1
|
Mastaitis JW, Gomez D, Raya JG, Li D, Min S, Stec M, Kleiner S, McWilliams T, Altarejos JY, Murphy AJ, Yancopoulos GD, Sleeman MW. GDF8 and activin A blockade protects against GLP-1-induced muscle loss while enhancing fat loss in obese male mice and non-human primates. Nat Commun 2025; 16:4377. [PMID: 40360507 PMCID: PMC12075787 DOI: 10.1038/s41467-025-59485-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
Glucagon-like peptide-1 receptor agonists act via appetite suppression and caloric restriction. These treatments can result in significant muscle loss, likely due to evolutionary mechanisms protecting against food scarcity as muscle is a major energy utilizer. One mechanism that reduces muscle mass involves activation of type II activin receptors, ActRIIA/B, which yield profound muscle growth in humans when blocked. We previously demonstrated GDF8, also known as myostatin, and activin A are the two major ActRIIA/B ligands mediating muscle minimization. Here, we report that dual blockade can also prevent muscle loss associated with glucagon-like peptide-1 receptor agonists - and even increase muscle mass - in both obese mice and non-human primates; moreover, this muscle preservation enhances fat loss and is metabolically beneficial. These data raise the possibility that supplementing glucagon-like peptide-1 receptor agonist treatment with GDF8 and activin A blockade could greatly improve the quality of weight loss during the treatment of obesity in humans.
Collapse
Affiliation(s)
| | | | - José G Raya
- Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Diana Li
- Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Soo Min
- Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Chung JY, Kim SG, Kim SH, Park CH. Sarcopenia: how to determine and manage. Knee Surg Relat Res 2025; 37:12. [PMID: 40098209 PMCID: PMC11912661 DOI: 10.1186/s43019-025-00265-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 03/01/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND Understanding sarcopenia is becoming increasingly important as society ages. This comprehensive review covers the definition, epidemiology, causes, pathogenesis, diagnosis, prevention, management, and future directions for the management of sarcopenia, and the major issues related to sarcopenia in the knee joint. MAIN TEXT Sarcopenia, a condition related to aging, is characterized by decreased muscle mass and strength, which significantly affects physical function. Its prevalence may vary by region and age, with reports of up to 50% prevalence in the elderly population. The potential causes of sarcopenia include neurodegeneration, poor nutrition, changes in hormonal effects, elevated levels of proinflammatory cytokines, and reduced activation of muscle satellite cells. Various pathogeneses, such as apoptosis, proteolysis, and inhibition of the signaling for increasing muscle mass, contribute to the development of sarcopenia. Generally, the diagnostic criteria for sarcopenia are based on reduced muscle mass, reduced muscle strength, and decreased physical performance, and can be assessed using various equipment and clinical tests. A healthy lifestyle consisting of a balanced diet, sufficient protein intake, and regular exercise is recommended to prevent sarcopenia. The management of sarcopenia involves resistance exercise, proper nutrition, and deprescribing from polypharmacy. In the future, pharmacological treatment and personalized nutrition may become alternative management options for sarcopenia. Finally, since sarcopenia can be associated with knee osteoarthritis and poor outcomes after total knee arthroplasty, appropriate management of sarcopenia is important for physicians treating knee-related conditions. CONCLUSIONS Sarcopenia is a significant pathological condition that needs to be recognized, especially in the older population. Although sarcopenia is common as aging occurs, it can be prevented by a healthy lifestyle. Currently, there are no approved drugs for sarcopenia; however, resistance exercise and proper nutritional supplementation are essential methods for managing sarcopenic conditions. Given its diverse causes, a personalized approach may be necessary to effectively manage sarcopenia. Finally, appropriate management of sarcopenia can contribute to the prevention and effective treatment of knee osteoarthritis.
Collapse
Affiliation(s)
- Jun Young Chung
- Department of Orthopedic Surgery, School of Medicine, Ajou University, 164, World cup-ro, Yeongtong-gu, Suwon, Korea
| | - Sang-Gyun Kim
- Department of Orthopaedic Surgery, National Medical Center, 245, Eulji-ro, Jung-gu, Seoul, South Korea
| | - Seong Hwan Kim
- Department of Orthopedic Surgery, College of Medicine, Chung-Ang University Hospital, 102, Heukseok-ro, Dongjak-gu, Seoul, Korea.
| | - Cheol Hee Park
- Department of Orthopaedic Surgery, Kyung Hee University College of Medicine, Kyung Hee University Medical Center, 26 Kyunghee-daero, Dongdaemun-gu, Seoul, Korea.
| |
Collapse
|
3
|
Wetzlich B, Nyakundi BB, Yang J. Therapeutic applications and challenges in myostatin inhibition for enhanced skeletal muscle mass and functions. Mol Cell Biochem 2025; 480:1535-1553. [PMID: 39340593 PMCID: PMC11842502 DOI: 10.1007/s11010-024-05120-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024]
Abstract
Myostatin, a potent negative regulator of skeletal muscle mass, has garnered significant attention as a therapeutic target for muscle dystrophies. Despite extensive research and promising preclinical results, clinical trials targeting myostatin inhibition in muscle dystrophies have failed to yield substantial improvements in muscle function or fitness in patients. This review details the mechanisms behind myostatin's function and the various inhibitors that have been tested preclinically and clinically. It also examines the challenges encountered in clinical translation, including issues with drug specificity, differences in serum myostatin concentrations between animal models and humans, and the necessity of neural input for functional improvements. Additionally, we explore promising avenues of research beyond muscle dystrophies, particularly in the treatment of metabolic syndromes and orthopedic disorders. Insights from these alternative applications suggest that myostatin inhibition may hold the potential for addressing a broader range of pathologies, providing new directions for therapeutic development.
Collapse
Affiliation(s)
- Brock Wetzlich
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Benard B Nyakundi
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Jinzeng Yang
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA.
| |
Collapse
|
4
|
Bromer F, Lodberg A, Eijken M, Andersen C, Poulsen M, Thomsen J, Brüel A. The Effect of Anti-Activin Receptor Type IIA and Type IIB Antibody on Muscle, Bone and Blood in Healthy and Osteosarcopenic Mice. J Cachexia Sarcopenia Muscle 2025; 16:e13718. [PMID: 39887865 PMCID: PMC11780395 DOI: 10.1002/jcsm.13718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 11/09/2024] [Accepted: 11/29/2024] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND Anti-Activin Receptor Type IIA and Type IIB antibody (αActRIIA/IIB ab) is a recently developed drug class that targets the activin receptor signalling pathway. Inhibition of receptor ligands (activins, myostatin, growth differentiation factor 11, etc.) can lead to skeletal muscle hypertrophy, bone formation, and increased haematopoiesis. Despite the αActRIIA/IIB ab, bimagrumab, having progressed to clinical trials, two crucial questions about αActRIIA/IIB ab therapy remain: Does αActRIIA/IIB ab influence bone metabolism and bone strength similarly to its generic classmates (activin receptor-based ligand traps)? Does αActRIIA/IIB ab affect red blood cell parameters, thereby increasing the risk of thromboembolism, similar to its generic classmates? Therefore, the aim of the present study was to investigate the therapeutic potential of αActRIIA/IIB ab in a mouse model of concurrent sarcopenia and osteopenia and to investigate the effect on bone and haematopoiesis in more detail. METHODS In C57BL/6JRj mice, combined sarcopenia and osteopenia were induced locally by injecting botulinum toxin A into the right hindlimb, resulting in acute muscle paresis. Immediately after immobilization, mice received twice-weekly intraperitoneal injections with αActRIIA/IIB ab (10 mg/kg) for 21 days, after which they were sacrificed. Muscle mass, skeletal muscle fibre size and Smad2 expression were analysed in the rectus femoris and gastrocnemius muscles. Bone mass and bone microstructure were analysed in the trabecular bone at the distal femoral metaphysis, while the cortical bone was analysed at the femoral mid-diaphysis. In a substudy, the effect on haematopoiesis was explored 2 and 7 days after a single αActRIIA/IIB ab (30 mg/kg) injection in C57BL/6JRj mice. RESULTS αActRIIA/IIB ab caused a large increase in muscle mass in both healthy (+21%) and immobilized (sarcopenic and osteopenic) (+12%) mice. Furthermore, αActRIIA/IIB ab increased trabecular bone (bone volume fraction) for both healthy (+65%) and immobilized (+44%) mice. For cortical bone, αActRIIA/IIB ab caused a small, but significant, increase in bone area (+6%) for immobilized mice, but not for healthy mice. Treatment with αActRIIA/IIB ab did not change red blood cell count, haemoglobin concentration or mean cell volume after either 2 or 7 days. CONCLUSIONS Treatment with αActRIIA/IIB ab caused a significant increase in both skeletal muscle mass and bone parameters in both healthy and immobilized mice, suggesting a potential in the treatment of concurrent osteopenia and sarcopenia. Interestingly, the bone anabolic effect of the treatment was much more pronounced on trabecular bone than on cortical bone. There was no pronounced effect of short-term treatment on haematopoiesis.
Collapse
Affiliation(s)
| | - Andreas Lodberg
- Department of BiomedicineAarhus UniversityAarhusDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
- Department of Endocrinology and Internal MedicineAarhus University HospitalAarhusDenmark
| | - Marco Eijken
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | | | - Mathias Flensted Poulsen
- Department of BiomedicineAarhus UniversityAarhusDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
- Department of Endocrinology and Internal MedicineAarhus University HospitalAarhusDenmark
| | | | | |
Collapse
|
5
|
Luo X, Wang J, Ju Q, Li T, Bi X. Molecular mechanisms and potential interventions during aging-associated sarcopenia. Mech Ageing Dev 2025; 223:112020. [PMID: 39667622 DOI: 10.1016/j.mad.2024.112020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Sarcopenia, a common condition observed in the elderly, presenting a significant public health challenge due to its high prevalence, insidious onset and diverse systemic effects. Despite ongoing research, the precise etiology of sarcopenia remains elusive. Aging-related processes, which included inflammation, oxidative stress, compromised mitochondrial function and apoptosis, have been implicated in its development. Notably, effective pharmacological treatments for sarcopenia are currently lacking, highlighting the necessity for a deeper understanding of its pathogenesis and causative factors to enable proactive interventions. This article is aimed to provide an extensive overview of the pathogenesis of sarcopenia, along with a summary of current treatment and prevention strategies.
Collapse
Affiliation(s)
- Xiaoqin Luo
- College of Life Science, Liaoning University, Shenyang 110036, China
| | - Jin Wang
- College of Life Science, Liaoning University, Shenyang 110036, China
| | - Qingqing Ju
- College of Life Science, Liaoning University, Shenyang 110036, China
| | - Tianyu Li
- College of Life Science, Liaoning University, Shenyang 110036, China
| | - Xiuli Bi
- College of Life Science, Liaoning University, Shenyang 110036, China; Key Laboratory for Chronic Diseases Molecular Mechanism Research and Nutritional Intervention of Shenyang, Shenyang 110036, China.
| |
Collapse
|
6
|
Barber TM, Kabisch S, Pfeiffer AFH, Weickert MO. Optimised Skeletal Muscle Mass as a Key Strategy for Obesity Management. Metabolites 2025; 15:85. [PMID: 39997710 PMCID: PMC11857510 DOI: 10.3390/metabo15020085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/17/2025] [Accepted: 01/19/2025] [Indexed: 02/26/2025] Open
Abstract
The 'Body Mass Index' (BMI) is an anachronistic and outdated ratio that is used as an internationally accepted diagnostic criterion for obesity, and to prioritise, stratify, and outcome-assess its management options. On an individual level, the BMI has the potential to mislead, including inaccuracies in cardiovascular risk assessment. Furthermore, the BMI places excessive emphasis on a reduction in overall body weight (rather than optimised body composition) and contributes towards a misunderstanding of the quiddity of obesity and a dispassionate societal perspective and response to the global obesity problem. The overall objective of this review is to provide an overview of obesity that transitions away from the BMI and towards a novel vista: viewing obesity from the perspective of the skeletal muscle (SM). We resurrect the SM as a tissue hidden in plain sight and provide an overview of the key role that the SM plays in influencing metabolic health and efficiency. We discuss the complex interlinks between the SM and the adipose tissue (AT) through key myokines and adipokines, and argue that rather than two separate tissues, the SM and AT should be considered as a single entity: the 'Adipo-Muscle Axis'. We discuss the vicious circle of sarcopenic obesity, in which aging- and obesity-related decline in SM mass contributes to a worsened metabolic status and insulin resistance, which in turn further compounds SM mass and function. We provide an overview of the approaches that can mitigate against the decline in SM mass in the context of negative energy balance, including the optimisation of dietary protein intake and resistance physical exercises, and of novel molecules in development that target the SM, which will play an important role in the future management of obesity. Finally, we argue that the Adipo-Muscle Ratio (AMR) would provide a more clinically meaningful descriptor and definition of obesity than the BMI and would help to shift our focus regarding its effective management away from merely inducing weight loss and towards optimising the AMR with proper attention to the maintenance and augmentation of SM mass and function.
