1
|
Schnell JT, Briviesca RL, Kim T, Charbonnier LM, Henderson LA, van Wijk F, Nigrovic PA. The 'T reg paradox' in inflammatory arthritis. Nat Rev Rheumatol 2025; 21:9-21. [PMID: 39653758 DOI: 10.1038/s41584-024-01190-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2024] [Indexed: 12/12/2024]
Abstract
Classic regulatory T (Treg) cells expressing CD4 and the hallmark transcription factor FOXP3 are integral to the prevention of multi-system autoimmunity. However, immune-mediated arthritis is often associated with increased numbers of Treg cells in the inflamed joints. To understand these seemingly conflicting observations, which we collectively describe as 'the Treg paradox', we provide an overview of Treg cell biology with a focus on Treg cell heterogeneity, function and dysfunction in arthritis. We discuss how the inflamed environment constrains the immunosuppressive activity of Treg cells while also promoting the differentiation of TH17-like Treg cell, exTreg cell (effector T cells that were formerly Treg cells), and osteoclastogenic Treg cell subsets that mediate tissue injury. We present a new framework to understand Treg cells in joint inflammation and define potential strategies for Treg cell-directed interventions in human inflammatory arthritis.
Collapse
Affiliation(s)
- Julia T Schnell
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Taehyeung Kim
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA
| | | | | | - Femke van Wijk
- Centre for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Peter A Nigrovic
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA, USA.
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
2
|
Cassano A, Chong AS, Alegre ML. Tregs in transplantation tolerance: role and therapeutic potential. FRONTIERS IN TRANSPLANTATION 2023; 2:1217065. [PMID: 38993904 PMCID: PMC11235334 DOI: 10.3389/frtra.2023.1217065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/14/2023] [Indexed: 07/13/2024]
Abstract
CD4+ Foxp3+ regulatory T cells (Tregs) are indispensable for preventing autoimmunity, and they play a role in cancer and transplantation settings by restraining immune responses. In this review, we describe evidence for the importance of Tregs in the induction versus maintenance of transplantation tolerance, discussing insights into mechanisms of Treg control of the alloimmune response. Further, we address the therapeutic potential of Tregs as a clinical intervention after transplantation, highlighting engineered CAR-Tregs as well as expansion of donor and host Tregs.
Collapse
Affiliation(s)
- Alexandra Cassano
- Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Anita S. Chong
- Department of Surgery, University of Chicago, Chicago, IL, United States
| | - Maria-Luisa Alegre
- Department of Medicine, University of Chicago, Chicago, IL, United States
| |
Collapse
|
3
|
Yu F, Chang J, Li J, Li Z, Li Z, Zhang H, Liu Q. Protective effects of oridonin against osteoporosis by regulating immunity and activating the Wnt3a/β-catenin/VEGF pathway in ovariectomized mice. Int Immunopharmacol 2023; 118:110011. [PMID: 36924567 DOI: 10.1016/j.intimp.2023.110011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023]
Abstract
This study was performed with the aim of investigating the effect of oridonin (ORI) on estrogen deprivation-induced osteoporosis in mice and its mechanism. Animal experiments were used in this work to validate the anti-osteoporotic efficacy of ORI. Morphometric analysis was performed by micro-CT. A special protein meter was used to detect the content of immunoglobulin lgM, immunoglobulin lgG, complement C3 and C4 in the serum of mice. The expression of CD4+CD25+Foxp3+ Treg cell and CD4+/CD8+ lymphocyte subsets in mice was detected by flow cytometry. ELISA was used to detect the content of insulin-like growth factor (IGF-1), tumor necrosis factor (TNF-α), interleukin-1 (IL-1) and interleukin-6 (IL-6). In addition, key signaling molecules in the Wnt3a/β-catenin signaling pathway were detected by Western blotting. The results showed that compared with the model group, the contents of calcium and phosphorus in the femurs of mice in the ORI groups were increased, and the spleen coefficient was decreased. The ALP activity in the serum of mice in the high and medium dose ORI groups was decreased, and the uterine coefficient was increased. ORI significantly increased the maximum bending load and the maximum bending stress of the femurs of mice, increased the number of trabeculae, and repaired the bone microstructure. At the same time, ORI could significantly increase the levels of immunoglobulin (lgG and lgM) and complement (C3 and C4), increase the activity of peritoneal macrophages in mice, increase the expression of CD4+CD25+Foxp3+ Tregs and CD4+/CD8+ in the spleen, increase the content of IGF-1, reduce the content of TNF-α, IL-1 and IL-6 and increase the expression levels of VEGF, Wnt3a, p-GSK3β/GSK3β and β-catenin/Lamin in the femoral tissue. These results indicated that ORI might regulate the expression of VEGF through the Wnt3a/β-catenin signaling pathway, improve the immunity of mice, maintain the balance of the immune system, and promote angiogenesis, thereby improving the bone mineral density and bone tissue morphology of mice and playing an anti-osteoporotic role.
Collapse
Affiliation(s)
- Fengxiu Yu
- Basic Medical College, Shandong First Medical University & Shangdong Academy of Medical Sciences, Tai'an City, Shandong Province 271000, China
| | - Jin Chang
- Department of Oncology, The Second Affiliated Hospital of Shandong First Medical University, No. 366, Taishan Street, Tai'an City, Shandong Province 271000, China
| | - Jinglei Li
- Department of Medical Imaging, Taian Disabled Soldiers' Hospital of Shandong Province, No. 123, Taishan Street, Tai'an City, Shandong Province 271000, China
| | - Zhen Li
- Department of Clinical Laboratory, The Second Affiliated Hospital of Shandong First Medical University, No. 366, Taishan Road, Tai'an City, Shandong Province 271000, China
| | - Zhen Li
- Department of Oncology, The Second Affiliated Hospital of Shandong First Medical University, No. 366, Taishan Road, Tai'an City, Shandong Province 271000, China
| | - Hong Zhang
- Department of Hematology, The Second Affiliated Hospital of Shandong First Medical University, No. 366, Taishan Road, Tai'an City, Shandong Province 271000, China
| | - Qinghua Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Shandong First Medical University, No. 366, Taishan Road, Tai'an City, Shandong Province 271000, China.
| |
Collapse
|
4
|
Mohammad TAM. Efficacy of PF-06651600 in alleviating the pro-inflammatory capacity of CD4 + T cells in rheumatoid arthritis patients. Int J Rheum Dis 2023; 26:740-750. [PMID: 36872080 DOI: 10.1111/1756-185x.14643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/07/2023]
Abstract
INTRODUCTION PF-06651600 is a highly specific inhibitor of Janus-activated kinase 3 and the Tec family of kinases. Regarding its dual function in the inhibition of both γc cytokine receptors and T cell receptor signaling, the present study aimed at evaluating the impact of PF-06651600 on the status of T-helper cells (Th) as the central game players in the pathogenesis of rheumatoid arthritis (RA). METHOD TCD4+ cells were isolated from 34 RA patients and 15 healthy control individuals and were evaluated after treatment with PF-06651600. RESULTS RA patients had higher percentages of TCD4+ cells, CD4+ PD-1+ cells, and CD4+ PD-1+ TIGIT+ cells compared to a healthy control group and the TCD4+ cells of these patients showed higher interferon (IFN)-γ, tumor necrosis factor (TNF)-α, and interleukin (IL)-17 secretion along with higher messenger RNA (mRNA) expressions of T-bet. The percentage of CD4+ PD-1+ TIGIT+ cells showed a reverse correlation with the Disease Activity Score of 28 joints of the RA patients. PF-06651600 caused a significant decrease in the mRNA expressions of T-bet and RAR-related orphan receptor γt and the secretion of interferon (IFN)-γ and TNF-α in TCD4+ cells of RA patients. On the other hand, the population of CD4+ PD-1+ TIGIT+ cells was expanded under the influence of PF-06651600. This treatment also reduced the proliferation of TCD4+ cells. CONCLUSION PF-06651600 demonstrated a potential to modulate the activity of TCD4+ cells in RA patients and to reduce the commitment of Th cells to the pathogenic Th1 and Th17 subsets. Further, it caused TCD4+ cells to gain an exhausted phenotype which is associated with better prognosis in RA patients.
Collapse
Affiliation(s)
- Talar Ahmad Merza Mohammad
- College of Pharmacy, Department of Pharmacology and Toxicology, Clinical Pharmacy, Hawlar Medical University, Erbil, Iraq
| |
Collapse
|
5
|
Iglesias M, Brennan DC, Larsen CP, Raimondi G. Targeting inflammation and immune activation to improve CTLA4-Ig-based modulation of transplant rejection. Front Immunol 2022; 13:926648. [PMID: 36119093 PMCID: PMC9478663 DOI: 10.3389/fimmu.2022.926648] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
For the last few decades, Calcineurin inhibitors (CNI)-based therapy has been the pillar of immunosuppression for prevention of organ transplant rejection. However, despite exerting effective control of acute rejection in the first year post-transplant, prolonged CNI use is associated with significant side effects and is not well suited for long term allograft survival. The implementation of Costimulation Blockade (CoB) therapies, based on the interruption of T cell costimulatory signals as strategy to control allo-responses, has proven potential for better management of transplant recipients compared to CNI-based therapies. The use of the biologic cytotoxic T-lymphocyte associated protein 4 (CTLA4)-Ig is the most successful approach to date in this arena. Following evaluation of the BENEFIT trials, Belatacept, a high-affinity version of CTLA4-Ig, has been FDA approved for use in kidney transplant recipients. Despite its benefits, the use of CTLA4-Ig as a monotherapy has proved to be insufficient to induce long-term allograft acceptance in several settings. Multiple studies have demonstrated that events that induce an acute inflammatory response with the consequent release of proinflammatory cytokines, and an abundance of allograft-reactive memory cells in the recipient, can prevent the induction of or break established immunomodulation induced with CoB regimens. This review highlights advances in our understanding of the factors and mechanisms that limit CoB regimens efficacy. We also discuss recent successes in experimentally designing complementary therapies that favor CTLA4-Ig effect, affording a better control of transplant rejection and supporting their clinical applicability.
