, P = 0.71 > 0.05. However, probiotics were found to significantly improve overall muscle strength compared with the placebo group. MD: 2.99, 95%CI: 2.14-3.85; Z = 6.86, P < 0.001. Probiotics can significantly improve global muscle strength in patients with sarcopenia. It is suggested that probiotics have certain clinical value in the clinical treatment of sarcopenia, but the results may be limited by the number and quality of included studies. The above conclusions need to be verified by more high-quality studies.
Collapse
Affiliation(s)
- Yi Wang
- College of Integrative Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Ping Lei
- College of Integrative Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| |
Collapse
|
8
|
Ticinesi A, Siniscalchi C, Meschi T, Nouvenne A. Gut microbiome and bone health: update on mechanisms, clinical correlations, and possible treatment strategies. Osteoporos Int 2025; 36:167-191. [PMID: 39643654 DOI: 10.1007/s00198-024-07320-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/12/2024] [Indexed: 12/09/2024]
Abstract
The intestinal microbiome is increasingly regarded as a relevant modulator of the pathophysiology of several age-related conditions, including frailty, sarcopenia, and cognitive decline. Aging is in fact associated with alteration of the equilibrium between symbiotic bacteria and opportunistic pathogens, leading to dysbiosis. The microbiome is able to regulate intestinal permeability and systemic inflammation, has a central role in intestinal amino acid metabolism, and produces a large number of metabolites and byproducts, with either beneficial or detrimental consequences for the host physiology. Recent evidence, from both preclinical animal models and clinical studies, suggests that these microbiome-centered pathways could contribute to bone homeostasis, regulating the balance between osteoblast and osteoclast function. In this systematic review, we provide an overview of the mechanisms involved in the gut-bone axis, with a particular focus on microbiome function and microbiome-derived mediators including short-chain fatty acids. We also review the current evidence linking gut microbiota dysbiosis with osteopenia and osteoporosis, and the results of the intervention studies on pre-, pro-, or post-biotics targeting bone mineral density loss in both animal models and human beings, indicating knowledge gaps and highlighting possible avenues for future research.
Collapse
Affiliation(s)
- Andrea Ticinesi
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126, Parma, Italy.
- Microbiome Research Hub, University of Parma, Parma, Italy.
- Department of Continuity of Care and Multicomplexity, Parma University-Hospital, Parma, Italy.
| | - Carmine Siniscalchi
- Department of Continuity of Care and Multicomplexity, Parma University-Hospital, Parma, Italy
| | - Tiziana Meschi
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
- Department of Continuity of Care and Multicomplexity, Parma University-Hospital, Parma, Italy
| | - Antonio Nouvenne
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
- Department of Continuity of Care and Multicomplexity, Parma University-Hospital, Parma, Italy
| |
Collapse
|
9
|
Su J, Wu Y, Wang Z, Zhang D, Yang X, Zhao Y, Yu A. Probiotic biofilm modified scaffolds for facilitating osteomyelitis treatment through sustained release of bacteriophage and regulated macrophage polarization. Mater Today Bio 2025; 30:101444. [PMID: 39866782 PMCID: PMC11764121 DOI: 10.1016/j.mtbio.2025.101444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 12/09/2024] [Accepted: 01/02/2025] [Indexed: 01/28/2025] Open
Abstract
Osteomyelitis has gradually become a catastrophic complication in orthopedic surgery due to the formation of bacterial biofilms on the implant surface and surrounding tissue. The therapeutic challenges of antibiotic resistance and poor postoperative osseointegration provide inspiration for the development of bioactive implants. We have strategically designed bioceramic scaffolds modified with Lactobacillus reuteri (LR) and bacteriophages (phages) to achieve both antibacterial and osteogenic effects. Leveraging the tendency of bacteria to adhere to the surface of implants, bioceramics have been modified with LR biofilm to promote bone repair. The LR biofilm, sterilized by pasteurization, prevents sepsis caused by live bacteria and is biocompatible with phages. Phages, being natural enemies of bacteria, not only effectively kill bacteria and inhibit biofilm formation but also readily adsorb onto the surface of bioceramics. Hence, this scaffold, loaded with a phage cocktail, lysates specific bacterial populations, namely Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). More importantly, the inactivated LR biofilm stimulates macrophages RAW264.7 to polarize towards an anti-inflammatory M2 phenotype, creating an immune microenvironment favorable for inducing osteogenic differentiation of rat mesenchymal stem cells in vitro. In a rat model of infectious cranial defects, the scaffold not only effectively eliminated S. aureus and alleviated associated inflammation but also mediated macrophage-mediated immunoregulation, thus resulting in effective osteogenesis. Collectively, these multifunctional modified scaffolds offer an integrated approach to both bacterium elimination and bone repair, presenting a new strategy for bioactive implants in the clinical management of osteomyelitis.
Collapse
Affiliation(s)
- Junwei Su
- Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Yifan Wu
- Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Zheng Wang
- Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Dong Zhang
- Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Xianquan Yang
- Department of Orthopaedics, Gucheng County People's Hospital, Xiangyang, 441799, Hubei, China
| | - Yong Zhao
- Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Aixi Yu
- Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| |
Collapse
|
10
|
Yu S, Huang F, Huang Y, Yan F, Li Y, Xu S, Zhao Y, Zhang X, Chen R, Chen X, Zhang P. Deciphering the influence of gut and oral microbiomes on menopause for healthy aging. J Genet Genomics 2025:S1673-8527(24)00311-4. [PMID: 39577767 DOI: 10.1016/j.jgg.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024]
Abstract
Menopause is characterized by the cessation of menstruation and a decline in reproductive function, which is an intrinsic component of the aging process. However, it has been a frequently overlooked field of women's health. The oral and gut microbiota, constituting the largest ecosystem within the human body, are important for maintaining human health and notably contribute to the healthy aging of menopausal women. Therefore, a comprehensive review elucidating the impact of the gut and oral microbiota on menopause for healthy aging is of paramount importance. This paper presents the current understanding of the microbiome during menopause, with a particular focus on alterations in the oral and gut microbiota. Our study elucidates the complex interplay between the microbiome and sex hormone levels, explores microbial crosstalk dynamics, and investigates the associations between the microbiome and diseases linked to menopause. Additionally, this review explores the potential of microbiome-targeting therapies for managing menopause-related diseases. Given that menopause can last for approximately 30 years, gaining insights into how the microbiome and menopause interact could pave the way for innovative interventions, which may result in symptomatic relief from menopause and an increase in quality of life in women.
Collapse
Affiliation(s)
- Shuting Yu
- Department of Otolaryngology-Head and Neck Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Feiling Huang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing 100730, China
| | - Yixuan Huang
- Beijing ClouDNA Technology Co., Ltd., Beijing 101407, China
| | - Fangxu Yan
- Department of Otolaryngology-Head and Neck Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yi Li
- Hunan Agriculture University, Changsha, Hunan 410128, China
| | - Shenglong Xu
- Department of Otolaryngology, Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Yan Zhao
- Department of Otolaryngology, Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Xinlei Zhang
- Beijing ClouDNA Technology Co., Ltd., Beijing 101407, China
| | - Rong Chen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing 100730, China.
| | - Xingming Chen
- Department of Otolaryngology-Head and Neck Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China.
| | - Peng Zhang
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, MOE Key Laboratory of Major Diseases in Children, Rare Disease Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China.
| |
Collapse
|
11
|
Wei J, Liu Q, Yuen HY, Lam ACH, Jiang Y, Yang Y, Liu Y, Zhao X, Xiao L. Gut-bone axis perturbation: Mechanisms and interventions via gut microbiota as a primary driver of osteoporosis. J Orthop Translat 2025; 50:373-387. [PMID: 40171106 PMCID: PMC11960541 DOI: 10.1016/j.jot.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/27/2024] [Accepted: 11/12/2024] [Indexed: 04/03/2025] Open
Abstract
A growing number of studies have highlighted the significance of human gut microbiota (GM) as a potential target for osteoporosis. In this review, we discuss the effect of GM to bone metabolism focusing on two aspects: the local alterations of the human gut permeability that modify how the GM interact with the gut-bone axis (e.g., intestinal leakage, nutrient absorption), and the alterations of the GM itself (e.g., changes in microbiota metabolites, immune secretion, hormones) that modify the events of the gut-bone axis. We then classify these changes as possible therapeutic targets of bone metabolism and highlight some associated promising microbiome-based therapies. We also extend our discussions into combinatorial treatments that incorporate conservative treatments, such as exercise. We anticipate our review can provide an overview of the current pathophysiological and therapeutic paradigms of the gut-bone axis, as well as the prospects of ongoing clinical trials for readers to gain further insights into better microbiome-based treatments to osteoporosis and other bone-degenerative diseases. The translational potential of this article: This paper reviewed the potential links between gut microbiota and osteoporosis, as well as the prospective therapeutic avenues targeting gut microbiota for osteoporosis management, presenting a thorough and comprehensive literature review.
Collapse
Affiliation(s)
- Jingyuan Wei
- Translational Medical Innovation Center, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, 215600, China
- Department of Acupuncture and Moxibustion, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Qi Liu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Ho-Yin Yuen
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Avery Chik-Him Lam
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Yuanyuan Jiang
- Translational Medical Innovation Center, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, 215600, China
| | - Yuhe Yang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Yaxiong Liu
- Jihua Laboratory, Foshan, Guangdong, 528000, China
| | - Xin Zhao
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Long Xiao
- Translational Medical Innovation Center, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, 215600, China
| |
Collapse
|
12
|
Yumol JL, Gittings W, de Souza RJ, Ward WE. A systematic review and meta-analysis of the effects of probiotics on bone outcomes in rodent models. J Bone Miner Res 2024; 40:100-113. [PMID: 39545776 DOI: 10.1093/jbmr/zjae187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/18/2024] [Accepted: 11/14/2024] [Indexed: 11/17/2024]
Abstract
Emerging evidence demonstrates an opportunity for using probiotics to support bone health, but findings in humans are limited. This systematic review investigated if probiotic supplementation improves bone mineral density (BMD) and bone structure in rodent models compared to no supplementation. Studies (n = 71) examining the effect of oral consumption of any probiotic strain on BMD or bone structure in rodents were included. Meta-analyses were conducted separately by study model (intact, ovariectomized) and bone site (femur, tibia, spine) to determine the probiotic effect (standardized mean difference, SMD) on volumetric BMD (vBMD), bone volume fraction (BV/TV), and cortical thickness (Ct.Th). Reasons for heterogeneity were explored (probiotic genus, sex, type of rodent). In intact rodents, probiotics resulted in greater vBMD (SMD = 0.43, 95% CI [0.13, 0.74], I2 = 3%, p < 0.05) and higher BV/TV (SMD = 0.63, 95% CI [0.25, 1.02], I2 = 57%, p < 0.05) at the femur without changes in cortical bone structure. In ovariectomized models, probiotic supplementation resulted in greater vBMD (femur: SMD = 1.28, 95% CI [1.01, 1.55], I2 = 3%, p < 0.05; tibia: SMD = 1.29, 95% CI [0.52, 2.05], I2 = 67%, p < 0.05; and spine: SMD = 1.47, 95% CI [0.97, 1.97], I2 = 26%, p < 0.05) as well as higher BV/TV (femur: SMD = 1.16, 95% CI [0.80, 1.52], I2 = 56%, p < 0.05; tibia: SMD = 2.13, 95% CI [1.09, 3.17], I2 = 79%, p < 0.05; spine: SMD = 2.04, 95% CI [1.17, 2.90], I2 = 76%, p < 0.05) and Ct.Th at the tibia (SMD = 2.35; 95% CI [0.72, 3.97], I2 = 82%, p < .0.05) but not at the femur versus control. The syntheses support probiotics as a strategy to improve bone outcomes in rodent models.
