1
|
Schulz A, Welsch SK, Etringer S, Hansen G, Milbert L, Schneider J, Taddei G, Gomez Bravo R, Lygidakis C, van Dyck Z, Lutz A, Wilmes P, Vögele C. Lower gastric sensitivity in quiescent inflammatory bowel disease than in irritable bowel syndrome. Physiol Behav 2023; 270:114293. [PMID: 37468056 DOI: 10.1016/j.physbeh.2023.114293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 04/18/2023] [Accepted: 07/11/2023] [Indexed: 07/21/2023]
Abstract
OBJECTIVE Visceral hypersensitivity is considered a key symptom in inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS), both of which seriously affect health-related quality of life (HrQoL). Previous findings are mostly based on invasive procedures that may interfere with the assessment of visceral perception. The current study, therefore, investigates whether IBD and IBS are characterized by altered perception of 'natural' gastric distensions ('interoception'). METHODS Twenty IBD patients in remission (13 Crohn's disease, 7 ulcerative colitis), 12 IBS patients, and 20/12 matched healthy control (HC) individuals, respectively, underwent the water load test, in which they could drink ad libitum until the subjective thresholds of satiation (stage 1) and fullness (stage 2) were reached. Gastric motility was assessed using electrogastrography. RESULTS IBD patients drank significantly more water until satiation than IBS patients, whereas no differences between patients and HC groups were observed. Electrogastrographic patterns were comparable between groups, suggesting no pathologies in gastric motility in IBD or IBS. The amount of water consumed until satiation negatively correlated with HrQoL related to bowel symptoms in IBD patients, but was positively associated with emotional well-being in IBS patients. CONCLUSION Our findings implicate relative gastric hypersensitivity in IBS, and relative hyposensitivity in IBD patients, which are both related to specific HrQoL aspects.
Collapse
Affiliation(s)
- André Schulz
- Clinical Psychophysiology Laboratory, Department of Behavioural and Cognitive Sciences, University of Luxembourg, Esch-sur-Alzette, Luxembourg; Institute for Cognitive and Affective Neuroscience, Trier University, Trier, Germany.
| | - Sina-Katharina Welsch
- Clinical Psychophysiology Laboratory, Department of Behavioural and Cognitive Sciences, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Sarah Etringer
- Clinical Psychophysiology Laboratory, Department of Behavioural and Cognitive Sciences, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Greta Hansen
- Clinical Psychophysiology Laboratory, Department of Behavioural and Cognitive Sciences, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Léa Milbert
- Clinical Psychophysiology Laboratory, Department of Behavioural and Cognitive Sciences, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jochen Schneider
- Saarland University Medical Center, Department of Internal Medicine II, Homburg/Saar, Germany; Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg; Department of Gastroenterology, Centre Hospitalier Emile Mayrisch, Esch-sur-Alzette, Luxembourg
| | - Gennaro Taddei
- Department of Gastroenterology, Centre Hospitalier Emile Mayrisch, Esch-sur-Alzette, Luxembourg
| | - Raquel Gomez Bravo
- Clinical Psychophysiology Laboratory, Department of Behavioural and Cognitive Sciences, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Charilaos Lygidakis
- Clinical Psychophysiology Laboratory, Department of Behavioural and Cognitive Sciences, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Zoé van Dyck
- Clinical Psychophysiology Laboratory, Department of Behavioural and Cognitive Sciences, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Annika Lutz
- Clinical Psychophysiology Laboratory, Department of Behavioural and Cognitive Sciences, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Claus Vögele
- Clinical Psychophysiology Laboratory, Department of Behavioural and Cognitive Sciences, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
2
|
Zandalasini M, Pelizzari L, Ciardi G, Giraudo D, Guasconi M, Paravati S, Lamberti G, Frizziero A. Bowel dysfunctions after acquired brain injury: a scoping review. Front Hum Neurosci 2023; 17:1146054. [PMID: 37900728 PMCID: PMC10602674 DOI: 10.3389/fnhum.2023.1146054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Bowel dysfunction is a common consequence of neurological diseases and has a major impact on the dignity and quality of life of patients. Evidence on neurogenic bowel is focused on spinal cord injury and multiple sclerosis; few studies have focused on patients with acquired brain injury (ABI). Neurogenic bowel dysfunction is related to a lifelong condition derived from central neurological disease, which further increases disability and social deprivation. The manifestations of neurogenic bowel dysfunction include fecal incontinence and constipation. Almost two out of three patients with central nervous system disorder have bowel impairment. This scoping review aims to comprehend the extent and type of evidence on bowel dysfunction after ABI and present conservative treatment. For this scoping review, the PCC (population, concept, and context) framework was used: patients with ABI and bowel dysfunction; evaluation and treatment; and intensive/extensive rehabilitation path. Ten full-text articles were included in the review. Oral laxatives are the most common treatment. The Functional Independence Measure (FIM) subscale is the most common scale used to assess neurogenic bowel disease (60%), followed by the Rome II and III criteria, and the colon transit time is used to test for constipation; however, no instrumental methods have been used for incontinence. An overlapping between incontinence and constipation, SCI and ABI increase difficulties to manage NBD. The need for a consensus between the rehabilitative and gastroenterological societies on the diagnosis and medical care of NBD. Systematic review registration Open Science Framework on August 16, 2022 https://doi.org/10.17605/OSF.IO/NEQMA.
Collapse
Affiliation(s)
- Matteo Zandalasini
- Department of Rehabilitative Medicine, Azienda USL Piacenza, Piacenza, Italy
| | - Laura Pelizzari
- Department of Rehabilitative Medicine, Azienda USL Piacenza, Piacenza, Italy
| | - Gianluca Ciardi
- Department of Rehabilitative Medicine, Azienda USL Piacenza, Piacenza, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Donatella Giraudo
- Department of Urology, San Raffaele Hospital, Ville Turro, Milan, Italy
| | - Massimo Guasconi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Dipartimento della Direzione delle Professioni Sanitarie, Azienda USL Piacenza, Piacenza, Italy
| | - Stefano Paravati
- Department of Rehabilitative Medicine, Azienda USL Piacenza, Piacenza, Italy
| | - Gianfranco Lamberti
- Department of Rehabilitative Medicine, Azienda USL Piacenza, Piacenza, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Antonio Frizziero
- Department of Rehabilitative Medicine, Azienda USL Piacenza, Piacenza, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
3
|
Liu C, Zhu S, Zhang J, Ren K, Li K, Yu J. Inflammatory bowel diseases, interleukin-6 and interleukin-6 receptor subunit alpha in causal association with cerebral cortical structure: a Mendelian randomization analysis. Front Immunol 2023; 14:1154746. [PMID: 37153572 PMCID: PMC10157470 DOI: 10.3389/fimmu.2023.1154746] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/06/2023] [Indexed: 05/09/2023] Open
Abstract
Background Neurological involvement and psychiatric manifestations have been documented in clinical cases of inflammatory bowel disease (IBD); however, the presence of a causal relationship remains elusive. The objective of this study is to investigate the modifications occurring in the cerebral cortex as a result of IBD. Methods A compendium of data extracted from a genome-wide association study (GWAS) involving a maximum of 133,380 European subjects. A series of Mendelian random analyses were applied to exclude heterogeneity and pleiotropy, ensuring the stability of the results. Results Neither IBDs nor inflammatory cytokines (IL-6/IL-6Rα) were found to have a significant causality with surface area (SA) and thickness (TH) at the global level. At the regional functional brain level, Crohn's disease (CD) significantly decreased the TH of pars orbitalis (β=-0.003mm, Se=0.001mm, pivw =4.85×10-4). IL-6 was observed to reduce the SA of middle temporal (β=-28.575mm2, Se=6.482mm2, pivw=1.04×10-5) and increase the TH of fusiform (β=0.008mm, Se=0.002mm, pivw=8.86×10-5) and pars opercularis (β=0.009mm, Se=0.002mm, pivw=2.34×10-4). Furthermore, a causal relationship between IL-6Rα and an increase in the SA of superior frontal (β=21.132mm2, Se=5.806mm2, pivw=2.73×10-4) and the TH of supramarginal (β=0.003mm, Se=0.0002mm, pivw=7.86×10-37). All results passed sensitivity analysis and no heterogeneity and pleiotropy were detected. Conclusion The correlation between IBD and changes in cerebral cortical structures implies the existence of a gut-brain axis at the organismal level. It is recommended that clinical patients with IBD prioritize long-term management of inflammation, as changes at the organismal level can lead to functional pathologies. Magnetic resonance imaging (MRI) may be considered as an additional screening option for IBD.
Collapse
Affiliation(s)
- Chunlong Liu
- Department of Hepatobiliary and Pancreatic Surgery, Fuyang People’s Hospital, Anhui Medical University, Fuyang, China
| | - Shijie Zhu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, China
| | - Jian Zhang
- Department of Neurosurgery, The Seventh Clinical College of China Medical University, Fushun, China
| | - Kuiwu Ren
- Department of Hepatobiliary and Pancreatic Surgery, Fuyang People’s Hospital, Anhui Medical University, Fuyang, China
| | - Kangkang Li
- Department of Hepatobiliary and Pancreatic Surgery, Fuyang People’s Hospital, Bengbu Medical College, Fuyang, China
| | - Jiangtao Yu
- Department of Hepatobiliary and Pancreatic Surgery, Fuyang People’s Hospital, Anhui Medical University, Fuyang, China
- Department of Hepatobiliary and Pancreatic Surgery, Fuyang People’s Hospital, Bengbu Medical College, Fuyang, China
- *Correspondence: Jiangtao Yu,
| |
Collapse
|
4
|
Lyubashina OA, Sivachenko IB, Panteleev SS. Supraspinal Mechanisms of Intestinal Hypersensitivity. Cell Mol Neurobiol 2022; 42:389-417. [PMID: 33030712 PMCID: PMC11441296 DOI: 10.1007/s10571-020-00967-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022]
Abstract
Gut inflammation or injury causes intestinal hypersensitivity (IHS) and hyperalgesia, which can persist after the initiating pathology resolves, are often referred to somatic regions and exacerbated by psychological stress, anxiety or depression, suggesting the involvement of both the spinal cord and the brain. The supraspinal mechanisms of IHS remain to be fully elucidated, however, over the last decades the series of intestinal pathology-associated neuroplastic changes in the brain has been revealed, being potentially responsible for the phenomenon. This paper reviews current clinical and experimental data, including the authors' own findings, on these functional, structural, and neurochemical/molecular changes within cortical, subcortical and brainstem regions processing and modulating sensory signals from the gut. As concluded in the review, IHS can develop and maintain due to the bowel inflammation/injury-induced persistent hyperexcitability of viscerosensory brainstem and thalamic nuclei and sensitization of hypothalamic, amygdala, hippocampal, anterior insular, and anterior cingulate cortical areas implicated in the neuroendocrine, emotional and cognitive modulation of visceral sensation and pain. An additional contribution may come from the pathology-triggered dysfunction of the brainstem structures inhibiting nociception. The mechanism underlying IHS-associated regional hyperexcitability is enhanced NMDA-, AMPA- and group I metabotropic receptor-mediated glutamatergic neurotransmission in association with altered neuropeptide Y, corticotropin-releasing factor, and cannabinoid 1 receptor signaling. These alterations are at least partially mediated by brain microglia and local production of cytokines, especially tumor necrosis factor α. Studying the IHS-related brain neuroplasticity in greater depth may enable the development of new therapeutic approaches against chronic abdominal pain in inflammatory bowel disease.