Collapse
Affiliation(s)
- Marcos Iglesias
- Vascularized and Composite Allotransplantation (VCA) Laboratory, Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- *Correspondence: Giorgio Raimondi, ; Marcos Iglesias,
| | - Daniel C. Brennan
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Christian P. Larsen
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Giorgio Raimondi
- Vascularized and Composite Allotransplantation (VCA) Laboratory, Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- *Correspondence: Giorgio Raimondi, ; Marcos Iglesias,
| |
Collapse
|
6
|
Figueroa-Romero C, Monteagudo A, Murdock BJ, Famie JP, Webber-Davis IF, Piecuch CE, Teener SJ, Pacut C, Goutman SA, Feldman EL. Tofacitinib Suppresses Natural Killer Cells In Vitro and In Vivo: Implications for Amyotrophic Lateral Sclerosis. Front Immunol 2022; 13:773288. [PMID: 35197969 PMCID: PMC8859451 DOI: 10.3389/fimmu.2022.773288] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/18/2022] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal and incurable neurodegenerative disease with few therapeutic options. However, the immune system, including natural killer (NK) cells, is linked to ALS progression and may constitute a viable therapeutic ALS target. Tofacitinib is an FDA-approved immunomodulating small molecule which suppresses immune cell function by blocking proinflammatory cytokine signaling. This includes the cytokine IL-15 which is the primary cytokine associated with NK cell function and proliferation. However, the impact of tofacitinib on NK activation and cytotoxicity has not been thoroughly investigated, particularly in ALS. We therefore tested the ability of tofacitinib to suppress cytotoxicity and cytokine production in an NK cell line and in primary NK cells derived from control and ALS participants. We also investigated whether tofacitinib protected ALS neurons from NK cell cytotoxicity. Finally, we conducted a comprehensive pharmacokinetic study of tofacitinib in mice and tested the feasibility of administration formulated in chow. Success was assessed through the impact of tofacitinib on peripheral NK cell levels in mice. We found tofacitinib suppressed IL-15-induced activation as measured by STAT1 phosphorylation, cytotoxicity, pro-inflammatory gene expression, and pro-inflammatory cytokine secretion in both an NK cell line and primary NK cells. Furthermore, tofacitinib protected ALS neurons from NK cell-mediated cytotoxicity. In mice, we found tofacitinib bioavailability was 37% in both male and female mice; using these data we formulated mouse containing low and high doses of tofacitinib and found that the drug suppressed peripheral NK cell levels in a dose-dependent manner. These results demonstrate that tofacitinib can suppress NK cell function and may be a viable therapeutic strategy for ALS.
Collapse
Affiliation(s)
| | - Alina Monteagudo
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Benjamin J Murdock
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Joshua P Famie
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Ian F Webber-Davis
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Caroline E Piecuch
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Samuel J Teener
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Crystal Pacut
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Stephen A Goutman
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
7
|
Georas SN, Donohue P, Connolly M, Wechsler ME. JAK inhibitors for asthma. J Allergy Clin Immunol 2021; 148:953-963. [PMID: 34625142 DOI: 10.1016/j.jaci.2021.08.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 02/06/2023]
Abstract
Asthma is an inflammatory disease of the airways characterized by intermittent episodes of wheezing, chest tightness, and cough. Many of the inflammatory pathways implicated in asthma involve cytokines and growth factors that activate Janus kinases (JAKs). The discovery of the JAK/signal transducer and activator of transcription (STAT) signaling pathway was a major breakthrough that revolutionized our understanding of cell growth and differentiation. JAK inhibitors are under active investigation for immune and inflammatory diseases, and they have demonstrated clinical efficacy in diseases such as rheumatoid arthritis and atopic dermatitis. Substantial preclinical data support the idea that inhibiting JAKs will ameliorate airway inflammation and hyperreactivity in asthma. Here, we review the rationale for use of JAK inhibitors in different asthma endotypes as well as the preclinical and early clinical evidence supporting such use. We review preclinical data from the use of systemic and inhaled JAK inhibitors in animal models of asthma and safety data based on the use of JAK inhibitors in other diseases. We conclude that JAK inhibitors have the potential to usher in a new era of anti-inflammatory treatment for asthma.
Collapse
Affiliation(s)
- Steve N Georas
- Division of Pulmonary and Critical Care Medicine, University of Rochester Medical Center, Rochester, NY.
| | | | - Margaret Connolly
- Division of Pulmonary and Critical Care Medicine, University of Rochester Medical Center, Rochester, NY
| | | |
Collapse
|
8
|
Li X, Xu H, Huang J, Luo D, Lv S, Lu X, Xiao C. Dysfunctions, Molecular Mechanisms, and Therapeutic Strategies of Regulatory T Cells in Rheumatoid Arthritis. Front Pharmacol 2021; 12:716081. [PMID: 34512345 PMCID: PMC8428974 DOI: 10.3389/fphar.2021.716081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/19/2021] [Indexed: 12/20/2022] Open
Abstract
Regulatory T cells (Tregs) represent a distinct subpopulation of CD4+ T lymphocytes that promote immune tolerance and maintain immune system homeostasis. The dysfunction of Tregs is tightly associated with rheumatoid arthritis (RA). Although the complex pathogenic processes of RA remain unclear, studies on Tregs in RA have achieved substantial progress not only in fundamental research but also in clinical application. This review discusses the current knowledge of the characterizations, functions, and molecular mechanisms of Tregs in the pathogenesis of RA, and potential therapies for these disorders are also involved.
Collapse
Affiliation(s)
- Xiaoya Li
- The Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China.,Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Huihui Xu
- Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Huang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Dan Luo
- Department of Ophthalmology, Traditional Chinese Medicine Hospital of Changping District, Beijing, China
| | - Shuang Lv
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Xiangchen Lu
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China.,School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Cheng Xiao
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China.,Department of Emergency, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
9
|
The Defect in Regulatory T Cells in Psoriasis and Therapeutic Approaches. J Clin Med 2021; 10:jcm10173880. [PMID: 34501328 PMCID: PMC8432197 DOI: 10.3390/jcm10173880] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 08/26/2021] [Indexed: 12/11/2022] Open
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by accelerated tumor necrosis factor-α/interleukin (IL)-23/IL-17 axis. Patients with psoriasis manifest functional defects in CD4+CD25+ forkhead box protein 3 (Foxp3)+ regulatory T cells (Tregs), which suppress the excess immune response and mediate homeostasis. Defects in Tregs contribute to the pathogenesis of psoriasis and may attribute to enhanced inhibition and/or impaired stimulation of Tregs. IL-23 induces the conversion of Tregs into type 17 helper T (Th17) cells. IL-17A reduces transforming growth factor (TGF)-β1 production, Foxp3 expression, and suppresses Treg activity. Short-chain fatty acids (SCFAs), butyrate, propionate, and acetate are microbiota-derived fermentation products that promote Treg development and function by inducing Foxp3 expression or inducing dendritic cells or intestinal epithelial cells to produce retinoic acids or TGF-β1, respectively. The gut microbiome of patients with psoriasis revealed reduced SCFA-producing bacteria, Bacteroidetes, and Faecallibacterium, which may contribute to the defect in Tregs. Therapeutic agents currently used, viz., anti-IL-23p19 or anti-IL-17A antibodies, retinoids, vitamin D3, dimethyl fumarate, narrow-band ultraviolet B, or those under development for psoriasis, viz., signal transducer and activator of transcription 3 inhibitors, butyrate, histone deacetylase inhibitors, and probiotics/prebiotics restore the defected Tregs. Thus, restoration of Tregs is a promising therapeutic target for psoriasis.
Collapse
|
10
|
Iglesias M, Khalifian S, Oh BC, Zhang Y, Miller D, Beck S, Brandacher G, Raimondi G. A short course of tofacitinib sustains the immunoregulatory effect of CTLA4-Ig in the presence of inflammatory cytokines and promotes long-term survival of murine cardiac allografts. Am J Transplant 2021; 21:2675-2687. [PMID: 33331121 DOI: 10.1111/ajt.16456] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 01/25/2023]
Abstract
Costimulation blockade-based regimens are a promising strategy for management of transplant recipients. However, maintenance immunosuppression via CTLA4-Ig monotherapy is characterized by high frequency of rejection episodes. Recent evidence suggests that inflammatory cytokines contribute to alloreactive T cell activation in a CD28-independent manner, a reasonable contributor to the limited efficacy of CTLA4-Ig. In this study, we investigated the possible synergism of a combined short-term inhibition of cytokine signaling and CD28 engagement on the modulation of rejection. Our results demonstrate that the JAK/STAT inhibitor tofacitinib restored the immunomodulatory effect of CTLA4-Ig on mouse alloreactive T cells in the presence of inflammatory cytokines. Tofacitinib exposure conferred dendritic cells with a tolerogenic phenotype reducing their cytokine secretion and costimulatory molecules expression. JAK inhibition also directly affected T cell activation. In vivo, the combination of CTLA4-Ig and tofacitinib induced long-term survival of heart allografts and, importantly, it was equally effective when using grafts subjected to prolonged ischemia. Transplant survival correlated with a reduction in effector T cells and intragraft accumulation of regulatory T cells. Collectively, our studies demonstrate a powerful synergism between CTLA4-Ig and tofacitinib and suggest their combined use is a promising strategy for improved management of transplanted patients.
Collapse
Affiliation(s)
- Marcos Iglesias
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Saami Khalifian
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Byoung C Oh
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yichuan Zhang
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Devin Miller
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sarah Beck
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Gerald Brandacher
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Giorgio Raimondi
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Untwining Anti-Tumor and Immunosuppressive Effects of JAK Inhibitors-A Strategy for Hematological Malignancies? Cancers (Basel) 2021; 13:cancers13112611. [PMID: 34073410 PMCID: PMC8197909 DOI: 10.3390/cancers13112611] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/18/2021] [Accepted: 05/22/2021] [Indexed: 01/02/2023] Open
Abstract
Simple Summary The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway is aberrantly activated in many malignancies. Inhibition of this pathway via JAK inhibitors (JAKinibs) is therefore an attractive therapeutic strategy underlined by Ruxolitinib (JAK1/2 inhibitor) being approved for the treatment of myeloproliferative neoplasms. As a consequence of the crucial role of the JAK-STAT pathway in the regulation of immune responses, inhibition of JAKs suppresses the immune system. This review article provides a thorough overview of the current knowledge on JAKinibs’ effects on immune cells in the context of hematological malignancies. We also discuss the potential use of JAKinibs for the treatment of diseases in which lymphocytes are the source of the malignancy. Abstract The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway propagates signals from a variety of cytokines, contributing to cellular responses in health and disease. Gain of function mutations in JAKs or STATs are associated with malignancies, with JAK2V617F being the main driver mutation in myeloproliferative neoplasms (MPN). Therefore, inhibition of this pathway is an attractive therapeutic strategy for different types of cancer. Numerous JAK inhibitors (JAKinibs) have entered clinical trials, including the JAK1/2 inhibitor Ruxolitinib approved for the treatment of MPN. Importantly, loss of function mutations in JAK-STAT members are a cause of immune suppression or deficiencies. MPN patients undergoing Ruxolitinib treatment are more susceptible to infections and secondary malignancies. This highlights the suppressive effects of JAKinibs on immune responses, which renders them successful in the treatment of autoimmune diseases but potentially detrimental for cancer patients. Here, we review the current knowledge on the effects of JAKinibs on immune cells in the context of hematological malignancies. Furthermore, we discuss the potential use of JAKinibs for the treatment of diseases in which lymphocytes are the source of malignancies. In summary, this review underlines the necessity of a robust immune profiling to provide the best benefit for JAKinib-treated patients.
