1
|
Pyreddy S, Poddar A, Carraro F, Polash SA, Dekiwadia C, Murdoch B, Nasa Z, Reddy TS, Falcaro P, Shukla R. Targeting telomerase utilizing zeolitic imidazole frameworks as non-viral gene delivery agents across different cancer cell types. BIOMATERIALS ADVANCES 2023; 149:213420. [PMID: 37062125 DOI: 10.1016/j.bioadv.2023.213420] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/28/2023] [Accepted: 04/02/2023] [Indexed: 04/18/2023]
Abstract
Telomerase, a ribonucleoprotein coded by the hTERT gene, plays an important role in cellular immortalization and carcinogenesis. hTERT is a suitable target for cancer therapeutics as its activity is highly upregulated in most of cancer cells but absent in normal somatic cells. Here, by employing the two Metal-Organic Frameworks (MOFs), viz. ZIF-C and ZIF-8, based biomineralization we encapsulate Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)/Cas9 plasmid system that targets hTERT gene (CrhTERT) in cancer cells. When comparing the two biocomposites, ZIF-C shows the better loading capacity and cell viability. The loaded plasmid in ZIF-C is highly protected against enzymatic degradation. CrhTERT@ZIF-C is efficiently endocytosed by cancer cells and the subcellular release of CrhTERT leads to telomerase knockdown. The resultant inhibition of hTERT expression decreases cellular proliferation and causing cancer cell death. Furthermore, hTERT knockdown shows a significant reduction in tumour metastasis and alters protein expression. Collectively we show the high potential of ZIF-C-based biocomposites as a promising general tool for gene therapy of different types of cancers.
Collapse
Affiliation(s)
- Suneela Pyreddy
- NanoBiotechnology Research Laboratory, Centre for Advanced Materials & Industrial Chemistry, RMIT University, Melbourne, Victoria 3001, Australia; School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Arpita Poddar
- NanoBiotechnology Research Laboratory, Centre for Advanced Materials & Industrial Chemistry, RMIT University, Melbourne, Victoria 3001, Australia; School of Science, RMIT University, Melbourne, Victoria 3001, Australia; Fiona Elsey Cancer Research Institute, Ballarat, Victoria 3350, Australia
| | - Francesco Carraro
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz 8010, Austria
| | - Shakil Ahmed Polash
- NanoBiotechnology Research Laboratory, Centre for Advanced Materials & Industrial Chemistry, RMIT University, Melbourne, Victoria 3001, Australia; School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | | | - Billy Murdoch
- School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Zeyad Nasa
- School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - T Srinivasa Reddy
- NanoBiotechnology Research Laboratory, Centre for Advanced Materials & Industrial Chemistry, RMIT University, Melbourne, Victoria 3001, Australia; School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Paolo Falcaro
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz 8010, Austria.
| | - Ravi Shukla
- NanoBiotechnology Research Laboratory, Centre for Advanced Materials & Industrial Chemistry, RMIT University, Melbourne, Victoria 3001, Australia; School of Science, RMIT University, Melbourne, Victoria 3001, Australia.
| |
Collapse
|
2
|
Pre-Clinical and Clinical Applications of Small Interfering RNAs (siRNA) and Co-Delivery Systems for Pancreatic Cancer Therapy. Cells 2021; 10:cells10123348. [PMID: 34943856 PMCID: PMC8699513 DOI: 10.3390/cells10123348] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/17/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer (PC) is one of the leading causes of death and is the fourth most malignant tumor in men. The epigenetic and genetic alterations appear to be responsible for development of PC. Small interfering RNA (siRNA) is a powerful genetic tool that can bind to its target and reduce expression level of a specific gene. The various critical genes involved in PC progression can be effectively targeted using diverse siRNAs. Moreover, siRNAs can enhance efficacy of chemotherapy and radiotherapy in inhibiting PC progression. However, siRNAs suffer from different off target effects and their degradation by enzymes in serum can diminish their potential in gene silencing. Loading siRNAs on nanoparticles can effectively protect them against degradation and can inhibit off target actions by facilitating targeted delivery. This can lead to enhanced efficacy of siRNAs in PC therapy. Moreover, different kinds of nanoparticles such as polymeric nanoparticles, lipid nanoparticles and metal nanostructures have been applied for optimal delivery of siRNAs that are discussed in this article. This review also reveals that how naked siRNAs and their delivery systems can be exploited in treatment of PC and as siRNAs are currently being applied in clinical trials, significant progress can be made by translating the current findings into the clinical settings.
Collapse
|
3
|
Romaniuk-Drapała A, Totoń E, Konieczna N, Machnik M, Barczak W, Kowal D, Kopczyński P, Kaczmarek M, Rubiś B. hTERT Downregulation Attenuates Resistance to DOX, Impairs FAK-Mediated Adhesion, and Leads to Autophagy Induction in Breast Cancer Cells. Cells 2021; 10:cells10040867. [PMID: 33920284 PMCID: PMC8068966 DOI: 10.3390/cells10040867] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
Telomerase is known to contribute to telomere maintenance and to provide cancer cell immortality. However, numerous reports are showing that the function of the enzyme goes far beyond chromosome ends. The study aimed to explore how telomerase downregulation in MCF7 and MDA-MB-231 breast cancer cells affects their ability to survive. Consequently, sensitivity to drug resistance, proliferation, and adhesion were assessed. The lentiviral-mediated human telomerase reverse transcriptase (hTERT) downregulation efficiency was performed at gene expression and protein level using qPCR and Western blot, respectively. Telomerase activity was evaluated using the Telomeric Repeat Amplification Protocol (TRAP) assay. The study revealed that hTERT downregulation led to an increased sensitivity of breast cancer cells to doxorubicin which was demonstrated in MTT and clonogenic assays. During a long-term doubling time assessment, a decreased population doubling level was observed. Interestingly, it did not dramatically affect cell cycle distribution. hTERT downregulation was accompanied by an alteration in β1-integrin- and by focal adhesion kinase (FAK)-driven pathways together with the reduction of target proteins phosphorylation, i.e., paxillin and c-Src. Additionally, autophagy activation was observed in MDA-MB-231 cells manifested by alternations in Atg5, Beclin 1, LC3II/I ratio, and p62. These results provide new evidence supporting the possible therapeutic potential of telomerase downregulation leading to induction of autophagy and cancer cells elimination.