Collapse
Affiliation(s)
- Thomas M. Barber
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, UK;
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV1 5FB, UK
- NIHR CRF Human Metabolism Research Unit, University Hospitals Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, UK
| | - Stefan Kabisch
- Department of Endocrinology and Metabolic Medicine, Campus Benjamin Franklin, Charité University Medicine, Hindenburgdamm 30, 12203 Berlin, Germany (A.F.H.P.)
- Deutsches Zentrum für Diabetesforschung e.V., Geschäftsstelle am Helmholtz-Zentrum München, Ingolstädter Landstraße, 85764 Neuherberg, Germany
| | - Andreas F. H. Pfeiffer
- Department of Endocrinology and Metabolic Medicine, Campus Benjamin Franklin, Charité University Medicine, Hindenburgdamm 30, 12203 Berlin, Germany (A.F.H.P.)
- Deutsches Zentrum für Diabetesforschung e.V., Geschäftsstelle am Helmholtz-Zentrum München, Ingolstädter Landstraße, 85764 Neuherberg, Germany
| | - Martin O. Weickert
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, UK;
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV1 5FB, UK
- NIHR CRF Human Metabolism Research Unit, University Hospitals Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, UK
- Centre for Sport, Exercise and Life Sciences, Faculty of Health & Life Sciences, Coventry University, Coventry CV1 5FB, UK
| |
Collapse
|
7
|
Richards JC, Bachman SL, Leonard-Corzo K, Aryal S, Blankenship JM, Clay I, Lyden K. A Holistic Approach to the Measurement of Physical Function in Clinical Research. Digit Biomark 2025; 9:1-9. [PMID: 39758435 PMCID: PMC11698515 DOI: 10.1159/000542364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/28/2024] [Indexed: 01/07/2025] Open
Abstract
Background This commentary highlights the evolution of our understanding of physical function (PF) and key models/frameworks that have contributed to the current holistic understanding of PF, which encompasses not only a person's performance but also the environment and any adaptations an individual utilizes. This commentary also addresses how digital health tools can facilitate and complement the assessment of holistic PF and enable both objective and subjective input from the participant in their real-world environment. Lastly, we discuss how successful implementation of digital tools within clinical research requires patient input. Summary This commentary highlights how our understanding of PF has evolved to be more holistic. Key Messages Inclusion of digital tools within clinical research can provide a path forward to holistically assess PF in a patient-focused manner.
Collapse
|
8
|
Wang T, Zhou D, Hong Z. Sarcopenia and cachexia: molecular mechanisms and therapeutic interventions. MedComm (Beijing) 2025; 6:e70030. [PMID: 39764565 PMCID: PMC11702502 DOI: 10.1002/mco2.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 03/17/2025] Open
Abstract
Sarcopenia is defined as a muscle-wasting syndrome that occurs with accelerated aging, while cachexia is a severe wasting syndrome associated with conditions such as cancer and immunodeficiency disorders, which cannot be fully addressed through conventional nutritional supplementation. Sarcopenia can be considered a component of cachexia, with the bidirectional interplay between adipose tissue and skeletal muscle potentially serving as a molecular mechanism for both conditions. However, the underlying mechanisms differ. Recognizing the interplay and distinctions between these disorders is essential for advancing both basic and translational research in this area, enhancing diagnostic accuracy and ultimately achieving effective therapeutic solutions for affected patients. This review discusses the muscle microenvironment's changes contributing to these conditions, recent therapeutic approaches like lifestyle modifications, small molecules, and nutritional interventions, and emerging strategies such as gene editing, stem cell therapy, and gut microbiome modulation. We also address the challenges and opportunities of multimodal interventions, aiming to provide insights into the pathogenesis and molecular mechanisms of sarcopenia and cachexia, ultimately aiding in innovative strategy development and improved treatments.
Collapse
Affiliation(s)
- Tiantian Wang
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐Inspired Technology of West China HospitalSichuan UniversityChengduSichuanChina
- Department of NeurologyChengdu Shangjin Nanfu HospitalChengduSichuanChina
| | - Dong Zhou
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐Inspired Technology of West China HospitalSichuan UniversityChengduSichuanChina
- Department of NeurologyChengdu Shangjin Nanfu HospitalChengduSichuanChina
| | - Zhen Hong
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐Inspired Technology of West China HospitalSichuan UniversityChengduSichuanChina
- Department of NeurologyChengdu Shangjin Nanfu HospitalChengduSichuanChina
| |
Collapse
|
9
|
Nunes-Pinto M, Bandeira de Mello RG, Pinto MN, Moro C, Vellas B, Martinez LO, Rolland Y, de Souto Barreto P. Sarcopenia and the biological determinants of aging: A narrative review from a geroscience perspective. Ageing Res Rev 2025; 103:102587. [PMID: 39571617 DOI: 10.1016/j.arr.2024.102587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND The physiopathology of sarcopenia shares common biological cascades with the aging process, as does any other age-related condition. However, our understanding of the interconnected pathways between diagnosed sarcopenia and aging remains limited, lacking sufficient scientific evidence. METHODS This narrative review aims to gather and describe the current evidence on the relationship between biological aging determinants, commonly referred to as the hallmarks of aging, and diagnosed sarcopenia in humans. RESULTS Among the twelve hallmarks of aging studied, there appears to be a substantial association between sarcopenia and mitochondrial dysfunction, epigenetic alterations, deregulated nutrient sensing, and altered intercellular communication. Although limited, preliminary evidence suggests a promising association between sarcopenia and genomic instability or stem cell exhaustion. DISCUSSION Overall, an imbalance in energy regulation, characterized by impaired mitochondrial energy production and alterations in circulatory markers, is commonly associated with sarcopenia and may reflect the interplay between aging physiology and sarcopenia biology.
Collapse
Affiliation(s)
- Mariá Nunes-Pinto
- Gerontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, France; Postgraduate Program in Medical Sciences (Endocrinology), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
| | - Renato Gorga Bandeira de Mello
- Postgraduate Program in Medical Sciences (Endocrinology), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; School of Medicine, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Master of Public Health Program, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, USA
| | - Milena Nunes Pinto
- School of Medicine, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Cédric Moro
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, INSERM, Université Toulouse III - Paul Sabatier (UPS), Toulouse UMR1297, France
| | - Bruno Vellas
- Gerontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, France; CERPOP UMR 1295, University of Toulouse III, Institut National de la Santé et de la Recherche Médicale (Inserm), UPS, Toulouse, France; IHU HealthAge, Toulouse, France
| | - Laurent O Martinez
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, INSERM, Université Toulouse III - Paul Sabatier (UPS), Toulouse UMR1297, France; IHU HealthAge, Toulouse, France
| | - Yves Rolland
- Gerontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, France; CERPOP UMR 1295, University of Toulouse III, Institut National de la Santé et de la Recherche Médicale (Inserm), UPS, Toulouse, France; IHU HealthAge, Toulouse, France
| | - Philipe de Souto Barreto
- Gerontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, France; CERPOP UMR 1295, University of Toulouse III, Institut National de la Santé et de la Recherche Médicale (Inserm), UPS, Toulouse, France; IHU HealthAge, Toulouse, France
| |
Collapse
|
10
|
Tsai SY. Lost in translation: challenges of current pharmacotherapy for sarcopenia. Trends Mol Med 2024; 30:1047-1060. [PMID: 38880726 DOI: 10.1016/j.molmed.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/18/2024]
Abstract
A healthy lifespan relies on independent living, in which active skeletal muscle is a critical element. The cost of not recognizing and acting earlier on unhealthy or aging muscle could be detrimental, since muscular weakness is inversely associated with all-cause mortality. Sarcopenia is characterized by a decline in skeletal muscle mass and strength and is associated with aging. Exercise is the only effective therapy to delay sarcopenia development and improve muscle health in older adults. Although numerous interventions have been proposed to reduce sarcopenia, none has yet succeeded in clinical trials. This review evaluates the biological gap between recent clinical trials targeting sarcopenia and the preclinical studies on which they are based, and suggests an alternative approach to bridge the discrepancy.
Collapse
Affiliation(s)
- Shih-Yin Tsai
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
11
|
Najm A, Moldoveanu ET, Niculescu AG, Grumezescu AM, Beuran M, Gaspar BS. Advancements in Drug Delivery Systems for the Treatment of Sarcopenia: An Updated Overview. Int J Mol Sci 2024; 25:10766. [PMID: 39409095 PMCID: PMC11476378 DOI: 10.3390/ijms251910766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/04/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
Since sarcopenia is a progressive condition that leads to decreased muscle mass and function, especially in elderly people, it is a public health problem that requires attention from researchers. This review aims to highlight drug delivery systems that have a high and efficient therapeutic potential for sarcopenia. Current as well as future research needs to consider the barriers encountered in the realization of delivery systems, such as the route of administration, the interaction of the systems with the aggressive environment of the human body, the efficient delivery and loading of the systems with therapeutic agents, and the targeted delivery of therapeutic agents into the muscle tissue without creating undesirable adverse effects. Thus, this paper sets the framework of existing drug delivery possibilities for the treatment of sarcopenia, serving as an inception point for future interdisciplinary studies.
Collapse
Affiliation(s)
- Alfred Najm
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.N.); (M.B.); (B.S.G.)
- Emergency Hospital Floreasca Bucharest, 014461 Bucharest, Romania
| | - Elena-Theodora Moldoveanu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (E.-T.M.); (A.-G.N.)
| | - Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (E.-T.M.); (A.-G.N.)
- Romania Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (E.-T.M.); (A.-G.N.)
- Romania Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Mircea Beuran
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.N.); (M.B.); (B.S.G.)
- Emergency Hospital Floreasca Bucharest, 014461 Bucharest, Romania
| | - Bogdan Severus Gaspar
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.N.); (M.B.); (B.S.G.)
- Emergency Hospital Floreasca Bucharest, 014461 Bucharest, Romania
| |
Collapse
|
12
|
Cacciatore S, Calvani R, Esposito I, Massaro C, Gava G, Picca A, Tosato M, Marzetti E, Landi F. Emerging Targets and Treatments for Sarcopenia: A Narrative Review. Nutrients 2024; 16:3271. [PMID: 39408239 PMCID: PMC11478655 DOI: 10.3390/nu16193271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Sarcopenia is characterized by the progressive loss of skeletal muscle mass, strength, and function, significantly impacting overall health and quality of life in older adults. This narrative review explores emerging targets and potential treatments for sarcopenia, aiming to provide a comprehensive overview of current and prospective interventions. METHODS The review synthesizes current literature on sarcopenia treatment, focusing on recent advancements in muscle regeneration, mitochondrial function, nutritional strategies, and the muscle-microbiome axis. Additionally, pharmacological and lifestyle interventions targeting anabolic resistance and neuromuscular junction integrity are discussed. RESULTS Resistance training and adequate protein intake remain the cornerstone of sarcopenia management. Emerging strategies include targeting muscle regeneration through myosatellite cell activation, signaling pathways, and chronic inflammation control. Gene editing, stem cell therapy, and microRNA modulation show promise in enhancing muscle repair. Addressing mitochondrial dysfunction through interventions aimed at improving biogenesis, ATP production, and reducing oxidative stress is also highlighted. Nutritional strategies such as leucine supplementation and anti-inflammatory nutrients, along with dietary modifications and probiotics targeting the muscle-microbiome interplay, are discussed as potential treatment options. Hydration and muscle-water balance are emphasized as critical in maintaining muscle health in older adults. CONCLUSIONS A combination of resistance training, nutrition, and emerging therapeutic interventions holds potential to significantly improve muscle function and overall health in the aging population. This review provides a detailed exploration of both established and novel approaches for the prevention and management of sarcopenia, highlighting the need for further research to optimize these strategies.
Collapse
Affiliation(s)
- Stefano Cacciatore
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy; (R.C.); (I.E.); (C.M.); (G.G.); (F.L.)
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (A.P.); (M.T.)
| | - Riccardo Calvani
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy; (R.C.); (I.E.); (C.M.); (G.G.); (F.L.)
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (A.P.); (M.T.)
| | - Ilaria Esposito
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy; (R.C.); (I.E.); (C.M.); (G.G.); (F.L.)
| | - Claudia Massaro
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy; (R.C.); (I.E.); (C.M.); (G.G.); (F.L.)
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (A.P.); (M.T.)
| | - Giordana Gava
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy; (R.C.); (I.E.); (C.M.); (G.G.); (F.L.)
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (A.P.); (M.T.)
| | - Anna Picca
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (A.P.); (M.T.)
- Department of Medicine and Surgery, LUM University, Strada Statale 100 Km 18, 70100 Casamassima, Italy
| | - Matteo Tosato
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (A.P.); (M.T.)
| | - Emanuele Marzetti
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy; (R.C.); (I.E.); (C.M.); (G.G.); (F.L.)
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (A.P.); (M.T.)
| | - Francesco Landi
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy; (R.C.); (I.E.); (C.M.); (G.G.); (F.L.)