Collapse
|
12
|
Elkoshi Z. The Binary Classification of Protein Kinases. J Inflamm Res 2021; 14:929-947. [PMID: 33776467 PMCID: PMC7988341 DOI: 10.2147/jir.s303750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 02/24/2021] [Indexed: 12/14/2022] Open
Abstract
In an earlier publication a binary model for chronic diseases classification has been proposed. According to the model, chronic diseases were classified as “high Treg” or “low Treg” diseases, depending on whether the immune response is anti- or pro-inflammatory and assuming that regulatory T cells are major determinants of the response. It turned out that most cancers are “high Treg” diseases, while autoimmune diseases are “low Treg”. This paper proposes a molecular cause for this binary response. The mechanism proposed depends on the effect of protein kinases on the immune system. Thus, protein kinases are classified as anti- or pro-inflammatory kinases depending on whether they drive “high Treg” or “low Treg” diseases. Observations reported in the earlier publication can be described in terms of anti-inflammatory kinase (AIK) or pro-inflammatory kinase (PIK) activity. Analysis of literature data reveals that the two classes of kinases display distinctive properties relating to their interactions with pathogens and environmental factors. Pathogens that promote Treg activity (“high Treg” pathogens) activate AIKs, while pathogens that suppress Treg activity (“low Treg” pathogens) activate PIKs. Diseases driven by AIKs are associated with “high Treg” pathogens while those diseases driven by PIKs are associated with “low Treg” pathogens. By promoting the activity of AIKs, alcohol consumption increases the risk of “high Treg” cancers but decreases the risk of some “low Treg” autoimmune diseases. JAK1 gain-of-function mutations are observed at high frequencies in autoimmune diseases while JAK1 loss-of-function mutations are observed at high frequencies in cancers with high tumor-infiltrating Tregs. It should also be noted that the corresponding two classes of protein kinase inhibitors are mutually exclusive in terms of their approved therapeutic indications. There is no protein kinase inhibitor that is approved for the treatment of both autoimmune diseases and “high Treg” cancers. Although there are exceptions to the conclusions presented above, these conclusions are supported by the great bulk of published data. It therefore seems that the binary division of protein kinases is a useful tool for elucidating (at the molecular level) many distinctive properties of cancers and autoimmune diseases.
Collapse
Affiliation(s)
- Zeev Elkoshi
- Research and Development Department, Taro Pharmaceutical Industries Ltd, Haifa, Israel
| |
Collapse
|
13
|
Zhang S, Gan X, Qiu J, Ju Z, Gao J, Zhou J, Shi C, Zhu Y, Li Z. IL-10 derived from Hepatocarcinoma cells improves human induced regulatory T cells function via JAK1/STAT5 pathway in tumor microenvironment. Mol Immunol 2021; 133:163-172. [PMID: 33667986 DOI: 10.1016/j.molimm.2021.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/09/2020] [Accepted: 02/15/2021] [Indexed: 12/12/2022]
Abstract
Forkhead box P3 (Foxp3) expressing CD4+CD25+ regulatory T cells (Tregs), an essential subset of immune T cells for maintaining immune homeostasis is implicated as a negative regulator in an anti-tumor immune response. Current researches suggest that reducing tumor-infiltrating Tregs contribute to enhanced anti-cancer effect. However, the mechanism of infiltration of a large number of Tregs into tumor tissues is still unclear. In this study, human induced Tregs (iTregs) were co-cultured with human hepatocytes and various types of cancer cells (HepG2, NSCLC, and AsPC-1) supernatants. Foxp3, multiple cytokines, levels of apoptosis and suppressive ability of iTregs were detected by FACS. Western blot was employed to test of proteins. Impact of HepG2 supernatants on T cell subpopulations differentiation, cytokines in supernatants were examed by FACS and ELISA respectively. Anti-IL-10R antibody and JAK1 inhibitor were used to reconfirm the role of tumor-derived IL-10 play in the regulation on iTregs. Hepatocarcinoma cells (HCC) supernatants treatment increases Foxp3 stability and reduces apoptosis level in human iTregs without influencing its differentiation trend. Furthermore, IL-10 was found to be extremely higher in HCC supernatants than other groups, IL-10R blockade neutralize the effect of HCC supernatants on iTregs in vitro obviously. HCC supernatants also reversed IL-1β/6 triggered decline on Foxp3 which may be related to higher expression of JAK1 and elevated phosphorylation level of STAT5 induced by IL-10. Our results suggest that improved stability and abnormal accumulation of Tregs in tumor microenvironment is IL-10/JAK1/STAT5 signal pathway-dependent and provide a novel approach for improving the efficiency of anti-tumor immunotherapy.
Collapse
Affiliation(s)
- Shaopeng Zhang
- Research Unit of Liver Transplantation and Transplant Immunology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xiaojie Gan
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, 225 Changhai Road Shanghai, 200438, China
| | - Jiannan Qiu
- Research Unit of Liver Transplantation and Transplant Immunology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zheng Ju
- Research Unit of Liver Transplantation and Transplant Immunology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Ji Gao
- Research Unit of Liver Transplantation and Transplant Immunology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jinren Zhou
- Research Unit of Liver Transplantation and Transplant Immunology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Chengyu Shi
- Research Unit of Liver Transplantation and Transplant Immunology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yaqing Zhu
- Research Unit of Liver Transplantation and Transplant Immunology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Zhang Li
- Department of Hepatobiliary and Pancreatic Surgery, LiYang People's Hospital, No 70 Jianshe Westroad, LiYang, 213300, Jiangsu, China; Research Unit of Liver Transplantation and Transplant Immunology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
14
|
Hong SH, Kim HJ, Kang SJ, Park CG. Novel Immunomodulatory Approaches for Porcine Islet Xenotransplantation. Curr Diab Rep 2021; 21:3. [PMID: 33433735 DOI: 10.1007/s11892-020-01368-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/19/2020] [Indexed: 01/02/2023]
Abstract
PURPOSE OF REVIEW Porcine islet xenotransplantation is a promising alternative to overcome the shortage of organ donors. For the successful application of islet xenotransplantation, robust immune/inflammatory responses against porcine islets should be thoroughly controlled. Over the last few decades, there have been numerous attempts to surmount xenogeneic immune barriers. In this review, we summarize the current progress in immunomodulatory therapy for the clinical application of porcine islet xenotransplantation. RECENT FINDINGS Long-term graft survival of porcine islets was achieved by using anti-CD154 Ab-based regimens in a preclinical non-human primate (NHP) model. However, owing to a serious complication of thromboembolism in clinical trials, the development of an anti-CD154 Ab-sparing immunosuppressant procedure is required. The efficacy of new immunosuppressive practices that employ anti-CD40 Abs or other immunosuppressive reagents has been tested in a NHP model to realize their utility in porcine islet xenotransplantation. The recent progress in the development of immunomodulatory approaches, including the immunosuppressive regimen, which enables long-term graft survival in a pig-to-non-human primate islet xenotransplantation model, with their potential clinical applicability was reviewed.
Collapse
Affiliation(s)
- So-Hee Hong
- Xenotransplantation Research Center, Seoul National University, College of Medicine, Seoul, South Korea
- Department of Microbiology and Immunology, Seoul National University, College of Medicine, Seoul, South Korea
- Institute of Endemic Diseases, Seoul National University, College of Medicine, Seoul, South Korea
- Cancer Research Institute, Seoul National University, College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Seoul National University, College of Medicine, Seoul, South Korea
| | - Hyun-Je Kim
- Xenotransplantation Research Center, Seoul National University, College of Medicine, Seoul, South Korea
- Department of Microbiology and Immunology, Seoul National University, College of Medicine, Seoul, South Korea
- Institute of Endemic Diseases, Seoul National University, College of Medicine, Seoul, South Korea
| | - Seong-Jun Kang
- Xenotransplantation Research Center, Seoul National University, College of Medicine, Seoul, South Korea
- Department of Microbiology and Immunology, Seoul National University, College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Seoul National University, College of Medicine, Seoul, South Korea
| | - Chung-Gyu Park
- Xenotransplantation Research Center, Seoul National University, College of Medicine, Seoul, South Korea.
- Department of Microbiology and Immunology, Seoul National University, College of Medicine, Seoul, South Korea.
- Institute of Endemic Diseases, Seoul National University, College of Medicine, Seoul, South Korea.
- Cancer Research Institute, Seoul National University, College of Medicine, Seoul, South Korea.
- Department of Biomedical Sciences, Seoul National University, College of Medicine, Seoul, South Korea.
- Xenotransplantation Research Center, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.
| |
Collapse
|
15
|
de Wolf ACMT, Herberts CA, Hoefnagel MHN. Dawn of Monitoring Regulatory T Cells in (Pre-)clinical Studies: Their Relevance Is Slowly Recognised. Front Med (Lausanne) 2020; 7:91. [PMID: 32300597 PMCID: PMC7142310 DOI: 10.3389/fmed.2020.00091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/03/2020] [Indexed: 12/14/2022] Open
Abstract
Regulatory T cells (Tregs) have a prominent role in the control of immune homeostasis. Pharmacological impact on their activity or balance with effector T cells could contribute to (impaired) clinical responses or adverse events. Monitoring treatment-related effects on T cell subsets may therefore be part of (pre-)clinical studies for medicinal products. However, the extent of immune monitoring performed in studies for marketing authorisation and the degree of correspondence with data available in the public domain is not known. We evaluated the presence of T cell immunomonitoring in 46 registration dossiers of monoclonal antibodies indicated for immune-related disorders and published scientific papers. We found that the depth of Treg analysis in registration dossiers was rather small. Nevertheless, data on treatment-related Treg effects are available in public academia-driven studies (post-registration) and suggest that Tregs may act as a biomarker for clinical responses. However, public data are fragmented and obtained with heterogeneity of experimental approaches from a diversity of species and tissues. To reveal the potential added value of T cell (and particular Treg) evaluation in (pre-)clinical studies, more cell-specific data should be acquired, at least for medicinal products with an immunomodulatory mechanism. Therefore, extensive analysis of T cell subset contribution to clinical responses and the relevance of treatment-induced changes in their levels is needed. Preferably, industry and academia should work together to obtain these data in a standardised manner and to enrich our knowledge about T cell activity in disease pathogenesis and therapies. This will ultimately elucidate the necessity of T cell subset monitoring in the therapeutic benefit-risk assessment.
Collapse
|
16
|
Urbano PCM, He X, van Heeswijk B, Filho OPS, Tijssen H, Smeets RL, Joosten I, Koenen HJPM. TNFα-Signaling Modulates the Kinase Activity of Human Effector Treg and Regulates IL-17A Expression. Front Immunol 2020; 10:3047. [PMID: 32038615 PMCID: PMC6986271 DOI: 10.3389/fimmu.2019.03047] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/12/2019] [Indexed: 12/14/2022] Open
Abstract
Maintenance of regulatory T cells CD4+CD25highFOXP3+ (Treg) stability is vital for proper Treg function and controlling the immune equilibrium. Treg cells are heterogeneous and can reveal plasticity, exemplified by their potential to express IL-17A. TNFα-TNFR2 signaling controls IL-17A expression in conventional T cells via the anti-inflammatory ubiquitin-editing and kinase activity regulating enzyme TNFAIP3/A20 (tumor necrosis factor-alpha-induced protein 3). To obtain a molecular understanding of TNFα signaling on IL-17 expression in the human effector (effTreg, CD25highCD45RA−) Treg subset, we here studied the kinome activity regulation by TNFα signaling. Using FACS-sorted naïve (naïveTreg, CD25highCD45RA+) and effTreg subsets, we demonstrated a reciprocal relationship between TNFα and IL-17A expression; effTreg (TNFαlow/IL-17Ahigh) and naïveTreg (TNFαhigh/IL-17Alow). In effTreg, TNFα-TNFR2 signaling prevented IL-17A expression, whereas inhibition of TNFα signaling by clinically applied anti-TNF antibodies led to increased IL-17A expression. Inhibition of TNFα signaling led to reduced TNFAIP3 expression, which, by using siRNA inhibition of TNFAIP3, appeared causally linked to increased IL-17A expression in effTreg. Kinome activity screening of CD3/CD28-activated effTreg revealed that anti-TNF-mediated neutralization led to increased kinase activity. STRING association analysis revealed that the TNF suppression effTreg kinase activity network was strongly associated with kinases involved in TCR, JAK, MAPK, and PKC pathway signaling. Small-molecule-based inhibition of TCR and JAK pathways prevented the IL-17 expression in effTreg. Together, these findings stress the importance of TNF-TNFR2 in regulating the kinase architecture of antigen-activated effTreg and controlling IL-17 expression of the human Treg. These findings might be relevant for optimizing anti-TNF-based therapy and may aid in preventing Treg plasticity in case of Treg-based cell therapy.
