1
|
Lai Y, Xiong P. Analysis of gut microbiota and depression and anxiety: Mendelian randomization from three datasets. Gen Hosp Psychiatry 2025; 94:206-218. [PMID: 40154232 DOI: 10.1016/j.genhosppsych.2025.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 03/14/2025] [Accepted: 03/14/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND Emerging evidence supports gut microbiota's association with mental distress, particularly depression and anxiety, the microbiota-gut-brain axis was the believed to be the underlying mechanism. This study investigated the causal relationships between specific gut microbiota and depression and anxiety disorders using large-scale genome-wide association study (GWAS) data. METHODS A two-sample bidirectional Mendelian randomization (MR) analysis was conducted to explore the causal effects of 211 microbial taxa on depression and anxiety across three large GWAS databases: FinnGen, Pan-UKBB, and PGC. Sensitive analyses were followed to validate the robustness of results. Random-effect meta-analysis was further performed to enhance the statistical power. RESULTS The MR analysis revealed that the Bifidobacteriales (IVW: OR 0.90, 95 %CI 0.83 to 0.98) and Bifidobacteriaceae (IVW: OR 0.90, 95 %CI 0.83 to 0.98) had a protective effect against depression. Clostridiales (cML-MA: OR 0.88, 95 %CI 0.81 to 0.95) and Parasutterella (cML-MA: OR 0.75, 95 %CI 0.64 to 0.88) showed negative associations with depression. Increased abundance of Oxalobacteraceae (cML-MA: OR 1.78, 95 %CI 1.24 to 2.56), Deltaproteobacteria (cML-MA: OR 2.17, 95 %CI 1.38 to 3.40), and Desulfovibrionales (cML-MA: OR 2.22, 95 %CI 1.41 to 3.49) was associated with a higher risk of depression. For anxiety, protective effects were found for Actinobacteria (phylum: IVW: OR 0.83, 95 %CI 0.76 to 0.87; class: IVW: OR 0.84, 95 %CI 0.75 to 0.93), Bifidobacteriales (IVW: OR 0.80, 95 %CI 0.75 to 0.85), Bifidobacteriaceae (IVW: OR 0.80, 95 %CI 0.75 to 0.85) and Bifidobacterium [g] (IVW: OR 0.79, 95 %CI 0.74 to 0.84). Lactobacillaceae [f] (cML-MA: OR 1.18, 95 %CI 1.08 to 1.28), Clostridia [c] (cML-MA: OR 1.15, 95 %CI 0.1.06 to 1.26) and Clostridiales [o] (IVW: OR 1.15, 95 %CI 1.05 to 1.27) were associated with increased anxiety risk. Meta-analysis results indicated significant associations, particularly the protective effects of Actinobacteria (OR 0.90, 95 % CI, 0.83 to 0.98) and Clostridiaceae1 (OR 0.91, 95 % CI, 0.83 to 0.99) on depression and several taxa on anxiety. No significant instrumental variables for depression or anxiety on gut microbiota were identified. CONCLUSIONS Our findings highlight specific gut microbiota that are associated with depression and anxiety, underscoring the causal relationships between these intestinal microbes and psychiatric disorders. These results suggest potential strategies for mitigating disease symptoms and improving quality of life through microbiome-targeted therapies. Further studies, including randomized controlled trials and investigations into sex-specific effects, are essential to validate and expand upon these findings.
Collapse
Affiliation(s)
- Yaoyong Lai
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Peng Xiong
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
2
|
Rafie Sedaghat F, Ghotaslou P, Ghotaslou R. Association between major depressive disorder and gut microbiota dysbiosis. Int J Psychiatry Med 2024; 59:702-710. [PMID: 39039860 DOI: 10.1177/00912174241266646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
OBJECTIVE Major depressive disorder (MDD) affects 300 million people globally. Because dysbiosis may alter the central nervous system, it plays a potential role in this disorder. Dysbiosis is characterized by a decrease in microbial diversity and an increase in proinflammatory species. The human gut microbiota refers to the trillions of microbes, such as bacteria, that live in the human gut. The purpose of this study was to compare the gut microbiota of patients with MDD with that of healthy controls. METHODS This case-control study involved 35 MDD cases and 35 healthy age- and sex-matched controls. Stool samples were collected and subjected to quantitative real-time PCR. Four intestinal bacterial phyla (firmicutes, bacteroidetes, actinobacteria, and proteobacteria) were investigated by 16SrRNA analysis. RESULTS The findings indicated a relative abundance of bacteroidetes to firmicutes in the control and case groups was 0.66 vs. 1.33, respectively (p < .05). There were no significant differences in actinobacteria or proteobacteria among those in the MDD group compared to the healthy control group. CONCLUSIONS Gut microbiota dysbiosis may contribute to the onset of depression, underscoring the importance of understanding the relationship between MDD and gut microbiota. Firmicutes, which produce short-chain fatty acids, are crucial for intestinal health. However, dysbiosis can disrupt the gut microbiota, impacting the central nervous system and contributing to the onset of depression.
Collapse
Affiliation(s)
| | - Pardis Ghotaslou
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Ghotaslou
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Wang J, Zheng A, Lin F, Zhang X, Shi K, Yan T, Jia Y. Schisandra chinensis lignans regulate and cooperate with endogenous cannabinoid systems to ameliorate intestinal barrier injury associated with depression. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155929. [PMID: 39126923 DOI: 10.1016/j.phymed.2024.155929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/29/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Schisandra chinensis lignan (SCL), a major active component of the traditional functional Chinese medicine Schisandra chinensis, has been reported to have antidepressant effects. Its mechanisms include alleviating intestinal barrier injury (IBI) by resolving intestinal microflora, anti-inflammation, and neuroprotection. SCL also regulates endogenous cannabinoid system, and it is closely related to the onset and development of depression. PURPOSE We investigated a new treatment strategy for depression, i.e., alleviating IBI by regulating the endogenous cannabinoid system for antidepressant effects, as well as conducted in-depth research to explore the specific mechanism. METHODS Behavioral analysis was conducted to detect the occurrence of depressive-like behavior in C57BL/6 mice. We used hematoxylin-eosin staining, periodic acid-Schiff staining, and immunofluorescence to evaluate IBI. Network pharmacology and Western blotting (WB) were used to predict and confirm that the amelioration effect of SCL was associated with anti-inflammation and anti-apoptosis. Combined with the levels of anandamide (AEA) and 2-arachidonoylglycerol (2-AG), we conducted the Pearson analysis between the AEA, 2-AG levels and the major targets identified and validated by network pharmacology and WB. Subsequently, URB-597, a fatty acid amide hydrolase (FAAH) antagonist with an AEA hydrolase-inhibiting effect, was administered to the mice, and behavioral analysis and apoptotic proteins were verified. Plasma endocannabinoid levels after URB-597 supplementation were measured via 6470 Triple Quadrupole LC/MS. Finally, the cannabinoid receptor type 2 (CB2R) antagonist AM630 was administered to mice, and immunofluorescence and WB were performed to assess the proteins of IBI and anti-inflammation. RESULTS The study demonstrated that SCL alleviated depressive-like behaviours and ameliorated IBI. Network pharmacology and WB confirmed that the improvement of IBI was related to the anti-inflammatory and anti-apoptotic pathways. Pearson results showed that AEA levels were positively correlated with inflammation and apoptosis, with a greater contribution to apoptosis. In-depth studies validated that the URB-597 administration reversed the positive effects of SCL on depressive-like behavior and anti-apoptosis. Similarly, URB-597 counteracted AEA levels reduced by SCL and decreased 2-AG levels. Furthermore, AM630 supplementation antagonized SCL's effect of improving IBI by reactivating the MAPK/NF-κB inflammation pathway. CONCLUSION Overall, SCL, in collaboration with the endogenous cannabinoid system regulated by SCL, alleviates depression associated IBI. The specific mechanism involes SCL decreasing AEA levels to inhibit colon tissue cell apoptosis by up-regulating FAAH. Simultaneously, it directly triggers CB2R to reduce inflammation responses, further alleviating IBI.