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (A.P.); (M.T.)
| |
Collapse
|
13
|
Kanbay M, Siriopol D, Copur S, Hasbal NB, Güldan M, Kalantar-Zadeh K, Garfias-Veitl T, von Haehling S. Effect of Bimagrumab on body composition: a systematic review and meta-analysis. Aging Clin Exp Res 2024; 36:185. [PMID: 39251484 PMCID: PMC11385021 DOI: 10.1007/s40520-024-02825-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/30/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND Sarcopenia, a condition marked by progressive muscle mass and function decline, presents significant challenges in aging populations and those with chronic illnesses. Current standard treatments such as dietary interventions and exercise programs are often unsustainable. There is increasing interest in pharmacological interventions like bimagrumab, a monoclonal antibody that promotes muscle hypertrophy by inhibiting muscle atrophy ligands. Bimagrumab has shown effectiveness in various conditions, including sarcopenia. AIM The primary objective of this meta-analysis is to evaluate the impact of bimagrumab treatment on both physical performance and body composition among patients diagnosed with sarcopenia. MATERIALS AND METHODS This meta-analysis follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We systematically searched PubMed, Ovid/Medline, Web of Science, and the Cochrane Library databases up to June 2024 using appropriate Medical Subject Headings (MeSH) terms and keywords related to bimagrumab and sarcopenia. Eligible studies were randomized controlled trials (RCTs) that assessed the effects of bimagrumab on physical performance (e.g., muscle strength, gait speed, six-minute walk distance) and body composition (e.g., muscle volume, fat-free body mass, fat body mass) in patients with sarcopenia. Data extraction was independently performed by two reviewers using a standardized form, with discrepancies resolved through discussion or consultation with a third reviewer. RESULTS From an initial search yielding 46 records, we screened titles, abstracts, and full texts to include seven RCTs in our meta-analysis. Bimagrumab treatment significantly increased thigh muscle volume (mean difference [MD] 5.29%, 95% confidence interval [CI] 4.08% to 6.50%, P < 0.001; moderate heterogeneity χ2 = 6.41, I2 = 38%, P = 0.17) and fat-free body mass (MD 1.90 kg, 95% CI 1.57 kg to 2.23 kg, P < 0.001; moderate heterogeneity χ2 = 8.60, I2 = 30%, P = 0.20), while decreasing fat body mass compared to placebo (MD - 4.55 kg, 95% CI - 5.08 kg to - 4.01 kg, P < 0.001; substantial heterogeneity χ2 = 27.44, I2 = 89%, P < 0.001). However, no significant improvement was observed in muscle strength or physical performance measures such as gait speed and six-minute walk distance with bimagrumab treatment, except among participants with slower baseline walking speeds or distances. DISCUSSION AND CONCLUSION This meta-analysis provides valuable insights into the effects of bimagrumab on sarcopenic patients, highlighting its significant improvements in body composition parameters but limited impact on functional outcomes. The observed heterogeneity in outcomes across studies underscores the need for cautious interpretation, considering variations in study populations, treatment durations, and outcome assessments. While bimagrumab shows promise as a safe pharmacological intervention for enhancing muscle mass and reducing fat mass in sarcopenia, its minimal effects on muscle strength and broader physical performance suggest potential limitations in translating body composition improvements into functional gains. Further research is needed to clarify its long-term efficacy, optimal dosing regimens, and potential benefits for specific subgroups of sarcopenic patients.
Collapse
Affiliation(s)
- Mehmet Kanbay
- Division of Nephrology, Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Dimitrie Siriopol
- Department of Nephrology, "Saint John the New" County Hospital, Suceava, Romania
- "Stefan Cel Mare" University, Suceava, Romania
| | - Sidar Copur
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Nuri Baris Hasbal
- Division of Nephrology, Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Mustafa Güldan
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Kam Kalantar-Zadeh
- Division of Nephrology and Hypertension, Department of Medicine, UCLA Medical Center, Harbor, Torrance, CA, USA
- UCLA David Geffen School of Medicine, Los Angeles, CA, USA
- The Lundquist Institute for Biomedical Innovation at Harbor, UCLA Medical Center, Torrance, CA, USA
- Tibor Rubin VA Medical Center, Long Beach VA Healthcare System, Long Beach, CA, USA
| | - Tania Garfias-Veitl
- Department of Cardiology and Pneumology, University of Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Stephan von Haehling
- Department of Cardiology and Pneumology, University of Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany.
| |
Collapse
|
14
|
Pabla P, Jones E, Piasecki M, Phillips B. Skeletal muscle dysfunction with advancing age. Clin Sci (Lond) 2024; 138:863-882. [PMID: 38994723 PMCID: PMC11250095 DOI: 10.1042/cs20231197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/15/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024]
Abstract
As a result of advances in medical treatments and associated policy over the last century, life expectancy has risen substantially and continues to increase globally. However, the disconnect between lifespan and 'health span' (the length of time spent in a healthy, disease-free state) has also increased, with skeletal muscle being a substantial contributor to this. Biological ageing is accompanied by declines in both skeletal muscle mass and function, termed sarcopenia. The mechanisms underpinning sarcopenia are multifactorial and are known to include marked alterations in muscle protein turnover and adaptations to the neural input to muscle. However, to date, the relative contribution of each factor remains largely unexplored. Specifically, muscle protein synthetic responses to key anabolic stimuli are blunted with advancing age, whilst alterations to neural components, spanning from the motor cortex and motoneuron excitability to the neuromuscular junction, may explain the greater magnitude of function losses when compared with mass. The consequences of these losses can be devastating for individuals, their support networks, and healthcare services; with clear detrimental impacts on both clinical (e.g., mortality, frailty, and post-treatment complications) and societal (e.g., independence maintenance) outcomes. Whether declines in muscle quantity and quality are an inevitable component of ageing remains to be completely understood. Nevertheless, strategies to mitigate these declines are of vital importance to improve the health span of older adults. This review aims to provide an overview of the declines in skeletal muscle mass and function with advancing age, describes the wide-ranging implications of these declines, and finally suggests strategies to mitigate them, including the merits of emerging pharmaceutical agents.
Collapse
Affiliation(s)
- Pardeep Pabla
- Centre of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Royal Derby Hospital, Derby, DE22 3DT, U.K
| | - Eleanor J. Jones
- Centre of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Royal Derby Hospital, Derby, DE22 3DT, U.K
| | - Mathew Piasecki
- Centre of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Royal Derby Hospital, Derby, DE22 3DT, U.K
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research (CMAR), U.K
- NIHR Nottingham Biomedical Research Centre (BRC), U.K
| | - Bethan E. Phillips
- Centre of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Royal Derby Hospital, Derby, DE22 3DT, U.K
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research (CMAR), U.K
- NIHR Nottingham Biomedical Research Centre (BRC), U.K
| |
Collapse
|
15
|
Sato R, Vatic M, Peixoto da Fonseca GW, Anker SD, von Haehling S. Biological basis and treatment of frailty and sarcopenia. Cardiovasc Res 2024:cvae073. [PMID: 38828887 DOI: 10.1093/cvr/cvae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/23/2022] [Accepted: 12/20/2022] [Indexed: 06/05/2024] Open
Abstract
In an ageing society, the importance of maintaining healthy life expectancy has been emphasized. As a result of age-related decline in functional reserve, frailty is a state of increased vulnerability and susceptibility to adverse health outcomes with a serious impact on healthy life expectancy. The decline in skeletal muscle mass and function, also known as sarcopenia, is key in the development of physical frailty. Both frailty and sarcopenia are highly prevalent in patients not only with advanced age but also in patients with illnesses that exacerbate their progression like heart failure (HF), cancer, or dementia, with the prevalence of frailty and sarcopenia in HF patients reaching up to 50-75% and 19.5-47.3%, respectively, resulting in 1.5-3 times higher 1-year mortality. The biological mechanisms of frailty and sarcopenia are multifactorial, complex, and not yet fully elucidated, ranging from DNA damage, proteostasis impairment, and epigenetic changes to mitochondrial dysfunction, cellular senescence, and environmental factors, many of which are further linked to cardiac disease. Currently, there is no gold standard for the treatment of frailty and sarcopenia, however, growing evidence supports that a combination of exercise training and nutritional supplement improves skeletal muscle function and frailty, with a variety of other therapies being devised based on the underlying pathophysiology. In this review, we address the involvement of frailty and sarcopenia in cardiac disease and describe the latest insights into their biological mechanisms as well as the potential for intervention through exercise, diet, and specific therapies.
Collapse
Affiliation(s)
- Ryosuke Sato
- Department of Cardiology and Pneumology, University of Göttingen Medical Center, Robert-Koch-Str. 40, 37075 Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| | - Mirela Vatic
- Department of Cardiology and Pneumology, University of Göttingen Medical Center, Robert-Koch-Str. 40, 37075 Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| | - Guilherme Wesley Peixoto da Fonseca
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, SP, Brazil
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Stefan D Anker
- Department of Cardiology (CVK) of German Heart Center Charité; German Centre for Cardiovascular Research (DZHK) partner site Berlin, Charité Universitätsmedizin, Berlin, Germany
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Stephan von Haehling
- Department of Cardiology and Pneumology, University of Göttingen Medical Center, Robert-Koch-Str. 40, 37075 Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| |
Collapse
|
16
|
de Haan LR, van Golen RF, Heger M. Molecular Pathways Governing the Termination of Liver Regeneration. Pharmacol Rev 2024; 76:500-558. [PMID: 38697856 DOI: 10.1124/pharmrev.123.000955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/24/2024] [Accepted: 02/08/2024] [Indexed: 05/05/2024] Open
Abstract
The liver has the unique capacity to regenerate, and up to 70% of the liver can be removed without detrimental consequences to the organism. Liver regeneration is a complex process involving multiple signaling networks and organs. Liver regeneration proceeds through three phases: the initiation phase, the growth phase, and the termination phase. Termination of liver regeneration occurs when the liver reaches a liver-to-body weight that is required for homeostasis, the so-called "hepatostat." The initiation and growth phases have been the subject of many studies. The molecular pathways that govern the termination phase, however, remain to be fully elucidated. This review summarizes the pathways and molecules that signal the cessation of liver regrowth after partial hepatectomy and answers the question, "What factors drive the hepatostat?" SIGNIFICANCE STATEMENT: Unraveling the pathways underlying the cessation of liver regeneration enables the identification of druggable targets that will allow us to gain pharmacological control over liver regeneration. For these purposes, it would be useful to understand why the regenerative capacity of the liver is hampered under certain pathological circumstances so as to artificially modulate the regenerative processes (e.g., by blocking the cessation pathways) to improve clinical outcomes and safeguard the patient's life.
Collapse
Affiliation(s)
- Lianne R de Haan
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, China (L.R.d.H., M.H.); Department of Internal Medicine, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands (L.R.d.H.); Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands (R.F.v.G.); Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (M.H.); and Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands (M.H.)
| | - Rowan F van Golen
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, China (L.R.d.H., M.H.); Department of Internal Medicine, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands (L.R.d.H.); Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands (R.F.v.G.); Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (M.H.); and Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands (M.H.)
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, China (L.R.d.H., M.H.); Department of Internal Medicine, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands (L.R.d.H.); Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands (R.F.v.G.); Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (M.H.); and Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands (M.H.)
| |
Collapse
|
17
|
Zheng Y, Feng J, Yu Y, Ling M, Wang X. Advances in sarcopenia: mechanisms, therapeutic targets, and intervention strategies. Arch Pharm Res 2024; 47:301-324. [PMID: 38592582 DOI: 10.1007/s12272-024-01493-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/25/2024] [Indexed: 04/10/2024]
Abstract
Sarcopenia is a multifactorial condition characterized by loss of muscle mass. It poses significant health risks in older adults worldwide. Both pharmacological and non-pharmacological approaches are reported to address this disease. Certain dietary patterns, such as adequate energy intake and essential amino acids, have shown positive outcomes in preserving muscle function. Various medications, including myostatin inhibitors, growth hormones, and activin type II receptor inhibitors, have been evaluated for their effectiveness in managing sarcopenia. However, it is important to consider the variable efficacy and potential side effects associated with these treatments. There are currently no drugs approved by the Food and Drug Administration for sarcopenia. The ongoing research aims to develop more effective strategies in the future. Our review of research on disease mechanisms and drug development will be a valuable contribution to future research endeavors.
Collapse
Affiliation(s)
- Youle Zheng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Jin Feng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yixin Yu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Min Ling
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
18
|
Hao XY, Zhang K, Huang XY, Yang F, Sun SY. Muscle strength and non-alcoholic fatty liver disease/metabolic-associated fatty liver disease. World J Gastroenterol 2024; 30:636-643. [PMID: 38515958 PMCID: PMC10950621 DOI: 10.3748/wjg.v30.i7.636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/12/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2024] Open
Abstract
This editorial comments on an article published in a recent issue of World Journal of Gastroenterology, entitled "Association of low muscle strength with metabolic dysfunction-associated fatty liver disease: A nationwide study". We focused on the association between muscle strength and the incidence of non-alcoholic fatty liver disease (NAFLD) and metabolic-associated fatty liver disease (MAFLD), as well as the mechanisms underlying the correlation and related clinical applications. NAFLD, which is now redefined as MAFLD, is one of the most common chronic liver diseases globally with an increasing prevalence and is characterized by malnutrition, which may contribute to decreased muscle strength. Reduction of muscle strength reportedly has a pathogenesis similar to that of NAFLD/ MAFLD, including insulin resistance, inflammation, sedentary behavior, as well as insufficient vitamin D. Multiple studies have focused on the relationship between sarcopenia or muscle strength and NAFLD. However, studies investigating the relationship between muscle strength and MAFLD are limited. Owing to the shortage of specific medications for NAFLD/MAFLD treatment, early detection is essential. Furthermore, the relationship between muscle strength and NAFLD/MAFLD suggests that improvements in muscle strength may have an impact on disease prevention and may provide novel insights into treatments including dietary therapy, as well as tailored physical activity.
