1
|
Ly M, Lau NS, Dennis C, Chen J, Risbey C, Tan S, Chen R, Wang C, Gorrell MD, McKenzie C, Kench JG, Liu K, McCaughan GW, Crawford M, Pulitano C. Long-term ex situ normothermic machine perfusion allows regeneration of human livers with severe bile duct injury. Am J Transplant 2025; 25:60-71. [PMID: 39059585 DOI: 10.1016/j.ajt.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/28/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
Bile duct regeneration is hypothesized to prevent biliary strictures, a leading cause of morbidity after liver transplantation. Assessing the capacity for biliary regeneration may identify grafts as suitable for transplantation that are currently declined, but this has been unfeasible until now. This study used long-term ex situ normothermic machine perfusion (LT-NMP) to assess biliary regeneration. Human livers that were declined for transplantation were perfused at 36 °C for up to 13.5 days. Bile duct biopsies, bile, and perfusate were collected throughout perfusion, which were examined for features of injury and regeneration. Biliary regeneration was defined as new Ki-67-positive biliary epithelium following severe injury. Ten livers were perfused for a median duration of 7.5 days. Severe bile duct injury occurred in all grafts, and biliary regeneration occurred in 70% of grafts. Traditional biomarkers of biliary viability such as bile glucose improved during perfusion but this was not associated with biliary regeneration (P > .05). In contrast, the maintenance of interleukin-6 and vascular endothelial growth factor-A levels in bile was associated with biliary regeneration (P = .017 for both cytokines). This is the first study to demonstrate biliary regeneration during LT-NMP and identify a cytokine signature in bile as a novel biomarker for biliary regeneration during LT-NMP.
Collapse
Affiliation(s)
- Mark Ly
- Centre for Organ Assessment Repair and Optimisation, Royal Prince Alfred Hospital, Sydney, Australia; Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, Australia; Centenary Institute, The University of Sydney, Sydney, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Ngee-Soon Lau
- Centre for Organ Assessment Repair and Optimisation, Royal Prince Alfred Hospital, Sydney, Australia; Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Claude Dennis
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Jinbiao Chen
- Centenary Institute, The University of Sydney, Sydney, Australia
| | - Charles Risbey
- Centre for Organ Assessment Repair and Optimisation, Royal Prince Alfred Hospital, Sydney, Australia; Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Sarah Tan
- Central Sydney Immunology Laboratory, Royal Prince Alfred Hospital, NSW, Australia
| | - Renfen Chen
- Central Sydney Immunology Laboratory, Royal Prince Alfred Hospital, NSW, Australia
| | - Chuanmin Wang
- Centre for Organ Assessment Repair and Optimisation, Royal Prince Alfred Hospital, Sydney, Australia; Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Mark D Gorrell
- Centenary Institute, The University of Sydney, Sydney, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Catriona McKenzie
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia; Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, Australia
| | - James G Kench
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia; Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Ken Liu
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, Australia; Centenary Institute, The University of Sydney, Sydney, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Geoffrey W McCaughan
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, Australia; Centenary Institute, The University of Sydney, Sydney, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Michael Crawford
- Centre for Organ Assessment Repair and Optimisation, Royal Prince Alfred Hospital, Sydney, Australia; Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Carlo Pulitano
- Centre for Organ Assessment Repair and Optimisation, Royal Prince Alfred Hospital, Sydney, Australia; Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.
| |
Collapse
|
2
|
Lau NS, McCaughan G, Ly M, Liu K, Crawford M, Pulitano C. Long-term machine perfusion of human split livers: a new model for regenerative and translational research. Nat Commun 2024; 15:9809. [PMID: 39532864 PMCID: PMC11557707 DOI: 10.1038/s41467-024-54024-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Recent advances in machine perfusion have revolutionised the field of transplantation by prolonging preservation, permitting evaluation of viability prior to implant and rescue of discarded organs. Long-term perfusion for days-to-weeks provides time to modify these organs prior to transplantation. By using long-term normothermic machine perfusion to facilitate liver splitting and subsequent perfusion of both partial organs, possibilities even outside the clinical arena become possible. This model remains in its infancy but in the future, could allow for detailed study of liver injury and regeneration, and ex-situ treatment strategies such as defatting, genetic modulation and stem-cell therapies. Here we provide insight into this new model for research and highlight its great potential and current limitations.
Collapse
Affiliation(s)
- Ngee-Soon Lau
- Centre for Organ Assessment Repair and Optimisation, Royal Prince Alfred Hospital, Sydney, NSW, 2050, Australia
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, NSW, 2050, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Geoffrey McCaughan
- Centre for Organ Assessment Repair and Optimisation, Royal Prince Alfred Hospital, Sydney, NSW, 2050, Australia
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, NSW, 2050, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Mark Ly
- Centre for Organ Assessment Repair and Optimisation, Royal Prince Alfred Hospital, Sydney, NSW, 2050, Australia
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, NSW, 2050, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Ken Liu
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, NSW, 2050, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Michael Crawford
- Centre for Organ Assessment Repair and Optimisation, Royal Prince Alfred Hospital, Sydney, NSW, 2050, Australia
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, NSW, 2050, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Carlo Pulitano
- Centre for Organ Assessment Repair and Optimisation, Royal Prince Alfred Hospital, Sydney, NSW, 2050, Australia.
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, NSW, 2050, Australia.
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
3
|
Okumura A, Aoshima K, Tanimizu N. Generation of in vivo-like multicellular liver organoids by mimicking developmental processes: A review. Regen Ther 2024; 26:219-234. [PMID: 38903867 PMCID: PMC11186971 DOI: 10.1016/j.reth.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/22/2024] Open
Abstract
Liver is involved in metabolic reactions, ammonia detoxification, and immunity. Multicellular liver tissue cultures are more desirable for drug screening, disease modeling, and researching transplantation therapy, than hepatocytes monocultures. Hepatocytes monocultures are not stable for long. Further, hepatocyte-like cells induced from pluripotent stem cells and in vivo hepatocytes are functionally dissimilar. Organoid technology circumvents these issues by generating functional ex vivo liver tissue from intrinsic liver progenitor cells and extrinsic stem cells, including pluripotent stem cells. To function as in vivo liver tissue, the liver organoid cells must be arranged precisely in the 3-dimensional space, closely mimicking in vivo liver tissue. Moreover, for long term functioning, liver organoids must be appropriately vascularized and in contact with neighboring epithelial tissues (e.g., bile canaliculi and intrahepatic bile duct, or intrahepatic and extrahepatic bile ducts). Recent discoveries in liver developmental biology allows one to successfully induce liver component cells and generate organoids. Thus, here, in this review, we summarize the current state of knowledge on liver development with a focus on its application in generating different liver organoids. We also cover the future prospects in creating (functionally and structurally) in vivo-like liver organoids using the current knowledge on liver development.
Collapse
Affiliation(s)
- Ayumu Okumura
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-0071, Japan
| | - Kenji Aoshima
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-0071, Japan
| | - Naoki Tanimizu
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-0071, Japan
| |
Collapse
|
4
|
Cardinale V, Paradiso S, Alvaro D. Biliary stem cells in health and cholangiopathies and cholangiocarcinoma. Curr Opin Gastroenterol 2024; 40:92-98. [PMID: 38320197 DOI: 10.1097/mog.0000000000001005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
PURPOSE OF REVIEW This review discusses evidence regarding progenitor populations of the biliary tree in the tissue regeneration and homeostasis, and the pathobiology of cholangiopathies and malignancies. RECENT FINDINGS In embryogenesis biliary multipotent progenitor subpopulation contributes cells not only to the pancreas and gall bladder but also to the liver. Cells equipped with a constellation of markers suggestive of the primitive endodermal phenotype exist in the peribiliary glands, the bile duct glands, of the intra- and extrahepatic bile ducts. These cells are able to be isolated and cultured easily, which demonstrates the persistence of a stable phenotype during in vitro expansion, the ability to self-renew in vitro, and the ability to differentiate between hepatocyte and biliary and pancreatic islet fates. SUMMARY In normal human livers, stem/progenitors cells are mostly restricted in two distinct niches, which are the bile ductules/canals of Hering and the peribiliary glands (PBGs) present inside the wall of large intrahepatic bile ducts. The existence of a network of stem/progenitor cell niches within the liver and along the entire biliary tree inform a patho-biological-based translational approach to biliary diseases and cholangiocarcinoma since it poses the basis to understand biliary regeneration after extensive or chronic injuries and progression to fibrosis and cancer.
Collapse
Affiliation(s)
| | - Savino Paradiso
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
5
|
Roushansarai NS, Pascher A, Becker F. Innate Immune Cells during Machine Perfusion of Liver Grafts-The Janus Face of Hepatic Macrophages. J Clin Med 2022; 11:jcm11226669. [PMID: 36431146 PMCID: PMC9696117 DOI: 10.3390/jcm11226669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022] Open
Abstract
Machine perfusion is an emerging technology in the field of liver transplantation. While machine perfusion has now been implemented in clinical routine throughout transplant centers around the world, a debate has arisen regarding its concurrent effect on the complex hepatic immune system during perfusion. Currently, our understanding of the perfusion-elicited processes involving innate immune cells remains incomplete. Hepatic macrophages (Kupffer cells) represent a special subset of hepatic immune cells with a dual pro-inflammatory, as well as a pro-resolving and anti-inflammatory, role in the sequence of ischemia-reperfusion injury. The purpose of this review is to provide an overview of the current data regarding the immunomodulatory role of machine perfusion and to emphasize the importance of macrophages for hepatic ischemia-reperfusion injury.
Collapse
|
6
|
Tomita H, Hara A. Development of extrahepatic bile ducts and mechanisms of tumorigenesis: Lessons from mouse models. Pathol Int 2022; 72:589-605. [PMID: 36349994 PMCID: PMC10098476 DOI: 10.1111/pin.13287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 10/12/2022] [Indexed: 11/11/2022]
Abstract
The biliary system is a highly branched tubular network consisting of intrahepatic bile ducts (IHBDs) and extrahepatic bile ducts (EHBDs). IHBDs are derived from hepatic progenitor cells, while EHBDs originate directly from the endoderm through a separate branching morphogenetic process. Traits that are important for cancer are often found to overlap in developmental and other processes. Therefore, it has been suggested that intrahepatic cholangiocarcinomas (iCCAs) and extrahepatic cholangiocarcinomas (eCCAs) have different developmental mechanisms. While much evidence is being gathered on the mechanism of iCCAs, the evidence for eCCA is still very limited. The main reason for this is that there are very few appropriate animal models for eCCA. We can gain important insights from these animal models, particularly genetically engineered mouse models (GEMMs). GEMMs are immunocompetent and mimic human CCA subtypes with a specific mutational pattern, allowing the development of precancerous lesions, that is, biliary intraepithelial neoplasia (BilIN) and intraductal papillary neoplasm of the bile duct (IPNB). This review provides a summary of the pathogenesis and mechanisms of eCCA that can be revealed by GEMMs. Furthermore, we discuss several clinical questions, such as whether BilIN and IPNB really become malignant, whether the peribiliary gland is the origin of eCCAs, and others.