Collapse
Affiliation(s)
- Jinyu Wang
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Aijuan Zheng
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Fei Lin
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Xiaozhuo Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Kaifang Shi
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Tingxu Yan
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| | - Ying Jia
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| |
Collapse
|
4
|
Fan X, Zang T, Wu N, Liu J, Sun Y, Slack J, Bai J, Liu Y. The mediating effect of maternal gut microbiota between prenatal psychological distress and neurodevelopment of infants. J Affect Disord 2024; 362:893-902. [PMID: 39013520 DOI: 10.1016/j.jad.2024.07.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 06/14/2024] [Accepted: 07/12/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND Prenatal psychological distress and maternal inflammation can increase the risk of neurodevelopmental delay in offspring; recently, the gut microbiota has been shown to may be a potential mechanism behind this association and not fully elucidated in population study. METHODS Seventy-two maternal-infant pairs who completed the assessments of prenatal psychological distress during the third trimester and neurodevelopment of infants at age 6-8 months of age were included in this study. The gut microbiota and its short-chain fatty acids (SCFAs) of maternal-infant were determined by 16S rRNA sequencing and liquid chromatography-mass spectrometry analysis. Inflammatory cytokines in the blood of pregnant women during the third trimester were detected by luminex liquid suspension microarrays. RESULTS This study found that infants in the prenatal psychological distress group had poorer fine motor skills (β = -4.396, 95 % confidence interval (CI) = -8.546, -0.246, p = 0.038), problem-solving skills (β = -5.198, 95 % CI = -10.358, -0.038, p = 0.048) and total development (β = -22.303, 95%CI = -41.453, -3.153, p = 0.022) compared to the control group. The study also indicated that the higher level of interleukin-1β (IL-1β) (β = -1.951, 95%CI = -3.321, -0.581, p = 0.005) and interferon-inducible protein-10 (IP-10) (β = -0.019, 95%CI = -0.034, -0.004, p = 0.015) during the third trimester, the poorer fine motor skills in infants. Also, the higher level of IL-10 (β = -0.498, 95%CI = -0.862, -0.133, p = 0.007), IL-12p70 (β = -0.113, 95%CI = -0.178, -0.048, p = 0.001), IL-17 A (β = -0.817, 95%CI = -1.517, -0.118, p = 0.022), interferon-γ (β = -0.863, 95%CI = -1.304, -0.422, p < 0.001), IP-10 (β = -0.020, 95%CI = -0.038, -0.001, p = 0.035), and regulated upon activation normal T cell expressed and secreted (β = -0.002, 95%CI = -0.003, -0.001, p = 0.005) during the third trimester, the poorer problem-solving skills in infants. After controlling for relevant covariates, this study found that maternal gut microbiota Roseburia mediates the relationship between prenatal psychological distress and total neurodevelopment of infants (a = 0.433, 95%CI = 0.079, 0.787, p = 0.017; b = -19.835, 95%CI = -33.877, -5.792, p = 0.006; c = 22.407, 95%CI = -43.207,-1.608, p = 0.035; indirect effect = -8.584, 95%CI = -21.227, -0.587). CONCLUSIONS This is the first study to emphasize the role of the maternal-infant gut microbiota in prenatal psychological distress and infant neurodevelopment. Further studies are needed to explore the biological mechanisms underlying the relationship between prenatal psychological distress, maternal-infant gut microbiota, and infant neurodevelopment.
Collapse
Affiliation(s)
- Xiaoxiao Fan
- Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Tianzi Zang
- Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, Hubei, China
| | - Ni Wu
- Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, Hubei, China
| | - Jun Liu
- Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, Hubei, China
| | - Yu Sun
- Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, Hubei, China
| | - Julia Slack
- Duke University School of Nursing, Durham, North Carolina, USA
| | - Jinbing Bai
- Emory University Nell Hodgson Woodruff School of Nursing, 1520 Clifton Road, Atlanta, GA 30322, USA
| | - Yanqun Liu
- Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China; Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, Hubei, China.
| |
Collapse
|
5
|
Gong J, Xu F, Li Y, He Y, Liang Z, Chen X, Zhang X, Liu L, Zhou L, Huang X. Metagenomic analysis of intestinal microbial function and key genes responsive to acute high-salinity stress in Nile tilapia (Oreochromis niloticus). Gene 2024; 913:148371. [PMID: 38485034 DOI: 10.1016/j.gene.2024.148371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/26/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
The intestinal microbiota is increasingly recognized as playing an important role in aquatic animals. To investigate the functional roles and mechanisms of the intestinal microbial genes/enzymes responding to salinity stress or osmotic pressure in fish, metagenomic analysis was carried out to evaluate the response of intestinal microbiota and especially their functional genes/enzymes from freshwater (the control group) to acute high salinity stress (the treatment group) in Nile tilapia. Our results showed that at the microbial community level, the intestinal microbiota in Nile tilapia generally underwent significant changes in diversity after acute high salinity stress. Among them, the shift in the bacterial community (mainly from Actinobacteria to Proteobacteria) dominated and had a large impact, the fungal community showed a very limited response, and other microbiota, such as phages, likely had a negligible response. At the functional level, the intestinal bacteriadecreased the normal physiological demand and processes, such as those of the digestive system and nervous system, but enhanced energy metabolism. Furthermore, at the gene level, some gene biomarkers, such as glutathione S-transferase, myo-inositol-1(or 4)-monophosphatase, glycine betaine/proline transport system permease protein, and some families of carbohydrate-active enzymes (GT4, GT2), were significantly enriched. However, GH15, GH23 and so on were significantly reduced. Exploring the functional details of the intestinal microbial genes/enzymes that respond to salinity stress in Nile tilapia sheds light on the mechanism of action of the intestinal microbiota with respect to the salinity adaptation of fish.