Collapse
Affiliation(s)
- Olga A Lyubashina
- Laboratory of Cortico-Visceral Physiology, Pavlov Institute of Physiology, Russian Academy of Sciences, 6 Nab. Makarova, Saint Petersburg, 199034, Russia.
| | - Ivan B Sivachenko
- Laboratory of Cortico-Visceral Physiology, Pavlov Institute of Physiology, Russian Academy of Sciences, 6 Nab. Makarova, Saint Petersburg, 199034, Russia
| | - Sergey S Panteleev
- Laboratory of Cortico-Visceral Physiology, Pavlov Institute of Physiology, Russian Academy of Sciences, 6 Nab. Makarova, Saint Petersburg, 199034, Russia
| |
Collapse
|
5
|
Matisz C, Gruber A. Neuroinflammatory remodeling of the anterior cingulate cortex as a key driver of mood disorders in gastrointestinal disease and disorders. Neurosci Biobehav Rev 2022; 133:104497. [DOI: 10.1016/j.neubiorev.2021.12.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 11/10/2021] [Accepted: 12/09/2021] [Indexed: 02/08/2023]
|
6
|
Shah MK, Ding Y, Wan J, Janyaro H, Tahir AH, Vodyanoy V, Ding MX. Electroacupuncture intervention of visceral hypersensitivity is involved in PAR-2-activation and CGRP-release in the spinal cord. Sci Rep 2020; 10:11188. [PMID: 32636402 PMCID: PMC7341736 DOI: 10.1038/s41598-020-67702-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 05/16/2020] [Indexed: 01/02/2023] Open
Abstract
Electroacupuncture (EA) relieves visceral hypersensitivity (VH) with underlying inflammatory bowel diseases. However, the mechanism by which EA treats ileitis-induced VH is not clearly known. To assess the effects of EA on ileitis-induced VH and confirm whether EA attenuates VH through spinal PAR-2 activation and CGRP release, goats received an injection of 2,4,6-trinitro-benzenesulfonic-acid (TNBS) solution into the ileal wall. TNBS-injected goats were allocated into VH, Sham acupuncture (Sham-A) and EA groups, while goats treated with saline instead of TNBS solution were used as the control. Goats in EA group received EA at bilateral Hou-San-Li acupoints for 0.5 h at 7 days and thereafter repeated every 3 days for 6 times. Goats in the Sham-A group were inserted with needles for 0.5 h at the aforementioned acupoints without any hand manipulation and electric stimulation. Visceromotor responses to colorectal distension, an indicator of VH, were recorded by electromyography. The terminal ileum and thoracic spinal cord (T11) were sampled for evaluating ileitis at days 7 and 22, and distribution and expression-levels of PAR-2, CGRP and c-Fos on day 22. TNBS-treated-goats exhibited apparent transmural-ileitis on day 7, microscopically low-grade ileitis on day 22 and VH at days 7–22. Goats of Sham-A, VH or EA group showed higher (P < 0.01) VH at days 7–22 than the Control-goats. EA-treated goats exhibited lower (P < 0.01) VH as compared with Sham-A or VH group. Immunoreactive-cells and expression-levels of spinal PAR-2, CGRP and c-Fos in the EA group were greater (P < 0.01) than those in the Control group, but less (P < 0.01) than those in Sham-A and VH groups on day 22. Downregulation of spinal PAR-2 and CGRP levels by EA attenuates the ileitis and resultant VH.
Collapse
Affiliation(s)
- Manoj K Shah
- College of Veterinary Medicine, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, People's Republic of China.,Department of Surgery and Pharmacology, Agriculture and Forestry University, Bharatpur, Nepal
| | - Yi Ding
- College of Veterinary Medicine, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Juan Wan
- College of Veterinary Medicine, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Habibullah Janyaro
- College of Veterinary Medicine, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Adnan Hassan Tahir
- College of Veterinary Medicine, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Vitaly Vodyanoy
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, AL, USA
| | - Ming-Xing Ding
- College of Veterinary Medicine, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, People's Republic of China.
| |
Collapse
|
7
|
Huang T, Okauchi T, Hu D, Shigeta M, Wu Y, Wada Y, Hayashinaka E, Wang S, Kogure Y, Noguchi K, Watanabe Y, Dai Y, Cui Y. Pain matrix shift in the rat brain following persistent colonic inflammation revealed by voxel-based statistical analysis. Mol Pain 2020; 15:1744806919891327. [PMID: 31709891 PMCID: PMC6886279 DOI: 10.1177/1744806919891327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Inflammatory bowel disease (IBD), mainly comprising Crohn’s disease and ulcerative colitis, is characterized by chronic inflammation in the digestive tract. Approximately 60% of the patients experience abdominal pain during acute IBD episodes, which severely impairs their quality of life. Both peripheral and central mechanisms are thought to be involved in such abdominal pain in IBD. Although much attention has been paid to peripheral mechanisms of abdominal pain in IBD pathophysiology, the involvement of supraspinal mechanisms remains poorly understood. To address this issue, we investigated regional brain activity in response to colorectal distension in normal and IBD model rats using voxel-based statistical analysis of 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography imaging. The rat IBD model was generated by colorectal administration of 2,4,6-trinitrobenzene sulfonic acid, a chemical compound widely used to generate colitis. Tissue damage and inflammation were induced and dynamically changed with time after 2,4,6-trinitrobenzene sulfonic acid injection, while colorectal distension-induced visceromotor response showed corresponding temporal changes. We found that characteristic brain activations were observed in response to visceral innocuous and noxious colorectal distension and supraspinal nociception shared some physiological sensory pathway. Moreover, widespread brain regions were activated, and the functional coupling between the central medial thalamic nucleus and anterior cingulate cortex was enhanced after noxious colorectal distension in IBD model of rats. Increased brain activity in the anterior insular cortex and anterior cingulate cortex was positively correlated with noxious colorectal distension-induced pain severity in normal and IBD rats, respectively. These findings suggest that the pain matrix was shifted following persistent colonic inflammation, and thalamocortical sensitization in the pathway from the central medial thalamic nucleus to anterior cingulate cortex might be a central mechanism of the visceral hyperalgesia in IBD pathophysiology.
Collapse
Affiliation(s)
- Tianliang Huang
- Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.,Department of Anatomy and Neuroscience, Hyogo College of Medicine, Nishinomiya, Japan.,Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe, Japan
| | - Takashi Okauchi
- Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Di Hu
- Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Mika Shigeta
- Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Yuping Wu
- Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Yasuhiro Wada
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Emi Hayashinaka
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Shenglan Wang
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe, Japan
| | - Yoko Kogure
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe, Japan
| | - Koichi Noguchi
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Nishinomiya, Japan
| | - Yasuyoshi Watanabe
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Yi Dai
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Nishinomiya, Japan.,Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe, Japan
| | - Yilong Cui
- Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| |
Collapse
|
8
|
Balmus IM, Ciobica A, Cojocariu R, Luca AC, Gorgan L. Irritable Bowel Syndrome and Neurological Deficiencies: Is There A Relationship? The Possible Relevance of the Oxidative Stress Status. ACTA ACUST UNITED AC 2020; 56:medicina56040175. [PMID: 32295083 PMCID: PMC7230401 DOI: 10.3390/medicina56040175] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 12/12/2022]
Abstract
Background: Irritable bowel syndrome (IBS) is one of the most common functional gastrointestinal disorders, exhibiting complex and controversial pathological features. Both oxidative stress and inflammation-related reactive oxygen species production may be involved in IBS pathological development. Thus, we focused on several aspects regarding the causes of oxidative stress occurrence in IBS. Additionally, in the molecular context of oxidative changes, we tried to discuss these possible neurological implications in IBS. Methods: The literature search included the main available databases (e.g., ScienceDirect, Pubmed/Medline, Embase, and Google Scholar). Articles in the English language were taken into consideration. Our screening was conducted based on several words such as “irritable bowel syndrome”, “gut brain axis”, “oxidative stress”, “neuroendocrine”, and combinations. Results: While no consistent evidence suggests clear pathway mechanisms, it seems that the inflammatory response may also be relevant in IBS. The mild implication of oxidative stress in IBS has been described through clinical studies and some animal models, revealing changes in the main markers such as antioxidant status and peroxidation markers. Moreover, it seems that the neurological structures involved in the brain-gut axis may be affected in IBS rather than the local gut tissue and functionality. Due to a gut-brain axis bidirectional communication error, a correlation between neurological impairment, emotional over-responsiveness, mild inflammatory patterns, and oxidative stress can be suggested. Conclusions: Therefore, there is a possible correlation between neurological impairment, emotional over-responsiveness, mild inflammatory patterns, and oxidative stress that are not followed by tissue destruction in IBS patients. Moreover, it is not yet clear whether oxidative stress, inflammation, or neurological impairments are key determinants or in which way these three interact in IBS pathology. However, the conditions in which oxidative imbalances occur may be an interesting research lead in order to find possible explanations for IBS development.
Collapse
Affiliation(s)
- Ioana-Miruna Balmus
- Department of Interdisciplinary Research in Science, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, No. 11, 700506 Iași, Romania;
- Department of Research, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700506 Iași, Romania
| | - Alin Ciobica
- Department of Research, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700506 Iași, Romania
- Correspondence: (A.C.); (A.-C.L.)
| | - Roxana Cojocariu
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700506 Iași, Romania; (R.C.); (L.G.)
| | - Alina-Costina Luca
- Faculty of Medicine, “Gr. T. Popa” University of Medicine and Pharmacy, 16th University Street, 700115 Iași, Romania
- Correspondence: (A.C.); (A.-C.L.)
| | - Lucian Gorgan
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700506 Iași, Romania; (R.C.); (L.G.)
| |
Collapse
|
9
|
Fournier A, Mondillon L, Luminet O, Canini F, Mathieu N, Gauchez AS, Dantzer C, Bonaz B, Pellissier S. Interoceptive Abilities in Inflammatory Bowel Diseases and Irritable Bowel Syndrome. Front Psychiatry 2020; 11:229. [PMID: 32300314 PMCID: PMC7142209 DOI: 10.3389/fpsyt.2020.00229] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/10/2020] [Indexed: 12/12/2022] Open
Abstract
Alexithymia is usually described by three main dimensions difficulty identifying feelings (DIF), difficulty describing feelings (DDF), and externally oriented thinking (EOT). The most commonly used questionnaire investigating alexithymia, the Toronto Alexithymia Scale (TAS-20), supports this three-factor structure. One important assumption is that alexithymia severity is associated to vulnerability to somatic diseases, among them gastrointestinal disorders. However, the association between alexithymia and gastrointestinal disorders is not systematic, thus questioning the role of alexithymia as a vulnerability factor for those illnesses. A recent factor analysis suggested another four-factor structure for the TAS-20: difficulties in awareness of feelings (DAF), difficulties in interoceptive abilities (DIA), externally oriented thinking (EOT), and poor affective sharing (PAS). We assume that DIA and DAF might be more relevant to investigate the association between alexithymia and gastrointestinal disorders. The rationale is that DIA and DAF reflect impairments in emotion regulation that could contribute to an inappropriate autonomic and HPA axis homeostasis in irritable bowel syndrome (IBS), ulcerative colitis (UC), or Crohn's disease (CD). The aim of this study was to investigate whether DIA and DAF are associated with the presence of IBS, UC or CD, while checking for anxiety, depression, parasympathetic (vagus nerve) activity and cortisol levels. We recruited control participants (n=26), and patients in remission who were diagnosed with IBS (n=24), UC (n=18), or CD (n=21). Participants completed questionnaires to assess anxiety, depression, and alexithymia. A blood sample and an electrocardiogram were used to measure the level of cortisol and parasympathetic activity, respectively. Logistic regressions with the four-factor structure of the TAS-20 revealed that DIA was a significant predictor of IBS (W(1)=6.27, p=.01). Conversely, DIA and DAF were not significant predictors in CD and UC patients. However, low cortisol level was a significant predictor of UC (W(1)=4.67, p=.035). Additional logistic regressions based on the original 3-factor structure of TAS-20 (DIF, DDF, and EOT) showed that only DDF was a significant predictor of CD [W(1)=6.16, p < .001]. The present study suggests that DIA is an important dimension for assessing potential risk for gastrointestinal diseases, in particular for IBS.