Collapse
Affiliation(s)
- Aleksandra Romaniuk-Drapała
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355 Poznań, Poland; (A.R.-D.); (E.T.); (N.K.); (D.K.)
| | - Ewa Totoń
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355 Poznań, Poland; (A.R.-D.); (E.T.); (N.K.); (D.K.)
| | - Natalia Konieczna
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355 Poznań, Poland; (A.R.-D.); (E.T.); (N.K.); (D.K.)
| | - Marta Machnik
- Department of Cancer Immunology, Poznan University of Medical Sciences, 60-806 Poznan, Poland;
| | - Wojciech Barczak
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, 61-866 Poznan, Poland;
| | - Dagmar Kowal
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355 Poznań, Poland; (A.R.-D.); (E.T.); (N.K.); (D.K.)
| | - Przemysław Kopczyński
- Centre for Orthodontic Mini-Implants at the Department and Clinic of Maxillofacial Orthopedics and Orthodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland;
| | - Mariusz Kaczmarek
- Department of Immunology, Chair of Clinical Immunology, Poznań University of Medical Sciences, 5D Rokietnicka St., 60-806 Poznań, Poland;
| | - Błażej Rubiś
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355 Poznań, Poland; (A.R.-D.); (E.T.); (N.K.); (D.K.)
- Correspondence: ; Tel.: +48-61-869-14-27
| |
Collapse
|
4
|
Eslami SS, Jafari D, Montazeri H, Sadeghizadeh M, Tarighi P. Combination of Curcumin and Metformin Inhibits Cell Growth and Induces Apoptosis without Affecting the Cell Cycle in LNCaP Prostate Cancer Cell Line. Nutr Cancer 2020; 73:1026-1039. [PMID: 32657143 DOI: 10.1080/01635581.2020.1783327] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Side effects and chemotherapy resistance, demand new therapeutics with minimal side effects. Here, we investigated the combined effect of curcumin and metformin on the LNCaP prostate cancer cell line. LNCaP cells were treated with curcumin, metformin, and their combination at different concentrations. Cell viability was assessed by MTT assay and expression of Bax, Bcl-2, mTOR, hTERT, PUMA, p53 and p21 genes was analyzed by real-time PCR. Apoptosis and cell cycle were assessed by flow cytometry. Our results revealed that the viability of cells treated with curcumin, metformin, and their combination was significantly (P < 0.05) reduced with increasing the concentration and prolonging the treatment time. Meanwhile, the combination showed a synergistic effect within 48 h. In the curcumin treated group, the expression of Bcl-2 and hTERT genes diminished. In the metformin treated group, the expression of Bax and PUMA genes was enhanced while the expression of Bcl-2, hTERT, mTOR, and p53 genes declined. Although all treatments induced apoptosis, the combination of curcumin and metformin showed the maximum level of apoptosis, cytotoxicity, and expression of Bax gene. The combination of curcumin and metformin showed synergistic effects within 48 h. This combination could be a potential therapeutic candidate for prostate cancer to be further investigated.
Collapse
Affiliation(s)
- Seyed Sadegh Eslami
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Davod Jafari
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Montazeri
- School of Pharmacy-International Campus, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Sadeghizadeh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Parastoo Tarighi
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Ayiomamitis GD, Notas G, Vasilakaki T, Tsavari A, Vederaki S, Theodosopoulos T, Kouroumalis E, Zaravinos A. Understanding the Interplay between COX-2 and hTERT in Colorectal Cancer Using a Multi-Omics Analysis. Cancers (Basel) 2019; 11:1536. [PMID: 31614548 PMCID: PMC6827032 DOI: 10.3390/cancers11101536] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/07/2019] [Accepted: 10/08/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Cyclooxygenase 2 (COX-2) is involved in the initial steps of colorectal cancer (CRC) formation, playing a key role in the catalysis of arachidonic acid to prostaglandin E2 (PGE2). The human telomerase reverse transcriptase (hTERT or TERT) also plays an important role in colorectal cancer growth, conferring sustained cell proliferation and survival. Although hTERT induces COX-2 expression in gastric and cervical cancer, their interaction has not been investigated in the context of CRC. METHODS COX-2, PGE2 levels, and telomerase activity were evaluated by immunohistochemistry, ELISA, and TRAP assay in 49 colorectal cancer samples. PTGS1, PTGS2, PTGES3, TERT mRNA, and protein levels were investigated using RNA-seq and antibody-based protein profiling data from the TCGA and HPA projects. A multi-omics comparison was performed between PTGS2 and TERT, using RNAseq, DNA methylation, copy number variations (CNVs), single nucleotide polymorphisms (SNPs), and insertions/deletions (Indels) data. RESULTS COX-2 expression was positive in 40/49 CRCs, bearing cytoplasmic and heterogeneous staining, from moderate to high intensity. COX-2 staining was mainly detected in the stroma of the tumor cells and the adjacent normal tissues. PGE2 expression was lower in CRC compared to the adjacent normal tissue, and inversely correlated to telomerase activity in right colon cancers. COX-1 and COX-2 were anticorrelated with TERT. Isoform structural analysis revealed the most prevalent transcripts driving the differential expression of PTGS1, PTGS2, PTGES3, and TERT in CRC. COX-2 expression was significantly higher among B-Raf proto-oncogene, serine/threonine kinase, mutant (BRAFmut) tumors. Kirsten ras oncogene (KRAS) mutations did not affect COX-2 or TERT expression. The promoter regions of COX-2 and TERT were reversely methylated. CONCLUSIONS Our data support that COX-2 is involved in the early stages of colorectal cancer development, initially affecting the tumor's stromal microenvironment, and, subsequently, the epithelial cells. They also highlight an inverse correlation between COX-2 expression and telomerase activity in CRC, as well as differentially methylated patterns within the promoter regions of COX-2 and TERT.