Collapse
Affiliation(s)
- Hiroyuki Tomita
- Department of Tumor Pathology Gifu University Graduate School of Medicine Gifu Japan
| | - Akira Hara
- Department of Tumor Pathology Gifu University Graduate School of Medicine Gifu Japan
| |
Collapse
|
7
|
Miyazawa M, Aikawa M, Takashima J, Kobayashi H, Ohnishi S, Ikada Y. Pitfalls and promises of bile duct alternatives: A narrative review. World J Gastroenterol 2022; 28:5707-5722. [PMID: 36338889 PMCID: PMC9627420 DOI: 10.3748/wjg.v28.i39.5707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/18/2022] [Accepted: 09/23/2022] [Indexed: 02/06/2023] Open
Abstract
Biliodigestive anastomosis between the extrahepatic bile duct and the intestine for bile duct disease is a gastrointestinal reconstruction that abolishes duodenal papilla function and frequently causes retrograde cholangitis. This chronic inflammation can cause liver dysfunction, liver abscess, and even bile duct cancer. Although research has been conducted for over 100 years to directly repair bile duct defects with alternatives, no bile duct substitute (BDS) has been developed. This narrative review confirms our understanding of why bile duct alternatives have not been developed and explains the clinical applicability of BDSs in the near future. We searched the PubMed electronic database to identify studies conducted to develop BDSs until December 2021 and identified studies in English. Two independent reviewers reviewed studies on large animals with 8 or more cases. Four types of BDSs prevail: Autologous tissue, non-bioabsorbable material, bioabsorbable material, and others (decellularized tissue, 3D-printed structures, etc.). In most studies, BDSs failed due to obstruction of the lumen or stenosis of the anastomosis with the native bile duct. BDS has not been developed primarily because control of bile duct wound healing and regeneration has not been elucidated. A BDS expected to be clinically applied in the near future incorporates a bioabsorbable material that allows for regeneration of the bile duct outside the BDS.
Collapse
Affiliation(s)
- Mitsuo Miyazawa
- Department of Surgery, Teikyo University Mizonokuch Hospital, Kanagawa 213-8507, Japan
| | - Masayasu Aikawa
- Department of Surgery, Saitama Medical University International Medical Center, Saitama 350-1298, Japan
| | - Junpei Takashima
- Department of Surgery, Teikyo University Mizonokuch Hospital, Kanagawa 213-8507, Japan
| | - Hirotoshi Kobayashi
- Department of Surgery, Teikyo University Mizonokuch Hospital, Kanagawa 213-8507, Japan
| | - Shunsuke Ohnishi
- Department of Gastroenterology and Hepatology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Yoshito Ikada
- Department of Bioenvironmental Medicine, Nara Medical University, Nara 634-8521, Japan
| |
Collapse
|
8
|
Wang W, Chen D, Wang J, Wen L. Cellular Homeostasis and Repair in the Biliary Tree. Semin Liver Dis 2022; 42:271-282. [PMID: 35672015 DOI: 10.1055/a-1869-7714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
During biliary tree homeostasis, BECs are largely in a quiescent state and their turnover is slow for maintaining normal tissue homeostasis. BTSCs continually replenish new BECs in the luminal surface of EHBDs. In response to various types of biliary injuries, distinct cellular sources, including HPCs, BTSCs, hepatocytes, and BECs, repair or regenerate the injured bile duct. BEC, biliary epithelial cell; BTSC, biliary tree stem/progenitor cell; EHBD, extrahepatic bile ducts; HPC, hepatic progenitor cell.The biliary tree comprises intrahepatic bile ducts and extrahepatic bile ducts lined with epithelial cells known as biliary epithelial cells (BECs). BECs are a common target of various cholangiopathies for which there is an unmet therapeutic need in clinical hepatology. The repair and regeneration of biliary tissue may potentially restore the normal architecture and function of the biliary tree. Hence, the repair and regeneration process in detail, including the replication of existing BECs, expansion and differentiation of the hepatic progenitor cells and biliary tree stem/progenitor cells, and transdifferentiation of the hepatocytes, should be understood. In this paper, we review biliary tree homeostasis, repair, and regeneration and discuss the feasibility of regenerative therapy strategies for cholangiopathy treatment.
Collapse
Affiliation(s)
- Wei Wang
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Dongfeng Chen
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Jun Wang
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Liangzhi Wen
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
9
|
Schlegel A, Porte R, Dutkowski P. Protective mechanisms and current clinical evidence of hypothermic oxygenated machine perfusion (HOPE) in preventing post-transplant cholangiopathy. J Hepatol 2022; 76:1330-1347. [PMID: 35589254 DOI: 10.1016/j.jhep.2022.01.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/10/2022] [Accepted: 01/31/2022] [Indexed: 12/12/2022]
Abstract
The development of cholangiopathies after liver transplantation impacts on the quality and duration of graft and patient survival, contributing to higher costs as numerous interventions are required to treat strictures and infections at the biliary tree. Prolonged donor warm ischaemia time in combination with additional cold storage are key risk factors for the development of biliary strictures. Based on this, the clinical implementation of dynamic preservation strategies is a current hot topic in the field of donation after circulatory death (DCD) liver transplantation. Despite various retrospective studies reporting promising results, also regarding biliary complications, there are only a few randomised-controlled trials on machine perfusion. Recently, the group from Groningen has published the first randomised-controlled trial on hypothermic oxygenated perfusion (HOPE), demonstrating a significant reduction of symptomatic ischaemic cholangiopathies with the use of a short period of HOPE before DCD liver implantation. The most likely mechanism for this important effect, also shown in several experimental studies, is based on mitochondrial reprogramming under hypothermic aerobic conditions, e.g. exposure to oxygen in the cold, with a controlled and slow metabolism of ischaemically accumulated succinate and simultaneous ATP replenishment. This unique feature prevents mitochondrial oxidative injury and further downstream tissue inflammation. HOPE treatment therefore supports livers by protecting them from ischaemia-reperfusion injury (IRI), and thereby also prevents the development of post-transplant biliary injury. With reduced IRI-associated inflammation, recipients are also protected from activation of the innate immune system, with less acute rejections seen after HOPE.
Collapse
Affiliation(s)
- Andrea Schlegel
- Department of Visceral Surgery and Transplantation, University Hospital Zurich, Swiss HPB and Transplant Center, Zurich, Switzerland; General and Liver Transplant Surgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20100 Milan, Italy
| | - Robert Porte
- Department of Surgery, Surgical Research Laboratory, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Philipp Dutkowski
- Department of Visceral Surgery and Transplantation, University Hospital Zurich, Swiss HPB and Transplant Center, Zurich, Switzerland.
| |
Collapse
|
10
|
Dingfelder J, Rauter L, Berlakovich GA, Kollmann D. Biliary Viability Assessment and Treatment Options of Biliary Injury During Normothermic Liver Perfusion—A Systematic Review. Transpl Int 2022; 35:10398. [PMID: 35707635 PMCID: PMC9189281 DOI: 10.3389/ti.2022.10398] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/25/2022] [Indexed: 11/30/2022]
Abstract
In recent years, significant progress has been made in the field of liver machine perfusion. Many large transplant centers have implemented machine perfusion strategies in their clinical routine. Normothermic machine perfusion (NMP) is primarily used to determine the quality of extended criteria donor (ECD) organs and for logistical reasons. The vast majority of studies, which assessed the viability of perfused grafts, focused on hepatocellular injury. However, biliary complications are still a leading cause of post-transplant morbidity and the need for re-transplantation. To evaluate the extent of biliary injury during NMP, reliable criteria that consider cholangiocellular damage are needed. In this review, different approaches to assess damage to the biliary tree and the current literature on the possible effects of NMP on the biliary system and biliary injury have been summarized. Additionally, it provides an overview of novel biomarkers and therapeutic strategies that are currently being investigated. Although expectations of NMP to adequately assess biliary injury are high, scant literature is available. There are several biomarkers that can be measured in bile that have been associated with outcomes after transplantation, mainly including pH and electrolytes. However, proper validation of those and other novel markers and investigation of the pathophysiological effect of NMP on the biliary tree is still warranted.
Collapse
|
11
|
de Jong IEM, Overi D, Carpino G, Gouw ASH, van den Heuvel MC, van Kempen LC, Mancone C, Onori P, Cardinale V, Casadei L, Alvaro D, Porte RJ, Gaudio E. Persistent biliary hypoxia and lack of regeneration are key mechanisms in the pathogenesis of posttransplant nonanastomotic strictures. Hepatology 2022; 75:814-830. [PMID: 34543480 PMCID: PMC9300015 DOI: 10.1002/hep.32166] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 08/30/2021] [Accepted: 09/16/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIMS Nonanastomotic biliary strictures (NAS) are a major cause of morbidity after orthotopic liver transplantation (OLT). Although ischemic injury of peribiliary glands (PBGs) and peribiliary vascular plexus during OLT has been associated with the later development of NAS, the exact underlying mechanisms remain unclear. We hypothesized that bile ducts of patients with NAS suffer from ongoing biliary hypoxia and lack of regeneration from PBG stem/progenitor cells. APPROACH AND RESULTS Forty-two patients, requiring retransplantation for either NAS (n = 18), hepatic artery thrombosis (HAT; n = 13), or nonbiliary graft failure (controls; n = 11), were included in this study. Histomorphological analysis of perihilar bile ducts was performed to assess differences in markers of cell proliferation and differentiation in PBGs, microvascular density (MVD), and hypoxia. In addition, isolated human biliary tree stem cells (hBTSCs) were used to examine exo-metabolomics during in vitro differentiation toward mature cholangiocytes. Bile ducts of patients with NAS or HAT had significantly reduced indices of PBG mass, cellular proliferation and differentiation (mucus production, secretin receptor expression, and primary cilia), reduced MVD, and increased PBG apoptosis and hypoxia marker expression, compared to controls. Metabolomics of hBTSCs during in vitro differentiation toward cholangiocytes revealed a switch from a glycolytic to oxidative metabolism, indicating the need for oxygen. CONCLUSIONS NAS are characterized by a microscopic phenotype of chronic biliary hypoxia attributed to loss of microvasculature, resulting in reduced proliferation and differentiation of PBG stem/progenitor cells into mature cholangiocytes. These findings suggest that persistent biliary hypoxia is a key mechanism underlying the development of NAS after OLT.
Collapse
Affiliation(s)
- Iris E M de Jong
- Surgical Research LaboratoryDepartment of SurgeryUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands.,Section of Hepatobiliary Surgery and Liver TransplantationDepartment of SurgeryUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Diletta Overi
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic SciencesSapienza University of RomeRomeItaly
| | - Guido Carpino
- Division of Health SciencesDepartment of Movement, Human and Health SciencesUniversity of Rome "Foro Italico"RomeItaly
| | - Annette S H Gouw
- Department of PathologyUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Marius C van den Heuvel
- Department of PathologyUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Léon C van Kempen
- Department of PathologyUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Carmine Mancone
- Department of Molecular MedicineSapienza University of RomeRomeItaly
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic SciencesSapienza University of RomeRomeItaly
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and BiotechnologiesPolo Pontino, Sapienza University of RomeRomeItaly
| | - Luca Casadei
- Department of ChemistrySapienza University of RomeRomeItaly
| | - Domenico Alvaro
- Department of Translational and Precision MedicineSapienza University of RomeRomeItaly
| | - Robert J Porte
- Section of Hepatobiliary Surgery and Liver TransplantationDepartment of SurgeryUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic SciencesSapienza University of RomeRomeItaly
| |
Collapse
|
12
|
Ghinolfi D, Melandro F, Torri F, Martinelli C, Cappello V, Babboni S, Silvestrini B, De Simone P, Basta G, Del Turco S. Extended criteria grafts and emerging therapeutics strategy in liver transplantation. The unstable balance between damage and repair. Transplant Rev (Orlando) 2021; 35:100639. [PMID: 34303259 DOI: 10.1016/j.trre.2021.100639] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023]
Abstract
Due to increasing demand for donor organs, "extended criteria" donors are increasingly considered for liver transplantation, including elderly donors and donors after cardiac death. The grafts of this subgroup of donors share a major risk to develop significant features of ischemia reperfusion injury, that may eventually lead to graft failure. Ex-situ machine perfusion technology has gained much interest in liver transplantation, because represents both a useful tool for improving graft quality before transplantation and a platform for the delivery of therapeutics directly to the organ. In this review, we survey ongoing clinical evidences supporting the use of elderly and DCD donors in liver transplantation, and the underlying mechanistic aspects of liver aging and ischemia reperfusion injury that influence graft quality and transplant outcome. Finally, we highlight evidences in the field of new therapeutics to test in MP in the context of recent findings of basic and translational research.