Collapse
Affiliation(s)
- Xuan-Yu Hao
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Kai Zhang
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Xing-Yong Huang
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Fei Yang
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Si-Yu Sun
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| |
Collapse
|
19
|
Bahat G, Ozkok S. The Current Landscape of Pharmacotherapies for Sarcopenia. Drugs Aging 2024; 41:83-112. [PMID: 38315328 DOI: 10.1007/s40266-023-01093-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2023] [Indexed: 02/07/2024]
Abstract
Sarcopenia is a skeletal muscle disorder characterized by progressive and generalized decline in muscle mass and function. Although it is mostly known as an age-related disorder, it can also occur secondary to systemic diseases such as malignancy or organ failure. It has demonstrated a significant relationship with adverse outcomes, e.g., falls, disabilities, and even mortality. Several breakthroughs have been made to find a pharmaceutical therapy for sarcopenia over the years, and some have come up with promising findings. Yet still no drug has been approved for its treatment. The key factor that makes finding an effective pharmacotherapy so challenging is the general paradigm of standalone/single diseases, traditionally adopted in medicine. Today, it is well known that sarcopenia is a complex disorder caused by multiple factors, e.g., imbalance in protein turnover, satellite cell and mitochondrial dysfunction, hormonal changes, low-grade inflammation, senescence, anorexia of aging, and behavioral factors such as low physical activity. Therefore, pharmaceuticals, either alone or combined, that exhibit multiple actions on these factors simultaneously will likely be the drug of choice to manage sarcopenia. Among various drug options explored throughout the years, testosterone still has the most cumulated evidence regarding its effects on muscle health and its safety. A mas receptor agonist, BIO101, stands out as a recent promising pharmaceutical. In addition to the conventional strategies (i.e., nutritional support and physical exercise), therapeutics with multiple targets of action or combination of multiple therapeutics with different targets/modes of action appear to promise greater benefit for the prevention and treatment of sarcopenia.
Collapse
Affiliation(s)
- Gulistan Bahat
- Division of Geriatrics, Department of Internal Medicine, Istanbul Medical School, Istanbul University, Capa, 34390, Istanbul, Turkey.
| | - Serdar Ozkok
- Division of Geriatrics, Department of Internal Medicine, Hatay Training and Research Hospital, Hatay, 31040, Turkey
| |
Collapse
|
20
|
Nakamura S, Sato Y, Kobayashi T, Oya A, Fujie A, Matsumoto M, Nakamura M, Kanaji A, Miyamoto T. Bezafibrate attenuates immobilization-induced muscle atrophy in mice. Sci Rep 2024; 14:2240. [PMID: 38279013 PMCID: PMC10817916 DOI: 10.1038/s41598-024-52689-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/22/2024] [Indexed: 01/28/2024] Open
Abstract
Muscle atrophy due to fragility fractures or frailty worsens not only activity of daily living and healthy life expectancy, but decreases life expectancy. Although several therapeutic agents for muscle atrophy have been investigated, none is yet in clinical use. Here we report that bezafibrate, a drug used to treat hyperlipidemia, can reduce immobilization-induced muscle atrophy in mice. Specifically, we used a drug repositioning approach to screen 144 drugs already utilized clinically for their ability to inhibit serum starvation-induced elevation of Atrogin-1, a factor related to muscle atrophy, in myotubes in vitro. Two candidates were selected, and here we demonstrate that one of them, bezafibrate, significantly reduced muscle atrophy in an in vivo model of muscle atrophy induced by leg immobilization. In gastrocnemius muscle, immobilization reduced muscle weight by an average of ~ 17.2%, and bezafibrate treatment prevented ~ 40.5% of that atrophy. In vitro, bezafibrate significantly inhibited expression of the inflammatory cytokine Tnfa in lipopolysaccharide-stimulated RAW264.7 cells, a murine macrophage line. Finally, we show that expression of Tnfa and IL-1b is induced in gastrocnemius muscle in the leg immobilization model, an activity significantly antagonized by bezafibrate administration in vivo. We conclude that bezafibrate could serve as a therapeutic agent for immobilization-induced muscle atrophy.
Collapse
Affiliation(s)
- Satoshi Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-Machi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Yuiko Sato
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-Machi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Tami Kobayashi
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-Machi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Akihito Oya
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-Machi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Astuhiro Fujie
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-Machi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Morio Matsumoto
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-Machi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-Machi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Arihiko Kanaji
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-Machi, Shinjuku-Ku, Tokyo, 160-8582, Japan.
| | - Takeshi Miyamoto
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinano-Machi, Shinjuku-Ku, Tokyo, 160-8582, Japan.
- Department of Orthopedic Surgery, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan.
| |
Collapse
|
21
|
Rolland Y, Dray C, Vellas B, Barreto PDS. Current and investigational medications for the treatment of sarcopenia. Metabolism 2023; 149:155597. [PMID: 37348598 DOI: 10.1016/j.metabol.2023.155597] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/20/2023] [Accepted: 05/25/2023] [Indexed: 06/24/2023]
Abstract
Sarcopenia, defined as the loss of muscle mass and function, is a widely prevalent and severe condition in older adults. Since 2016, it is recognized as a disease. Strength exercise training and nutritional support are the frontline treatment of sarcopenia, with no drug currently approved for this indication. However, new therapeutic options are emerging. In this review, we evidenced that only very few trials have focused on sarcopenia/sarcopenic patients. Most drug trials were performed in different clinical older populations (e.g., men with hypogonadism, post-menopausal women at risk for osteoporosis), and their efficacy were tested separately on the components of sarcopenia (muscle mass, muscle strength and physical performances). Results from trials testing the effects of Testosterone, Selective Androgen Receptor Modulators (SARMs), Estrogen, Dehydroepiandrosterone (DHEA), Insulin-like Growth Factor-1 (IGF-1), Growth Hormone (GH), GH Secretagogue (GHS), drug targeting Myostatin and Activin receptor pathway, Vitamin D, Angiotensin Converting Enzyme inhibitors (ACEi) and Angiotensin Receptor Blockers (ARBs), or β-blockers, were compiled. Although some drugs have been effective in improving muscle mass and/or strength, this was not translated into clinically relevant improvements on physical performance. Finally, some promising molecules investigated in on-going clinical trials and in pre-clinical phase were summarized, including apelin and irisin.
Collapse
Affiliation(s)
- Yves Rolland
- Gérontopôle de Toulouse, IHU HealthAge, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, France; CERPOP UMR 1295, University of Toulouse III, Inserm, UPS, Toulouse, France.
| | - Cedric Dray
- Université de Toulouse III Université Paul Sabatier, Toulouse, France; Restore, a geroscience and rejuvenation research center, UMR 1301-Inserm, 5070-CNRS EFS, France
| | - Bruno Vellas
- Gérontopôle de Toulouse, IHU HealthAge, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, France; CERPOP UMR 1295, University of Toulouse III, Inserm, UPS, Toulouse, France
| | - Philipe De Souto Barreto
- Gérontopôle de Toulouse, IHU HealthAge, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, France; CERPOP UMR 1295, University of Toulouse III, Inserm, UPS, Toulouse, France
| |
Collapse
|
22
|
Pang X, Zhang P, Chen X, Liu W. Ubiquitin-proteasome pathway in skeletal muscle atrophy. Front Physiol 2023; 14:1289537. [PMID: 38046952 PMCID: PMC10690626 DOI: 10.3389/fphys.2023.1289537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/06/2023] [Indexed: 12/05/2023] Open
Abstract
Skeletal muscles underpin myriad human activities, maintaining an intricate balance between protein synthesis and degradation crucial to muscle mass preservation. Historically, disruptions in this balance-where degradation overshadows synthesis-have marked the onset of muscle atrophy, a condition diminishing life quality and, in grave instances, imperiling life itself. While multiple protein degradation pathways exist-including the autophagy-lysosome, calcium-dependent calpain, and cysteine aspartate protease systems-the ubiquitin-proteasome pathway emerges as an especially cardinal avenue for intracellular protein degradation, wielding pronounced influence over the muscle atrophy trajectory. This paper ventures a panoramic view of predominant muscle atrophy types, accentuating the ubiquitin-proteasome pathway's role therein. Furthermore, by drawing from recent scholarly advancements, we draw associations between the ubiquitin-proteasome pathway and specific pathological conditions linked to muscle atrophy. Our exploration seeks to shed light on the ubiquitin-proteasome pathway's significance in skeletal muscle dynamics, aiming to pave the way for innovative therapeutic strategies against muscle atrophy and affiliated muscle disorders.
Collapse
Affiliation(s)
- XiangSheng Pang
- Department of Physical Education, College of Education, Zhejiang University, Hangzhou, Zhejiang, China
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, China
| | - Peng Zhang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - XiaoPing Chen
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, China
| | - WenMing Liu
- Department of Physical Education, College of Education, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
23
|
Piétri-Rouxel F, Falcone S, Traoré M. [GDF5: a therapeutic candidate for combating sarcopenia]. Med Sci (Paris) 2023; 39 Hors série n° 1:47-53. [PMID: 37975770 DOI: 10.1051/medsci/2023143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
Sarcopenia is a complex age-related muscular disease affecting 10 to 16 % of people over 65 years old. It is characterized by excessive loss of muscle mass and strength. Despite a plethora of studies aimed at understanding the physiological mechanisms underlying this pathology, the pathophysiology of sarcopenia remains poorly understood. To date, there is no pharmacological treatment for this disease. In this context, our team develop therapeutic approaches based on the GDF5 protein to counteract the loss of muscle mass and function in various pathological conditions, including sarcopenia. After deciphering one of the molecular mechanisms governing GDF5 expression, we have demonstrated the therapeutic potential of this protein in the preservation of muscle mass and strength in aged mice.
Collapse
Affiliation(s)
- France Piétri-Rouxel
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| | - Sestina Falcone
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| | - Massiré Traoré
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| |
Collapse
|
24
|
Sheng R, Cao M, Song M, Wang M, Zhang Y, Shi L, Xie T, Li Y, Wang J, Rui Y. Muscle-bone crosstalk via endocrine signals and potential targets for osteosarcopenia-related fracture. J Orthop Translat 2023; 43:36-46. [PMID: 38021216 PMCID: PMC10654153 DOI: 10.1016/j.jot.2023.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/14/2023] [Accepted: 09/20/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Osteosarcopenia is a syndrome coexisting sarcopenia and osteopenia/osteoporosis, with a high fracture risk. Recently, skeletal muscle and bone have been recognized as endocrine organs capable of communication through secreting myokines and osteokines, respectively. With a deeper understanding of the muscle-bone crosstalk, these endocrine signals exhibit an important role in osteosarcopenia development and fracture healing. METHODS This review summarizes the role of myokines and osteokines in the development and treatment of osteosarcopenia and fracture, and discusses their potential for osteosarcopenia-related fracture treatment. RESULTS Several well-defined myokines (myostatin and irisin) and osteokines (RANKL and SOST) are found to not only regulate skeletal muscle and bone metabolism but also influence fracture healing processes. Systemic interventions targeting these biochemical signals has shown promising results in improving the mass and functions of skeletal muscle and bone, as well as accelerating fracture healing processes. CONCLUSION The regulation of muscle-bone crosstalk via biochemical signals presents a novel and promising strategy for treating osteosarcopenia and fracture by simultaneously enhancing bone and muscle anabolism. We propose that myostatin, irisin, RANKL, and SOST may serve as potential targets to treat fracture patients with osteosarcopenia. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE Osteosarcopenia is an emerging geriatric syndrome where sarcopenia and osteoporosis coexist, with high fracture risk, delayed fracture healing, and increased mortality. However, no pharmacological agent is available to treat fracture patients with osteosarcopenia. This review summarizes the role of several myokines and osteokines in the development and treatment of osteosacropenia and fracture, as well as discusses their potential as intervention targets for osteosarcopenia-related fracture, which provides a novel and promising strategy for future osteosarcopenia-related fracture treatment.
Collapse
Affiliation(s)
- Renwang Sheng
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Mumin Cao
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, PR China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Mingyuan Song
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Mingyue Wang
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Yuanwei Zhang
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, PR China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Liu Shi
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, PR China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Tian Xie
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, PR China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Yingjuan Li
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Department of Geriatrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Jinyu Wang
- Department of Rehabilitation, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Yunfeng Rui
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, PR China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| |
Collapse
|
25
|
Zhang FM, Wu HF, Shi HP, Yu Z, Zhuang CL. Sarcopenia and malignancies: epidemiology, clinical classification and implications. Ageing Res Rev 2023; 91:102057. [PMID: 37666432 DOI: 10.1016/j.arr.2023.102057] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/15/2023] [Accepted: 08/31/2023] [Indexed: 09/06/2023]
Abstract
Sarcopenia is a progressive systemic skeletal muscle disorder characterized by a pathological decline in muscle strength, quantity, and quality, which frequently affects the elderly population. The majority of cancer patients are of advanced age. Patients may already have sarcopenia prior to cancer development, and those with cancer are prone to developing sarcopenia due to hypercatabolism, inflammation, reduced physical fitness, anorexia, adverse effects, and stress associated with anticancer therapy. Based on the timing, sarcopenia in patients with cancer can be categorized into three: pre-existing sarcopenia before the onset of cancer, sarcopenia related to cancer, and sarcopenia related to cancer treatment. Sarcopenia not only changes the body composition of patients with cancer but also increases the incidence of postoperative complications, reduces therapeutic efficacy, impairs quality of life, and results in shortened survival. Different therapeutic strategies are required to match the cancer status and physical condition of patients with different etiologies and stages of sarcopenia. Here, we present a comprehensive review of the epidemiology and diagnosis of sarcopenia in patients with cancer, elucidate the complex interactions between cancer and sarcopenia, and provide evidence-based strategies for sarcopenia management in these patients.