Collapse
Affiliation(s)
- Jenalyn L Yumol
- Department of Kinesiology, Brock University, St. Catharines, ON L2S 3A1, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - William Gittings
- Department of Kinesiology, Brock University, St. Catharines, ON L2S 3A1, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Russell J de Souza
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON L8R 2K3, Canada
| | - Wendy E Ward
- Department of Kinesiology, Brock University, St. Catharines, ON L2S 3A1, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
13
|
Liu Z, Cao Q, Wang W, Wang B, Yang Y, Xian CJ, Li T, Zhai Y. The Impact of Lactobacillus reuteri on Oral and Systemic Health: A Comprehensive Review of Recent Research. Microorganisms 2024; 13:45. [PMID: 39858814 PMCID: PMC11767923 DOI: 10.3390/microorganisms13010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/24/2024] [Accepted: 12/26/2024] [Indexed: 01/27/2025] Open
Abstract
Oral diseases, particularly dental caries and periodontal disease, pose significant global health challenges. The imbalance of the oral microbiota plays a key role in the occurrence of these diseases, prompting researchers to seek new strategies to restore oral ecological balance. Lactobacillus reuteri is a Gram-positive rod-shaped bacterium that exists in various body parts of humans, including the gastrointestinal tract, urinary tract, skin, and so on. This species has a potentially positive impact on oral health and plays an important role in maintaining systemic health. Recent studies have explored the application of Lactobacillus reuteri in the prevention and treatment of oral diseases, and its impact on systemic health has also been preliminarily revealed. The current review summarizes the role of Lactobacillus reuteri in oral health and systemic health and outlines its potential applications in the future. Lactobacillus reuteri has shown promising prospects in treating non-communicable biofilm-dependent oral diseases, but its mechanism of action and efficacy still need further research. In addition, Lactobacillus reuteri has also displayed some potential benefits in promoting overall health. Future research should focus on revealing the specific pathways of action of Lactobacillus reuteri, screening for the most beneficial strains, determining the most effective drug delivery strategies, developing oral and systemic health products based on Lactobacillus reuteri, and ensuring their safety in clinical applications.
Collapse
Affiliation(s)
- Zihui Liu
- School of Stomatology, Henan University, Kaifeng 475004, China; (Z.L.); (Q.C.); (W.W.); (B.W.); (Y.Y.); (T.L.)
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng 475000, China
| | - Qing Cao
- School of Stomatology, Henan University, Kaifeng 475004, China; (Z.L.); (Q.C.); (W.W.); (B.W.); (Y.Y.); (T.L.)
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng 475000, China
| | - Wenqing Wang
- School of Stomatology, Henan University, Kaifeng 475004, China; (Z.L.); (Q.C.); (W.W.); (B.W.); (Y.Y.); (T.L.)
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng 475000, China
| | - Bowen Wang
- School of Stomatology, Henan University, Kaifeng 475004, China; (Z.L.); (Q.C.); (W.W.); (B.W.); (Y.Y.); (T.L.)
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng 475000, China
| | - Yilun Yang
- School of Stomatology, Henan University, Kaifeng 475004, China; (Z.L.); (Q.C.); (W.W.); (B.W.); (Y.Y.); (T.L.)
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng 475000, China
| | - Cory J. Xian
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia;
| | - Tiejun Li
- School of Stomatology, Henan University, Kaifeng 475004, China; (Z.L.); (Q.C.); (W.W.); (B.W.); (Y.Y.); (T.L.)
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Yuankun Zhai
- School of Stomatology, Henan University, Kaifeng 475004, China; (Z.L.); (Q.C.); (W.W.); (B.W.); (Y.Y.); (T.L.)
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng 475000, China
| |
Collapse
|
14
|
Shin YJ, Ma X, Joo MK, Baek JS, Kim DH. Lactococcus lactis and Bifidobacterium bifidum alleviate postmenopausal symptoms by suppressing NF-κB signaling and microbiota dysbiosis. Sci Rep 2024; 14:31675. [PMID: 39738244 PMCID: PMC11685947 DOI: 10.1038/s41598-024-81500-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025] Open
Abstract
To understand the action mechanism of probiotics against postmenopausal symptoms, we examined the effects of Lactococcus lactis P32 (PL) and Bifidobacterium bifidum P45 (PB), which suppressed interleukin (IL)-6 and receptor activator of nuclear factor-κB (RANK) ligand (RNAKL) expression in Gardnerella vaginalis (Gv)-stimulated macrophages, on vaginitis, osteoporosis, and depression/cognitive impairment (DC) in mice with vaginally infected Gv, ovariectomy (Ov), or Ov/Gv (oG). Oral administration of PL or PB decreased Gv-induced DC-like behavior and tumor necrosis factor (TNF)-α, IL-6, RANK, and/or RANKL expression in the vagina, bone, hypothalamus, hippocampus, and colon, while Gv-suppressed bone osteoprotegerin and brain serotonin and brain-derived neurotrophic factor (BDNF) levels increased. They partially shifted vaginal and gut dysbiosis in Gv-infected mice to the gut microbiota composition in normal control mice. In mice with oG, oral administration of PL or PB decreased oG-induced DC-like behavior and TNF-α, IL-6, RANK, and/or RANKL expression in the vagina, bone, brain, and colon, while oG-suppressed bone osteoprotegerin and brain serotonin and BDNF levels increased. They also alleviated oG-induced vaginal and gut dysbiosis: they decreased Proteobacteria population. PL and PB (4:1) mix (PM) suppressed DC-like behavior in mice with Gv, Ov, or oG. PM also suppressed TNF-α, IL-6, RANK, and/or RANKL expression in the vagina, bone, colon, and brain. PM alleviated Gv-induced vaginal and gut dysbiosis: it decreased Proteobacteria population. These findings suggest that PL and PB, singly or together, can alleviate postmenopausal symptoms including vaginitis, colitis, osteoporosis, and DC by suppressing RANK/RANKL-mediated NF-κB activation and alleviating vaginal/gut microbiota dysbiosis.
Collapse
Affiliation(s)
- Yoon-Jung Shin
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul, 02447, Korea
| | - Xiaoyang Ma
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul, 02447, Korea
| | - Min-Kyung Joo
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul, 02447, Korea
| | - Ji-Su Baek
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul, 02447, Korea
| | - Dong-Hyun Kim
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul, 02447, Korea.
- PBLbiolab, Inc., Seoul, 02374, Korea.
| |
Collapse
|
15
|
Turbić A, Vandenput L, Gandham A, Lorentzon M. Effects of Synbiotic Supplementation on Bone and Metabolic Health in Caucasian Postmenopausal Women: Rationale and Design of the OsteoPreP Trial. Nutrients 2024; 16:4219. [PMID: 39683612 DOI: 10.3390/nu16234219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 11/28/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES Correction of decreased diversity of the gut microbiome, which is characteristic of menopause, by supplementation with a synbiotic may attenuate or prevent dysbiosis processes and preserve bone mass. We describe the rationale and design of the OsteoPreP trial aimed at evaluating the effects of 12 months of supplementation with a synbiotic on bone and metabolic health in postmenopausal Caucasian women. METHODS This is a randomized, double-blinded, placebo-controlled trial among 160 Caucasian, postmenopausal women with no current diagnosis of osteoporosis or supplementation with pro- or prebiotics, and no medical treatment affecting bone turnover. Dual-energy X-ray absorptiometry scans will be conducted at screening to confirm absence of osteoporosis. The primary outcome is the relative change (%) in total bone mineral density of the distal tibia at 12 months post-treatment between the active and placebo groups, as determined via high-resolution peripheral quantitative computed tomography. Secondary outcomes are the effects on immune system modulation and cognition, gut microbiota composition, and musculoskeletal and metabolic functions, with particular emphasis on blood glucose regulation. CONCLUSIONS The trial will inform on the efficacy and safety of a synbiotic containing both aerobic and anerobic bacterial strains and a prebiotic fiber on reduction in bone loss and on indices of blood glucose regulation. This trial may pave the way for an exciting field of translational research and be the underpinnings of the prevention strategy of osteoporosis and the management of metabolic dysfunction in postmenopausal women. The trial is registered with clinicaltrials.gov (NCT05348694).
Collapse
Affiliation(s)
- Alisa Turbić
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia
| | - Liesbeth Vandenput
- Sahlgrenska Osteoporosis Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, 41345 Gothenburg, Sweden
| | - Anoohya Gandham
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3168, Australia
| | - Mattias Lorentzon
- Sahlgrenska Osteoporosis Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, 41345 Gothenburg, Sweden
- Region Västra Götaland, Department of Geriatric Medicine, Sahlgrenska University Hospital, 43153 Mölndal, Sweden
| |
Collapse
|
16
|
Aboushaala K, Chee AV, Adnan D, Toro SJ, Singh H, Savoia A, Dhillon ES, Yuh C, Dourdourekas J, Patel IK, Vucicevic R, Espinoza‐Orias AA, Martin JT, Oh C, Keshavarzian A, Albert HB, Karppinen J, Kocak M, Wong AYL, Goldberg EJ, Phillips FM, Colman MW, Williams FMK, Borgia JA, Naqib A, Green SJ, Forsyth CB, An HS, Samartzis D. Gut microbiome dysbiosis is associated with lumbar degenerative spondylolisthesis in symptomatic patients. JOR Spine 2024; 7:e70005. [PMID: 39398942 PMCID: PMC11467165 DOI: 10.1002/jsp2.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 10/15/2024] Open
Abstract
Background Lumbar degenerative spondylolisthesis (LDS), characterized as degeneration of the intervertebral disc and structural changes of the facet joints, is a condition with varying degrees of instability that may lead to pain, canal stenosis, and subsequent surgical intervention. However, the etiology of LDS remains inconclusive. Gut microbiome dysbiosis may stimulate systemic inflammation in various disorders. However, the role of such dysbiosis upon spine health remains under-studied. The current study assessed the association of gut microbiome dysbiosis in symptomatic patients with or without LDS. Methods A cross-sectional analysis within the framework of a prospective study was performed. DNA was extracted from fecal samples collected from adult symptomatic patients with (n = 21) and without LDS (n = 12). Alpha and beta diversity assessed differences in fecal microbial community between groups. Taxon-by-taxon analysis identified microbial features with differential relative abundance between groups. Subject demographics and imaging parameters were also assessed. Results There was no significant group differences in age, sex, race, body mass index, smoking/alcohol history, pain profiles, spinopelvic alignment, and Modic changes (p >0.05). LDS subjects had significantly higher disc degeneration severity (p = 0.018) and alpha diversity levels compared to non-LDS subjects (p = 0.002-0.003). Significant differences in gut microbial community structure were observed between groups (p = 0.046). Subjects with LDS exhibited distinct differences at the phylum level, with a significantly higher Firmicutes to Bacteroidota ratio compared to non-LDS (p = 0.003). Differential relative abundance analysis identified six taxa with significant differences between the two groups, with LDS demonstrating an increase in putative pro-inflammatory bacteria (Dialister, CAG-352) and a decrease in anti-inflammatory bacteria (Slackia, Escherichia-Shigella). Conclusion This study is the first to report a significant association of gut microbiome dysbiosis and LDS in symptomatic patients, noting pro-inflammatory bacterial taxa. This work provides a foundation for future studies addressing the role of the gut microbiome in association with spine health and disease.