Collapse
Affiliation(s)
- Davide Ghinolfi
- Division of Hepatic Surgery and Liver Transplantation, University of Pisa Medical School Hospital, Via Paradisa 2, 56124 Pisa, Italy.
| | - Fabio Melandro
- Division of Hepatic Surgery and Liver Transplantation, University of Pisa Medical School Hospital, Via Paradisa 2, 56124 Pisa, Italy
| | - Francesco Torri
- Division of Hepatic Surgery and Liver Transplantation, University of Pisa Medical School Hospital, Via Paradisa 2, 56124 Pisa, Italy
| | - Caterina Martinelli
- Division of Hepatic Surgery and Liver Transplantation, University of Pisa Medical School Hospital, Via Paradisa 2, 56124 Pisa, Italy
| | - Valentina Cappello
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza S. Silvestro 12, 56127 Pisa, Italy
| | - Serena Babboni
- Institute of Clinical Physiology, CNR San Cataldo Research Area, via Moruzzi 1, 56124 Pisa, Italy
| | - Beatrice Silvestrini
- Department of Surgical, Medical, Molecular Pathology, and Critical Area, University of Pisa, 56122 Pisa, Italy.
| | - Paolo De Simone
- Division of Hepatic Surgery and Liver Transplantation, University of Pisa Medical School Hospital, Via Paradisa 2, 56124 Pisa, Italy
| | - Giuseppina Basta
- Institute of Clinical Physiology, CNR San Cataldo Research Area, via Moruzzi 1, 56124 Pisa, Italy
| | - Serena Del Turco
- Institute of Clinical Physiology, CNR San Cataldo Research Area, via Moruzzi 1, 56124 Pisa, Italy.
| |
Collapse
|
13
|
Carpino G, Nevi L, Overi D, Cardinale V, Lu WY, Di Matteo S, Safarikia S, Berloco PB, Venere R, Onori P, Franchitto A, Forbes SJ, Alvaro D, Gaudio E. Peribiliary Gland Niche Participates in Biliary Tree Regeneration in Mouse and in Human Primary Sclerosing Cholangitis. Hepatology 2020; 71:972-989. [PMID: 31330051 DOI: 10.1002/hep.30871] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/09/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Mechanisms underlying the repair of extrahepatic biliary tree (EHBT) after injury have been scarcely explored. The aims of this study were to evaluate, by using a lineage tracing approach, the contribution of peribiliary gland (PBG) niche in the regeneration of EHBT after damage and to evaluate, in vivo and in vitro, the signaling pathways involved. APPROACH AND RESULTS Bile duct injury was induced by the administration of 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet for 14 days to Krt19Cre TdTomatoLSL mice. Human biliary tree stem/progenitor cells (BTSC) within PBGs were isolated from EHBT obtained from liver donors. Hepatic duct samples (n = 10) were obtained from patients affected by primary sclerosing cholangitis (PSC). Samples were analyzed by histology, immunohistochemistry, western blotting, and polymerase chain reaction. DDC administration causes hyperplasia of PBGs and periductal fibrosis in EHBT. A PBG cell population (Cytokeratin19- /SOX9+ ) is involved in the renewal of surface epithelium in injured EHBT. The Wnt signaling pathway triggers human BTSC proliferation in vitro and influences PBG hyperplasia in vivo in the DDC-mediated mouse biliary injury model. The Notch signaling pathway activation induces BTSC differentiation in vitro toward mature cholangiocytes and is associated with PBG activation in the DDC model. In human PSC, inflammatory and stromal cells trigger PBG activation through the up-regulation of the Wnt and Notch signaling pathways. CONCLUSIONS We demonstrated the involvement of PBG cells in regenerating the injured biliary epithelium and identified the signaling pathways driving BTSC activation. These results could have relevant implications on the pathophysiology and treatment of cholangiopathies.
Collapse
Affiliation(s)
- Guido Carpino
- Department of Movement, Human and Health Sciences, Division of Health Sciences, University of Rome "Foro Italico,", Rome, Italy
| | - Lorenzo Nevi
- Department of Precision and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - Diletta Overi
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Wei-Yu Lu
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, United Kingdom
| | - Sabina Di Matteo
- Department of Precision and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - Samira Safarikia
- Department of Precision and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Rosanna Venere
- Department of Precision and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Antonio Franchitto
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Stuart J Forbes
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, United Kingdom
| | - Domenico Alvaro
- Department of Precision and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
14
|
Lendvai G, Szekerczés T, Illyés I, Dóra R, Kontsek E, Gógl A, Kiss A, Werling K, Kovalszky I, Schaff Z, Borka K. Cholangiocarcinoma: Classification, Histopathology and Molecular Carcinogenesis. Pathol Oncol Res 2020; 26:3-15. [PMID: 30448973 DOI: 10.1007/s12253-018-0491-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 10/10/2018] [Indexed: 02/06/2023]
Abstract
Cholangiocarcinoma (CC) is the second most common tumor of the liver, originating from the biliary system with increasing incidence and mortality worldwide. Several new classifications review the significance of tumor localization, site of origin, proliferation and biomarkers in the intrahepatic, perihilar and distal forms of the lesion. Based on growth pattern mass-forming, periductal-infiltrating, intraductal, undefined and mixed types are differentiated. There are further subclassifications which are applied for the histological features, in particular for intrahepatic CC. Recognition of the precursors and early lesions of CC including biliary intraepithelial neoplasia (BilIN), intraductal papillary neoplasm of the bile ducts (IPNB), biliary mucinous cystic neoplasm (MCNB) and the candidate precursors, such as bile duct adenoma and von Meyenburg complex is of increasing significance. In addition to the previously used biliary markers detected by immunohistochemistry, several new markers have been added to the differentiation of both the benign and malignant lesions, which can be used to aid in the subclassification in association with the outcome of CC. Major aspects of biliary carcinogenesis have been revealed, yet, the exact way of this diverse process is still unclear. The factors contributing to molecular cholangiocarcinogenesis include various risk factors, different anatomical localizations, multiple cellular origins, genetic and epigenetic alterations, tumor microenvironment, heterogeneity and clonal evolution. Driver mutations have been identified, implying that they are optimal candidates for targeted therapy. The most promising therapeutic candidates have entered clinical trials.
Collapse
Affiliation(s)
- Gábor Lendvai
- 2nd Department of Pathology, Semmelweis University, Üllői út 93, Budapest, H-1091, Hungary
| | - Tímea Szekerczés
- 2nd Department of Pathology, Semmelweis University, Üllői út 93, Budapest, H-1091, Hungary
| | - Idikó Illyés
- 2nd Department of Pathology, Semmelweis University, Üllői út 93, Budapest, H-1091, Hungary
| | - Réka Dóra
- 2nd Department of Pathology, Semmelweis University, Üllői út 93, Budapest, H-1091, Hungary
| | - Endre Kontsek
- 2nd Department of Pathology, Semmelweis University, Üllői út 93, Budapest, H-1091, Hungary
| | - Alíz Gógl
- 2nd Department of Pathology, Semmelweis University, Üllői út 93, Budapest, H-1091, Hungary
| | - András Kiss
- 2nd Department of Pathology, Semmelweis University, Üllői út 93, Budapest, H-1091, Hungary
| | - Klára Werling
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, 1085, Hungary
| | - Ilona Kovalszky
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, 1085, Hungary
| | - Zsuzsa Schaff
- 2nd Department of Pathology, Semmelweis University, Üllői út 93, Budapest, H-1091, Hungary.
| | - Katalin Borka
- 2nd Department of Pathology, Semmelweis University, Üllői út 93, Budapest, H-1091, Hungary
| |
Collapse
|
15
|
Franchitto A, Overi D, Mancinelli R, Mitterhofer AP, Muiesan P, Tinti F, Umbro I, Hubscher SG, Onori P, Gaudio E, Carpino G. Peribiliary gland damage due to liver transplantation involves peribiliary vascular plexus and vascular endothelial growth factor. Eur J Histochem 2019; 63:3022. [PMID: 31113191 PMCID: PMC6517787 DOI: 10.4081/ejh.2019.3022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 04/23/2019] [Indexed: 02/06/2023] Open
Abstract
Extrahepatic bile ducts are characterized by the presence of peribiliary glands (PBGs), which represent stem cell niches implicated in biliary regeneration. Orthotopic liver transplantation may be complicated by non-anastomotic strictures (NAS) of the bile ducts, which have been associated with ischemic injury of PBGs and occur more frequently in livers obtained from donors after circulatory death than in those from brain-dead donors. The aims of the present study were to investigate the PBG phenotype in bile ducts after transplantation, the integrity of the peribiliary vascular plexus (PVP) around PBGs, and the expression of vascular endothelial growth factor-A (VEGF-A) by PBGs. Transplanted ducts obtained from patients who underwent liver transplantation were studied (N=62). Controls included explanted bile duct samples not used for transplantation (N=10) with normal histology. Samples were processed for histology, immunohistochemistry and immunofluorescence. Surface epithelium is severely injured in transplanted ducts; PBGs are diffusely damaged, particularly in ducts obtained from circulatory-dead compared to brain-dead donors. PVP is reduced in transplanted compared to controls. PBGs in transplanted ducts contain more numerous progenitor and proliferating cells compared to controls, show higher positivity for VEGF-A compared to controls, and express VEGF receptor-2. In conclusion, PBGs and associated PVP are damaged in transplanted extrahepatic bile ducts; however, an activation of the PBG niche takes place and is characterized by proliferation and VEGF-A expression. This response could have a relevant role in reconstituting biliary epithelium and vascular plexus and could be implicated in the genesis of non-anastomotic strictures.
Collapse
Affiliation(s)
- Antonio Franchitto
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
de Jong IE, Matton AP, van Praagh JB, van Haaften WT, Wiersema‐Buist J, van Wijk LA, Oosterhuis D, Iswandana R, Suriguga S, Overi D, Lisman T, Carpino G, Gouw AS, Olinga P, Gaudio E, Porte RJ. Peribiliary Glands Are Key in Regeneration of the Human Biliary Epithelium After Severe Bile Duct Injury. Hepatology 2019; 69:1719-1734. [PMID: 30506902 PMCID: PMC6594148 DOI: 10.1002/hep.30365] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/07/2018] [Indexed: 12/22/2022]
Abstract
Peribiliary glands (PBG) are a source of stem/progenitor cells organized in a cellular network encircling large bile ducts. Severe cholangiopathy with loss of luminal biliary epithelium has been proposed to activate PBG, resulting in cell proliferation and differentiation to restore biliary epithelial integrity. However, formal evidence for this concept in human livers is lacking. We therefore developed an ex vivo model using precision-cut slices of extrahepatic human bile ducts obtained from discarded donor livers, providing an intact anatomical organization of cell structures, to study spatiotemporal differentiation and migration of PBG cells after severe biliary injury. Postischemic bile duct slices were incubated in oxygenated culture medium for up to a week. At baseline, severe tissue injury was evident with loss of luminal epithelial lining and mural stroma necrosis. In contrast, PBG remained relatively well preserved and different reactions of PBG were noted, including PBG dilatation, cell proliferation, and maturation. Proliferation of PBG cells increased after 24 hours of oxygenated incubation, reaching a peak after 72 hours. Proliferation of PBG cells was paralleled by a reduction in PBG apoptosis and differentiation from a primitive and pluripotent (homeobox protein Nanog+/ sex-determining region Y-box 9+) to a mature (cystic fibrosis transmembrane conductance regulator+/secretin receptor+) and activated phenotype (increased expression of hypoxia-inducible factor 1 alpha, glucose transporter 1, and vascular endothelial growth factor A). Migration of proliferating PBG cells in our ex vivo model was unorganized, but resulted in generation of epithelial monolayers at stromal surfaces. Conclusion: Human PBG contain biliary progenitor cells and are able to respond to bile duct epithelial loss with proliferation, differentiation, and maturation to restore epithelial integrity. The ex vivo spatiotemporal behavior of human PBG cells provides evidence for a pivotal role of PBG in biliary regeneration after severe injury.