Collapse
Affiliation(s)
- Paulo C M Urbano
- Laboratory Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Xuehui He
- Laboratory Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Bennie van Heeswijk
- Laboratory Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Omar P S Filho
- Department of Biochemistry, Radboud University Medical Center, Nijmegen, Netherlands
| | - Henk Tijssen
- Laboratory Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ruben L Smeets
- Laboratory Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Irma Joosten
- Laboratory Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Hans J P M Koenen
- Laboratory Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
17
|
Gutermuth J, Schmidt‐Weber CB, Blank S. Supporting allergen-specific immunotherapy by inhibition of Janus kinases. Allergy 2019; 74:1814-1816. [PMID: 30953592 DOI: 10.1111/all.13808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/15/2019] [Accepted: 03/22/2019] [Indexed: 01/14/2023]
Affiliation(s)
- Jan Gutermuth
- Department of Dermatology, Universitair Ziekenhuis Brussel Vrije Universiteit Brussel Brussels Belgium
| | - Carsten B. Schmidt‐Weber
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich Member of the German Center of Lung Research (DZL) Munich Germany
| | - Simon Blank
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich Member of the German Center of Lung Research (DZL) Munich Germany
| |
Collapse
|
18
|
Tofacitinib Halts Progression of Graft Dysfunction in a Rat Model of Mixed Cellular and Humoral Rejection. Transplantation 2019; 102:1075-1084. [PMID: 29620612 DOI: 10.1097/tp.0000000000002204] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND The progression from acute to chronic antibody-mediated rejection in kidney transplant recipients is usually not prevented by current therapeutic options. Here, we investigated whether the use of tofacitinib (TOFA), a Janus kinase 3 inhibitor, was capable of preventing the progression of allograft dysfunction in a Fisher-to-Lewis rat model of kidney transplantation. METHODS Rats were treated from the third week after transplantation to allow the development of rejection. Treatment was based on cyclosporin A, rapamycin or TOFA. Renal function was assessed at 1, 4, 8, and 12 weeks after transplantation, whereas rat survival, histological lesions, and infiltrating lymphocytes were analyzed at 12 weeks. RESULTS Tofacitinib prolonged graft survival, preserved tubular and glomerular structures and reduced humoral damage characterized by C4d deposition. Tofacitinib was able to reduce donor-specific antibodies. In addition, T and natural killer cell graft infiltration was reduced in TOFA-treated rats. Although rapamycin-treated rats also showed prolonged graft survival, glomerular structures were more affected. Moreover, only TOFA treatment reduced the presence of T, B and natural killer cells in splenic parenchyma. CONCLUSIONS Tofacitinib is able to reduce the immune response generated in a rat model of kidney graft rejection, providing prolonged graft and recipient survival, better graft function, and less histological lesions.
Collapse
|
19
|
Goropevšek A, Holcar M, Pahor A, Avčin T. STAT signaling as a marker of SLE disease severity and implications for clinical therapy. Autoimmun Rev 2019; 18:144-154. [DOI: 10.1016/j.autrev.2018.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 08/13/2018] [Indexed: 12/21/2022]
|
20
|
Other Forms of Immunosuppression. KIDNEY TRANSPLANTATION - PRINCIPLES AND PRACTICE 2019. [PMCID: PMC7152196 DOI: 10.1016/b978-0-323-53186-3.00020-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Lee M, Rhee I. Cytokine Signaling in Tumor Progression. Immune Netw 2017; 17:214-227. [PMID: 28860951 PMCID: PMC5577299 DOI: 10.4110/in.2017.17.4.214] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/22/2017] [Accepted: 06/25/2017] [Indexed: 12/12/2022] Open
Abstract
Cytokines are molecules that play critical roles in the regulation of a wide range of normal functions leading to cellular proliferation, differentiation and survival, as well as in specialized cellular functions enabling host resistance to pathogens. Cytokines released in response to infection, inflammation or immunity can also inhibit cancer development and progression. The predominant intracellular signaling pathway triggered by cytokines is the JAK-signal transducer and activator of transcription (STAT) pathway. Knockout mice and clinical human studies have provided evidence that JAK-STAT proteins regulate the immune system, and maintain immune tolerance and tumor surveillance. Moreover, aberrant activation of the JAK-STAT pathways plays an undeniable pathogenic role in several types of human cancers. Thus, in combination, these observations indicate that the JAK-STAT proteins are promising targets for cancer therapy in humans. The data supporting this view are reviewed herein.
Collapse
Affiliation(s)
- Myungmi Lee
- Department of Bioscience and Biotechnology, Sejong University, Seoul 05006, Korea
| | - Inmoo Rhee
- Department of Bioscience and Biotechnology, Sejong University, Seoul 05006, Korea
| |
Collapse
|
22
|
The Selective JAK1/3-Inhibitor R507 Mitigates Obliterative Airway Disease Both With Systemic Administration and Aerosol Inhalation. Transplantation 2017; 100:1022-31. [PMID: 26910327 DOI: 10.1097/tp.0000000000001110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND The efficacy of selective Janus kinase 1/3 inhibitor R507 to prevent obliterative airway disease was analyzed in preclinical airway transplantation models. METHODS Orthotopic trachea transplantations were performed between Lewis donors and Brown Norway rat recipients. Oral everolimus (4 mg/kg once per day) or oral respective inhaled R507 (60 mg/kg twice per day, each) was used for immunosuppression. Grafts were retrieved after 6 or 60 days. Toxicity and anti-inflammatory effects of R507 were analyzed on human airway epithelial cells. RESULTS In 6-day animals, oral and inhaled R507 more potently diminished mononuclear graft infiltration than everolimus and preserved ciliated pseudostratified columnar respiratory epithelium. Everolimus and R507 similarly suppressed systemic cellular and humoral immune activation. In untreated rats, marked obliterative airway disease developed over 60 days. Oral and inhaled R507 was significantly more effective in reducing airway obliteration and preserved the morphology of the airway epithelium. Luciferase-positive donors revealed that a substantial amount of smooth muscle cells within the obliterative tissue was of donor origin. Only everolimus but not R507, adversely altered kidney function and lipid profiles. The R507 aerosol did not show airway toxicity in vitro but effectively suppressed activation of inflammatory signaling pathways induced by IL-1β. CONCLUSIONS The Janus kinase 1/3 inhibitor R507 is a very well-tolerated immunosuppressant that similarly diminished obliterative airway disease with systemic or inhaled administration.
Collapse
|
23
|
Aguilar-Pimentel A, Graessel A, Alessandrini F, Fuchs H, Gailus-Durner V, Hrabě de Angelis M, Russkamp D, Chaker A, Ollert M, Blank S, Gutermuth J, Schmidt-Weber CB. Improved efficacy of allergen-specific immunotherapy by JAK inhibition in a murine model of allergic asthma. PLoS One 2017; 12:e0178563. [PMID: 28570653 PMCID: PMC5453633 DOI: 10.1371/journal.pone.0178563] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 05/15/2017] [Indexed: 12/22/2022] Open
Abstract
Background Allergen-specific immunotherapy (AIT) is the only curative treatment for type-1 allergies, but sometimes shows limited therapeutic response as well as local and systemic side effects. Limited control of local inflammation and patient symptoms hampers its widespread use in severe allergic asthma. Objective Our aim was to evaluate whether AIT is more effective in suppression of local inflammation if performed under the umbrella of short-term non-specific immunomodulation using a small molecule inhibitor of JAK pathways. Methods In C57BL/6J mice, a model of ovalbumin (OVA)-induced allergic airway inflammation and allergen-specific immunotherapy was combined with the administration of Tofacitinib (TOFA, a FDA-approved JAK inhibitor) from 48 hours prior to 48 hours after therapeutic OVA-injection. The effect of TOFA on human FOXP3+CD4+ T cells was studied in vitro. Results AIT combined with short-term TOFA administration was significantly more effective in suppressing total cell and eosinophil infiltration into the lung, local cytokine production including IL-1β and CXCL1 and showed a trend for the reduction of IL-4, IL-13, TNF-α and IL-6 compared to AIT alone. Furthermore, TOFA co-administration significantly reduced systemic IL-6, IL-1β and OVA-specific IgE levels and induced IgG1 to the same extent as AIT alone. Additionally, TOFA enhanced the induction of human FOXP3+CD4+ T cells. Conclusions This proof of concept study shows that JAK inhibition did not inhibit tolerance induction, but improved experimental AIT at the level of local inflammation. The improved control of local inflammation might extend the use of AIT in more severe conditions such as polyallergy, asthma and high-risk patients suffering from mastocytosis or anaphylaxis.
Collapse
Affiliation(s)
- Antonio Aguilar-Pimentel
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Center Munich, Neuherberg, Germany
| | - Anke Graessel
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Member of the German Center for Lung research (DZL), Munich, Germany
| | - Francesca Alessandrini
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Member of the German Center for Lung research (DZL), Munich, Germany
| | - Helmut Fuchs
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Center Munich, Neuherberg, Germany
| | - Valerie Gailus-Durner
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Center Munich, Neuherberg, Germany
| | - Martin Hrabě de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Center Munich, Neuherberg, Germany.,Experimental Genetics, School of Life Science Weihenstephan, Technical University of Munich, Freising, Germany
| | - Dennis Russkamp
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Member of the German Center for Lung research (DZL), Munich, Germany
| | - Adam Chaker
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Member of the German Center for Lung research (DZL), Munich, Germany.,Department of Otolaryngology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg.,Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Simon Blank
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Member of the German Center for Lung research (DZL), Munich, Germany
| | - Jan Gutermuth
- Department of Dermatology, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Carsten B Schmidt-Weber
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Member of the German Center for Lung research (DZL), Munich, Germany
| |
Collapse
|
24
|
Dholakia S, Fildes JE, Friend PJ. The use of kinase inhibitors in solid organ transplantation. Transplant Rev (Orlando) 2017; 31:166-171. [PMID: 28396194 DOI: 10.1016/j.trre.2017.02.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 02/15/2017] [Accepted: 02/27/2017] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Despite the efficacy of current immunosuppression regimes used in solid organ transplantation, graft dysfunction, graft lost and antibody-mediated rejection continue to be problematic. As a result, clear attraction in exploiting key potential targets controlled by kinase phosphorylation has led to a number of studies exploring the use of these drugs in transplantation. Aim In this review, we consider the role of tyrosine kinase as a target in transplantation and summarize the relevant studies on kinase inhibitors that have been reported to date. METHODS Narrative review of literature from inception to December 2016, using OVID interface searching EMBASE and MEDLINE databases. All studies related to kinase based immunosuppression were examined for clinical relevance with no exclusion criteria. Key ideas were extracted and referenced. CONCLUSION The higher incidence of infections when using kinase inhibitors is an important consideration, however the number and range inhibitors and their clinical indications are likely to expand, but their exact role in transplantation is yet to be determined.