Collapse
Affiliation(s)
- Alicia Fournier
- Université de Bourgogne, Laboratoire Psy-DREPI, Dijon, France
- MSHE Claude-Nicolas Ledoux, USR3124, Behaviors, Risk and Health, Besançon, France
| | - Laurie Mondillon
- Université Clermont Auvergne, CNRS, Laboratoire de Psychologie Sociale et Cognitive, Team on Physiological and Psychosocial Stress, Well-being Physiological and Psychosocial Stress, Clermont-Ferrand, France
| | - Olivier Luminet
- Research Institute for Psychological Sciences, Université catholique de Louvain, Louvain-La-Neuve, Belgium
- Fund for Scientific Research (FRS-FNRS), Brussels, Belgium
| | - Fréderic Canini
- Unité de Neurophysiologie du Stress, Institut de Recherche Biomédicale des Armées (IRBA), Brétigny sur Orge, France
- École du Val de Grâce, Paris, France
| | - Nicolas Mathieu
- Service d’Hépato-Gastroentérology, Centre Hospitalier Universitaire de Grenoble, Grenoble, France
| | - Anne Sophie Gauchez
- Institut de Biologie et Pathologie, Centre Hospitalier Universitaire de Grenoble, Grenoble, France
| | - Cécile Dantzer
- Université de Bordeaux, Laboratoire de Psychologie, Bordeaux, France
| | - Bruno Bonaz
- Service d’Hépato-Gastroentérology, Centre Hospitalier Universitaire de Grenoble, Grenoble, France
- Université Grenoble Alpes, Grenoble Institute of Neurosciences, Grenoble, France
| | | |
Collapse
|
10
|
Use of functional magnetic resonance imaging in patients with irritable bowel syndrome and functional dyspepsia. GASTROENTEROLOGY REVIEW 2019; 14:163-167. [PMID: 31649785 PMCID: PMC6807669 DOI: 10.5114/pg.2019.88163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/14/2019] [Indexed: 12/13/2022]
Abstract
Functional brain imaging (positron emission tomography – PET, functional magnetic resonance imaging – fMRI), allowing in vivo analysis of the brain-digestive tract interaction and the neurological mechanisms underlying visceral hypersensitivity, significantly advanced research and helped in the understanding of the interrelations in this field. Differences in this parameter can result from alterations in task-related cognitive states or from resting state processes. Nowadays, advanced imaging techniques such as fMRI are more frequently used and are acknowledged among both clinicians and radiologists in the diagnostic algorithm of digestive tract diseases. Functional dyspepsia is a condition in which neuroimaging allows for analysis of dysfunctions within the brain-gut axis (BGA) engaged in processing of visceral discomfort and pain. The results of studies in patient groups with irritable bowel syndrome prove that psychosocial factors significantly affect the mechanisms regulating visceral sensitivity within the brain. The BGA includes neuronal pathways (autonomic nervous system), neuroendocrine (hypothalamo-pituitary-adrenal axis), and neuroimmunological ones. Psychological processes affect the functioning of the digestive system and can cause dyspeptic symptoms. A patient’s mental condition associated with stress can affect processes taking place in the central nervous system and trigger somatic reactions in the digestive tract through the autonomic visceral system.
Collapse
|
11
|
Bonaz B, Sinniger V, Pellissier S. Vagus Nerve Stimulation at the Interface of Brain-Gut Interactions. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a034199. [PMID: 30201788 DOI: 10.1101/cshperspect.a034199] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The vagus nerve, a key component of the cross-communication between the gut and the brain, is a major element of homeostasis sensing the "milieu intérieur" and boosting the nervous and endocrine responses to maintain the gastrointestinal health status. This nerve has anti-inflammatory properties regulating the gut through the activation of the hypothalamic-pituitary-adrenal axis and the release of cortisol and through a vagovagal reflex, which has an anti-tumor necrosis factor (TNF) effect called the cholinergic anti-inflammatory pathway. Stimulating this nerve is an interesting tool as a nondrug therapy for the treatment of gastrointestinal diseases in which brain-gut communication is dysfunctional, such as inflammatory bowel disorders and others. This review presents the rationale of vagal gastrointestinal physiology and diseases and the most recent advances in vagus nerve stimulation. It also highlights the main issues to be addressed in the future to improve this bioelectronic therapy for gastrointestinal disorders.
Collapse
Affiliation(s)
- Bruno Bonaz
- Division of Hepato-Gastroenterology, Grenoble University Hospital, 38043 Grenoble Cedex 09, France.,U1216, INSERM, GIN, Grenoble Institute of Neurosciences, University Grenoble Alpes, Grenoble, France
| | - Valérie Sinniger
- Division of Hepato-Gastroenterology, Grenoble University Hospital, 38043 Grenoble Cedex 09, France.,U1216, INSERM, GIN, Grenoble Institute of Neurosciences, University Grenoble Alpes, Grenoble, France
| | - Sonia Pellissier
- University Grenoble Alpes, University Savoie Mont Blanc, 38000 Grenoble, France
| |
Collapse
|
12
|
Sharkey KA, Beck PL, McKay DM. Neuroimmunophysiology of the gut: advances and emerging concepts focusing on the epithelium. Nat Rev Gastroenterol Hepatol 2018; 15:765-784. [PMID: 30069036 DOI: 10.1038/s41575-018-0051-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The epithelial lining of the gastrointestinal tract serves as the interface for digestion and absorption of nutrients and water and as a defensive barrier. The defensive functions of the intestinal epithelium are remarkable considering that the gut lumen is home to trillions of resident bacteria, fungi and protozoa (collectively, the intestinal microbiota) that must be prevented from translocation across the epithelial barrier. Imbalances in the relationship between the intestinal microbiota and the host lead to the manifestation of diseases that range from disorders of motility and sensation (IBS) and intestinal inflammation (IBD) to behavioural and metabolic disorders, including autism and obesity. The latest discoveries shed light on the sophisticated intracellular, intercellular and interkingdom signalling mechanisms of host defence that involve epithelial and enteroendocrine cells, the enteric nervous system and the immune system. Together, they maintain homeostasis by integrating luminal signals, including those derived from the microbiota, to regulate the physiology of the gastrointestinal tract in health and disease. Therapeutic strategies are being developed that target these signalling systems to improve the resilience of the gut and treat the symptoms of gastrointestinal disease.
Collapse
Affiliation(s)
- Keith A Sharkey
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada. .,Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada. .,Gastrointestinal Research Group, University of Calgary, Calgary, Alberta, Canada. .,Department of Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada.
| | - Paul L Beck
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada.,Gastrointestinal Research Group, University of Calgary, Calgary, Alberta, Canada.,Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada.,Division of Gastroenterology and Hepatology, University of Calgary, Calgary, Alberta, Canada.,Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Derek M McKay
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada.,Gastrointestinal Research Group, University of Calgary, Calgary, Alberta, Canada.,Department of Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
13
|
Lv K, Song W, Tang R, Pan Z, Zhang Y, Xu Y, Lv B, Fan Y, Xu M. Neurotransmitter alterations in the anterior cingulate cortex in Crohn's disease patients with abdominal pain: A preliminary MR spectroscopy study. NEUROIMAGE-CLINICAL 2018; 20:793-799. [PMID: 30268988 PMCID: PMC6169252 DOI: 10.1016/j.nicl.2018.09.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 08/14/2018] [Accepted: 09/13/2018] [Indexed: 02/07/2023]
Abstract
Purpose Crohn's disease (CD) has been known to cause both abdominal pain alongside functional and structural alterations in the central nervous system (CNS) in affected patients. This study seeks to determine the alternations of metabolites in the bilateral anterior cingulate cortex (ACC) of CD patients with abdominal pain by using proton magnetic resonance spectroscopy (1H-MRS) to further explore the neural mechanism. Methods Sixteen CD patients with abdominal pain and 13 CD patients without abdominal pain, were recruited alongside 20 healthy controls (HCs) for this study. Clinical evaluations, including the 0–10 Visual Analogue Scale (VAS) of pain, Hospital Anxiety and Depression Scale (HADS) and Crohn's Disease Activity Index (CDAI), were evaluated prior to MR scanning. This study selected the bilateral ACC as the region of interest (ROI). The metabolites of the bilateral ACC were quantitatively analyzed by LCModel and Gannet. A independent sample t-test and one-way analysis of variance (ANOVA) were performed for statistical analysis. Spearman correlation analyses were performed to examine the relationship between the metabolite levels and clinical evaluations. Results The results indicated that CD patients with abdominal pain exhibited significantly higher levels of Glutamate (Glu)/(creatine + phosphocreatine, total creatine, tCr) over CD patients without abdominal pain, and HCs (p = 0.003, 0.009, respectively) in the bilateral ACC. The level of (Glutamate + Glutamine, Glx)/tCr of pain CD group was higher than non-pain CD group (p = 0.022). Moreover, within the pain CD group, Glu/tCr and Glx/tCr levels correlated strongly with the VAS scores of pain (ρ = 0.86, 0.59 respectively, p < 0.05). Meanwhile, the results indicates that CD patients with abdominal pain have significantly lower levels of γ-aminobutyric acid plus (GABA+)/tCr (p = 0.002) than HCs. To some extent, CDAI demonstrated a trend of negative correlation with GABA+/tCr levels (p = 0.088, ρ = −0.60). Conclusion The neural mechanism of CD patients with abdominal pain in pain processing is tightly associated with neurochemical metabolites. An imbalance in Glu and GABA may play a key role in abdominal pain processing for patients with CD. This mechanism of pain may associate with the intestinal microbiota on the brain-gut axis.
The brain metabolite in CD patients with abdominal pain was firstly investigated. The study was conducted in vivo by using 1H-MRS. Glu and GABA levels altered in ACC of CD patients with abdominal pain. CD patients with abdominal pain in pain processing implicated neurotransmitters.
Collapse
Affiliation(s)
- Kun Lv
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China; Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Wenwen Song
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Rui Tang
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China; Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhiyong Pan
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yong Zhang
- MR research, GE Healthcare, Shanghai, China
| | - Yi Xu
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Bin Lv
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yihong Fan
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.
| | - Maosheng Xu
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
14
|
Colitis-induced alterations in response properties of visceral nociceptive neurons in the rat caudal medulla oblongata and their modulation by 5-HT3 receptor blockade. Brain Res Bull 2018; 142:183-196. [PMID: 30031817 DOI: 10.1016/j.brainresbull.2018.07.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/15/2018] [Accepted: 07/17/2018] [Indexed: 12/17/2022]
Abstract
There is considerable clinical and experimental evidence that intestinal inflammation is associated with altered visceral nociceptive processing in the spinal cord and brain, but the underlying neuronal mechanisms, especially acting at the supraspinal level, remain unclear. Considering that the caudal ventrolateral medulla (CVLM) and the nucleus tractus solitarius (NTS) are the first sites for supraspinal processing of visceral pain signals, in the present study we evaluated the experimental colitis-induced changes in response properties of CVLM and NTS medullary neurons to noxious colorectal distension (CRD) in urethane-anesthetized adult male Wistar rats. To determine if gut inflammation alters the 5-HT3 receptor-dependent modulation of visceral pain-related CVLM and NTS cells, we examined the effects of intravenously administered selective 5-HT3 antagonist granisetron on ongoing and CRD-evoked activity of CVLM and NTS neurons in healthy control and colitic animals. In the absence of colonic pathology, the CVLM neurons were more excited by noxious CRD that the NTS cells, which demonstrated a greater tendency to be inhibited by the stimulation. The difference was eliminated after the development of colitis due to the increase in the proportion of CRD-excited neurons in both medullary regions associated with enhanced magnitude of the neuronal nociceptive responses. Intravenous granisetron (1 or 2 mg/kg) produced the dose-dependent suppression of the ongoing and evoked firing of CRD-excited cells within both the CVLM and NTS in normal conditions as well as was able to substantially reduce excitability of the caudal medullary neurons in the presence of colonic inflammation, arguing for the potential efficacy of the 5-HT3 receptor blockade with granisetron against both acute and inflammatory abdominal pain. Taken together, the data obtained can contribute to a deeper understanding of supraspinal serotonergic mechanisms responsible for the persistence of visceral hypersensitivity and hyperalgesia triggered by colonic inflammation.
Collapse
|
15
|
Mugie SM, Koppen IJN, van den Berg MM, Groot PFC, Reneman L, de Ruiter MB, Benninga MA. Brain processing of rectal sensation in adolescents with functional defecation disorders and healthy controls. Neurogastroenterol Motil 2018; 30. [PMID: 28975729 DOI: 10.1111/nmo.13228] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 09/14/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Decreased sensation of urge to defecate is often reported by children with functional constipation (FC) and functional nonretentive fecal incontinence (FNRFI). The aim of this cross-sectional study was to evaluate cerebral activity in response to rectal distension in adolescents with FC and FNRFI compared with healthy controls (HCs). METHODS We included 15 adolescents with FC, 10 adolescents with FNRFI, and 15 young adult HCs. Rectal barostat was performed prior to functional magnetic resonance imaging (fMRI) to determine individual pressure thresholds for urge sensation. Subjects received 2 sessions of 5 × 30 seconds of barostat stimulation during the acquisition of blood oxygenation level-dependent fMRI. Functional magnetic resonance imaging signal differences were analyzed using SPM8 in Matlab. KEY RESULTS Functional constipation and FNRFI patients had higher thresholds for urgency than HCs (P < .001). During rectal distension, FC patients showed activation in the anterior cingulate cortex, dorsolateral prefrontal cortex, inferior parietal lobule, and putamen. No activations were observed in controls and FNRFI patients. Functional nonretentive fecal incontinence patients showed deactivation in the hippocampus, parahippocampal gyrus, fusiform gyrus (FFG), lingual gyrus, posterior parietal cortex, and precentral gyrus. In HCs, deactivated areas were detected in the hippocampus, amygdala, FFG, insula, thalamus, precuneus, and primary somatosensory cortex. In contrast, no regions with significant deactivation were detected in FC patients. CONCLUSIONS & INFERENCES Children with FC differ from children with FNRFI and HCs with respect to patterns of cerebral activation and deactivation during rectal distension. Functional nonretentive fecal incontinence patients seem to resemble HCs when it comes to brain processing of rectal distension.