Collapse
Affiliation(s)
- Jiayi Gong
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Fengmeng Xu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China; Guangzhou Fishtech Biotechnology Co., Ltd., Guangzhou 510640, China
| | - Yao Li
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Yiyong He
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Zhizheng Liang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Xiao Chen
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Xiaoyong Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Li Liu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Lei Zhou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.
| | - Xiande Huang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
6
|
Hu Q, Luo J, Cheng F, Wang P, Gong P, Lv X, Wang X, Yang M, Wei P. Spatial profiles of the bacterial microbiota throughout the gastrointestinal tract of dairy goats. Appl Microbiol Biotechnol 2024; 108:356. [PMID: 38822843 PMCID: PMC11144141 DOI: 10.1007/s00253-024-13200-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 06/03/2024]
Abstract
The gastrointestinal tract (GIT) is stationed by a dynamic and complex microbial community with functions in digestion, metabolism, immunomodulation, and reproduction. However, there is relatively little research on the composition and function of microorganisms in different GIT segments in dairy goats. Herein, 80 chyme samples were taken from ten GIT sites of eight Xinong Saanen dairy goats and then analyzed and identified the microbial composition via 16S rRNA V1-V9 amplicon sequencing. A total of 6669 different operational taxonomic units (OTUs) were clustered, and 187 OTUs were shared by ten GIT segments. We observed 264 species belonging to 23 different phyla scattered across ten GITs, with Firmicutes (52.42%) and Bacteroidetes (22.88%) predominating. The results revealed obvious location differences in the composition, diversity, and function of the GIT microbiota. In LEfSe analysis, unidentified_Lachnospiraceae and unidentified_Succinniclassicum were significantly enriched in the four chambers of stomach, with functions in carbohydrate fermentation to compose short-chain fatty acids. Aeriscardovia, Candidatus_Saccharimonas, and Romboutsia were significantly higher in the foregut, playing an important role in synthesizing enzymes, amino acids, and vitamins and immunomodulation. Akkermansia, Bacteroides, and Alistipes were significantly abundant in the hindgut to degrade polysaccharides and oligosaccharides, etc. From rumen to rectum, α-diversity decreased first and then increased, while β-diversity showed the opposite trend. Metabolism was the major function of the GIT microbiome predicted by PICRUSt2, but with variation in target substrates along the regions. In summary, GIT segments play a decisive role in the composition and functions of microorganisms. KEY POINTS: • The jejunum and ileum were harsh for microorganisms to colonize due to the presence of bile acids, enzymes, faster chyme circulation, etc., exhibiting the lowest α-diversity and the highest β-diversity. • Variability in microbial profiles between the three foregut segments was greater than four chambers of stomach and hindgut, with a higher abundance of Firmicutes dominating than others. • Dairy goats dominated a higher abundance of Kiritimatiellaeota than cows, which was reported to be associated with fatty acid synthesis.
Collapse
Affiliation(s)
- Qingyong Hu
- Shaanxi Provincial Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A & F University, Yangling, 712100, People's Republic of China
| | - Jun Luo
- Shaanxi Provincial Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A & F University, Yangling, 712100, People's Republic of China.
| | - Fei Cheng
- Shaanxi Provincial Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A & F University, Yangling, 712100, People's Republic of China
| | - Ping Wang
- Shaanxi Provincial Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A & F University, Yangling, 712100, People's Republic of China
| | - Ping Gong
- Institute of Animal Husbandry Quality Standards, Xinjiang Academy of Animal Husbandry Science, Urumqi Xinjiang, 830000, People's Republic of China
| | - Xuefeng Lv
- Institute of Animal Husbandry Quality Standards, Xinjiang Academy of Animal Husbandry Science, Urumqi Xinjiang, 830000, People's Republic of China
| | - Xinpei Wang
- Shaanxi Provincial Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A & F University, Yangling, 712100, People's Republic of China
| | - Min Yang
- Shaanxi Provincial Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A & F University, Yangling, 712100, People's Republic of China
| | - Pengbo Wei
- Shaanxi Provincial Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A & F University, Yangling, 712100, People's Republic of China
| |
Collapse
|
7
|
Wang J, Fan L, Teng T, Wu H, Liu X, Yin B, Li X, Jiang Y, Zhao J, Wu Q, Guo Y, Zhou X, Xie P. Adolescent male rats show altered gut microbiota composition associated with depressive-like behavior after chronic unpredictable mild stress: Differences from adult rats. J Psychiatr Res 2024; 173:183-191. [PMID: 38547740 DOI: 10.1016/j.jpsychires.2024.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 04/17/2024]
Abstract
Accumulating evidence reveals the metabolism and neurotransmitter systems are different in major depressive disorder (MDD) between adolescent and adult patients; however, much is still unknown from the gut microbiome perspective. To minimize confounding factors such as geographical location, ethnicity, diet, and drugs, we investigated the gut microbial differences between adolescent and adult male Sprague-Dawley rats. We exposed the adolescent rats to chronic unpredictable mild stress (CUMS) for 3 weeks and assessed their behavior using the sucrose preference test (SPT), open field test (OFT), and forced swimming test (FST). We collected and sequenced fecal samples after the behavioral tests and compared them with our previous data on adult rats. Both adolescent and adult CUMS rats exhibited reduced sucrose preference in SPT, reduced total distance in OFT, and increased immobility time in FST. Moreover, compared to their respective controls, the adolescent CUMS rats had distinct amplicon sequence variants (ASVs) mainly in the Muribaculaceae family, Bacteroidetes phylum, while the adult CUMS rats had those in the Lachnospiraceae family, Firmicutes phylum. In the adolescent group, the Muribaculaceae negatively correlated with FST and positively correlated with SPT and OFT. In the adult group, the different genera in the Lachnospiraceae showed opposite correlations with FST. Furthermore, the adolescent CUMS rats showed disrupted microbial functions, such as "Xenobiotics biodegradation and metabolism" and "Immune system", while the adult CUMS rats did not. These results confirmed the gut microbiota differences between adolescent and adult rats after CUMS modeling and provided new insight into the age-related influence on depression models.
Collapse
Affiliation(s)
- Jie Wang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Fan
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Teng Teng
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongyan Wu
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xueer Liu
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bangmin Yin
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuemei Li
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuanliang Jiang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianting Zhao
- Department of Neurology, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical College, Xinxiang, China
| | - Qingyuan Wu
- Department of Neurology, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Yi Guo
- Department of Neurology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xinyu Zhou
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
8
|
Hara M, Suzuki H, Hayashi D, Morii W, Nakamura T, Kiyoki K, Hara H, Ishii R, Noguchi E, Takada H. Gut microbiota of one-and-a-half-year-old food-allergic and healthy children. Allergol Int 2024:S1323-8930(24)00042-X. [PMID: 38600019 DOI: 10.1016/j.alit.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 02/29/2024] [Accepted: 03/07/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Intestinal bacteria may play a role in the development of food allergies. This study aimed to analyze and compare the gut microbiota of food-allergic children with that of healthy children of the same age. METHODS Stool samples were collected from one-and-a-half-year-old food-allergic (FA group, n = 29) and healthy controls (HC group, n = 19). A questionnaire was provided to examine the children's birth, dietary, medical, and social histories. The gut microbiota was profiled by 16S rRNA sequencing. Differences in taxonomic composition were assessed using linear discriminant analysis effect size (LEfSe), and microbial functional profiles were predicted with Tax4Fun2. RESULTS No significant difference in the alpha diversity index between the two groups; however, a negative correlation was observed between the Shannon diversity index and the relative abundance of Bacteroides. A significant difference was observed in beta diversity (permutational multivariate analysis of variance) in the bacterial composition between the FA and HC groups (P < 0.05). The FA group had a higher abundance of Escherichia and Anaeromassilibacillus and a lower abundance of Bacteroides, Oscillibacter, Ruminococcus, Hungateiclostridium and Anaerotaenia than the HC group (LEfSe: linear discriminant analysis score >2). The FA group showed a predicted increase in the expression levels of genes associated with intestinal pathogenicity compared with that in the HC group. CONCLUSIONS The gut microbiota of food-allergic children has a higher abundance of bacteria involved in intestinal inflammation and a lower abundance of bacteria involved in immune tolerance than that of healthy children. This dysbiosis may also be associated with food allergies.