Collapse
Affiliation(s)
- S Dholakia
- Nuffield Department of Surgical Science, Oxford Transplant Centre, Churchill Hospital, Oxford, OX3 7LE, UK; The Manchester Collaborative Centre for Inflammation Research (MCCIR), Institute of Inflammation and Repair, Core Technology Facility, University of Manchester, Manchester, M13 9NT, UK.
| | - J E Fildes
- Nuffield Department of Surgical Science, Oxford Transplant Centre, Churchill Hospital, Oxford, OX3 7LE, UK; The Manchester Collaborative Centre for Inflammation Research (MCCIR), Institute of Inflammation and Repair, Core Technology Facility, University of Manchester, Manchester, M13 9NT, UK
| | - P J Friend
- Nuffield Department of Surgical Science, Oxford Transplant Centre, Churchill Hospital, Oxford, OX3 7LE, UK; The Manchester Collaborative Centre for Inflammation Research (MCCIR), Institute of Inflammation and Repair, Core Technology Facility, University of Manchester, Manchester, M13 9NT, UK
| |
Collapse
|
25
|
Abstract
Immunosuppression strategies that selectively inhibit effector T cells while preserving and even enhancing CD4FOXP3 regulatory T cells (Treg) permit immune self-regulation and may allow minimization of immunosuppression and associated toxicities. Many immunosuppressive drugs were developed before the identity and function of Treg were appreciated. A good understanding of the interactions between Treg and immunosuppressive agents will be valuable to the effective design of more tolerable immunosuppression regimens. This review will discuss preclinical and clinical evidence regarding the influence of current and emerging immunosuppressive drugs on Treg homeostasis, stability, and function as a guideline for the selection and development of Treg-friendly immunosuppressive regimens.
Collapse
Affiliation(s)
- Akiko Furukawa
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Steven A Wisel
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Qizhi Tang
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
26
|
|
27
|
Abstract
Cytokines orchestrate immune and inflammatory responses involved in the pathogenesis of ulcerative colitis (UC). Protein kinases are essential for signal transduction in eukaryotic cells. Janus kinases (JAKs) are a family of protein tyrosine kinases that play a pivotal role in cytokine receptor signaling. Indeed, a major subgroup of cytokines use Type I and II cytokine receptors which signal via the activation of JAKs. Tofacitinib is an oral JAK inhibitor that has been studied in autoimmune pathologies, including UC and rheumatoid arthritis with good overall efficacy and acceptable safety profile. This literature review was performed with the goal of summarizing the knowledge on JAK inhibitors in UC treatment.
Collapse
Affiliation(s)
- Thomas P Archer
- NIHR Biomedical Research Unit in Gastrointestinal & Liver Diseases, Nottingham University Hospitals NHS Trust & The University of Nottingham, Nottingham, UK
| | - Gordon W Moran
- NIHR Biomedical Research Unit in Gastrointestinal & Liver Diseases, Nottingham University Hospitals NHS Trust & The University of Nottingham, Nottingham, UK
| | - Subrata Ghosh
- Inflammatory Bowel Disease Clinic, University of Calgary, TRW Building, 3280 Hospital DR NW, Calgary, T2N 4N1, Calgary, Alberta, Canada
| |
Collapse
|
28
|
|
29
|
Wu H, Yan S, Chen J, Luo X, Li P, Jia X, Dai X, Wang C, Huang Q, Liu L, Zhang Y, Zhou A, Chang Y, Zhang L, Wei W. JAK1-STAT3 blockade by JAK inhibitor SHR0302 attenuates inflammatory responses of adjuvant-induced arthritis rats and decreases Th17 and total B cells. Joint Bone Spine 2016; 83:525-32. [PMID: 26832189 DOI: 10.1016/j.jbspin.2015.09.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/21/2015] [Indexed: 02/09/2023]
Abstract
OBJECTIVE To investigate the effects of JAK inhibitor (SHR0302) on adjuvant-induced arthritis (AA) rats and the partial mechanisms focused on T, B lymphocyte subsets through JAK1-STAT3 pathway, including Th17, Treg, total B cells and memory B cells. METHODS Animals were divided randomly into normal control, AA, SHR0302 (0.3,1.0, 3.0mg/kg) and MTX. The effects of SHR0302 on AA rats by evaluating arthritis index, arthritis global assessment and paw swelling degree, histopathology of joint and spleen. We examined the proliferation of T, B and FLS. Th17, Treg, total B and memory B cell proportion was measured by flow cytometry. Cytokines TNF-α, IL-1β, IL-10, IL-17 and antibody IgG1, IgG2a levels in serum were measured by Elisa. The expression of p-JAK1 and p-STAT3 was measured by western blot. RESULTS SHR0302 suppressed the severity of AA rats by attenuating the arthritis index, arthritis global assessment and paw swelling degree, and alleviated histopathology of spleen and joint of AA rats. SHR0302 can inhibit the proliferation of T, B and FLS, and down-regulated cytokines TNF-α, IL-1β, IL-17 and antibody IgG1, IgG2a levels, and suppressed the proportion of Th17 and total B, and inhibited JAK1-STAT3 phosphorylation. There was no significant effect on Treg function and memory B cell proportion. CONCLUSION SHR0302 may attenuate the severity of AA rats, partially through reducing Th17 function and total B cell proportion by inhibiting JAK1-STAT3 phosphorylation.
Collapse
Affiliation(s)
- Huaxun Wu
- Institute of clinical pharmacology of Anhui medical university, 81, meishan road, 230032 Hefei, China; Key laboratory of anti-inflammatory and immune medicine, ministry of Education, 230032 Hefei, China; Anhui collaborative innovation center of anti-inflammatory and immune medicine, 230032 Hefei, China
| | - Shangxue Yan
- Institute of clinical pharmacology of Anhui medical university, 81, meishan road, 230032 Hefei, China; Key laboratory of anti-inflammatory and immune medicine, ministry of Education, 230032 Hefei, China; Anhui collaborative innovation center of anti-inflammatory and immune medicine, 230032 Hefei, China
| | - Jingyu Chen
- Institute of clinical pharmacology of Anhui medical university, 81, meishan road, 230032 Hefei, China; Key laboratory of anti-inflammatory and immune medicine, ministry of Education, 230032 Hefei, China; Anhui collaborative innovation center of anti-inflammatory and immune medicine, 230032 Hefei, China
| | - Xuexia Luo
- Institute of clinical pharmacology of Anhui medical university, 81, meishan road, 230032 Hefei, China; Key laboratory of anti-inflammatory and immune medicine, ministry of Education, 230032 Hefei, China; Anhui collaborative innovation center of anti-inflammatory and immune medicine, 230032 Hefei, China
| | - Peipei Li
- Institute of clinical pharmacology of Anhui medical university, 81, meishan road, 230032 Hefei, China; Key laboratory of anti-inflammatory and immune medicine, ministry of Education, 230032 Hefei, China; Anhui collaborative innovation center of anti-inflammatory and immune medicine, 230032 Hefei, China
| | - Xiaoyi Jia
- Institute of clinical pharmacology of Anhui medical university, 81, meishan road, 230032 Hefei, China; Key laboratory of anti-inflammatory and immune medicine, ministry of Education, 230032 Hefei, China; Anhui collaborative innovation center of anti-inflammatory and immune medicine, 230032 Hefei, China
| | - Xing Dai
- Institute of clinical pharmacology of Anhui medical university, 81, meishan road, 230032 Hefei, China; Key laboratory of anti-inflammatory and immune medicine, ministry of Education, 230032 Hefei, China; Anhui collaborative innovation center of anti-inflammatory and immune medicine, 230032 Hefei, China
| | - Chun Wang
- Institute of clinical pharmacology of Anhui medical university, 81, meishan road, 230032 Hefei, China; Key laboratory of anti-inflammatory and immune medicine, ministry of Education, 230032 Hefei, China; Anhui collaborative innovation center of anti-inflammatory and immune medicine, 230032 Hefei, China
| | - Qiong Huang
- Institute of clinical pharmacology of Anhui medical university, 81, meishan road, 230032 Hefei, China; Key laboratory of anti-inflammatory and immune medicine, ministry of Education, 230032 Hefei, China; Anhui collaborative innovation center of anti-inflammatory and immune medicine, 230032 Hefei, China
| | - Lihua Liu
- Institute of clinical pharmacology of Anhui medical university, 81, meishan road, 230032 Hefei, China; Key laboratory of anti-inflammatory and immune medicine, ministry of Education, 230032 Hefei, China; Anhui collaborative innovation center of anti-inflammatory and immune medicine, 230032 Hefei, China
| | - Yunfang Zhang
- Institute of clinical pharmacology of Anhui medical university, 81, meishan road, 230032 Hefei, China; Key laboratory of anti-inflammatory and immune medicine, ministry of Education, 230032 Hefei, China; Anhui collaborative innovation center of anti-inflammatory and immune medicine, 230032 Hefei, China
| | - Aiwu Zhou
- Institute of clinical pharmacology of Anhui medical university, 81, meishan road, 230032 Hefei, China; Key laboratory of anti-inflammatory and immune medicine, ministry of Education, 230032 Hefei, China; Anhui collaborative innovation center of anti-inflammatory and immune medicine, 230032 Hefei, China
| | - Yan Chang
- Institute of clinical pharmacology of Anhui medical university, 81, meishan road, 230032 Hefei, China; Key laboratory of anti-inflammatory and immune medicine, ministry of Education, 230032 Hefei, China; Anhui collaborative innovation center of anti-inflammatory and immune medicine, 230032 Hefei, China
| | - LingLing Zhang
- Institute of clinical pharmacology of Anhui medical university, 81, meishan road, 230032 Hefei, China; Key laboratory of anti-inflammatory and immune medicine, ministry of Education, 230032 Hefei, China; Anhui collaborative innovation center of anti-inflammatory and immune medicine, 230032 Hefei, China
| | - Wei Wei
- Institute of clinical pharmacology of Anhui medical university, 81, meishan road, 230032 Hefei, China; Key laboratory of anti-inflammatory and immune medicine, ministry of Education, 230032 Hefei, China; Anhui collaborative innovation center of anti-inflammatory and immune medicine, 230032 Hefei, China.
| |
Collapse
|
30
|
Llop-Guevara A, Porras M, Cendón C, Di Ceglie I, Siracusa F, Madarena F, Rinotas V, Gómez L, van Lent PL, Douni E, Chang HD, Kamradt T, Román J. Simultaneous inhibition of JAK and SYK kinases ameliorates chronic and destructive arthritis in mice. Arthritis Res Ther 2015; 17:356. [PMID: 26653844 PMCID: PMC4675041 DOI: 10.1186/s13075-015-0866-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/19/2015] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Despite the broad spectrum of antirheumatic drugs, RA is still not well controlled in up to 30-50 % of patients. Inhibition of JAK kinases by means of the pan-JAK inhibitor tofacitinib has demonstrated to be effective even in difficult-to-treat patients. Here, we discuss whether the efficacy of JAK inhibition can be improved by simultaneously inhibiting SYK kinase, since both kinases mediate complementary and non-redundant pathways in RA. METHODS Efficacy of dual JAK + SYK inhibition with selective small molecule inhibitors was evaluated in chronic G6PI-induced arthritis, a non-self-remitting and destructive arthritis model in mice. Clinical and histopathological scores, as well as cytokine and anti-G6PI antibody production were assessed in both preventive and curative protocols. Potential immunotoxicity was also evaluated in G6PI-induced arthritis and in a 28-day TDAR model, by analysing the effects of JAK + SYK inhibition on hematological parameters, lymphoid organs, leukocyte subsets and cell function. RESULTS Simultaneous JAK + SYK inhibition completely prevented mice from developing arthritis. This therapeutic strategy was also very effective in ameliorating already established arthritis. Dual kinase inhibition immediately resulted in greatly decreased clinical and histopathological scores and led to disease remission in over 70 % of the animals. In contrast, single JAK inhibition and anti-TNF therapy (etanercept) were able to stop disease progression but not to revert it. Dual kinase inhibition decreased Treg and NK cell counts to the same extent as single JAK inhibition but overall cytotoxicity remained intact. Interestingly, treatment discontinuation rapidly reversed such immune cell reduction without compromising clinical efficacy, suggesting long-lasting curative effects. Dual kinase inhibition reduced the Th1/Th17 cytokine cascade and the differentiation and function of joint cells, in particular osteoclasts and fibroblast-like synoviocytes. CONCLUSIONS Concurrent JAK + SYK inhibition resulted in higher efficacy than single kinase inhibition and TNF blockade in a chronic and severe arthritis model. Thus, blockade of multiple immune signals with dual JAK + SYK inhibition represents a reasonable therapeutic strategy for RA, in particular in patients with inadequate responses to current treatments. Our data supports the multiplicity of events underlying this heterogeneous and complex disease.
