1
|
Ostovan VR, Abdolahpoor Y, Rostami B, Esmaili Z, Moosavi M. Stereological insights into the protective effects of agmatine on hippocampal damage induced by aluminum nanoparticles. Biomed Pharmacother 2025; 188:118163. [PMID: 40382827 DOI: 10.1016/j.biopha.2025.118163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 05/03/2025] [Accepted: 05/09/2025] [Indexed: 05/20/2025] Open
Abstract
BACKGROUND Aluminum (Al) exposure has been implicated in neurodegenerative disorders, particularly Alzheimer's disease (AD). Due to their small size and increased bioavailability, Al oxide nanoparticles (Al-NP) exhibit greater neurotoxicity than bulk Al, leading to hippocampal damage, neuronal loss, and cognitive decline. This study investigates whether agmatine, a polyamine with neuroprotective properties, mitigates Al-NP-induced memory impairment and hippocampal neurodegeneration. METHODS Male Swiss mice (SWR/J) were randomly assigned to four groups: Control, Al-NP (10 mg/kg, oral), Al-NP + Agmatine (5 mg/kg or 10 mg/kg, intraperitoneal). Cognitive function was assessed using the Novel Object Recognition (NOR) test. Stereological analysis quantified hippocampal volume, as well as the volume and cell number of the CA1 and dentate gyrus (DG) sub-regions. Apoptosis was evaluated via cleaved caspase-3, Bax, and Bcl-2 expression using western blot analysis. RESULTS Al-NP exposure significantly impaired memory performance, reduced hippocampal volume, and induced atrophy and neuronal loss in CA1 and DG. Molecular analysis revealed elevated cleaved caspase-3 expression, increased Bax, decreased Bcl-2, and an elevated Bax/Bcl-2 ratio, indicating activation of intrinsic apoptosis. Agmatine (10 mg/kg) effectively restored memory function, preserved hippocampal structure, and normalized apoptotic markers, suggesting its neuroprotective role. CONCLUSION Agmatine exerts potent neuroprotective effects against Al-NP-induced hippocampal toxicity by mitigating memory deficits, preventing neuronal loss, and suppressing apoptosis through downregulation of cleaved caspase-3 and modulation of Bax/Bcl-2 signaling. These structural and molecular changes may underlie its cognitive benefits. Given the role of hippocampal atrophy in AD, agmatine may be a promising candidate for preventing Al-related neurodegeneration and AD progression.
Collapse
Affiliation(s)
- Vahid Reza Ostovan
- Clinical Neurology Research Center and Department of Neurology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yosra Abdolahpoor
- Clinical Neurology Research Center and Department of Neurology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahar Rostami
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Esmaili
- Shiraz Neuroscience Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Moosavi
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Salinas P, Escobar D. Stereological and morphometric insights into epididymal development in domestic cats (Felis silvestris catus) from 6 to 48 months. Res Vet Sci 2025; 191:105690. [PMID: 40334340 DOI: 10.1016/j.rvsc.2025.105690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 04/13/2025] [Accepted: 05/04/2025] [Indexed: 05/09/2025]
Abstract
This study characterizes age-related morphometric and morphological changes in the epididymis of domestic cats (Felis silvestris catus) from puberty to adulthood (6 to 48 months), emphasizing its essential role in sperm maturation and storage-key processes for male fertility. A total of 42 epididymides were analyzed using histological staining (hematoxylin-eosin) and stereological quantification through the STEPanizer software. Morphometric analyses revealed an age-dependent increase in the diameter of the epididymal duct and epithelial height in the caput, whereas the cauda exhibited a progressive reduction in epithelial height, possibly reflecting adaptations in sperm storage capacity during sexual maturation. Morphological observations showed the presence of intraepithelial cysts in cats aged 24 to 48 months, along with the consistent detection of spermatozoa in all regions and age groups. Stereological findings indicated an increased volumetric density (%VV) of the ductal epithelium, particularly in the caput between 6 and 12 months of age, supporting the influence of androgenic activity on regional epididymal maturation. These changes suggest dynamic, age-related structural remodeling of the epididymal parenchyma, especially in epithelial and luminal components. While this cross-sectional study-conducted during the southern hemisphere spring-provides valuable insights into epididymal development, its design limits the establishment of causal relationships between age and histological changes. Future longitudinal studies examining hormonal modulation of epididymal maturation in domestic cats are encouraged. Overall, these findings contribute foundational knowledge of feline reproductive anatomy and underscore the importance of the epididymis as a hormonally responsive organ central to male fertility.
Collapse
Affiliation(s)
- P Salinas
- Laboratory of Animal & Experimental Morphology, Institute of Biology, Faculty of Sciences, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
| | - D Escobar
- Laboratory of Animal & Experimental Morphology, Institute of Biology, Faculty of Sciences, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| |
Collapse
|
3
|
Gazzard SE, Cullen‐McEwen LA, Nikulina M, Clever AB, Gardiner BS, Smith DW, Lee C, Nyengaard JR, Evans RG, Bertram JF. Alterations to peritubular capillary structure in a rat model of kidney interstitial fibrosis: Implications for oxygen diffusion. Anat Rec (Hoboken) 2025; 308:1492-1503. [PMID: 39238265 PMCID: PMC11967517 DOI: 10.1002/ar.25576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/19/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
Fibrosis and loss of functional capillary surface area may contribute to renal tissue hypoxia in a range of kidney diseases. However, there is limited quantitative information on the impact of kidney disease on the barriers to oxygen diffusion from cortical peritubular capillaries (PTCs) to kidney epithelial tubules. Here, we used stereological methods to quantify changes in total cortical PTC length and surface area, PTC length and surface densities, and diffusion distances between PTCs and kidney tubules in adenine-induced kidney injury. After 7 days of oral gavage of adenine (100 mg), plasma creatinine was 3.5-fold greater than in vehicle-treated rats, while total kidney weight was 83% greater. The total length of PTCs was similar in adenine-treated (1.47 ± 0.23 km (mean ± standard deviation)) to vehicle-treated (1.24 ± 0.24 km) rats, as was the surface density of PTCs (0.025 ± 0.002 vs. 0.024 ± 0.004 μm2/μm3). The total surface area of PTCs was 69% greater in adenine-treated than vehicle-treated rats. However, the length density of PTCs was 28% less in adenine-treated than vehicle-treated rats. Diffusion distances, from PTCs to the basal membrane of the nearest renal tubule (108%), and to the mid-point of the cytoplasmic height of the nearest tubular epithelial cell (57%), were markedly increased. These findings indicate that, in adenine-induced kidney injury, expansion of the renal cortical interstitium increases the distance required for diffusion of oxygen from PTCs to tubules, rendering the kidney cortex susceptible to hypoxia.
Collapse
Affiliation(s)
- Sarah E. Gazzard
- Department of Anatomy and Developmental BiologyBiomedicine Discovery Institute, Monash UniversityClaytonVictoriaAustralia
| | - Luise A. Cullen‐McEwen
- Department of Anatomy and Developmental BiologyBiomedicine Discovery Institute, Monash UniversityClaytonVictoriaAustralia
| | - Marina Nikulina
- Department of PhysiologyBiomedicine Discovery Institute, Monash UniversityClaytonVictoriaAustralia
| | - Arnold B. Clever
- Department of PhysiologyBiomedicine Discovery Institute, Monash UniversityClaytonVictoriaAustralia
| | - Bruce S. Gardiner
- School of Mathematics, Statistics, Chemistry and PhysicsMurdoch UniversityPerthWestern AustraliaAustralia
| | - David W. Smith
- Faculty of Engineering and Mathematical SciencesThe University of Western AustraliaPerthWestern AustraliaAustralia
| | - Chang‐Joon Lee
- Auckland Bioengineering Institute, The University of AucklandAucklandNew Zealand
| | - Jens R. Nyengaard
- Core Center for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Aarhus University; and Department of PathologyAarhus University HospitalAarhusDenmark
| | - Roger G. Evans
- Department of PhysiologyBiomedicine Discovery Institute, Monash UniversityClaytonVictoriaAustralia
- Pre‐Clinical Critical Care UnitFlorey Institute of Neuroscience and Mental Health, University of MelbourneMelbourneVictoriaAustralia
| | - John F. Bertram
- Department of Anatomy and Developmental BiologyBiomedicine Discovery Institute, Monash UniversityClaytonVictoriaAustralia
| |
Collapse
|
4
|
Razmi A, Seydi E, Ashtari B, Neshasteh-Riz A, Naserzadeh P. New mechanistic approach of TiCN film-coated NiTi substrate toxicity: impairment in mitochondrial electron transfer in diabetic rat tooth gum cells. Toxicol Mech Methods 2025:1-11. [PMID: 40079307 DOI: 10.1080/15376516.2025.2479000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 03/15/2025]
Abstract
In recent years, researchers have focused on using new materials for screws in bone jaw tissue replacement. However, concerns regarding the cytotoxicity and biocompatibility of these materials for cells remain a subject of ongoing discussion. In this study, a novel implant for bone jaw tissue regeneration was fabricated by depositing the titanium carbo-nitride (TiCN) film on NiTi shape memory alloy substrate using the Cathodic Arc Physical Vapor Deposition (CAPVD) technique. Our study emphasized positive cellular responses of TiCN-coated NiTi substrate on diabetic rat tooth gum cells for 1, 15, and 30 days. Initially, the evaluation focused on the characterization and distribution of NiTi alloy in tissues. Then, the levels of factors such as components of White Blood Cells (WBC), ATP, oxidative stress parameters, cytochrome c release and damage to the lysosomal membrane were evaluated in all groups. The results indicated that in the group of diabetic rats with TiCN-coated NiTi substrate, the level of oxidative stress parameters decreased. In addition, the cell viability, glutathione (GSH) intracellular and ATP increased and the rate of cytochrome c release, and damage to the lysosome membrane decreased. It can be concluded that the TiCN-coated NiTi screw is a promising material for bone jaw tissue replacement in diabetic patients due to its low cytotoxicity.
Collapse
Affiliation(s)
- Abbas Razmi
- Department of Engineering, Mechanical Engineering, Construction and Manufacturing Division, Ataturk University, Erzurum, Türkiye
| | - Enayatollah Seydi
- Department of Occupational Health and Safety Engineering, School of Health, Alborz University of Medical Sciences, Karaj, Iran
- Research Center for Health, Safety and Environment, Alborz University of Medical Sciences, Karaj, Iran
| | - Behnaz Ashtari
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Neshasteh-Riz
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Parvaneh Naserzadeh
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Campbell DJ, Francis VCM, Young GR, Woodford NWF. Investigation of Myocardial Substrate for Sudden Arrhythmic Death in Coronary Artery Disease Without Acute Coronary Thrombosis or Myocardial Infarction. J Am Heart Assoc 2025; 14:e039624. [PMID: 40194965 DOI: 10.1161/jaha.124.039624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/12/2025] [Indexed: 04/09/2025]
Abstract
BACKGROUND This cohort study aimed to evaluate the potential myocardial arrhythmic substrate in people with coronary artery disease who died from sudden arrhythmic death (SAD) without acute coronary thrombosis or myocardial infarction. METHODS AND RESULTS We performed histological analysis of the left ventricular free wall obtained at autopsy from decedents with ≥1 coronary artery and ≥75% area stenosis who died suddenly from either noncardiac causes (25 men, 23 women) or SAD (25 men, 25 women), matched for age and sex. Decedents with acute coronary thrombosis, myocardial infarction, or other myocardial abnormality were excluded. Decedents with either noncardiac death or SAD had similar height, weight, and heart weight. Decedents with SAD had higher cumulative area stenosis of coronary arteries (mean, 162% versus 134%; mean difference, 29% [95% CI, 1%-56%], P=0.042) and a higher proportion of decedents with SAD had diabetes (mean, 10% versus 0%; mean difference, 10% [95% CI, 2%-18%], P=0.025) and chronic, nonocclusive, organized coronary artery thrombus (mean, 16% versus 0%; mean difference, 16% [95% CI, 6%-26%], P=0.0040). Moreover, decedents with SAD had lower cardiomyocyte width (mean, 18.6 μm versus 19.6 μm; mean difference, 1.0 μm [95% CI, 0.2-1.8], P=0.014) and higher capillary length density (mean, 3618 mm/mm3 versus 3164 mm/mm3; mean difference, 453 mm/mm3 [95% CI, 210-697], P=0.0003) than decedents with noncardiac death. CONCLUSIONS SAD in people with coronary artery disease without acute coronary thrombosis or myocardial infarction was associated with greater coronary artery plaque burden and cardiomyocyte atrophy that may have contributed to myocardial substrate for arrhythmia.
Collapse
Affiliation(s)
- Duncan J Campbell
- St. Vincent's Institute of Medical Research Fitzroy Victoria Australia
- University of Melbourne Parkville Victoria Australia
- St. Vincent's Hospital Melbourne Victoria Australia
| | - Victoria C M Francis
- Department of Forensic Medicine, School of Public Health and Preventive Medicine Monash University Southbank Victoria Australia
- Victorian Institute of Forensic Medicine Southbank Victoria Australia
| | - Gregory R Young
- Department of Forensic Medicine, School of Public Health and Preventive Medicine Monash University Southbank Victoria Australia
- Victorian Institute of Forensic Medicine Southbank Victoria Australia
| | - Noel W F Woodford
- Department of Forensic Medicine, School of Public Health and Preventive Medicine Monash University Southbank Victoria Australia
- Victorian Institute of Forensic Medicine Southbank Victoria Australia
| |
Collapse
|
6
|
Spritzer MD, Roy EA, Calhoun KMK, Schneider-Lynch ZE, Panella L, Michaelcheck C, Qian A, Kelly ED, Barr H, Hall E, Cunningham B, Nguyen HHM, Xu D, Barker JM, Galea LAM. Effects of Testosterone and Its Major Metabolites upon Different Stages of Neuron Survival in the Dentate Gyrus of Male Rats. Biomolecules 2025; 15:542. [PMID: 40305218 PMCID: PMC12024780 DOI: 10.3390/biom15040542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 05/02/2025] Open
Abstract
Testosterone has been shown to enhance hippocampal neurogenesis through increased cell survival, but which stages of new neuron development are influenced by testosterone remains unclear. Therefore, we tested the effects of sex steroids administered during three different periods after cell division in the dentate gyrus of adult male rats to determine when they influence the survival of new neurons. Adult male rats were bilaterally castrated. After 7 days of recovery, a single injection of bromodeoxyuridine (BrdU) was given on the first day of the experiment (Day 0) to label actively dividing cells. All subjects received five consecutive days of hormone injections during one of three stages of new neuron development (days 1-5, 6-10, or 11-15) after BrdU labeling. Subjects were injected during these time periods with either testosterone propionate (0.250 or 0.500 mg/rat), dihydrotestosterone (0.250 or 0.500 mg/rat), or estradiol benzoate (1.0 or 10 µg/rat). All subjects were euthanized sixteen days later to assess the effects of these hormones on the number of BrdU-labeled cells. The high dose of testosterone caused a significant increase in the number of BrdU-labeled cells in the hippocampus compared to all other groups, with the strongest effect caused by later injections (11-15 days old). In contrast, neither DHT nor estradiol injections had any significant effects on number of BrdU-labeled cells. Fluorescent double-labeling and confocal microscopy reveal that the majority of BrdU-labeled cells were neurons. Our results add to past evidence that testosterone increases neurogenesis, but whether this involves an androgenic or estrogenic pathway remains unclear.