Collapse
Affiliation(s)
- Feng-Min Zhang
- Colorectal Cancer Center/Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hao-Fan Wu
- Colorectal Cancer Center/Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Han-Ping Shi
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University/ Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
| | - Zhen Yu
- Colorectal Cancer Center/Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Cheng-Le Zhuang
- Colorectal Cancer Center/Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
26
|
Cawthon PM, Patel S, Newman AB, Bhasin S, Peng L, Tracy RP, Kizer JR, Lee SJ, Ferrucci L, Ganz P, LeBrasseur NK, Cummings SR. Evaluation of Associations of Growth Differentiation Factor-11, Growth Differentiation Factor-8, and Their Binding Proteins, Follistatin and Follistatin-Like Protein-3, With Measures of Skeletal Muscle Mass, Muscle Strength, and Physical Function in Older Adults. J Gerontol A Biol Sci Med Sci 2023; 78:2051-2059. [PMID: 36752218 PMCID: PMC10613016 DOI: 10.1093/gerona/glad045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND Based on studies from animal models, growth differentiation factor-11 (GDF-11) may have rejuvenating effects in humans. GDF-11 has high sequence homology with GDF-8 (also known as myostatin); follistatin and follistatin-like protein-3 (FSTL-3) are inhibitory proteins of both GDF-8 and GDF-11. METHODS Using highly specific liquid chromatography with tandem mass spectrometry assays for GDF-11 and GDF-8 and immunoassays for follistatin and FSTL-3, we quantified the association of these factors with muscle size, strength, and physical performance in 2 prospective cohort studies of community-dwelling older adults (Health, Aging, and Body Composition study [Health ABC] and Cardiovascular Health Study [CHS]). RESULTS GDF-8 levels were positively associated with thigh muscle cross-sectional area and density in Health ABC (data not available in CHS). GDF-8 levels were positively associated with lean mass (a surrogate of muscle mass) in Health ABC but not CHS, and grip strength in CHS but not Health ABC. FSTL-3 (and perhaps follistatin) was negatively associated with lean mass and had variable associations with other variables. In contrast, GDF-11 was not significantly associated with strength or performance. CONCLUSIONS GDF-8 and its binding proteins, follistatin and FSTL-3, may constitute a counterregulatory system (chalones) to restrain age-related loss of muscle mass and strength.
Collapse
Affiliation(s)
- Peggy M Cawthon
- Research Institute, California Pacific Medical Center, San Francisco, California,USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA
| | - Sheena Patel
- Research Institute, California Pacific Medical Center, San Francisco, California,USA
| | - Anne B Newman
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania,USA
| | - Shalender Bhasin
- Research Program in Men’s Health: Aging and Metabolism; Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Liming Peng
- Research Program in Men’s Health: Aging and Metabolism; Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Russell P Tracy
- Department of Pathology and Laboratory Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont,USA
| | - Jorge R Kizer
- Cardiology Section, San Francisco Veterans Affairs Health Care System, and Departments of Medicine, Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California,USA
| | - Se-Jin Lee
- The Jackson Laboratory and University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Luigi Ferrucci
- Office of the Scientific Director, National Institute on Aging, Bethesda, Maryland,USA
| | - Peter Ganz
- Cardiology Division, Zuckerberg San Francisco General Hospital and Department of Medicine, University of California San Francisco, San Francisco, California,USA
| | - Nathan K LeBrasseur
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, Minnesota, USA
| | - Steven R Cummings
- Research Institute, California Pacific Medical Center, San Francisco, California,USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
27
|
Yamaguchi Y, Zhu M, Moaddel R, Palchamy E, Ferrucci L, Semba RD. Relationships of GDF8 and 11 and Their Antagonists With Decline of Grip Strength Among Older Adults in the Baltimore Longitudinal Study of Aging. J Gerontol A Biol Sci Med Sci 2023; 78:1793-1798. [PMID: 37235639 PMCID: PMC10562884 DOI: 10.1093/gerona/glad135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Indexed: 05/28/2023] Open
Abstract
Although growth/differentiation factor 11 (GDF11), growth/differentiation factor 8 (GDF8), and their circulating antagonists, which include GDF11 and GDF8 propeptides, follistatin (FST), WAP, Follistatin/Kazal, Immunoglobulin, Kunitz And Netrin Domain Containing (WFIKKN)1, and WFIKKN2, have been shown to influence skeletal muscle and aging in mice, the relationship of these circulating factors with human phenotypes is less clear. This study aimed to characterize the relationship between plasma GDF8, GDF11, FST, WFIKKN1, and WFIKKN2 concentrations with the decline of grip strength in 534 adults, ≥65 years, who participated in the Baltimore Longitudinal Study of Aging and had grip strength measured over time. Plasma GDF8 and GDF11 mature proteins, GDF8 and GDF11 propeptides, FST (isoform FST315 and cleaved form FST303), WFIKKN1, and WFIKKN2 concentrations were measured using selected reaction monitoring-tandem mass spectrometry at baseline. Grip strength was measured at baseline and at follow-up visits (median follow-up 8.87 years). Mean (standard deviation) grip strength declined in men and women by -0.84 (2.45) and -0.60 (1.32) kg/year, respectively. Plasma GDF8 and GDF11 mature proteins, GDF8 and GDF11 propeptides, FST315, FST303, WFIKKN1, and WFIKKN2 concentrations were not independently predictive of the decline of grip strength in men or women in multivariable linear regression analyses that adjusted for potential confounders. In conclusion, circulating GDF8, GDF11, and their antagonists do not appear to influence the decline of grip strength in older men or women.
Collapse
Affiliation(s)
- Yuko Yamaguchi
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Graduate School of Health Sciences, Kobe University, Kobe, Hyogo, Japan
| | - Min Zhu
- National Institutes on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Ruin Moaddel
- National Institutes on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Elango Palchamy
- National Institutes on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Luigi Ferrucci
- National Institutes on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Richard D Semba
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Center for a Livable Future, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
28
|
Thomasius F, Pesta D, Rittweger J. Adjuvant pharmacological strategies for the musculoskeletal system during long-term space missions. Br J Clin Pharmacol 2023. [PMID: 37559171 DOI: 10.1111/bcp.15877] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/11/2023] Open
Abstract
Despite 2 h of daily exercise training, muscle wasting and bone loss are still present after 6-month missions to the international space station. Some crew members lose bone much faster than others. In preparation for missions to the Moon and Mars, space agencies are therefore reviewing their countermeasure portfolios. Here, we discuss the potential of current pharmacological strategies. Bone loss in space is fuelled by bone resorption. Alendronate, an oral bisphosphonate, reduced bone losses in experimental bed rest and space. However, gastrointestinal side effects precluded its further utilization in space. Zoledronate (a potent bisphosphonate), denosumab (RANKL antagonist) and romosozumab (sclerostin antagonist) are all administered via injection. They effectively suppress bone resorption and are routinely prescribed against osteoporosis. Their serious adverse effects, namely, osteonecrosis of the jaw and atypical femur fractures occur very rarely when the usage is limited to 1 or 2 years. Hence, utilization of one of these compounds may outweigh the bone risks of space travelling, in particular in those with high bone resorption rates. Muscle wasting in space is likely due to hampered muscle protein synthesis. Even though this might theoretically be countered by the synthesis-boosting effects of anabolic steroids, the practical grounds for such recommendation are currently weak. Moreover, they reveal their full potential only when combined with an anabolic exercise stimulus, for example, via strength training. It therefore seems that a combination of exercise and pharmacological countermeasures should be considered for musculoskeletal health on the way to the Moon and Mars and back.
Collapse
Affiliation(s)
| | - Dominik Pesta
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Centre for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Jörn Rittweger
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Department of Pediatrics and Adolescent Medicine, University Hospital Cologne, Cologne, Germany
| |
Collapse
|
29
|
Nan Y, Zhou Y, Dai Z, Yan T, Zhong P, Zhang F, Chen Q, Peng L. Role of nutrition in patients with coexisting chronic obstructive pulmonary disease and sarcopenia. Front Nutr 2023; 10:1214684. [PMID: 37614743 PMCID: PMC10442553 DOI: 10.3389/fnut.2023.1214684] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/24/2023] [Indexed: 08/25/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the most common chronic diseases in the elderly population and is characterized by persistent respiratory symptoms and airflow obstruction. During COPD progression, a variety of pulmonary and extrapulmonary complications develop, with sarcopenia being one of the most common extrapulmonary complications. Factors that contribute to the pathogenesis of coexisting COPD and sarcopenia include systemic inflammation, hypoxia, hypercapnia, oxidative stress, protein metabolic imbalance, and myocyte mitochondrial dysfunction. These factors, individually or in concert, affect muscle function, resulting in decreased muscle mass and strength. The occurrence of sarcopenia severely affects the quality of life of patients with COPD, resulting in increased readmission rates, longer hospital admission, and higher mortality. In recent years, studies have found that oral supplementation with protein, micronutrients, fat, or a combination of nutritional supplements can improve the muscle strength and physical performance of these patients; some studies have also elucidated the possible underlying mechanisms. This review aimed to elucidate the role of nutrition among patients with coexisting COPD and sarcopenia.
Collapse
Affiliation(s)
- Yayun Nan
- Department of Ningxia Geriatrics Medical Center, Ningxia People’s Hospital, Yinchuan, China
| | - Yuting Zhou
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ziyu Dai
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ting Yan
- Department of Ningxia Geriatrics Medical Center, Ningxia People’s Hospital, Yinchuan, China
| | - Pingping Zhong
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Fufeng Zhang
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qiong Chen
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Linlin Peng
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
30
|
Culver A, Hamang M, Wang Y, Jiang H, Yanum J, White E, Gawrieh S, Vuppalanchi RK, Chalasani NP, Dai G, Yaden BC. GDF8 Contributes to Liver Fibrogenesis and Concomitant Skeletal Muscle Wasting. Biomedicines 2023; 11:1909. [PMID: 37509548 PMCID: PMC10377408 DOI: 10.3390/biomedicines11071909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Patients with end-stage liver disease exhibit progressive skeletal muscle atrophy, highlighting a negative crosstalk between the injured liver and muscle. Our study was to determine whether TGFβ ligands function as the mediators. Acute or chronic liver injury was induced by a single or repeated administration of carbon tetrachloride. Skeletal muscle injury and repair was induced by intramuscular injection of cardiotoxin. Activin type IIB receptor (ActRIIB) ligands and growth differentiation factor 8 (Gdf8) were neutralized with ActRIIB-Fc fusion protein and a Gdf8-specific antibody, respectively. We found that acute hepatic injury induced rapid and adverse responses in muscle, which was blunted by neutralizing ActRIIB ligands. Chronic liver injury caused muscle atrophy and repair defects, which were prevented or reversed by inactivating ActRIIB ligands. Furthermore, we found that pericentral hepatocytes produce excessive Gdf8 in injured mouse liver and cirrhotic human liver. Specific inactivation of Gdf8 prevented liver injury-induced muscle atrophy, similar to neutralization of ActRIIB ligands. Inhibition of Gdf8 also reversed muscle atrophy in a treatment paradigm following chronic liver injury. Direct injection of exogenous Gdf8 protein into muscle along with acute focal muscle injury recapitulated similar dysregulated muscle regeneration as that observed with liver injury. The results indicate that injured liver negatively communicate with the muscle largely via Gdf8. Unexpectedly, inactivation of Gdf8 simultaneously ameliorated liver fibrosis in mice following chronic liver injury. In vitro, Gdf8 induced human hepatic stellate (LX-2) cells to form a septa-like structure and stimulated expression of profibrotic factors. Our findings identified Gdf8 as a novel hepatomyokine contributing to injured liver-muscle negative crosstalk along with liver injury progression.