Collapse
Affiliation(s)
| | - Mónica Porras
- Draconis Pharma S.L., Calle Pallars 179, Barcelona, Spain.
| | - Carla Cendón
- Draconis Pharma S.L., Calle Pallars 179, Barcelona, Spain.
- Deutsches Rheuma-Forschungszentrum, Berlin, Germany.
| | | | | | | | - Vagelis Rinotas
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece.
| | - Lluís Gómez
- Draconis Pharma S.L., Calle Pallars 179, Barcelona, Spain.
| | | | - Eleni Douni
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece.
- Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece.
| | | | | | - Juan Román
- Draconis Pharma S.L., Calle Pallars 179, Barcelona, Spain.
| |
Collapse
|
31
|
Gómez-Gómez GJ, Masedo &A, Yela C, Martínez-Montiel MDP, Casís B. Current stage in inflammatory bowel disease: What is next? World J Gastroenterol 2015; 21:11282-11303. [PMID: 26525013 PMCID: PMC4616205 DOI: 10.3748/wjg.v21.i40.11282] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/12/2015] [Accepted: 09/02/2015] [Indexed: 02/06/2023] Open
Abstract
In recent years, the incidence of inflammatory bowel disease (IBD) has been on the rise, extending to countries where it was infrequent in the past. As a result, the gap between high and low incidence countries is decreasing. The disease, therefore, has an important economic impact on the healthcare system. Advances in recent years in pharmacogenetics and clinical pharmacology have allowed for the development of treatment strategies adjusted to the patient profile. Concurrently, new drugs aimed at inflammatory targets have been developed that may expand future treatment options. This review examines advances in the optimization of existing drug treatments and the development of novel treatment options for IBD.
Collapse
|
32
|
Yokoyama S, Perera PY, Terawaki S, Watanabe N, Kaminuma O, Waldmann TA, Hiroi T, Perera LP. Janus Kinase Inhibitor Tofacitinib Shows Potent Efficacy in a Mouse Model of Autoimmune Lymphoproliferative Syndrome (ALPS). J Clin Immunol 2015; 35:661-7. [PMID: 26453583 DOI: 10.1007/s10875-015-0203-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 09/24/2015] [Indexed: 10/22/2022]
Abstract
PURPOSE Autoimmune lymphoproliferative syndrome (ALPS) is a non-malignant genetic disorder of lymphocyte homeostasis with defective Fas-mediated apoptosis. Current therapies for ALPS primarily target autoimmune manifestations with non-specific immune suppressants with variable success thus highlighting the need for better therapeutics for this disorder. METHODS The spectrum of clinical manifestations of ALPS is mirrored by MRL/lpr mice that carry a loss of function mutation in the Fas gene and have proven to be a valuable model in predicting the efficacy of several therapeutics that are front-line modalities for the treatment of ALPS. We evaluated the potential efficacy of tofacitinib, an orally active, pan-JAK inhibitor currently approved for rheumatoid arthritis as a single agent modality against ALPS using MRL/lpr mice. RESULTS We demonstrate that a 42-day course of tofacitinib therapy leads to a lasting reversal of lymphadenopathy and autoimmune manifestations in the treated MRL/lpr mice, Specifically, in treated mice the peripheral blood white blood cell counts were reversed to near normal levels with almost a 50 % reduction in the TCRαβ(+)CD4(-)CD8(-)T lymphocyte numbers that coincided with a parallel increase in CD8(+) T cells without a demonstrable effect on CD4(+) lymphocytes including FoxP3(+) regulatory T cells. The elevated plasma IgG and IgA levels were also drastically lowered along with a significant reduction in plasmablasts and plasmacytes in the spleen. CONCLUSION On the basis of these results, it is likely that tofacitinib would prove to be a potent single agent therapeutic modality capable of ameliorating both offending lymphadenopathy as well as autoimmunity in ALPS patients.
Collapse
Affiliation(s)
- Seiji Yokoyama
- Department of Genome Medicine, The Tokyo Metropolitan Institute of Medical Science, 2-1-6, kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Pin-Yu Perera
- Veterans Affairs Medical Center, Washington, DC, 20422, USA
| | - Seigo Terawaki
- Department of Genome Medicine, The Tokyo Metropolitan Institute of Medical Science, 2-1-6, kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Nobumasa Watanabe
- Department of Genome Medicine, The Tokyo Metropolitan Institute of Medical Science, 2-1-6, kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Osamu Kaminuma
- Department of Genome Medicine, The Tokyo Metropolitan Institute of Medical Science, 2-1-6, kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Thomas A Waldmann
- Lymphoid Malignancies Branch, National Cancer Institute, Bldg 10 4N114, Bethesda, MD, 20892-1374, USA
| | - Takachika Hiroi
- Department of Genome Medicine, The Tokyo Metropolitan Institute of Medical Science, 2-1-6, kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan.
| | - Liyanage P Perera
- Lymphoid Malignancies Branch, National Cancer Institute, Bldg 10 4N114, Bethesda, MD, 20892-1374, USA.
| |
Collapse
|
33
|
Maiga M, Ahidjo BA, Maiga MC, Cheung L, Pelly S, Lun S, Bougoudogo F, Bishai WR. Efficacy of Adjunctive Tofacitinib Therapy in Mouse Models of Tuberculosis. EBioMedicine 2015; 2:868-73. [PMID: 26425693 PMCID: PMC4563140 DOI: 10.1016/j.ebiom.2015.07.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 07/07/2015] [Accepted: 07/10/2015] [Indexed: 12/30/2022] Open
Abstract
The global tuberculosis (TB) epidemic and the spread of multi- and extensively-drug resistant strains of Mycobacterium tuberculosis (M.tb) have been fueled by low adherence to following lengthy treatment protocols, and the rapid spread of HIV (Human Immunodeficiency Virus). Persistence of the infection in immunocompetent individuals follows from the ability of M.tb to subvert host immune responses in favor of survival within macrophages. Alternative host-directed strategies are therefore being currently sought to improve treatment efficacy and duration. In this study, we evaluated tofacitinib, a new oral Janus kinase (JAK) blocker with anti-inflammatory properties, in shortening tuberculosis treatment. BALB/c mice, which are immunocompetent, showed acceleration of M.tb clearance achieving apparent sterilization after 16 weeks of adjunctive tofacitinib therapy at average exposures higher than recommended in humans, while mice receiving standard treatment alone did not achieve clearance until 24 weeks. True sterilization with tofacitinib was not achieved until five months. C3HeB/FeJ mice, which show reduced pro-inflammatory cytokines during M.tb infection, did not show improved clearance with adjunctive tofacitinib therapy, indicating that the nature of granulomatous lesions and host immunity may influence responsiveness to tofacitinib. Our findings suggest that the JAK pathway could be explored further for host-directed therapy in immunocompetent individuals.
Collapse
Affiliation(s)
- Mamoudou Maiga
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA ; Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, Mali
| | - Bintou Ahmadou Ahidjo
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA ; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Mariama C Maiga
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA ; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Laurene Cheung
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA ; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Shaaretha Pelly
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA ; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Shichun Lun
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Flabou Bougoudogo
- Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, Mali
| | - William R Bishai
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA ; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
34
|
Panés J, Su C, Bushmakin AG, Cappelleri JC, Mamolo C, Healey P. Randomized trial of tofacitinib in active ulcerative colitis: analysis of efficacy based on patient-reported outcomes. BMC Gastroenterol 2015; 15:14. [PMID: 25651782 PMCID: PMC4323227 DOI: 10.1186/s12876-015-0239-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 01/22/2015] [Indexed: 12/12/2022] Open
Abstract
Background Tofacitinib, a novel, oral Janus kinase inhibitor, demonstrated a dose-dependent efficacy for induction of clinical response and remission in patients with active ulcerative colitis (UC). The objective of the current study was to determine the effect of tofacitinib on patient-reported outcomes (PROs). Methods Eligible patients (≥18 years of age) with a diagnosis of active UC (total Mayo score of 6-12 points and moderately-to-severely active disease on sigmoidoscopy) were randomized in a 2:2:2:3:3 ratio to receive oral tofacitinib 0.5 mg, 3 mg, 10 mg, or 15 mg, or placebo twice daily (BID) for 8 weeks. PROs were assessed by the Inflammatory Bowel Disease Questionnaire (IBDQ) and the Inflammatory Bowel Disease Patient-Reported Treatment Impact (IBD PRTI) survey. Results At Week 8, mean IBDQ total scores had improved relative to baseline across all five treatment groups (baseline range 123.2-134.5; Week 8 range 149.6-175.4). Improvement from baseline was significantly greater (P = 0.001) for tofacitinib 15 mg BID versus placebo. For tofacitinib 15 mg BID, most patients reported satisfaction or extreme satisfaction, definite preference for tofacitinib, and definite willingness to use tofacitinib again on the IBD PRTI at week 8. Patients achieving endoscopic remission (Mayo endoscopy score of 0) had significantly higher IBDQ scores and favorable PRTI scores than those not achieving endoscopic remission. Conclusions Short-term treatment with tofacitinib BID was associated with dose-dependent improvement in health-related quality of life and patient preferences for tofacitinib. The results complement previously reported efficacy and safety data for the Phase II study. (NCT 00787202, November 6, 2008). Electronic supplementary material The online version of this article (doi:10.1186/s12876-015-0239-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julián Panés
- Hospital Clínic de Barcelona. IDIBAPS, CIBERehd, Barcelona, 08036, Spain.