Collapse
Affiliation(s)
- Khaled Aboushaala
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
| | - Ana V. Chee
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
| | - Darbaz Adnan
- Center for Integrated Microbiome & Chronobiology Research, Rush Medical College, Rush University Medical CenterChicagoIllinoisUSA
| | - Sheila J. Toro
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
| | - Harmanjeet Singh
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
| | - Andrew Savoia
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
| | - Ekamjeet S. Dhillon
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
| | - Catherine Yuh
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
| | - Jake Dourdourekas
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
| | - Ishani K. Patel
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
| | - Rajko Vucicevic
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
| | | | - John T. Martin
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
| | - Chundo Oh
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
| | - Ali Keshavarzian
- Department of Internal MedicineRush University Medical CenterChicagoIllinoisUSA
| | - Hanne B. Albert
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
| | - Jaro Karppinen
- Research Unit of Health Sciences and TechnologyUniversity of OuluOuluFinland
| | - Mehmet Kocak
- Department of Radiology & Nuclear MedicineRush University Medical CenterChicagoIllinoisUSA
| | - Arnold Y. L. Wong
- Department of Rehabilitation SciencesThe Hong Kong Polytechnic UniversityHong KongChina
| | - Edward J. Goldberg
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
| | - Frank M. Phillips
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
| | - Matthew W. Colman
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
| | - Frances M. K. Williams
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
- Department of Twins Research and Genetic EpidemiologyKing's CollegeLondonUK
| | - Jeffrey A. Borgia
- Departments of Anatomy & Cell Biology and PathologyRush University Medical CenterChicagoIllinoisUSA
| | - Ankur Naqib
- Department of Internal MedicineRush University Medical CenterChicagoIllinoisUSA
| | - Stefan J. Green
- Department of Internal MedicineRush University Medical CenterChicagoIllinoisUSA
| | | | - Howard S. An
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
| | - Dino Samartzis
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
| |
Collapse
|
17
|
Liu Y, Gao L, Li M, Zhang W, Wang Y, Zhao J. High-Risk Analysis of Vertebral Compression Fractures With Type 2 Diabetes Mellitus: Site-Specific Volumetric Bone Mineral Density. Int J Endocrinol 2024; 2024:7150482. [PMID: 39633984 PMCID: PMC11617046 DOI: 10.1155/ije/7150482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 11/07/2024] [Accepted: 11/09/2024] [Indexed: 12/07/2024] Open
Abstract
Aims: To explore the distribution of site-specific volumetric bone mineral density (vBMD) and analyze the mechanism of vertebral compression fractures with type 2 diabetes mellitus (T2DM) subjects using quantitative computed tomography (QCT). Materials and Methods: 304 postmenopausal women without T2DM and 274 postmenopausal women with T2DM underwent QCT scan, and all divided into three age subgroups. L1 vertebra was segmented into nine zones based on the corresponding position to the human body. Results: Whether in the T2DM or non-T2DM of each age group, from the ventral to the dorsal side of L1 vertebra, the posterior third zones were the highest, and from the head to the foot of L1 vertebra, the middle third zones were the highest (p < 0.05). Global and most zonal vBMDs of T2DM were higher than those of non-T2DM in the age group of 50-59 years old, vBMD-mp of T2DM was higher in the age group of 60-59 years old, and vBMD-mm of T2DM was higher in the age group of 70-80 years old (p < 0.05). Zonal vBMDs in T2DM were higher than non-T2DM and the difference decreases with age especially in the upper third of L1 vertebra and the lower third of L1 vertebra. Conclusions: Vertebral compression fractures and the confusion between T2DM and vBMD may be all caused by the heterogeneous distribution of vBMDs. The higher risk of T2DM with vertebral compression fractures may be associated with the different loss rate of global and site-specific vBMD, independent of vBMD itself.
Collapse
Affiliation(s)
- Ying Liu
- Department of Medical Imaging, Hebei Medical University Third Hospital, Qiaoxi District, Shijiazhuang 050051, Hebei, China
| | - Lei Gao
- Department of Medical Imaging, Hebei Medical University Third Hospital, Qiaoxi District, Shijiazhuang 050051, Hebei, China
| | - Min Li
- Department of Endocrinology, Hebei Medical University Third Hospital, Qiaoxi District, Shijiazhuang 050051, Hebei, China
| | - Wei Zhang
- Department of Medical Imaging, Hebei Medical University Third Hospital, Qiaoxi District, Shijiazhuang 050051, Hebei, China
| | - Yan Wang
- Department of Endocrinology, Hebei Medical University Third Hospital, Qiaoxi District, Shijiazhuang 050051, Hebei, China
| | - Jian Zhao
- Department of Medical Imaging, Hebei Medical University Third Hospital, Qiaoxi District, Shijiazhuang 050051, Hebei, China
| |
Collapse
|
18
|
Panchal L, Arora S, Pramanik J, Batta K, Kumar A, Prajapati B. Probiotics: a promising intervention for osteoporosis prevention and management. Z NATURFORSCH C 2024; 79:405-411. [PMID: 38965037 DOI: 10.1515/znc-2024-0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/20/2024] [Indexed: 07/06/2024]
Abstract
Osteoporosis (OP) is a systemic skeletal disease that is characterized by low bone mass and increased fracture risk. This article explores the potential of probiotics as an adjunctive approach for the prevention and management of OP. It has been well established that the gut microbiota (GM), a complex community of microbes, plays an important role in bone health. The gut dysbiosis is linked with a higher risk of OP. However, the consumption of probiotics in adequate amounts restores gut health thus improving bone health. Probiotics may influence bone metabolism through enhanced calcium absorption, reduced inflammation, and increased bone formation. The animal and human studies demonstrate the positive effects of probiotics on bone health parameters like reduced osteoclastogenesis, bone resorption markers, osteoblast, osteocyte apoptosis, and increased bone mineral density and expression of osteoprotegerin. The current evidence suggests that probiotics can be used as an adjunctive approach along with the existing therapies for the prevention and management of OP.
Collapse
Affiliation(s)
- Lakshay Panchal
- M.M Institute of Physiotherapy and Rehabilitation, Maharishi Markandeshwar University, Mullana, India
| | - Shivam Arora
- M.M Institute of Physiotherapy and Rehabilitation, Maharishi Markandeshwar University, Mullana, India
| | - Jhilam Pramanik
- Department of Food Technology, William Carrey University, Shillong, India
| | - Kajol Batta
- Department of Food Technology, ITM University, Gwalior, India
| | - Akash Kumar
- Department of Food Technology, SRM University, Delhi-NCR, Sonepat, India
- MMICT&BM (HM), Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, India
| | - Bhupendra Prajapati
- 79233 Shree S.K. Patel College of Pharmaceutical Education and Research, Ganpat University , Mehsana, India
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| |
Collapse
|
19
|
You X, Yan J, Herzog J, Nobakhti S, Campbell R, Hoke A, Hammamieh R, Sartor RB, Shefelbine S, Kacena MA, Chakraborty N, Charles JF. Bone loss with aging is independent of gut microbiome in mice. Bone Res 2024; 12:65. [PMID: 39523344 PMCID: PMC11551211 DOI: 10.1038/s41413-024-00366-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 11/16/2024] Open
Abstract
Emerging evidence suggests a significant role of gut microbiome in bone health. Aging is well recognized as a crucial factor influencing the gut microbiome. In this study, we investigated whether age-dependent microbial change contributes to age-related bone loss in CB6F1 mice. The bone phenotype of 24-month-old germ-free (GF) mice was indistinguishable compared to their littermates colonized by fecal transplant at 1-month-old. Moreover, bone loss from 3 to 24-month-old was comparable between GF and specific pathogen-free (SPF) mice. Thus, GF mice were not protected from age-related bone loss. 16S rRNA gene sequencing of fecal samples from 3-month and 24-month-old SPF males indicated an age-dependent microbial shift with an alteration in energy and nutrient metabolism potential. An integrative analysis of 16S predicted metagenome function and LC-MS fecal metabolome revealed an enrichment of protein and amino acid biosynthesis pathways in aged mice. Microbial S-adenosyl methionine metabolism was increased in the aged mice, which has previously been associated with the host aging process. Collectively, aging caused microbial taxonomic and functional alteration in mice. To demonstrate the functional importance of young and old microbiome to bone, we colonized GF mice with fecal microbiome from 3-month or 24-month-old SPF donor mice for 1 and 8 months. The effect of microbial colonization on bone phenotypes was independent of the microbiome donors' age. In conclusion, our study indicates age-related bone loss occurs independent of gut microbiome.
Collapse
Affiliation(s)
- Xiaomeng You
- Department of Orthopaedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - Jing Yan
- Department of Orthopaedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jeremy Herzog
- National Gnotobiotic Rodent Resource Center, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Sabah Nobakhti
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Ross Campbell
- The Geneva Foundation, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Allison Hoke
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
- ORISE, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Rasha Hammamieh
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - R Balfour Sartor
- National Gnotobiotic Rodent Resource Center, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Sandra Shefelbine
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, 46202, USA
| | - Nabarun Chakraborty
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Julia F Charles
- Department of Orthopaedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Division of Rheumatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
20
|
König J, Roca Rubio MF, Forsgård RA, Rode J, Axelsson J, Grompone G, Brummer RJ. The effects of a 6-week intervention with Limosilactobacillus reuteri ATCC PTA 6475 alone and in combination with L. reuteri DSM 17938 on gut barrier function, immune markers, and symptoms in patients with IBS-D-An exploratory RCT. PLoS One 2024; 19:e0312464. [PMID: 39485760 PMCID: PMC11530048 DOI: 10.1371/journal.pone.0312464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/05/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND An increased intestinal permeability is a common feature in patients with diarrhoea-predominant irritable bowel syndrome (IBS-D). Probiotics have shown to improve IBS symptoms and might also affect intestinal barrier function. AIM The aim of this study was to investigate the effects of a 6-week intervention with Limosilactobacillus reuteri ATCC PTA 6475 alone (single strain) or in combination with Limosilactobacillus reuteri DSM 17938 (dual strain) on gut barrier function, immune markers, and symptoms in IBS-D patients (ClinicalTrials.gov registration number: NCT03986476). METHODS 65 IBS-D patients were randomised into three groups (placebo, single strain, dual strain). Small and large intestinal permeability were assessed using a multi-sugar urinary recovery test. Blood, saliva, faecal samples, and several symptom scales were collected before, and after three and six weeks of intervention. RESULTS Small and large intestinal permeability as well as other markers of gut barrier function were not significantly affected by the probiotic interventions. Serum IL-6 levels showed a tendency to be reduced in the single strain group (descriptive p = 0.052). In addition, high-sensitivity C-reactive protein was significantly reduced in the dual strain group (p = 0.041). The participants in both treatment groups reported less gastrointestinal symptoms after three weeks, but this reached significance only in the dual strain group (total score: p = 0.032, pain subscore: p = 0.028). After six weeks, none of the assessed symptoms were significantly different from the placebo. CONCLUSION The probiotic compounds investigated in this study did not seem to affect IBS-D patients' gut barrier function, but showed potential anti-inflammatory and symptom-improving properties, which need to be confirmed in larger study cohorts.
Collapse
Affiliation(s)
- Julia König
- Nutrition-Gut-Brain Interactions Research Centre, Faculty of Health and Medicine, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - María Fernanda Roca Rubio
- Nutrition-Gut-Brain Interactions Research Centre, Faculty of Health and Medicine, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Richard A. Forsgård
- Nutrition-Gut-Brain Interactions Research Centre, Faculty of Health and Medicine, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Julia Rode
- Nutrition-Gut-Brain Interactions Research Centre, Faculty of Health and Medicine, School of Medical Sciences, Örebro University, Örebro, Sweden
| | | | | | - Robert J. Brummer
- Nutrition-Gut-Brain Interactions Research Centre, Faculty of Health and Medicine, School of Medical Sciences, Örebro University, Örebro, Sweden
| |
Collapse
|
21
|
Głogowska-Szeląg J, Palka-Kisielowska I, Porawska W, Bierła JB, Szczepankowska AK, Aleksandrzak-Piekarczyk T, Cukrowska B. The Effect of Lacticaseibacillus paracasei LPC100 and Lactiplantibacillus plantarum LP140 on Bone Mineral Density in Postmenopausal Women: A Multicenter, Randomized, Placebo-Controlled Study. J Clin Med 2024; 13:5977. [PMID: 39408038 PMCID: PMC11478335 DOI: 10.3390/jcm13195977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/06/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024] Open
Abstract
Objectives: modulation of gut microbiota by probiotics has been proposed as a target for intervention to reduce bone mineral density (BMD) loss in the postmenopausal period. This study aims to evaluate the effect of Lacticaseibacillus (L.) paracasei LPC100 and Lactiplantibacillus (L.) plantarum LP140 on BMD in postmenopausal women in a multicenter, randomized, double-blind, placebo-controlled trial. Methods: the primary outcome was the change in T-score of the lumbar spine measured by dual-energy X-ray absorptiometry assessed after twelve-month probiotic supplementation. Secondary outcomes included changes in serological markers of inflammation and calcium-phosphate metabolism, body mass index, gastrointestinal symptoms, and satisfaction with the intervention. Results: a decrease in T-score indicating the progressive bone demineralization reached a statistically significant difference in the placebo group (from mean values of 0.06 ± 1.04 to -0.28 ± 1.12, p = 0.041) but not in the probiotic group (0.19 ± 0.99 and -0.08 ± 1.05, respectively, p = 0.125) with a p-value = 0.089 between the groups. No significant differences were found in secondary outcomes with the exception of vitamin D concentration and a significant reduction in some gastrointestinal symptoms in the probiotic group. A significant decrease in vitamin D level was observed only in the placebo group (p = 0.014). Probiotics were safe and well tolerated. Conclusions: this study suggests that the oral administration of L. paracasei LPC100 and L. plantarum LP140 may be a viable strategy to prevent BMD loss and vitamin D deficiency in postmenopausal women, but further research is necessary to confirm clinical benefits and to know the mechanism of action [ClinicalTrial.gov NCT06375668].