Collapse
Affiliation(s)
- Alexander Culver
- Department of Biology, School of Science, Center for Developmental and Regenerative Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Matthew Hamang
- Department of Biology, School of Science, Center for Developmental and Regenerative Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Yan Wang
- Department of Biology, School of Science, Center for Developmental and Regenerative Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Huaizhou Jiang
- Department of Biology, School of Science, Center for Developmental and Regenerative Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Jennifer Yanum
- Department of Biology, School of Science, Center for Developmental and Regenerative Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Emily White
- Department of Biological Sciences, College of Science, Purdue University, West Lafayette, IN 46202, USA
| | - Samer Gawrieh
- Division of Gastroenterology and Hepatology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Raj K Vuppalanchi
- Division of Gastroenterology and Hepatology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Naga P Chalasani
- Division of Gastroenterology and Hepatology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Guoli Dai
- Department of Biology, School of Science, Center for Developmental and Regenerative Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Benjamin C Yaden
- Department of Biology, School of Science, Center for Developmental and Regenerative Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| |
Collapse
|
31
|
Chen M, Cao Y, Ji G, Zhang L. Lean nonalcoholic fatty liver disease and sarcopenia. Front Endocrinol (Lausanne) 2023; 14:1217249. [PMID: 37424859 PMCID: PMC10327437 DOI: 10.3389/fendo.2023.1217249] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/13/2023] [Indexed: 07/11/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become one of the most common chronic liver diseases in the world. The risk factor for NAFLD is often considered to be obesity, but it can also occur in people with lean type, which is defined as lean NAFLD. Lean NAFLD is commonly associated with sarcopenia, a progressive loss of muscle quantity and quality. The pathological features of lean NAFLD such as visceral obesity, insulin resistance, and metabolic inflammation are inducers of sarcopenia, whereas loss of muscle mass and function further exacerbates ectopic fat accumulation and lean NAFLD. Therefore, we discussed the association of sarcopenia and lean NAFLD, summarized the underlying pathological mechanisms, and proposed potential strategies to reduce the risks of lean NAFLD and sarcopenia in this review.
Collapse
Affiliation(s)
| | | | | | - Li Zhang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
32
|
Lee SJ, Bhasin S, Klickstein L, Krishnan V, Rooks D. Challenges and Future Prospects of Targeting Myostatin/Activin A Signaling to Treat Diseases of Muscle Loss and Metabolic Dysfunction. J Gerontol A Biol Sci Med Sci 2023; 78:32-37. [PMID: 36738276 PMCID: PMC10272974 DOI: 10.1093/gerona/glad033] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Indexed: 02/05/2023] Open
Abstract
Over the past 25 years, considerable progress has been made in terms of elucidating the regulatory and signaling mechanisms underlying the control of skeletal muscle mass by myostatin and other secreted proteins belonging to the transforming growth factor-β superfamily. Preclinical studies demonstrating the potential benefits of targeting the activities of these ligands have fueled the development of numerous biologics capable of perturbing this signaling pathway and increasing muscle mass and function. These biologics have been tested in numerous clinical trials for a wide range of indications characterized by muscle loss and excess adiposity. Here, we review the results of these trials and discuss some of the challenges and future prospects for targeting this signaling pathway to treat muscle and metabolic diseases. Myostatin inhibitors may improve metabolic outcomes by increasing muscle mass, and metabolic disorders may be attractive potential indications for these molecules.
Collapse
Affiliation(s)
- Se-Jin Lee
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Shalender Bhasin
- Research Program in Men’s Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | - Daniel Rooks
- Translational Medicine, Novartis Institute for BioMedical Research, Inc., Cambridge, Massachusetts, USA
| |
Collapse
|
33
|
Dioh W, Tourette C, Del Signore S, Daudigny L, Dupont P, Balducci C, Dilda PJ, Lafont R, Veillet S. A Phase 1 study for safety and pharmacokinetics of BIO101 (20-hydroxyecdysone) in healthy young and older adults. J Cachexia Sarcopenia Muscle 2023; 14:1259-1273. [PMID: 37057316 PMCID: PMC10235879 DOI: 10.1002/jcsm.13195] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 12/23/2022] [Accepted: 01/23/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND Sarcopenia is an age-related skeletal muscle disorder characterized by loss of muscle mass and strength leading to mobility disability. 20-Hydroxyecdysone (20E) is a polyhydroxylated plant steroid that demonstrates pharmacological effects in many disease animal models including ageing/sarcopenia. BIO101 is a 20E purified investigational drug (≥97%) that previously demonstrated good toxicology profiles in rat and dog. BIO101 is evaluated in healthy young and older adults in a Phase 1 study. METHODS This study is a Single Ascending Dose (SAD) followed by a 14-day Multiple Ascending Dose (MAD). In SAD, BIO101 was administered orally to 16 young adults at doses from 100 to 1400 mg and to 8 older adults (age ≥65 years) at 1400 mg. In MAD, doses of 350 mg once daily (qd), 350 mg twice daily (bid) and 450 mg bid were administered to 10 older adults. The primary objective was to evaluate safety and pharmacokinetics (PK), including dosing of circulating metabolites. Pharmacodynamic effects were investigated with regard to myostatin, procollagen-III-amino-terminal propeptide (PIIINP), myoglobin, creatine-kinase Muscle Brain (CKMB), renin and aldosterone plasma/serum levels. RESULTS BIO101 showed a good safety profile with only mild to moderate adverse events and a satisfactory pharmacokinetic profile. In SAD, at 100 mg to 1400 mg, mean Cmax and areas under the curve increased less than dose-proportionally. Mean half-life was short (2.4-4.9 h), and mean renal clearance was comparable in all doses (4.05-5.05 L/h). Mean plasma exposure was slightly lower in older adults (22% lower for Cmax and 13%-15% lower for AUCs) compared with young subjects. In MAD, 350 and 450 mg bid led to a slight accumulation over 14 days (mean ratio of accumulation [Rac] of 1.31 in both cohorts). Reduction of biomarkers (myoglobin, CK-MB) mean serum levels (vs. baseline) was observed at 450 mg bid. Two major metabolites of 20E (14-deoxy-20-hydroxyecdysone and 14-deoxypoststerone) were identified and quantified. CONCLUSIONS BIO101 shows a good safety and pharmacokinetic profile that led to the selection of doses for the subsequent interventional clinical trials of Phase 2 in age-related sarcopenia (SARA-INT) and Phase 3 in Covid-19 (COVA).
Collapse
Affiliation(s)
- Waly Dioh
- BiophytisSorbonne UniversityParisFrance
| | | | | | | | | | | | | | - René Lafont
- BiophytisSorbonne UniversityParisFrance
- FSI, Paris‐Seine Biology Institute (BIOSIPE), CNRSSorbonne UniversityParisFrance
| | | |
Collapse
|
34
|
Richter MM, Svane MS, Kristiansen VB, Holst JJ, Madsbad S, Bojsen-Møller KN. Postprandial secretion of follistatin after gastric bypass surgery and sleeve gastrectomy. Peptides 2023; 163:170978. [PMID: 36842630 DOI: 10.1016/j.peptides.2023.170978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/14/2023] [Accepted: 02/23/2023] [Indexed: 02/28/2023]
Abstract
Follistatin is secreted from the liver and may regulate muscle growth and insulin sensitivity. Protein intake stimulates follistatin secretion, which may be mediated by increased glucagon in the context of low insulin concentrations. We investigated circulating follistatin after mixed-meals in two cohorts of patients who were part of previously published studies and had undergone bariatric surgery with either simultaneous assessment of amino acid absorption or administration of the GLP-1 receptor antagonist exendin-(9-39), which increased glucagon concentrations and impaired insulin secretion. Study 1 comprised obese matched subjects with previous Roux-en-Y gastric bypass (RYGB) or sleeve gastrectomy (SG) surgery and unoperated controls who underwent 6-hour mixed-meal tests with intravenous and oral tracers including intrinsically labelled caseinate in the meal. Study 2 comprised obese subjects with previous RYGB who underwent two 5-hour mixed-meal tests with concomitant exendin-(9-39) or saline infusion. In study 1, the secretion of follistatin as well as the amino acid absorption was accelerated after RYGB compared with SG and controls, but the glucagon-to-C-peptide ratios did not differ between the groups. In study 2, exendin-(9-39) administration increased postprandial glucagon concentrations and lowered insulin secretion, whereas the concentration of follistatin was unchanged. In conclusion, postprandial follistatin secretion is accelerated in patients after RYGB which might be explained by an accelerated protein absorption rate rather than the glucagon-to-insulin ratio.
Collapse
Affiliation(s)
| | - Maria S Svane
- Department of Endocrinology, Hvidovre Hospital, Hvidovre, Denmark; Department of Gastrointestinal Surgery, Hvidovre Hospital, Hvidovre, Denmark
| | - Viggo B Kristiansen
- Department of Gastrointestinal Surgery, Hvidovre Hospital, Hvidovre, Denmark
| | - Jens J Holst
- Novo Nordic Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Hvidovre Hospital, Hvidovre, Denmark
| | | |
Collapse
|
35
|
Brent MB. Pharmaceutical treatment of bone loss: From animal models and drug development to future treatment strategies. Pharmacol Ther 2023; 244:108383. [PMID: 36933702 DOI: 10.1016/j.pharmthera.2023.108383] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/18/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023]
Abstract
Animal models are fundamental to advance our knowledge of the underlying pathophysiology of bone loss and to study pharmaceutical countermeasures against it. The animal model of post-menopausal osteoporosis from ovariectomy is the most widely used preclinical approach to study skeletal deterioration. However, several other animal models exist, each with unique characteristics such as bone loss from disuse, lactation, glucocorticoid excess, or exposure to hypobaric hypoxia. The present review aimed to provide a comprehensive overview of these animal models to emphasize the importance and significance of investigating bone loss and pharmaceutical countermeasures from perspectives other than post-menopausal osteoporosis only. Hence, the pathophysiology and underlying cellular mechanisms involved in the various types of bone loss are different, and this might influence which prevention and treatment strategies are the most effective. In addition, the review sought to map the current landscape of pharmaceutical countermeasures against osteoporosis with an emphasis on how drug development has changed from being driven by clinical observations and enhancement or repurposing of existing drugs to today's use of targeted anti-bodies that are the result of advanced insights into the underlying molecular mechanisms of bone formation and resorption. Moreover, new treatment combinations or repurposing opportunities of already approved drugs with a focus on dabigatran, parathyroid hormone and abaloparatide, growth hormone, inhibitors of the activin signaling pathway, acetazolamide, zoledronate, and romosozumab are discussed. Despite the considerable progress in drug development, there is still a clear need to improve treatment strategies and develop new pharmaceuticals against various types of osteoporosis. The review also highlights that new treatment indications should be explored using multiple animal models of bone loss in order to ensure a broad representation of different types of skeletal deterioration instead of mainly focusing on primary osteoporosis from post-menopausal estrogen deficiency.
Collapse
Affiliation(s)
- Mikkel Bo Brent
- Department of Biomedicine, Aarhus University, Denmark, Wilhelm Meyers Allé 3, 8000 Aarhus C, Denmark.
| |
Collapse
|
36
|
Mitra A, Qaisar R, Bose B, Sudheer SP. The elusive role of myostatin signaling for muscle regeneration and maintenance of muscle and bone homeostasis. Osteoporos Sarcopenia 2023; 9:1-7. [PMID: 37082359 PMCID: PMC10111947 DOI: 10.1016/j.afos.2023.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/20/2023] [Accepted: 03/15/2023] [Indexed: 04/22/2023] Open
Abstract
Skeletal muscle is one of the leading frameworks of the musculo-skeletal system, which works in synergy with the bones. Long skeletal muscles provide stability and mobility to the human body and are primarily composed of proteins. Conversely, improper functioning of various skeletal muscles leads to diseases and disorders, namely, age-related muscle disorder called sarcopenia, a group of genetic muscle disorders such as muscular dystrophies, and severe muscle wasting in cancer known as cachexia. However, skeletal muscle has an excellent ability to undergo hypertrophy and enhanced functioning during sustained exercise over time. Indeed, these processes of skeletal muscle regeneration/hypertrophy, as well as degeneration and atrophy, involve an interplay of various signaling pathways. Myostatin is one such chemokine/myokine with a significant contribution to muscle regeneration or atrophy in multiple conditions. In this review, we try to put together the role and regulation of myostatin as a function of muscle regeneration extrapolated to multiple aspects of its molecular functions.
Collapse
Affiliation(s)
- Akash Mitra
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore, 575018, Karnataka, India
| | - Rizwan Qaisar
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Bipasha Bose
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore, 575018, Karnataka, India
- Corresponding author.
| | - Shenoy P Sudheer
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore, 575018, Karnataka, India
- Corresponding author.
| |
Collapse
|
37
|
Ren B, Shen J, Qian Y, Zhou T. Sarcopenia as a Determinant of the Efficacy of Immune Checkpoint Inhibitors in Non-Small Cell Lung Cancer: A Meta-Analysis. Nutr Cancer 2023; 75:685-695. [PMID: 36533715 DOI: 10.1080/01635581.2022.2153879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE The impact of pre-immunotherapy sarcopenia in patients with non-small cell lung cancer (NSCLC) receiving immune checkpoint inhibitors (ICIs) is elusive. We performed a meta-analysis to investigate the association between sarcopenia and clinical outcomes of ICIs. METHODS PubMed, EMBASE, and the Cochrane Library were searched. RESULTS Thirteen clinical trials were selected. The 1,2-year overall survival rate was lower in the sarcopenia group (odds ratio (OR) = 2.44, 95% confidence interval (CI), 1.78-3.35, P < 0.00001; OR = 1.60, 95% CI, 1.08-2.37, P = 0.02), with I2 = 34%, P = 0.15, and I2 = 41%, P = 0.12. The 1,2-year progression-free survival (PFS) was the same (OR = 3.43, 95% CI, 1.86-6.33, P < 0.0001; OR = 2.06, 95% CI, 1.19-3.58, P < 0.0001), with I2 = 31%, P = 0.17 and I2=31%, P = 0.17. Sarcopenia reduced the overall response rate (OR = 2.22, 95% CI, 1.01-4.84, P = 0.02), with I2= 56%, P = 0.02, and disease control rate (OR = 3.15, 95% CI, 2.10-4.72, P < 0.0001) with I2 = 33%, P = 0.18. CONCLUSION Pre-immunotherapy sarcopenia was associated with poor clinical outcomes in patients with advanced NSCLC who received ICIs.