Collapse
Affiliation(s)
- Mark D. Spritzer
- Department of Biology, McCardell Bicentennial Hall, Middlebury College, Middlebury, VT 05753, USA;
- Program in Neuroscience, McCardell Bicentennial Hall, Middlebury College, Middlebury, VT 05753, USA; (E.A.R.); (K.M.K.C.); (Z.E.S.-L.); (L.P.); (C.M.); (H.B.); (E.H.); (H.H.M.N.)
| | - Ethan A. Roy
- Program in Neuroscience, McCardell Bicentennial Hall, Middlebury College, Middlebury, VT 05753, USA; (E.A.R.); (K.M.K.C.); (Z.E.S.-L.); (L.P.); (C.M.); (H.B.); (E.H.); (H.H.M.N.)
| | - Kelsey M. K. Calhoun
- Program in Neuroscience, McCardell Bicentennial Hall, Middlebury College, Middlebury, VT 05753, USA; (E.A.R.); (K.M.K.C.); (Z.E.S.-L.); (L.P.); (C.M.); (H.B.); (E.H.); (H.H.M.N.)
| | - Zachary E. Schneider-Lynch
- Program in Neuroscience, McCardell Bicentennial Hall, Middlebury College, Middlebury, VT 05753, USA; (E.A.R.); (K.M.K.C.); (Z.E.S.-L.); (L.P.); (C.M.); (H.B.); (E.H.); (H.H.M.N.)
| | - Leslie Panella
- Program in Neuroscience, McCardell Bicentennial Hall, Middlebury College, Middlebury, VT 05753, USA; (E.A.R.); (K.M.K.C.); (Z.E.S.-L.); (L.P.); (C.M.); (H.B.); (E.H.); (H.H.M.N.)
| | - Charlotte Michaelcheck
- Program in Neuroscience, McCardell Bicentennial Hall, Middlebury College, Middlebury, VT 05753, USA; (E.A.R.); (K.M.K.C.); (Z.E.S.-L.); (L.P.); (C.M.); (H.B.); (E.H.); (H.H.M.N.)
| | - April Qian
- Program in Molecular Biology and Biochemistry, McCardell Bicentennial Hall, Middlebury College, Middlebury, VT 05753, USA; (A.Q.); (E.D.K.); (D.X.)
| | - Evan D. Kelly
- Program in Molecular Biology and Biochemistry, McCardell Bicentennial Hall, Middlebury College, Middlebury, VT 05753, USA; (A.Q.); (E.D.K.); (D.X.)
| | - Hadley Barr
- Program in Neuroscience, McCardell Bicentennial Hall, Middlebury College, Middlebury, VT 05753, USA; (E.A.R.); (K.M.K.C.); (Z.E.S.-L.); (L.P.); (C.M.); (H.B.); (E.H.); (H.H.M.N.)
| | - Emma Hall
- Program in Neuroscience, McCardell Bicentennial Hall, Middlebury College, Middlebury, VT 05753, USA; (E.A.R.); (K.M.K.C.); (Z.E.S.-L.); (L.P.); (C.M.); (H.B.); (E.H.); (H.H.M.N.)
| | - Blaine Cunningham
- Department of Biology, McCardell Bicentennial Hall, Middlebury College, Middlebury, VT 05753, USA;
| | - Hieu H. M. Nguyen
- Program in Neuroscience, McCardell Bicentennial Hall, Middlebury College, Middlebury, VT 05753, USA; (E.A.R.); (K.M.K.C.); (Z.E.S.-L.); (L.P.); (C.M.); (H.B.); (E.H.); (H.H.M.N.)
| | - Dani Xu
- Program in Molecular Biology and Biochemistry, McCardell Bicentennial Hall, Middlebury College, Middlebury, VT 05753, USA; (A.Q.); (E.D.K.); (D.X.)
| | - Jennifer M. Barker
- Department of Biology, Faculty of Science and Technology, Douglas College, Coquitlam, BC V3L 5B2, Canada;
| | - Liisa A. M. Galea
- Treliving Family Chair in Women’s Mental Health, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada;
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
| |
Collapse
|
7
|
Zhang R, Wickens JR, Carrasco A, Oorschot DE. Absolute Number of Thalamic Parafascicular and Striatal Cholinergic Neurons, and the Three-Dimensional Spatial Array of Striatal Cholinergic Neurons, in the Sprague-Dawley Rat. J Comp Neurol 2025; 533:e70050. [PMID: 40275352 PMCID: PMC12022195 DOI: 10.1002/cne.70050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 02/26/2025] [Accepted: 03/25/2025] [Indexed: 04/26/2025]
Abstract
The absolute number of neurons and their spatial distribution yields important information about brain function and species comparisons. We studied thalamic parafascicular neurons and striatal cholinergic interneurons (CINs) because the parafascicular neurons are the main excitatory input to the striatal CINs. This circuit is of increasing interest due to research showing its involvement in specific types of learning and behavioral flexibility. In the Sprague-Dawley rat, the absolute number of thalamic parafascicular neurons and striatal CINs is unknown. They were estimated in this study using modern stereological counting methods. From each of six young adult rats, complete sets of serial 40 µm glycol methacrylate sections were used to quantify neuronal numbers in the right parafascicular nucleus (PFN). From each of five young adult rats, complete sets of serial 20 µm frozen sections were immunostained and used to quantify cholinergic neuronal numbers in the right striatum. The spatial distribution, in three dimensions, of striatal CINs was also determined from exhaustive measurement of the x, y, z coordinates of each large interneuron in 40 µm glycol methacrylate sections in sampled sets of five consecutive serial sections from each of two rats. Statistical analysis of spatial distribution was conducted by comparing observed three-dimensional data with computer models of 10,000 pseudorandom distributions, using measures of nearest neighbor distance and Ripley's K-function for inhomogeneous samples. We found that the right PFN consisted, on average, of 30,073 neurons (with a coefficient of variation of 0.11). The right striatum consisted, on average, of 10,778 CINs (0.14). The statistical analysis of spatial distribution showed no evidence of clustering of striatal CINs in three dimensions in the rat striatum, consistent with previous findings in the mouse striatum. The results provide important data for the transfer of information through the PFN and striatum, species comparisons, and computer modeling.
Collapse
Affiliation(s)
- Rong Zhang
- Department of Anatomy, School of Biomedical Sciences, and the Brain Health Research CentreUniversity of OtagoDunedinNew Zealand
| | - Jeffery R. Wickens
- Neurobiology Research UnitOkinawa Institute of Science and Technology Graduate UniversityOkinawaJapan
| | - Andres Carrasco
- Department of PsychologyCalifornia State UniversityFresnoCaliforniaUSA
| | - Dorothy E. Oorschot
- Department of Anatomy, School of Biomedical Sciences, and the Brain Health Research CentreUniversity of OtagoDunedinNew Zealand
| |
Collapse
|
8
|
Colcimen N, Keskin S. Evaluation of the Protective Effects of Alpha Lipoic Acid on Bleomycin-Induced Ovarian Toxicity. J Biochem Mol Toxicol 2025; 39:e70230. [PMID: 40117335 DOI: 10.1002/jbt.70230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/10/2025] [Accepted: 03/07/2025] [Indexed: 03/23/2025]
Abstract
Chemotherapeutic drugs administered during cancer therapy, may lead to the depletion of ovarian follicles, and subsequent infertility in fertile patients. We aimed to determine toxic effects of bleomycin (BLM) on rat ovary, and to evaluate protective effects of alpha lipoic acid (ALA) on BLM toxicity. The total of 30 adult female rats were split into 4 groups. First, an intramuscular injection (i.m) of BLM (30 mg/m2) was administered to BLM and BLM + ALA groups except the control and ALA groups on the 1st, 8th and 15th days. The control group received 0.1 mL (i.m) saline on those days. BLM + ALA group received ALA (50 mg/kg) subcutaneously (s.c) for 2 weeks at the same time with BLM injections, and ALA group received ALA s.c for the same period. Ovarian tissues were evaluated by histopathological, stereological, immunohistochemical (StAR, VDAC2, Caspase-3, Bcl-2, and expression levels) and ELISA (AMH serum levels) methods. The vascular areas and collagen density increased in the medulla, and the volumes of medulla, cortex, and total ovary increased in BLM group, whereas these changes decreased in BLM + ALA group. On the other hand, VDAC2 and Caspase-3 expressions decreased, StAR and Bcl-2 expressions increased in BLM group, whereas VDAC2 and Caspase-3 expressions increased, and StAR and Bcl-2 expression levels significantly decreased in BLM + ALA group. Besides, follicle number and AMH levels decreased in the BLM group, but remarkably increased in the BLM + ALA group. We established that ALA may have ameliorative effects on the harmful effects of BLM on ovary.
Collapse
Affiliation(s)
- Nese Colcimen
- Department of Histology and Embryology, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Seda Keskin
- Department of Histology and Embryology, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
9
|
Hunziker EB, Nishii N, Shintani N, Lippuner K, Keel MJB, Voegelin E. The chondrogenic potential of the bovine tendon sheath-a novel source of stem cells for cartilage repair. Stem Cells 2025; 43:sxae071. [PMID: 39656905 DOI: 10.1093/stmcls/sxae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/17/2024] [Indexed: 12/17/2024]
Abstract
The human hand is traumatized more frequently than any other bodily part. Trauma and pathological processes (eg, rheumatoid arthritis, osteoarthritis) commonly implicate the finger joints and specifically damage also the layer of articular cartilage. Endeavors are now being made to surgically repair such cartilage lesions biologically using tissue-engineering approaches that draw on donor cells and/or donor tissues. The tendon sheaths, particularly their inner layers, that is, the peritendineum, surround the numerous tendons in the hand. The peritendineum is composed of mesenchymal tissue. We hypothesize that this tissue harbors pluripotent mesenchymal stem cells and thus could be used for cartilage repair, irrespective of the donor's age. Using a bovine model (young calves vs adult cows), the pluripotentiality of the peritendineal stem cells, namely, their osteogenicity, chondrogenicity, and adipogenicity, was investigated by implementing conventional techniques. Subsequently, the chondrogenic potential of the peritendineal tissue itself was analyzed. Its differentiation into cartilage was induced by the application of specific growth factors (members of the TGF-β-superfamily). The characteristics of the tissue formed were evaluated structurally (immuno) histochemically, histomorphometrically, and biochemically (gene expression and protein level). Our data confirm that the bovine peritendineum contains stem cells whose pluripotentiality is independent of donor age. This tissue could also be induced to differentiate into cartilage, likewise, irrespective of the donor's age. Preliminary investigations with adult human peritendineal biopsy material derived from the hand's peritendineal flexor tendon sheaths revealed that this tissue can also be induced to differentiate into cartilage.
Collapse
Affiliation(s)
- Ernst B Hunziker
- Department of Osteoporosis, Inselspital Bern University Hospital, 3010 Bern, Switzerland
- Department of Orthopedic Surgery, Inselspital Bern University Hospital, 3010 Bern, Switzerland
| | - Naomi Nishii
- Department of Osteoporosis, Inselspital Bern University Hospital, 3010 Bern, Switzerland
- Department of Orthopedic Surgery, Inselspital Bern University Hospital, 3010 Bern, Switzerland
| | - Nahoko Shintani
- Department of Osteoporosis, Inselspital Bern University Hospital, 3010 Bern, Switzerland
- Department of Orthopedic Surgery, Inselspital Bern University Hospital, 3010 Bern, Switzerland
| | - Kurt Lippuner
- Department of Osteoporosis, Inselspital Bern University Hospital, 3010 Bern, Switzerland
| | - Marius J B Keel
- Trauma Center Hirslanden, Clinic Hirslanden, Zurich, Medical School, University of Zurich, 8006 Zurich, Switzerland
| | - Esther Voegelin
- Department of Plastic and Hand Surgery, Inselspital Bern University Hospital, 3010 Bern, Switzerland
| |
Collapse
|
10
|
Connaughton SL, Williams A, Gardner GE. Accreditation of in-abattoir Dual Energy X-ray Absorptiometry scanning apparatus to predict lamb carcass composition in Australia. Meat Sci 2025; 220:109707. [PMID: 39532034 DOI: 10.1016/j.meatsci.2024.109707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/30/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Dual Energy X-ray Absorptiometry (DXA) scanners operating at abattoir processing speeds are currently installed in six sheep meat abattoirs around Australia, predicting carcass composition as estimates of computed tomography (CT) determined fat %, lean %, and bone %. This study tested an updated bone-detection algorithm for these DXA scanners. This algorithm improved the precision of prediction for carcass fat% and lean%, but most notably for bone % (R2 = 0.92, RMSE = 0.61 %), compared to the previous algorithm (R2 = 0.51, RMSE = 1.57 %). This was due to improved allocation of bone-containing pixels, resulting from the inclusion of tissue thickness in the bone-detection equation. In a second experiment, the predictions from this new algorithm, along with an automated phantom calibration technique, were assessed relative to their ability to meet the AUS-MEAT accreditation accuracy standards required for predicting CT determined carcass fat%, lean%, and bone%. The DXA met these standards for predicting fat % (range 10.9 % - 37.1 %), lean % (range 49.0 % - 66.2 %), and bone % (range 11.6 % - 25.0 %), across three weight bands of light carcasses (<22 kg), mid-weight carcasses (22-28 kg), and heavy carcasses (>28 kg). This work allowed for the accreditation of DXA, enabling its predictions of carcass composition to be used for trading sheep carcasses in Australia. The accuracy of these predictions far exceed those provided by the historical industry measure of GR tissue depth, and hot carcass weight.
Collapse
Affiliation(s)
- Stephen Louis Connaughton
- Murdoch University, 90 South Street, Murdoch, Western Australia, Australia; Advanced Livestock Measurement Technologies, 90 South Street, Murdoch, Western Australia, Australia.
| | - Andrew Williams
- Murdoch University, 90 South Street, Murdoch, Western Australia, Australia; Advanced Livestock Measurement Technologies, 90 South Street, Murdoch, Western Australia, Australia
| | - Graham Edwin Gardner
- Murdoch University, 90 South Street, Murdoch, Western Australia, Australia; Advanced Livestock Measurement Technologies, 90 South Street, Murdoch, Western Australia, Australia
| |
Collapse
|
11
|
Javanbakht P, Talebinasab A, Asadi-Golshan R, Shabani M, Kashani IR, Mojaverrostami S. Effects of Quercetin against fluoride-induced neurotoxicity in the medial prefrontal cortex of rats: A stereological, histochemical and behavioral study. Food Chem Toxicol 2025; 196:115126. [PMID: 39613240 DOI: 10.1016/j.fct.2024.115126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/01/2024] [Accepted: 11/20/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND Exposure to high levels of fluoride leads to brain developmental and functional damage. Motor performance deficits, learning and memory dysfunctions are related to fluoride neurotoxicity in human and rodent studies. MATERIALS AND METHODS Here, we evaluated the effects of Quercetin treatment (25 mg/kg) against sodium fluoride-induced neurotoxicity (NaF, 200 ppm) in the medial prefrontal cortex (mPFC) of male adult rats based on oxidative markers, behavioral performances, mRNA expressions, and stereological parameters. After a 4-week experimental period, the brains of rats were collected and used for molecular and histological analysis. RESULTS We found that 4 weeks of NaF exposure decreased body weight, working memory, Brain-derived neurotrophic factor (BDNF) mRNA expression, total volume of mPFC, number of neurons and non-neuronal cells in the mPFC, and anti-oxidative markers (CAT, SOD, and GSH-Px), while increased lipid peroxidation, P53 mRNA expression and anxiety. Quercetin treatment could significantly reverse the neurotoxic effect of NaF in the mPFC. CONCLUSIONS In summary, Quercetin could decrease the detrimental effects of NaF in the mPFC of adult rats by improving antioxidant potency and consequently decreasing neuronal and non-neuronal apoptosis.
Collapse
Affiliation(s)
- Parinaz Javanbakht
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Afshin Talebinasab
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Asadi-Golshan
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Shabani
- Department of Clinical biochemistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Iraj Ragerdi Kashani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sina Mojaverrostami
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Plaza-Alonso S, Cano-Astorga N, DeFelipe J, Alonso-Nanclares L. Volume electron microscopy reveals unique laminar synaptic characteristics in the human entorhinal cortex. eLife 2025; 14:e96144. [PMID: 39882848 PMCID: PMC11867616 DOI: 10.7554/elife.96144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 01/27/2025] [Indexed: 01/31/2025] Open
Abstract
The entorhinal cortex (EC) plays a pivotal role in memory function and spatial navigation, connecting the hippocampus with the neocortex. The EC integrates a wide range of cortical and subcortical inputs, but its synaptic organization in the human brain is largely unknown. We used volume electron microscopy to perform a 3D analysis of the microanatomical features of synapses in all layers of the medial EC (MEC) from the human brain. Using this technology, 12,974 synapses were fully 3D reconstructed at the ultrastructural level. The MEC presented a distinct set of synaptic features, differentiating this region from other human cortical areas. Furthermore, ultrastructural synaptic characteristics within the MEC was predominantly similar, although layers I and VI exhibited several synaptic characteristics that were distinct from other layers. The present study constitutes an extensive description of the synaptic characteristics of the neuropil of all layers of the EC, a crucial step to better understand the connectivity of this cortical region, in both health and disease.