Collapse
Affiliation(s)
- Georgios D Ayiomamitis
- Laboratory of Gastroenterology Research, University of Crete, School of Medicine, 71013 Heraklion, Greece.
- 1st Department of Surgery, Tzaneio General Hospital, 18536 Piraeus, Greece.
| | - George Notas
- Laboratory of Gastroenterology Research, University of Crete, School of Medicine, 71013 Heraklion, Greece.
- Laboratory of Experimental Endocrinology, University of Crete, School of Medicine, 71013 Heraklion, Greece.
| | - Thivi Vasilakaki
- Department of Pathology, Tzaneio General Hospital, 18536 Piraeus, Greece.
| | - Aikaterini Tsavari
- Department of Pathology, Tzaneio General Hospital, 18536 Piraeus, Greece.
| | - Styliani Vederaki
- 1st Department of Surgery, Tzaneio General Hospital, 18536 Piraeus, Greece.
| | - Theodosis Theodosopoulos
- 2nd Department of Surgery, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece.
| | - Elias Kouroumalis
- Laboratory of Gastroenterology Research, University of Crete, School of Medicine, 71013 Heraklion, Greece.
- Department of Gastroenterology and Hepatology, University Hospital of Heraklion, 71013 Heraklion, Greece.
| | - Apostolos Zaravinos
- Department of Life Sciences European University Cyprus, Nicosia 1516, Cyprus.
| |
Collapse
|
6
|
Barczak W, Sobecka A, Golusinski P, Masternak MM, Rubis B, Suchorska WM, Golusinski W. hTERT gene knockdown enhances response to radio- and chemotherapy in head and neck cancer cell lines through a DNA damage pathway modification. Sci Rep 2018; 8:5949. [PMID: 29654294 PMCID: PMC5899166 DOI: 10.1038/s41598-018-24503-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/04/2018] [Indexed: 12/11/2022] Open
Abstract
The aim of the study was to analyze the effect of hTERT gene knockdown in HNSCC cells by using novel in vitro models of head and neck cancer (HNSCC), as well as improving its personalized therapy. To obtain the most efficient knockdown siRNA, shRNA-bearing lentiviral vectors were used. The efficiency of hTERT silencing was verified with qPCR, Western blot, and immunofluorescence staining. Subsequently, the type of cell death and DNA repair mechanism induction after hTERT knockdown was assessed with the same methods, followed by flow cytometry. The effect of a combined treatment with hTERT gene knockdown on Double-Strand Breaks levels was also evaluated by flow cytometry. Results showed that the designed siRNAs and shRNAs were effective in hTERT knockdown in HNSCC cells. Depending on a cell line, hTERT knockdown led to a cell cycle arrest either in phase G1 or phase S/G2. Induction of apoptosis after hTERT downregulation with siRNA was observed. Additionally, hTERT targeting with lentiviruses, followed by cytostatics administration, led to induction of apoptosis. Interestingly, an increase in Double-Strand Breaks accompanied by activation of the main DNA repair mechanism, NER, was also observed. Altogether, we conclude that hTERT knockdown significantly contributes to the efficacy of HNSCC treatment.
Collapse
Affiliation(s)
- Wojciech Barczak
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, Garbary 15 Str., 61-866, Poznan, Poland. .,Radiobiology Lab, The Greater Poland Cancer Centre, Garbary 15 Str., 61-866, Poznan, Poland.
| | - Agnieszka Sobecka
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, Garbary 15 Str., 61-866, Poznan, Poland.,Radiobiology Lab, The Greater Poland Cancer Centre, Garbary 15 Str., 61-866, Poznan, Poland
| | - Pawel Golusinski
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, Garbary 15 Str., 61-866, Poznan, Poland.,Head and Neck Cancer Biology Lab, Department of Biology and Environmental Studies, Poznan University of Medical Sciences, Poznan, Poland
| | - Michal M Masternak
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, Garbary 15 Str., 61-866, Poznan, Poland.,University of Central Florida, Burnett School of Biomedical Sciences, College of Medicine, FL, 32827, Orlando, USA
| | - Blazej Rubis
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Przybyszewskiego 49 Str., 60-355, Poznan, Poland
| | - Wiktoria M Suchorska
- Radiobiology Lab, The Greater Poland Cancer Centre, Garbary 15 Str., 61-866, Poznan, Poland.,Department of Electroradiology, Poznan University of Medical Sciences, Garbary 15 Str., 61-866, Poznan, Poland
| | - Wojciech Golusinski
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, Garbary 15 Str., 61-866, Poznan, Poland
| |
Collapse
|
7
|
Inhibitor of the human telomerase reverse trancriptase (hTERT) gene promoter induces cell apoptosis via a mitochondrial-dependent pathway. Eur J Med Chem 2018; 145:370-378. [DOI: 10.1016/j.ejmech.2017.12.077] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 12/14/2022]
|
8
|
Abstract
It is well known that a decreased expression or inhibited activity of telomerase in cancer cells is accompanied by an increased sensitivity to some drugs (e.g., doxorubicin, cisplatin, or 5-fluorouracil). However, the mechanism of the resistance resulting from telomerase alteration remains elusive. There are theories claiming that it might be associated with telomere shortening, genome instability, hTERT translocation, mitochondria functioning modulation, or even alterations in ABC family gene expression. However, association of those mechanisms, i.e., drug resistance and telomerase alterations, is not fully understood yet. We review the current theories on the aspect of the role of telomerase in cancer cells resistance to therapy. We believe that revealing/unravelling this correlation might significantly contribute to an increased efficiency of cancer cells elimination, especially the most difficult ones, i.e., drug resistant.