Collapse
Affiliation(s)
- Iris E.M. de Jong
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of SurgeryUniversity of Groningen, University Medical Center GroningenGroningenthe Netherlands,Surgical Research Laboratory, Department of SurgeryUniversity of Groningen, University Medical Center GroningenGroningenthe Netherlands
| | - Alix P.M. Matton
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of SurgeryUniversity of Groningen, University Medical Center GroningenGroningenthe Netherlands,Surgical Research Laboratory, Department of SurgeryUniversity of Groningen, University Medical Center GroningenGroningenthe Netherlands
| | - Jasper B. van Praagh
- Surgical Research Laboratory, Department of SurgeryUniversity of Groningen, University Medical Center GroningenGroningenthe Netherlands,Department of Pharmaceutical Technology and BiopharmacyUniversity of GroningenGroningenthe Netherlands
| | - Wouter T. van Haaften
- Department of Pharmaceutical Technology and BiopharmacyUniversity of GroningenGroningenthe Netherlands
| | - Janneke Wiersema‐Buist
- Surgical Research Laboratory, Department of SurgeryUniversity of Groningen, University Medical Center GroningenGroningenthe Netherlands
| | - Louise A. van Wijk
- Department of Pharmaceutical Technology and BiopharmacyUniversity of GroningenGroningenthe Netherlands
| | - Dorenda Oosterhuis
- Department of Pharmaceutical Technology and BiopharmacyUniversity of GroningenGroningenthe Netherlands
| | - Raditya Iswandana
- Department of Pharmaceutical Technology and BiopharmacyUniversity of GroningenGroningenthe Netherlands,Faculty of PharmacyUniversitas IndonesiaIndonesia
| | - Su Suriguga
- Department of Pharmaceutical Technology and BiopharmacyUniversity of GroningenGroningenthe Netherlands
| | - Diletta Overi
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic SciencesSapienza University of RomeRomeItaly
| | - Ton Lisman
- Surgical Research Laboratory, Department of SurgeryUniversity of Groningen, University Medical Center GroningenGroningenthe Netherlands
| | - Guido Carpino
- Division of Health Sciences, Department of Movement, Human and Health SciencesUniversity of Rome “Foro Italico”RomeItaly
| | - Annette S.H. Gouw
- Department of PathologyUniversity of Groningen, University Medical Center GroningenGroningenthe Netherlands
| | - Peter Olinga
- Department of Pharmaceutical Technology and BiopharmacyUniversity of GroningenGroningenthe Netherlands
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic SciencesSapienza University of RomeRomeItaly
| | - Robert J. Porte
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of SurgeryUniversity of Groningen, University Medical Center GroningenGroningenthe Netherlands
| |
Collapse
|
17
|
Boteon YL, Boteon APCS, Attard J, Wallace L, Bhogal RH, Afford SC. Impact of machine perfusion of the liver on post-transplant biliary complications: A systematic review. World J Transplant 2018; 8:220-231. [PMID: 30370232 PMCID: PMC6201326 DOI: 10.5500/wjt.v8.i6.220] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/09/2018] [Accepted: 10/10/2018] [Indexed: 02/05/2023] Open
Abstract
AIM To review the clinical impact of machine perfusion (MP) of the liver on biliary complications post-transplantation, particularly ischaemic-type biliary lesions (ITBL).
METHODS This systematic review was performed in accordance with the Preferred Reporting Systematic Reviews and Meta-Analysis (PRISMA) protocol. The following databases were searched: PubMed, MEDLINE and Scopus. The keyword “liver transplantation” was used in combination with the free term “machine perfusion”. Clinical studies reporting results of transplantation of donor human livers following ex situ or in situ MP were analysed. Details relating to donor characteristics, recipients, technique of MP performed and post-operative biliary complications (ITBL, bile leak and anastomotic strictures) were critically analysed.
RESULTS Fifteen articles were considered to fit the criteria for this review. Ex situ normothermic MP was used in 6 studies, ex situ hypothermic MP in 5 studies and the other 4 studies investigated in situ normothermic regional perfusion (NRP) and controlled oxygenated rewarming. MP techniques which have per se the potential to alleviate ischaemia-reperfusion injury: Such as hypothermic MP and NRP, have also reported lower rates of ITBL. Other biliary complications, such as biliary leak and anastomotic biliary strictures, are reported with similar incidences with all MP techniques. There is currently less clinical evidence available to support normothermic MP as a mitigator of biliary complications following liver transplantation. On the other hand, restoration of organ to full metabolism during normothermic MP allows assessment of hepatobiliary function before transplantation, although universally accepted criteria have yet to be validated.
CONCLUSION MP of the liver has the potential to have a positive impact on post-transplant biliary complications, specifically ITBL, and expand extended criteria donor livers utilisation.
Collapse
Affiliation(s)
- Yuri L Boteon
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2WB, United Kingdom
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2 TT, United Kingdom
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TT, United Kingdom
| | - Amanda PCS Boteon
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2WB, United Kingdom
| | - Joseph Attard
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2WB, United Kingdom
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2 TT, United Kingdom
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TT, United Kingdom
| | - Lorraine Wallace
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2 TT, United Kingdom
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TT, United Kingdom
| | - Ricky H Bhogal
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2 TT, United Kingdom
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TT, United Kingdom
| | - Simon C Afford
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2 TT, United Kingdom
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
18
|
Matsui S, Harada K, Miyata N, Okochi H, Miyajima A, Tanaka M. Characterization of Peribiliary Gland–Constituting Cells Based on Differential Expression of Trophoblast Cell Surface Protein 2 in Biliary Tract. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2059-2073. [DOI: 10.1016/j.ajpath.2018.05.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/02/2018] [Accepted: 05/15/2018] [Indexed: 12/18/2022]
|
19
|
Nakagawa H, Hayata Y, Yamada T, Kawamura S, Suzuki N, Koike K. Peribiliary Glands as the Cellular Origin of Biliary Tract Cancer. Int J Mol Sci 2018; 19:ijms19061745. [PMID: 29895797 PMCID: PMC6032423 DOI: 10.3390/ijms19061745] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/08/2018] [Accepted: 06/10/2018] [Indexed: 12/12/2022] Open
Abstract
The identification of the cellular origin of cancer is important for our understanding of the mechanisms regulating carcinogenesis, thus the cellular origin of cholangiocarcinoma (CCA) is a current topic of interest. Although CCA has been considered to originate from biliary epithelial cells, recent studies have suggested that multiple cell types can develop into CCA. With regard to the hilar and extrahepatic bile ducts, peribiliary glands (PBGs), a potential stem cell niche of biliary epithelial cells, have attracted attention as the cellular origin of biliary tract cancer. Recent histopathological and experimental studies have suggested that some kinds of inflammation-induced CCA and intraductal papillary neoplasms of the bile duct are more likely to originate from PBGs. During inflammation-mediated cholangiocarcinogenesis, the biliary epithelial injury-induced regenerative response by PBGs is considered a key process. Thus, in this review, we discuss recent advances in our understanding of cholangiocarcinogenesis from the viewpoint of inflammation and the cellular origin of CCA, especially focusing on PBGs.
Collapse
Affiliation(s)
- Hayato Nakagawa
- Department of Gastroenterology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | - Yuki Hayata
- Department of Gastroenterology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | - Tomoharu Yamada
- Department of Gastroenterology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | - Satoshi Kawamura
- Department of Gastroenterology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | - Nobumi Suzuki
- Department of Gastroenterology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | - Kazuhiko Koike
- Department of Gastroenterology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| |
Collapse
|
20
|
Justin AW, Saeb-Parsy K, Markaki AE, Vallier L, Sampaziotis F. Advances in the generation of bioengineered bile ducts. Biochim Biophys Acta Mol Basis Dis 2017; 1864:1532-1538. [PMID: 29097260 DOI: 10.1016/j.bbadis.2017.10.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/25/2017] [Accepted: 10/26/2017] [Indexed: 12/17/2022]
Abstract
The generation of bioengineered biliary tissue could contribute to the management of some of the most impactful cholangiopathies associated with liver transplantation, such as biliary atresia or ischemic cholangiopathy. Recent advances in tissue engineering and in vitro cholangiocyte culture have made the achievement of this goal possible. Here we provide an overview of these developments and review the progress towards the generation and transplantation of bioengineered bile ducts. This article is part of a Special Issue entitled: Cholangiocytes in Health and Diseaseedited by Jesus Banales, Marco Marzioni and Peter Jansen.
Collapse
Affiliation(s)
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Athina E Markaki
- Department of Engineering, University of Cambridge, Cambridge, UK
| | - Ludovic Vallier
- Wellcome Trust-Medical Research Council Stem Cell Institute, Cambridge Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge, UK; Wellcome Trust Sanger Institute, Hinxton, UK; Department of Hepatology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Fotios Sampaziotis
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK; Wellcome Trust-Medical Research Council Stem Cell Institute, Cambridge Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge, UK; Department of Hepatology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| |
Collapse
|
21
|
de Jong IEM, van Leeuwen OB, Lisman T, Gouw ASH, Porte RJ. Repopulating the biliary tree from the peribiliary glands. Biochim Biophys Acta Mol Basis Dis 2017; 1864:1524-1531. [PMID: 28778591 DOI: 10.1016/j.bbadis.2017.07.037] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/21/2017] [Accepted: 07/31/2017] [Indexed: 12/13/2022]
Abstract
The larger ducts of the biliary tree contain numerous tubulo-alveolar adnexal glands that are lined with biliary epithelial cells and connected to the bile duct lumen via small glandular canals. Although these peribiliary glands (PBG) were already described in the 19th century, their exact function and role in the pathophysiology and development of cholangiopathies have not become evident until recently. While secretion of serous and mucinous components into the bile was long considered as the main function of PBG, recent studies have identified PBG as an important source for biliary epithelial cell proliferation and renewal. Activation, dilatation, and proliferation of PBG (or the lack thereof) have been associated with various cholangiopathies. Moreover, PBG have been identified as niches of multipotent stem/progenitor cells with endodermal lineage traits. This has sparked research interest in the role of PBG in the pathogenesis of various cholangiopathies as well as bile duct malignancies. Deeper understanding of the regenerative capacity of the PBG may contribute to the development of novel regenerative therapeutics for previously untreatable hepatobiliary diseases. This article is part of a Special Issue entitled: Cholangiocytes in Health and Disease edited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.