Collapse
Affiliation(s)
- Sergio Plaza-Alonso
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de MadridMadridSpain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIIIMadridSpain
| | - Nicolas Cano-Astorga
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de MadridMadridSpain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIIIMadridSpain
| | - Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de MadridMadridSpain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIIIMadridSpain
| | - Lidia Alonso-Nanclares
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de MadridMadridSpain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIIIMadridSpain
| |
Collapse
|
13
|
Moeinian N, Fathabadi FF, Norouzian M, Abbaszadeh HA, Nazarian H, Afshar A, Soltani R, Aghajanpour F, Aliaghaei A, Farahani RM, Abdollahifar MA. The effects of vitamin C and vitamin B12 on improving spermatogenesis in mice subjected to long-term scrotal heat stress. Clin Exp Reprod Med 2024; 51:334-343. [PMID: 38757278 PMCID: PMC11617911 DOI: 10.5653/cerm.2023.06751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 05/18/2024] Open
Abstract
OBJECTIVE Scrotal hyperthermia poses a significant threat to spermatogenesis and fertility in mammalian species. This study investigated the effects of vitamin B12 and vitamin C on spermatogenesis in adult male mice subjected to long-term scrotal hyperthermia. The rationale is based on the sensitivity of germ cells and epididymal sperm to increased scrotal temperatures. While various factors, both internal and external, can raise the testicular temperature, this study focused on the potential therapeutic roles of vitamins B12 and C. METHODS After inducing scrotal hyperthermia in mice, vitamin B12 and vitamin C were administered for 35 days. We assessed sperm parameters, serum testosterone levels, stereological parameters, the percentage of apoptotic cells, reactive oxygen species (ROS) levels, and glutathione (GSH) levels. Additionally, real-time polymerase chain reaction was used to analyze the expression of the c-kit, stimulated by retinoic acid gene 8 (Stra8), and proliferating cell nuclear antigen (Pcna) genes. RESULTS Vitamin C was more effective than vitamin B12 in improving sperm parameters and enhancing stereological parameters. The study showed a significant decrease in apoptotic cells and a beneficial modulation of ROS and GSH levels following vitamin administration. Moreover, both vitamins positively affected the expression levels of the c-kit, Stra8, and Pcna genes. CONCLUSION This research deepens our understanding of the combined impact of vitamins B12 and C in mitigating the effects of scrotal hyperthermia, providing insights into potential therapeutic strategies for heat stress-related infertility. The findings highlight the importance of considering vitamin supplementation as a practical approach to counter the detrimental effects of elevated scrotal temperatures on male reproductive health.
Collapse
Affiliation(s)
- Nafiseh Moeinian
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Fadaei Fathabadi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Norouzian
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hojjat-Allah Abbaszadeh
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Nazarian
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azar Afshar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Soltani
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fakhroddin Aghajanpour
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Aliaghaei
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Mastery Farahani
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Amin Abdollahifar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Jiang N, Qi B, Li G, Yao L, Fan X. Morin Improves the Bone Histomorphology and Biochemical Markers in an Animal Model of Ovariectomy-Induced Osteoporosis by Suppressing Autophagy and Apoptosis. Food Sci Nutr 2024; 12:10099-10109. [PMID: 39723054 PMCID: PMC11666969 DOI: 10.1002/fsn3.4554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/18/2024] [Accepted: 10/07/2024] [Indexed: 12/28/2024] Open
Abstract
Osteoporosis (OP) is the most prevalent metabolic bone disease and an important postmenopausal consequence. This study aimed to investigate the effects of morin, a flavonoid with beneficial properties, on ovariectomy-induced OP. Animals were ovariectomized (OVX) and treated with different doses of morin (15, 30, and 45 mg/kg/day) or estradiol (10 μg/kg/day) for 10 weeks by gavage. Then bone histo-stereology, bone-related biochemical indicators, and gene and protein levels of autophagy and apoptosis-related markers were analyzed. In comparison to controls, OVX significantly decreased the number of osteoblasts (5.78 × 106 vs. 1.66 × 106) and osteocytes (32.55 × 106 vs. 11.92 × 106), whereas increasing the number of osteoclasts (83.38 × 103 vs. 392.1 × 103). Moreover, OVX caused a remarkable decrease in bone structures and Ca, P, and estradiol levels while increasing ALP and OC (p < 0.001). The administration of 45 mg/kg/day morin restored the effects of OP on bone histomorphology and biochemical markers (p < 0.05). Further studies revealed that morin caused a 7.1% and 36.6% decrease in the bone level of LC3 and BECN1 proteins, respectively, compared to the OVX group. Also, morin caused a significant decrease of 47.4% in the CASP3 level and a significant increase of 23.6% in the BCL-2 level compared to OVX animals (p < 0.001). The present findings showed that morin is potentially able to improve the bone-related histomorphological and biochemical changes caused by osteoporosis, which is probably attributed to the suppression of apoptosis- and autophagy-caused cell death.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Orthopedics920th Hospital of Joint Logistics Support ForceKunmingChina
| | - Bo Qi
- Department of Orthopedics920th Hospital of Joint Logistics Support ForceKunmingChina
| | - Gang Li
- Department of Orthopedics920th Hospital of Joint Logistics Support ForceKunmingChina
| | - Ling Yao
- Department of Orthopedics920th Hospital of Joint Logistics Support ForceKunmingChina
| | - Xinyu Fan
- Department of Orthopedics920th Hospital of Joint Logistics Support ForceKunmingChina
| |
Collapse
|
15
|
Moreira N, de Carvalho K, Borges GA, Cortez LC, de Macedo Amado L, Foganholi da Silva RA, Cordeiro F, Bernardi MM. Investigating the significance of the transgenerational impact of high and repeated doses of ivermectin: Effects on paternal testis histopathology, pups' development, and sexual behavior. Reprod Toxicol 2024; 130:108743. [PMID: 39522564 DOI: 10.1016/j.reprotox.2024.108743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/04/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Paternal exposure to environmental challenges is critical for the offspring's future health, and the transmission of acquired traits through generations increases the risk of offspring developing diseases. Ivermectin (IVM) is widely used in veterinary and human medicine to treat parasitosis. Our previous studies showed that IVM acute administration induced disorganization of the germinal epithelium and could cause damage to sperm production. Thus, this study investigated the effects of paternal exposure to repeated high ivermectin doses on paternal testis histology. After mating, their pups' development and sexual behavior in adult rats were examined. Method: Two groups of male rats were treated with IVM or its vehicle once a week for three weeks. We observed these males' body weight, organs and testis histology, and testosterone levels. These rats were mated with females without any treatment: the reproductive performance, the offspring development, and the male and female sexual behavior observed in adulthood. Relative to controls, the IVM paternal testis histology showed hypertrophy and hyperplasia of Leydig cells and increased diameter of the seminiferous tubules-no impairment in reproductive performance. In males and females, the physical and reflexes were modified. In adult age, female rats of the IVM group showed reduced sexual behavior and sexual preferences for the same sex, while male sexual behavior was not altered. Thus, it is possible that paternal exposure to IVM interfered with pups' hormonal and growth factors during development and in adult age. Further studies are needed to explore IVM transgenerational effects identifying possible mechanisms underpinning behavioral effects.
Collapse
Affiliation(s)
- Natalia Moreira
- Graduate Program in Environmental and Experimental Pathology, Paulista University, Rua Dr. Bacelar, 1212, São Paulo, SP 04026-002, Brazil
| | - Kassia de Carvalho
- Graduate Program in Environmental and Experimental Pathology, Paulista University, Rua Dr. Bacelar, 1212, São Paulo, SP 04026-002, Brazil
| | - Gabriel Aur Borges
- Graduate Program in Environmental and Experimental Pathology, Paulista University, Rua Dr. Bacelar, 1212, São Paulo, SP 04026-002, Brazil
| | - Lais Coelho Cortez
- Graduate Program in Environmental and Experimental Pathology, Paulista University, Rua Dr. Bacelar, 1212, São Paulo, SP 04026-002, Brazil
| | - Laura de Macedo Amado
- Graduate Program in Environmental and Experimental Pathology, Paulista University, Rua Dr. Bacelar, 1212, São Paulo, SP 04026-002, Brazil
| | - Rodrigo Augusto Foganholi da Silva
- Graduate Program in Environmental and Experimental Pathology, Paulista University, Rua Dr. Bacelar, 1212, São Paulo, SP 04026-002, Brazil; School of Dentistry, Graduate Program in Health Sciences, University of Taubaté, Rua dos Operários, 9, Taubaté, SP 12020-340, Brazil
| | - Flora Cordeiro
- Graduate Program in Environmental and Experimental Pathology, Paulista University, Rua Dr. Bacelar, 1212, São Paulo, SP 04026-002, Brazil
| | - Maria Martha Bernardi
- Graduate Program in Environmental and Experimental Pathology, Paulista University, Rua Dr. Bacelar, 1212, São Paulo, SP 04026-002, Brazil.
| |
Collapse
|
16
|
Freund SS, Borgognoni AB, Bendtsen MM, Baas J, Byskov JS, Ranjkesh B, Bærentzen S, Nyengaard JR, Baad-Hansen T. Comparison of tendon attachment to 3D printed Ti6Al4V implant versus Trevira® implant: A paired experimental animal study. J Mech Behav Biomed Mater 2024; 160:106789. [PMID: 39481293 DOI: 10.1016/j.jmbbm.2024.106789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/23/2024] [Accepted: 10/26/2024] [Indexed: 11/02/2024]
Abstract
BACKGROUND Soft-tissue attachment is crucial for the success of megaprosthesis surgery and improvement in current treatment is needed. The aim of this study was to compare the biomechanical and histomorphometric properties of soft-tissue attachment between 3D printed Ti6Al4V implants featuring a 630 μm microporous structure and commercially available Trevira® implants with a 200 μm porous structure in a non-loadbearing ovine model. METHODS Ten skeletally mature ewes underwent surgical implantation with both implants. After 4-weeks, mechanical pull-out testing assessed the attachment strength, while histomorphometric analysis evaluated fibroblast cell profile density, multinucleated giant cell profile density, microvessel length and volume density. RESULTS 3D printed Ti6Al4V implants demonstrated a 129% greater attachment strength compared to Trevira® implants (p = 0.003). In the Trevira® group, a 35% increase in fibroblast profile density (p < 0.001) and a 98% increase in multinucleated giant cell profile density (p < 0.001) were observed, with no significant difference in microvessel length density between the groups. However, the Ti6Al4V group exhibited a 50% higher microvessel volume density (p < 0.001) compared to the Trevira® group. CONCLUSION 3D printed Ti6Al4V implants with a 630 μm microporous structure demonstrated superior attachment strength, enhanced neovascularization, and reduced foreign body reaction compared to the Trevira® implants. These findings suggest that 3D printed Ti6Al4V implants may enhance soft-tissue attachment in megaprosthesis surgeries.
Collapse
Affiliation(s)
- Sarah S Freund
- Department of Orthopaedic Oncology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200, Aarhus N, Denmark.
| | - Anna B Borgognoni
- Department of Orthopaedic Oncology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200, Aarhus N, Denmark
| | - Michael M Bendtsen
- Department of Orthopaedic Oncology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200, Aarhus N, Denmark
| | - Jørgen Baas
- Department of Orthopaedic Oncology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200, Aarhus N, Denmark
| | - Jeppe S Byskov
- Additive Manufacturing, Danish Tecnological Institute, Kongsvang Allé 29, 8000, Aarhus C, Denmark
| | - Bahram Ranjkesh
- Section for Prosthetic Dentistry, Department of Dentistry and Oral Health, Aarhus University, Vennelyst Boulevard 9, 8000, Aarhus C, Denmark
| | - Steen Bærentzen
- Department of Pathology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Jens R Nyengaard
- Core Center for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Aarhus University, Denmark; Department of Pathology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Thomas Baad-Hansen
- Department of Orthopaedic Oncology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200, Aarhus N, Denmark
| |
Collapse
|
17
|
Mousavi SR, Shadravanan M, Farrokhi MR, Karimi F, Karbalaei N, Zadeh MA, Naseh M. Exposure to Sunset Yellow FCF since post-weaning causes hippocampal structural changes and memory impairment in the adult rat: The neuroprotective effects of Coenzyme Q10. Int J Dev Neurosci 2024. [PMID: 39520069 DOI: 10.1002/jdn.10385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/28/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND This study aimed to investigate whether exposure to Sunset Yellow FCF (SY) since post-weaning can lead to hippocampal structural changes and memory impairment in adult rat and whether the Coenzyme Q10 (CoQ10) can protect against these adverse effects. METHODS The weanling rats were randomly divided into six groups and were treated daily by oral gavage for 6 weeks, as follows: (I) control group, administered distilled water (0.3 mL/100 g/day); (II) CoQ10 group, received 10 mg/kg/day CoQ10; (III) low SY group, received 2.5 mg/kg/day SY; (IV) high SY group, received 70 mg/kg/day SY; (V) low SY + CoQ10 group; and (VI) high SY + CoQ10 group. At the end of the sixth week, the novel object recognition (NOR) test was conducted to evaluate memory. Then, after sacrificing animals, the cerebral hemispheres were removed for stereological study and evaluation of MDA levels. RESULTS The low and high doses of SY led to significant neuronal loss and a decrease in the volume of the hippocampus (CA1 and DG subregions), as well as increased the MDA level, which was associated with short- and long-term memory impairment. Although, administration of CoQ10 prevented the hippocampal neural loss and volume, and caused a reduction in MDA and improved memory in the low and high SY groups. CONCLUSION It seems that CoQ10 could prevent the neuronal loss and hippocampal atrophy caused by post-weaning exposure to SY through preventing oxidative stress, ultimately improving memory impairment in rats.
Collapse
Affiliation(s)
- Seyed Reza Mousavi
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Neurosurgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Shadravanan
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Anatomy Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Majid Reza Farrokhi
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Neurosurgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Karimi
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Anatomy Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Narges Karbalaei
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Melika Arzhang Zadeh
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Naseh
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
18
|
Campbell DJ, Francis VCM, Young GR, Woodford NWF. Association of Coronary Microvascular Rarefaction and Myocardial Fibrosis With Coronary Artery Disease. J Am Heart Assoc 2024; 13:e037332. [PMID: 39424420 PMCID: PMC11935736 DOI: 10.1161/jaha.124.037332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/18/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND To evaluate, in a cohort study, whether coronary microvasculature and myocardial structure differ between people with and without coronary artery disease (CAD). METHODS AND RESULTS We performed histological analysis of left ventricle free wall obtained at autopsy from 25 men and 23 women with ≥1 coronary artery with ≥75% area stenosis, and 25 men and 25 women without (no or minimal) CAD, matched for sex and age, who died suddenly from noncardiac causes. Decedents with myocardial infarction or other cardiac abnormality were excluded. Decedents with and without CAD had similar height and weight. Heart weight of decedents with CAD was higher than that of decedents without CAD (mean, 391 versus 364 g; mean difference, 27 g [95% CI, 0.3-54.0], P=0.048). Decedents with CAD had lower arteriole density (mean, 1.4 per mm2 versus 1.8 per mm2; mean difference, -0.4 per mm2 [95% CI, -0.6 to -0.2], P=0.0001), lower capillary length density (mean, 3164 versus 3701 mm/mm3; mean difference, -537 [95% CI, -787 to -286], P<0.0001), and higher total myocardial fibrosis (mean, 7.5% versus 5.7%; mean difference, 1.7% [95% CI, 1.0-2.5], P<0.0001), than decedents without CAD. CONCLUSIONS CAD was associated with coronary microvascular rarefaction and increased myocardial fibrosis. The association of CAD with coronary microvascular rarefaction and increased myocardial fibrosis may contribute to the increased risks of death, myocardial infarction and heart failure that accompany CAD, and may attenuate the impact of percutaneous coronary intervention on cardiovascular risk in people with stable angina.
Collapse
Affiliation(s)
- Duncan J. Campbell
- St. Vincent’s Institute of Medical ResearchFitzroyVictoriaAustralia
- University of MelbourneParkvilleVictoriaAustralia
- St. Vincent’s HospitalMelbourneVictoriaAustralia
| | - Victoria C. M. Francis
- Department of Forensic Medicine, School of Public Health and Preventive MedicineMonash UniversitySouthbankVictoriaAustralia
- Victorian Institute of Forensic MedicineSouthbankVictoriaAustralia
| | - Gregory R. Young
- Department of Forensic Medicine, School of Public Health and Preventive MedicineMonash UniversitySouthbankVictoriaAustralia
- Victorian Institute of Forensic MedicineSouthbankVictoriaAustralia
| | - Noel W. F. Woodford
- Department of Forensic Medicine, School of Public Health and Preventive MedicineMonash UniversitySouthbankVictoriaAustralia
- Victorian Institute of Forensic MedicineSouthbankVictoriaAustralia
| |
Collapse
|
19
|
Saadinam F, Azami M, Pedram MS, Sadeghinezhad J, Jabbari Fakhr M, Salimi A, Aminianfar H, Molazem M, Mokhber Dezfouli MR, Dehghan MM. Injectable alginate chitosan hydrogel as a promising bioengineered therapy for acute spinal cord injury. Sci Rep 2024; 14:26747. [PMID: 39500959 PMCID: PMC11538431 DOI: 10.1038/s41598-024-77995-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
Dealing with spinal cord injuries presents problematic due to multiple secondary mechanisms. Beyond primary concerns like paralysis and disability, complications including urinary, gastrointestinal, cardiac, and respiratory disorders, along with substantial economic burdens may occur. Limited research focuses on modeling and treating contusion and compression injuries. Tissue engineering emerges as an innovative treatment, targeting lesion pathophysiology. This study was evaluated implanting injectable biomaterials into injury-induced cavity before glial scar formation, avoiding tissue incisions and minimizing further damage. The efficacy of injectable alginate/thiolated chitosan hydrogel was investigated for acute spinal cord injury induced by Vanický method in Wistar rats. Three days post-injury, hydrogel was administrated through microinjection after laminectomy. After 60 days, the hydrogel group demonstrated notable motor function enhancement compared to the control by the BBB locomotor test (P < 0.05). However, no statistically significant differences were observed in MRI assessment concerning lesion severity. Stereological and histopathological evaluations revealed a reduction in vacuole volume and the presence of axon profiles within the scaffold (P < 0.05), alongside reduced infiltration of inflammatory and Gitter cells in the hydrogel group, although the latter was not statistically significant compared to the control. Thiolated chitosan/ alginate hydrogel implantation may be regarded as a promising treatment to enhance motor function by restraining destructive processes post-acute spinal cord injury.