Collapse
Affiliation(s)
- Bixin Ren
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiucheng Shen
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yajuan Qian
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Tong Zhou
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
38
|
Lee JH, Kang H, Ban GT, Kim BK, Lee J, Hwang H, Yoo HS, Cho K, Choi JS. Proteome network analysis of skeletal muscle in lignan-enriched nutmeg extract-fed aged mice. J Anal Sci Technol 2023. [DOI: 10.1186/s40543-023-00377-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
AbstractSarcopenia, characterized by reduced muscle mass and fiber number leading to muscular atrophy, has been associated with serious socioeconomic challenges among the elderly in developed countries. Therefore, preventing sarcopenia could be a promising strategy for achieving a healthy aging society. Nutmeg (Myristica fragrans) has been used as a spice to increase flavor and prevent putrefaction of food. Nutmeg contains various bioactive components that improve muscle activity. To determine the potential effect of lignan-enriched nutmeg extract (LNX) on sarcopenia, LNX (100 mg/kg body weight)-fed aged mice were subjected to forced exercise. Herein, aged (22-month-old) mice fed LNX for three weeks exhibited a shortened and thickened soleus muscle. The ratio of the soleus muscle mass (%) to body weight was significantly increased in LNX-fed aged mice. The relative increase in muscle mass in LNX-fed aged mice improved exercise activities, including rotarod, swimming, and grip strength test results. Proteome profiles of the soleus muscle of LNX-fed mice were used to analyze protein–protein interaction network. Several myosin heavy chain isoforms were found to interact with actin, ACTA1, which functions as a hub protein. Furthermore, the expression of myogenic proteins, such as MYH1, MYH4, and ACTA1, was dose-dependently increased in vivo. In result, our functional proteomic analysis revealed that feeding LNX restored muscle proteins in aged mice.
Collapse
|
39
|
Abstract
Myostatin (GDF-8) was discovered 25 years ago as a new transforming growth factor-β family member that acts as a master regulator of skeletal muscle mass. Myostatin is made by skeletal myofibers, circulates in the blood, and acts back on myofibers to limit growth. Myostatin appears to have all of the salient properties of a chalone, which is a term proposed over a half century ago to describe hypothetical circulating, tissue-specific growth inhibitors that control tissue size. The elucidation of the molecular, cellular, and physiological mechanisms underlying myostatin activity suggests that myostatin functions as a negative feedback regulator of muscle mass and raises the question as to whether this type of chalone mechanism is unique to skeletal muscle or whether it also operates in other tissues.
Collapse
Affiliation(s)
- Se-Jin Lee
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, Connecticut, USA.,The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA;
| |
Collapse
|
40
|
Zeng S, Chang CH, Sun M, Chen WM, Wu SY, Zhang J. Comparison of surgical complications after curative surgery in patients with oral cavity squamous cell carcinoma and sarcopenia. J Cachexia Sarcopenia Muscle 2023; 14:576-584. [PMID: 36562311 PMCID: PMC9891945 DOI: 10.1002/jcsm.13162] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/10/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The study aims to clarify the association of sarcopenia with perioperative and postoperative complications in oral cavity squamous cell carcinoma (OCSCC) patients undergoing curative surgery and to understand the reasons causing the poor oncologic outcomes for OCSCC. METHODS We conducted a propensity score matching study to investigate the association of perioperative and postoperative outcomes in OCSCC patients with sarcopenia and without sarcopenia. A retrospective analysis of a large national data set from the Taiwan Cancer Registry Database was conducted. At least two claims for patients with a principal diagnosis of sarcopenia within the 12-month preoperative period were defined as the criteria for sarcopenia diagnosis (ICD-10-CM code M62.84). Sarcopenia was diagnosed through the measurement of low muscle strength and low muscle mass by any one of the patient's attending orthopaedic physician, rehabilitation physician, family medicine specialist or geriatrician. A multivariate logistic regression model was used to calculate the perioperative, and postoperative major complications. RESULTS Our final cohort included 16 293 patients with OCSCC (10 862 and 5 431 in the sarcopenia and nonsarcopenia groups, respectively) who were eligible for further analysis. The sarcopenia group was 10.40% female and 89.60% male, and the nonsarcopenia group was 9.74% female and 90.26% male. The mean age ± standard deviation (SD) were 56.44 ± 11.14 and 56.22 ± 11.29 for sarcopenia and nonsarcopenia groups. OCSCC patients with sarcopenia undergoing curative surgery had a significantly higher blood transfusion rate and volume; longer intensive care unit (ICU) stay, and hospital stay; higher postoperative 30-day mortality (adjusted odds ratio [aOR]: 1.12, 95% confidence interval [CI] [1.07, 1.56]) and rates of pneumonia (aOR: 1.34, 95% CI [1.20, 1.50]), acute renal failure (aOR: 1.45, 95% CI [1.12, 1.87]) and septicaemia (aOR: 1.29, 95% CI [1.15, 1.45]); higher postoperative first-year mortality (aOR: 1.18, 95% CI [1.13, 1.51]) and rates of pneumonia (aOR: 1.43, 95% CI [1.30, 1.56]), acute myocardial infarction (aOR: 1.52, 95% CI [1.06, 2.18]) and septicaemia (aOR: 1.29, 95% CI [1.15, 1.45]). CONCLUSIONS OCSCC patients with sarcopenia might exhibit more perioperative and surgical complications than those without sarcopenia.
Collapse
Affiliation(s)
- Shuang Zeng
- Department of Anesthesiology and Perioperative Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Academy of Medical Sciences of Zhengzhou University, Zhengzhou, Henan, China
| | - Chia-Hao Chang
- Department of Otorhinolaryngology, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Luodong, Taiwan
| | - Mingyang Sun
- Department of Anesthesiology and Perioperative Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wan-Ming Chen
- Graduate Institute of Business Administration, College of Management, Fu Jen Catholic University, Taipei, Taiwan.,Artificial Intelligence Development Center, Fu Jen Catholic University, Taipei, Taiwan
| | - Szu-Yuan Wu
- Graduate Institute of Business Administration, College of Management, Fu Jen Catholic University, Taipei, Taiwan.,Artificial Intelligence Development Center, Fu Jen Catholic University, Taipei, Taiwan.,Department of Food Nutrition and Health Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan.,Big Data Center, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Luodong, Yilan, Taiwan.,Division of Radiation Oncology, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Luodong, Taiwan.,Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung, Taiwan.,Cancer Center, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Luodong, Taiwan.,Centers for Regional Anesthesia and Pain Medicine, Taipei Municipal Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Management, College of Management, Fo Guang University, Jiaoxi, Taiwan
| | - Jiaqiang Zhang
- Department of Anesthesiology and Perioperative Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
41
|
Paez HG, Pitzer CR, Alway SE. Age-Related Dysfunction in Proteostasis and Cellular Quality Control in the Development of Sarcopenia. Cells 2023; 12:cells12020249. [PMID: 36672183 PMCID: PMC9856405 DOI: 10.3390/cells12020249] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Sarcopenia is a debilitating skeletal muscle disease that accelerates in the last decades of life and is characterized by marked deficits in muscle strength, mass, quality, and metabolic health. The multifactorial causes of sarcopenia have proven difficult to treat and involve a complex interplay between environmental factors and intrinsic age-associated changes. It is generally accepted that sarcopenia results in a progressive loss of skeletal muscle function that exceeds the loss of mass, indicating that while loss of muscle mass is important, loss of muscle quality is the primary defect with advanced age. Furthermore, preclinical models have suggested that aged skeletal muscle exhibits defects in cellular quality control such as the degradation of damaged mitochondria. Recent evidence suggests that a dysregulation of proteostasis, an important regulator of cellular quality control, is a significant contributor to the aging-associated declines in muscle quality, function, and mass. Although skeletal muscle mammalian target of rapamycin complex 1 (mTORC1) plays a critical role in cellular control, including skeletal muscle hypertrophy, paradoxically, sustained activation of mTORC1 recapitulates several characteristics of sarcopenia. Pharmaceutical inhibition of mTORC1 as well as caloric restriction significantly improves muscle quality in aged animals, however, the mechanisms controlling cellular proteostasis are not fully known. This information is important for developing effective therapeutic strategies that mitigate or prevent sarcopenia and associated disability. This review identifies recent and historical understanding of the molecular mechanisms of proteostasis driving age-associated muscle loss and suggests potential therapeutic interventions to slow or prevent sarcopenia.
Collapse
Affiliation(s)
- Hector G. Paez
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Integrated Biomedical Sciences Graduate Program, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Laboratory of Muscle Biology and Sarcopenia, Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Center for Muscle, Metabolism and Neuropathology, Division of Regenerative and Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Christopher R. Pitzer
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Integrated Biomedical Sciences Graduate Program, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Laboratory of Muscle Biology and Sarcopenia, Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Center for Muscle, Metabolism and Neuropathology, Division of Regenerative and Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Stephen E. Alway
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Integrated Biomedical Sciences Graduate Program, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Laboratory of Muscle Biology and Sarcopenia, Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Center for Muscle, Metabolism and Neuropathology, Division of Regenerative and Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- The Tennessee Institute of Regenerative Medicine, Memphis, TN 38163, USA
- Correspondence:
| |
Collapse
|
42
|
Rolland Y, Cruz-Jentoft AJ. Editorial: Sarcopenia: Keeping on Search for the Best Operational Definition. J Nutr Health Aging 2023; 27:202-204. [PMID: 36973928 DOI: 10.1007/s12603-023-1099-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Affiliation(s)
- Y Rolland
- Professor Yves Rolland, MD, PhD, Gérontopôle de Toulouse, Institut du Vieillissement, 37 allées Jules Guesdes, 31000 Toulouse, France, + 33 5 61 70 77 21, E-mail:
| | | |
Collapse
|
43
|
Wong L, McMahon LP. Crosstalk between bone and muscle in chronic kidney disease. Front Endocrinol (Lausanne) 2023; 14:1146868. [PMID: 37033253 PMCID: PMC10076741 DOI: 10.3389/fendo.2023.1146868] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/14/2023] [Indexed: 04/11/2023] Open
Abstract
With increasing life expectancy, the related disorders of bone loss, metabolic dysregulation and sarcopenia have become major health threats to the elderly. Each of these conditions is prevalent in patients with chronic kidney disease (CKD), particularly in more advanced stages. Our current understanding of the bone-muscle interaction is beyond mechanical coupling, where bone and muscle have been identified as interrelated secretory organs, and regulation of both bone and muscle metabolism occurs through osteokines and myokines via autocrine, paracrine and endocrine systems. This review appraises the current knowledge regarding biochemical crosstalk between bone and muscle, and considers recent progress related to the role of osteokines and myokines in CKD, including modulatory effects of physical exercise and potential therapeutic targets to improve musculoskeletal health in CKD patients.
Collapse
Affiliation(s)
- Limy Wong
- Department of Renal Medicine, Monash University Eastern Health Clinical School, Box Hill, VIC, Australia
- Department of Renal Medicine, Eastern Health, Box Hill, VIC, Australia
- *Correspondence: Limy Wong,
| | - Lawrence P. McMahon
- Department of Renal Medicine, Monash University Eastern Health Clinical School, Box Hill, VIC, Australia
- Department of Renal Medicine, Eastern Health, Box Hill, VIC, Australia
| |
Collapse
|
44
|
Fielding RA, LeBrasseur NK. Editorial: Outcomes for Regulatory Approval in Geriatrics: Embracing Loss of Mobility and Mobility Disability as Clinically Meaningful Therapeutic Indications. J Nutr Health Aging 2023; 27:496-497. [PMID: 37498095 DOI: 10.1007/s12603-023-1944-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/28/2023]
Affiliation(s)
- R A Fielding
- Roger A. Fielding, Nutrition, Exercise Physiology and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center, Tufts University, Boston, Massachusetts, USA,
| | | |
Collapse
|
45
|
Petricoul O, Nazarian A, Schuehly U, Schramm U, David OJ, Laurent D, Praestgaard J, Roubenoff R, Papanicolaou DA, Rooks D. Pharmacokinetics and Pharmacodynamics of Bimagrumab (BYM338). Clin Pharmacokinet 2023; 62:141-155. [PMID: 36527600 DOI: 10.1007/s40262-022-01189-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Bimagrumab is a human monoclonal antibody binding to the activin type II receptor with therapeutic potential in conditions of muscle wasting and obesity. This phase I study evaluated the pharmacokinetics (PK), pharmacodynamics (PD), and safety of various dose regimens of bimagrumab and routes of administration in healthy older adults. METHODS This was a randomized, double-blind, placebo-controlled, parallel-arm, multiple-dose study in older adult men and women (aged ≥ 70 years, body mass index [BMI] 18-34 kg/m2) with stable health and diet. The study comprised seven treatment groups (Cohorts 1-7). Participants received bimagrumab or placebo treatment every 4 weeks for three doses (Cohorts 1 [700 mg] and 2 [210 mg] intravenous infusion; Cohorts 3 [1500 mg] and 4 [525 mg] subcutaneous infusion), or every week for 12 doses (Cohorts 5 [300 mg], 6 [150 mg], and 7 [52.5 mg] subcutaneous bolus injection) and were followed up until week 20. Blood samples were collected for bimagrumab PK analysis. PD were assessed by dual energy X-ray absorptiometry to quantify the change from baseline in lean body mass (LBM) and fat body mass (FBM) compared with placebo. Safety was assessed throughout the study. RESULTS Eighty-four of 91 (92.3%) randomized participants (mean age 74.5 years; BMI 28.0 kg/m2) completed the study. Demographic characteristics were generally balanced across the groups. A target-mediated drug disposition profile was observed following both intravenous and subcutaneous administration. The absolute subcutaneous bioavailability was estimated at approximately 40%. LBM increased by 4-6% (1.5-2 kg) from baseline throughout the treatment period for intravenous and subcutaneous regimens, except for the 52.5 mg subcutaneous dose, which did not differ from placebo. Concurrently, there was a decrease in FBM (approximately 2-3 kg) for all intravenous and subcutaneous regimens. Bimagrumab was generally safe and well tolerated; adverse events were mostly mild to moderate in severity. CONCLUSIONS Dose levels of bimagrumab administered weekly subcutaneously resulted in PK profiles and PD effects comparable with monthly intravenous dosing, which supports the feasibility of the subcutaneous route of administration for bimagrumab for future clinical development.