Collapse
Affiliation(s)
- Iris E M de Jong
- Surgical Research Laboratory, Department of Surgery, University of Groningen, University Medical Center Groningen, The Netherlands; Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Otto B van Leeuwen
- Surgical Research Laboratory, Department of Surgery, University of Groningen, University Medical Center Groningen, The Netherlands; Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Ton Lisman
- Surgical Research Laboratory, Department of Surgery, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Annette S H Gouw
- Department of Pathology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Robert J Porte
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, The Netherlands.
| |
Collapse
|
22
|
de Vries Y, von Meijenfeldt FA, Porte RJ. Post-transplant cholangiopathy: Classification, pathogenesis, and preventive strategies. Biochim Biophys Acta Mol Basis Dis 2017. [PMID: 28645651 DOI: 10.1016/j.bbadis.2017.06.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Biliary complications are the most frequent cause of morbidity, re-transplantation, and even mortality after liver transplantation. In general, biliary leakage and anastomotic and non-anastomotic biliary strictures (NAS) can be recognized. There is no consensus on the exact definition of NAS and different names and criteria have been used in literature. We propose to use the term post-transplant cholangiopathy for the spectrum of abnormalities of large donor bile ducts, that includes NAS, but also intraductal casts and intrahepatic biloma formation, in the presence of a patent hepatic artery. Combinations of these manifestations of cholangiopathy are not infrequently found in the same liver and ischemia-reperfusion injury is generally considered the common underlying mechanism. Other factors that contribute to post-transplant cholangiopathy are biliary injury due to bile salt toxicity and immune-mediated injury. This review provides an overview of the various types of post-transplant cholangiopathy, the presumed pathogenesis, clinical implications, and preventive strategies.
Collapse
Affiliation(s)
- Yvonne de Vries
- Surgical Research Laboratory, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Section of Hepatobiliary Surgery and Liver Transplantation, University of Groningen, Department of Surgery, University Medical Center Groningen, Groningen, The Netherlands
| | - Fien A von Meijenfeldt
- Surgical Research Laboratory, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Section of Hepatobiliary Surgery and Liver Transplantation, University of Groningen, Department of Surgery, University Medical Center Groningen, Groningen, The Netherlands
| | - Robert J Porte
- Section of Hepatobiliary Surgery and Liver Transplantation, University of Groningen, Department of Surgery, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
23
|
Roos FJM, Poley JW, Polak WG, Metselaar HJ. Biliary complications after liver transplantation; recent developments in etiology, diagnosis and endoscopic treatment. Best Pract Res Clin Gastroenterol 2017. [PMID: 28624111 DOI: 10.1016/j.bpg.2017.04.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biliary complications are considered to be the Achilles' heel of liver transplantation. The most common complications are leaks and bile duct strictures. Strictures can arise at the level of the anastomosis (anastomotic strictures; AS) or at other locations in the biliary tree (non-anastomotic strictures; NAS). Endoscopic treatment via endoscopic retrograde cholangiopancreatography (ERCP) is considered to be the preferred therapy for these complications. This review will focus on the diagnostic modalities, new insights in etiology of biliary complications and outcomes after different endoscopic therapies, in both deceased donor transplantation and living-donor liver transplantations. Advances in recent therapies, such as the use of self-expendable metal stents (SEMS) and endoscopic therapy for patients with a bilio-digestive anastomosis will be discussed.
Collapse
|
24
|
Peribiliary Gland Dilatation in Cirrhosis: Relationship with Liver Failure and Stem Cell/Proliferation Markers. Dig Dis Sci 2017; 62:699-707. [PMID: 28035548 DOI: 10.1007/s10620-016-4421-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 12/16/2016] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND AIMS Dilated peribiliary glands (PBG) in patients with cirrhosis are often an incidental finding although their significance and physiopathology remain unclear. We aimed to identify clinical factors associated with dilated PBG and to perform a detailed morphometric assessment of dilated PBG in cirrhotic patients undergoing liver transplantation (LT). METHODS All consecutive cirrhotic patients undergoing LT at our institution between October 2006 and October 2011 were assessed for inclusion. Ten non-cirrhotic patients were included as controls. We performed morphometrical assessment of PBG, assessed baseline clinical factors associated with dilated PBG, immunohistochemistry staining with CK-19, MiB-1 and EpCAM, and radiological assessment of all available cases. RESULTS Seventy-one patients met the inclusion criteria, 24% had PBG dilatation of >1000 µm. On multivariable analysis, MELD (OR 1.11 per unit increase in MELD, p = 0.004) was the only significant factor associated with dilated PBG. Compared to PBG < 1000 µm, large PBG had a higher proportion of EpCAM-positive (69 vs. 28%, p < 0.001) and MiB-1-positive lining cells (2.8 vs. 0.55%, p = 0.036). Computed tomography and magnetic resonance imaging had high specificity but low sensitivity for the diagnosis of dilated PBG > 1000 µm (specificity 90-100%, sensitivity 25-29%). CONCLUSIONS Dilated PBGs are a common finding in explants of cirrhotic subjects undergoing LT and are associated with liver failure although diagnostic performance of cross-sectional imaging is inconstant. The high number of proliferative and EpCAM-positive cells lining the PBG may suggest a role of PBG in organ repair during liver failure.
Collapse
|
25
|
Nakanuma Y, Miyata T, Uchida T. Latest advances in the pathological understanding of cholangiocarcinomas. Expert Rev Gastroenterol Hepatol 2016; 10:113-27. [PMID: 26492529 DOI: 10.1586/17474124.2016.1104246] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cholangiocarcinomas (CCAs) are anatomically classified into intrahepatic, perihilar, and distal types. The gross pathological classification of intrahepatic CCAs divides them into mass-forming, periductal-infiltrating, and intraductal-growth types; and perihilar/distal CCAs into flat- and nodular-infiltrating and papillary types. Unique preinvasive lesions appear to precede individual gross types of CCA. Biliary intraepithelial neoplasia, a flat lesion, precedes periductal-, flat-, and nodular-infiltrating CCAs, whereas intraductal papillary neoplasm of the bile duct (IPNB) precedes the intraductal-growth and papillary type of CCAs. IPNBs are heterogeneous in their histological and pathological profiles along the biliary tree. Hepatobiliary cystadenomas/adenocarcinomas are reclassified as cystic IPNBs and hepatic mucinous cystic neoplasms. Peribiliary glands may participate in the development of CCAs. These latest findings present a new challenge for understanding the pathology of CCAs.
Collapse
Affiliation(s)
- Yasuni Nakanuma
- a Department of Diagnostic Pathology , Shizuoka Cancer Center , Shizuoka , Japan
| | - Takashi Miyata
- a Department of Diagnostic Pathology , Shizuoka Cancer Center , Shizuoka , Japan.,b Department of Hepatobiliary Pancreatic Surgery , Shizuoka Cancer Center , Shizuoka , Japan
| | - Tsuneyuki Uchida
- a Department of Diagnostic Pathology , Shizuoka Cancer Center , Shizuoka , Japan.,b Department of Hepatobiliary Pancreatic Surgery , Shizuoka Cancer Center , Shizuoka , Japan
| |
Collapse
|
26
|
Hessheimer AJ, Cárdenas A, García-Valdecasas JC, Fondevila C. Can we prevent ischemic-type biliary lesions in donation after circulatory determination of death liver transplantation? Liver Transpl 2016; 22:1025-33. [PMID: 27082839 DOI: 10.1002/lt.24460] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/02/2016] [Indexed: 12/23/2022]
Abstract
The pool of livers for transplantation consists of an increasingly greater proportion of marginal grafts, in particular those arising through donation after circulatory determination of death (DCD). However, a primary factor limiting the use of marginal livers, and, thereby, the applicability of liver transplantation in general, is concern over the subsequent development of ischemic-type biliary lesion (ITBL). ITBL is a devastating complication of liver transplantation; in its most severe forms, recipients suffer frequent infectious complications that require repeated invasive biliary procedures and ultimately result in either retransplantation or death. In the present review article, we discuss our current understanding of ITBL pathogenesis as it pertains to DCD, in particular. We discuss the most relevant theories regarding its development and provide a comprehensive overview of the most promising strategies we have available today to prevent the appearance of ITBL, strategies that may, furthermore, allow us to transplant a greater proportion of marginal livers in the future. Liver Transplantation 22 1025-1033 2016 AASLD.
Collapse
Affiliation(s)
- Amelia J Hessheimer
- General and Digestive Surgery and, University of Barcelona, Barcelona, Spain
| | - Andrés Cárdenas
- Gastrointestinal/Liver Unit, Institut de Malalties Digestives i Metabòliques, Hospital Clínic, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | | | | |
Collapse
|
27
|
Nassar A, Liu Q, Farias K, Buccini L, Baldwin W, Bennett A, Mangino M, Irefin S, Cywinski J, Okamoto T, Diago Uso T, Iuppa G, Soliman B, Miller C, Quintini C. Impact of Temperature on Porcine Liver Machine Perfusion From Donors After Cardiac Death. Artif Organs 2016; 40:999-1008. [PMID: 27086771 DOI: 10.1111/aor.12699] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 12/22/2015] [Accepted: 12/28/2015] [Indexed: 12/11/2022]
Abstract
Normothermic machine perfusion (NMP) has been introduced as a promising technology to preserve and possibly repair marginal liver grafts. The aim of this study was to compare the effect of temperature on the preservation of donation after cardiac death (DCD) liver grafts in an ex vivo perfusion model after NMP (38.5°C) and subnormothermic machine perfusion (SNMP, 21°C) with a control group preserved by cold storage (CS, 4°C). Fifteen porcine livers with 60 min of warm ischemia were preserved for 10 h by NMP, SNMP or CS (n = 5/group). After the preservation phase all livers were reperfused for 24 h in an isolated perfusion system with whole blood at 38.5°C to simulate transplantation. At the end of transplant simulation, the NMP group showed significantly lower hepatocellular enzyme level (AST: 277 ± 69 U/L; ALT: 22 ± 2 U/L; P < 0.03) compared to both SNMP (AST: 3243 ± 1048 U/L; ALT: 127 ± 70 U/L) and CS (AST: 3150 ± 1546 U/L; ALT: 185 ± 97 U/L). There was no significant difference between SNMP and CS. Bile production was significantly higher in the NMP group (219 ± 43 mL; P < 0.01) compared to both SNMP (49 ± 84 mL) and CS (12 ± 16 mL) with no significant difference between the latter two groups. Histologically, the NMP livers showed preserved cellular architecture compared to the SNMP and CS groups. NMP was able to recover DCD livers showing superior hepatocellular integrity, biliary function, and microcirculation compared to SNMP and CS. SNMP showed some significant benefit over CS, yet has not shown any advantage over NMP.
Collapse
Affiliation(s)
- Ahmed Nassar
- Transplantation Center, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Qiang Liu
- Transplantation Center, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Kevin Farias
- Transplantation Center, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Laura Buccini
- Transplantation Center, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - William Baldwin
- Transplantation Center, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Ana Bennett
- Transplantation Center, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Martin Mangino
- Department of Surgery, Virginia Commonwealth University, Richmond, VA, USA
| | - Samuel Irefin
- Transplantation Center, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Jacek Cywinski
- Transplantation Center, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Toshihiro Okamoto
- Transplantation Center, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Teresa Diago Uso
- Transplantation Center, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Giuseppe Iuppa
- Transplantation Center, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Basem Soliman
- Transplantation Center, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Charles Miller
- Transplantation Center, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Cristiano Quintini
- Transplantation Center, Cleveland Clinic Foundation, Cleveland, OH, USA.
| |
Collapse
|
28
|
Liu Q, Nassar A, Farias K, Buccini L, Mangino MJ, Baldwin W, Bennett A, O'Rourke C, Iuppa G, Soliman BG, Urcuyo-Llanes D, Okamoto T, Uso TD, Fung J, Abu-Elmagd K, Miller C, Quintini C. Comparing Normothermic Machine Perfusion Preservation With Different Perfusates on Porcine Livers From Donors After Circulatory Death. Am J Transplant 2016; 16:794-807. [PMID: 26663737 DOI: 10.1111/ajt.13546] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/08/2015] [Accepted: 09/25/2015] [Indexed: 01/25/2023]
Abstract
The utilization of normothermic machine perfusion (NMP) may be an effective strategy to resuscitate livers from donation after circulatory death (DCD). There is no consensus regarding the efficacy of different perfusates on graft and bile duct viability. The aim of this study was to compare, in an NMP porcine DCD model, the preservation potential of three different perfusates. Twenty porcine livers with 60 min of warm ischemia were separated into four preservation groups: cold storage (CS), NMP with Steen solution (Steen; XVIVO Perfusion Inc., Denver, CO), Steen plus red blood cells (RBCs), or whole blood (WB). All livers were preserved for 10 h and reperfused to simulate transplantation for 24 h. During preservation, the NMP with Steen group presented the highest hepatocellular injury. At reperfusion, the CS group had the lowest bile production and the worst hepatocellular injury compared with all other groups, followed by NMP with Steen; the Steen plus RBC and WB groups presented the best functional and hepatocellular injury outcomes, with WB livers showing lower aspartate aminotransferase release and a trend toward better results for most parameters. Based on our results, a perfusate that contains an oxygen carrier is most effective in a model of NMP porcine DCD livers compared with Steen solution. Specifically, WB-perfused livers showed a trend toward better outcomes compared with Steen plus RBCs.