Collapse
|
9
|
Kang HJ, Cui Y, Yin H, Scheid A, Hendricks WPD, Schmidt J, Sekulic A, Kong D, Trent JM, Gokhale V, Mao H, Hurley LH. A Pharmacological Chaperone Molecule Induces Cancer Cell Death by Restoring Tertiary DNA Structures in Mutant hTERT Promoters. J Am Chem Soc 2016; 138:13673-13692. [PMID: 27643954 DOI: 10.1021/jacs.6b07598] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Activation of human telomerase reverse transcriptase (hTERT) is necessary for limitless replication in tumorigenesis. Whereas hTERT is transcriptionally silenced in normal cells, most tumor cells reactivate hTERT expression by alleviating transcriptional repression through diverse genetic and epigenetic mechanisms. Transcription-activating hTERT promoter mutations have been found to occur at high frequencies in multiple cancer types. These mutations have been shown to form new transcription factor binding sites that drive hTERT expression, but this model cannot fully account for differences in wild-type (WT) and mutant promoter activation and has not yet enabled a selective therapeutic strategy. Here, we demonstrate a novel mechanism by which promoter mutations activate hTERT transcription, which also sheds light on a unique therapeutic opportunity. Promoter mutations occur in a core promoter region that forms tertiary structures consisting of a pair of G-quadruplexes involved in transcriptional silencing. We show that promoter mutations exert a detrimental effect on the folding of one of these G-quadruplexes, resulting in a nonfunctional silencer element that alleviates transcriptional repression. We have also identified a small drug-like pharmacological chaperone (pharmacoperone) molecule, GTC365, that acts at an early step in the G-quadruplex folding pathway to redirect mutant promoter G-quadruplex misfolding, partially reinstate the correct folding pathway, and reduce hTERT activity through transcriptional repression. This transcription-mediated repression produces cancer cell death through multiple routes including both induction of apoptosis through inhibition of hTERT's role in regulating apoptosis-related proteins and induction of senescence by decreasing telomerase activity and telomere length. We demonstrate the selective therapeutic potential of this strategy in melanoma cells that overexpress hTERT.
Collapse
Affiliation(s)
- Hyun-Jin Kang
- University of Arizona , College of Pharmacy, 1703 East Mabel Street, Tucson, Arizona 85721, United States
| | - Yunxi Cui
- Department of Chemistry and Biochemistry and School of Biomedical Sciences, Kent State University , Kent, Ohio 44242, United States
| | - Holly Yin
- Translational Genomics Research Institute , 445 North Fifth Street, Phoenix, Arizona 85004, United States
| | - Amy Scheid
- College of Science, University of Arizona , 1040 East Fourth Street, Tucson, Arizona 85721, United States
| | - William P D Hendricks
- Translational Genomics Research Institute , 445 North Fifth Street, Phoenix, Arizona 85004, United States
| | - Jessica Schmidt
- Department of Dermatology, Mayo Clinic , 13400 East Shea Boulevard, Scottsdale, Arizona 85259, United States
| | - Aleksandar Sekulic
- Department of Dermatology, Mayo Clinic , 13400 East Shea Boulevard, Scottsdale, Arizona 85259, United States
| | - Deming Kong
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University , Tianjin 300071, People's Republic of China
| | - Jeffrey M Trent
- Translational Genomics Research Institute , 445 North Fifth Street, Phoenix, Arizona 85004, United States
| | - Vijay Gokhale
- BIO5 Institute , 1657 East Helen Street, Tucson, Arizona 85721, United States
| | - Hanbin Mao
- Department of Chemistry and Biochemistry and School of Biomedical Sciences, Kent State University , Kent, Ohio 44242, United States
| | - Laurence H Hurley
- University of Arizona , College of Pharmacy, 1703 East Mabel Street, Tucson, Arizona 85721, United States.,BIO5 Institute , 1657 East Helen Street, Tucson, Arizona 85721, United States.,Arizona Cancer Center , 1515 North Campbell Avenue, Tucson, Arizona 85724, United States
| |
Collapse
|
10
|
Abstract
The outcomes for treatment of pancreatic cancer have not improved dramatically in many decades. However, the recent promising results with combination chemotherapy regimens for metastatic disease increase optimism for future treatments. With greater control of overt or occult metastatic disease, there will likely be an expanding role for local treatment modalities, especially given that nearly a third of pancreatic cancer patients have locally destructive disease without distant metastatic disease at the time of death. Technical advances have allowed for the safe delivery of dose-escalated radiation therapy, which can then be combined with chemotherapy, targeted agents, immunotherapy, and nanoparticulate drug delivery techniques to produce novel and improved synergistic effects. Here we discuss recent advances and future directions for multimodality therapy in pancreatic cancer.