Collapse
Affiliation(s)
- S M Mugie
- Department of Pediatric Gastroenterology and Nutrition, Academic Medical Center, Emma Children's Hospital, Amsterdam, The Netherlands
| | - I J N Koppen
- Department of Pediatric Gastroenterology and Nutrition, Academic Medical Center, Emma Children's Hospital, Amsterdam, The Netherlands
| | - M M van den Berg
- Department of Pediatrics, Haaglanden Medical Centre, The Hague, The Netherlands
| | - P F C Groot
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | - L Reneman
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | - M B de Ruiter
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | - M A Benninga
- Department of Pediatric Gastroenterology and Nutrition, Academic Medical Center, Emma Children's Hospital, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Guleria A, Karyampudi A, Singh R, Khetrapal CL, Verma A, Ghoshal UC, Kumar D. Mapping of Brain Activations to Rectal Balloon Distension Stimuli in Male Patients with Irritable Bowel Syndrome Using Functional Magnetic Resonance Imaging. J Neurogastroenterol Motil 2017; 23:415-427. [PMID: 28192648 PMCID: PMC5503292 DOI: 10.5056/jnm16148] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 12/25/2016] [Accepted: 12/26/2016] [Indexed: 12/13/2022] Open
Abstract
Background/Aims Irritable bowel syndrome (IBS) is associated with exaggerated cerebral response including emotional processing following visceral stimulation; though data on this issue is available in female IBS patients, it is scanty among males. Hence, we aimed to study brain response of male IBS patients following rectal balloon distension as compared to healthy controls using functional magnetic resonance imaging (fMRI). Data between diarrhea and constipation predominant IBS (IBS-D and IBS-C) were also compared. Methods Rectal balloon distension threshold was assessed in 20 male IBS patients (10 IBS-C and 10 IBS-D) and 10 age-matched male healthy controls. Subsequently, fMRI on all the participants was performed at their respective rectal pain threshold. The fMRI data were analysed using the Statistical Parametric Mapping software. Results IBS patients showed greater cerebral activations in insula, middle temporal gyrus, and cerebellum in the left hemisphere compared to healthy controls. Neural activation was found in bilateral precuneus/superior parietal lobules in controls but not in patients with IBS. The brain activation differed among IBS-C and IBS-D patients; while the right mid-cingulate cortex was activated in IBS-C, the left inferior orbito-frontal cortex, left calcarine, and bilateral fusiform gyri were activated among patients with IBS-D following rectal balloon distension. Conclusions Brain response to rectal balloon distension differed among male patients with IBS and controls and among patients with IBS-C and IBS-D. Differential activation among patients with IBS-C and IBS-D was seen in the brain regions controlling affective motivation, homeostatic emotions, and autonomic responses to pain.
Collapse
Affiliation(s)
- Anupam Guleria
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow, Uttar Pradesh, India
| | - Arun Karyampudi
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Rajan Singh
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Chunni L Khetrapal
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow, Uttar Pradesh, India
| | - Abhai Verma
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Uday C Ghoshal
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Dinesh Kumar
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow, Uttar Pradesh, India
| |
Collapse
|
17
|
Lee IS, Preissl H, Enck P. How to Perform and Interpret Functional Magnetic Resonance Imaging Studies in Functional Gastrointestinal Disorders. J Neurogastroenterol Motil 2017; 23:197-207. [PMID: 28256119 PMCID: PMC5383114 DOI: 10.5056/jnm16196] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/19/2016] [Indexed: 12/20/2022] Open
Abstract
Functional neuroimaging studies have revealed the importance of the role of cognitive and psychological factors and the dysregulation of the brain-gut axis in functional gastrointestinal disorder patients. Although only a small number of neuroimaging studies have been conducted in functional gastrointestinal disorder patients, and despite the fact that the neuroimaging technique requires a high level of knowledge, the technique still has a great deal of potential. The application of functional magnetic resonance imaging (fMRI) technique in functional gastrointestinal disorders should provide novel methods of diagnosing and treating patients. In this review, basic knowledge and technical/practical issues of fMRI will be introduced to clinicians.
Collapse
Affiliation(s)
- In-Seon Lee
- Psychosomatic Medicine and Psychotherapy Department, University of Tübingen, Tübingen, Germany.,Graduate Training Centre of Neuroscience, International Max Planck Research School, University of Tübingen, Tübingen, Germany
| | - Hubert Preissl
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, German Center for Diabetes Research (DZD e.V.), Tübingen, Germany.,Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, University of Tübingen, Tübingen, Germany
| | - Paul Enck
- Psychosomatic Medicine and Psychotherapy Department, University of Tübingen, Tübingen, Germany
| |
Collapse
|
18
|
Mackenzie AE, Milligan G. The emerging pharmacology and function of GPR35 in the nervous system. Neuropharmacology 2017; 113:661-671. [DOI: 10.1016/j.neuropharm.2015.07.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 07/20/2015] [Accepted: 07/27/2015] [Indexed: 02/07/2023]
|
19
|
Pilot Study of Functional Magnetic Resonance Imaging Responses to Somatic Pain Stimuli in Youth With Functional and Inflammatory Gastrointestinal Disease. J Pediatr Gastroenterol Nutr 2016; 63:500-507. [PMID: 27574880 PMCID: PMC5074879 DOI: 10.1097/mpg.0000000000001390] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Brain-gut axis signaling modifies gastrointestinal symptomatology. Altered neural processing of intestinal pain signals involves interoceptive brain regions in adults with functional and inflammatory gastrointestinal disorders. Although these disorders frequently present in childhood, there are no published studies in youth. We determined whether neural processing of somatic pain stimuli differs in adolescents and young adults (AYA) with irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD), as compared to healthy controls (HC). METHODS IBS and IBD AYA (16-20 years) underwent anticipated and thermal pain stimuli of low and high intensity on their forearm and simultaneous blood oxygen level-dependent functional magnetic resonance imaging. Data from adult HC were used for comparison. Subjects answered surveys evaluating alexithymia, anxiety, depression, and pain catastrophizing. Group data were compared using linear mixed effects and analysis of variance. RESULTS Study groups were similar by sex but not age. Significant group by pain condition interactions were observed in interoceptive brain regions during pain anticipation, and within perceptual brain regions during perceived pain. Higher activation within interoceptive brain regions during anticipated pain was observed in IBS compared with IBD and HC subjects. IBD patients demonstrated increased activation in perceptual brain regions during experienced pain as compared to IBS and HC. CONCLUSIONS IBS and IBD AYA demonstrate altered neural processing of somatic pain compared with each other and with HC. Our results suggest that neuromodulatory interventions targeting interoceptive brain circuits in IBS and perceptual brain regions in IBD may be effective.
Collapse
|
20
|
Shah MK, Wan J, Janyaro H, Tahir AH, Cui L, Ding MX. Visceral Hypersensitivity Is Provoked by 2,4,6-Trinitrobenzene Sulfonic Acid-Induced Ileitis in Rats. Front Pharmacol 2016; 7:214. [PMID: 27499743 PMCID: PMC4956665 DOI: 10.3389/fphar.2016.00214] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/01/2016] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND AND AIMS Crohn's Disease (CD), a chronic Inflammatory Bowel Disease, can occur in any part of the gastrointestinal tract, but most frequently in the ileum. Visceral hypersensitivity contributes for development of chronic abdominal pain in this disease. Currently, the understanding of the mechanism underlying hypersensitivity of Crohn's ileitis has been hindered by a lack of specific animal model. The present study is undertaken to investigate the visceral hypersensitivity provoked by 2,4,6-trinitrobenzene sulfonic (TNBS)-induced ileitis rats. METHODS Male Sprague-Dawley rats were anaesthetized and laparotomized for intraileal injection of TNBS (0.6 ml, 80 mg/kg body weight in 30% ethanol, n = 48), an equal volume of 30% Ethanol (n = 24), and Saline (n = 24), respectively. Visceral hypersensitivity was assessed by visceromotor responses (VMR) to 20, 40, 60, 80, and 100 mmHg colorectal distension pressure (CRD) at day 1, 3, 7, 14, 21, and 28. Immediately after CRD test, the rats were euthanized for collecting the terminal ileal segment for histopathological examinations and ELISA of myleoperoxidase and cytokines (TNF-α, IL-1β, IL-6), and dorsal root ganglia (T11) for determination of calcitonin gene-related peptide by immunohistochemistry, respectively. RESULTS Among all groups, TNBS-treatment showed transmural inflammation initially at 3 days, reached maximum at 7 days and persisted up to 21 days. The rats with ileitis exhibited (P < 0.05) VMR to CRD at day 7 to day 21. The calcitonin gene-related peptide-immunoreactive positive cells increased (P < 0.05) in dorsal root ganglia at day 7 to 21, which was persistently consistent with visceral hypersensitivity in TNBS-treated rats. CONCLUSION TNBS injection into the ileum induced transmural ileitis including granuloma and visceral hypersensitivity. As this model mimics clinical manifestations of CD, it may provide a road map to probe the pathogenesis of gut inflammation and visceral hypersensitivity, as well as for establishing the therapeutic protocol for Crohn's ileitis.
Collapse
Affiliation(s)
- Manoj K Shah
- College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Juan Wan
- College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Habibullah Janyaro
- College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Adnan H Tahir
- College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Luying Cui
- College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Ming-Xing Ding
- College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| |
Collapse
|
21
|
Morin A, Léonard G, Gougeon V, Waddell G, Bureau YA, Girard I, Morin M. Efficacy of transcranial direct-current stimulation (tDCS) in women with provoked vestibulodynia: study protocol for a randomized controlled trial. Trials 2016; 17:243. [PMID: 27179944 PMCID: PMC4867997 DOI: 10.1186/s13063-016-1366-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/29/2016] [Indexed: 12/31/2022] Open
Abstract
Background Provoked vestibulodynia is the most common form of vulvodynia. Despite its high prevalence and deleterious sexual, conjugal, and psychological repercussions, effective evidence-based interventions for provoked vestibulodynia remain limited. For a high proportion of women, significant pain persists despite the currently available treatments. Growing evidence suggests that the central nervous system (CNS) could play a key role in provoked vestibulodynia; thus, treatment targeting the CNS, rather than localized dysfunctions, may be beneficial for women suffering from provoked vestibulodynia. In this study, we aim to build on the promising results of a previous case report and evaluate whether transcranial direct-current stimulation, a non-invasive brain stimulation technique targeting the CNS, could be an effective treatment option for women with provoked vestibulodynia. Methods/design This single-center, triple-blind, parallel group, randomized, controlled trial aims to compare the efficacy of transcranial direct-current stimulation with sham transcranial direct-current stimulation in women with provoked vestibulodynia. Forty women diagnosed with provoked vestibulodynia by a gynecologist, following a standardized treatment protocol, are randomized to either active transcranial direct-current stimulation treatment for ten sessions of 20 minutes at an intensity of 2 mA or sham transcranial direct-current stimulation over a 2-week period. Outcome measures are collected at baseline, 2 weeks after treatment and at 3-month follow-up. The primary outcome is pain during intercourse, assessed with a numerical rating scale. Secondary measurements focus on the sexual function, vestibular pain sensitivity, psychological distress, treatment satisfaction, and the patient’s global impression of change. Discussion To our knowledge, this study is the first randomized controlled trial to examine the efficacy of transcranial direct-current stimulation in women with provoked vestibulodynia. Findings from this trial are expected to provide significant information about a promising intervention targeting the centralization of pain in women with provoked vestibulodynia. Trial registration Clinicaltrials.gov, NCT02543593. Registered on September 4, 2015. Electronic supplementary material The online version of this article (doi:10.1186/s13063-016-1366-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Annie Morin
- School of Rehabilitation, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001 12th Avenue North, Sherbrooke, Québec, Canada
| | - Guillaume Léonard
- School of Rehabilitation, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001 12th Avenue North, Sherbrooke, Québec, Canada
| | - Véronique Gougeon
- School of Rehabilitation, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001 12th Avenue North, Sherbrooke, Québec, Canada
| | - Guy Waddell
- Department of Obstetrics Gynecology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001 12th Avenue North, Sherbrooke, Québec, Canada
| | - Yves-André Bureau
- Department of Obstetrics Gynecology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001 12th Avenue North, Sherbrooke, Québec, Canada
| | - Isabelle Girard
- Department of Obstetrics Gynecology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001 12th Avenue North, Sherbrooke, Québec, Canada
| | - Mélanie Morin
- School of Rehabilitation, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001 12th Avenue North, Sherbrooke, Québec, Canada.
| |
Collapse
|
22
|
Becerra L, Aasted CM, Boas DA, George E, Yücel MA, Kussman BD, Kelsey P, Borsook D. Brain measures of nociception using near-infrared spectroscopy in patients undergoing routine screening colonoscopy. Pain 2016; 157:840-848. [PMID: 26645550 PMCID: PMC4794375 DOI: 10.1097/j.pain.0000000000000446] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Colonoscopy is an invaluable tool for the screening and diagnosis of many colonic diseases. For most colonoscopies, moderate sedation is used during the procedure. However, insufflation of the colon produces a nociceptive stimulus that is usually accompanied by facial grimacing/groaning while under sedation. The objective of this study was to evaluate whether a nociceptive signal elicited by colonic insufflation could be measured from the brain. Seventeen otherwise healthy patients (age 54.8 ± 9.1; 6 female) undergoing routine colonoscopy (ie, no history of significant medical conditions) were monitored using near-infrared spectroscopy (NIRS). Moderate sedation was produced using standard clinical protocols for midazolam and meperidine, titrated to effect. Near-infrared spectroscopy data captured during the procedure was analyzed offline to evaluate the brains' responses to nociceptive stimuli evoked by the insufflation events (defined by physician or observing patients' facial responses). Analysis of NIRS data revealed a specific, reproducible prefrontal cortex activity corresponding to times when patients grimaced. The pattern of the activation is similar to that previously observed during nociceptive stimuli in awake healthy individuals, suggesting that this approach may be used to evaluate brain activity evoked by nociceptive stimuli under sedation, when there is incomplete analgesia. Although some patients report recollection of procedural pain after the procedure, the effects of repeated nociceptive stimuli in surgical patients may contribute to postoperative changes including chronic pain. The results from this study indicate that NIRS may be a suitable technology for continuous nociceptive afferent monitoring in patients undergoing sedation and could have applications under sedation or anesthesia.