Collapse
Affiliation(s)
- Q Liu
- Cleveland Clinic, Cleveland, OH
| | | | | | | | - M J Mangino
- Virginia Commonwealth University, Richmond, VA
| | | | | | | | - G Iuppa
- Cleveland Clinic, Cleveland, OH
| | | | | | | | - T D Uso
- Cleveland Clinic, Cleveland, OH
| | - J Fung
- Cleveland Clinic, Cleveland, OH
| | | | | | | |
Collapse
|
29
|
Stem/Progenitor Cell Niches Involved in Hepatic and Biliary Regeneration. Stem Cells Int 2016; 2016:3658013. [PMID: 26880956 PMCID: PMC4737003 DOI: 10.1155/2016/3658013] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 11/16/2015] [Accepted: 11/23/2015] [Indexed: 12/28/2022] Open
Abstract
Niches containing stem/progenitor cells are present in different anatomical locations along the human biliary tree and within liver acini. The most primitive stem/progenitors, biliary tree stem/progenitor cells (BTSCs), reside within peribiliary glands located throughout large extrahepatic and intrahepatic bile ducts. BTSCs are multipotent and can differentiate towards hepatic and pancreatic cell fates. These niches' matrix chemistry and other characteristics are undefined. Canals of Hering (bile ductules) are found periportally and contain hepatic stem/progenitor cells (HpSCs), participating in the renewal of small intrahepatic bile ducts and being precursors to hepatocytes and cholangiocytes. The niches also contain precursors to hepatic stellate cells and endothelia, macrophages, and have a matrix chemistry rich in hyaluronans, minimally sulfated proteoglycans, fetal collagens, and laminin. The microenvironment furnishes key signals driving HpSC activation and differentiation. Newly discovered third niches are pericentral within hepatic acini, contain Axin2+ unipotent hepatocytic progenitors linked on their lateral borders to endothelia forming the central vein, and contribute to normal turnover of mature hepatocytes. Their relationship to the other stem/progenitors is undefined. Stem/progenitor niches have important implications in regenerative medicine for the liver and biliary tree and in pathogenic processes leading to diseases of these tissues.
Collapse
|
30
|
Spetzler VN, Goldaracena N, Echiverri J, Kaths JM, Louis KS, Adeyi OA, Yip PM, Grant DR, Selzner N, Selzner M. Subnormothermic ex vivo liver perfusion is a safe alternative to cold static storage for preserving standard criteria grafts. Liver Transpl 2016; 22:111-9. [PMID: 26390093 DOI: 10.1002/lt.24340] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 08/01/2015] [Accepted: 09/01/2015] [Indexed: 02/07/2023]
Abstract
We developed a novel technique of subnormothermic ex vivo liver perfusion (SNEVLP) for the storage of liver grafts before transplantation. To test the safety of SNEVLP for the nonextended criteria grafts (standard grafts), we compared it to a control group with minimal cold static storage (CS) time. Heart-beating pig liver retrieval was performed. Grafts were either stored in cold unmodified University of Wisconsin solution (CS-1), in cold University of Wisconsin solution with ex vivo perfusion additives (CS-2), or preserved with a sequence of 3 hours CS and 3 hours SNEVLP (33°C), followed by orthotopic liver transplantation. Liver function tests and histology were investigated. Aspartate aminotransferase (AST) levels during SNEVLP remained stable (54.3 ± 12.6 U/L at 1 hour to 47.0 ± 31.9 U/L at 3 hours). Posttransplantation, SNEVLP versus CS-1 livers had decreased AST levels (peak at day 1, 1081.9 ± 788.5 versus 1546.7 ± 509.3 U/L; P = 0.14; at day 2, 316.7 ± 188.1 versus 948.2 ± 740.9 U/L; P = 0.04) and alkaline phosphatase levels (peak at day 1, 150.4 ± 19.3 versus 203.7 ± 33.6 U/L; P = 0.003). Bilirubin levels were constantly within the physiological range in the SNEVLP group, whereas the CS-1 group presented a large standard deviation, including pathologically increased values. Hyaluronic acid as a marker of endothelial cell (EC) function was markedly improved by SNEVLP during the early posttransplant phase (5 hours posttransplant, 1172.75 ± 598.5 versus 5540.5 ± 2755.4 ng/mL). Peak international normalized ratio was similar between SNEVLP and CS-1 groups after transplantation. Immunohistochemistry for cleaved caspase 3 demonstrated more apoptotic sinusoidal cells in the CS-1 group when compared to SNEVLP grafts 2 hours after reperfusion (19.4 ± 19.5 versus 133.2 ± 48.8 cells/high-power field; P = 0.002). Adding normothermic CS-2 had no impact on liver injury or function after transplantation when compared to CS-1. In conclusion, SNEVLP is safe to use for standard donor grafts and is associated with improved EC and bile duct injury even in grafts with minimal CS time.
Collapse
Affiliation(s)
- Vinzent N Spetzler
- Multi-Organ Transplant Program, Department of Surgery, Toronto General Hospital, Toronto, Ontario, Canada
| | - Nicolas Goldaracena
- Multi-Organ Transplant Program, Department of Surgery, Toronto General Hospital, Toronto, Ontario, Canada
| | - Juan Echiverri
- Multi-Organ Transplant Program, Department of Surgery, Toronto General Hospital, Toronto, Ontario, Canada
| | - J Moritz Kaths
- Multi-Organ Transplant Program, Department of Surgery, Toronto General Hospital, Toronto, Ontario, Canada
| | - Kristine S Louis
- Multi-Organ Transplant Program, Department of Surgery, Toronto General Hospital, Toronto, Ontario, Canada
| | - Oyedele A Adeyi
- Departments of Pathology, University of Toronto, Toronto, Ontario, Canada
| | - Paul M Yip
- Departments of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - David R Grant
- Multi-Organ Transplant Program, Department of Surgery, Toronto General Hospital, Toronto, Ontario, Canada
| | - Nazia Selzner
- Departments of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Markus Selzner
- Multi-Organ Transplant Program, Department of Surgery, Toronto General Hospital, Toronto, Ontario, Canada
| |
Collapse
|
31
|
Activation of biliary tree stem cells within peribiliary glands in primary sclerosing cholangitis. J Hepatol 2015; 63:1220-8. [PMID: 26119688 DOI: 10.1016/j.jhep.2015.06.018] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 06/08/2015] [Accepted: 06/19/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Primary sclerosing cholangitis (PSC) is characterised by fibro-stenosing strictures involving extrahepatic and/or large intrahepatic bile ducts. Mechanisms leading to bile duct injury are poorly understood. We aimed to study the biliary tree stem cell compartment located in peribiliary glands of extrahepatic and large intrahepatic bile ducts and its role in the pathogenesis of biliary fibrosis in PSC. METHODS Specimens containing extrahepatic or large intrahepatic bile ducts were obtained from normal liver (n=6), liver explants from patients with PSC (n=11), and primary biliary cirrhosis (n=6). Specimens were processed for histology, immunohistochemistry and immunofluorescence. RESULTS In PSC samples, progressive hyperplasia and mucinous metaplasia of peribiliary glands were observed in large ducts with fibrosis, but not in inflamed ducts without fibrosis. Peribiliary gland hyperplasia was associated with progressive biliary fibrosis and the occurrence of dysplastic lesions. Hyperplasia of peribiliary glands was determined by the expansion of biliary tree stem cells, which sprouted towards the surface epithelium. In PSC, peribiliary glands and myofibroblasts displayed enhanced expression of Hedgehog pathway components. Peribiliary glands in ducts with onion skin-like fibrosis expressed epithelial-to-mesenchymal transition traits associated with components of Hedgehog pathway, markers of senescence and autophagy. CONCLUSIONS The biliary tree stem cell compartment is activated in PSC, its activation contributes to biliary fibrosis, and is sustained by the Hedgehog pathway. Our findings suggest a key role for peribiliary glands in the progression of bile duct lesions in PSC and could explain the associated high risk of cholangiocarcinoma.
Collapse
|
32
|
Weeder PD, van Rijn R, Porte RJ. Machine perfusion in liver transplantation as a tool to prevent non-anastomotic biliary strictures: Rationale, current evidence and future directions. J Hepatol 2015; 63:265-75. [PMID: 25770660 DOI: 10.1016/j.jhep.2015.03.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 02/25/2015] [Accepted: 03/02/2015] [Indexed: 02/08/2023]
Abstract
The high incidence of non-anastomotic biliary strictures (NAS) after transplantation of livers from extended criteria donors is currently a major barrier to widespread use of these organs. This review provides an update on the most recent advances in the understanding of the etiology of NAS. These new insights give reason to believe that machine perfusion can reduce the incidence of NAS after transplantation by providing more protective effects on the biliary tree during preservation of the donor liver. An overview is presented regarding the different endpoints that have been used for assessment of biliary injury and function before and after transplantation, emphasizing on methods used during machine perfusion. The wide spectrum of different approaches to machine perfusion is discussed, including the many different combinations of techniques, temperatures and perfusates at varying time points. In addition, the current understanding of the effect of machine perfusion in relation to biliary injury is reviewed. Finally, we explore directions for future research such as the application of (pharmacological) strategies during machine perfusion to further improve preservation. We stress the great potential of machine perfusion to possibly expand the donor pool by reducing the incidence of NAS in extended criteria organs.
Collapse
Affiliation(s)
- Pepijn D Weeder
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Rianne van Rijn
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Robert J Porte
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
33
|
Hall MK, Mirjalili SA, Moore CL, Rizzolo LJ. The student's dilemma, liver edition: incorporating the sonographer's language into clinical anatomy education. ANATOMICAL SCIENCES EDUCATION 2015; 8:283-288. [PMID: 25573229 DOI: 10.1002/ase.1518] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 12/02/2014] [Accepted: 12/22/2014] [Indexed: 06/04/2023]
Abstract
Anatomy students are often confused by multiple names ascribed to the same structure by different clinical disciplines. Increasingly, sonography is being incorporated into clinical anatomical education, but ultrasound textbooks often use names unfamiliar to the anatomist. Confusion is worsened when ultrasound names ascribed to the same structure actually refer to different structures. Consider the sonographic main lobar fissure (MLF). The sonographic MLF is a hyper-echoic landmark used by sonographers of the right upper quadrant. Found in approximately 70% of people, there is little consensus on what the sonographic MLF is anatomically. This structure appears to be related to the main portal fissure (aka principal plane of the liver or principal hepatic fissure), initially described by anatomists and surgeons as in intrahepatic division along the middle hepatic vein which in essence divides the territories of the left and right hepatic arteries and biliary systems. By exploring the relationship between the main portal fissure and the sonographic MLF in cadaveric livers ex vivo, the data suggest the sonographic MLF is actually an extrahepatic structure that parallels the rim of the main portal fissure. The authors recommend that this structure be renamed the "sonographic cystic pedicle," which includes the cystic duct and ensheathing fat and blood vessels. In the context of the redefined underlying anatomy, the absence of the sonographic cystic pedicle due to anatomic variation may serve an important clinical role in predicting complications from difficult laparoscopic cholecystectomies and is deserving of future study.