Collapse
|
11
|
Kim J, Kim J, Jeong C, Kim WJ. Synergistic nanomedicine by combined gene and photothermal therapy. Adv Drug Deliv Rev 2016; 98:99-112. [PMID: 26748259 DOI: 10.1016/j.addr.2015.12.018] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 12/20/2015] [Accepted: 12/22/2015] [Indexed: 12/19/2022]
Abstract
To date, various nanomaterials with the ability for gene delivery or photothermal effect have been developed in the field of biomedicine. The therapeutic potential of these nanomaterials has raised considerable interests in their use in potential next-generation strategies for effective anticancer therapy. In particular, the advancement of novel nanomedicines utilizing both therapeutic strategies of gene delivery and photothermal effect has generated much optimism regarding the imminent development of effective and successful cancer treatments. In this review, we discuss current research progress with regard to combined gene and photothermal therapy. This review focuses on synergistic therapeutic systems combining gene regulation and photothermal ablation as well as logically designed nano-carriers aimed at enhancing the delivery efficiency of therapeutic genes using the photothermal effect. The examples detailed in this review provide insight to further our understanding of combinatorial gene and photothermal therapy, thus paving the way for the design of promising nanomedicines.
Collapse
|
12
|
New surprises from an old favourite: The emergence of telomerase as a key player in the regulation of cancer stemness. Biochimie 2016; 121:170-8. [DOI: 10.1016/j.biochi.2015.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 12/09/2015] [Indexed: 12/30/2022]
|
13
|
Wang XJ, Zheng YL, Fan QX, Zhang XD. RNAi-induced K-Ras gene silencing suppresses growth of EC9706 cells and enhances chemotherapy sensitivity of esophageal cancer. Asian Pac J Cancer Prev 2014; 13:6517-21. [PMID: 23464485 DOI: 10.7314/apjcp.2012.13.12.6517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
To analyze the growth, proliferation, apoptosis, invasiveness and chemotherapy sensitivity of EC9706 cells after K-Ras gene silencing, an expression carrier pSilencer-siK-Ras was constructed, and the EC9706 cell line was transfected using a liposome technique. Six groups were established: Control, siRNA NC (transfected with empty vector pSilencer2.1); Ras siRNA (transfected with pSilencer-siK-Ras2); Paclitaxel; Paclitaxel + siRNA NC; and Ras siRNA +Paclitaxel. After the treatment, RT-PCR, Western blotting, MTT assay, flow cytometry and the Transwell technique were used to assess expression of K-Ras mRNA and protein in EC9706 cells, as well as cell growth, proliferation, apoptosis and invasiveness. The effect of Paclitaxel chemotherapy was also tested. pSilencer-siK-Ras2 effectively down-regulated expression of K-Ras mRNA and protein in EC9706 cells, growth being significantly inhibited. Flow cytometry indicated obvious apoptosis of cells in the experimental group, with arrest in the G1 phase; cell migration ability was also reduced. After pSilencer-siK-Ras2 transfection or the addition of Paclitaxel, EC9706 cells were suppressed to different extents; the suppressive effect was strengthened by combined treatment. The results suggested that RNAi-induced K-Ras gene silencing could enhance chemotherapy sensitivity of esophageal cancer.
Collapse
Affiliation(s)
- Xin-Jie Wang
- Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | | | | | | |
Collapse
|
14
|
Liu SX, Xia ZS, Zhong YQ. Gene therapy in pancreatic cancer. World J Gastroenterol 2014; 20:13343-68. [PMID: 25309069 PMCID: PMC4188890 DOI: 10.3748/wjg.v20.i37.13343] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/29/2013] [Accepted: 06/12/2014] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) is a highly lethal disease and notoriously difficult to treat. Only a small proportion of PC patients are eligible for surgical resection, whilst conventional chemoradiotherapy only has a modest effect with substantial toxicity. Gene therapy has become a new widely investigated therapeutic approach for PC. This article reviews the basic rationale, gene delivery methods, therapeutic targets and developments of laboratory research and clinical trials in gene therapy of PC by searching the literature published in English using the PubMed database and analyzing clinical trials registered on the Gene Therapy Clinical Trials Worldwide website (http://www. wiley.co.uk/genmed/ clinical). Viral vectors are main gene delivery tools in gene therapy of cancer, and especially, oncolytic virus shows brighter prospect due to its tumor-targeting property. Efficient therapeutic targets for gene therapy include tumor suppressor gene p53, mutant oncogene K-ras, anti-angiogenesis gene VEGFR, suicide gene HSK-TK, cytosine deaminase and cytochrome p450, multiple cytokine genes and so on. Combining different targets or combination strategies with traditional chemoradiotherapy may be a more effective approach to improve the efficacy of cancer gene therapy. Cancer gene therapy is not yet applied in clinical practice, but basic and clinical studies have demonstrated its safety and clinical benefits. Gene therapy will be a new and promising field for the treatment of PC.
Collapse
|
15
|
Videira M, Arranja A, Rafael D, Gaspar R. Preclinical development of siRNA therapeutics: towards the match between fundamental science and engineered systems. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 10:689-702. [PMID: 24333589 DOI: 10.1016/j.nano.2013.11.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 11/21/2013] [Accepted: 11/24/2013] [Indexed: 12/14/2022]
Abstract
UNLABELLED The evolution of synthetic RNAi faces the paradox of interfering with the human biological environment. Due to the fact that all cell physiological processes can be target candidates, silencing a precise biological pathway could be challenging if target selectivity is not properly addressed. Molecular biology has provided scientific tools to suppress some of the most critical issues in gene therapy, while setting the standards for siRNA clinical application. However, the protein down-regulation through the mRNA silencing is intimately related to the sequence-specific siRNA ability to interact accurately with the potential target. Moreover, its in vivo biological fate is highly dependent on the successful design of a vehicle able to overcome both extracellular and intracellular barriers. Anticipating a great deal of innovation, crucial to meet the challenges involved in the RNAi therapeutics, the present review intends to build up a synopsis on the delivery strategies currently developed. FROM THE CLINICAL EDITOR This review discusses recent progress and pertinent limiting factors related to the use of siRNA-s as efficient protein-specific "silencing" agents, focusing on targeted delivery not only to cells of interest, but to the proper intracellular destination.