Collapse
Affiliation(s)
- Lino Becerra
- P.A.I.N. Group, Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, MA, USA Center for Pain and the Brain, Harvard Medical School, Boston, MA, USA Departments of Radiology Anesthesia and Critical Care, and Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Moloney RD, Johnson AC, O'Mahony SM, Dinan TG, Greenwood‐Van Meerveld B, Cryan JF. Stress and the Microbiota-Gut-Brain Axis in Visceral Pain: Relevance to Irritable Bowel Syndrome. CNS Neurosci Ther 2016; 22:102-17. [PMID: 26662472 PMCID: PMC6492884 DOI: 10.1111/cns.12490] [Citation(s) in RCA: 257] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 11/05/2015] [Accepted: 11/05/2015] [Indexed: 02/06/2023] Open
Abstract
Visceral pain is a global term used to describe pain originating from the internal organs of the body, which affects a significant proportion of the population and is a common feature of functional gastrointestinal disorders (FGIDs) such as irritable bowel syndrome (IBS). While IBS is multifactorial, with no single etiology to completely explain the disorder, many patients also experience comorbid behavioral disorders, such as anxiety or depression; thus, IBS is described as a disorder of the gut-brain axis. Stress is implicated in the development and exacerbation of visceral pain disorders. Chronic stress can modify central pain circuitry, as well as change motility and permeability throughout the gastrointestinal (GI) tract. More recently, the role of the gut microbiota in the bidirectional communication along the gut-brain axis, and subsequent changes in behavior, has emerged. Thus, stress and the gut microbiota can interact through complementary or opposing factors to influence visceral nociceptive behaviors. This review will highlight the evidence by which stress and the gut microbiota interact in the regulation of visceral nociception. We will focus on the influence of stress on the microbiota and the mechanisms by which microbiota can affect the stress response and behavioral outcomes with an emphasis on visceral pain.
Collapse
Affiliation(s)
- Rachel D. Moloney
- Laboratory of NeurogastroenterologyAPC Microbiome InstituteUniversity College CorkCorkIreland
- Present address:
Oklahoma Center for NeuroscienceUniversity of Oklahoma Health Science CenterOklahoma CityOKUSA
| | - Anthony C. Johnson
- Oklahoma Center for NeuroscienceUniversity of Oklahoma Health Science CenterOklahoma CityOKUSA
| | - Siobhain M. O'Mahony
- Laboratory of NeurogastroenterologyAPC Microbiome InstituteUniversity College CorkCorkIreland
- Department of Anatomy and NeuroscienceUniversity College CorkCorkIreland
| | - Timothy G. Dinan
- Laboratory of NeurogastroenterologyAPC Microbiome InstituteUniversity College CorkCorkIreland
- Department of Psychiatry and Neurobehavioural ScienceUniversity College CorkCorkIreland
| | - Beverley Greenwood‐Van Meerveld
- Oklahoma Center for NeuroscienceUniversity of Oklahoma Health Science CenterOklahoma CityOKUSA
- V.A. Medical CenterOklahoma CityOKUSA
| | - John F. Cryan
- Laboratory of NeurogastroenterologyAPC Microbiome InstituteUniversity College CorkCorkIreland
- Department of Anatomy and NeuroscienceUniversity College CorkCorkIreland
| |
Collapse
|
24
|
Mujagic Z, Keszthelyi D, Aziz Q, Reinisch W, Quetglas EG, De Leonardis F, Segerdahl M, Masclee AAM. Systematic review: instruments to assess abdominal pain in irritable bowel syndrome. Aliment Pharmacol Ther 2015; 42:1064-81. [PMID: 26290286 DOI: 10.1111/apt.13378] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 02/02/2015] [Accepted: 07/31/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND Consensus on standard methods to assess chronic abdominal pain in patients with irritable bowel syndrome (IBS) is currently lacking. AIM To systematically review the literature with respect to instruments of measurement of chronic abdominal pain in IBS patients. METHODS Systematic literature search was performed in PubMed/Medline databases for studies using pain measurement instruments in patients with IBS. RESULTS One hundred and ten publications were reviewed. A multitude of different instruments is currently used to assess chronic abdominal pain in IBS patients. The single-item methods, e.g. the validated 10-point numeric rating scale (NRS), and questionnaires assessing gastrointestinal symptoms severity, focus mostly on the assessment of only the intensity of abdominal pain. Of these questionnaires, the validated IBS-Symptom Severity Scale includes the broadest measurement of pain-related aspects. General pain questionnaires and electronic momentary symptom assessment tools have been used to study abdominal pain in IBS patients, but have not yet been validated for this purpose. The evidence for the use of provocation tests, e.g. the rectal barostat with balloon distention, for measurement of abdominal pain in IBS is weak, due to the poor correlation between visceral pain thresholds assessed by provocation tests and abdominal pain as assessed by retrospective questionnaires. CONCLUSIONS The multitude of different instruments to measure chronic abdominal pain in IBS makes it difficult to compare endpoints of published studies. There is need for validated instruments to assess chronic abdominal pain in IBS patients, that overcome the limitations of the currently available methods.
Collapse
Affiliation(s)
- Z Mujagic
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - D Keszthelyi
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Q Aziz
- Centre for Digestive Diseases, Blizard Institute of Cell & Molecular Science, Wingate Institute of Neurogastroenterology, Barts and the London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - W Reinisch
- Department Internal Medicine III, Medical University of Vienna, Vienna, Austria.,McMaster University, Hamilton, ON, Canada
| | - E G Quetglas
- Medical Intelligence, Early Clinical Development, Grünenthal GmBH, Aachen, Germany
| | - F De Leonardis
- Medical Intelligence, Early Clinical Development, Grünenthal GmBH, Aachen, Germany
| | - M Segerdahl
- Medical Intelligence, Early Clinical Development, Grünenthal GmBH, Aachen, Germany.,Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - A A M Masclee
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
25
|
Bouwense SAW, de Vries M, Schreuder LTW, Olesen SS, Frøkjær JB, Drewes AM, van Goor H, Wilder-Smith OHG. Systematic mechanism-orientated approach to chronic pancreatitis pain. World J Gastroenterol 2015; 21:47-59. [PMID: 25574079 PMCID: PMC4284360 DOI: 10.3748/wjg.v21.i1.47] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 08/23/2014] [Accepted: 11/19/2014] [Indexed: 02/07/2023] Open
Abstract
Pain in chronic pancreatitis (CP) shows similarities with other visceral pain syndromes (i.e., inflammatory bowel disease and esophagitis), which should thus be managed in a similar fashion. Typical causes of CP pain include increased intrapancreatic pressure, pancreatic inflammation and pancreatic/extrapancreatic complications. Unfortunately, CP pain continues to be a major clinical challenge. It is recognized that ongoing pain may induce altered central pain processing, e.g., central sensitization or pro-nociceptive pain modulation. When this is present conventional pain treatment targeting the nociceptive focus, e.g., opioid analgesia or surgical/endoscopic intervention, often fails even if technically successful. If central nervous system pain processing is altered, specific treatment targeting these changes should be instituted (e.g., gabapentinoids, ketamine or tricyclic antidepressants). Suitable tools are now available to make altered central processing visible, including quantitative sensory testing, electroencephalograpy and (functional) magnetic resonance imaging. These techniques are potentially clinically useful diagnostic tools to analyze central pain processing and thus define optimum management approaches for pain in CP and other visceral pain syndromes. The present review proposes a systematic mechanism-orientated approach to pain management in CP based on a holistic view of the mechanisms involved. Future research should address the circumstances under which central nervous system pain processing changes in CP, and how this is influenced by ongoing nociceptive input and therapies. Thus we hope to predict which patients are at risk for developing chronic pain or not responding to therapy, leading to improved treatment of chronic pain in CP and other visceral pain disorders.
Collapse
|
26
|
The brain-gut axis in health and disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 817:135-53. [PMID: 24997032 DOI: 10.1007/978-1-4939-0897-4_6] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The interaction between the brain and the gut has been recognized for many centuries. This bidirectional interaction occurs via neural, immunological and hormonal routes, and is important not only in normal gastrointestinal function but also plays a significant role in shaping higher cognitive function such as our feelings and our subconscious decision-making. Therefore, it remains unsurprising that perturbations in normal signalling have been associated with a multitude of disorders, including inflammatory and functional gastrointestinal disorders, and eating disorders.
Collapse
|
27
|
Farrell KE, Callister RJ, Keely S. Understanding and targeting centrally mediated visceral pain in inflammatory bowel disease. Front Pharmacol 2014; 5:27. [PMID: 24634658 PMCID: PMC3942649 DOI: 10.3389/fphar.2014.00027] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 02/13/2014] [Indexed: 11/17/2022] Open
Affiliation(s)
- Kristen E Farrell
- School of Biomedical Sciences and Pharmacy, The University of Newcastle Callaghan, NSW, Australia
| | - Robert J Callister
- School of Biomedical Sciences and Pharmacy, The University of Newcastle Callaghan, NSW, Australia
| | - Simon Keely
- School of Biomedical Sciences and Pharmacy, The University of Newcastle Callaghan, NSW, Australia ; Gastrointestinal Research Group, Viruses, Infection/Immunity, Vaccines and Asthma Program, Hunter Medical Research Institute New Lambton Heights, NSW, Australia
| |
Collapse
|
28
|
Melchior C, Gourcerol G, Chastan N, Verin E, Menard JF, Ducrotte P, Leroi AM. Effect of transcranial magnetic stimulation on rectal sensitivity in irritable bowel syndrome: a randomized, placebo-controlled pilot study. Colorectal Dis 2014; 16:O104-11. [PMID: 24119239 DOI: 10.1111/codi.12450] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Accepted: 09/04/2013] [Indexed: 12/19/2022]
Abstract
AIM Repetitive transcranial magnetic stimulation (rTMS) applied to the motor cortex can induce analgesic effects in patients with chronic pain syndromes through its effect on central pain-modulatory systems. Our aim was to evaluate the effect of rTMS on rectal sensitivity in irritable bowel syndrome (IBS) patients. METHOD In this randomized, sham-controlled, proof-of concept trial, 21 IBS patients (11 women and 10 men; mean age 44.0 ± 12.6 years) were randomized, using a double-blind crossover protocol, to active or sham rTMS for 5 days of treatment. The primary outcome was the increase in the pressure pain threshold after rTMS. Secondary outcomes were the changes in maximum tolerated rectal volume, rectal compliance and average pain intensity between baseline and the end of the treatments. RESULTS There were no statistically significant differences between active and sham rTMS in terms of an increase in the pressure pain threshold, maximum tolerated volume and rectal compliance at the end of the treatments compared with baseline. However, in the subgroup of patients with the most marked rectal hypersensitivity, the volume threshold was significantly improved by active, but not by sham, rTMS (P = 0.03). Patients experienced a significant improvement in pain regardless of the type of stimulation. CONCLUSION This pilot study failed to demonstrate any benefit of rTMS on our primary end-point. However, the effect of rTMS on rectal tolerated volume in the most hypersensitive patients was encouraging enough to plan more powered studies.