Collapse
Affiliation(s)
- M Kennedy Hall
- Department of Emergency Medicine, Yale University, School of Medicine, New Haven, Connecticut
| | | | | | | |
Collapse
|
34
|
Tao L, Li Q, Ren H, Chen B, Hou X, Mou L, Zhou S, Zhou J, Sun X, Dai J, Ding Y. Repair of extrahepatic bile duct defect using a collagen patch in a Swine model. Artif Organs 2015; 39:352-360. [PMID: 25345752 DOI: 10.1111/aor.12388] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Extrahepatic bile duct (EBD) injury can happen during surgery. To repair a defect of the EBD and prevent postoperative biliary complications, a collagen membrane was designed. The collagen material was porous, biocompatible, and degradable and could maintain its shape in bile soaking for about 4 weeks. The goal was to induce rapid bile duct tissue regeneration. Twenty Chinese experimental hybrid pigs were used in this study and divided into a patch group and a control group. A spindle-shaped defect (20 mm × 6 mm) was made in the anterior wall of the lower EBD in the swine model, and then the defect was reconstructed using a collagen patch with a drainage tube and wrapped with greater omentum. Ultrasound was performed at 2, 4, 8, and 12 weeks postoperatively. Liver function tests and white blood cell count (WBC) were measured. Hematoxylin-eosin staining, cytokeratin 7 immunohistochemical staining, and Van Gieson's staining of EBD were used. The diameter and thickness of the EBD at the graft site were measured. There was no significant difference in liver function tests or WBC in the patch group compared with the control group. No evidence of leakage or stricture was observed, but some pigs developed biliary sludge or stone at 4 and 8 weeks. The drainage tube was lost within 12 weeks. The neo-EBD could withstand normal biliary pressure 2 weeks after surgery. Histological study showed the accessory glands and epithelial cells gradually regenerated at graft sites from 4 weeks, with increasing vessel infiltration and decreasing inflammation. The collagen fibers became regular with full coverage of epithelial cells. The statistical analysis of diameter and thickness showed no stricture formation at the graft site, but the EBD wall was slightly thicker than in the normal bile duct due to collagen fiber deposition. The structure of the neo-EBD was similar to that of the normal EBD. The collagen membrane patch associated with a drainage tube and wrapped with greater omentum effectively induced the regeneration of the EBD defect within 12 weeks.
Collapse
Affiliation(s)
- Liang Tao
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
|
36
|
Verhoeven CJ, Farid WRR, de Jonge J, Metselaar HJ, Kazemier G, van der Laan LJW. Biomarkers to assess graft quality during conventional and machine preservation in liver transplantation. J Hepatol 2014; 61:672-84. [PMID: 24798616 DOI: 10.1016/j.jhep.2014.04.031] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 04/11/2014] [Accepted: 04/24/2014] [Indexed: 02/08/2023]
Abstract
A global rising organ shortage necessitates the use of extended criteria donors (ECD) for liver transplantation (LT). However, poor preservation and extensive ischemic injury of ECD grafts have been recognized as important factors associated with primary non-function, early allograft dysfunction, and biliary complications after LT. In order to prevent for these ischemia-related complications, machine perfusion (MP) has gained interest as a technique to optimize preservation of grafts and to provide the opportunity to assess graft quality by screening for extensive ischemic injury. For this purpose, however, objective surrogate biomarkers are required which can be easily determined at time of graft preservation and the various techniques of MP. This review provides an overview and evaluation of biomarkers that have been investigated for the assessment of graft quality and viability testing during different types of MP. Moreover, studies regarding conventional graft preservation by static cold storage (SCS) were screened to identify biomarkers that correlated with either allograft dysfunction or biliary complications after LT and which could potentially be applied as predictive markers during MP. The pros and cons of the different biomaterials that are available for biomarker research during graft preservation are discussed, accompanied with suggestions for future research. Though many studies are currently still in the experimental setting or of low evidence level due to small cohort sizes, the biomarkers presented in this review provide a useful handle to monitor recovery of ECD grafts during clinical MP in the near future.
Collapse
Affiliation(s)
- Cornelia J Verhoeven
- Department of Surgery, Erasmus MC - University Medical Center, Rotterdam, The Netherlands
| | - Waqar R R Farid
- Department of Surgery, Erasmus MC - University Medical Center, Rotterdam, The Netherlands
| | - Jeroen de Jonge
- Department of Surgery, Erasmus MC - University Medical Center, Rotterdam, The Netherlands
| | - Herold J Metselaar
- Department of Gastroenterology & Hepatology, Erasmus MC - University Medical Center, Rotterdam, The Netherlands.
| | - Geert Kazemier
- Department of Surgery, VU University Medical Center Amsterdam, The Netherlands
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC - University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
37
|
Terada T. Huge clusters of embryonic stem cells in human embryos: a morphologic study. Microsc Res Tech 2014; 77:825-31. [PMID: 25091607 DOI: 10.1002/jemt.22405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 06/22/2014] [Indexed: 12/28/2022]
Abstract
BACKGROUND Nothing is known about huge clusters (HC) of embryonic stem cells (ESC) in human fetal organs (HFO). AIM To know the status of HC-ESC in HFO. METHODS Morphology and immunohistochemistry (IHC) in 32 HFO of 7-40 gestational weeks (GW). RESULTS HC-ESC were seen in many HFO including central nervous system, spinal cords, spine, soft tissue, bone, skin, thyroid, lung, liver, pancreas, gall bladder, extrahepatic bile duct, adrenal, kidney, bladder, foregut, midgut, hindgut, female and male genital organs, and neurons. HC-ESC's were composed of two populations depending on constituting cells. One were large cells with ample acidophilic cytoplasms with vesicular nuclei and nucleoli. The other were small cells with scant cytoplasm with hyperchromatic nuclei without nucleoli, resembling lymphocytes. The HC-ESC were frequently showed neuronal differentiation. HC-ESC were positive for NCAM, synaptophysin, NSE, chromogranin, PDGFRA, AFP, ErbB2, bcl-2, KIT, MET. They were negative for CD45, CD3, CD20, EMA, CEA, CA19-9, cytokeratin (CK) 7, CK8, CK18, CK19, MUC1, MUC2, MUC5AC, and MUC6. The mean Ki-67 labeling index (LI) was 13% ± 7%. HC-ESC showed a little glycogen but lacked mucins. These HC-ESC were seen in 7-25 GW, and they were rarely seen in 26-40 GW. CONCLUSIONS The morphology, IHC, and ontogeny of HC-ESC were described.
Collapse
Affiliation(s)
- Tadashi Terada
- Department of Pathology, Shizuoka City Shimizu Hospital, Shizuoka, Japan
| |
Collapse
|
38
|
Liu Q, Nassar A, Farias K, Buccini L, Baldwin W, Mangino M, Bennett A, O'Rourke C, Okamoto T, Uso TD, Fung J, Abu-Elmagd K, Miller C, Quintini C. Sanguineous normothermic machine perfusion improves hemodynamics and biliary epithelial regeneration in donation after cardiac death porcine livers. Liver Transpl 2014; 20:987-99. [PMID: 24805852 PMCID: PMC4117809 DOI: 10.1002/lt.23906] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 04/26/2014] [Indexed: 12/31/2022]
Abstract
The effects of normothermic machine perfusion (NMP) on the postreperfusion hemodynamics and extrahepatic biliary duct histology of donation after cardiac death (DCD) livers after transplantation have not been addressed thoroughly and represent the objective of this study. Ten livers (5 per group) with 60 minutes of warm ischemia were preserved via cold storage (CS) or sanguineous NMP for 10 hours, and then they were reperfused for 24 hours with whole blood in an isolated perfusion system to simulate transplantation. In our experiment, the arterial and portal vein flows were stable in the NMP group during the entire reperfusion simulation, whereas they decreased dramatically in the CS group after 16 hours of reperfusion (P < 0.05); these findings were consistent with severe parenchymal injury. Similarly, significant differences existed between the CS and NMP groups with respect to the release of hepatocellular enzymes, the volume of bile produced, and the levels of enzymes released into bile (P < 0.05). According to histology, CS livers presented with diffuse hepatocyte congestion, necrosis, intraparenchymal hemorrhaging, denudated biliary epithelium, and submucosal bile duct necrosis, whereas NMP livers showed very mild injury to the liver parenchyma and biliary architecture. Most importantly, Ki-67 staining in extrahepatic bile ducts showed biliary epithelial regeneration. In conclusion, our findings advance the knowledge of the postreperfusion events that characterize DCD livers and suggest NMP as a beneficial preservation modality that is able to improve biliary regeneration after a major ischemic event and may prevent the development of ischemic cholangiopathy in the setting of clinical transplantation.
Collapse
|
39
|
Abstract
The intra and extrahepatic bile ducts of the liver are developmentally distinct, and may be differentially affected by certain diseases. However, differences between intra and extrahepatic cholangiocytes, and between neonatal and adult cells, are not well understood. Methods for the isolation of cholangiocytes from intrahepatic bile ducts are well established(1-4). Isolation of extrahepatic ductal cells, especially from the neonate, has not yet been described, although this would be of great benefit in understanding the differences between distinct cholangiocyte populations and in studying diseases such as biliary atresia that appear to target the extrahepatic ducts. Described here is an optimized technique to isolate both neonatal and adult mouse extrahepatic bile duct cells. This technique yields a pure cell population with minimal contamination from mesenchymal cells like fibroblasts. This method is based on the removal of the extrahepatic ducts and gallbladder, followed by meticulous dissection and scraping to remove fat and fibroblast layers. Structures are embedded in thick layers of collagen and cultured for approximately 3 weeks to allow outgrowth of cholangiocytes in monolayers, which can then be trypsinized and re plated for experimental use.
Collapse
Affiliation(s)
- Sara Karjoo
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia
| | - Rebecca G Wells
- Department of Medicine, The Perelman School of Medicine at the University of Pennsylvania;
| |
Collapse
|
40
|
op den Dries S, Westerkamp AC, Karimian N, Gouw ASH, Bruinsma BG, Markmann JF, Lisman T, Yeh H, Uygun K, Martins PN, Porte RJ. Injury to peribiliary glands and vascular plexus before liver transplantation predicts formation of non-anastomotic biliary strictures. J Hepatol 2014; 60:1172-9. [PMID: 24560661 DOI: 10.1016/j.jhep.2014.02.010] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 01/19/2014] [Accepted: 02/04/2014] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS The peribiliary glands of large bile ducts have been identified as a niche of progenitor cells that contribute to regeneration of biliary epithelium after injury. We aimed to determine whether injury to the peribiliary glands of donor livers is a risk factor for development of non-anastomotic biliary strictures (NAS) after liver transplantation. METHODS In 128 liver transplant procedures, biopsies were taken from the donor bile duct and injury was assessed using an established histological grading system. Histological severity of injury was subsequently compared in liver grafts that later developed biliary structures vs. uncomplicated liver grafts. RESULTS Luminal biliary epithelial loss >50% was observed in 91.8% of the grafts before transplantation, yet NAS occurred in only 16.4%. Periluminal peribiliary glands were more severely injured than deep peribiliary glands located near the fibromuscular layer (>50% loss in 56.9% vs. 17.5%, respectively; p<0.001). Injury of deep peribiliary glands was more prevalent and more severe in livers that later developed NAS, compared to grafts without NAS (>50% loss in 50.0% vs. 9.8%, respectively; p=0.004). In parallel, injury of the peribiliary vascular plexus was more severe in livers that developed NAS, compared to grafts without NAS (>50% vascular changes in 57.1% vs. 20.3%; p=0.006). CONCLUSION Injury of peribiliary glands and vascular plexus before transplantation is strongly associated with the occurrence of biliary strictures after transplantation. This suggests that insufficient regeneration due to loss of peribiliary glands or impaired blood supply may explain the development of biliary strictures.