Collapse
Affiliation(s)
- Monami Hara
- Department of Pediatrics, University of Tsukuba Hospital, Ibaraki, Japan; Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan; Department of Child Health, Institute of Medicine, University of Tsukuba, Ibaraki, Japan; Department of Medical Genetics, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Hisato Suzuki
- Department of Child Health, Institute of Medicine, University of Tsukuba, Ibaraki, Japan; Department of Medical Genetics, Institute of Medicine, University of Tsukuba, Ibaraki, Japan; Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Daisuke Hayashi
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan; Department of Pediatrics, Tsukuba Medical Center Hospital, Ibaraki, Japan
| | - Wataru Morii
- Department of Medical Genetics, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Takako Nakamura
- Department of Medical Genetics, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Kaori Kiyoki
- Department of Pediatrics, Tsukuba Medical Center Hospital, Ibaraki, Japan
| | - Hideki Hara
- Department of Pediatrics, Tsukuba Medical Center Hospital, Ibaraki, Japan
| | - Ryota Ishii
- Department of Biostatistics, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Emiko Noguchi
- Department of Medical Genetics, Institute of Medicine, University of Tsukuba, Ibaraki, Japan.
| | - Hidetoshi Takada
- Department of Pediatrics, University of Tsukuba Hospital, Ibaraki, Japan; Department of Child Health, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
9
|
Nagata K, Ando D, Ashikari T, Ito K, Miura R, Fujigaki I, Goto Y, Ando M, Ito N, Kawazoe H, Iizuka Y, Inoue M, Yashiro T, Hachisu M, Kasakura K, Nishiyama C. Butyrate, Valerate, and Niacin Ameliorate Anaphylaxis by Suppressing IgE-Dependent Mast Cell Activation: Roles of GPR109A, PGE2, and Epigenetic Regulation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:771-784. [PMID: 38197634 DOI: 10.4049/jimmunol.2300188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 12/18/2023] [Indexed: 01/11/2024]
Abstract
Short-chain fatty acids (SCFAs) are produced by the intestinal microbiota during the fermentation of dietary fibers as secondary metabolites. Several recent studies reported that SCFAs modulate the development and function of immune-related cells. However, the molecular mechanisms by which SCFAs regulate mast cells (MCs) remain unclear. In the current study, we analyzed the function and gene expression of mouse MCs in the presence of SCFAs in vitro and in vivo. We found that the oral administration of valerate or butyrate ameliorated passive systemic anaphylaxis and passive cutaneous anaphylaxis in mice. The majority of SCFAs, particularly propionate, butyrate, valerate, and isovalerate, suppressed the IgE-mediated degranulation of bone marrow-derived MCs, which were eliminated by the Gi protein inhibitor pertussis toxin and by the knockdown of Gpr109a. A treatment with the HDAC inhibitor trichostatin A also suppressed IgE-mediated MC activation and reduced the surface expression level of FcεRI on MCs. Acetylsalicylic acid and indomethacin attenuated the suppressive effects of SCFAs on degranulation. The degranulation degree was significantly reduced by PGE2 but not by PGD2. Furthermore, SCFAs enhanced PGE2 release from stimulated MCs. The SCFA-mediated amelioration of anaphylaxis was exacerbated by COX inhibitors and an EP3 antagonist, but not by an EP4 antagonist. The administration of niacin, a ligand of GPR109A, alleviated the symptoms of passive cutaneous anaphylaxis, which was inhibited by cyclooxygenase inhibitors and the EP3 antagonist. We conclude that SCFAs suppress IgE-mediated activation of MCs in vivo and in vitro involving GPR109A, PGE2, and epigenetic regulation.
Collapse
Affiliation(s)
- Kazuki Nagata
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, Japan
| | - Daisuke Ando
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, Japan
| | - Tsubasa Ashikari
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, Japan
| | - Kandai Ito
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, Japan
| | - Ryosuke Miura
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, Japan
| | - Izumi Fujigaki
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, Japan
| | - Yuki Goto
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, Japan
| | - Miki Ando
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, Japan
| | - Naoto Ito
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, Japan
| | - Hibiki Kawazoe
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, Japan
| | - Yuki Iizuka
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, Japan
| | - Mariko Inoue
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, Japan
| | - Takuya Yashiro
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, Japan
| | - Masakazu Hachisu
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, Japan
| | - Kazumi Kasakura
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, Japan
| | - Chiharu Nishiyama
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, Japan
| |
Collapse
|
10
|
Hong X, Zhang Y, Ni H, Xiao Q, Yin Y, Ren J, Zhao P, Zhang Z, Li X, Li Y, Yang Y. Optimization of Fermented Maize Stover for the Fattening Phase of Geese: Effect on Production Performance and Gut Microflora. Animals (Basel) 2024; 14:433. [PMID: 38338076 PMCID: PMC10854615 DOI: 10.3390/ani14030433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/14/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
To optimize the utilization of fermented maize stover (FMS) feed during the fattening phase of Xianghai flying geese (XFG), a total of 300 XFG at 125 days of age were randomly assigned to four dietary treatment groups with three replicates of 25 in each set. Group A was fed the basal fattening diet, while the B, C, and D groups were fed the basic fattening diet and diets supplemented with 5%, 10% or 15% FMS, respectively. The findings indicate that the production performance indicators (especially the dressed, eviscerated and breast muscle yield) of Group D closely resembled Group A more than Groups B and C. Intestinal morphometry found that the jejunal villus height and the villus height/crypt depth were significantly increased in Group D compared to Group A. Next, 16S rRNA amplicon sequencing of the extracted DNA revealed that beneficial microbiota (Coprococcus and Victivallis) showed increased abundance in Group D. Cecal flora function analysis further revealed that some amino acid and glycerol biosynthesis were found to be associated with growth performance in geese. These findings suggest that incorporating 15% FMS as a substitute for a portion of the feed during the fattening phase of XFG can effectively sustain their production performance, optimize the gut microbial community and morphometrical traits, provide new insight into using non-conventional feed resources to reduce feed cost and improve economic benefits in the breeding industry.
Collapse
Affiliation(s)
- Xiaoqing Hong
- College of Animal Science, Jilin University, Changchun 130062, China; (X.H.); (Y.Z.); (H.N.); (Q.X.); (Y.Y.); (J.R.); (P.Z.); (Z.Z.)
| | - Yonghong Zhang
- College of Animal Science, Jilin University, Changchun 130062, China; (X.H.); (Y.Z.); (H.N.); (Q.X.); (Y.Y.); (J.R.); (P.Z.); (Z.Z.)
| | - Hongyu Ni
- College of Animal Science, Jilin University, Changchun 130062, China; (X.H.); (Y.Z.); (H.N.); (Q.X.); (Y.Y.); (J.R.); (P.Z.); (Z.Z.)
| | - Qingxing Xiao
- College of Animal Science, Jilin University, Changchun 130062, China; (X.H.); (Y.Z.); (H.N.); (Q.X.); (Y.Y.); (J.R.); (P.Z.); (Z.Z.)
| | - Yijing Yin
- College of Animal Science, Jilin University, Changchun 130062, China; (X.H.); (Y.Z.); (H.N.); (Q.X.); (Y.Y.); (J.R.); (P.Z.); (Z.Z.)
| | - Jing Ren
- College of Animal Science, Jilin University, Changchun 130062, China; (X.H.); (Y.Z.); (H.N.); (Q.X.); (Y.Y.); (J.R.); (P.Z.); (Z.Z.)