Collapse
Affiliation(s)
- C Melchior
- INSERM U1073, CIC Rouen University Hospital, Rouen, France
| | | | | | | | | | | | | |
Collapse
|
29
|
Holper L, Gross A, Scholkmann F, Humphreys BK, Meier ML, Wolf U, Wolf M, Hotz-Boendermaker S. Physiological effects of mechanical pain stimulation at the lower back measured by functional near-infrared spectroscopy and capnography. J Integr Neurosci 2014; 13:121-42. [DOI: 10.1142/s0219635214500071] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
30
|
Regional neuroplastic brain changes in patients with chronic inflammatory and non-inflammatory visceral pain. PLoS One 2014; 9:e84564. [PMID: 24416245 PMCID: PMC3885578 DOI: 10.1371/journal.pone.0084564] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 11/24/2013] [Indexed: 12/29/2022] Open
Abstract
Regional cortical thickness alterations have been reported in many chronic inflammatory and painful conditions, including inflammatory bowel diseases (IBD) and irritable bowel syndrome (IBS), even though the mechanisms underlying such neuroplastic changes remain poorly understood. In order to better understand the mechanisms contributing to grey matter changes, the current study sought to identify the differences in regional alterations in cortical thickness between healthy controls and two chronic visceral pain syndromes, with and without chronic gut inflammation. 41 healthy controls, 11 IBS subjects with diarrhea, and 16 subjects with ulcerative colitis (UC) underwent high-resolution T1-weighted magnetization-prepared rapid acquisition gradient echo scans. Structural image preprocessing and cortical thickness analysis within the region of interests were performed by using the Laboratory of Neuroimaging Pipeline. Group differences were determined using the general linear model and linear contrast analysis. The two disease groups differed significantly in several cortical regions. UC subjects showed greater cortical thickness in anterior cingulate cortical subregions, and in primary somatosensory cortex compared with both IBS and healthy subjects. Compared with healthy subjects, UC subjects showed lower cortical thickness in orbitofrontal cortex and in mid and posterior insula, while IBS subjects showed lower cortical thickness in the anterior insula. Large effects of correlations between symptom duration and thickness in the orbitofrontal cortex and postcentral gyrus were only observed in UC subjects. The findings suggest that the mechanisms underlying the observed gray matter changes in UC subjects represent a consequence of peripheral inflammation, while in IBS subjects central mechanisms may play a primary role.
Collapse
|
31
|
Elsenbruch S, Schmid J, Kullmann JS, Kattoor J, Theysohn N, Forsting M, Kotsis V. Visceral sensitivity correlates with decreased regional gray matter volume in healthy volunteers: a voxel-based morphometry study. Pain 2013; 155:244-249. [PMID: 24099953 DOI: 10.1016/j.pain.2013.09.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 09/24/2013] [Accepted: 09/29/2013] [Indexed: 12/22/2022]
Abstract
Regional changes in brain structure have been reported in patients with altered visceral sensitivity and chronic abdominal pain, such as in irritable bowel syndrome. It remains unknown whether structural brain changes are associated with visceral sensitivity. Therefore, we present the first study in healthy individuals to address whether interindividual variations in gray matter volume (GMV) in pain-relevant regions correlate with visceral sensitivity. In 92 healthy young adults (52 female), we assessed rectal sensory and pain thresholds and performed voxel-based morphometry (VBM) to compute linear regression models with visceral sensory and pain thresholds, respectively, as independent variable and GMV in a priori-defined regions of interest (ROIs) as dependent variable. All results were familywise error (FWE) corrected at a level of PFWE<.05 and covaried for age. The mean (±SEM) rectal thresholds were 14.78±0.46mm Hg for first sensation and 33.97±1.13mm Hg for pain, without evidence of sex differences. Lower rectal sensory threshold (ie, increased sensitivity) correlated significantly with reduced GMV in the thalamus, insula, posterior cingulate cortex, ventrolateral and orbitofrontal prefrontal cortices, amygdala, and basal ganglia (all PFWE<.05). Lower rectal pain threshold was associated with reduced GMV in the right thalamus (PFWE=.051). These are the first data supporting that increased visceral sensitivity correlates with decreased gray matter volume in pain-relevant brain regions. These findings support that alterations in brain morphology not only occur in clinical pain conditions but also occur according to normal interindividual variations in visceral sensitivity.
Collapse
Affiliation(s)
- Sigrid Elsenbruch
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | | | | | | | | | | |
Collapse
|
32
|
Bonaz BL, Bernstein CN. Brain-gut interactions in inflammatory bowel disease. Gastroenterology 2013; 144:36-49. [PMID: 23063970 DOI: 10.1053/j.gastro.2012.10.003] [Citation(s) in RCA: 482] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 09/23/2012] [Accepted: 10/01/2012] [Indexed: 12/13/2022]
Abstract
Psycho-neuro-endocrine-immune modulation through the brain-gut axis likely has a key role in the pathogenesis of inflammatory bowel disease (IBD). The brain-gut axis involves interactions among the neural components, including (1) the autonomic nervous system, (2) the central nervous system, (3) the stress system (hypothalamic-pituitary-adrenal axis), (4) the (gastrointestinal) corticotropin-releasing factor system, and (5) the intestinal response (including the intestinal barrier, the luminal microbiota, and the intestinal immune response). Animal models suggest that the cholinergic anti-inflammatory pathway through an anti-tumor necrosis factor effect of the efferent vagus nerve could be a therapeutic target in IBD through a pharmacologic, nutritional, or neurostimulation approach. In addition, the psychophysiological vulnerability of patients with IBD, secondary to the potential presence of any mood disorders, distress, increased perceived stress, or maladaptive coping strategies, underscores the psychological needs of patients with IBD. Clinicians need to address these issues with patients because there is emerging evidence that stress or other negative psychological attributes may have an effect on the disease course. Future research may include exploration of markers of brain-gut interactions, including serum/salivary cortisol (as a marker of the hypothalamic-pituitary-adrenal axis), heart rate variability (as a marker of the sympathovagal balance), or brain imaging studies. The widespread use and potential impact of complementary and alternative medicine and the positive response to placebo (in clinical trials) is further evidence that exploring other psycho-interventions may be important therapeutic adjuncts to the conventional therapeutic approach in IBD.
Collapse
Affiliation(s)
- Bruno L Bonaz
- Stress et Interactions Neuro-Digestives, Grenoble Institut des Neurosciences, Centre de Recherche INSERM 836 UJF-CEA-CHU, Grenoble, France.
| | | |
Collapse
|
33
|
Chu WC, Wu JC, Yew DT, Zhang L, Shi L, Yeung DK, Wang D, Tong RK, Chan Y, Lao L, Leung PC, Berman BM, Sung JJ. Does acupuncture therapy alter activation of neural pathway for pain perception in irritable bowel syndrome?: a comparative study of true and sham acupuncture using functional magnetic resonance imaging. J Neurogastroenterol Motil 2012; 18:305-16. [PMID: 22837879 PMCID: PMC3400819 DOI: 10.5056/jnm.2012.18.3.305] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 02/16/2012] [Accepted: 02/18/2012] [Indexed: 12/13/2022] Open
Abstract
Background/Aims Patients with irritable bowel syndrome (IBS) are characterized by abnormal central processing with altered brain activation in response to visceral nociceptive signals. The effect of electroacupuncture (EA) on IBS patients is unclear. The study is set to study the effect of EA on brain activation during noxious rectal distension in IBS patients using a randomized sham-controlled model. Methods Thirty IBS-diarrhea patients were randomized to true electroacupuncture or sham acupuncture. Functional MRI was performed to evaluate cerebral activation at the following time points: (1) baseline when there was rectal distension only, (2) rectal distension during application of EA, (3) rectal distension after cessation of EA and (4) EA alone with no rectal distension. Group comparison was made under each condition using SPM5 program. Results Rectal distension induced significant activation of the anterior cingulated cortex, prefrontal cortex, thalamus, temporal regions and cerebellum at baseline. During and immediately after EA, increased cerebral activation from baseline was observed in the anterior cingulated cortex, bilateral prefrontal cortex, thalamus, temporal regions and right insula in both groups. However, true electroacupuncture led to significantly higher activation at right insula, as well as pulvinar and medial nucleus of the thalamus when compared to sham acupuncture. Conclusions We postulate that acupuncture might have the potential effect of pain modulation in IBS by 2 actions: (1) modulation of serotonin pathway at insula and (2) modulation of mood and affection in higher cortical center via ascending pathway at the pulvinar and medial nucleus of the thalamus.
Collapse
Affiliation(s)
- Winnie Cw Chu
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Chu WC, Wu JC, Yew DT, Zhang L, Shi L, Yeung DK, Wang D, Tong RK, Chan Y, Lao L, Leung PC, Berman BM, Sung JJ. Does acupuncture therapy alter activation of neural pathway for pain perception in irritable bowel syndrome?: a comparative study of true and sham acupuncture using functional magnetic resonance imaging. J Neurogastroenterol Motil 2012. [PMID: 22837879 DOI: 10.5056/jnm] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND/AIMS Patients with irritable bowel syndrome (IBS) are characterized by abnormal central processing with altered brain activation in response to visceral nociceptive signals. The effect of electroacupuncture (EA) on IBS patients is unclear. The study is set to study the effect of EA on brain activation during noxious rectal distension in IBS patients using a randomized sham-controlled model. METHODS Thirty IBS-diarrhea patients were randomized to true electroacupuncture or sham acupuncture. Functional MRI was performed to evaluate cerebral activation at the following time points: (1) baseline when there was rectal distension only, (2) rectal distension during application of EA, (3) rectal distension after cessation of EA and (4) EA alone with no rectal distension. Group comparison was made under each condition using SPM5 program. RESULTS Rectal distension induced significant activation of the anterior cingulated cortex, prefrontal cortex, thalamus, temporal regions and cerebellum at baseline. During and immediately after EA, increased cerebral activation from baseline was observed in the anterior cingulated cortex, bilateral prefrontal cortex, thalamus, temporal regions and right insula in both groups. However, true electroacupuncture led to significantly higher activation at right insula, as well as pulvinar and medial nucleus of the thalamus when compared to sham acupuncture. CONCLUSIONS We postulate that acupuncture might have the potential effect of pain modulation in IBS by 2 actions: (1) modulation of serotonin pathway at insula and (2) modulation of mood and affection in higher cortical center via ascending pathway at the pulvinar and medial nucleus of the thalamus.
Collapse
Affiliation(s)
- Winnie Cw Chu
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Arebi N, Bullas DC, Dukes GE, Gurmany S, Hicks KJ, Kamm MA, Hobson AR. Distinct neurophysiological profiles in irritable bowel syndrome. Am J Physiol Gastrointest Liver Physiol 2011; 300:G1086-93. [PMID: 21350185 DOI: 10.1152/ajpgi.00553.2010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The objective of this study was to determine whether cortical evoked potentials (CEPs) can define neurophysiological patterns in irritable bowel syndrome (IBS). In this prospective study of consecutive patients attending secondary and tertiary centers, patients with Rome II-defined IBS underwent rectal sensory and pain threshold (RST and RPT, respectively) testing with electrical stimulation on three separate visits. CEPs were collated for 75% pain thresholds, and anxiety [Spielberger State-Trait Anxiety Inventory (SSTAI)] questionnaires were completed. Subjects were 33 IBS patients (27 female, mean age 40.1 yr) and 21 healthy controls (14 female, mean age 31.4 yr). At visit 3, RPT was significantly lower [mean (95% CI)] in IBS patients than in control subjects: 58.2 mA (48.0-68.5) vs. 79.5 mA (69.3-89.6) (P < 0.01). No significant differences were observed in CEP latencies and amplitudes between visits 1, 2, and 3 within each group, except P2 latency for controls (P = 0.04) and N2 latency (P = 0.04) and N2 amplitude (P = 0.02) for IBS patients. Group comparisons showed significant differences in 3-day mean RPT, CEP amplitudes, and CEP latencies between IBS patients and controls. RPT <50 mA and P1 latency >106 ms were identified four IBS subgroups: 24% were hypersensitive, 12% were hypervigilant, 15% were hyposensitive, and 49% exhibited normal P1 latency and pain threshold. CEPs are reliable and reproducible measures of early sensory processing. Identification of four IBS neurophysiological patterns highlights its heterogeneous nature. These findings mark the first step toward personalized medicine in IBS, whereby therapy may be directed at the underlying physiological process.