Collapse
Affiliation(s)
- Fatemeh Saadinam
- Department of Surgery and Diagnostic Imaging, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
- Institute of Biomedical Research, University of Tehran, Tehran, Iran
| | - Mahmoud Azami
- Department of Tissue Engineering and Applied Cell sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mir Sepehr Pedram
- Department of Surgery and Diagnostic Imaging, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
- Institute of Biomedical Research, University of Tehran, Tehran, Iran
| | - Javad Sadeghinezhad
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Massoumeh Jabbari Fakhr
- Institute of Biomedical Research, University of Tehran, Tehran, Iran
- Department of Tissue Engineering and Applied Cell sciences, School of Medicine, Qom University of Medical Science and Health Services, Qom, Iran
| | - Atena Salimi
- Department of Surgery and Diagnostic Imaging, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hossein Aminianfar
- Institute of Biomedical Research, University of Tehran, Tehran, Iran
- Department of Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohammad Molazem
- Department of Surgery and Diagnostic Imaging, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | | - Mohammad Mehdi Dehghan
- Department of Surgery and Diagnostic Imaging, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
- Institute of Biomedical Research, University of Tehran, Tehran, Iran.
| |
Collapse
|
20
|
Koçyiğit A, Kanik B, Demircioğlu İ, Demiraslan Y. Determination of Species-Specific Differences in Intracranial Volume of Tuj Sheep and Hair Goats Using Stereology and Computed Tomography Methods. Vet Med Sci 2024; 10:e70111. [PMID: 39494958 PMCID: PMC11533207 DOI: 10.1002/vms3.70111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/15/2024] [Accepted: 10/11/2024] [Indexed: 11/05/2024] Open
Abstract
The intracranial cavity contains vitally important organs. The brain, cerebellum, meninges and the vessels that supply these organs are located in the intracranial cavity. Therefore, it is important to learn about the intracranial cavity and to study it. However, there is limited information about the intracranial cavity in the veterinary field. The aim of this study was to determine the differences between the intracranial cavities of different species of animals by using stereology and tomography methods, volume calculations and morphometric measurements. In addition, the compatibility of the methods used with each other was investigated. In the study, six male adult goats and six male adult sheep were used. In this study, the intracranial cavities of sheep and goats were calculated by using Cavalieri's principle and 3D modelling using tomography sections. Morphometric measurements were taken over the intracranial space, and index calculations were made. In 3D models using computed tomography, the intracranial volume was 153.31 ± 24.06 cm3 in goats and 128.07 ± 7.93 cm3 in sheep. In the calculation using Cavalieri's principle, it was determined to be 152.73 ± 22.73 cm3 in goats and 126.15 ± 8.38 cm3 in sheep. As a result of the study, the MWCC (maximum width of the cranial cavity) parameter was found to be statistically significant between species (p < 0.05). The two methods used in Bland-Altman analysis were found to be within the limits of agreement, and the methods can be alternative to each other.
Collapse
Affiliation(s)
- Ali Koçyiğit
- Harran University Laboratory and Veterinary Health Vocational SchoolBirecikSanliurfaTurkey
| | - Betül Kanik
- Department of AnatomyFaculty of Veterinary MedicineOndokuz Mayıs UniversitySamsunTurkey
| | - İsmail Demircioğlu
- Department of AnatomyFaculty of Veterinary MedicineHarran UniversityEyyubiyeSanliurfaTurkey
| | - Yasin Demiraslan
- Department of AnatomyFaculty of Veterinary MedicineBurdur Mehmet Akif Ersoy UniversityBurdurTurkey
| |
Collapse
|
21
|
Gimenes GM, Pereira JNB, Borges da Silva E, dos Santos AAC, Rodrigues TM, Santana GDO, Scervino MVM, Pithon-Curi TC, Hirabara SM, Gorjão R, Curi R. Intestinal Motility Dysfunction in Goto-Kakizaki Rats: Role of the Myenteric Plexus. Cells 2024; 13:1626. [PMID: 39404390 PMCID: PMC11475219 DOI: 10.3390/cells13191626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
Diabetes mellitus is associated with changes in intestinal morphology and the enteric nervous system. We previously reported constipation in Goto-Kakizaki (GK) rats, a non-obese model for type 2 diabetes mellitus. AIM The morpho-quantitative analysis of myenteric plexus neurons in the small and large intestines of 120-day-old male GK rats was investigated. METHODS The diabetes was confirmed by high fasting blood glucose levels. The myenteric plexus was evaluated through wholemount immunofluorescence. The morpho-quantitative analyses included evaluating neuronal density (neurons per ganglion) of the total neuronal population, the cholinergic and nitrergic subpopulations, and enteric glial cells per ganglion. The cell body area of 100 neurons per segment per animal was measured. RESULTS The total neurons and nitrergic subpopulation were unaltered in the GK rats' small and large intestines. The cholinergic subpopulation exhibited decreased density in the three segments of the small intestine and an increased number in the proximal colon of the GK rats. The number of enteric glial cells increased in the ileum of the GK rats, which could indicate enteric gliosis caused by the intestinal inflammatory state. The area of the cell body was increased in the total neuronal population of the jejunum and ileum of the GK rats. Frequency histograms of the cell body area distribution revealed the contribution of cholinergic neurons to larger areas in the jejunum and nitrergic neurons in the ileum. CONCLUSION The constipation previously reported in GK rats might be explained by the decrease in the density of cholinergic neurons in the small intestine of this animal model.
Collapse
Affiliation(s)
- Gabriela Mandú Gimenes
- Interdisciplinary Post-Graduate Program in Health Science, Institute of Physical Activity and Sports Sciences, Cruzeiro do Sul University, Rua Galvão Bueno, 868, Liberdade, São Paulo 01506-000, Brazil
| | | | - Eliane Borges da Silva
- Interdisciplinary Post-Graduate Program in Health Science, Institute of Physical Activity and Sports Sciences, Cruzeiro do Sul University, Rua Galvão Bueno, 868, Liberdade, São Paulo 01506-000, Brazil
| | - Alef Aragão Carneiro dos Santos
- Interdisciplinary Post-Graduate Program in Health Science, Institute of Physical Activity and Sports Sciences, Cruzeiro do Sul University, Rua Galvão Bueno, 868, Liberdade, São Paulo 01506-000, Brazil
| | - Thais Martins Rodrigues
- Interdisciplinary Post-Graduate Program in Health Science, Institute of Physical Activity and Sports Sciences, Cruzeiro do Sul University, Rua Galvão Bueno, 868, Liberdade, São Paulo 01506-000, Brazil
| | - Giovanna de Oliveira Santana
- Interdisciplinary Post-Graduate Program in Health Science, Institute of Physical Activity and Sports Sciences, Cruzeiro do Sul University, Rua Galvão Bueno, 868, Liberdade, São Paulo 01506-000, Brazil
| | - Maria Vitoria Martins Scervino
- Interdisciplinary Post-Graduate Program in Health Science, Institute of Physical Activity and Sports Sciences, Cruzeiro do Sul University, Rua Galvão Bueno, 868, Liberdade, São Paulo 01506-000, Brazil
| | - Tania Cristina Pithon-Curi
- Interdisciplinary Post-Graduate Program in Health Science, Institute of Physical Activity and Sports Sciences, Cruzeiro do Sul University, Rua Galvão Bueno, 868, Liberdade, São Paulo 01506-000, Brazil
| | - Sandro Massao Hirabara
- Interdisciplinary Post-Graduate Program in Health Science, Institute of Physical Activity and Sports Sciences, Cruzeiro do Sul University, Rua Galvão Bueno, 868, Liberdade, São Paulo 01506-000, Brazil
| | - Renata Gorjão
- Interdisciplinary Post-Graduate Program in Health Science, Institute of Physical Activity and Sports Sciences, Cruzeiro do Sul University, Rua Galvão Bueno, 868, Liberdade, São Paulo 01506-000, Brazil
| | - Rui Curi
- Interdisciplinary Post-Graduate Program in Health Science, Institute of Physical Activity and Sports Sciences, Cruzeiro do Sul University, Rua Galvão Bueno, 868, Liberdade, São Paulo 01506-000, Brazil
- Butantan Institute, São Paulo 05585-000, Brazil
| |
Collapse
|
22
|
Del Bianco V, Ferreira GDS, Bochi APG, Pinto PR, Rodrigues LG, Furukawa LNS, Okamoto MM, Almeida JA, da Silveira LKR, Santos AS, Bispo KCS, Capelozzi VL, Correa-Giannella ML, da Silva AA, Velosa APP, Nakandakare ER, Machado UF, Teodoro WPR, Passarelli M, Catanozi S. Aerobic Exercise Training Protects Against Insulin Resistance, Despite Low-Sodium Diet-Induced Increased Inflammation and Visceral Adiposity. Int J Mol Sci 2024; 25:10179. [PMID: 39337664 PMCID: PMC11432465 DOI: 10.3390/ijms251810179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Dietary sodium restriction increases plasma triglycerides (TG) and total cholesterol (TC) concentrations as well as causing insulin resistance and stimulation of the renin-angiotensin-aldosterone system (RAAS) and the sympathetic nervous system. Stimulation of the angiotensin II type-1 receptor (AT1) is associated with insulin resistance, inflammation, and the inhibition of adipogenesis. The current study investigated whether aerobic exercise training (AET) mitigates or inhibits the adverse effects of dietary sodium restriction on adiposity, inflammation, and insulin sensitivity in periepididymal adipose tissue. LDL receptor knockout mice were fed either a normal-sodium (NS; 1.27% NaCl) or a low-sodium (LS; 0.15% NaCl) diet and were either subjected to AET for 90 days or kept sedentary. Body mass, blood pressure (BP), hematocrit, plasma TC, TG, glucose and 24-hour urinary sodium (UNa) concentrations, insulin sensitivity, lipoprotein profile, histopathological analyses, and gene and protein expression were determined. The results were evaluated using two-way ANOVA. Differences were not observed in BP, hematocrit, diet consumption, and TC. The LS diet was found to enhance body mass, insulin resistance, plasma glucose, TG, LDL-C, and VLDL-TG and reduce UNa, HDL-C, and HDL-TG, showing a pro-atherogenic lipid profile. In periepididymal adipose tissue, the LS diet increased tissue mass, TG, TC, AT1 receptor, pro-inflammatory macro-phages contents, and the area of adipocytes; contrarily, the LS diet decreased anti-inflammatory macrophages, protein contents and the transcription of genes related to insulin sensitivity. The AET prevented insulin resistance, but did not protect against dyslipidemia, adipose tissue pro-inflammatory profile, increased tissue mass, AT1 receptor expression, TG, and TC induced by the LS diet.
Collapse
Affiliation(s)
- Vanessa Del Bianco
- Laboratorio de Lipides (LIM-10), Hospital das Clinicas (HCFMUSP) da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo 01246 000, Brazil; (V.D.B.); (G.d.S.F.); (A.P.G.B.); (P.R.P.); (L.G.R.); (E.R.N.); (M.P.)
| | - Guilherme da Silva Ferreira
- Laboratorio de Lipides (LIM-10), Hospital das Clinicas (HCFMUSP) da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo 01246 000, Brazil; (V.D.B.); (G.d.S.F.); (A.P.G.B.); (P.R.P.); (L.G.R.); (E.R.N.); (M.P.)
| | - Ana Paula Garcia Bochi
- Laboratorio de Lipides (LIM-10), Hospital das Clinicas (HCFMUSP) da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo 01246 000, Brazil; (V.D.B.); (G.d.S.F.); (A.P.G.B.); (P.R.P.); (L.G.R.); (E.R.N.); (M.P.)
| | - Paula Ramos Pinto
- Laboratorio de Lipides (LIM-10), Hospital das Clinicas (HCFMUSP) da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo 01246 000, Brazil; (V.D.B.); (G.d.S.F.); (A.P.G.B.); (P.R.P.); (L.G.R.); (E.R.N.); (M.P.)
| | - Letícia Gomes Rodrigues
- Laboratorio de Lipides (LIM-10), Hospital das Clinicas (HCFMUSP) da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo 01246 000, Brazil; (V.D.B.); (G.d.S.F.); (A.P.G.B.); (P.R.P.); (L.G.R.); (E.R.N.); (M.P.)
| | - Luzia Naoko Shinohara Furukawa
- Laboratory of Renal Pathophysiology, Department of Internal Medicine, School of Medicine, University of São Paulo, São Paulo 01246 000, Brazil;
| | - Maristela Mitiko Okamoto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508 000, Brazil; (M.M.O.); (U.F.M.)
| | - Jaíne Alves Almeida
- Rheumatology Division of the Hospital das Clinicas, University of São Paulo Medical School, São Paulo 01246 000, Brazil; (J.A.A.); (L.K.R.d.S.); (A.P.P.V.); (W.P.R.T.)
| | - Lizandre Keren Ramos da Silveira
- Rheumatology Division of the Hospital das Clinicas, University of São Paulo Medical School, São Paulo 01246 000, Brazil; (J.A.A.); (L.K.R.d.S.); (A.P.P.V.); (W.P.R.T.)
| | - Aritania Sousa Santos
- Laboratorio de Carboidratos e Radioimunoensaios (Laboratorio de Investigações Médicas, LIM-18), Faculdade de Medicina, Universidade de Sao Paulo (FMUSP), Sao Paulo 01246 000, Brazil; (A.S.S.); (M.L.C.-G.)
| | - Kely Cristina Soares Bispo
- Department of Pathology of the Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, FMUSP, Sao Paulo 01246 000, Brazil; (K.C.S.B.); (V.L.C.)
| | - Vera Luiza Capelozzi
- Department of Pathology of the Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, FMUSP, Sao Paulo 01246 000, Brazil; (K.C.S.B.); (V.L.C.)
| | - Maria Lucia Correa-Giannella
- Laboratorio de Carboidratos e Radioimunoensaios (Laboratorio de Investigações Médicas, LIM-18), Faculdade de Medicina, Universidade de Sao Paulo (FMUSP), Sao Paulo 01246 000, Brazil; (A.S.S.); (M.L.C.-G.)
| | - Alexandre Alves da Silva
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA;
| | - Ana Paula Pereira Velosa
- Rheumatology Division of the Hospital das Clinicas, University of São Paulo Medical School, São Paulo 01246 000, Brazil; (J.A.A.); (L.K.R.d.S.); (A.P.P.V.); (W.P.R.T.)
| | - Edna Regina Nakandakare
- Laboratorio de Lipides (LIM-10), Hospital das Clinicas (HCFMUSP) da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo 01246 000, Brazil; (V.D.B.); (G.d.S.F.); (A.P.G.B.); (P.R.P.); (L.G.R.); (E.R.N.); (M.P.)
| | - Ubiratan Fabres Machado
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508 000, Brazil; (M.M.O.); (U.F.M.)
| | - Walcy Paganelli Rosolia Teodoro
- Rheumatology Division of the Hospital das Clinicas, University of São Paulo Medical School, São Paulo 01246 000, Brazil; (J.A.A.); (L.K.R.d.S.); (A.P.P.V.); (W.P.R.T.)
| | - Marisa Passarelli
- Laboratorio de Lipides (LIM-10), Hospital das Clinicas (HCFMUSP) da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo 01246 000, Brazil; (V.D.B.); (G.d.S.F.); (A.P.G.B.); (P.R.P.); (L.G.R.); (E.R.N.); (M.P.)