| | - Puze Zhao
- College of Animal Science, Jilin University, Changchun 130062, China; (X.H.); (Y.Z.); (H.N.); (Q.X.); (Y.Y.); (J.R.); (P.Z.); (Z.Z.)
| | - Ziyi Zhang
- College of Animal Science, Jilin University, Changchun 130062, China; (X.H.); (Y.Z.); (H.N.); (Q.X.); (Y.Y.); (J.R.); (P.Z.); (Z.Z.)
| | - Xiaohui Li
- Center of Animal Experiment, College of Basic Medical Sciences, Jilin University, Changchun 130021, China;
| | - Yumei Li
- College of Animal Science, Jilin University, Changchun 130062, China; (X.H.); (Y.Z.); (H.N.); (Q.X.); (Y.Y.); (J.R.); (P.Z.); (Z.Z.)
| | - Yuwei Yang
- College of Animal Science, Jilin University, Changchun 130062, China; (X.H.); (Y.Z.); (H.N.); (Q.X.); (Y.Y.); (J.R.); (P.Z.); (Z.Z.)
| |
Collapse
|
11
|
Halvorson CS, Sánchez-Lafuente CL, Johnston JN, Kalynchuk LE, Caruncho HJ. Molecular Mechanisms of Reelin in the Enteric Nervous System and the Microbiota-Gut-Brain Axis: Implications for Depression and Antidepressant Therapy. Int J Mol Sci 2024; 25:814. [PMID: 38255890 PMCID: PMC10815176 DOI: 10.3390/ijms25020814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/30/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Current pharmacological treatments for depression fail to produce adequate remission in a significant proportion of patients. Increasingly, other systems, such as the microbiome-gut-brain axis, are being looked at as putative novel avenues for depression treatment. Dysbiosis and dysregulation along this axis are highly comorbid with the severity of depression symptoms. The endogenous extracellular matrix protein reelin is present in all intestinal layers as well as in myenteric and submucosal ganglia, and its receptors are also present in the gut. Reelin secretion from subepithelial myofibroblasts regulates cellular migration along the crypt-villus axis in the small intestine and colon. Reelin brain expression is downregulated in mood and psychotic disorders, and reelin injections have fast antidepressant-like effects in animal models of depression. This review seeks to discuss the roles of reelin in the gastrointestinal system and propose a putative role for reelin actions in the microbiota-gut-brain axis in the pathogenesis and treatment of depression, primarily reflecting on alterations in gut epithelial cell renewal and in the clustering of serotonin transporters.
Collapse
Affiliation(s)
- Ciara S. Halvorson
- Division of Medical Sciences, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 5C2, Canada; (C.S.H.); (C.L.S.-L.); (L.E.K.)
| | - Carla Liria Sánchez-Lafuente
- Division of Medical Sciences, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 5C2, Canada; (C.S.H.); (C.L.S.-L.); (L.E.K.)
| | - Jenessa N. Johnston
- Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Lisa E. Kalynchuk
- Division of Medical Sciences, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 5C2, Canada; (C.S.H.); (C.L.S.-L.); (L.E.K.)
| | - Hector J. Caruncho
- Division of Medical Sciences, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 5C2, Canada; (C.S.H.); (C.L.S.-L.); (L.E.K.)
| |
Collapse
|
12
|
Ioffe OY, Kobzar PA, Shvets OV, Kryvopustov MS, Stetsenko OP, Tarasiuk TV, Dema OV. Gut microbiota as an efficacy marker of surgical treatment of obesity. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2024; 77:1464-1469. [PMID: 39241146 DOI: 10.36740/wlek202407122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
OBJECTIVE Aim: To study the impact of bariatric interventions on changes in the parameters of the intestinal microbiome. PATIENTS AND METHODS Materials and Methods: The research method is a prospective observational cohort monocentric study. 112 patients were included in the study. All patients had indications for surgical obesity treatment due to IFSO criteria. All patients were offered surgical treatment. 53 patients who consented to the operation formed the study group. 59 patients who refused surgical treatment formed the control group. The result of the study was evaluated one year after the start of treatment. The studied group of patients underwent bariatric interventions. The control group consisted of 59 obese patients who were treated conservatively. RESULTS Results: evaluating criteria was: %EWL (percentage of excess weight loss), comorbidity regression, life quality improvement. Overwhelming majority of surgically treated patients with gut microbiome composition improvement reached %EWL≥50. Patients who didn't have improvements in gut microbiota composition had insufficient efficacy of surgical treatment. CONCLUSION Conclusions: 1) Surgical treatment of obesity leads to the positive changes in the gut microbiota. 2) Operated patients, who had positive dynamics in changes of gut microbiota demonstrated sufficient efficacy of surgical treatment due to %EWL. 3) Firmicutes/Bacteriodetes ratio and Bacterioidetes/Faecalibacterium ratio can be one of the criteria of the efficacy of surgical treatment of obesity. 4) Patients of the control group, had positive dynamics of changes in gut microbiota much rarely than operated patients and the effectiveness of obesity treatment was insufficient.
Collapse
Affiliation(s)
| | | | - Oleg V Shvets
- NATIONAL UNIVERSITY OF BIORESOURCES AND NATURE MANAGEMENT OF UKRAINE, KYIV, UKRAINE
| | | | | | | | - Olena V Dema
- BOGOMOLETS NATIONAL MEDICAL UNIVERSITY, KYIV, UKRAINE
| |
Collapse
|
13
|
Eckermann HA, Meijer J, Cooijmans K, Lahti L, de Weerth C. Daily skin-to-skin contact alters microbiota development in healthy full-term infants. Gut Microbes 2024; 16:2295403. [PMID: 38197254 PMCID: PMC10793693 DOI: 10.1080/19490976.2023.2295403] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/12/2023] [Indexed: 01/11/2024] Open
Abstract
The gut microbiota is vital for human body development and function. Its development in early life is influenced by various environmental factors. In this randomized controlled trial, the gut microbiota was obtained as a secondary outcome measure in a study on the effects of one hour of daily skin-to-skin contact (SSC) for five weeks in healthy full-term infants. Specifically, we studied the effects on alpha/beta diversity, volatility, microbiota maturation, and bacterial and gut-brain-axis-related functional abundances in microbiota assessed thrice in the first year. Pregnant Dutch women (n = 116) were randomly assigned to the SSC or care-as-usual groups. The SSC group participants engaged in one hour of daily SSC from birth to five weeks of age. Stool samples were collected at two, five, and 52 weeks and the V4 region was sequenced. We observed significant differences in the microbiota composition, bacterial abundances, and predicted functional pathways between the groups. The SSC group exhibited lower microbiota volatility during early infancy. Microbiota maturation was slower in the SSC group during the first year and our results suggested that breastfeeding duration may have partially mediated this relation. Our findings provide evidence that postpartum SSC may influence microbiota development. Replication is necessary to validate and generalize these results. Future studies should include direct stress measurements and extend microbiota sampling beyond the first year to investigate stress as a mechanism and research SSC's impact on long-term microbiota maturation trajectories.