| | | | | | | | | | | |
Collapse
|
35
|
de Weerd A, Kho M, Kraaijeveld R, Zuiderwijk J, Weimar W, Baan C. The protein kinase C inhibitor sotrastaurin allows regulatory T cell function. Clin Exp Immunol 2014; 175:296-304. [PMID: 24131367 DOI: 10.1111/cei.12225] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2013] [Indexed: 12/28/2022] Open
Abstract
The novel immunosuppressant sotrastaurin is a selective inhibitor of protein kinase C isoforms that are critical in signalling pathways downstream of the T cell receptor. Sotrastaurin inhibits nuclear factor (NF)-κB, which directly promotes the transcription of forkhead box protein 3 (FoxP3), the key regulator for the development and function of regulatory T cells (Tregs). Our center participated in a randomized trial comparing sotrastaurin (n = 14) and the calcineurin inhibitor Neoral (n = 7) in renal transplant recipients. We conducted ex vivo mixed lymphocyte reaction (MLR) and flow cytometry studies on these patient samples, as well as in vitro studies on samples of blood bank volunteers (n = 38). Treg numbers remained stable after transplantation and correlated with higher trough levels of sotrastaurin (r = 0·68, P = 0·03). A dose-dependent effect of sotrastaurin on alloresponsiveness was observed: the half maximal inhibitory concentration (IC50 ) to inhibit alloactivated T cell proliferation was 45 ng/ml (90 nM). In contrast, Treg function was not affected by sotrastaurin: in the presence of in vitro-added sotrastaurin (50 ng/ml) Tregs suppressed the proliferation of alloactivated T effector cells at a 1:5 ratio by 35 versus 47% in the absence of the drug (P = 0·33). Signal transducer and activator of transcription 5 (STAT)-5 phosphorylation in Tregs remained intact after incubation with sotrastaurin. This potent Treg function was also found in cells of patients treated with sotrastaurin: Tregs inhibited the anti-donor response in MLR by 67% at month 6, which was comparable to pretransplantation (82%). Sotrastaurin is a potent inhibitor of alloreactivity in vitro, while it did not affect Treg function in patients after kidney transplantation.
Collapse
Affiliation(s)
- A de Weerd
- Department of Internal Medicine, Erasmus Medical Center Rotterdam, the Netherlands
| | | | | | | | | | | |
Collapse
|
36
|
MiRNome and transcriptome aided pathway analysis in human regulatory T cells. Genes Immun 2014; 15:303-12. [PMID: 24848933 DOI: 10.1038/gene.2014.20] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 03/24/2014] [Accepted: 03/27/2014] [Indexed: 12/15/2022]
Abstract
Owing to their manifold immune regulatory functions, regulatory T cells (Treg) have received tremendous interest as targets for therapeutic intervention of diverse immunological pathologies or cancer. Directed manipulation of Treg will only be achievable with extensive knowledge about the intrinsic programs that define their regulatory function. We simultaneously analyzed miR and mRNA transcript levels in resting and activated human Treg cells in comparison with non-regulatory conventional T cells (Tcon). Based on experimentally validated miR-target information, both transcript levels were integrated into a comprehensive pathway analysis. This strategy revealed characteristic signal transduction pathways involved in Treg biology such as T-cell receptor-, Toll-like receptor-, transforming growth factor-β-, JAK/STAT (Janus kinase/signal transducers and activators of transcription)- and mammalian target of rapamycin signaling, and allowed for the prediction of specific pathway activities on the basis of miR and mRNA transcript levels in a probabilistic manner. These data encourage new concepts for targeted control of Treg cell effector functions.
Collapse
|
37
|
|
38
|
|
39
|
Abstract
JAK3 inhibition with the CP-690,550 compound has an immunosuppressive potency in murine models, nonhuman primates and humans. This drug blocks STAT5 activation in most T-cell subpopulations but less effectively in T-regulator cells. In low to moderate risk human kidney transplant recipients, combined with mycophenolate mofetil, steroids and an induction with basiliximab, CP-690,550 proved as effective as calcineurin inhibitors with regard to prevention of acute rejection but better than calcineurin inhibitors with regard to preservation of kidney function and histology. However, at the same time, an increased incidence of overimmunosuppression consequences (cytomegalovirus, BK virus and lymphoproliferation) was observed and led to discontinuation of this specific drug development in kidney transplantation.
Collapse
|
40
|
Abstract
INTRODUCTION This review will discuss the mechanism of action and important kidney transplant clinical trial data for the small molecule Janus kinase (JAK) 3 inhibitor tofacitinib , formerly known as CP-690,550 and tasocitinib. AREAS COVERED Successful kidney transplantation requires adequate immunosuppression. Current maintenance immunosuppressive protocols which rely on calcineurin inhibitors have long-term nephrotoxicity and negative impact on cardiometabolic risk factors. JAKs are cytoplasmic tyrosine kinases that participate in the signaling of a broad range of cell surface receptors, particularly members of the cytokine receptor common gamma (cγ) chain family. JAK3 inhibition has immunosuppressive effects and treatment with tofacitinib in clinical trials has demonstrated efficacy in autoimmune disorders such as psoriasis and rheumatoid arthritis. Nonhuman primate models of renal transplantation demonstrated prolonged graft survival with tofacitinib compared to control. Renal transplant clinical trials in humans have demonstrated tofacitinib to be noninferior to cyclosporine in terms of rejection rates and graft survival. There was also a lower rate of new onset diabetes after transplant. However, there was a trend toward more infections, including cytomegalovirus and BK virus nephritis. EXPERT OPINION Tofacitinib may be a promising alternative to calcineurin inhibitors. The optimal therapeutic window is still being determined.
Collapse
Affiliation(s)
- David Wojciechowski
- University of California, Kidney Transplant Service, San Francisco, CA 94143-0780, USA
| | | |
Collapse
|
41
|
Menet CJ, Rompaey LV, Geney R. Advances in the discovery of selective JAK inhibitors. PROGRESS IN MEDICINAL CHEMISTRY 2013; 52:153-223. [PMID: 23384668 DOI: 10.1016/b978-0-444-62652-3.00004-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In this review, we describe the current knowledge of the biology of the JAKs. The JAK family comprises the four nonreceptor tyrosine kinases JAK1, JAK2, JAK3, and Tyk2, all key players in the signal transduction from cytokine receptors to transcription factor activation. We also review the progresses made towards the optimization of JAK inhibitors and the importance of their selectivity profile. Indeed, the full array of many medicinal chemistry enabling tools (HTS, X-ray crystallography, scaffold morphing, etc.) has been deployed to successfully design molecules that discriminate among JAK family and other kinases. While the first JAK inhibitor was launched in 2011, this review also summarizes the status of several other small-molecule JAK inhibitors currently in development to treat arthritis, psoriasis, organ rejection, and multiple cancer types.
Collapse
|
42
|
Liu XQ, Hu ZQ, Pei YF, Tao R. Clinical operational tolerance in liver transplantation: state-of-the-art perspective and future prospects. Hepatobiliary Pancreat Dis Int 2013; 12:12-33. [PMID: 23392795 DOI: 10.1016/s1499-3872(13)60002-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Liver transplantation is the definite treatment for end-stage liver diseases with satisfactory results. However, untoward effects of life-long immunosuppression prevent the development of alternative strategies to achieve better long-term outcome. Achieving clinical operational tolerance is the ultimate goal. DATA SOURCES A PubMed and Google Scholar search using terms: "immune tolerance", "liver transplantation", "clinical trial", "operational tolerance" and "immunosuppression withdrawal" was performed, and relevant articles published in English in the past decade were reviewed. Full-text publications relevant to the field were selected and relevant articles from reference lists were also included. Priority was given to those articles which are relevant to the review. RESULTS Because of the inherent tolerogenic property, around 20%-30% of liver transplantation recipients develop spontaneous operational tolerance after immunosuppression withdrawal, and the percentage may be even higher in pediatric living donor liver transplantation recipients. Several natural killer and gammadeltaT cell related markers have been identified to be associated with the tolerant state in liver transplantation patients. Despite the progress, clinical operational tolerance is still rare in liver transplantation. Reprogramming the recipient immune system by creating chimerism and regulatory cell therapies is among newer promising means to achieve clinical liver transplantation tolerance in the future. CONCLUSION Although clinical operational tolerance is still rare in liver transplantation recipients, ongoing basic research and collaborative clinical trials may help to decipher the mystery of transplantation tolerance and extend the potential benefits of drug withdrawal to an increasing number of patients in a more predictable fashion.
Collapse
Affiliation(s)
- Xi-Qiang Liu
- Center for Organ Transplantation and Department of Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | | | | | | |
Collapse
|
43
|
Okamoto A, Fujio K, Okamura T, Iwasaki Y, Yamamoto K. JAK inhibition and modulation of T cell function. Inflamm Regen 2013. [DOI: 10.2492/inflammregen.33.143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
44
|
Vafadari R, Quaedackers ME, Kho MM, Mol WM, Chan G, Weimar W, Baan CC. Pharmacodynamic analysis of tofacitinib and basiliximab in kidney allograft recipients. Transplantation 2012; 94:465-72. [PMID: 22960764 DOI: 10.1097/tp.0b013e3182626b5a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND The common γ-chain (γ(c)) cytokines signal through the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway and play pivotal roles in lymphocyte activation. We investigated the effect of immunosuppressive drugs targeting this pathway, the JAK inhibitor tofacitinib (CP-690,550) and the anti-interleukin (IL)-2R antibody basiliximab, as part of a phase 2 study. METHODS After whole-blood activation with the γ(c) cytokines IL-2, IL-7, and IL-15, STAT5 phosphorylation was determined in T cells of de novo kidney transplantation patients treated with tofacitinib/basiliximab (n=5), calcineurin inhibitor (CNI) (cyclosporine A)/basiliximab (n=4) or CNI (tacrolimus)-based immunosuppression (n=6). The IC(50) for phosphorylated STAT (P-STAT) 5 inhibition by tofacitinib was determined in cytokine-activated CD4(+) and CD8(+) T cells from healthy individuals (n=4). RESULTS IC(50) was 26, 72, and 37 ng/mL for IL-2, IL-7, and IL-15 activation, in CD4(+) T cells, respectively; and 35, 61, and 76 ng/mL for IL-2, IL-7, and IL-15 activation, in CD8(+) T cells, respectively. In kidney transplantation patients, 7 days after starting tofacitinib/basiliximab treatment, cytokine-induced P-STAT5 was inhibited in CD4(+) T cells (92% for IL-2 activation, 60% for IL-7, and 75% for IL-15), which persisted for the 2-month study period. In contrast, CNI/basiliximab treatment did not affect IL-7-activated or IL-15-activated P-STAT5; only IL-2-activated P-STAT5 was reduced by 77% on day 7 and recovered to pretreatment levels within 2 months. CD8(+) T cells showed a comparable profile to CD4(+) T cells. P-STAT5 was not inhibited in CNI-treated control patients. CONCLUSIONS Tofacitinib therapy strongly inhibits γ(c) cytokine-induced JAK/STAT5 activation, whereas basiliximab suppresses IL-2-stimulated activation only. Pharmacodynamic monitoring offers a unique tool to evaluate the biologic effects of immunosuppressive drugs.