- Programa de Pós Graduação em Medicina, Universidade Nove de Julho, Sao Paulo 01525 000, Brazil
| | - Sergio Catanozi
- Laboratorio de Lipides (LIM-10), Hospital das Clinicas (HCFMUSP) da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo 01246 000, Brazil; (V.D.B.); (G.d.S.F.); (A.P.G.B.); (P.R.P.); (L.G.R.); (E.R.N.); (M.P.)
| |
Collapse
|
23
|
Soltani R, Abbaszadeh HA, Nazarian H, Tabeie F, Akbari H, Mohammadzadeh I, Afshar A, Aghajanpour F, Fadaei Fathabadi F, Norouzian M. The Impact of Photobiomodulation Therapy on Enhancing Spermatogenesis and Blood-Testis Barrier Integrity in Adult Male Mice Subjected to Scrotal Hyperthermia. J Lasers Med Sci 2024; 15:e43. [PMID: 39381783 PMCID: PMC11459248 DOI: 10.34172/jlms.2024.43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/12/2024] [Indexed: 10/10/2024]
Abstract
Introduction: Unhealthy lifestyle choices such as alcohol, chemicals, and heat stress can worsen male infertility. Heat stress can cause damage to the essential structure known as the blood-testis barrier (BTB). Photobiomodulation therapy (PBMT) has been employed in various studies to enhance sperm quality in individuals with genital inflammatory conditions in recent times. The current research sought to study how laser therapy affects spermatogenesis and the structure of the BTB in a mouse model of scrotal heat exposure. Methods: Thirty adult male NMRI mice, 8 weeks old, were divided into three groups: Control, Hyperthermia, and Hyperthermia+Laser 0.03 J/cm2. The animals in the hyperthermia group had their testicles exposed to water at 43 °C for 20 minutes five times every other day. Then, the testicles were exposed to laser radiation every other day for 35 days, lasting 3 minutes each time, with an energy density of 0.03 J/cm2. Animals were sacrificed, and sperm parameters, reactive oxygen species (ROS) and glutathione (GSH) levels, stereological parameters, and gene expression were assessed in the end. Results: The study showed that PBMT can significantly enhance sperm quality, quantity of spermatogenic cells, testicular volume, levels of ROS and GSH, and gene expression related to the blood-testis barrier. Conclusion: Currently, PBMT is a novel approach for addressing male infertility by preserving the integrity of the BTB in Sertoli cells, which in turn supports the growth and specialization of germ cells.
Collapse
Affiliation(s)
- Reza Soltani
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hojjat-Allah Abbaszadeh
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Nazarian
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faraj Tabeie
- Department of Basic Sciences, School of Rehabilitation, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Akbari
- Department of Pathology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ibrahim Mohammadzadeh
- Skull Base Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azar Afshar
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fakhroddin Aghajanpour
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Fadaei Fathabadi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Norouzian
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Nielsen J. Beyond homogenates: New tool available for estimating glycogen's numerical subcellular distribution. J Gen Physiol 2024; 156:e202413607. [PMID: 38980208 PMCID: PMC11232886 DOI: 10.1085/jgp.202413607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
Abstract
This Commentary discusses the implications of a recent JGP study (Ríos et al. https://www.doi.org/10.1085/jgp.202413595) demonstrating an AI model to quantify glycogen granules.
Collapse
Affiliation(s)
- Joachim Nielsen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
25
|
Ramos CDO, Sant'Ana MR, Gonçalves GR, Rios TDS, Nakandakari SCBR, Burger B, Fernandes LGR, Zollner RDL, de Oliveira AN, Ramos RC, da Silva ASR, Pauli JR, de Moura LP, Ropelle ER, Mansour E, Cintra DE. The Effects of High-Fat Diet and Flaxseed Oil-Enriched Diet on the Lung Parenchyma of Obese Mice. Mol Nutr Food Res 2024; 68:e2300050. [PMID: 39205544 DOI: 10.1002/mnfr.202300050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/28/2024] [Indexed: 09/04/2024]
Abstract
Omega-3 (ω3) fatty acids are widely investigated for their anti-inflammatory potential, however, there is little evidence regarding their action in the lung parenchyma in the context of obesity. The objective is to investigate the effects of flaxseed oil (FS), rich in α-linolenic (C18:3 - ω3), on the lungs of obese mice. Mice were fed a high-fat diet (HF) for 8 weeks to induce obesity. Subsequently, a part of these animals received HF containing FS oil for another 8 weeks. The HF consumption induced weight gain and hyperglycemia. The lung parenchyma shows a complete fatty acids profile, compared to the control group (CT). In the lung parenchyma, FS increases the ω3 content and, notwithstanding a reduction in the interleukins (IL) IL1β and IL18 contents compared to HF. However, FS promoted increased alveolar spaces, followed by MCP1 (Monocytes Chemoattractant Protein-1) positive cell infiltration and a dramatic reduction in the anti-inflammatory cytokine, IL10. Despite reducing the pulmonary inflammatory response, the consumption of a food source of ω3 was associated with alterations in the lipid profile and histoarchitecture of the lung parenchyma, which can lead to the development of pulmonary complications. This study brings an alert against the indiscriminate use of ω3 supplements, warranting caution.
Collapse
Affiliation(s)
- Camila de Oliveira Ramos
- Nutritional Genomics Laboratory, LabGeN, School of Applied Sciences, UNICAMP, São Paulo, 13484-350, Brazil
| | - Marcella Ramos Sant'Ana
- Nutritional Genomics Laboratory, LabGeN, School of Applied Sciences, UNICAMP, São Paulo, 13484-350, Brazil
| | - Giovana Rios Gonçalves
- Nutritional Genomics Laboratory, LabGeN, School of Applied Sciences, UNICAMP, São Paulo, 13484-350, Brazil
| | - Thaiane da Silva Rios
- Nutritional Genomics Laboratory, LabGeN, School of Applied Sciences, UNICAMP, São Paulo, 13484-350, Brazil
| | - Susana Castelo Branco Ramos Nakandakari
- Nutritional Genomics Laboratory, LabGeN, School of Applied Sciences, UNICAMP, São Paulo, 13484-350, Brazil
- Nutrigenomics and Lipids Research Center, CELN, School of Applied Sciences, UNICAMP, São Paulo, 13484-350, Brazil
| | - Beatriz Burger
- Laboratory of Nutrients and Tissue Repair, School of Applied Sciences, UNICAMP, São Paulo, 13484-350, Brazil
| | | | - Ricardo de Lima Zollner
- Laboratory of Translational Immunology, School of Medical Sciences, UNICAMP, São Paulo, 13484-350, Brazil
| | - Arthur Noin de Oliveira
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, UNICAMP, São Paulo, 13484-350, Brazil
| | - Rodrigo Catharino Ramos
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, UNICAMP, São Paulo, 13484-350, Brazil
| | | | - José Rodrigo Pauli
- Laboratory of Molecular Biology of Exercise, School of Applied Sciences, UNICAMP, São Paulo, 13484-350, Brazil
- OCRC - Obesity and Comorbidities Research Center, UNICAMP, São Paulo, 13484-350, Brazil
| | - Leandro Pereira de Moura
- Laboratory of Molecular Biology of Exercise, School of Applied Sciences, UNICAMP, São Paulo, 13484-350, Brazil
- OCRC - Obesity and Comorbidities Research Center, UNICAMP, São Paulo, 13484-350, Brazil
| | - Eduardo Rochete Ropelle
- Laboratory of Molecular Biology of Exercise, School of Applied Sciences, UNICAMP, São Paulo, 13484-350, Brazil
- OCRC - Obesity and Comorbidities Research Center, UNICAMP, São Paulo, 13484-350, Brazil
| | - Eli Mansour
- Department of Clinical Medicine, School of Medical Sciences, UNICAMP, São Paulo, 13484-350, Brazil
| | - Dennys Esper Cintra
- Nutritional Genomics Laboratory, LabGeN, School of Applied Sciences, UNICAMP, São Paulo, 13484-350, Brazil
- Nutrigenomics and Lipids Research Center, CELN, School of Applied Sciences, UNICAMP, São Paulo, 13484-350, Brazil
- OCRC - Obesity and Comorbidities Research Center, UNICAMP, São Paulo, 13484-350, Brazil
| |
Collapse
|
26
|
Machado RN, Duncan WP. Morphology of the Digestive Tube of the Amazonian Freshwater Stingray Potamotrygon wallacei (Elasmobranchii: Potamotrygonidae): A Stereological Approach. J Morphol 2024; 285:e21771. [PMID: 39210664 DOI: 10.1002/jmor.21771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/11/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
This work aimed to describe and quantify the tissue components of the digestive tube of the neotropical freshwater stingray, Potamotrygon wallacei. For this, conventional histology and stereological methods were used to estimate tissue volume. The volumes of the four fundamental layers and the tissue components in the stomach (cardiac and pyloric) and spiral intestine were also estimated. In the cardiac stomach, the mucosa layer occupies 44.7% of the total volume of the organ wall. The gastric glands are the main components, and these structures alone represent 49.7% of this layer. This large number of gastric glands suggests a high potential for processing food items with a high protein content. The stereological methods were sensitive enough to show a reduction in the volume of the gastric glands from the cardiac region toward the pyloric region. Gastric glands are absent in the pyloric region of the stomach. However, the muscularis becomes thicker towards the pyloric region. The increase in smooth muscle thickness is due to the thickening of the inner muscular layer. This suggests that the role of the pyloric stomach may be related to the mixing of the chyme and assisting its passage to the spiral intestine. In the spiral intestine, data on the volume of the mucosa layer (and epithelial lining) suggest that the spiral valve has a large absorptive area. In several respects, the morphology of the digestive tube of P. wallacei is similar to that of other batoids. However, its slight morphological variations may be related to the habitat specificity of this species.
Collapse
Affiliation(s)
- Rubia Neris Machado
- Departamento de Morfologia, Laboratório de Morfologia Funcional, Universidade Federal do Amazonas, Manaus, Brazil
| | - Wallice Paxiúba Duncan
- Departamento de Morfologia, Laboratório de Morfologia Funcional, Universidade Federal do Amazonas, Manaus, Brazil
| |
Collapse
|
27
|
Sadeghinezhad J, Lazzarini G, Bojarzadeh H, Gatta A, Rezai S, Pirone A, Miragliotta V. Three-dimensional morphometry of kidney in New Zealand rabbit using unbiased design-based stereology. Microsc Res Tech 2024; 87:2053-2062. [PMID: 38655680 DOI: 10.1002/jemt.24578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/02/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024]
Abstract
The rabbit is widely used as a laboratory animal in experimental models of kidney diseases. This species is also important from a veterinary perspective as a companion animal. Stereology has been accepted as an accurate approach to kidney morphometry. The objective of the present project was to provide normal quantitative stereological parameters for adult rabbit kidneys. The left kidneys of five adult male New Zealand rabbits were used. Isotropic sections were obtained using the orientation method. Total kidney volume was calculated by the Cavalieri principle. The volume fraction of the renal structures was estimated using the point counting system. The lengths of the proximal convoluted tubule (PCT) and distal convoluted tubule (DCT) were calculated using counting frames. The total glomerular number was accounted for using the physical/fractionator technique. The mean glomerular volume was obtained by dividing the total volume of glomeruli by their total number. The total volume of rabbit kidneys calculated was 10.39 ± 1.98 cm3. The fractional volume of the kidney cortex and medulla accounted for 57.79 ± 0.65% and 42.2 ± 0.65%, respectively. The total glomerular volume was 2.18 ± 0.32% of the whole kidney. The total number of glomeruli in the rabbit kidney was estimated as 204.68 ± 12 × 103. The mean glomerular volume measured 1.07 ± 0.12 × 106 μm3. The total length of PCT and DCT was 2.96 ± 0.29 km and 1.38 ± 0.24 km, respectively. These findings can be used as a reference in experimental nephrology research and may help to expand the knowledge of nephrology in mammals by comparing with available data on humans and other species. RESEARCH HIGHLIGHTS: Three-dimensional morphometry of adult rabbit kidney structures was analyzed using quantitative stereology. Total volume of kidney, fractional volume of cortex and medulla, length of renal tubules and number of nephrons were estimated. These three-dimensional morphometrical data can be used as a reference in experimental nephrology research and may help to expand the knowledge of nephrology in mammals.
Collapse
Affiliation(s)
- Javad Sadeghinezhad
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Giulia Lazzarini
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - Hadis Bojarzadeh
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Alessandra Gatta
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - Sobhan Rezai
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Andrea Pirone
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | | |
Collapse
|
28
|
García-Revilla J, Ruiz R, Espinosa-Oliva AM, Santiago M, García-Domínguez I, Camprubí-Ferrer L, Bachiller S, Deierborg T, Joseph B, de Pablos RM, Rodríguez-Gómez JA, Venero JL. Dopaminergic neurons lacking Caspase-3 avoid apoptosis but undergo necrosis after MPTP treatment inducing a Galectin-3-dependent selective microglial phagocytic response. Cell Death Dis 2024; 15:625. [PMID: 39223107 PMCID: PMC11369297 DOI: 10.1038/s41419-024-07014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/13/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Parkinson's Disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopaminergic neurons in the Substantia nigra pars compacta (SNpc). Apoptosis is thought to play a critical role in the progression of PD, and thus understanding the effects of antiapoptotic strategies is crucial for developing potential therapies. In this study, we developed a unique genetic model to selectively delete Casp3, the gene encoding the apoptotic protein caspase-3, in dopaminergic neurons (TH-C3KO) and investigated its effects in response to a subacute regime of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration, which is known to trigger apoptotic loss of SNpc dopaminergic neurons. We found that Casp3 deletion did not protect the dopaminergic system in the long term. Instead, we observed a switch in the cell death pathway from apoptosis in wild-type mice to necrosis in TH-C3KO mice. Notably, we did not find any evidence of necroptosis in our model or in in vitro experiments using primary dopaminergic cultures exposed to 1-methyl-4-phenylpyridinium in the presence of pan-caspase/caspase-8 inhibitors. Furthermore, we detected an exacerbated microglial response in the ventral mesencephalon of TH-C3KO mice in response to MPTP, which mimicked the microglia neurodegenerative phenotype (MGnD). Under these conditions, it was evident the presence of numerous microglial phagocytic cups wrapping around apparently viable dopaminergic cell bodies that were inherently associated with galectin-3 expression. We provide evidence that microglia exhibit phagocytic activity towards both dead and stressed viable dopaminergic neurons through a galectin-3-dependent mechanism. Overall, our findings suggest that inhibiting apoptosis is not a beneficial strategy for treating PD. Instead, targeting galectin-3 and modulating microglial response may be more promising approaches for slowing PD progression.
Collapse
Affiliation(s)
- Juan García-Revilla
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, BMC B11, 221 84, Lund, Sweden.
| | - Rocío Ruiz
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Ana M Espinosa-Oliva
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Marti Santiago
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Irene García-Domínguez
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
- Faculty of Health Sciences, Universidad Loyola Andalucía, Seville, Spain
| | - Lluís Camprubí-Ferrer
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, BMC B11, 221 84, Lund, Sweden
| | - Sara Bachiller
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Tomas Deierborg
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, BMC B11, 221 84, Lund, Sweden
| | - Bertrand Joseph
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, Stockholm, Sweden
- Center for Neuromusculoskeletal Restorative Medicine, Shui On Centre, Wan Chai, Hong Kong
| | - Rocío M de Pablos
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - José A Rodríguez-Gómez
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - José Luis Venero
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain.
| |
Collapse
|
29
|
Cano-Astorga N, Plaza-Alonso S, DeFelipe J, Alonso-Nanclares L. Volume electron microscopy analysis of synapses in primary regions of the human cerebral cortex. Cereb Cortex 2024; 34:bhae312. [PMID: 39106175 PMCID: PMC11302151 DOI: 10.1093/cercor/bhae312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/03/2024] [Accepted: 07/12/2024] [Indexed: 08/09/2024] Open
Abstract
Functional and structural studies investigating macroscopic connectivity in the human cerebral cortex suggest that high-order associative regions exhibit greater connectivity compared to primary ones. However, the synaptic organization of these brain regions remains unexplored. In the present work, we conducted volume electron microscopy to investigate the synaptic organization of the human brain obtained at autopsy. Specifically, we examined layer III of Brodmann areas 17, 3b, and 4, as representative areas of primary visual, somatosensorial, and motor cortex. Additionally, we conducted comparative analyses with our previous datasets of layer III from temporopolar and anterior cingulate associative cortical regions (Brodmann areas 24, 38, and 21). 9,690 synaptic junctions were 3D reconstructed, showing that certain synaptic characteristics are specific to particular regions. The number of synapses per volume, the proportion of the postsynaptic targets, and the synaptic size may distinguish one region from another, regardless of whether they are associative or primary cortex. By contrast, other synaptic characteristics were common to all analyzed regions, such as the proportion of excitatory and inhibitory synapses, their shapes, their spatial distribution, and a higher proportion of synapses located on dendritic spines. The present results provide further insights into the synaptic organization of the human cerebral cortex.