Collapse
Affiliation(s)
- Henrik Andreas Eckermann
- Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Radboud university medical center, Nijmegen, The Netherlands
| | - Jennifer Meijer
- Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Radboud university medical center, Nijmegen, The Netherlands
| | - Kelly Cooijmans
- Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Radboud university medical center, Nijmegen, The Netherlands
- Behavioural Science Institute, Radboud University, Nijmegen, The Netherlands
| | - Leo Lahti
- Department of Computing, University of Turku, Turku, Finland
| | - Carolina de Weerth
- Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
14
|
Zhang M, Li D, Yang X, Wei F, Wen Q, Feng Y, Jin X, Liu D, Guo Y, Hu Y. Integrated multi-omics reveals the roles of cecal microbiota and its derived bacterial consortium in promoting chicken growth. mSystems 2023; 8:e0084423. [PMID: 38018992 PMCID: PMC10734529 DOI: 10.1128/msystems.00844-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/11/2023] [Indexed: 11/30/2023] Open
Abstract
IMPORTANCE The improvement of chicken growth performance is one of the major concerns for the poultry industry. Gut microbes are increasingly evidenced to be associated with chicken physiology and metabolism, thereby influencing chicken growth and development. Here, through integrated multi-omics analyses, we showed that chickens from the same line differing in their body weight were very different in their gut microbiota structure and host-microbiota crosstalk; microbes in high body weight (HBW) chickens contributed to chicken growth by regulating the gut function and homeostasis. We also verified that a specific bacterial consortium consisting of isolates from the HBW chickens has the potential to be used as chicken growth promoters. These findings provide new insights into the potential links between gut microbiota and chicken phenotypes, shedding light on future manipulation of chicken gut microbiota to improve chicken growth performance.
Collapse
Affiliation(s)
- Meihong Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Depeng Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xinyue Yang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Fuxiao Wei
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qiu Wen
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yuqing Feng
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiaolu Jin
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dan Liu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yongfei Hu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
15
|
Tikunov AY, Fedorets VA, Shrainer EV, Morozov VV, Bystrova VI, Tikunova NV. Intestinal Microbiome Changes and Clinical Outcomes of Patients with Ulcerative Colitis after Fecal Microbiota Transplantation. J Clin Med 2023; 12:7702. [PMID: 38137770 PMCID: PMC10743744 DOI: 10.3390/jcm12247702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND AND AIMS Ulcerative colitis (UC) is a chronic inflammatory disease that affects many people. One of the possible ways to treat UC is fecal microbiota transplantation (FMT). In this study, changes in the intestinal microbiome and clinical outcomes of 20 patients with UC after FMT were estimated. METHODS FMT enemas were administrated ten times, once a day, and fecal microbiota from three donors was used for each enema. The clinical outcomes were assessed after eight weeks and then via a patient survey. The 16S rRNA profiles of the gut microbiota were compared between three samplings: samples from 20 patients with UC before and after FMT and samples from 18 healthy volunteers. RESULTS Clinical remission was achieved in 19 (95%) patients at week 8. Adverse events occurred in five patients, including one non-responder. A significant increase in average biodiversity was shown in samples after FMT compared to samples before FMT, as well as a decrease in the proportion of some potentially pathogenic bacteria. CONCLUSION The efficacy of FMT for UC treatment was confirmed; however, the duration of remission varied substantially, possibly due to different characteristics of the initial microbiota of patients. Targeted analysis of a patient's microbiome before FMT could increase the treatment efficacy.
Collapse
Affiliation(s)
- Artem Y. Tikunov
- Federal State Public Scientific Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.Y.T.); (V.A.F.); (E.V.S.); (V.V.M.); (V.I.B.)
| | - Valeria A. Fedorets
- Federal State Public Scientific Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.Y.T.); (V.A.F.); (E.V.S.); (V.V.M.); (V.I.B.)
| | - Evgenia V. Shrainer
- Federal State Public Scientific Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.Y.T.); (V.A.F.); (E.V.S.); (V.V.M.); (V.I.B.)
- Department of Obstetrics and Gynecology, V. Zelman Institute for Medicine and Psychology, Novosibirsk National Research State University, 630090 Novosibirsk, Russia
| | - Vitaliy V. Morozov
- Federal State Public Scientific Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.Y.T.); (V.A.F.); (E.V.S.); (V.V.M.); (V.I.B.)
| | - Valeria I. Bystrova
- Federal State Public Scientific Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.Y.T.); (V.A.F.); (E.V.S.); (V.V.M.); (V.I.B.)
- Department of Obstetrics and Gynecology, V. Zelman Institute for Medicine and Psychology, Novosibirsk National Research State University, 630090 Novosibirsk, Russia
| | - Nina V. Tikunova
- Federal State Public Scientific Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.Y.T.); (V.A.F.); (E.V.S.); (V.V.M.); (V.I.B.)
| |
Collapse
|
16
|
Omotoso AO, Reyer H, Oster M, Ponsuksili S, Wimmers K. Jejunal microbiota of broilers fed varying levels of mineral phosphorus. Poult Sci 2023; 102:103096. [PMID: 37797492 PMCID: PMC10562922 DOI: 10.1016/j.psj.2023.103096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 10/07/2023] Open
Abstract
Efforts to achieve sustainable phosphorus (P) inputs in broiler farming which meet the physiological demand of animals include nutritional intervention strategies that have the potential to modulate and utilize endogenous and microbiota-associated capacities. A temporal P conditioning strategy in broiler nutrition is promising as it induces endocrinal and transcriptional responses to maintain mineral homeostasis. In this context, the current study aims to evaluate the composition of the jejunal microbiota as a functional entity located at the main absorption site involved in nutrient metabolism. Starting from a medium or high P supply in the first weeks of life of broilers, a depletion strategy was applied at growth intervals from d 17 to 24 and d 25 to 37 to investigate the consequences on the composition of the jejunal microbiota. The results on fecal mineral P, calcium (Ca), and phytate contents showed that the diets applied to the depleted and non-depleted cohorts were effective. Microbial diversity in jejunum was represented by alpha diversity indices which appeared unaffected between dietary groups. However, chickens assigned to the dietary P depletion groups showed significantly higher abundances of Facklamia, Lachnospiraceae, and Ruminococcaceae compared to non-depleted control groups. Based on current knowledge of microbial function, these microorganisms make only a minor contribution to the birds' adaptive mechanism in the jejunum following P depletion. Microbial taxa such as Brevibacterium, Brachybacterium, and genera of the Staphylococcaceae family proliferated in a P-enriched environment and might be considered biomarkers for excessive P supply in commercial broiler chickens.
Collapse
Affiliation(s)
- Adewunmi O Omotoso
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Henry Reyer
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Michael Oster
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Siriluck Ponsuksili
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Klaus Wimmers
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; Faculty of Agricultural and Environmental Sciences, Justus-von-Liebig-Weg 6b, University of Rostock, 18059 Rostock, Germany.