Collapse
Affiliation(s)
- Naila Arebi
- Gastrointestinal Physiology Department, St. Mark’s Hospital Campus, Imperial College, Harrow, Middlesex, UK.
| | | | | | | | | | | | | |
Collapse
|
36
|
Sheehan J, Gaman A, Vangel M, Kuo B. Pooled analysis of brain activity in irritable bowel syndrome and controls during rectal balloon distension. Neurogastroenterol Motil 2011; 23:336-46, e158. [PMID: 21118328 PMCID: PMC3105166 DOI: 10.1111/j.1365-2982.2010.01635.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Brain-imaging literature of irritable bowel syndrome (IBS) suggests an abnormal brain-gut communication. We analyzed the literature to evaluate and compare the aspects of brain activity in individuals with IBS and control subjects experiencing controlled rectal stimulation. METHODS PubMed was searched until September 2010. Data from 16 articles reporting brain activity during rectal balloon distensions in IBS compared to control groups was analyzed. Prevalence rates and pairwise activations were assessed using binomial distributions for 11 selected regions of interest. The data were aggregated to adjust for center effect. KEY RESULTS There was considerable variability in the literature regarding regions and their activity patterns in controls and individuals with IBS. There was no significant difference found in the thalamus, anterior cingulate cortex, posterior cingulate cortex, and prefrontal cortex, however, results show limited evidence of consensus for the anterior insula (AI) (P = 0.22). Pairwise activity results suggest that pairs involving the AI tend to have more consistent activity together than pairs which do not involve the AI (posterior insula and AI, P = 0.08; posterior cingulate cortex and AI, P = 0.16), however, no pairwise evaluation reached significance. CONCLUSIONS & INFERENCES Our pooled analysis demonstrates that the literature reports are quite heterogeneous but there is some evidence that there may be patterns of higher activity more common in individuals with IBS than in controls. A consensus, though, regarding study designs, analysis approach and reporting could create a clearer understanding of brain involvement in IBS pathophysiology.
Collapse
Affiliation(s)
- J Sheehan
- Department of Medicine, GI Unit, Massachusetts General Hospital, Harvard Medical School, Martinos Center for Biomedical Imaging, Boston, MA 02114, USA
| | | | | | | |
Collapse
|
37
|
Browning M, Fletcher P, Sharpe M. Can neuroimaging help us to understand and classify somatoform disorders? A systematic and critical review. Psychosom Med 2011; 73:173-84. [PMID: 21217095 PMCID: PMC3044887 DOI: 10.1097/psy.0b013e31820824f6] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Debate about the nature of somatoform disorders and their current diagnostic classification has been stimulated by the anticipation of new editions of Diagnostic and Statistical Manual of Mental Disorders and International Statistical Classification of Diseases and Related Health Problems diagnostic classifications. In the current paper, we review systematically the literature on the neuroimaging of somatoform disorders and related conditions with the aim of addressing two specific questions: Is there evidence of altered neural function or structure that is specifically associated with somatoform disorders? What conclusions can we draw from these findings about the etiology of somatoform disorders? METHODS Studies reporting neuroimaging findings in patients with a somatoform disorder or a functional somatic syndrome (such as fibromyalgia) were found using Pubmed, PsycINFO, and EMBASE database searches. Reported structural and functional neuroimaging findings were then extracted to form a narrative review. RESULTS A relatively mature literature on symptoms of pain and less developed literatures on conversion and fatigue symptoms were identified. The available evidence indicates that, when compared with nonclinical groups, somatoform diagnoses are associated with increased activity of limbic regions in response to painful stimuli and a generalized decrease in gray matter density; however, methodological considerations restrict the interpretation of these findings. CONCLUSIONS Whereas the neuroimaging literature has provided evidence about the possible mechanisms underlying somatoform disorders, this is not yet sufficient to provide a basis for classification. By adopting a wider variety of experimental designs and a more dynamic approach to diagnosis, there is every reason to be hopeful that neuroimaging data will play a significant role in future taxonomies.
Collapse
Affiliation(s)
- Michael Browning
- Department of Psychiatry, University of Oxford, Warneford Hospital, Warneford Lane, Oxford OX3 7JX, UK.
| | | | | |
Collapse
|
38
|
Sai JK, Suyama M, Kubokawa Y, Matsumura Y, Inami K, Watanabe S, Kirino E. Identification of cerebral response to balloon distention of the bile duct. World J Gastroenterol 2010; 16:1772-5. [PMID: 20380011 PMCID: PMC2852827 DOI: 10.3748/wjg.v16.i14.1772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To identify the brain loci that process human biliary sensation.
METHODS: In 6 patients (age range: 42-74 years; 4 men), who underwent percutaneous transhepatic biliary drainage (PTBD), the distal biliary tract was stimulated by repeatedly inflating the balloon of the PTBD catheter so that it reached volumes that produced a definite painless sensation. The functional magnetic resonance imaging (fMRI) of the cortical response to biliary sensation was examined.
RESULTS: Biliary balloon stimulation elicited activation of the insular cortex, prefrontal cortex, and somatosensory cortex (P < 0.001).
CONCLUSION: Biliary balloon stimulation evoked a cerebral cortical response detectable by fMRI.
Collapse
|
39
|
Olfactory and gustatory function in irritable bowel syndrome. Eur Arch Otorhinolaryngol 2009; 267:1081-7. [PMID: 20041259 DOI: 10.1007/s00405-009-1181-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 12/15/2009] [Indexed: 12/17/2022]
Abstract
Irritable bowel syndrome (IBS) is the most common, functional disorder diagnosed by gastroenterologists. It is still unclear whether IBS has a central etiology, e.g., hyperreactivity of the brain, or a peripheral etiology, e.g., stimulation of olfactory/gustatory receptors on enterochromaffin cells, followed by serotonin release and changed gut motility. Testing the odor identification (ID), odor discrimination (DIS) and odor threshold (THR) as well as the total taste and the taste qualities "sweet", "sour", "salty" and "bitter" should be of help for determining the etiology. To our knowledge, this is the first study investigating the olfactory/gustatory function in IBS patients. The olfactory/gustatory function of 43 patients (32 women, 11 men) suffering from IBS as defined by the ROME III criteria was investigated by means of validated tests (Sniffin' Sticks and taste strips). Compared to normative data, scores of THR were decreased and scores of ID and DIS were increased in IBS patients. Additionally, when compared to normative data, there was no difference in the taste function of IBS patients. Assuming that THR reflects more the peripheral olfactory function, whereas ID and DIS are influenced by central activity, and that taste did not differ in IBS patients compared to normative data, this supports the idea of a central etiology of IBS.
Collapse
|
40
|
Mayer EA, Aziz Q, Coen S, Kern M, Labus J, Lane R, Kuo B, Naliboff B, Tracey I. Brain imaging approaches to the study of functional GI disorders: a Rome working team report. Neurogastroenterol Motil 2009; 21:579-96. [PMID: 19646070 PMCID: PMC3829384 DOI: 10.1111/j.1365-2982.2009.01304.x] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Progresses in the understanding of human brain-gut interactions in health and disease have been limited by the lack of non-invasive techniques to study brain activity. The advent of neuroimaging techniques has made it possible not only to study the structure and function of the brain, but also to characterize signaling system underlying brain function. This article gives a brief overview of relevant functional neuroanatomy, and of the most commonly used brain imaging techniques. It summarizes published functional brain imaging studies using acute visceral stimulation of the oesophagus, stomach and colon in healthy control subjects and patients with functional GI disorders, and briefly discusses pertinent findings from these studies. The article concludes with a critical assessment of published studies, and with recommendations for improved study paradigms and analysis strategies.
Collapse
Affiliation(s)
- Emeran A Mayer
- Center for Neurobiology of Stress, Departments of Medicine, Physiology and Psychiatry, UCLA, CURE Digestive Diseases Research Center, UCLA Division of Digestive Diseases, Los Angeles, CA
| | - Qasim Aziz
- Wingate Institute for Neurogastroenterology, Neurogastroenterology Group, School of Medicine and Dentistry, Queen Mary University of London, UK
| | - Steven Coen
- Wingate Institute for Neurogastroenterology, Neurogastroenterology Group, School of Medicine and Dentistry, Queen Mary University of London, UK
| | - Mark Kern
- Department of Medicine, Division of Gastroenterology and Hepatology, Medical College of Wisconsin Milwaukee, WI
| | - Jennifer Labus
- Center for Neurobiology of Stress, Departments of Medicine, Physiology and Psychiatry, UCLA, CURE Digestive Diseases Research Center, UCLA Division of Digestive Diseases, Los Angeles, CA
| | - Richard Lane
- Departments of Psychiatry, Psychology and Neuroscience, University of Arizona, AZ
| | - Brad Kuo
- Gastro Intestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Bruce Naliboff
- Center for Neurobiology of Stress, Departments of Medicine, Physiology and Psychiatry, UCLA, CURE Digestive Diseases Research Center, UCLA Division of Digestive Diseases, Los Angeles, CA
| | - Irene Tracey
- Oxford Centre for Functional Magnetic Resonance Imaging of the Brain, FMRIB Centre, Oxford University Department of Clinical Neurology, John Radcliffe Hospital Oxford, UK
| |
Collapse
|
41
|
Abstract
Visceral hypersensitivity is regarded as an important factor in the pathogenesis of functional gastrointestinal disorders. Assessment of visceral sensitivity has several important aims: increasing the understanding of normal and abnormal visceral sensory mechanisms and participating sensory pathways, serving as diagnostic tool to detect patients with abnormal visceral sensitivity, and evaluating therapeutic interventions directed towards modification of visceral sensitivity. Current stimulation modes in sensitivity tests include mechanical distension by barostat or tensostat, nutrient drink or water load, chemical stimulation, e.g. acid provocation or capsaicin ingestion, electrical, or thermal stimulation. Multimodal probes incorporating several stimulation modes in one device have recently been developed. Assessment of visceral sensation can be based on subjective responses of conscious perception or on objective parameters such as visceromotoric responses or central sensory processing patterns. All methods face the challenge that visceral sensitivity may be influenced by a wide spectrum of different factors, including the test techniques themselves, and improved, preferably non-invasive sensitivity tests with a greater standardisation and a broader applicability are still needed.
Collapse
Affiliation(s)
- Viola Andresen
- Israelitic Hospital, Orchideenstieg 14, 22297 Hamburg, Germany.
| |
Collapse
|
42
|
van Oudenhove L, Vandenberghe J, Dupont P, Geeraerts B, Vos R, Bormans G, van Laere K, Fischler B, Demyttenaere K, Janssens J, Tack J. Cortical deactivations during gastric fundus distension in health: visceral pain-specific response or attenuation of 'default mode' brain function? A H2 15O-PET study. Neurogastroenterol Motil 2009; 21:259-71. [PMID: 19019011 DOI: 10.1111/j.1365-2982.2008.01196.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Gastric distension activates a cerebral network including brainstem, thalamus, insula, perigenual anterior cingulate, cerebellum, ventrolateral prefrontal cortex and potentially somatosensory regions. Cortical deactivations during gastric distension have hardly been reported. To describe brain areas of decreased activity during gastric fundus distension compared to baseline, using data from our previously published study (Gastroenterology, 128, 2005 and 564). H(2) (15)O-brain positron emission tomography was performed in 11 healthy volunteers during five conditions (random order): (C(1)) no distension (baseline); isobaric distension to individual thresholds for (C(2)) first, (C(3)) marked, (C(4)) unpleasant sensation and (C(5)) sham distension. Subtraction analyses were performed (in SPM2) to determine deactivated areas during distension compared to baseline, with a threshold of P(uncorrected_voxel_level) < 0.001 and P(corrected_cluster_level) < 0.05. Baseline-maximal distension (C(1)-C(4)) yielded significant deactivations in: (i) bilateral occipital, lateral parietal and temporal cortex as well as medial parietal lobe (posterior cingulate and precuneus) and medial temporal lobe (hippocampus and amygdala), (ii) right dorsolateral and dorso- and ventromedial PFC, (iii) left subgenual ACC and bilateral caudate head. Intragastric pressure and epigastric sensation score correlated negatively with brain activity in similar regions. The right hippocampus/amygdala deactivation was specific to sham. Gastric fundus distension in health is associated with extensive cortical deactivations, besides the activations described before. Whether this represents task-independent suspension of 'default mode' activity (as described in various cognitive tasks) or an visceral pain/interoception-specific process remains to be elucidated.