Collapse
Affiliation(s)
- Nicolás Cano-Astorga
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid 28223, Spain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Doctor Arce 37, Madrid 28002, Spain
- PhD Program in Neuroscience, Autonoma de Madrid University—Cajal Institute, Arzobispo Morcillo 4, Madrid 28029, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Valderrebollo 5, Madrid 28031, Spain
| | - Sergio Plaza-Alonso
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid 28223, Spain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Doctor Arce 37, Madrid 28002, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Valderrebollo 5, Madrid 28031, Spain
| | - Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid 28223, Spain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Doctor Arce 37, Madrid 28002, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Valderrebollo 5, Madrid 28031, Spain
| | - Lidia Alonso-Nanclares
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid 28223, Spain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Doctor Arce 37, Madrid 28002, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Valderrebollo 5, Madrid 28031, Spain
| |
Collapse
|
30
|
Jensen B, Chang YH, Bamforth SD, Mohun T, Sedmera D, Bartos M, Anderson RH. The changing morphology of the ventricular walls of mouse and human with increasing gestation. J Anat 2024; 244:1040-1053. [PMID: 38284175 PMCID: PMC11095311 DOI: 10.1111/joa.14017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 01/30/2024] Open
Abstract
That the highly trabeculated ventricular walls of the developing embryos transform to the arrangement during the fetal stages, when the mural architecture is dominated by the thickness of the compact myocardium, has been explained by the coalescence of trabeculations, often erroneously described as 'compaction'. Recent data, however, support differential rates of growth of the trabecular and compact layers as the major driver of change. Here, these processes were assessed quantitatively and visualized in standardized views. We used a larger dataset than has previously been available of mouse hearts, covering the period from embryonic day 10.5 to postnatal day 3, supported by images from human hearts. The volume of the trabecular layer increased throughout development, in contrast to what would be expected had there been 'compaction'. During the transition from embryonic to fetal life, the rapid growth of the compact layer diminished the proportion of trabeculations. Similarly, great expansion of the central cavity reduced the proportion of the total cavity made up of intertrabecular recesses. Illustrations of the hearts with the median value of left ventricular trabeculation confirm a pronounced growth of the compact wall, with prominence of the central cavity. This corresponds, in morphological terms, to a reduction in the extent of the trabecular layer. Similar observations were made in the human hearts. We conclude that it is a period of comparatively slow growth of the trabecular layer, rather than so-called compaction, that is the major determinant of the changing morphology of the ventricular walls of both mouse and human hearts.
Collapse
Affiliation(s)
- Bjarke Jensen
- Department of Medical Biology, Amsterdam Cardiovascular SciencesUniversity of Amsterdam, Amsterdam UMCAmsterdamthe Netherlands
| | - Yun Hee Chang
- Department of Medical Biology, Amsterdam Cardiovascular SciencesUniversity of Amsterdam, Amsterdam UMCAmsterdamthe Netherlands
| | - Simon D. Bamforth
- Biosciences Institute, Faculty of Medical SciencesNewcastle UniversityNewcastleUK
| | | | - David Sedmera
- Institute of Anatomy, First Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Martin Bartos
- Institute of Anatomy, First Faculty of MedicineCharles UniversityPragueCzech Republic
- Institute of Dental Medicine, First Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Robert H. Anderson
- Biosciences Institute, Faculty of Medical SciencesNewcastle UniversityNewcastleUK
| |
Collapse
|
31
|
Rodríguez-Pérez AI, Garrido-Gil P, García-Garrote M, Muñoz A, Parga JA, Labandeira-García JL, Rodríguez-Pallares J. Non-HLA angiotensin-type-1 receptor autoantibodies mediate the long-term loss of grafted neurons in Parkinson's disease models. Stem Cell Res Ther 2024; 15:138. [PMID: 38735991 PMCID: PMC11089721 DOI: 10.1186/s13287-024-03751-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/02/2024] [Indexed: 05/14/2024] Open
Abstract
BACKGROUND Clinical trials have provided evidence that transplants of dopaminergic precursors, which may be replaced by new in vitro stem cell sources, can integrate into the host tissue, and alleviate motor symptoms in Parkinson´s disease (PD). In some patients, deterioration of graft function occurred several months after observing a graft-derived functional improvement. Rejection of peripheral organs was initially related to HLA-specific antibodies. However, the role of non-HLA antibodies is now considered also relevant for rejection. Angiotensin-II type-1 receptor autoantibodies (AT1-AA) act as agonists of the AT1 receptors. AT1-AA are the non-HLA antibodies most widely associated with graft dysfunction or rejection after transplantation of different solid organs and hematopoietic stem cells. However, it is not known about the presence and possible functional effects of AT1-AA in dopaminergic grafts, and the effects of treatment with AT1 receptor blockers (ARBs) such as candesartan on graft survival. METHODS In a 6-hydroxydopamine PD rat model, we studied the short-term (10 days)- and long-term (3 months) effects of chronic treatment with the ARB candesartan on survival of grafted dopaminergic neurons and microglial graft infiltration, as well as the effects of dopaminergic denervation and grafting on serum and CSF AT1-AA levels. The expression of AT1 receptors in grafted neurons was determined by laser capture microdissection. RESULTS At the early period post-grafting, the number of grafted dopaminergic neurons that survived was not significantly different between treated and untreated hosts (i.e., control rats and rats treated with candesartan), probably because, just after grafting, other deleterious factors are predominant for dopaminergic cell death, such as mechanical trauma, lack of growth factors/nutrients and ischemia. However, several months post-grafting, we observed a significantly higher number of surviving dopaminergic neurons and a higher density of striatal dopaminergic terminals in the candesartan-treated group. For several months, grafted rats showed blood and cerebrospinal fluid levels of AT1-AA higher than normal controls, and also higher AT1-AA levels than non-grafted parkinsonian rats. CONCLUSIONS The results suggest the use of ARBs such as candesartan in PD patients, particularly before and after dopaminergic grafts, and the need to monitor AT1-AA levels in PD patients, particularly in those candidates for dopaminergic grafting.
Collapse
Affiliation(s)
- Ana I Rodríguez-Pérez
- Research Center for Molecular Medicine and Chronic Diseases (CiMUS), Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Pablo Garrido-Gil
- Research Center for Molecular Medicine and Chronic Diseases (CiMUS), Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Maria García-Garrote
- Research Center for Molecular Medicine and Chronic Diseases (CiMUS), Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Ana Muñoz
- Research Center for Molecular Medicine and Chronic Diseases (CiMUS), Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Juan A Parga
- Research Center for Molecular Medicine and Chronic Diseases (CiMUS), Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jose Luis Labandeira-García
- Research Center for Molecular Medicine and Chronic Diseases (CiMUS), Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, 15782, Spain.
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| | - Jannette Rodríguez-Pallares
- Research Center for Molecular Medicine and Chronic Diseases (CiMUS), Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, 15782, Spain.
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| |
Collapse
|
32
|
Jensen B, Salvatori D, Schouten J, Meijborg VMF, Lauridsen H, Agger P. Trabeculations of the porcine and human cardiac ventricles are different in number but similar in total volume. Clin Anat 2024; 37:440-454. [PMID: 38217386 DOI: 10.1002/ca.24135] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/21/2023] [Indexed: 01/15/2024]
Abstract
An intricate meshwork of trabeculations lines the luminal side of cardiac ventricles. Compaction, a developmental process, is thought to reduce trabeculations by adding them to the neighboring compact wall which is then enlarged. When pig, a plausible cardiac donor for xenotransplantation, is compared to human, the ventricular walls appear to have fewer trabeculations. We hypothesized the trabecular volume is proportionally smaller in pig than in human. Macroscopically, we observed in 16 pig hearts that the ventricular walls harbor few but large trabeculations. Close inspection revealed a high number of tiny trabeculations, a few hundred, within the recesses of the large trabeculations. While tiny, these were still larger than embryonic trabeculations and even when considering their number, the total tally of trabeculations in pig was much fewer than in human. Volumetrics based on high-resolution MRI of additional six pig hearts compared to six human hearts, revealed the left ventricles were not significantly differently trabeculated (21.5 versus 22.8%, respectively), and the porcine right ventricles were only slightly less trabeculated (42.1 vs 49.3%, respectively). We then analyzed volumetrically 10 pig embryonic hearts from gestational day 14-35. The trabecular and compact layer always grew, as did the intertrabecular recesses, in contrast to what compaction predicts. The proportions of the trabecular and compact layers changed substantially, nonetheless, due to differences in their growth rate rather than compaction. In conclusion, processes that affect the trabecular morphology do not necessarily affect the proportion of trabecular-to-compact myocardium and they are then distinct from compaction.
Collapse
Affiliation(s)
- Bjarke Jensen
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Daniela Salvatori
- Department of Clinical Sciences, Anatomy and Physiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Jacobine Schouten
- Department of Clinical Sciences, Anatomy and Physiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Veronique M F Meijborg
- Department of Experimental Cardiology, University of Amsterdam, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Henrik Lauridsen
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Peter Agger
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| |
Collapse
|
33
|
Jahromi HM, Rafati A, Karbalay-Doust S, Keshavarz S, Naseh M. The combination treatment of hypothermia and intranasal insulin ameliorates the structural and functional changes in a rat model of traumatic brain injury. Brain Struct Funct 2024; 229:947-957. [PMID: 38498064 DOI: 10.1007/s00429-024-02769-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 01/26/2024] [Indexed: 03/19/2024]
Abstract
The present study aimed to investigate the combination effects of hypothermia (HT) and intranasal insulin (INS) on structural changes of the hippocampus and cognitive impairments in the traumatic brain injury (TBI) rat model. The rats were divided randomly into the following five groups (n = 10): Sham, TBI, TBI with HT treatment for 3 h (TBI + HT), TBI with INS (ten microliters of insulin) treatment daily for 7 days (TBI + INS), and TBI with combining HT and INS (TBI + HT + INS). At the end of the 7th day, the open field and the Morris water maze tests were done for evaluation of anxiety-like behavior and memory performance. Then, after sacrificing, the brain was removed for stereological study. TBI led to an increase in the total volume of hippocampal subfields CA1 and DG and a decrease in the total number of neurons and non-neuronal cells in both sub-regions, which was associated with anxiety-like behavior and memory impairment. Although, the combination of HT and INS prevented the increased hippocampal volume and cell loss and improved behavioral performances in the TBI group. Our study suggests that the combined treatment of HT and INS could prevent increased hippocampal volume and cell loss in CA1 and DG sub-regions and consequently improve anxiety-like behaviors and memory impairment following TBI.
Collapse
Affiliation(s)
- Hadi Moatamed Jahromi
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Rafati
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saied Karbalay-Doust
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Anatomy Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somaye Keshavarz
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Maryam Naseh
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
34
|
Mokarrami S, Jahanshahi M, Elyasi L, Badelisarkala H, Khalili M. Naringin prevents the reduction of the number of neurons and the volume of CA1 in a scopolamine-induced animal model of Alzheimer's disease (AD): a stereological study. Int J Neurosci 2024; 134:364-371. [PMID: 35861379 DOI: 10.1080/00207454.2022.2102981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/30/2022] [Indexed: 10/24/2022]
Affiliation(s)
- S Mokarrami
- Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - M Jahanshahi
- Department of Anatomy, Faculty of Medicine, Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - L Elyasi
- Department of Anatomy, Faculty of Medicine, Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - H Badelisarkala
- Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - M Khalili
- Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
35
|
Delibaş B, Vianney JM, Kaplan S. The assessment of neuronal plasticity following sciatic nerve injuries in rats using electron microscopy and stereological methods. J Chem Neuroanat 2024; 136:102396. [PMID: 38331230 DOI: 10.1016/j.jchemneu.2024.102396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 02/10/2024]
Abstract
The transmission of signals to the cell body from injured axons induces significant alterations in primary sensory neurons located in the ganglion tissue, the site of the perikaryon of the affected nerve fibers. Disruption of the continuity between the proximal and distal ends leads to substantial adaptability in ganglion cells and induces macrophage-like activity in the satellite cells. Research findings have demonstrated the plasticity of satellite cells following injury. Satellite cells work together with sensory neurons to extend the interconnected surface area in order to permit effective communication. The dynamic cellular environment within the ganglion undergoes several alterations that ultimately lead to differentiation, transformation, or cell death. In addition to necrotic and apoptotic cell morphology, phenomena such as histomorphometric alterations, including the development of autophagic vacuoles, chromatolysis, cytosolic degeneration, and other changes, are frequently observed in cells following injury. The use of electron microscopic and stereological techniques for assessing ganglia and nerve fibers is considered a gold standard in terms of investigating neuropathic pain models, regenerative therapies, some treatment methods, and quantifying the outcomes of pharmacological and bioengineering interventions. Stereological techniques provide observer-independent and reliable results, which are particularly useful in the quantitative assessment of three-dimensional structures from two-dimensional images. Employing the fractionator and disector techniques within stereological methodologies yields unbiased data when assessing parameters such as number. The fundamental concept underlying these methodologies involves ensuring that each part of the structure under evaluation has an equal opportunity of being sampled. This review describes the stereological and histomorphometric evaluation of dorsal root ganglion neurons and satellite cells following nerve injury models.
Collapse
Affiliation(s)
- Burcu Delibaş
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdoğan University, Rize, Turkiye
| | - John-Mary Vianney
- School of Life Science and Bioengineering, Nelson Mandela-African Institution of Science and Technology, Arusha, Tanzania
| | - Süleyman Kaplan
- School of Life Science and Bioengineering, Nelson Mandela-African Institution of Science and Technology, Arusha, Tanzania; Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkiye.
| |
Collapse
|
36
|
Garcia-Marin V, Kelly JG, Hawken MJ. Neuronal composition of processing modules in human V1: laminar density for neuronal and non-neuronal populations and a comparison with macaque. Cereb Cortex 2024; 34:bhad512. [PMID: 38183210 PMCID: PMC10839852 DOI: 10.1093/cercor/bhad512] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 01/07/2024] Open
Abstract
The neuronal composition of homologous brain regions in different primates is important for understanding their processing capacities. Primary visual cortex (V1) has been widely studied in different members of the catarrhines. Neuronal density is considered to be central in defining the structure-function relationship. In human, there are large variations in the reported neuronal density from prior studies. We found the neuronal density in human V1 was 79,000 neurons/mm3, which is 35% of the neuronal density previously determined in macaque V1. Laminar density was proportionally similar between human and macaque. In V1, the ocular dominance column (ODC) contains the circuits for the emergence of orientation preference and spatial processing of a point image in many mammalian species. Analysis of the total neurons in an ODC and of the full number of neurons in macular vision (the central 15°) indicates that humans have 1.3× more neurons than macaques even though the density of neurons in macaque is 3× the density in human V1. We propose that the number of neurons in a functional processing unit rather than the number of neurons under a mm2 of cortex is more appropriate for cortical comparisons across species.
Collapse
Affiliation(s)
| | - Jenna G Kelly
- Center for Neural Science, New York University, New York City, NY 10003, United States
| | - Michael J Hawken
- Center for Neural Science, New York University, New York City, NY 10003, United States
| |
Collapse
|
37
|
De Araujo Furtado M, Aroniadou-Anderjaska V, Figueiredo TH, Pidoplichko VI, Apland JP, Rossetti K, Braga MFM. Preventing Long-Term Brain Damage by Nerve Agent-Induced Status Epilepticus in Rat Models Applicable to Infants: Significant Neuroprotection by Tezampanel Combined with Caramiphen but Not by Midazolam Treatment. J Pharmacol Exp Ther 2024; 388:432-450. [PMID: 37739807 PMCID: PMC10801760 DOI: 10.1124/jpet.123.001710] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 09/24/2023] Open
Abstract
Acute exposure to nerve agents induces a peripheral cholinergic crisis and prolonged status epilepticus (SE), causing death or long-term brain damage. To provide preclinical data pertinent to the protection of infants and newborns, we compared the antiseizure and neuroprotective effects of treating soman-induced SE with midazolam (MDZ) versus tezampanel (LY293558) in combination with caramiphen (CRM) in 12- and 7-day-old rats. The anticonvulsants were administered 1 hour after soman exposure; neuropathology data were collected up to 6 months postexposure. In both ages, the total duration of SE within 24 hours after soman exposure was significantly shorter in the LY293558 plus CRM groups compared with the MDZ groups. Neuronal degeneration was substantial in the MDZ-treated groups but absent or minimal in the groups treated with LY293558 plus CRM. Loss of neurons and interneurons in the basolateral amygdala and CA1 hippocampal area was significant in the MDZ-treated groups but virtually absent in the LY293558 plus CRM groups. Atrophy of the amygdala and hippocampus occurred only in MDZ-treated groups. Neuronal/interneuronal loss and atrophy of the amygdala and hippocampus deteriorated over time. Reduction of inhibitory activity in the basolateral amygdala and increased anxiety were found only in MDZ groups. Spontaneous recurrent seizures developed in the MDZ groups, deteriorating over time; a small percentage of rats from the LY293558 plus CRM groups also developed seizures. These results suggest that brain damage can be long lasting or permanent if nerve agent-induced SE in infant victims is treated with midazolam at a delayed timepoint after SE onset, whereas antiglutamatergic treatment with tezampanel and caramiphen provides significant neuroprotection. SIGNIFICANCE STATEMENT: To protect the brain and the lives of infants in a mass exposure to nerve agents, an anticonvulsant treatment must be administered that will effectively stop seizures and prevent neuropathology, even if offered with a relative delay after seizure onset. The present study shows that midazolam, which was recently approved by the Food and Drug Administration for the treatment of nerve agent-induced status epilepticus, is not an effective neuroprotectant, whereas brain damage can be prevented by targeting glutamate receptors.