Collapse
Affiliation(s)
- Joanna Głogowska-Szeląg
- Department of Pathophysiology and Endocrinology, Silesian Medical University, Jordana 19, 41-808 Zabrze, Poland;
| | | | | | - Joanna B. Bierła
- Department of Clinical Biochemistry, The Children’s Memorial Health Institute, Aleja Dzieci Polskich 20, 04-730 Warsaw, Poland;
| | - Agnieszka K. Szczepankowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (A.K.S.); (T.A.-P.)
| | - Tamara Aleksandrzak-Piekarczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (A.K.S.); (T.A.-P.)
| | - Bożena Cukrowska
- Department of Pathomorphology, The Children’s Memorial Health Institute, Aleja Dzieci Polskich 20, 04-730 Warsaw, Poland
| |
Collapse
|
22
|
da Silva TF, Glória RDA, Americo MF, Freitas ADS, de Jesus LCL, Barroso FAL, Laguna JG, Coelho-Rocha ND, Tavares LM, le Loir Y, Jan G, Guédon É, Azevedo VADC. Unlocking the Potential of Probiotics: A Comprehensive Review on Research, Production, and Regulation of Probiotics. Probiotics Antimicrob Proteins 2024; 16:1687-1723. [PMID: 38539008 DOI: 10.1007/s12602-024-10247-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 10/02/2024]
Abstract
This review provides a comprehensive overview of the current state of probiotic research, covering a wide range of topics, including strain identification, functional characterization, preclinical and clinical evaluations, mechanisms of action, therapeutic applications, manufacturing considerations, and future directions. The screening process for potential probiotics involves phenotypic and genomic analysis to identify strains with health-promoting properties while excluding those with any factor that could be harmful to the host. In vitro assays for evaluating probiotic traits such as acid tolerance, bile metabolism, adhesion properties, and antimicrobial effects are described. The review highlights promising findings from in vivo studies on probiotic mitigation of inflammatory bowel diseases, chemotherapy-induced mucositis, dysbiosis, obesity, diabetes, and bone health, primarily through immunomodulation and modulation of the local microbiota in human and animal models. Clinical studies demonstrating beneficial modulation of metabolic diseases and human central nervous system function are also presented. Manufacturing processes significantly impact the growth, viability, and properties of probiotics, and the composition of the product matrix and supplementation with prebiotics or other strains can modify their effects. The lack of regulatory oversight raises concerns about the quality, safety, and labeling accuracy of commercial probiotics, particularly for vulnerable populations. Advancements in multi-omics approaches, especially probiogenomics, will provide a deeper understanding of the mechanisms behind probiotic functionality, allowing for personalized and targeted probiotic therapies. However, it is crucial to simultaneously focus on improving manufacturing practices, implementing quality control standards, and establishing regulatory oversight to ensure the safety and efficacy of probiotic products in the face of increasing therapeutic applications.
Collapse
Affiliation(s)
- Tales Fernando da Silva
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Rafael de Assis Glória
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Monique Ferrary Americo
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Andria Dos Santos Freitas
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Luis Claudio Lima de Jesus
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda Alvarenga Lima Barroso
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Juliana Guimarães Laguna
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Nina Dias Coelho-Rocha
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Laisa Macedo Tavares
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Yves le Loir
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Gwénaël Jan
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Éric Guédon
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Vasco Ariston de Carvalho Azevedo
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
23
|
Brown K, Funk K, Figueroa Barrientos A, Bailey A, Shrader S, Feng W, McClain CJ, Song ZH. The Modulatory Effects and Therapeutic Potential of Cannabidiol in the Gut. Cells 2024; 13:1618. [PMID: 39404382 PMCID: PMC11475737 DOI: 10.3390/cells13191618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Cannabidiol (CBD) is a major non-psychotropic phytocannabinoid that exists in the Cannabis sativa plant. CBD has been found to act on various receptors, including both cannabinoid and non-cannabinoid receptors. In addition, CBD has antioxidant effects that are independent of receptors. CBD has demonstrated modulatory effects at different organ systems, such as the central nervous system, immune system, and the gastrointestinal system. Due to its broad effects within the body and its safety profile, CBD has become a topic of therapeutic interest. This literature review summarizes previous research findings with regard to the effect of CBD on the gastrointestinal (GI) system, including its effects at the molecular, cellular, organ, and whole-body levels. Both pre-clinical animal studies and human clinical trials are reviewed. The results of the studies included in this literature review suggest that CBD has significant impact on intestinal permeability, the microbiome, immune cells and cytokines. As a result, CBD has been shown to have therapeutic potential for GI disorders such as inflammatory bowel disease (IBD). Furthermore, through interactions with the gut, CBD may also be helpful in the treatment of disorders outside the GI system, such as non-alcoholic liver disease, postmenopausal disorders, epilepsy, and multiple sclerosis. In the future, more mechanistic studies are warranted to elucidate the detailed mechanisms of action of CBD in the gut. In addition, more well-designed clinical trials are needed to explore the full therapeutic potential of CBD on and through the gut.
Collapse
Affiliation(s)
- Kevin Brown
- College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Kyle Funk
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Alexa Figueroa Barrientos
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Ashly Bailey
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Sarah Shrader
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Wenke Feng
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Craig J. McClain
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Zhao-Hui Song
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| |
Collapse
|
24
|
Zheng Y, Zhang Z, Fu Z, Fan A, Song N, Wang Q, Fan S, Xu J, Xiang J, Liu X. Oral Propolis Nanoemulsions Modulate Gut Microbiota to Balance Bone Remodeling for Enhanced Osteoporosis Therapy. ACS NANO 2024. [PMID: 39269339 DOI: 10.1021/acsnano.4c07332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
The discovery of the bone-gut axis linking bone metabolism to gut microbiota (GM) dysbiosis has revolutionized our understanding of managing degenerative skeletal diseases. Targeting GM regulation has emerged as a promising approach to osteoporosis treatment. Herein, we develop propolis nanoemulsions (PNEs) with enhanced gastrointestinal stability and oral bioavailability for GM-based osteoporosis therapy. Orally administered PNEs exhibit superior antiosteoporosis efficacy in an ovariectomized (OVX) mouse model by modulating the GM structure and metabolites and restoring the intestinal barrier function. Multiomics analysis reveals that a reduction in Streptococcus abundance and an increase in the GM metabolite l-arginine are key factors in osteoporosis management. These changes suppress osteoclast activity and enhance osteoblast function, leading to balanced bone remodeling and, thus, significant antiosteoporotic effects via the gut-bone axis. Our results deepen insights into the intricate relationship between GM and bone remodeling, suggesting a promising strategy that maintains the homeostasis of the GM structure and metabolite for osteoporosis treatment.
Collapse
Affiliation(s)
- Yufei Zheng
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Zhaowei Zhang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Zezhou Fu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Aimi Fan
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Nan Song
- Cancer Center, Department of Pathology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Qingqing Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Shunwu Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | - Jianbin Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| | - Jiajia Xiang
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Xin Liu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
- Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| |
Collapse
|
25
|
Chen LA, Boyle K. The Role of the Gut Microbiome in Health and Disease in the Elderly. Curr Gastroenterol Rep 2024; 26:217-230. [PMID: 38642272 PMCID: PMC11282161 DOI: 10.1007/s11894-024-00932-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2024] [Indexed: 04/22/2024]
Abstract
PURPOSE OF REVIEW Growing evidence supports the contribution of age in the composition and function of the gut microbiome, with specific findings associated with health in old age and longevity. RECENT FINDINGS Current studies have associated certain microbiota, such as Butyricimonas, Akkermansia, and Odoribacter, with healthy aging and the ability to survive into extreme old age. Furthermore, emerging clinical and pre-clinical research have shown promising mechanisms for restoring a healthy microbiome in elderly populations through various interventions such as fecal microbiota transplant (FMT), dietary interventions, and exercise programs. Despite several conceptually exciting interventional studies, the field of microbiome research in the elderly remains limited. Specifically, large longitudinal studies are needed to better understand causative relationships between the microbiome and healthy aging. Additionally, individualized approaches to microbiome interventions based on patients' co-morbidities and the underlying functional capacity of their microbiomes are needed to achieve optimal results.
Collapse
Affiliation(s)
- Lea Ann Chen
- Division of Gastroenterology and Hepatology, Department of Medicine, Rutgers, New Brunswick, NJ, USA.
| | - Kaitlyn Boyle
- Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| |
Collapse
|
26
|
Rienzi SCD, Danhof HA, Forshee MD, Roberts A, Britton RA. Limosilactobacillus reuteri promotes the expression and secretion of enteroendocrine- and enterocyte-derived hormones. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610555. [PMID: 39257733 PMCID: PMC11384013 DOI: 10.1101/2024.08.30.610555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Observations that intestinal microbes can beneficially impact host physiology have prompted investigations into the therapeutic usage of such microbes in a range of diseases. For example, the human intestinal microbe Limosilactobacillus reuteri strains ATCC PTA 6475 and DSM 17938 are being considered for use for intestinal ailments including colic, infection, and inflammation as well as non-intestinal ailments including osteoporosis, wound healing, and autism spectrum disorder. While many of their beneficial properties are attributed to suppressing inflammatory responses in the gut, we postulated that L. reuteri may also regulate hormones of the gastrointestinal tract to affect physiology within and outside of the gut. To determine if L. reuteri secreted factors impact the secretion of enteric hormones, we treated an engineered jejunal organoid line, NGN3-HIO, which can be induced to be enriched in enteroendocrine cells, with L. reuteri 6475 or 17938 conditioned medium and performed transcriptomics. Our data suggest that these L. reuteri strains affect the transcription of many gut hormones, including vasopressin and luteinizing hormone subunit beta, which have not been previously recognized as being produced in the gut epithelium. Moreover, we find that these hormones appear to be produced in enterocytes, in contrast to canonical gut hormones which are produced in enteroendocrine cells. Finally, we show that L. reuteri conditioned media promotes the secretion of several enteric hormones including serotonin, GIP, PYY, vasopressin, and luteinizing hormone subunit beta. These results support L. reuteri affecting host physiology through intestinal hormone secretion, thereby expanding our understanding of the mechanistic actions of this microbe.
Collapse
Affiliation(s)
- Sara C. Di Rienzi
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| | - Heather A. Danhof
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| | - Micah D. Forshee
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| | - Ari Roberts
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| | - Robert A. Britton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
27
|
Mehta M, Hodgson E, Reimer RA, Gabel L. Gut microbiome-targeted therapies and bone health across the lifespan: a scoping review. Crit Rev Food Sci Nutr 2024:1-14. [PMID: 39216013 DOI: 10.1080/10408398.2024.2397459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Emerging evidence suggests that bone turnover is influenced by the gut microbiome through critical bone signaling pathways. The purpose of this scoping review is to examine prebiotic, probiotic, and synbiotic interventions on bone outcomes in humans across the lifespan. PubMed, Scopus, and EBSCOhost were searched until January 2023 to identify clinical trials examining bone mineral density (BMD) or bone mineral content (BMC) with gut microbiome interventions. Of three prebiotic interventions, one reported higher areal BMD (aBMD) in adolescents. In two studies in postmenopausal women, no changes in aBMD were observed despite decreased biomarkers of bone resorption. Probiotic interventions in perimenopausal or postmenopausal women demonstrated increased aBMD or attenuated bone loss in various bone regions. All studies observed attenuated bone loss (n = 4) or increased aBMD (n = 1). One study assessed a synbiotic intervention on aBMD and observed decreased biomarkers of bone resorption but no changes in aBMD. Results suggest potential for microbiome-targeted therapies (prebiotics, probiotics and synbiotics) to attenuate bone loss. However, changes in biomarkers of bone turnover were not always accompanied by changes in bone mineralization. Future studies should utilize longer duration interventions to investigate the influence of prebiotic, probiotic, and synbiotic interventions across diverse age, sex, and ethnic cohorts.