Collapse
Affiliation(s)
- M Videira
- iMed.UL - Research Institute for Medicines and Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal.
| | - A Arranja
- iMed.UL - Research Institute for Medicines and Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - D Rafael
- iMed.UL - Research Institute for Medicines and Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - R Gaspar
- iMed.UL - Research Institute for Medicines and Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal
| |
Collapse
|
16
|
Wu XQ, Huang C, He X, Tian YY, Zhou DX, He Y, Liu XH, Li J. Feedback regulation of telomerase reverse transcriptase: new insight into the evolving field of telomerase in cancer. Cell Signal 2013; 25:2462-8. [DOI: 10.1016/j.cellsig.2013.08.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 08/23/2013] [Indexed: 01/07/2023]
|
17
|
Aravindan S, Delma CR, Thirugnanasambandan SS, Herman TS, Aravindan N. Anti-pancreatic cancer deliverables from sea: first-hand evidence on the efficacy, molecular targets and mode of action for multifarious polyphenols from five different brown-algae. PLoS One 2013; 8:e61977. [PMID: 23613993 PMCID: PMC3628576 DOI: 10.1371/journal.pone.0061977] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 03/15/2013] [Indexed: 12/26/2022] Open
Abstract
Pancreatic cancer (PC) remains the fourth leading cause of cancer death with an unacceptable survival that has remained relatively unchanged over the past 25 years. The presence of occult or clinical metastases at the time of diagnosis together with the lack of effective chemotherapies pose a dire need for designing new and targeted therapeutic deliverables that favors the clinical outcome. Herein, we investigated the anti-tumorigenic potential of polyphenols from five different brown-algae in human PC cells (MiaPaCa-2, Panc-1, BXPC-3 and Panc-3.27). Total anti-oxidant capacity (TAC) analysis on stepwise polyphenol separations with increasing polarity (Hexane-DCM-EA-methanol) identified high levels of TAC in DCM and EA extractions across all seaweeds assessed. All DCM and EA separated polyphenols induced a dose-dependent and sustained (time-independent) inhibition of cell proliferation and viability. Further, these polyphenols profoundly enhanced DNA damage (acridine orange/Ethidium bromide staining and DNA fragmentation) in all the cell lines investigated. More importantly, luciferase reporter assay revealed a significant inhibition of NFκB transcription in cells treated with polyphenols. Interestingly, QPCR analysis identified a differential yet definite regulation of pro-tumorigenic EGFR, VEGFA, AKT, hTERT, kRas, Bcl2, FGFα and PDGFα transcription in cells treated with DCM and EA polyphenols. Immunoblotting validates the inhibitory potential of seaweed polyphenols in EGFR phosphorylation, kRas, AurKβ and Stat3. Together, these data suggest that intermediate polarity based fractions of seaweed polyphenols may significantly potentiate tumor cell killing and may serve as potential drug deliverable for PC cure. More Studies dissecting out the active constituents in potent fractions, mechanisms of action and synergism, if any, are warranted and are currently in process.
Collapse
Affiliation(s)
- Sheeja Aravindan
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Department of Marine Sciences, Center of Advanced Study in Marine Biology, Annamalai University, Parangipettai, India
| | - Caroline R. Delma
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Department of Marine Sciences, Center of Advanced Study in Marine Biology, Annamalai University, Parangipettai, India
| | | | - Terence S. Herman
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Natarajan Aravindan
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| |
Collapse
|
18
|
Digiusto DL, Kiem HP. Current translational and clinical practices in hematopoietic cell and gene therapy. Cytotherapy 2013; 14:775-90. [PMID: 22799276 DOI: 10.3109/14653249.2012.694420] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Clinical trials over the last 15 years have demonstrated that cell and gene therapies for cancer, monogenic and infectious disease are feasible and can lead to long-term benefit for patients. However, these trials have been limited to proof-of-principle and were conducted on modest numbers of patients or over long periods of time. In order for these studies to move towards standard practice and commercialization, scalable technologies for the isolation, ex vivo manipulation and delivery of these cells to patients must be developed. Additionally, regulatory strategies and clinical protocols for the collection, creation and delivery of cell products must be generated. In this article we review recent progress in hematopoietic cell and gene therapy, describe some of the current issues facing the field and discuss clinical, technical and regulatory approaches used to navigate the road to product development.