| |
Collapse
|
17
|
Li X, Xie H, Chao JJ, Jia YH, Zuo J, An YP, Bao YR, Jiang X, Ying H. Profiles and integration of the gut microbiome and fecal metabolites in severe intrahepatic cholestasis of pregnancy. BMC Microbiol 2023; 23:282. [PMID: 37784030 PMCID: PMC10546765 DOI: 10.1186/s12866-023-02983-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 08/17/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND The pathogenesis of intrahepatic cholestasis of pregnancy (ICP) remains unknown. The gut microbiome and its metabolites play important roles in bile acid metabolism, and previous studies have indicated the association of the gut microbiome with ICP. METHODS We recruited a cohort of 5100 participants, and 20 participants were enrolled in the severe ICP group, matched with 20 participants in the mild ICP group and 20 controls. 16S rRNA sequencing and nontargeting metabolomics were adapted to explore the gut microbiome and fecal metabolites. RESULTS An increase in richness and a dramatic deviation in composition were found in the gut microbiome in ICP. Decreased Firmicutes and Bacteroidetes abundances and increased Proteobacteria abundances were found in women with severe but not mild ICP compared to healthy pregnant women. Escherichia-Shigella and Lachnoclostridium abundances increased, whereas Ruminococcaceae abundance decreased in ICP group, especially in severe ICP group. The fecal metabolite composition and diversity presented typical variation in severe ICP. A significant increase in bile acid, formate and succinate levels and a decrease in butyrate and hypoxanthine levels were found in women with severe ICP. The MIMOSA model indicated that genera Ruminococcus gnavus group, Lachnospiraceae FCS020 group, and Lachnospiraceae NK4A136 group contributed significantly to the metabolism of hypoxanthine, which was significantly depleted in subjects with severe ICP. Genus Acinetobacter contributed significantly to formate metabolism, which was significantly enriched in subjects with severe ICP. CONCLUSIONS Women with severe but not mild ICP harbored a unique gut microbiome and fecal metabolites compared to healthy controls. Based on these profiles, we hypothesized that the gut microbiome was involved in bile acid metabolism through metabolites, affecting ICP pathogenesis and development, especially severe ICP.
Collapse
Affiliation(s)
- Xiang Li
- Shanghai Key Laboratory of Maternal Fetal Medicine Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai, 200040, China
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, No. 2699, West Gaoke Road, Shanghai, 200040, People's Republic of China
| | - Han Xie
- Shanghai Key Laboratory of Maternal Fetal Medicine Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai, 200040, China
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, No. 2699, West Gaoke Road, Shanghai, 200040, People's Republic of China
| | - Jia-Jing Chao
- Shanghai Key Laboratory of Maternal Fetal Medicine Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai, 200040, China
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, No. 2699, West Gaoke Road, Shanghai, 200040, People's Republic of China
| | - Yuan-Hui Jia
- Shanghai Key Laboratory of Maternal Fetal Medicine Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai, 200040, China
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200040, China
| | - Jia Zuo
- Shanghai Key Laboratory of Maternal Fetal Medicine Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai, 200040, China
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, No. 2699, West Gaoke Road, Shanghai, 200040, People's Republic of China
| | - Yan-Peng An
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yi-Rong Bao
- Shanghai Key Laboratory of Maternal Fetal Medicine Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai, 200040, China
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, No. 2699, West Gaoke Road, Shanghai, 200040, People's Republic of China
| | - Xiang Jiang
- Shanghai Key Laboratory of Maternal Fetal Medicine Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai, 200040, China.
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, No. 2699, West Gaoke Road, Shanghai, 200040, People's Republic of China.
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200040, China.
| | - Hao Ying
- Shanghai Key Laboratory of Maternal Fetal Medicine Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai, 200040, China.
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, No. 2699, West Gaoke Road, Shanghai, 200040, People's Republic of China.
| |
Collapse
|
18
|
Stojic J, Kukla M, Grgurevic I. The Intestinal Microbiota in the Development of Chronic Liver Disease: Current Status. Diagnostics (Basel) 2023; 13:2960. [PMID: 37761327 PMCID: PMC10528663 DOI: 10.3390/diagnostics13182960] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Chronic liver disease (CLD) is a significant global health burden, leading to millions of deaths annually. The gut-liver axis plays a pivotal role in this context, allowing the transport of gut-derived products directly to the liver, as well as biological compounds from the liver to the intestine. The gut microbiota plays a significant role in maintaining the health of the digestive system. A change in gut microbiome composition as seen in dysbiosis is associated with immune dysregulation, altered energy and gut hormone regulation, and increased intestinal permeability, contributing to inflammatory mechanisms and damage to the liver, irrespective of the underlying etiology of CLD. The aim of this review is to present the current knowledge about the composition of the intestinal microbiome in healthy individuals and those with CLD, including the factors that affect this composition, the impact of the altered microbiome on the liver, and the mechanisms by which it occurs. Furthermore, this review analyzes the effects of gut microbiome modulation on the course of CLD, by using pharmacotherapy, nutrition, fecal microbiota transplantation, supplements, and probiotics. This review opens avenues for the translation of knowledge about gut-liver interplay into clinical practice as an additional tool to fight CLD and its complications.
Collapse
Affiliation(s)
- Josip Stojic
- Department of Gastroenterology, Hepatology and Clinical Nutrition, University Hospital Dubrava, 10000 Zagreb, Croatia;
| | - Michał Kukla
- Department of Internal Medicine and Geriatrics, Faculty of Medicine, Jagellonian University Medical College, 31-688 Kraków, Poland;
- Department of Endoscopy, University Hospital, 30-688 Kraków, Poland
| | - Ivica Grgurevic
- Department of Gastroenterology, Hepatology and Clinical Nutrition, University Hospital Dubrava, 10000 Zagreb, Croatia;
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
19
|
Guan X, Zhu J, Yi L, Sun H, Yang M, Huang Y, Pan H, Wei H, Zhao H, Zhao Y, Zhao S. Comparison of the gut microbiota and metabolites between Diannan small ear pigs and Diqing Tibetan pigs. Front Microbiol 2023; 14:1197981. [PMID: 37485506 PMCID: PMC10359432 DOI: 10.3389/fmicb.2023.1197981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/12/2023] [Indexed: 07/25/2023] Open
Abstract
Objective Host genetics and environment participate in the shaping of gut microbiota. Diannan small ear pigs and Diqing Tibetan pigs are excellent native pig breeds in China and live in different environments. However, the gut microbiota of Diannan small ear pigs and Diqing Tibetan pigs were still rarely understood. Therefore, this study aimed to analyze the composition characteristics of gut microbiota and metabolites in Diannan small ear pigs and Diqing Tibetan pigs. Methods Fresh feces of 6 pigs were randomly collected from 20 4-month-old Diannan small ear pigs (DA group) and 20 4-month-old Diqing Tibetan pigs (TA group) for high-throughput 16S rRNA sequencing and liquid chromatography-mass spectrometry (LC-MS) non-targeted metabolome analysis. Results The results revealed that Firmicutes and Bacteroidetes were the dominant phyla in the two groups. Chao1 and ACE indices differed substantially between DA and TA groups. Compared with the DA group, the relative abundance of Prevotellaceae, and Ruminococcus was significantly enriched in the TA group, while the relative abundance of Lachnospiraceae, Actinomyces, and Butyricicoccus was significantly reduced. Cholecalciferol, 5-dehydroepisterol, stigmasterol, adrenic acid, and docosahexaenoic acid were significantly enriched in DA group, which was involved in the steroid biosynthesis and biosynthesis of unsaturated fatty acids. 3-phenylpropanoic acid, L-tyrosine, phedrine, rhizoctin B, and rhizoctin D were significantly enriched in TA group, which was involved in the phenylalanine metabolism and phosphonate and phosphinate metabolism. Conclusion We found that significant differences in gut microbiota composition and metabolite between Diannan small ear pigs and Diqing Tibetan pigs, which provide a theoretical basis for exploring the relationship between gut microbiota and pig breeds.