Collapse
Affiliation(s)
- Maahika Mehta
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Erin Hodgson
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Raylene A Reimer
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Leigh Gabel
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| |
Collapse
|
28
|
Chen Z, Xu W, Luo J, Liu L, Peng X. Lonicera japonica Fermented by Lactobacillus plantarum Improve Multiple Patterns Driven Osteoporosis. Foods 2024; 13:2649. [PMID: 39272415 PMCID: PMC11393950 DOI: 10.3390/foods13172649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
Osteoporosis (OP) represents a global health challenge. Certain functional food has the potential to mitigate OP. Honeysuckle (Lonicera japonica) solution has medicinal effects, such as anti-inflammatory and immune enhancement, and can be used in functional foods such as health drinks and functional snacks. The composition of honeysuckle changed significantly after fermentation, and 376 metabolites were enriched. In this study, we used dexamethasone to induce OP in the rat model. Research has confirmed the ability of FS (fermented Lonicera japonica solution) to enhance bone mineral density (BMD), repair bone microarchitectural damage, and increase blood calcium levels. Markers such as tartrate-resistant acid phosphatase-5b (TRACP-5b) and pro-inflammatory cytokines (TNF-α and IL-6) were notably decreased, whereas osteocalcin (OCN) levels increased after FS treatment. FS intervention in OP rats restored the abundance of 6 bacterial genera and the contents of 17 serum metabolites. The results of the Spearman correlation analysis showed that FS may alleviate OP by restoring the abundance of 6 bacterial genera and the contents of 17 serum metabolites, reducing osteoclast differentiation, promoting osteoblast differentiation, and reducing the inflammatory response. This study revealed that Lactobacillus plantarum-fermented honeysuckle alleviated OP through intestinal bacteria and serum metabolites and provided a theoretical basis for the development of related functional foods.
Collapse
Affiliation(s)
- Zimin Chen
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Weiye Xu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Jianming Luo
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Liu Liu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Xichun Peng
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| |
Collapse
|
29
|
Grahnemo L, Kambur O, Lahti L, Jousilahti P, Niiranen T, Knight R, Salomaa V, Havulinna AS, Ohlsson C. Associations between gut microbiota and incident fractures in the FINRISK cohort. NPJ Biofilms Microbiomes 2024; 10:69. [PMID: 39143108 PMCID: PMC11324742 DOI: 10.1038/s41522-024-00530-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/09/2024] [Indexed: 08/16/2024] Open
Abstract
The gut microbiota (GM) can regulate bone mass, but its association with incident fractures is unknown. We used Cox regression models to determine whether the GM composition is associated with incident fractures in the large FINRISK 2002 cohort (n = 7043, 1092 incident fracture cases, median follow-up time 18 years) with information on GM composition and functionality from shotgun metagenome sequencing. Higher alpha diversity was associated with decreased fracture risk (hazard ratio [HR] 0.92 per standard deviation increase in Shannon index, 95% confidence interval 0.87-0.96). For beta diversity, the first principal component was associated with fracture risk (Aitchison distance, HR 0.90, 0.85-0.96). In predefined phyla analyses, we observed that the relative abundance of Proteobacteria was associated with increased fracture risk (HR 1.14, 1.07-1.20), while the relative abundance of Tenericutes was associated with decreased fracture risk (HR 0.90, 0.85-0.96). Explorative sub-analyses within the Proteobacteria phylum showed that higher relative abundance of Gammaproteobacteria was associated with increased fracture risk. Functionality analyses showed that pathways related to amino acid metabolism and lipopolysaccharide biosynthesis associated with fracture risk. The relative abundance of Proteobacteria correlated with pathways for amino acid metabolism, while the relative abundance of Tenericutes correlated with pathways for butyrate synthesis. In conclusion, the overall GM composition was associated with incident fractures. The relative abundance of Proteobacteria, especially Gammaproteobacteria, was associated with increased fracture risk, while the relative abundance of Tenericutes was associated with decreased fracture risk. Functionality analyses demonstrated that pathways known to regulate bone health may underlie these associations.
Collapse
Affiliation(s)
- Louise Grahnemo
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Oleg Kambur
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Leo Lahti
- Department of Computing, University of Turku, Turku, Finland
| | - Pekka Jousilahti
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Teemu Niiranen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Internal Medicine, University of Turku, Turku, Finland
- Division of Medicine, Turku University Hospital, Turku, Finland
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, Joan and Irwin Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
| | - Veikko Salomaa
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Aki S Havulinna
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Claes Ohlsson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Drug Treatment, Gothenburg, Sweden.
| |
Collapse
|
30
|
He W, Bertram HC, Yin JY, Nie SP. Lactobacilli and Their Fermented Foods as a Promising Strategy for Enhancing Bone Mineral Density: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17730-17745. [PMID: 39078823 DOI: 10.1021/acs.jafc.4c03218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Lactobacilli fermentation possesses special nutritional and health values to food, especially in improving diseases related to the gut microbiota such as osteoporosis risk. Previous research indicates that lactobacilli-fermented foods have the potential to enhance the bone mineral density (BMD), as suggested by some clinical studies. Nonetheless, there is currently a lack of comprehensive summaries of the effects and potential mechanisms of lactobacilli-fermented foods on BMD. This review summarizes findings from preclinical and clinical studies, revealing that lactobacilli possess the potential to mitigate age-related and secondary factor-induced bone loss. Furthermore, these findings imply that lactobacilli are likely mediated through the modulation of bone remodeling via gut inflammation-related pathways. Additionally, lactobacilli fermentation may augment calcium accessibility through directly promoting calcium absorption or modifying food constituents. Considering the escalating global health challenge of bone-related issues among the elderly population, this review may offer a valuable reference for the development of food strategies aimed at preventing osteoporosis.
Collapse
Affiliation(s)
- Weiwei He
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, Jiangxi, China
| | | | - Jun-Yi Yin
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, Jiangxi, China
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, Jiangxi, China
| |
Collapse
|
31
|
Yuan F. Association of dietary live microbe intake with prevalence of osteoporosis in US postmenopausal women: a cross-sectional study. Arch Osteoporos 2024; 19:69. [PMID: 39096323 DOI: 10.1007/s11657-024-01429-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/22/2024] [Indexed: 08/05/2024]
Abstract
The association between live microbe intake and osteoporosis in postmenopausal women remains unknown. The research findings indicated that an increased intake of live microbes through dietary sources was associated with a low prevalence of osteoporosis among postmenopausal women. PURPOSE To investigate the relationship between the consumption of live microbes in the diet and osteoporosis in postmenopausal women. METHODS A cross-sectional investigation using data obtained from the National Health and Nutrition Examination Survey was conducted. Participants were classified into three groups by using the dietary live microbe classification system developed by Sanders. Dual x-ray absorptiometry was used to measure body mineral density, and osteoporosis was diagnosed according to the World Health Organization criteria. We conducted a crude and adjusted multivariate logistic regression analysis, and utilized the restricted cubic splines model to assess the correlation between the consumption of live microbes in the diet and osteoporosis in postmenopausal women. RESULTS A total of 1378 women who had undergone menopause were enrolled in the study. After controlling for potential covariates, individuals with a high consumption of live microbes in their diet exhibited a notably low prevalence of osteoporosis in comparison to those with a low intake of dietary live microbes (odd ratio: 0.46, 95% confidence interval: 0.23, 0.93, P = 0.03). Subgroup analysis showed the stability of the results, and restricted cubic splines showed an approximate L-shape curve. CONCLUSIONS In this research, a higher consumption of live microbes in the diet was linked to a low prevalence of osteoporosis in postmenopausal women.
Collapse
Affiliation(s)
- Feng Yuan
- Department of Endocrinology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, 22 Guangrong Road, Gulou District, Fuzhou City, Fujian, China.
| |
Collapse
|
32
|
Shafqat A, Masters MC, Tripathi U, Tchkonia T, Kirkland JL, Hashmi SK. Long COVID as a disease of accelerated biological aging: An opportunity to translate geroscience interventions. Ageing Res Rev 2024; 99:102400. [PMID: 38945306 DOI: 10.1016/j.arr.2024.102400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/12/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
It has been four years since long COVID-the protracted consequences that survivors of COVID-19 face-was first described. Yet, this entity continues to devastate the quality of life of an increasing number of COVID-19 survivors without any approved therapy and a paucity of clinical trials addressing its biological root causes. Notably, many of the symptoms of long COVID are typically seen with advancing age. Leveraging this similarity, we posit that Geroscience-which aims to target the biological drivers of aging to prevent age-associated conditions as a group-could offer promising therapeutic avenues for long COVID. Bearing this in mind, this review presents a translational framework for studying long COVID as a state of effectively accelerated biological aging, identifying research gaps and offering recommendations for future preclinical and clinical studies.
Collapse
Affiliation(s)
- Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
| | - Mary Clare Masters
- Division of Infectious Diseases, Northwestern University, Chicago, IL, USA
| | - Utkarsh Tripathi
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Tamara Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA; Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Shahrukh K Hashmi
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA; Research and Innovation Center, Department of Health, Abu Dhabi, UAE; College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
33
|
Naik A, Godbole M. Elucidating the Intricate Roles of Gut and Breast Microbiomes in Breast Cancer Metastasis to the Bone. Cancer Rep (Hoboken) 2024; 7:e70005. [PMID: 39188104 PMCID: PMC11347752 DOI: 10.1002/cnr2.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 07/10/2024] [Accepted: 08/11/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND Breast cancer is the most predominant and heterogeneous cancer in women. Moreover, breast cancer has a high prevalence to metastasize to distant organs, such as the brain, lungs, and bones. Patients with breast cancer metastasis to the bones have poor overall and relapse-free survival. Moreover, treatment using chemotherapy and immunotherapy is ineffective in preventing or reducing cancer metastasis. RECENT FINDINGS Microorganisms residing in the gut and breast, termed as the resident microbiome, have a significant influence on the formation and progression of breast cancer. Recent studies have identified some microorganisms that induce breast cancer metastasis to the bone. These organisms utilize multiple mechanisms, including induction of epithelial-mesenchymal transition, steroid hormone metabolism, immune modification, bone remodeling, and secretion of microbial products that alter tumor microenvironment, and enhance propensity of breast cancer cells to metastasize. However, their involvement makes these microorganisms suitable as novel therapeutic targets. Thus, studies are underway to prevent and reduce breast cancer metastasis to distant organs, including the bone, using chemotherapeutic or immunotherapeutic drugs, along with probiotics, antibiotics or fecal microbiota transplantation. CONCLUSIONS The present review describes association of gut and breast microbiomes with bone metastases. We have elaborated on the mechanisms utilized by breast and gut microbiomes that induce breast cancer metastasis, especially to the bone. The review also highlights the current treatment options that may target both the microbiomes for preventing or reducing breast cancer metastases. Finally, we have specified the necessity of maintaining a diverse gut microbiome to prevent dysbiosis, which otherwise may induce breast carcinogenesis and metastasis especially to the bone. The review may facilitate more detailed investigations of the causal associations between these microbiomes and bone metastases. Moreover, the potential treatment options described in the review may promote discussions and research on the modes to improve survival of patients with breast cancer by targeting the gut and breast microbiomes.