Collapse
Affiliation(s)
- David L Digiusto
- Department of Virology and Laboratory for Cellular Medicine, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA.
| | | |
Collapse
|
19
|
hTERT: Another brick in the wall of cancer cells. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2013; 752:119-128. [DOI: 10.1016/j.mrrev.2012.12.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 11/28/2012] [Accepted: 12/10/2012] [Indexed: 01/06/2023]
|
20
|
Giunco S, Dolcetti R, Keppel S, Celeghin A, Indraccolo S, Dal Col J, Mastorci K, De Rossi A. hTERT inhibition triggers Epstein-Barr virus lytic cycle and apoptosis in immortalized and transformed B cells: a basis for new therapies. Clin Cancer Res 2013; 19:2036-47. [PMID: 23444223 DOI: 10.1158/1078-0432.ccr-12-2537] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Induction of viral lytic cycle, which induces death of host cells, may constitute a useful adjunct to current therapeutic regimens for Epstein-Barr virus (EBV)-driven malignancies. Human telomerase reverse transcriptase (hTERT), essential for the oncogenic process, may modulate the switch from latent to lytic infection. The possible therapeutic role of hTERT inhibition combined with antiviral drugs was investigated. EXPERIMENTAL DESIGN EBV-negative BL41 and convertant EBV-positive BL41/B95.8 Burkitt's lymphoma cell lines and lymphoblastoid cell lines (LCL) were infected with retroviral vector encoding short hairpin RNA (shRNA) anti-hTERT and cultured with or without the prodrug ganciclovir. The effects on EBV lytic replication, cell proliferation, and apoptosis were characterized. RESULTS hTERT silencing by shRNA induced the expression of BZLF1, EA-D, and gp350 EBV lytic proteins and triggered a complete lytic cycle. This effect was associated with downregulation of BATF, a negative regulator of BZLF1 transcription. hTERT silencing also resulted in antiproliferative and proapoptotic effects. In particular, hTERT inhibition induced an accumulation of cells in the S-phase, an effect likely due to the dephosphorylation of 4E-BP1, an AKT1-dependent substrate, which results in a decreased availability of proteins needed for cell-cycle progression. Besides inducing cell death through activation of complete EBV lytic replication, hTERT inhibition triggered AKT1/FOXO3/NOXA-dependent apoptosis in EBV-positive and -negative Burkitt's lymphoma cells. Finally, ganciclovir enhanced the apoptotic effect induced by hTERT inhibition in EBV-positive Burkitt's lymphomas and LCLs. CONCLUSIONS These results suggest that combination of antiviral drugs with strategies able to inhibit hTERT expression may result in therapeutically relevant effects in patients with EBV-related malignancies.
Collapse
Affiliation(s)
- Silvia Giunco
- Department of Surgery, Oncology and Gastroenterology, Section of Oncology and Immunology, University of Padova, Italy
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Liang Y, Li X, Lin R, Zhang X, Wang H, Tan N, Li K, Tang X, Zhou K, Li T. Combinatorial gene targeting hTERT and BI-1 in CNE-2 nasopharyngeal carcinoma cell line. Biomed Rep 2012; 1:285-293. [PMID: 24648937 DOI: 10.3892/br.2012.39] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 10/16/2012] [Indexed: 01/22/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a common malignant tumor. In recent studies, we demonstrated that overexpression of the Bax inhibitor-1 (BI-1) induces cell transformation in NIH3T3 cells and that knockdown of BI-1 and human telomerase reverse transcriptase (hTERT) gene expression suppresses NPC cell proliferation and induces apoptosis. To evaluate the combination anti-tumor effects of siRNAs against hTERT and BI-1 in the CNE-2 NPC cell line, combined and separate short-hairpin (sh)RNA plasmids targeting hTERT and BI-1, respectively, were constructed. hTERT and BI-1 mRNA and protein levels were examined by real-time polymerase chain reaction (PCR) and western blot analysis. Cell proliferation, colony formation and migration ability were measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), soft agar and wound healing assay. Cell apoptosis was observed by flow cytometry, Hoechst 33258 staining and caspase-3 activity. hTERT, BI-1 and combined shRNA plasmids were injected into xenograft NPC tumor tissues, and expression of hTERT and BI-1 was detected by real-time PCR and immunohistochemistry. Tumor growth was measured by tumor volume and apoptosis in vivo was confirmed by TdT-mediated dUTP nick end-labeling (TUNEL). Our results showed that combined shRNA specific for hTERT and BI-1 markedly suppressed hTERT and BI-1 gene expression in vitro and in vivo. In addition, CNE-2 cell proliferation was inhibited in vitro as well as in vivo. Following the knockdown of the two gene expressions, CNE-2 exhibited a decrease in colony formation and migration ability and an increase in the apoptotic rate compared to the control groups. Our in vitro and in vivo study showed that the combinative silencing of the two genes enhanced the therapeutic effect compared to the silencing of each individual shRNA. These data suggested that combinatorial gene therapy targeting hTERT and BI-1 may be beneficial as a tumor therapy strategy against human NPCs.
Collapse
Affiliation(s)
- Yan Liang
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Guangdong Medical College, Dongguan, Guangdong 523808, P.R. China
| | - Xiangyong Li
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Guangdong Medical College, Dongguan, Guangdong 523808, P.R. China
| | - Rongwen Lin
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Guangdong Medical College, Dongguan, Guangdong 523808, P.R. China
| | - Xin Zhang
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Guangdong Medical College, Dongguan, Guangdong 523808, P.R. China
| | - Huimin Wang
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Guangdong Medical College, Dongguan, Guangdong 523808, P.R. China
| | - Ning Tan
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Guangdong Medical College, Dongguan, Guangdong 523808, P.R. China
| | - Keshen Li
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Guangdong Medical College, Dongguan, Guangdong 523808, P.R. China
| | - Xudong Tang
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Guangdong Medical College, Dongguan, Guangdong 523808, P.R. China
| | - Keyuan Zhou
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Guangdong Medical College, Dongguan, Guangdong 523808, P.R. China
| | - Tao Li
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Guangdong Medical College, Dongguan, Guangdong 523808, P.R. China
| |
Collapse
|
22
|
Li CD, Liu CL, Xia YY, Ge M, Chen DJ. SiRNA-mediated RPL31 gene silencing inhibits the growth of xenograft tumors derived from human pancreatic cancer BxPC-3 cells in nude mice. Shijie Huaren Xiaohua Zazhi 2012; 20:2782-2788. [DOI: 10.11569/wcjd.v20.i29.2782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of siRNA-mediated RPL31 gene silencing on the growth of xenograft tumors derived from human pancreatic cancer cell line BxPC-3 in nude mice, and to explore the potential role of the RPL31 gene in pancreatic cancer.