Collapse
Affiliation(s)
- Sanna op den Dries
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Andrie C Westerkamp
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Negin Karimian
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Annette S H Gouw
- Department of Pathology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Bote G Bruinsma
- Center for Engineering in Medicine/Surgical Services, Massachusetts General Hospital, Harvard Medical School, and Shriners Burns Hospital, Boston, MA, United States
| | - James F Markmann
- Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Ton Lisman
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Heidi Yeh
- Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Korkut Uygun
- Center for Engineering in Medicine/Surgical Services, Massachusetts General Hospital, Harvard Medical School, and Shriners Burns Hospital, Boston, MA, United States
| | - Paulo N Martins
- Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Robert J Porte
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
41
|
Sato Y, Harada K, Sasaki M, Nakanuma Y. Cystic and micropapillary epithelial changes of peribiliary glands might represent a precursor lesion of biliary epithelial neoplasms. Virchows Arch 2014; 464:157-63. [PMID: 24458517 DOI: 10.1007/s00428-014-1537-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 12/18/2013] [Accepted: 01/02/2014] [Indexed: 12/18/2022]
Abstract
A tumorigenic role of peribiliary glands (PBGs) has been suggested recently. This study was performed to clarify the histological characteristics of PBGs showing cystic and micropapillary epithelial changes. From histological sections of a total of 938 autopsy livers, cases with cystic and micropapillary changes of the epithelial cells of intrahepatic PBGs were collected. PBGs with cystic change that lacked micropapillary epithelial changes were referred to as cystic lesion. Mucin staining and immunohistochemical analysis were performed, and the results were compared between cystic and micropapillary (C-P) lesions and cystic lesions. C-P and cystic lesions were observed in 9 (1 %) and 40 (4 %) , respectively. The atypia of micropapillary epithelium was usually mild, but in a single case, invasive adenocarcinoma accompanied a C-P lesion. Abundant mucin expression was observed in all cases of C-P lesion, which was similar to mucinous acini of normal PBGs rather than serous acini. Immunohistochemical analysis showed that MUC5AC was more frequently expressed in C-P lesions than in cystic lesions. Immunohistochemical expression of cyclin D1 and S100P was characteristically found in C-P lesions. Mean Ki-67 labeling index of C-P lesions was significantly higher than that of cystic lesions. The immunoprofile of C-P lesions was similar to that of the branch-type intraductal papillary mucinous neoplasm of the pancreas. These results suggest that C-P lesions may have neoplastic features and might represent a precursor of biliary epithelial neoplasms, including branch-type intraductal papillary neoplasm of the bile duct as well as mucin-producing cholangiocarcinoma, a concept that we have recently proposed.
Collapse
Affiliation(s)
- Yasunori Sato
- Department of Human Pathology, Kanazawa University Graduate School of Medicine, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
| | | | | | | |
Collapse
|
42
|
Arterbery AS, Bogue CW. Endodermal and mesenchymal cross talk: a crossroad for the maturation of foregut organs. Pediatr Res 2014; 75:120-6. [PMID: 24192700 DOI: 10.1038/pr.2013.201] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 08/27/2013] [Indexed: 01/30/2023]
Abstract
The developmental stages of each foregut organ are intimately linked to the development of the other foregut organs such that the ultimate function of any one foregut organ, such as the metabolic function of the liver, depends on organizational changes associated with the maturation of multiple foregut organs. These changes include: (i) proliferation of the intrahepatic bile ducts and hepatoblasts within the liver coinciding with parenchymal expansion, (ii) elongation of extrahepatic bile ducts, which allows for proper gallbladder (GB) formation, and (iii) duodenal elongation and rotation, which coincides with all of the above to connect the intrahepatic, extrahepatic, and pancreatic ductal systems with the intestine. It is well established that cross talk between endodermal and mesenchymal components of the foregut occurs, particularly regarding the vascularization of developing organs. Furthermore, genetic mutations in mesenchymal and hepatic compartments of the developing foregut result in similar foregut pathologies: hypoplastic liver, absence of GB, biliary atresia (intrahepatic and/or extrahepatic), and failure of gut elongation and rotation. Finally, these shared pathologies can be linked to deficiencies in genes specific to the septum transversum mesenchyme (Hes1, Hlx, and Foxf1) or liver (Hhex and Hnf6), illustrating the complexity of such cross talk.
Collapse
Affiliation(s)
- Adam S Arterbery
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut
| | - Clifford W Bogue
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
43
|
DiPaola F, Shivakumar P, Pfister J, Walters S, Sabla G, Bezerra JA. Identification of intramural epithelial networks linked to peribiliary glands that express progenitor cell markers and proliferate after injury in mice. Hepatology 2013; 58:1486-1496. [PMID: 23703727 PMCID: PMC4067037 DOI: 10.1002/hep.26485] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 04/18/2013] [Indexed: 12/28/2022]
Abstract
UNLABELLED Peribiliary glands (PBGs) are clusters of epithelial cells residing in the submucosal compartment of extrahepatic bile ducts (EHBDs). Though their function is largely undefined, they may represent a stem cell niche. Here, we hypothesized that PBGs are populated by mature and undifferentiated cells capable of proliferation in pathological states. To address this hypothesis, we developed a novel whole-mount immunostaining assay that preserves the anatomical integrity of EHBDs coupled with confocal microscopy and found that PBGs populate the entire length of the extrahepatic biliary tract, except the gallbladder. Notably, in addition to the typical position of PBGs adjacent to the duct mucosa, PBGs elongate and form intricate intramural epithelial networks that communicate between different segments of the bile duct mucosa. Network formation begins where the cystic duct combines with hepatic ducts to form the common bile duct (CBD) and continues along the CBD. Cells of PBGs and the peribiliary network stain positively for α-tubulin, mucins, and chromogranin A, as well as for endoderm transcription factors SRY (sex determining region Y)-box 17 and pancreatic and duodenal homeobox 1, and proliferate robustly subsequent to duct injury induced by virus infection and bile duct ligation. CONCLUSION PBGs form elaborate epithelial networks within the walls of EHBDs, contain cells of mature and immature phenotypes, and proliferate in response to bile duct injury. The anatomical organization of the epithelial network in tubules and the link with PBGs support an expanded cellular reservoir with the potential to restore the integrity and function of the bile duct mucosa in diseased states.
Collapse
Affiliation(s)
- Frank DiPaola
- The Pediatric Liver Care Center and the Division of Pediatric Gastroenterology, Hepatology, and Nutrition of Cincinnati Children's Hospital Medical Center; the Department of Pediatrics of the University of Cincinnati College of Medicine; Cincinnati; OH
| | - Pranavkumar Shivakumar
- The Pediatric Liver Care Center and the Division of Pediatric Gastroenterology, Hepatology, and Nutrition of Cincinnati Children's Hospital Medical Center; the Department of Pediatrics of the University of Cincinnati College of Medicine; Cincinnati; OH
| | - Janet Pfister
- The Pediatric Liver Care Center and the Division of Pediatric Gastroenterology, Hepatology, and Nutrition of Cincinnati Children's Hospital Medical Center; the Department of Pediatrics of the University of Cincinnati College of Medicine; Cincinnati; OH
| | - Stephanie Walters
- The Pediatric Liver Care Center and the Division of Pediatric Gastroenterology, Hepatology, and Nutrition of Cincinnati Children's Hospital Medical Center; the Department of Pediatrics of the University of Cincinnati College of Medicine; Cincinnati; OH
| | - Gregg Sabla
- The Pediatric Liver Care Center and the Division of Pediatric Gastroenterology, Hepatology, and Nutrition of Cincinnati Children's Hospital Medical Center; the Department of Pediatrics of the University of Cincinnati College of Medicine; Cincinnati; OH
| | - Jorge A. Bezerra
- The Pediatric Liver Care Center and the Division of Pediatric Gastroenterology, Hepatology, and Nutrition of Cincinnati Children's Hospital Medical Center; the Department of Pediatrics of the University of Cincinnati College of Medicine; Cincinnati; OH
| |
Collapse
|
44
|
Igarashi S, Sato Y, Ren XS, Harada K, Sasaki M, Nakanuma Y. Participation of peribiliary glands in biliary tract pathophysiologies. World J Hepatol 2013; 5:425-432. [PMID: 24023981 PMCID: PMC3767841 DOI: 10.4254/wjh.v5.i8.425] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 05/24/2013] [Accepted: 08/06/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the roles of peribiliary glands around the bile ducts in the pathophysiology of the biliary tract.
METHODS: The expression of fetal pancreatic markers, pancreatic duodenal homeobox factor 1 (PDX1) and hairy and enhancer of split 1 (HES1) and endodermal stem/progenitor (S/P) cell markers [CD44s, chemokine receptor type 4 (CXCR4), SOX9 and epithelial cell adhesion molecule (EpCAM)] were examined immunohistochemically in 32 normal adult livers (autopsy livers) and 22 hepatolithiatic livers (surgically resected livers). The latter was characterized by the proliferation of the peribiliary glands. Immunohistochemistry was performed using formalin-fixed, paraffin-embedded tissue sections after deparaffinization. Although PDX1 and HES1 were expressed in both the nucleus and cytoplasm of epithelial cells, only nuclear staining was evaluated. SOX9 was expressed in the nucleus, while CD44s, CXCR4 and EpCAM were expressed in the cell membranes. The frequency and extent of the expression of these molecules in the lining epithelia and peribiliary glands were evaluated semi-quantitatively based on the percentage of positive cells: 0, 1+ (focal), 2+ (moderate) and 3+ (extensive).
RESULTS: In normal livers, PDX1 was infrequently expressed in the lining epithelia, but was frequently expressed in the peribiliary glands. In contrast, HES1 was frequently expressed in the lining epithelia, but its expression in the peribiliary glands was focal, suggesting that the peribiliary glands retain the potential of differentiation toward the pancreas and the lining epithelia exhibit properties to inhibit such differentiation. This unique combination was also seen in hepatolithiatic livers. The expression of endodermal S/P cell markers varied in the peribiliary glands in normal livers: SOX9 and EpCAM were frequently expressed, CD44s infrequently, and CXCR4 almost not at all. The expression of these markers, particularly CD44s and CXCR4, increased in the peribiliary glands and lining epithelia in hepatolithiatic livers. This increased expression of endodermal S/P cell markers may be related to the increased production of intestinal and gastric mucin and also to the biliary neoplasia associated with the gastric and intestinal phenotypes reported in hepatolithiasis.
CONCLUSION: The unique expression pattern of PDX1 and HES1 and increased expression of endodermal S/P cell markers in the peribiliary glands may be involved in biliary pathophysiologies.
Collapse
|
45
|
Karimian N, Op den Dries S, Porte RJ. The origin of biliary strictures after liver transplantation: is it the amount of epithelial injury or insufficient regeneration that counts? J Hepatol 2013; 58:1065-7. [PMID: 23466306 DOI: 10.1016/j.jhep.2013.02.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 02/23/2013] [Accepted: 02/25/2013] [Indexed: 01/17/2023]
|
46
|
Current world literature. Curr Opin Organ Transplant 2013; 18:241-50. [PMID: 23486386 DOI: 10.1097/mot.0b013e32835f5709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|