Collapse
Affiliation(s)
- Amruta Naik
- Department of Biosciences and Technology, School of Science and Environmental StudiesDr. Vishwanath Karad MIT World Peace UniversityPuneIndia
| | - Mukul S. Godbole
- Department of Biosciences and Technology, School of Science and Environmental StudiesDr. Vishwanath Karad MIT World Peace UniversityPuneIndia
| |
Collapse
|
34
|
Wu H, Sun Z, Guo Q, Li C. Mapping knowledge landscapes and research frontiers of gastrointestinal microbiota and bone metabolism: a text-mining study. Front Cell Infect Microbiol 2024; 14:1407180. [PMID: 39055979 PMCID: PMC11270605 DOI: 10.3389/fcimb.2024.1407180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/12/2024] [Indexed: 07/28/2024] Open
Abstract
Introduction Extensive research efforts have been dedicated to elucidating the intricate pathways by which gastrointestinal microbiota and their metabolites exert influence on the processes of bone formation. Nonetheless, a notable gap exists in the literature concerning a bibliometric analysis of research trends at the nexus of gastrointestinal microbiota and bone metabolism. Methods To address this scholarly void, the present study employs a suite of bibliometric tools including online platforms, CiteSpace and VOSviewer to scrutinize the pertinent literature in the realm of gastrointestinal microbiota and bone metabolism. Results and discussion Examination of the temporal distribution of publications spanning from 2000 to 2023 reveals a discernible upward trajectory in research output, characterized by an average annual growth rate of 19.2%. Notably, China and the United States emerge as primary contributors. Predominant among contributing institutions are Emory University, Harvard University, and the University of California. Pacifici R from Emory University contributed the most research with 15 publications. In the realm of academic journals, Nutrients emerges as the foremost publisher, followed closely by Frontiers in Microbiology and PLOS One. And PLOS One attains the highest average citations of 32.48. Analysis of highly cited papers underscores a burgeoning interest in the therapeutic potential of probiotics or probiotic blends in modulating bone metabolism by augmenting host immune responses. Notably, significant research attention has coalesced around the therapeutic interventions of probiotics, particularly Lactobacillus reuteri, in osteoporosis, as well as the role of gastrointestinal microbiota in the etiology and progression of osteoarthritis. Keyword analysis reveals prevalent terms including gut microbiota, osteoporosis, bone density, probiotics, inflammation, SCFAs, metabolism, osteoarthritis, calcium absorption, obesity, double-blind, prebiotics, mechanisms, postmenopausal women, supplementation, risk factors, oxidative stress, and immune system. Future research endeavors warrant a nuanced exploration of topics such as inflammation, obesity, SCFAs, postmenopausal osteoporosis, skeletal muscle, oxidative stress, double-blind trials, and pathogenic mechanisms. In summary, this study presents a comprehensive bibliometric analysis of global research on the interplay between gastrointestinal microbiota and bone metabolism, offering valuable insights for scholars, particularly nascent researchers, embarking on analogous investigations within this domain.
Collapse
Affiliation(s)
- Haiyang Wu
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Zaijie Sun
- Department of Orthopaedic Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Qiang Guo
- Department of Spine and Joint Surgery, Tianjin Baodi Hospital, Baodi Clinical College of Tianjin Medical University, Tianjin, China
| | - Cheng Li
- Department of Spine Surgery, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Center for Musculoskeletal Surgery (CMSC), Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt University of Berlin, Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
35
|
Meyer C, Brockmueller A, Ruiz de Porras V, Shakibaei M. Microbiota and Resveratrol: How Are They Linked to Osteoporosis? Cells 2024; 13:1145. [PMID: 38994996 PMCID: PMC11240679 DOI: 10.3390/cells13131145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/18/2024] [Accepted: 06/30/2024] [Indexed: 07/13/2024] Open
Abstract
Osteoporosis (OP), which is characterized by a decrease in bone density and increased susceptibility to fractures, is closely linked to the gut microbiota (GM). It is increasingly realized that the GM plays a key role in the maintenance of the functioning of multiple organs, including bone, by producing bioactive metabolites such as short-chain fatty acids (SCFA). Consequently, imbalances in the GM, referred to as dysbiosis, have been identified with a significant reduction in beneficial metabolites, such as decreased SCFA associated with increased chronic inflammatory processes, including the activation of NF-κB at the epigenetic level, which is recognized as the main cause of many chronic diseases, including OP. Furthermore, regular or long-term medications such as antibiotics and many non-antibiotics such as proton pump inhibitors, chemotherapy, and NSAIDs, have been found to contribute to the development of dysbiosis, highlighting an urgent need for new treatment approaches. A promising preventive and adjuvant approach is to combat dysbiosis with natural polyphenols such as resveratrol, which have prebiotic functions and ensure an optimal microenvironment for beneficial GM. Resveratrol offers a range of benefits, including anti-inflammatory, anti-oxidant, analgesic, and prebiotic effects. In particular, the GM has been shown to convert resveratrol, into highly metabolically active molecules with even more potent beneficial properties, supporting a synergistic polyphenol-GM axis. This review addresses the question of how the GM can enhance the effects of resveratrol and how resveratrol, as an epigenetic modulator, can promote the growth and diversity of beneficial GM, thus providing important insights for the prevention and co-treatment of OP.
Collapse
Affiliation(s)
- Christine Meyer
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Pettenkoferstr. 11, D-80336 Munich, Germany; (C.M.); (A.B.)
| | - Aranka Brockmueller
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Pettenkoferstr. 11, D-80336 Munich, Germany; (C.M.); (A.B.)
| | - Vicenç Ruiz de Porras
- CARE Program, Germans Trias i Pujol Research Institute (IGTP), Camí de les Escoles, s/n, Badalona, 08916 Barcelona, Spain;
- Badalona Applied Research Group in Oncology (B⋅ARGO), Catalan Institute of Oncology, Camí de les Escoles, s/n, Badalona, 08916 Barcelona, Spain
- GRET and Toxicology Unit, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Mehdi Shakibaei
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Pettenkoferstr. 11, D-80336 Munich, Germany; (C.M.); (A.B.)
| |
Collapse
|
36
|
Kim YT, Mills DA. Exploring the gut microbiome: probiotics, prebiotics, synbiotics, and postbiotics as key players in human health and disease improvement. Food Sci Biotechnol 2024; 33:2065-2080. [PMID: 39130661 PMCID: PMC11315840 DOI: 10.1007/s10068-024-01620-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 08/13/2024] Open
Abstract
The human gut microbiome accompanies us from birth, and it is developed and matured by diet, lifestyle, and environmental factors. During aging, the bacterial composition evolves in reciprocal communication with the host's physiological properties. Many diseases are closely related to the gut microbiome, which means the modulation of the gut microbiome can promote the disease targeting remote organs. This review explores the intricate interaction between the gut microbiome and other organs, and their improvement from disease by prebiotics, probiotics, synbiotics, and postbiotics. Each section of the review is supported by clinical trials that substantiate the benefits of modulation the gut microbiome through dietary intervention for improving primary health outcomes across various axes with the gut. In conclusion, the review underscores the significant potential of targeting the gut microbiome for therapeutic and preventative interventions in a wide range of diseases, calling for further research to fully unlock the microbiome's capabilities in enhancing human health.
Collapse
Affiliation(s)
- You-Tae Kim
- Department of Food Science and Technology, University of California-Davis, Davis, CA USA
| | - David A. Mills
- Department of Food Science and Technology, University of California-Davis, Davis, CA USA
| |
Collapse
|
37
|
Wang L, Ren B, Wu S, Song H, Xiong L, Wang F, Shen X. Current research progress, opportunities, and challenges of Limosillactobacillus reuteri-based probiotic dietary strategies. Crit Rev Food Sci Nutr 2024:1-21. [PMID: 38920093 DOI: 10.1080/10408398.2024.2369946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Limosillactobacillus reuteri (L. reuteri), a type of Lactobacillus spp., stands out as the most extensively researched probiotic. Its remarkable intestinal adhesion has led to widespread applications in both the food and medical sectors. Notably, recent research highlights the probiotic efficacy of L. reuteri sourced from breast milk, particularly in influencing social behavior and mitigating atopic dermatitis. In this review, our emphasis is on surveying recent literature regarding the promotion of host's health by L. reuteri. We aim to provide a concise summary of the latest regulatory effects and potential mechanisms attributed to L. reuteri in the realms of metabolism, brain- and immune-related functions. The mechanism through which L. reuteri promotes host health by modulating the intestinal microenvironment primarily involves promoting intestinal epithelial renewal, bolstering intestinal barrier function, regulating gut microbiota and its metabolites, and suppressing inflammation and immune responses. Additionally, this review delves into new technologies, identifies shortcomings, and addresses challenges in current L. reuteri research. Finally, the application prospects of L. reuteri are provided. Therefore, a better understanding of the role and mechanisms of L. reuteri will contribute significantly to the development of new probiotic functional foods and enable precise, targeted interventions for various diseases.
Collapse
Affiliation(s)
- Luanfeng Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Bo Ren
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Shufeng Wu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Haizhao Song
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Ling Xiong
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Fang Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Xinchun Shen
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| |
Collapse
|
38
|
Lashkarbolouk N, Mazandarani M, Pakmehr A, Ejtahed HS. Evaluating the Role of Probiotics, Prebiotics, and Synbiotics Supplementation in Age-related Musculoskeletal Disorders in Older Adults: A Systematic Review. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10306-3. [PMID: 38907826 DOI: 10.1007/s12602-024-10306-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 06/24/2024]
Abstract
The aim of this systematic review is to evaluate musculoskeletal changes in response to prebiotics, probiotics, or synbiotics supplementation in older adults or in animal models of aging musculoskeletal disorders. A comprehensive search was conducted on electronic databases, including PubMed/Medline, Cochrane, and Web of Science until April 2024. The quality assessment of clinical trials was conducted using the Cochrane Collaboration tool and for animal studies, the SYRCLE's tool was used. Our literature search resulted in 652 studies. After removing duplicates and screening the articles based on their titles and abstracts, we assessed the full text of 112 articles, which yielded 20 clinical trials and 30 animal studies in our systematic review. Most of human and animal studies reported an improvement in physical performance, a decrease in frailty index, and a lower reduction in bone mineral density in the intervention groups. Body composition tends to increase in muscle ratio, muscle mass, and reduce in appendicular lean mass and muscle atrophy. Also, the intervention induced bone turnover and mineral absorption, significantly increasing Ca, P, and Mg absorption and short-chain fatty acid concentration. Additionally, levels of inflammatory markers such as IL1, IL6, IL17, T helper 17, and TNF-α exhibited a decreasing trend, while an increase in IL10 and IFN-γ was observed. Prebiotics, probiotics, or synbiotics supplementations could effectively improve the physical performance and muscle strength and reduce the risk of bone loss and frailty in the elderly.
Collapse
Affiliation(s)
- Narges Lashkarbolouk
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Golestan University of Medical Sciences, Gorgan, Iran
| | - Mahdi Mazandarani
- Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Azin Pakmehr
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanieh-Sadat Ejtahed
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
39
|
Yan L, Wang X, Yu T, Qi Z, Li H, Nan H, Wang K, Luo D, Hua F, Wang W. Characteristics of the gut microbiota and serum metabolites in postmenopausal women with reduced bone mineral density. Front Cell Infect Microbiol 2024; 14:1367325. [PMID: 38912210 PMCID: PMC11190063 DOI: 10.3389/fcimb.2024.1367325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/29/2024] [Indexed: 06/25/2024] Open
Abstract
Introduction Emerging evidence suggests that the gut microbiota is closely associated with bone homeostasis. However, little is known about the relationships among the bone mineral density (BMD) index, bone turnover markers, and the gut microbiota and its metabolites in postmenopausal women. Methods In this study, to understand gut microbiota signatures and serum metabolite changes in postmenopausal women with reduced BMD, postmenopausal individuals with normal or reduced BMD were recruited and divided into normal and OS groups. Feces and serum samples were collected for 16S rRNA gene sequencing, liquid chromatography coupled with mass spectrometry (LC-MS)-based metabolomics and integrated analysis. Results The results demonstrated that bacterial richness and diversity were greater in the OS group than in the normal group. Additionally, distinguishing bacteria were found among the two groups and were closely associated with the BMD index and bone turnover markers. Metabolomic analysis revealed that the expression of serum metabolites, such as etiocholanolone, testosterone sulfate, and indole-3-pyruvic acid, and the corresponding signaling pathways, especially those involved in tryptophan metabolism, fatty acid degradation and steroid hormone biosynthesis, also changed significantly. Correlation analysis revealed positive associations between normal group-enriched Bacteroides abundance and normal group-enriched etiocholanolone and testosterone sulfate abundances; in particular, Bacteroides correlated positively with BMD. Importantly, the tryptophan-indole metabolism pathway was uniquely metabolized by the gut bacteria-derived tnaA gene, the predicted abundance of which was significantly greater in the normal group than in the control group, and the abundance of Bacteroides was strongly correlated with the tnaA gene. Discussion Our results indicated a clear difference in the gut microbiota and serum metabolites of postmenopausal women. Specifically altered bacteria and derived metabolites were closely associated with the BMD index and bone turnover markers, indicating the potential of the gut microbiota and serum metabolites as modifiable factors and therapeutic targets for preventing osteoporosis.