Collapse
Affiliation(s)
- Marcio De Araujo Furtado
- Departments of Anatomy, Physiology, and Genetics (M.D.A.F., V.A.-A., T.H.F., V.I.P., K.R., M.F.M.B.) and Psychiatry (V.A.-A., M.F.M.B.), F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland; and Neuroscience Branch, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Gunpowder, Maryland (J.P.A.)
| | - Vassiliki Aroniadou-Anderjaska
- Departments of Anatomy, Physiology, and Genetics (M.D.A.F., V.A.-A., T.H.F., V.I.P., K.R., M.F.M.B.) and Psychiatry (V.A.-A., M.F.M.B.), F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland; and Neuroscience Branch, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Gunpowder, Maryland (J.P.A.)
| | - Taiza H Figueiredo
- Departments of Anatomy, Physiology, and Genetics (M.D.A.F., V.A.-A., T.H.F., V.I.P., K.R., M.F.M.B.) and Psychiatry (V.A.-A., M.F.M.B.), F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland; and Neuroscience Branch, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Gunpowder, Maryland (J.P.A.)
| | - Volodymyr I Pidoplichko
- Departments of Anatomy, Physiology, and Genetics (M.D.A.F., V.A.-A., T.H.F., V.I.P., K.R., M.F.M.B.) and Psychiatry (V.A.-A., M.F.M.B.), F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland; and Neuroscience Branch, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Gunpowder, Maryland (J.P.A.)
| | - James P Apland
- Departments of Anatomy, Physiology, and Genetics (M.D.A.F., V.A.-A., T.H.F., V.I.P., K.R., M.F.M.B.) and Psychiatry (V.A.-A., M.F.M.B.), F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland; and Neuroscience Branch, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Gunpowder, Maryland (J.P.A.)
| | - Katia Rossetti
- Departments of Anatomy, Physiology, and Genetics (M.D.A.F., V.A.-A., T.H.F., V.I.P., K.R., M.F.M.B.) and Psychiatry (V.A.-A., M.F.M.B.), F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland; and Neuroscience Branch, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Gunpowder, Maryland (J.P.A.)
| | - Maria F M Braga
- Departments of Anatomy, Physiology, and Genetics (M.D.A.F., V.A.-A., T.H.F., V.I.P., K.R., M.F.M.B.) and Psychiatry (V.A.-A., M.F.M.B.), F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland; and Neuroscience Branch, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Gunpowder, Maryland (J.P.A.)
| |
Collapse
|
38
|
Corrêa LBNS, Dos Santos CM, Abidu-Figueiredo M, De Brito-Gitirana L, Chagas MA. Histochemical analysis, smooth muscle immunolocalization and volumetric density of the elastic system fibres of the ostrich (Struthio camelus) phallus. Anat Histol Embryol 2024; 53:e12997. [PMID: 37971195 DOI: 10.1111/ahe.12997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/16/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023]
Abstract
There are few scientific reports on the histology of the phallus of ratite birds. The aim of this study was to conduct a histochemical analysis to determine the distribution of smooth muscle cells and the volumetric density (Vv) of the fibres of the elastic system in the ostrich phallus. Adult ostriches, 14 months old, were used. The phalluses were fixed in Bouin's solution and then transferred to a buffered formalin solution. They were then processed using standard histological stains for paraffin and slices were obtained. The following techniques were performed: HE, Picrosirius red, Alcian Blue at pH 1.0 and 2.5. The Periodic acid-Schiff reagent and Weigert's Resorcin-Fuchsin with previous oxidation were performed. The M42 test system was used to quantify the elastic system fibres. For immunohistochemical analysis, an anti alpha smooth muscle actin monoclonal antibody was used. The surface of the phallus is covered by a non-keratinized stratified squamous epithelium, which becomes stratified cylindrical in the region of the spermatic sulcus. No glands associated with the connective tissue were observed. The Vv of the elastic system fibres was 4.75%. Smooth muscle cells were visualized only in the walls of blood vessels through immunostaining, with an absence in the lymphatic sinuses. Despite similarities with other birds, such as the presence of a fibrous external axis, a lymphatic core, and a spermatic groove, the ostrich phallus shows marked differences, including the absence of an elastic core, a non-keratinized lining epithelium, and the absence of glands throughout its extension.
Collapse
Affiliation(s)
| | - Clarice Machado Dos Santos
- Departamento de Morfologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Marcelo Abidu-Figueiredo
- Departamento de Anatomia Animal e Humana, Instituto de Ciências Biológicas e da Saúde. Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
| | - Lycia De Brito-Gitirana
- Laboratório de Histologia Integrativa, Instituto de Ciências Biomédicas. Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mauricio Alves Chagas
- Departamento de Morfologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
39
|
Mousavi SR, Farrokhi MR, Ghaffari MK, Karimi F, Keshavarz S, Dehghanian AR, Naseh M. The combination treatment of methylprednisolone and growth factor-rich serum ameliorates the structural and functional changes after spinal cord injury in rat. Spinal Cord 2024; 62:17-25. [PMID: 38001173 DOI: 10.1038/s41393-023-00942-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/21/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023]
Abstract
STUDY DESIGN Preclinical pharmacology. OBJECTIVES Our study aims to evaluate the combined effect of Methylprednisolone (MP) and growth factor-rich serum (GFRS) on structural and functional recovery in rats following spinal cord injury (SCI). SETTING Shiraz University of Medical Sciences, Shiraz, Iran METHODS: Male Sprague-Dawley rats were randomly assigned to five groups: sham group (laminectomy); SCI group (the spinal cord clip compression model); SCI-MP group (30 mg/kg MP was administrated intraperitoneally (IP) immediately after SCI); SCI-GFRS group (GFRS (200 µl, IP) was administrated for six consecutive days); and SCI-MP + GFRS group (the rats received MP (30 mg/kg, IP) immediately after SCI, and GFRS (200 µl, IP) for six consecutive days). Motor function was assessed weekly using the Basso, Beattie, and Bresnahan (BBB) scale. After 4 weeks, we conducted the rotarod test, then removed and prepared the spinal cords (including the epicenter of injury) for stereological and histological estimation, and biochemical assays. RESULTS The results showed that MP and GFRS combining treatment enhanced functional recovery, which was associated with a decrement in lesion volume, increased spared white and gray matter volume, reduced neuronal loss, as well as decreased necrosis and hemorrhage after SCI. Moreover, administration of MP and GFRS inhibited lipid peroxidation (malondialdehyde (MDA) content), and increased antioxidant enzymes including glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) after rat SCI. CONCLUSIONS We suggests that the combination treatment of MP and GFRS may ameliorate the structure and functional changes following SCI by reducing oxidative stress, and increasing the level of antioxidants enzymes.
Collapse
Affiliation(s)
- Seyed Reza Mousavi
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Neurosurgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Majid Reza Farrokhi
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Neurosurgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahdi Khorsand Ghaffari
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Karimi
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Anatomy Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somaye Keshavarz
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Maryam Naseh
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
40
|
Bojarzadeh H, Lazzarini G, Gatta A, Sadeghinezhad J, Samieeroudy L, Pirone A, Miragliotta V. Three-dimensional morphometry of the testis in dog using design-unbiased stereology. Anat Histol Embryol 2024; 53:e12968. [PMID: 37712329 DOI: 10.1111/ahe.12968] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/16/2023] [Accepted: 09/03/2023] [Indexed: 09/16/2023]
Abstract
Testis is considered the main organ of the male reproductive system. Dogs are used as a suitable experimental model of testicular diseases in humans. From the veterinary aspect, several disorders have been reported to affect the testis in dogs. Thus, the objective of the present study was to investigate the morphometrical features of the dog testis using design-based stereology. The testes of six male dogs were used. Isotropic, uniform random sections were obtained and processed for light microscopy. Testicular total volume and the fractional volume of the seminiferous tubules, interstitial tissue and germinal epithelium were measured using the Cavalieri's estimator and the point counting system. Germinal epithelial surface area was estimated using test lines, and total length of seminiferous tubules was analysed using the counting frames. The total volume of testis was calculated 13.64 ± 1.94 cm3 . The relative volume fractions of the seminiferous tubules, interstitial tissue and germinal layer expressed as a percentage of total testicular volume were found to be 75.87 ± 6.11%, 23.68 ± 5.15% and 64.15 ± 4.82%, respectively. The surface area of the germinal layer was 915.25 ± 150.48 cm2 . The thickness of germinal layer was estimated to be 96.18 ± 10.72 μm. The total length of seminiferous tubules measured 290.8 ± 35.86 m. No statistical difference in investigated parameters was found between the left and right testes (p > 0.05). Our data might contribute to the male reproductive knowledge, help develop experimental studies in this field and possibly lead to advancement in the diagnosis and treatment of testicular diseases in the dog.
Collapse
Affiliation(s)
- Hadis Bojarzadeh
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Giulia Lazzarini
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - Alessandra Gatta
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - Javad Sadeghinezhad
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Leila Samieeroudy
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Andrea Pirone
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | | |
Collapse
|
41
|
Latchney SE, Ruiz Lopez BR, Womble PD, Blandin KJ, Lugo JN. Neuronal deletion of phosphatase and tensin homolog in mice results in spatial dysregulation of adult hippocampal neurogenesis. Front Mol Neurosci 2023; 16:1308066. [PMID: 38130682 PMCID: PMC10733516 DOI: 10.3389/fnmol.2023.1308066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Adult neurogenesis is a persistent phenomenon in mammals that occurs in select brain structures in both healthy and diseased brains. The tumor suppressor gene, phosphatase and tensin homolog deleted on chromosome 10 (Pten) has previously been found to restrict the proliferation of neural stem/progenitor cells (NSPCs) in vivo. In this study, we aimed to provide a comprehensive picture of how conditional deletion of Pten may regulate the genesis of adult NSPCs in the dentate gyrus of the hippocampus and the subventricular zone bordering the lateral ventricles. Using conventional markers and stereology, we quantified multiple stages of neurogenesis, including proliferating cells, immature neurons (neuroblasts), and apoptotic cells in several regions of the dentate gyrus, including the subgranular zone (SGZ), outer granule cell layer (oGCL), molecular layer, and hilus at 4 and 10 weeks of age. Our data demonstrate that conditional deletion of Pten in mice produces successive increases in dentate gyrus proliferating cells and immature neuroblasts, which confirms the known negative roles Pten has on cell proliferation and maturation. Specifically, we observe a significant increase in Ki67+ proliferating cells in the neurogenic SGZ at 4 weeks of age, but not 10 weeks of age. We also observe a delayed increase in neuroblasts at 10 weeks of age. However, our study expands on previous work by providing temporal, subregional, and neurogenesis-stage resolution. Specifically, we found that Pten deletion initially increases cell proliferation in the neurogenic SGZ, but this increase spreads to non-neurogenic dentate gyrus areas, including the hilus, oGCL, and molecular layer, as mice age. We also observed region-specific increases in apoptotic cells in the dentate gyrus hilar region that paralleled the regional increases in Ki67+ cells. Our work is accordant with the literature showing that Pten serves as a negative regulator of dentate gyrus neurogenesis but adds temporal and spatial components to the existing knowledge.
Collapse
Affiliation(s)
- Sarah E. Latchney
- Department of Biology, St. Mary’s College of Maryland, St. Mary’s City, MD, United States
| | - Brayan R. Ruiz Lopez
- Department of Biology, St. Mary’s College of Maryland, St. Mary’s City, MD, United States
| | - Paige D. Womble
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, United States
| | - Katherine J. Blandin
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, United States
| | - Joaquin N. Lugo
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, United States
| |
Collapse
|
42
|
Kapasi A, Poirier J, Hedayat A, Scherlek A, Mondal S, Wu T, Gibbons J, Barnes LL, Bennett DA, Leurgans SE, Schneider JA. High-throughput digital quantification of Alzheimer disease pathology and associated infrastructure in large autopsy studies. J Neuropathol Exp Neurol 2023; 82:976-986. [PMID: 37944065 PMCID: PMC11032710 DOI: 10.1093/jnen/nlad086] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023] Open
Abstract
High-throughput digital pathology offers considerable advantages over traditional semiquantitative and manual methods of counting pathology. We used brain tissue from 5 clinical-pathologic cohort studies of aging; the Religious Orders Study, the Rush Memory and Aging Project, the Minority Aging Research Study, the African American Clinical Core, and the Latino Core to (1) develop a workflow management system for digital pathology processes, (2) optimize digital algorithms to quantify Alzheimer disease (AD) pathology, and (3) harmonize data statistically. Data from digital algorithms for the quantification of β-amyloid (Aβ, n = 413) whole slide images and tau-tangles (n = 639) were highly correlated with manual pathology data (r = 0.83 to 0.94). Measures were robust and reproducible across different magnifications and repeated scans. Digital measures for Aβ and tau-tangles across multiple brain regions reproduced established patterns of correlations, even when samples were stratified by clinical diagnosis. Finally, we harmonized newly generated digital measures with historical measures across multiple large autopsy-based studies. We describe a multidisciplinary approach to develop a digital pathology pipeline that reproducibly identifies AD neuropathologies, Aβ load, and tau-tangles. Digital pathology is a powerful tool that can overcome critical challenges associated with traditional microscopy methods.
Collapse
Affiliation(s)
- Alifiya Kapasi
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, USA
- Department of Pathology, Rush University Medical Center, Chicago, Illinois, USA
| | - Jennifer Poirier
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, USA
| | - Ahmad Hedayat
- Department of Pathology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Ashley Scherlek
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, USA
| | - Srabani Mondal
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, USA
| | - Tiffany Wu
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, USA
| | - John Gibbons
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, USA
| | - Lisa L Barnes
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - David A Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Sue E Leurgans
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Julie A Schneider
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, USA
- Department of Pathology, Rush University Medical Center, Chicago, Illinois, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
43
|
Tomlinson JCL, Zwirner J, Oorschot DE, Morawski M, Ondruschka B, Zhang M, Hammer N. Microstructural analysis on the innervation of the anterior, medial, and lateral human hip capsule: Preliminary evidence on its neuromechanical contribution. Osteoarthritis Cartilage 2023; 31:1469-1480. [PMID: 37574111 DOI: 10.1016/j.joca.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/16/2023] [Accepted: 07/05/2023] [Indexed: 08/15/2023]
Abstract
OBJECTIVE Capsular repair aims to minimize damage to the hip joint capsular complex (HJCC) and subsequent dislocation risk following total hip arthroplasty (THA). Numerous explanations for its success have been advocated, including neuromuscular feedback loops originating from within the intact HJCC. This research investigates the hypothesis that the HJCC contributes to hip joint stability by analyzing HJCC innervation. METHOD Twenty-nine samples from the anterior, medial, and lateral aspects of the midportion HJCC of 29 individuals were investigated stereologically and immunohistochemically to identify encapsulated mechanoreceptors according to a modified Freeman and Wyke classification, totaling 11,745 sections. Consecutive slices were observed to determine the nerve course within the HJCC. RESULTS Few encapsulated mechanoreceptors were found in the HJCC subregions and overlying tissues across the cohort studied. Of regions studied, no significant regional differences in the density of mechanoreceptors were found. No significant difference in mechanoreceptor density was found between sides (left, 10.2×10-4/mm3, 4.0×10-4 - 19.0×10-4/mm3; right 12.9×10-4/mm3, 5.0×10-4 - 22.0×10-4/mm3; mean, 95% confidence intervals) sexes (female 10.4×10-4/mm3, 4.0×10-4 - 18.0×10-4/mm3; male 11.6×10-4/mm3, 5.0×10-4 - 20.0×10-4/mm3; mean, 95% confidence intervals), nor in correlation with age demographics. Myelinated nerves coursed consistently within the HJCC in various orientations. CONCLUSION Sparse mechanoreceptor density suggests that the HJCC contributes to a limited extent to hip joint stabilization. HJCC nerve terminals may potentially contribute to neuromuscular feedback loops with associated muscles to mediate joint stability in tandem with the active and passive components of the joint.