Collapse
Affiliation(s)
- Olivier Petricoul
- Translational Medicine, Novartis Institutes for BioMedical Research, WSJ-386/10/48.50, 4002, Basel, Switzerland.
| | - Arman Nazarian
- Translational Medicine, Novartis Institutes for BioMedical Research, WSJ-386/10/48.50, 4002, Basel, Switzerland
| | | | - Ursula Schramm
- Translational Medicine, Novartis Institutes for BioMedical Research, WSJ-386/10/48.50, 4002, Basel, Switzerland
| | | | - Didier Laurent
- Translational Medicine, Novartis Institutes for BioMedical Research, WSJ-386/10/48.50, 4002, Basel, Switzerland
| | | | - Ronenn Roubenoff
- Translational Medicine, Novartis Institutes for BioMedical Research, WSJ-386/10/48.50, 4002, Basel, Switzerland
| | | | - Daniel Rooks
- Translational Medicine, Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| |
Collapse
|
46
|
Malaguarnera G, Catania VE, Bertino G, Chisari LM, Castorina M, Bonfiglio C, Cauli O, Malaguarnera M. Acetyl-L-carnitine Slows the Progression from Prefrailty to Frailty in Older Subjects: A Randomized Interventional Clinical Trial. Curr Pharm Des 2022; 28:3158-3166. [PMID: 36043711 DOI: 10.2174/1381612828666220830092815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/14/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND Ageing is characterized by a gradual decline in body function, representing the clinical situation called "frailty". Prefrailty is the intermediate stage between frailty and robust condition. L-carnitine (LC) plays an important role in energy production from long-chain fatty acids in mitochondria, and its serum level is lower in prefrail and frail subjects. OBJECTIVE This study aims to evaluate the effect of Acetyl-L-carnitine (ALCAR) in pre-frail older patients. METHODS We scheduled 3 months of treatment and then 3 months of follow-up. A total of 92 subjects were selected from May, 2009 to July, 2017, in a randomized, observational, double-blind, placebo-controlled study. We scheduled 3 months of treatment and then 3 months of follow-up. ALCAR (oral 1.5 g/bis in die - BID) or placebo groups were used. RESULTS After the treatment, only the treated group displayed a decrease in C reactive protein (CRP) p < 0.001 and an increase in serum-free carnitine and acetylcarnitine (p < 0.05) in Mini-Mental state (MMSE) p < 0.0001 and 6-walking distance (p < 0.0001); ALCAR group vs. placebo group showed a decrease in HDL cholesterol and CRP (p < 0.01), an increase in MMSE score (p < 0.001) and in the 6-walking distance (p < 0.001). CONCLUSIONS ALCAR treatment delays the incidence and severity of onset of degenerative disorders of the elderly in prefrail subjects with improvement in memory and cognitive processes.
Collapse
Affiliation(s)
- Giulia Malaguarnera
- Department of Biomedical and Biotechnological Science, University of Catania, Catania, Italy
| | - Vito Emanuele Catania
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
| | - Gaetano Bertino
- Hepatology Unit, A.O.U. Policlinico- San Marco, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Laura Maria Chisari
- Department of Biomedical and Biotechnological Science, University of Catania, Catania, Italy
| | | | | | - Omar Cauli
- Department of Nursing, Faculty of Nursing and Podiatry, University of Valencia, c/Jaume Roig s/n, 46010 Valencia, Spain.,Frailty and Cognitive Impairment Organized Group (FROG), University of Valencia, 46010 Valencia, Spain
| | - Michele Malaguarnera
- Department of Biomedical and Biotechnological Science, University of Catania, Catania, Italy.,Department of Psychobiology, Facultad de Psicología, Universidad de Valencia, Avda. Blasco Ibáñez, 21, 46010, Valencia, Spain
| |
Collapse
|
47
|
Laskou F, Patel H, Cooper C, Dennison E. Functional capacity, sarcopenia, and bone health. Best Pract Res Clin Rheumatol 2022; 36:101756. [PMID: 35691825 DOI: 10.1016/j.berh.2022.101756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bone and muscle are recognised as interacting tissues, the so-called 'muscle-bone unit', in which these two tissues communicate to coordinate their development (chemically and metabolically), as well as their response to loading or injury. Musculoskeletal disorders of ageing, specifically osteoporosis and sarcopenia, are highly prevalent in older individuals. They signify a significant burden for older people affecting their mobility, confidence, and quality of life, as well as being a major cost to healthcare systems worldwide. This review considers the coexistence of osteoporosis and sarcopenia in individuals and describes risk factors, clinical consequences, approaches to management, and the link with functional capacity.
Collapse
Affiliation(s)
- Faidra Laskou
- MRC Lifecourse Epidemiology Centre, Southampton, SO16 6YD, UK, USA.
| | - Harnish Patel
- MRC Lifecourse Epidemiology Centre, Southampton, SO16 6YD, UK, USA.
| | - Cyrus Cooper
- MRC Lifecourse Epidemiology Centre, Southampton, SO16 6YD, UK, USA.
| | - Elaine Dennison
- MRC Lifecourse Epidemiology Centre, Southampton, SO16 6YD, UK, USA.
| |
Collapse
|
48
|
Ma K, Huang F, Qiao R, Miao L. Pathogenesis of sarcopenia in chronic obstructive pulmonary disease. Front Physiol 2022; 13:850964. [PMID: 35928562 PMCID: PMC9343800 DOI: 10.3389/fphys.2022.850964] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 06/28/2022] [Indexed: 11/25/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a common pulmonary disease characterized by persistent respiratory symptoms and airflow obstruction. In addition to lung diseases, chronic obstructive pulmonary disease (COPD) is often associated with other organ diseases, and sarcopenia is one of the common diseases. In recent years, multiple factors have been proposed to influence muscle dysfunction in COPD patients, including systemic and local inflammation, oxidative stress, hypoxia, hypercapnia, protein synthesis, catabolic imbalance, nutritional changes, disuse, ageing, and the use of medications such as steroids. These factors alone or in combination can lead to a reduction in muscle mass and cross-sectional area, deterioration of muscle bioenergy metabolism, defects in muscle repair and regeneration mechanisms, apoptosis and other anatomical and/or functional pathological changes, resulting in a decrease in the muscle’s ability to work. This article reviews the research progress of possible pathogenesis of sarcopenia in COPD.
Collapse
|
49
|
Abati E, Manini A, Comi GP, Corti S. Inhibition of myostatin and related signaling pathways for the treatment of muscle atrophy in motor neuron diseases. Cell Mol Life Sci 2022; 79:374. [PMID: 35727341 PMCID: PMC9213329 DOI: 10.1007/s00018-022-04408-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/16/2022] [Accepted: 06/01/2022] [Indexed: 11/26/2022]
Abstract
Myostatin is a negative regulator of skeletal muscle growth secreted by skeletal myocytes. In the past years, myostatin inhibition sparked interest among the scientific community for its potential to enhance muscle growth and to reduce, or even prevent, muscle atrophy. These characteristics make it a promising target for the treatment of muscle atrophy in motor neuron diseases, namely, amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA), which are rare neurological diseases, whereby the degeneration of motor neurons leads to progressive muscle loss and paralysis. These diseases carry a huge burden of morbidity and mortality but, despite this unfavorable scenario, several therapeutic advancements have been made in the past years. Indeed, a number of different curative therapies for SMA have been approved, leading to a revolution in the life expectancy and outcomes of SMA patients. Similarly, tofersen, an antisense oligonucleotide, is now undergoing clinical trial phase for use in ALS patients carrying the SOD1 mutation. However, these therapies are not able to completely halt or reverse progression of muscle damage. Recently, a trial evaluating apitegromab, a myostatin inhibitor, in SMA patients was started, following positive results from preclinical studies. In this context, myostatin inhibition could represent a useful strategy to tackle motor symptoms in these patients. The aim of this review is to describe the myostatin pathway and its role in motor neuron diseases, and to summarize and critically discuss preclinical and clinical studies of myostatin inhibitors in SMA and ALS. Then, we will highlight promises and pitfalls related to the use of myostatin inhibitors in the human setting, to aid the scientific community in the development of future clinical trials.
Collapse
Affiliation(s)
- Elena Abati
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, Neuroscience Section, Neurology Unit, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
- Neurology Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Arianna Manini
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, Neuroscience Section, Neurology Unit, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Giacomo Pietro Comi
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, Neuroscience Section, Neurology Unit, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
- Neurology Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefania Corti
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, Neuroscience Section, Neurology Unit, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, University of Milan, Milan, Italy.
- Neurology Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
50
|
Luan Y, Zhang Y, Yu SY, You M, Xu PC, Chung S, Kurita T, Zhu J, Kim SY. Development of ovarian tumour causes significant loss of muscle and adipose tissue: a novel mouse model for cancer cachexia study. J Cachexia Sarcopenia Muscle 2022; 13:1289-1301. [PMID: 35044098 PMCID: PMC8977964 DOI: 10.1002/jcsm.12864] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Cancer-associated cachexia (CAC) is a complex syndrome of progressive muscle wasting and adipose loss with metabolic dysfunction, severely increasing the morbidity and mortality risk in cancer patients. However, there are limited studies focused on the underlying mechanisms of the progression of CAC due to the complexity of this syndrome and the lack of preclinical models that mimics its stagewise progression. METHODS We characterized the initiation and progression of CAC in transgenic female mice with ovarian tumours. We measured proposed CAC biomarkers (activin A, GDF15, IL-6, IL-1β, and TNF-α) in sera (n = 6) of this mouse model. The changes of activin A and GDF15 (n = 6) were correlated with the decline of bodyweight over time. Morphometry and signalling markers of muscle atrophy (n ≥ 6) and adipose tissue wasting (n ≥ 7) were assessed during CAC progression. RESULTS Cancer-associated cachexia symptoms of the transgenic mice model used in this study mimic the progression of CAC seen in humans, including drastic body weight loss, skeletal muscle atrophy, and adipose tissue wasting. Serum levels of two cachexia biomarkers, activin A and GDF15, increased significantly during cachexia progression (76-folds and 10-folds, respectively). Overactivation of proteolytic activity was detected in skeletal muscle through up-regulating muscle-specific E3 ligases Atrogin-1 and Murf-1 (16-folds and 14-folds, respectively) with decreasing cross-sectional area of muscle fibres (P < 0.001). Muscle wasting mechanisms related with p-p38 MAPK, FOXO3, and p-AMPKα were highly activated in concurrence with an elevation in serum activin A. Dramatic fat loss was also observed in this mouse model with decreased fat mass (n ≥ 6) and white adipocytes sizes (n = 6) (P < 0.0001). The adipose tissue wasting was based on thermogenesis, supported by the up-regulation of uncoupling protein 1 (UCP1). Fibrosis in adipose tissue was also observed in concurrence with adipose tissue loss (n ≥ 13) (p < 0.0001). CONCLUSIONS Our novel preclinical CAC mouse model mimics human CAC phenotypes and serum biomarkers. The mouse model in this study showed proteolysis in muscle atrophy, browning in adipose tissue wasting, elevation of serum activin A and GDF15, and atrophy of pancreas and liver. This mouse line would be the best preclinical model to aid in clarifying molecular mediators of CAC and dissecting metabolic dysfunction and tissue atrophy during the progression of CAC.
Collapse
Affiliation(s)
- Yi Luan
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, Fred & Pamela Buffett Cancer Center, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yaqi Zhang
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Seok-Yeong Yu
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, Fred & Pamela Buffett Cancer Center, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mikyoung You
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Pauline C Xu
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, Fred & Pamela Buffett Cancer Center, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Soonkyu Chung
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Takeshi Kurita
- Department of Cancer Biology & Genetics, The Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA
| | - Jie Zhu
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - So-Youn Kim
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, Fred & Pamela Buffett Cancer Center, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|