Collapse
Affiliation(s)
- Litao Yan
- Department of Articular Orthopaedics, The First People’s Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xianfeng Wang
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, China
| | - Tiantian Yu
- Department of Gynaecology and Obstetrics, Dalian Municipal Woman and Children’s Medical Center, Dalian, China
| | - Zhiming Qi
- Department of Articular Orthopaedics, The Second People’s Hospital of Dalian, Dalian, China
| | - Huan Li
- Changzhou Medical Center, Nanjing Medical University, Nanjing, China
| | - Hao Nan
- Department of Articular Orthopaedics, The First People’s Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Kun Wang
- Department of Articular Orthopaedics, The First People’s Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Di Luo
- Department of Clinical Laboratory, The Second People’s Hospital of Dalian, Dalian, China
| | - Fei Hua
- Department of Endocrinology and Metabolism, The First People’s Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Wendong Wang
- Department of Articular Orthopaedics, The Second People’s Hospital of Dalian, Dalian, China
| |
Collapse
|
40
|
Chua CYX, Jimenez M, Mozneb M, Traverso G, Lugo R, Sharma A, Svendsen CN, Wagner WR, Langer R, Grattoni A. Advanced material technologies for space and terrestrial medicine. NATURE REVIEWS MATERIALS 2024; 9:808-821. [DOI: 10.1038/s41578-024-00691-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 01/05/2025]
|
41
|
Tamayo M, Olivares M, Ruas-Madiedo P, Margolles A, Espín JC, Medina I, Moreno-Arribas MV, Canals S, Mirasso CR, Ortín S, Beltrán-Sanchez H, Palloni A, Tomás-Barberán FA, Sanz Y. How Diet and Lifestyle Can Fine-Tune Gut Microbiomes for Healthy Aging. Annu Rev Food Sci Technol 2024; 15:283-305. [PMID: 38941492 DOI: 10.1146/annurev-food-072023-034458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Many physical, social, and psychological changes occur during aging that raise the risk of developing chronic diseases, frailty, and dependency. These changes adversely affect the gut microbiota, a phenomenon known as microbe-aging. Those microbiota alterations are, in turn, associated with the development of age-related diseases. The gut microbiota is highly responsive to lifestyle and dietary changes, displaying a flexibility that also provides anactionable tool by which healthy aging can be promoted. This review covers, firstly, the main lifestyle and socioeconomic factors that modify the gut microbiota composition and function during healthy or unhealthy aging and, secondly, the advances being made in defining and promoting healthy aging, including microbiome-informed artificial intelligence tools, personalized dietary patterns, and food probiotic systems.
Collapse
Affiliation(s)
- M Tamayo
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain;
- Faculty of Medicine, Autonomous University of Madrid (UAM), Spain
| | - M Olivares
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain;
| | | | - A Margolles
- Health Research Institute (ISPA), Asturias, Spain
| | - J C Espín
- Laboratory of Food & Health, Group of Quality, Safety, and Bioactivity of Plant Foods, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Murcia, Spain
| | - I Medina
- Instituto de Investigaciones Marinas, Spanish National Research Council (IIM-CSIC), Vigo, Spain
| | | | - S Canals
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, Spain
| | - C R Mirasso
- Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (UIB-CSIC), Campus Universitat de les Illes Balears, Palma de Mallorca, Spain
| | - S Ortín
- Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (UIB-CSIC), Campus Universitat de les Illes Balears, Palma de Mallorca, Spain
| | - H Beltrán-Sanchez
- Department of Community Health Sciences, Fielding School of Public Health and California Center for Population Research, University of California, Los Angeles, California, USA
| | - A Palloni
- Department of Sociology, University of Wisconsin, Madison, Wisconsin, USA
| | - F A Tomás-Barberán
- Laboratory of Food & Health, Group of Quality, Safety, and Bioactivity of Plant Foods, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Murcia, Spain
| | - Y Sanz
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain;
| |
Collapse
|
42
|
Ljunggren L, Butler E, Axelsson J, Åström M, Ohlsson L. Effects of probiotic supplementation on testosterone levels in healthy ageing men: A 12-week double-blind, placebo-controlled randomized clinical trial. Contemp Clin Trials Commun 2024; 39:101300. [PMID: 38770015 PMCID: PMC11103415 DOI: 10.1016/j.conctc.2024.101300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 04/16/2024] [Accepted: 04/21/2024] [Indexed: 05/22/2024] Open
Abstract
Levels of the male sex hormone testosterone are generally stable in the age interval 20-70 years, but several studies indicate an earlier, age-dependent decline. Testosterone deficiency is often underdiagnosed and under-treated, but replacement therapy has nonetheless increased during the last couple of years. Owing to possible negative side effects, alternative treatments have been investigated, including different supplementation protocols. The aim of this study was to investigate the effect of probiotic supplementation on the testosterone level in healthy men aged between 55 and 65. Hence, 12 weeks randomized, double-blinded, placebo-controlled trial was conducted to investigate the effect on testosterone levels following supplementation of the recognized probiotic Limosilactobacillus reuteri ATCC PTA 6475 on testosterone levels, using high-, low- or placebo treatment. Venous blood samples were collected at baseline, 6 and 12 weeks, for analysis of bloodwork, lipid profile, hormones, and electrolytes. Subjects were also asked to complete a questionnaire. The supplementation had no effect on testosterone levels, neither using high- or low dose, nor placebo. However, a significant decrease of triglyceride levels was observed in the high-dose group. No other parameters showed any significant change. The present study does not support the hypothesis that a probiotic supplementation can increase testosterone levels in ageing men.
Collapse
Affiliation(s)
- Lennart Ljunggren
- Malmö University, Faculty of Health and Society, Department of Biomedical Science, SE-20506, Malmö, Sweden
| | - Eile Butler
- Atlantia Clinical Trials, Heron House, Blackpool Retail Park, Cork, T23R50R, Ireland
| | | | - Mikael Åström
- StatCons, Högerudsgatan 8 B, SE-21618, Limhamn, Sweden
| | - Lars Ohlsson
- Malmö University, Faculty of Health and Society, Department of Biomedical Science, SE-20506, Malmö, Sweden
| |
Collapse
|
43
|
Ribeiro JL, Santos TA, Garcia MT, Carvalho BFDC, Esteves JECS, Moraes RM, Anbinder AL. Heat-killed Limosilactobacillus reuteri ATCC PTA 6475 prevents bone loss in ovariectomized mice: A preliminary study. PLoS One 2024; 19:e0304358. [PMID: 38820403 PMCID: PMC11142514 DOI: 10.1371/journal.pone.0304358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/11/2024] [Indexed: 06/02/2024] Open
Abstract
Osteoporosis is an important health problem that occurs due to an imbalance between bone formation and resorption. Hormonal deficiency post-menopause is a significant risk factor. The probiotic Limosilactobacillus reuteri has been reported to prevent ovariectomy (Ovx)-induced bone loss in mice and reduce bone loss in postmenopausal women. Despite the numerous health benefits of probiotics, as they are live bacteria, the administration is not risk-free for certain groups (e.g., neonates and immunosuppressed patients). We evaluated the effects of L. reuteri (ATCC PTA 6475) and its heat-killed (postbiotic) form on Ovx-induced bone loss. Adult female mice (BALB/c) were randomly divided into four groups: group C-control (sham); group OVX-C-Ovx; group OVX-POS-Ovx + heat-killed probiotic; group OVX-PRO-Ovx + probiotic. L. reuteri or the postbiotic was administered to the groups (1.3x109 CFU/day) by gavage. Bacterial morphology after heat treatment was accessed by scanning electron microscopy (SEM). The treatment started one week after Ovx and lasted 28 days (4 weeks). The animals were euthanized at the end of the treatment period. Bone microarchitecture and ileum Occludin and pro-inflammatory cytokines gene expression were evaluated by computed microtomography and qPCR techniques, respectively. The Ovx groups had lower percentage of bone volume (BV/TV) and number of bone trabeculae as well as greater total porosity compared to the control group. Treatment with live and heat-killed L. reuteri resulted in higher BV/TV and trabecular thickness than the Ovx group. The heat treatment caused some cell surface disruptions, but its structure resembled that of the live probiotic in SEM analysis. There were no statistical differences in Occludin, Il-6 and Tnf-α gene expression. Both viable and heat-killed L. reuteri prevented bone loss on ovariectomized mice, independently of gut Occludin and intestinal Il-6 and Tnf-α gene expression.
Collapse
Affiliation(s)
- Jaqueline Lemes Ribeiro
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology of São José dos Campos (São Paulo State University–Unesp), São José dos Campos, São Paulo, Brazil
| | - Thaís Aguiar Santos
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology of São José dos Campos (São Paulo State University–Unesp), São José dos Campos, São Paulo, Brazil
| | - Maíra Terra Garcia
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology of São José dos Campos (São Paulo State University–Unesp), São José dos Campos, São Paulo, Brazil
| | - Bruna Fernandes do Carmo Carvalho
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology of São José dos Campos (São Paulo State University–Unesp), São José dos Campos, São Paulo, Brazil
| | | | - Renata Mendonça Moraes
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology of São José dos Campos (São Paulo State University–Unesp), São José dos Campos, São Paulo, Brazil
| | - Ana Lia Anbinder
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology of São José dos Campos (São Paulo State University–Unesp), São José dos Campos, São Paulo, Brazil
| |
Collapse
|
44
|
Liu H, Xiao H, Lin S, Zhou H, Cheng Y, Xie B, Xu D. Effect of gut hormones on bone metabolism and their possible mechanisms in the treatment of osteoporosis. Front Pharmacol 2024; 15:1372399. [PMID: 38725663 PMCID: PMC11079205 DOI: 10.3389/fphar.2024.1372399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/25/2024] [Indexed: 05/12/2024] Open
Abstract
Bone is a highly dynamic organ that changes with the daily circadian rhythm. During the day, bone resorption is suppressed due to eating, while it increases at night. This circadian rhythm of the skeleton is regulated by gut hormones. Until now, gut hormones that have been found to affect skeletal homeostasis include glucagon-like peptide-1 (GLP-1), glucagon-like peptide-2 (GLP-2), glucose-dependent insulinotropic polypeptide (GIP), and peptide YY (PYY), which exerts its effects by binding to its cognate receptors (GLP-1R, GLP-2R, GIPR, and Y1R). Several studies have shown that GLP-1, GLP-2, and GIP all inhibit bone resorption, while GIP also promotes bone formation. Notably, PYY has a strong bone resorption-promoting effect. In addition, gut microbiota (GM) plays an important role in maintaining bone homeostasis. This review outlines the roles of GLP-1, GLP-2, GIP, and PYY in bone metabolism and discusses the roles of gut hormones and the GM in regulating bone homeostasis and their potential mechanisms.
Collapse
Affiliation(s)
- Hongyu Liu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Huimin Xiao
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Sufen Lin
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Huan Zhou
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Yizhao Cheng
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Baocheng Xie
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Department of Pharmacy, The 10th Affiliated Hospital of Southern Medical University (Dongguan People’s Hospital), Dongguan, China
| | - Daohua Xu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| |
Collapse
|
45
|
Resciniti SM, Biesiekierski JR, Ghasem-Zadeh A, Moschonis G. The Effectiveness of a Lactobacilli-Based Probiotic Food Supplement on Bone Mineral Density and Bone Metabolism in Australian Early Postmenopausal Women: Protocol for a Double-Blind Randomized Placebo-Controlled Trial. Nutrients 2024; 16:1150. [PMID: 38674841 PMCID: PMC11055009 DOI: 10.3390/nu16081150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Osteoporosis affects one in three women over the age of 50 and results in fragility fractures. Oestrogen deficiency during and after menopause exacerbates bone loss, accounting for higher prevalence of fragility fractures in women. The gut microbiota (GM) has been proposed as a key regulator of bone health, as it performs vital functions such as immune regulation and biosynthesis of vitamins. Therefore, GM modulation via probiotic supplementation has been proposed as a target for potential therapeutic intervention to reduce bone loss. While promising results have been observed in mouse model studies, translation into human trials is limited. Here, we present the study protocol for a double-blind randomized controlled trial that aims to examine the effectiveness of three lactobacilli strains on volumetric bone mineral density (vBMD), trabecular, and cortical microstructure, as measured using High Resolution peripheral Quantitative Computed Tomography (HR-pQCT). The trial will randomize 124 healthy early postmenopausal women (up to 8 years from menopause) to receive either probiotic or placebo administered once daily for 12 months. Secondary outcomes will investigate the probiotics' effects on areal BMD and specific mechanistic biomarkers, including bone metabolism and inflammatory markers. The trial is registered with Australian New Zealand Clinical Trials Registry (ACTRN12621000810819).