Collapse
Affiliation(s)
- Ramin Vafadari
- Department of Internal Medicine, Erasmus Medical Center, University Hospital Rotterdam, Rotterdam, the Netherlands.
| | | | | | | | | | | | | |
Collapse
|
45
|
Sandborn WJ, Ghosh S, Panes J, Vranic I, Su C, Rousell S, Niezychowski W. Tofacitinib, an oral Janus kinase inhibitor, in active ulcerative colitis. N Engl J Med 2012; 367:616-24. [PMID: 22894574 DOI: 10.1056/nejmoa1112168] [Citation(s) in RCA: 622] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Ulcerative colitis is a chronic inflammatory disease of the colon for which current treatments are not universally effective. One additional treatment may be tofacitinib (CP-690,550), an oral inhibitor of Janus kinases 1, 2, and 3 with in vitro functional specificity for kinases 1 and 3 over kinase 2, which is expected to block signaling involving gamma chain-containing cytokines including interleukins 2, 4, 7, 9, 15, and 21. These cytokines are integral to lymphocyte activation, function, and proliferation. METHODS In a double-blind, placebo-controlled, phase 2 trial, we evaluated the efficacy of tofacitinib in 194 adults with moderately to severely active ulcerative colitis. Patients were randomly assigned to receive tofacitinib at a dose of 0.5 mg, 3 mg, 10 mg, or 15 mg or placebo twice daily for 8 weeks. The primary outcome was a clinical response at 8 weeks, defined as an absolute decrease from baseline in the score on the Mayo scoring system for assessment of ulcerative colitis activity (possible score, 0 to 12, with higher scores indicating more severe disease) of 3 or more and a relative decrease from baseline of 30% or more with an accompanying decrease in the rectal bleeding subscore of 1 point or more or an absolute rectal bleeding subscore of 0 or 1. RESULTS The primary outcome, clinical response at 8 weeks, occurred in 32%, 48%, 61%, and 78% of patients receiving tofacitinib at a dose of 0.5 mg (P=0.39), 3 mg (P=0.55), 10 mg (P=0.10), and 15 mg (P<0.001), respectively, as compared with 42% of patients receiving placebo. Clinical remission (defined as a Mayo score ≤2, with no subscore >1) at 8 weeks occurred in 13%, 33%, 48%, and 41% of patients receiving tofacitinib at a dose of 0.5 mg (P=0.76), 3 mg (P=0.01), 10 mg (P<0.001), and 15 mg (P<0.001), respectively, as compared with 10% of patients receiving placebo. There was a dose-dependent increase in both low-density and high-density lipoprotein cholesterol. Three patients treated with tofacitinib had an absolute neutrophil count of less than 1500. CONCLUSIONS Patients with moderately to severely active ulcerative colitis treated with tofacitinib were more likely to have clinical response and remission than those receiving placebo. (Funded by Pfizer; ClinicalTrials.gov number, NCT00787202.).
Collapse
Affiliation(s)
- William J Sandborn
- Division of Gastroenterology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0956, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
van Vollenhoven RF, Fleischmann R, Cohen S, Lee EB, García Meijide JA, Wagner S, Forejtova S, Zwillich SH, Gruben D, Koncz T, Wallenstein GV, Krishnaswami S, Bradley JD, Wilkinson B. Tofacitinib or adalimumab versus placebo in rheumatoid arthritis. N Engl J Med 2012; 367:508-19. [PMID: 22873531 DOI: 10.1056/nejmoa1112072] [Citation(s) in RCA: 712] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Tofacitinib (CP-690,550) is a novel oral Janus kinase inhibitor that is being investigated for the treatment of rheumatoid arthritis. METHODS In this 12-month, phase 3 trial, 717 patients who were receiving stable doses of methotrexate were randomly assigned to 5 mg of tofacitinib twice daily, 10 mg of tofacitinib twice daily, 40 mg of adalimumab once every 2 weeks, or placebo. At month 3, patients in the placebo group who did not have a 20% reduction from baseline in the number of swollen and tender joints were switched in a blinded fashion to either 5 mg or 10 mg of tofacitinib twice daily; at month 6, all patients still receiving placebo were switched to tofacitinib in a blinded fashion. The three primary outcome measures were a 20% improvement at month 6 in the American College of Rheumatology scale (ACR 20); the change from baseline to month 3 in the score on the Health Assessment Questionnaire-Disability Index (HAQ-DI) (which ranges from 0 to 3, with higher scores indicating greater disability); and the percentage of patients at month 6 who had a Disease Activity Score for 28-joint counts based on the erythrocyte sedimentation rate (DAS28-4[ESR]) of less than 2.6 (with scores ranging from 0 to 9.4 and higher scores indicating greater disease activity). RESULTS At month 6, ACR 20 response rates were higher among patients receiving 5 mg or 10 mg of tofacitinib (51.5% and 52.6%, respectively) and among those receiving adalimumab (47.2%) than among those receiving placebo (28.3%) (P<0.001 for all comparisons). There were also greater reductions in the HAQ-DI score at month 3 and higher percentages of patients with a DAS28-4(ESR) below 2.6 at month 6 in the active-treatment groups than in the placebo group. Adverse events occurred more frequently with tofacitinib than with placebo, and pulmonary tuberculosis developed in two patients in the 10-mg tofacitinib group. Tofacitinib was associated with an increase in both low-density and high-density lipoprotein cholesterol levels and with reductions in neutrophil counts. CONCLUSIONS In patients with rheumatoid arthritis receiving background methotrexate, tofacitinib was significantly superior to placebo and was numerically similar to adalimumab in efficacy. (Funded by Pfizer; ORAL Standard ClinicalTrials.gov number, NCT00853385.).
Collapse
|
47
|
Kontzias A, Kotlyar A, Laurence A, Changelian P, O'Shea JJ. Jakinibs: a new class of kinase inhibitors in cancer and autoimmune disease. Curr Opin Pharmacol 2012; 12:464-70. [PMID: 22819198 PMCID: PMC3419278 DOI: 10.1016/j.coph.2012.06.008] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 06/11/2012] [Accepted: 06/20/2012] [Indexed: 01/05/2023]
Abstract
Cytokines are critical for normal cell growth and immunoregulation but also contribute to growth of malignant cells and drive immune-mediated disease. A large subset of immunoregulatory cytokines uses the type I and type II cytokine receptors and pharmacological targeting of these cytokines/cytokines receptors has proven to be efficacious in treating immune and inflammatory diseases. These receptors rely on Janus family of kinases (Jaks) for signal transduction. Recently the first Jak inhibitor (jakinib) has been approved by the FDA and a second has been recommended for approval. Many other Jakinibs are likely to follow and in this brief review, we will discuss the state-of-the art of this new class of pharmacological agents.
Collapse
Affiliation(s)
- Apostolos Kontzias
- Pediatric Rheumatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
48
|
O'Shea JJ, Plenge R. JAK and STAT signaling molecules in immunoregulation and immune-mediated disease. Immunity 2012; 36:542-50. [PMID: 22520847 DOI: 10.1016/j.immuni.2012.03.014] [Citation(s) in RCA: 850] [Impact Index Per Article: 65.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Indexed: 12/12/2022]
Abstract
The discovery of the Janus kinase (JAK)-signal transducer and activator of transcripton (STAT) signaling pathway, a landmark in cell biology, provided a simple mechanism for gene regulation that dramatically advanced our understanding of the action of hormones, interferons, colony-stimulating factors, and interleukins. As we learn more about the complexities of immune responses, new insights into the functions of this pathway continue to be revealed, aided by technology that permits genome-wide views. As we celebrate the 20(th) anniversary of the discovery of this paradigm in cell signaling, it is particularly edifying to see how this knowledge has rapidly been translated to human immune disease. Not only have genome-wide association studies demonstrated that this pathway is highly relevant to human autoimmunity, but targeting JAKs is now a reality in immune-mediated disease.
Collapse
Affiliation(s)
- John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
49
|
Rosengren S, Corr M, Firestein GS, Boyle DL. The JAK inhibitor CP-690,550 (tofacitinib) inhibits TNF-induced chemokine expression in fibroblast-like synoviocytes: autocrine role of type I interferon. Ann Rheum Dis 2012; 71:440-7. [PMID: 22121136 DOI: 10.1136/ard.2011.150284] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVES The objective of this study was to investigate the effect of the novel Janus kinase inhibitor CP-690,550 in fibroblast-like synoviocytes (FLSs) from patients with rheumatoid arthritis (RA). METHODS RA FLSs were isolated from tissue obtained by arthroplasty, cultured and serum-starved 48 h prior to stimulation. Messenger RNA and protein levels were determined by quantitative PCR and ELISA or multiplex bead assay, respectively. Phosphorylation of STAT (signal transducers and activators of transcription) proteins was determined by western blot. RESULTS Interleukin-6-induced phosphorylation of STAT1 and STAT3 was inhibited by CP-690,550 with IC(50) values of 23 and 77 nM, respectively. Unexpectedly, although tumour necrosis factor (TNF) did not induce immediate phosphorylation of either STAT, CP-690,550 inhibited TNF-induced expression of several chemokines (IP-10, RANTES and MCP1) at the messenger RNA and protein levels. Chemokine expression was inhibited by cycloheximide, implying a need for de novo protein synthesis, and cycloheximide abolished the effect of CP-690,550 (tofacitinib). TNF induced early interferon (IFN) β expression and STAT1 phosphorylation beginning at 3 h, which was blocked by CP-690,550. The dependence of TNF-induced chemokine expression on type I IFN was confirmed in FLSs from mice lacking type I IFN receptors (IFNARs) and in RA FLSs using an IFNAR blocking antibody. CONCLUSIONS The Janus kinase/STAT pathway in FLS is indirectly activated by TNF through autocrine expression of type I IFN, resulting in IFNAR engagement and production of T cell chemokines. These findings illuminate a novel role of CP-690,550 in the treatment of RA: the reduction of chemokine synthesis by FLS, thereby limiting recruitment of T cells and other infiltrating leucocytes.
Collapse
Affiliation(s)
- Sanna Rosengren
- Division of Rheumatology, Allergy and Immunology, University of California at San Diego School of Medicine, La Jolla, California 92093-0656, USA
| | | | | | | |
Collapse
|
50
|
Vafadari R, Weimar W, Baan CC. Phosphospecific flow cytometry for pharmacodynamic drug monitoring: analysis of the JAK-STAT signaling pathway. Clin Chim Acta 2012; 413:1398-405. [PMID: 22261016 DOI: 10.1016/j.cca.2011.12.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 12/29/2011] [Accepted: 12/30/2011] [Indexed: 01/09/2023]
Abstract
Cytokines of the IL-2 receptor family act via activation of the JAK-STAT (janus tyrosine kinase-signal transducer and activator of transcription) signaling pathway. These cytokines are pivotal for the development and function of lymphocyte subsets involved in the immune response after organ transplantation including T, B and natural killer cells. The new small drug molecule and JAK1/3 inhibitor, tofacitinib, is currently being tested in phase II and III clinical trials for rheumatoid arthritis, psoriasis and in organ transplantation. This agent specifically targets the JAK-STAT signaling pathway. Here we discuss phosphospecific flow cytometry as a novel tool to monitor the JAK-STAT signaling pathway in kidney transplant patients and speculate that through the use of this pharmacodynamic tool the efficacy of immunosuppressive drugs can be assessed enabling optimization of the immunosuppressive therapy for individual transplant patients.
Collapse
Affiliation(s)
- Ramin Vafadari
- Department of Internal Medicine, Erasmus MC, University medical Hospital Rotterdam, The Netherlands.
| | | | | |
Collapse
|