Collapse
Affiliation(s)
- L van Oudenhove
- Department of Neurosciences, Psychiatry Division, University Hospital Gasthuisberg, University of Leuven, Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Westlund KN, Vera-Portocarrero LP, Zhang L, Wei J, Quast MJ, Cleeland CS. fMRI of supraspinal areas after morphine and one week pancreatic inflammation in rats. Neuroimage 2009; 44:23-34. [PMID: 18722538 PMCID: PMC2593090 DOI: 10.1016/j.neuroimage.2008.07.048] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2008] [Revised: 07/15/2008] [Accepted: 07/20/2008] [Indexed: 01/21/2023] Open
Abstract
Abdominal pain is a major reason patients seek medical attention yet relatively little is known about neuronal pathways relaying visceral pain. We have previously characterized pathways transmitting information to the brain about visceral pain. Visceral pain arises from second order neurons in lamina X surrounding the spinal cord central canal. Some of the brain regions of interest receiving axonal terminations directly from lamina X were examined in the present study using enhanced functional magnetic resonance imaging (fMRI) before and one week after induction of a rat pancreatitis model with persistent inflammation and behavioral signs of increased nociception. Analysis of imaging data demonstrates an increase in MRI signal for all the regions of interest selected including the rostral ventromedial medulla, dorsal raphe, periaqueductal grey, medial thalamus, and central amygdala as predicted by the anatomical data, as well as increases in the lateral thalamus, cingulate/retrosplenial and parietal cortex. Occipital cortex was not activated above threshold in any condition and served as a negative control. Morphine attenuated the MRI signal, and the morphine effect was antagonized by naloxone in lower brainstem sites. These data confirm activation of these specific regions of interest known as integration sites for nociceptive information important in behavioral, affective, emotional and autonomic responses to ongoing noxious visceral activation.
Collapse
Affiliation(s)
- Karin N Westlund
- Department of Physiology, University of Kentucky, College of Medicine, Medical Science Building, MS-609, Lexington, KY 40536-0298, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Coen SJ, Aziz Q, Yágüez L, Brammer M, Williams SCR, Gregory LJ. Effects of attention on visceral stimulus intensity encoding in the male human brain. Gastroenterology 2008; 135:2065-74, 2074.e1. [PMID: 18848558 DOI: 10.1053/j.gastro.2008.08.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Revised: 07/31/2008] [Accepted: 08/07/2008] [Indexed: 12/31/2022]
Abstract
BACKGROUND & AIMS Hypervigilance is considered important in pain perception in functional gastrointestinal disorders. Nonetheless, a comprehensive assessment of the influence of attention on brain processing of visceral sensation has not been performed. We investigated the effects of attention on esophageal pain perception and brain activity. METHODS Twelve healthy male volunteers (age range, 21-32 years) underwent 4 functional magnetic resonance imaging scans incorporating 4 levels of esophageal stimulation (ES), ranging from nonpainful to painful, during which they completed a task aimed at distracting them from the esophageal stimulus. The volunteers were then scanned a fifth time, during painful stimulation without distraction. RESULTS Following ES during distraction, there was a significant linear trend (P < .05) in which the intensity of cerebral activation in the primary somatosensory cortex (SI) (bilateral) and left mid-anterior cingulate cortex (ACC) increased with stimulation intensity. When pain was delivered during distraction, there was a significant reduction in pain ratings, accompanied by significant decreases (P < .05) in brain activity in the right ACC and right prefrontal cortex. There was no effect of distraction on SI activity (P < .05). CONCLUSIONS Our results suggest that the SI is involved in processing sensory-discriminative aspects of visceral sensation. In contrast, activity in the mid-ACC suggests that this region is multifunctional because it appears to be involved in sensory and cognitive appraisal of visceral pain; the right prefrontal cortex seems to be involved in only cognitive responses to pain.
Collapse
Affiliation(s)
- Steven J Coen
- Wingate Institute for Neurogastroenterology, Queen Mary University of London, London, United Kingdom.
| | | | | | | | | | | |
Collapse
|
45
|
Faure C, Giguère L. Functional gastrointestinal disorders and visceral hypersensitivity in children and adolescents suffering from Crohn's disease. Inflamm Bowel Dis 2008; 14:1569-74. [PMID: 18521915 DOI: 10.1002/ibd.20506] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Symptoms of abdominal pain are reported by children with active Crohn's disease (CD). During remissions abdominal pain improves in most children but some of them continue to experience pain. We hypothesized that these patients may suffer from protracted abdominal pain related to functional gastrointestinal disorders (FGID) and visceral hypersensitivity. The objective was to characterize the symptoms and to measure the rectal sensory threshold for pain (RSTP) by barostat in CD children and adolescents suffering from abdominal pain despite remission. METHODS Eight patients (median age 14.5 years; range 9.8-17) with quiescent CD but suffering from chronic abdominal pain were studied by rectal barostat. At the same time they completed validated questionnaires to assess FGID, anxiety, and depression. They were compared to 10 control children and 8 children with FGID also investigated in our laboratory. RESULTS All patients fulfilled Rome II criteria for irritable bowel syndrome (n = 5), functional abdominal pain (n = 2), and functional dyspepsia (n = 1). RSTP was significantly lower in CD patients compared to the normal controls: median (range) 25 mmHg (15-29) versus 40 mmHg (30-48) (P < 0.01). RSTP was similar in patients and children with FGID. Rectal compliance was similar in patients, children with FGID, and controls. Seven of the 8 patients had scores indicating an anxiety problem. CONCLUSIONS Protracted abdominal pain that affects children and adolescents with quiescent CD is related to FGID associated with visceral hypersensitivity and anxiety. The incidence of FGID in children suffering from CD requires further investigation.
Collapse
Affiliation(s)
- Christophe Faure
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hôpital Sainte-Justine, Université de Montréal, Montréal, Québec, Canada.
| | | |
Collapse
|
46
|
Abstract
Brain-gut axis represents a complex reflex circuit that integrates the communication between cortex and the digestive system. Disturbances of the neuromodulatory processes in the brain-gut axis generate functional digestive disorders mainly centered on the pain symptoms and motility disorders. This article reviews structural and patho-physiological aspects of the brain-gut axis and explains how the neuromodulatory interventions currently used in order to treat GI conditions related to the brain-gut axis disturbances. The neuromodulation can be realized by pharmacological targeting mainly receptors in the periphery or using electrical stimulation applied at different levels of the nervous system or directly in the muscular layers of the bowels resulting in modulation of the digestive system activity. The efficacy of the methods using electrostimulation is dependent on the parameters of the physical system used: amplitude, frequency, burst time of the electrical current and also the positioning of the electrodes. While pharmacological interventions are largely used at the moment, neuromodulatory interventions involving electrical stimulation showed clinical efficacy in research trials and have promise.
Collapse
Affiliation(s)
- Alexandru Gaman
- Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | | |
Collapse
|
47
|
Wang Z, Bradesi S, Maarek JMI, Lee K, Winchester WJ, Mayer EA, Holschneider DP. Regional brain activation in conscious, nonrestrained rats in response to noxious visceral stimulation. Pain 2008; 138:233-243. [PMID: 18538929 DOI: 10.1016/j.pain.2008.04.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 03/25/2008] [Accepted: 04/23/2008] [Indexed: 12/29/2022]
Abstract
Preclinical drug development for visceral pain has largely relied on quantifying pseudoaffective responses to colorectal distension (CRD) in restrained rodents. However, the predictive value of changes in simple reflex responses in rodents for the complex human pain experience is not known. Male rats were implanted with venous cannulas and with telemetry transmitters for abdominal electromyographic (EMG) recordings. [(14)C]-iodoantipyrine was injected during noxious CRD (60 mmHg) in the awake, nonrestrained animal. Regional cerebral blood flow (rCBF)-related tissue radioactivity was quantified by autoradiography and analyzed in the three-dimensionally reconstructed brain by statistical parametric mapping. 60-mmHg CRD, compared with controls (0 mmHg) evoked significant increases in EMG activity (267+/-24% vs. 103+/-8%), as well as in behavioral pain score (77+/-6% vs. 3+/-3%). CRD elicited significant increases in rCBF as expected in sensory (insula, somatosensory cortex), and limbic and paralimbic regions (including anterior cingulate cortex and amygdala). Significant decreases in rCBF were seen in the thalamus, parabrachial nucleus, periaqueductal gray, hypothalamus and pons. Correlations of rCBF with EMG and with behavioral pain score were noted in the cingulate, insula, lateral amygdala, dorsal striatum, somatosensory and motor regions. Our findings support the validity of measurements of cerebral perfusion during CRD in the freely moving rat as a model of functional brain changes in human visceral pain. However, not all regions demonstrating significant group differences correlated with EMG or behavioral measures. This suggests that functional brain imaging captures more extensive responses of the central nervous system to noxious visceral distension than those identified by traditional measures.
Collapse
Affiliation(s)
- Zhuo Wang
- Center for the Neurobiology of Stress, Brain Research Institute, UCLA, Los Angeles, CA, USA Departments of Physiology, Psychiatry and Biobehavioral Sciences, Brain Research Institute, UCLA, Los Angeles, CA, USA VA GLA Healthcare System, Los Angeles, CA, USA Department of Biomedical Engineering, USC, Los Angeles, CA, USA Departments of Psychiatry and the Behavioral Sciences, Cell and Neurobiology, Neurology, USC, Los Angeles, CA, USA Neurology and GI Center of Excellence for Drug Discovery, GlaxoSmithKline, Harlow, UK
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Functional gastrointestinal disorders (FGIDs) commonly affect children and are associated with short- and long-term morbidity. Although the pathogenesis of pain-related FGIDs remains incompletely understood, most investigators agree on a multifactorial etiology and the presence of an altered brain-gut interaction. A continuous interplay of genetic and environmental factors appears to shape the development of the central and enteric nervous systems. The biopsychosocial model is the current operational framework for children with FGIDs, as it recognizes the interaction between social and environmental influences and psychological and physiologic processes. The biopsychosocial model proposes that specific permutations of genetic susceptibility, early life experiences, sociocultural issues, and coping mechanisms could explain the variability in clinical presentation and outcome among individuals.
Collapse
Affiliation(s)
- Ashis V Barad
- Children's Memorial Hospital, Northwestern University, 700 West Fullerton Avenue, Box 57, Chicago, IL 60614, USA.
| | | |
Collapse
|
49
|
Mulak A, Kahane P, Hoffmann D, Minotti L, Bonaz B. Brain mapping of digestive sensations elicited by cortical electrical stimulations. Neurogastroenterol Motil 2008; 20:588-96. [PMID: 18208482 DOI: 10.1111/j.1365-2982.2007.01066.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The aim of the study was to obtain a comprehensive map of cortical areas from where digestive sensations during intracerebral electrical stimulations (ES) in epileptic patients are elicited. Direct cortical ESs were performed in 339 medically intractable epileptic patients selected to presurgical evaluation using chronically stereotaxically implanted intracerebral electrodes and audio-video-EEG monitoring system. Digestive sensations were electrically induced on 723 different anatomical sites in 172 subjects (51%). According to the exclusion criteria, the final analysis includes 174 relevant stimulations evoked in 87 patients. The reported sensations referred predominantly to the upper part of the digestive tract including the epigastria and area over the periumbilical (n = 83; 48%), retrosternal (n = 17; 10%), pharyngeal (n = 31; 18%) and oral (n = 18; 10%) regions. The temporal pole (BA 38), hippocampus, amygdala and anterior cingulate cortex (ACC; BA 24/BA 32) were the typical anatomical locations connected with epigastric sensations. Retrosternal sensations were preferentially related to the ACC, while oro-pharyngeal sensations were most related to the suprasylvian opercular cortex and the insula. Cortical ESs are followed by a great variability of induced digestive and associated symptoms corresponding to a widely distributed cortical network of visceral sensation processing, in which the limbic and paralimbic structures play a critical role.
Collapse
Affiliation(s)
- A Mulak
- Department of Gastroenterology and Hepatology, Wroclaw Medical University, Wroclaw, Poland
| | | | | | | | | |
Collapse
|
50
|
Zeng F, Liu XG, Li XZ, Liang FR. Research progress in brain function imaging of irritable bowel syndrome. Shijie Huaren Xiaohua Zazhi 2008; 16:1435-1439. [DOI: 10.11569/wcjd.v16.i13.1435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Along with the development of nerve imaging, brain function imaging technique is gradually used in the research of functional gastrointestinal disorders (FGID), and it provides a new method for further investigation of the relationship between brain cortex function, gut function and FGID, as well as the relationship between brain and digestive tract. This review focuses on the major progress in the overseas study of irritable bowel syndrome using positron emission tomography and functional magnetic resonance imaging, the problems and application prospect.
Collapse
|