Collapse
Affiliation(s)
- Joanna C L Tomlinson
- School of Anatomy, University of Bristol, Bristol, United Kingdom; Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, Otago, New Zealand.
| | - Johann Zwirner
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Oral Sciences, University of Otago, Dunedin, Otago, New Zealand
| | - Dorothy E Oorschot
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, Otago, New Zealand
| | - Markus Morawski
- Paul Flechsig Institute for Brain Research, Medical Faculty, University of Leipzig, Leipzig, Saxony, Germany
| | - Benjamin Ondruschka
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ming Zhang
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, Otago, New Zealand
| | - Niels Hammer
- Division of Macroscopic and Clinical Anatomy, Gottfried Schatz Research Center, Medical University of Graz, Graz, Styria, Austria; Division of Biomechatronics, Fraunhofer Institute for Machine Tools and Forming Technology (Fraunhofer IWU), Dresden, Saxony, Germany; Department of Orthopaedic and Trauma Surgery, University of Leipzig, Germany
| |
Collapse
|
44
|
Mesías RE, Zaki Y, Guevara CA, Friedman LG, Hussein A, Therrien K, Magee AR, Tzavaras N, Del Valle P, Baxter MG, Huntley GW, Benson DL. Development and cadherin-mediated control of prefrontal corticostriatal projections in mice. iScience 2023; 26:108002. [PMID: 37854688 PMCID: PMC10579443 DOI: 10.1016/j.isci.2023.108002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/07/2023] [Accepted: 09/18/2023] [Indexed: 10/20/2023] Open
Abstract
Action-outcome associations depend on prefrontal cortex (PFC) projections to the dorsal striatum. To assess how these projections form, we measured PFC axon patterning, synapse formation, and functional maturation in the postnatally developing mouse striatum. Using Hotspot analysis, we show that PFC axons form an adult-like pattern of clustered terminations in the first postnatal week that remains largely stable thereafter. PFC-striatal synaptic strength is adult-like by P21, while excitatory synapse density increases until adulthood. We then tested how the targeted deletion of a candidate adhesion/guidance protein, Cadherin-8 (Cdh8), from corticostriatal neurons regulates pathway development. Mutant mice showed diminished PFC axon targeting and reduced spontaneous glutamatergic synaptic activity in the dorsal striatum. They also exhibited impaired behavioral performance in action-outcome learning. The data show that PFC-striatal axons form striatal territories through an early, directed growth model and they highlight essential contributions of Cdh8 to the anatomical and functional features critical for the formation of action-outcome associations.
Collapse
Affiliation(s)
- Roxana E. Mesías
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yosif Zaki
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Christopher A. Guevara
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lauren G. Friedman
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ayan Hussein
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Karen Therrien
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alexandra R. Magee
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nikolaos Tzavaras
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pamela Del Valle
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mark G. Baxter
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Section on Comparative Medicine, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - George W. Huntley
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Deanna L. Benson
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
45
|
Oginga FO, Mpofana T. The impact of early life stress and schizophrenia on motor and cognitive functioning: an experimental study. Front Integr Neurosci 2023; 17:1251387. [PMID: 37928003 PMCID: PMC10622780 DOI: 10.3389/fnint.2023.1251387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/22/2023] [Indexed: 11/07/2023] Open
Abstract
Background Early life stress (ELS) and parental psychopathology, such as schizophrenia (SZ), have been associated with altered neurobiological and behavioral outcomes later in life. Previous studies have investigated the effects of ELS and parental SZ on various aspects of behavior, however, we have studied the combined effects of these stressors and how they interact, as individuals in real-life situations may experience multiple stressors simultaneously. Objective The aim of this study was to investigate the impact of ELS and schizophrenia on locomotor activity, anxiety-like behavior, exploratory tendencies, and spatial memory in Sprague Dawley (SD) rats. Methods Male and female SD pups were randomly assigned to eight groups: control, ELS, schizophrenia, and ELS + schizophrenia. ELS was induced by prenatal stress (maternal stress) and maternal separation (MS) during the first 2 weeks of life, while SZ was induced by subcutaneous administration of ketamine. Behavioral tests included an open field test (OFT) for motor abilities and a Morris water maze (MWM) for cognitive abilities. ANOVA and post hoc Tukey tests were utilized to analyze the data. Results Our results show that ELS and parental psychopathology had enduring effects on SZ symptoms, particularly psychomotor retardation (p < 0.05). The OFT revealed increased anxiety-like behavior in the ELS group (p = 0.023) and the parental psychopathology group (p = 0.017) compared to controls. The combined ELS and parental psychopathology group exhibited the highest anxiety-like behavior (p = 0.006). The MWM analysis indicated impaired spatial memory in the ELS group (p = 0.012) and the combined ELS and parental psychopathology group (p = 0.003) compared to controls. Significantly, the exposure to ELS resulted in a decrease in the population of glial fibrillary acidic protein-positive (GFAP+) astrocytes. However, this effect was reversed by positive parental mental health. Conclusion Our findings highlight the interactive effects of ELS and parental psychopathology on anxiety-like behavior and spatial memory in rats. ELS was linked to increased anxiety-like behavior, while SZ was associated with anhedonia-like behavior. Positive parenting augments neuroplasticity, synaptic function, and overall cognitive capacities.
Collapse
Affiliation(s)
- Fredrick Otieno Oginga
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban, South Africa
| | - Thabisile Mpofana
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban, South Africa
- Department of Human Physiology, School of Bio-molecular & Chemical Sciences Mandela University, University Way, Summerstrand, Gqeberha, South Africa
| |
Collapse
|
46
|
Sadeghinezhad J, Yarmahmoudi F, Dehghan MM, Mohajeri SF, Roomiani E, Bojarzadeh H, Asl MA, Saeidi A, Silva MD. Stereological study of testes following experimentally-induced unilateral cryptorchidism in rats. Clin Exp Reprod Med 2023; 50:160-169. [PMID: 37643829 PMCID: PMC10477409 DOI: 10.5653/cerm.2023.06058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/20/2023] [Accepted: 06/17/2023] [Indexed: 08/31/2023] Open
Abstract
OBJECTIVE Cryptorchidism is one of the main causes of infertility and can result in testicular cancer. This study aimed to present quantitative data on the damage caused by cryptorchidism using stereological analysis. METHODS Thirty newborn rats were randomly divided into control and experimental groups. The experimental group underwent surgery to induce unilateral cryptorchidism in the left testis, whereas the control group underwent a sham surgical procedure 18 days after birth. The testes were removed at designated time points (40, 63, and 90 days after birth) for stereological evaluation and sperm analysis. Total testicular volume, interstitial tissue volume, seminiferous tubule volume and length, and seminiferous epithelium volume and surface area were measured. Other parameters, such as sperm count, sperm morphology, and sperm tail length, were also examined. RESULTS Statistically significant differences (p<0.05) were observed between the experimental and the control groups at different ages regarding the volumes of various parameters, including the surface area of the germinal layer, the length of the seminiferous tubules, sperm count, and sperm morphology. However, no significant differences were observed in the epithelial volume and the sperm tail length of the groups. CONCLUSION Given the substantial effect of cryptorchidism on different testicular parameters, as well as the irreversible damage it causes in the testes, it is important to take this abnormality seriously to prevent these consequences.
Collapse
Affiliation(s)
- Javad Sadeghinezhad
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Fatemeh Yarmahmoudi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohammad Mehdi Dehghan
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Saeed Farzad Mohajeri
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ehsan Roomiani
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hadis Bojarzadeh
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mahdi Aghabalazadeh Asl
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ava Saeidi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Margherita De Silva
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
47
|
Colcimen N, Altindag F. Evaluation of the effects of sinapic acid and ellagic acid on sciatic nerve in experimental diabetic rats by immunohistochemical and stereological methods. J Chem Neuroanat 2023; 131:102274. [PMID: 37085061 DOI: 10.1016/j.jchemneu.2023.102274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/23/2023]
Abstract
In our study, we aimed to examine the effects of sinapic acid and ellagic acid on neuropathy caused by diabetes in peripheral nerves. Fifty-six adult Wistar Albino rats Control, Diabetes, Diabetes+Sinapic Acid, Diabetes+Ellagic Acid, Diabetes+Sinapic Acid+Ellagic Acid, Sinapic Acid, Ellagic Acid and as Sinapic Acid+Ellagic Acid, they were randomly divided into eight groups(n:7). A single dose of 50 mg/kg streptozotocin(STZ) was administered intraperitoneally to the groups to be diagnosed with diabetes. Diabetes was accepted as blood glucose value of 250 mg/dL and above. Streptozotocin was given to the diabetes groups, 20 mg/kg/day intragastric Sinapic acid to the Sinapic acid groups, 50 mg/kg/day intragastric Ellagic acid to the Ellagic acid groups for 28 days. At the end of the experiment, 0.5 cm of the right sciatic nerve was removed. It was fixed in 10% formaldehyde. After histological follow-up, it was embedded in paraffin, 5 µm thick sections were taken. Immunohistochemical staining with Fibrinogen alpha, Laminin β-1 and Collagen IV antibodies and stereological evaluation was performed by Physical Dissector Combination method. Collagen IV was used in control, diabetes and treatment groups showed similar immunostaining. Fibrinogen alpha was observed to be increased in the vessel wall in the diabetes group, while the uptake was minimal in the control and treatment groups. While Laminin β-1 was increased in the diabetes group compared to the control group, immunostaining was observed in the treatment groups similar to the control group. It was observed that the total nerve area diabetes group decreased significantly compared to the control group, and the treatment groups, except for D+EA group were similar to the control group, but there was no statistically significant difference. The axon numbers in the diabetes group decreased significantly compared to the control group, and the treatment groups were similar to the control group, and there was no statistically significant difference (P > 0.05). It was determined that Sinapic Acid and Ellagic acid had positive effects on the nervous tissue in diabetic neuropathy.
Collapse
Affiliation(s)
- Nese Colcimen
- Department of Histology and Embryology, Medical School of Van Yuzuncu Yil University, Van, Turkey.
| | - Fikret Altindag
- Department of Histology and Embryology, Medical School of Van Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
48
|
Cano-Astorga N, Plaza-Alonso S, DeFelipe J, Alonso-Nanclares L. 3D synaptic organization of layer III of the human anterior cingulate and temporopolar cortex. Cereb Cortex 2023; 33:9691-9708. [PMID: 37455478 PMCID: PMC10472499 DOI: 10.1093/cercor/bhad232] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023] Open
Abstract
The human anterior cingulate and temporopolar cortices have been proposed as highly connected nodes involved in high-order cognitive functions, but their synaptic organization is still basically unknown due to the difficulties involved in studying the human brain. Using Focused Ion Beam/Scanning Electron Microscopy (FIB/SEM) to study the synaptic organization of the human brain obtained with a short post-mortem delay allows excellent results to be obtained. We have used this technology to analyze layer III of the anterior cingulate cortex (Brodmann area 24) and the temporopolar cortex, including the temporal pole (Brodmann area 38 ventral and dorsal) and anterior middle temporal gyrus (Brodmann area 21). Our results, based on 6695 synaptic junctions fully reconstructed in 3D, revealed that Brodmann areas 24, 21 and ventral area 38 showed similar synaptic density and synaptic size, whereas dorsal area 38 displayed the highest synaptic density and the smallest synaptic size. However, the proportion of the different types of synapses (excitatory and inhibitory), the postsynaptic targets, and the shapes of excitatory and inhibitory synapses were similar, regardless of the region examined. These observations indicate that certain aspects of the synaptic organization are rather homogeneous, whereas others show specific variations across cortical regions.
Collapse
Affiliation(s)
- Nicolás Cano-Astorga
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Doctor Arce 37, 28002 Madrid, Spain
- PhD Program in Neuroscience, Autonoma de Madrid University - Cajal Institute, 28029 Madrid, Spain
| | - Sergio Plaza-Alonso
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Doctor Arce 37, 28002 Madrid, Spain
| | - Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Doctor Arce 37, 28002 Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Valderrebollo 5, 28031 Madrid, Spain
| | - Lidia Alonso-Nanclares
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Doctor Arce 37, 28002 Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Valderrebollo 5, 28031 Madrid, Spain
| |
Collapse
|
49
|
Balossier A, Delsanti C, Troude L, Thomassin JM, Roche PH, Régis J. Assessing Tumor Volume for Sporadic Vestibular Schwannomas: A Comparison of Methods of Volumetry. Stereotact Funct Neurosurg 2023; 101:265-276. [PMID: 37531945 DOI: 10.1159/000531337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/16/2023] [Indexed: 08/04/2023]
Abstract
INTRODUCTION The size of vestibular schwannomas (VS) is a major factor guiding the initial decision of treatment and the definition of tumor control or failure. Accurate measurement and standardized definition are mandatory; yet no standard exist. Various approximation methods using linear measures or segmental volumetry have been reported. We reviewed different methods of volumetry and evaluated their correlation and agreement using our own historical cohort. METHODS We selected patients treated for sporadic VS by Gammaknife radiosurgery (GKRS) in our department. Using the stereotactic 3D T1 enhancing MRI on the day of GKRS, 4 methods of volumetry using linear measurements (5-axis, 3-axis, 3-axis-averaged, and 1-axis) and segmental volumetry were compared to each other. The degree of correlation was evaluated using an intraclass correlation test (ICC 3,1). The agreement between the different methods was evaluated using Bland-Altman diagrams. RESULTS A total of 2,188 patients were included. We observed an excellent ICC between 5-axis volumetry (0.98), 3-axis volumetry (0.96), and 3-axis-averaged volumetry (0.96) and segmental volumetry, respectively, irrespective of the Koos grade or Ohata classification. The ICC for 1-axis volumetry was lower (0.72) and varied depending on the Koos and Ohata subgroups. None of these methods were substitutable. CONCLUSION Although segmental volumetry is deemed the most accurate method, it takes more effort and requires sophisticated computation systems compared to methods of volumetry using linear measurements. 5-axis volumetry affords the best adequacy with segmental volumetry among all methods under assessment, irrespective of the shape of the tumor. 1-axis volumetry should not be used.
Collapse
Affiliation(s)
- Anne Balossier
- Functional and Stereotactic Neurosurgery, AP-HM, Timone Hospital, Marseille, France
- INSERM, INS, Inst Neurosci Syst, Aix Marseille University, Marseille, France
| | - Christine Delsanti
- Functional and Stereotactic Neurosurgery, AP-HM, Timone Hospital, Marseille, France
| | - Lucas Troude
- Department of Neurosurgery, AP-HM, North University Hospital, Marseille, France
| | - Jean-Marc Thomassin
- Department of Head and Neck Surgery, AP-HM, Timone Hospital, Marseille, France
| | - Pierre-Hugues Roche
- Department of Neurosurgery, AP-HM, North University Hospital, Marseille, France
| | - Jean Régis
- Functional and Stereotactic Neurosurgery, AP-HM, Timone Hospital, Marseille, France
- INSERM, INS, Inst Neurosci Syst, Aix Marseille University, Marseille, France
| |
Collapse
|
50
|
Paulson OB, Schousboe A, Hultborn H. The history of Danish neuroscience. Eur J Neurosci 2023; 58:2893-2960. [PMID: 37477973 DOI: 10.1111/ejn.16062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/04/2023] [Accepted: 05/29/2023] [Indexed: 07/22/2023]
Abstract
The history of Danish neuroscience starts with an account of impressive contributions made at the 17th century. Thomas Bartholin was the first Danish neuroscientist, and his disciple Nicolaus Steno became internationally one of the most prominent neuroscientists in this period. From the start, Danish neuroscience was linked to clinical disciplines. This continued in the 19th and first half of the 20th centuries with new initiatives linking basic neuroscience to clinical neurology and psychiatry in the same scientific environment. Subsequently, from the middle of the 20th century, basic neuroscience was developing rapidly within the preclinical university sector. Clinical neuroscience continued and was even reinforced during this period with important translational research and a close co-operation between basic and clinical neuroscience. To distinguish 'history' from 'present time' is not easy, as many historical events continue in present time. Therefore, we decided to consider 'History' as new major scientific developments in Denmark, which were launched before the end of the 20th century. With this aim, scientists mentioned will have been born, with a few exceptions, no later than the early 1960s. However, we often refer to more recent publications in documenting the developments of initiatives launched before the end of the last century. In addition, several scientists have moved to Denmark after the beginning of the present century, and they certainly are contributing to the present status of Danish neuroscience-but, again, this is not the History of Danish neuroscience.
Collapse
Affiliation(s)
- Olaf B Paulson
- Neurobiology Research Unit, Department of Neurology, Rigshospitalet, 9 Blegdamsvej, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hans Hultborn
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|