Collapse
Affiliation(s)
- Stephanie M. Resciniti
- Department of Food, Nutrition and Dietetics, La Trobe University, Bundoora, VIC 3086, Australia;
| | - Jessica R. Biesiekierski
- Department of Food, Nutrition and Dietetics, La Trobe University, Bundoora, VIC 3086, Australia;
- Department of Nutrition, Dietetics & Food, Monash University, Notting Hill, VIC 3168, Australia;
| | - Ali Ghasem-Zadeh
- Department of Medicine and Endocrinology, Austin Health, The University of Melbourne, Heidelberg West, VIC 3081, Australia;
| | - George Moschonis
- Department of Food, Nutrition and Dietetics, La Trobe University, Bundoora, VIC 3086, Australia;
| |
Collapse
|
46
|
Chen S, Huang L, Liu B, Duan H, Li Z, Liu Y, Li H, Fu X, Lin J, Xu Y, Liu L, Wan D, Yin Y, Xie L. Dynamic changes in butyrate levels regulate satellite cell homeostasis by preventing spontaneous activation during aging. SCIENCE CHINA. LIFE SCIENCES 2024; 67:745-764. [PMID: 38157106 DOI: 10.1007/s11427-023-2400-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/15/2023] [Indexed: 01/03/2024]
Abstract
The gut microbiota plays a pivotal role in systemic metabolic processes and in particular functions, such as developing and preserving the skeletal muscle system. However, the interplay between gut microbiota/metabolites and the regulation of satellite cell (SC) homeostasis, particularly during aging, remains elusive. We propose that gut microbiota and its metabolites modulate SC physiology and homeostasis throughout skeletal muscle development, regeneration, and aging process. Our investigation reveals that microbial dysbiosis manipulated by either antibiotic treatment or fecal microbiota transplantation from aged to adult mice, leads to the activation of SCs or a significant reduction in the total number. Furthermore, employing multi-omics (e.g., RNA-seq, 16S rRNA gene sequencing, and metabolomics) and bioinformatic analysis, we demonstrate that the reduced butyrate levels, alongside the gut microbial dysbiosis, could be the primary factor contributing to the reduction in the number of SCs and subsequent impairments during skeletal muscle aging. Meanwhile, butyrate supplementation can mitigate the antibiotics-induced SC activation irrespective of gut microbiota, potentially by inhibiting the proliferation and differentiation of SCs/myoblasts. The butyrate effect is likely facilitated through the monocarboxylate transporter 1 (Mct1), a lactate transporter enriched on membranes of SCs and myoblasts. As a result, butyrate could serve as an alternative strategy to enhance SC homeostasis and function during skeletal muscle aging. Our findings shed light on the potential application of microbial metabolites in maintaining SC homeostasis and preventing skeletal muscle aging.
Collapse
Affiliation(s)
- Shujie Chen
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Liujing Huang
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Bingdong Liu
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Huimin Duan
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Ze Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yifan Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
- Institute of Aging Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, 524023, China
| | - Hu Li
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Xiang Fu
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Jingchao Lin
- Metabo-Profile Biotechnology (Shanghai) Co. Ltd., Shanghai, 201315, China
| | - Yinlan Xu
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Li Liu
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Dan Wan
- Institute of Aging Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, 524023, China.
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| | - Yulong Yin
- Institute of Aging Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, 524023, China.
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| | - Liwei Xie
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China.
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
47
|
Srikrishnaraj A, Lanting BA, Burton JP, Teeter MG. The Microbial Revolution in the World of Joint Replacement Surgery. JB JS Open Access 2024; 9:e23.00153. [PMID: 38638595 PMCID: PMC11023614 DOI: 10.2106/jbjs.oa.23.00153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/20/2024] Open
Abstract
Background The prevalence of revision surgery due to aseptic loosening and periprosthetic joint infection (PJI) following total hip and knee arthroplasty is growing. Strategies to prevent the need for revision surgery and its associated health-care costs and patient morbidity are needed. Therapies that modulate the gut microbiota to influence bone health and systemic inflammation are a novel area of research. Methods A literature review of preclinical and clinical peer-reviewed articles relating to the role of the gut microbiota in bone health and PJI was performed. Results There is evidence that the gut microbiota plays a role in maintaining bone mineral density, which can contribute to osseointegration, osteolysis, aseptic loosening, and periprosthetic fractures. Similarly, the gut microbiota influences gut permeability and the potential for bacterial translocation to the bloodstream, increasing susceptibility to PJI. Conclusions Emerging evidence supports the role of the gut microbiota in the development of complications such as aseptic loosening and PJI after total hip or knee arthroplasty. There is a potential for microbial therapies such as probiotics or fecal microbial transplantation to moderate the risk of developing these complications. However, further investigation is required. Clinical Relevance Modulation of the gut microbiota may influence patient outcomes following total joint arthroplasty.
Collapse
Affiliation(s)
- Arjuna Srikrishnaraj
- Department of Surgery, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Brent A. Lanting
- Department of Surgery, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
- Bone and Joint Institute, Western University, London, Ontario, Canada
| | - Jeremy P. Burton
- Department of Surgery, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
- Bone and Joint Institute, Western University, London, Ontario, Canada
| | - Matthew G. Teeter
- Department of Surgery, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
- Bone and Joint Institute, Western University, London, Ontario, Canada
| |
Collapse
|
48
|
Chargo NJ, Kang HJ, Das S, Jin Y, Rockwell C, Cho JY, McCabe LR, Parameswaran N. Korean red ginseng extract prevents bone loss in an oral model of glucocorticoid induced osteoporosis in mice. Front Pharmacol 2024; 15:1268134. [PMID: 38533264 PMCID: PMC10963623 DOI: 10.3389/fphar.2024.1268134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/20/2024] [Indexed: 03/28/2024] Open
Abstract
The gut microbiota and barrier function play important roles in bone health. We previously demonstrated that chronic glucocorticoid (GC)-induced bone loss in mice is associated with significant shifts in gut microbiota composition and impaired gut barrier function. Korean Red Ginseng (KRG, Panax Ginseng Meyer, Araliaceae) extract has been shown to prevent glucocorticoid-induced osteoporosis (GIO) in a subcutaneous pellet model in mice, but its effect on gut microbiota and barrier function in this context is not known. The overall goal of this study was to test the effect of KRG extract in a clinically relevant, oral model of GIO and further investigate its role in modulating the gut-bone axis. Growing male mice (CD-1, 8 weeks) were treated with 75 μg/mL corticosterone (∼9 mg/kg/day) or 0.4% ethanol vehicle in the drinking water for 4 weeks. During this 4-week period, mice were treated daily with 500 mg/kg/day KRG extract dissolved in sterile water or an equal amount of sterile water via oral gastric gavage. After 4 weeks of treatment, we assessed bone volume, microbiota composition, gut barrier integrity, and immune cells in the bone marrow (BM) and mesenteric lymph nodes (MLNs). 4 weeks of oral GC treatment caused significant distal femur trabecular bone loss, and this was associated with changes in gut microbiota composition, impaired gut barrier function and altered immune cell composition. Importantly, KRG extract prevented distal femur trabecular bone loss and caused significant alterations in gut microbiota composition but had only modest effects on gut barrier function and immune cell populations. Taken together, these results demonstrate that KRG extract significantly modulates the gut microbiota-bone axis and prevents glucocorticoid-induced bone loss in mice.
Collapse
Affiliation(s)
- Nicholas J. Chargo
- Department of Physiology, Michigan State University, East Lansing, MI, United States
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI, United States
| | - Ho Jun Kang
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Subhashari Das
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Yining Jin
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - Cheryl Rockwell
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Laura R. McCabe
- Department of Physiology, Michigan State University, East Lansing, MI, United States
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI, United States
| | - Narayanan Parameswaran
- Department of Physiology, Michigan State University, East Lansing, MI, United States
- College of Human Medicine, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
49
|
Mirmohammadali SN, Hill Gallant KM, Biruete A. Oh, My Gut! New insights on the role of the gastrointestinal tract and the gut microbiome in chronic kidney disease-mineral and bone disorder. Curr Opin Nephrol Hypertens 2024; 33:226-230. [PMID: 38088374 PMCID: PMC11957419 DOI: 10.1097/mnh.0000000000000961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
PURPOSE OF REVIEW The aim of this review is to highlight recent evidence on the role of the gastrointestinal tract and gut microbiome on chronic kidney disease-mineral bone disorder (CKD-MBD) outcomes, including intestinal phosphorus absorption and sensing, and the effect of gut-oriented therapies. RECENT FINDINGS Recent evidence has revealed a complex interplay among mineral metabolism and novel gut-related factors, including paracellular intestinal phosphate absorption, the gut microbiome, and the immune system, prompting a reevaluation of treatment approaches for CKD-MBD. The inhibition of NHE3 limits phosphate transport in the intestine and may lead to changes in the gut microbiome. A study in rats with CKD showed that the supplementation of the fermentable dietary inulin delayed CKD-MBD, lowering circulating phosphorus and parathyroid hormone, reducing bone remodeling and improving cortical parameters, and lowering cardiovascular calcifications. In non-CKD preclinical studies, probiotics and prebiotics improved bone formation mediated through the effect of butyrate facilitating the differentiation of T cells into Tregs, and Tregs stimulating the osteogenic Wnt10b, and butyrate was also necessary for the parathyroid hormone (PTH) bone effects. SUMMARY Recent findings support multiple possible roles for gut-oriented therapies in addressing CKD-MBD prevention and management that should be further explored through clinical and translational studies.
Collapse
Affiliation(s)
| | - Kathleen M. Hill Gallant
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, USA
| | - Annabel Biruete
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana, USA
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, USA
| |
Collapse
|
50
|
Saadati S, Naseri K, Asbaghi O, Yousefi M, Golalipour E, de Courten B. Beneficial effects of the probiotics and synbiotics supplementation on anthropometric indices and body composition in adults: A systematic review and meta-analysis. Obes Rev 2024; 25:e13667. [PMID: 38030409 DOI: 10.1111/obr.13667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 09/10/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023]
Abstract
Studies have suggested that probiotics and synbiotics can improve body weight and composition. However, randomized controlled trials (RCTs) demonstrated mixed results. Hence, we performed a systematic review and meta-analysis to evaluate the effectiveness of probiotics and synbiotics on body weight and composition in adults. We searched PubMed/Medline, Ovid/Medline, Scopus, ISI Web of Science, and Cochrane library up to April 2023 using related keywords. We included all RCTs investigating the effectiveness of probiotics and/or synbiotics supplementation on anthropometric indices and body composition among adults. Random-effects models were applied for performing meta-analyses. In addition, we conducted subgroup analyses and meta-regression to explore the non-linear and linear relationship between the length of follow-up and the changes in each outcome. We included a total of 200 trials with 12,603 participants in the present meta-analysis. Probiotics or synbiotics intake led to a significant decrease in body weight (weighted mean difference [WMD]: -0.91 kg; 95% CI: -1.08, -0.75; p < 0.001), body mass index (BMI) (WMD: -0.28 kg/m2 ; 95% CI: -0.36, -0.21; p < 0.001), waist circumference (WC) (WMD: -1.14 cm; 95% CI: -1.42, -0.87; p < 0.001), waist-to-hip ratio (WHR) (WMD: -0.01; 95% CI: -0.01, -0.00; p < 0.001), fat mass (FM) (WMD: -0.92 kg; 95% CI: -1.05, -0.79; p < 0.001), and percentage of body fat (%BF) (WMD: -0.68%; 95% CI: -0.94, -0.42; p < 0.001) compared to controls. There was no difference in fat-free mass (FFM) and lean body mass (LBM). Subgroup analyses indicated that probiotics or synbiotics administered as food or supplement resulted in significant changes in anthropometric indices and body composition. However, compared to controls, FM and %BF values were only reduced after probiotic consumption. Our results showed that probiotics or synbiotics have beneficial effects on body weight, central obesity, and body composition in adults and could be useful as an add on to weight loss products and medications.
Collapse
Affiliation(s)
- Saeede Saadati
- Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, Australia
| | - Kaveh Naseri
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Yousefi
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elnaz Golalipour
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Barbora de Courten
- Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, Australia
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Australia
| |
Collapse
|