METHODS: The siRNA sequence targeting to human RPL31 gene was designed. Human pancreatic cancer BxPC-3 cells were subcutaneously inoculated into Balb/c nude mice to develop a transplantation tumor model of human pancreatic cancer. According to the tumor volume, nude mice were randomly divided into three groups: vehicle control group, negative control group and RPL31-siRNA injection group. Mice of the RPL31-siRNA injection group were intratumorally injected with RPL31-siRNA using RNAi-Mate. Tumor volumes were calculated daily. On the 16th day after the first intratumoral injection, all the mice were sacrificed and the tumors were taken out to undergo real-time quantitative PCR (qRT-PCR) and Western blot analyses to detect RPL31 expression. The expression of Ki-67 and CD31 proteins in xenograft tissue was detected by immunohistochemistry. Cell apoptosis in xenograft tumors was detected by TUNEL assay.
RESULTS: Compared with the vehicle control group and negative control group, mice in the RPL31-siRNA injection group exhibited slower tumor growth, significantly smaller tumor volume (P < 0.05), and lower RPL31 expression level (P < 0.05). Immunohistochemistry results showed that the proportions of Ki-67- and CD31-positive cells decreased in xenograft tissue injected with RPL31-siRNA (55.78% ± 4.63%, 51.37% ± 5.05% vs 11.08% ± 1.31%; 56.53% ± 6.03%, 44.84% ± 5.24% vs9.67% ± 1.39%). TUNEL results showed that apoptosis increased in xenograft tissue injected with RPL31-siRNA (2.92% ± 0.54%, 3.85% ± 0.87% vs 39.58% ± 4.02%).
CONCLUSION: Silencing of RPL31 expression could inhibit the growth of subcutaneous xenograft tumors derived from BxPC-3 cell line in nude mice, down-regulate the expression of Ki-67 and CD31, and induce cell apoptosis in the transplantation tumors. The RPL31 gene is a potential target for gene therapy of pancreatic cancer.
Collapse
|
23
|
ZHONG YINGQIANG, XIA ZHONGSHENG, LIU JUAN, LIN YING, ZAN HUI. The effects of cyclooxygenase-2 gene silencing by siRNA on cell proliferation, cell apoptosis, cell cycle and tumorigenicity of Capan-2 human pancreatic cancer cells. Oncol Rep 2012; 27:1003-1010. [PMID: 22200969 PMCID: PMC3583541 DOI: 10.3892/or.2011.1595] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Accepted: 11/25/2011] [Indexed: 12/20/2022] Open
Abstract
The prognosis of pancreatic cancer is still very poor. No specific effective gene therapy for pancreatic cancer has been found. As a key enzyme of the metabolic process of arachidonic acid, cyclooxygenase-2 (COX-2) has been found to be closely related to the tumorigenesis of epithelial cancers. However, the antitumor effect of small interfering RNA (siRNA) targeting COX-2 in pancreatic cancer has not yet been verified. Therefore, the aim of this study was to investigate the effects of COX-2 gene silencing by siRNA on cell proliferation, cell apoptosis, cell cycle and tumorigenicity of pancreatic cancer cells. COX-2 mRNA was detected by RT-PCR and real-time PCR. COX-2 protein was detected by Western blotting. The cell proliferation was measured by cell counting using microscopy. The cell apoptosis and cell cycle were measured by flow cytometry. The tumorigenicity of Capan-2 pancreatic cancer cells transfected with COX-2 siRNA was evaluated using a nude mouse xenograft model. The expression of COX-2 mRNA as well as COX-2 protein were downregulated after COX-2 siRNA transfection. COX-2 siRNA could inhibit the growth of Capan-2 cells significantly by decreasing the cell proliferation, increasing cell apoptosis and regulating cell cycle as well. In vivo experiments demonstrated that the mean volume and weight of subcutaneous xenografts in nude mice derived from Capan-2 cells transfected with COX-2 siRNA were significantly decreased. COX-2 siRNA could inhibit the growth of Capan-2 pancreatic cancer cells and also decrease the tumorigenicity of Capan-2 cells, implicating a new potential therapeutic target in pancreatic cancer.
Collapse
Affiliation(s)
- YINGQIANG ZHONG
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120
| | - ZHONGSHENG XIA
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120
| | - JUAN LIU
- Department of Gastroenterology, The Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P.R. China
| | - YING LIN
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120
| | - HUI ZAN
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120
| |
Collapse
|
24
|
Guo J, Bourre L, Soden DM, O'Sullivan GC, O'Driscoll C. Can non-viral technologies knockdown the barriers to siRNA delivery and achieve the next generation of cancer therapeutics? Biotechnol Adv 2011; 29:402-17. [DOI: 10.1016/j.biotechadv.2011.03.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 03/08/2011] [Accepted: 03/13/2011] [Indexed: 12/22/2022]
|
25
|
Liu X, Huang H, Wang J, Wang C, Wang M, Zhang B, Pan C. Dendrimers-delivered short hairpin RNA targeting hTERT inhibits oral cancer cell growth in vitro and in vivo. Biochem Pharmacol 2011; 82:17-23. [DOI: 10.1016/j.bcp.2011.03.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Revised: 03/16/2011] [Accepted: 03/17/2011] [Indexed: 10/18/2022]
|