Collapse
Affiliation(s)
- Xuancheng Guan
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, China
| | - Junhong Zhu
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, China
| | - Lanlan Yi
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, China
| | - Haichao Sun
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, China
| | - Minghua Yang
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, China
| | - Ying Huang
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, China
| | - Hongbin Pan
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, China
| | - Hongjiang Wei
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, Kunming, China
| | - Hongye Zhao
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, Kunming, China
| | - Yanguang Zhao
- Shanghai Laboratory Animal Research Center, Shanghai, China
| | - Sumei Zhao
- Yunnan Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
20
|
Oseni SO, Naar C, Pavlović M, Asghar W, Hartmann JX, Fields GB, Esiobu N, Kumi-Diaka J. The Molecular Basis and Clinical Consequences of Chronic Inflammation in Prostatic Diseases: Prostatitis, Benign Prostatic Hyperplasia, and Prostate Cancer. Cancers (Basel) 2023; 15:3110. [PMID: 37370720 DOI: 10.3390/cancers15123110] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/23/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Chronic inflammation is now recognized as one of the major risk factors and molecular hallmarks of chronic prostatitis, benign prostatic hyperplasia (BPH), and prostate tumorigenesis. However, the molecular mechanisms by which chronic inflammation signaling contributes to the pathogenesis of these prostate diseases are poorly understood. Previous efforts to therapeutically target the upstream (e.g., TLRs and IL1-Rs) and downstream (e.g., NF-κB subunits and cytokines) inflammatory signaling molecules in people with these conditions have been clinically ambiguous and unsatisfactory, hence fostering the recent paradigm shift towards unraveling and understanding the functional roles and clinical significance of the novel and relatively underexplored inflammatory molecules and pathways that could become potential therapeutic targets in managing prostatic diseases. In this review article, we exclusively discuss the causal and molecular drivers of prostatitis, BPH, and prostate tumorigenesis, as well as the potential impacts of microbiome dysbiosis and chronic inflammation in promoting prostate pathologies. We specifically focus on the importance of some of the underexplored druggable inflammatory molecules, by discussing how their aberrant signaling could promote prostate cancer (PCa) stemness, neuroendocrine differentiation, castration resistance, metabolic reprogramming, and immunosuppression. The potential contribution of the IL1R-TLR-IRAK-NF-κBs signaling molecules and NLR/inflammasomes in prostate pathologies, as well as the prospective benefits of selectively targeting the midstream molecules in the various inflammatory cascades, are also discussed. Though this review concentrates more on PCa, we envision that the information could be applied to other prostate diseases. In conclusion, we have underlined the molecular mechanisms and signaling pathways that may need to be targeted and/or further investigated to better understand the association between chronic inflammation and prostate diseases.
Collapse
Affiliation(s)
- Saheed Oluwasina Oseni
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Corey Naar
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Mirjana Pavlović
- Department of Computer and Electrical Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Waseem Asghar
- Department of Computer and Electrical Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - James X Hartmann
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Gregg B Fields
- Department of Chemistry & Biochemistry, and I-HEALTH, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Nwadiuto Esiobu
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - James Kumi-Diaka
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
21
|
Chen MM, Wang P, Xie XH, Nie Z, Xu SX, Zhang N, Wang W, Yao L, Liu Z. Young adults with major depression show altered microbiome. Neuroscience 2023; 522:23-32. [PMID: 37169166 DOI: 10.1016/j.neuroscience.2023.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 05/13/2023]
Abstract
There is growing basic and clinical evidence that major depressive disorder (MDD) is associated with gut microbiome alterations, but clinical studies have tended not to adjust for confounding factors. And few studies on the gut microbiome focused on young adults with MDD. Here we performed a pilot study to compare the gut microbiome of young adults with MDD with healthy controls. Shotgun metagenomic sequencing was performed on stool samples obtained from 40 young adults with MDD and 42 healthy controls. After controlling for confounding factors including sex, age, BMI, alcohol or cigarette consumption, bowel movement quality, exercise or defecation frequency, we compared microbiome diversity between groups, identified differentially abundant taxa, and further compared functional differences through gut-brain and gut-metabolic module analysis. There were no significant differences in overall gut microbiome structure and function in young adults with MDD compared with controls. Abundance of Sutterellaceae and species belonging to Clostridium, Eubacterium, and Ruminococcus were significantly different between groups. The cysteine degradation I pathway was increased in MDD. After controlling for most confounding factors, this pilot study provides new evidence on the specific, often subtle gut dysbiosis affecting young adults with depression.
Collapse
Affiliation(s)
- Mian-Mian Chen
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430000 China
| | - Peilin Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430000 China
| | - Xin-Hui Xie
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430000 China
| | - Zhaowen Nie
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430000 China
| | - Shu-Xian Xu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430000 China
| | - Nan Zhang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430000 China
| | - Wei Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430000 China
| | - Lihua Yao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430000 China
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430000 China.
| |
Collapse
|
22
|
Duncan SH, Conti E, Ricci L, Walker AW. Links between Diet, Intestinal Anaerobes, Microbial Metabolites and Health. Biomedicines 2023; 11:biomedicines11051338. [PMID: 37239009 DOI: 10.3390/biomedicines11051338] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
A dense microbial community resides in the human colon, with considerable inter-individual variability in composition, although some species are relatively dominant and widespread in healthy individuals. In disease conditions, there is often a reduction in microbial diversity and perturbations in the composition of the microbiota. Dietary complex carbohydrates that reach the large intestine are important modulators of the composition of the microbiota and their primary metabolic outputs. Specialist gut bacteria may also transform plant phenolics to form a spectrum of products possessing antioxidant and anti-inflammatory activities. Consumption of diets high in animal protein and fat may lead to the formation of potentially deleterious microbial products, including nitroso compounds, hydrogen sulphide, and trimethylamine. Gut anaerobes also form a range of secondary metabolites, including polyketides that may possess antimicrobial activity and thus contribute to microbe-microbe interactions within the colon. The overall metabolic outputs of colonic microbes are derived from an intricate network of microbial metabolic pathways and interactions; however, much still needs to be learnt about the subtleties of these complex networks. In this review we consider the multi-faceted relationships between inter-individual microbiota variation, diet, and health.
Collapse
Affiliation(s)
- Sylvia H Duncan
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Elena Conti
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Liviana Ricci
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Alan W Walker
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| |
Collapse
|
23
|
Tanelian A, Nankova B, Cheriyan A, Arens C, Hu F, Sabban EL. Differences in gut microbiota associated with stress resilience and susceptibility to single prolonged stress in female rodents. Neurobiol Stress 2023; 24:100533. [PMID: 36970450 PMCID: PMC10034505 DOI: 10.1016/j.ynstr.2023.100533] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
Exposure to traumatic stress is a major risk factor for the development of neuropsychiatric disorders in a subpopulation of individuals, whereas others remain resilient. The determinants of resilience and susceptibility remain unclear. Here, we aimed to characterize the microbial, immunological, and molecular differences between stress-susceptible and stress-resilient female rats before and after exposure to a traumatic experience. Animals were randomly divided into unstressed controls (n = 10) and experimental groups (n = 16) exposed to Single Prolonged Stress (SPS), an animal model of PTSD. Fourteen days later, all rats underwent a battery of behavioral tests and were sacrificed the following day to collect different organs. Stool samples were collected before and after SPS. Behavioral analyses revealed divergent responses to SPS. The SPS treated animals were further subdivided into SPS-resilient (SPS-R) and SPS-susceptible (SPS-S) subgroups. Comparative analysis of fecal 16S sequencing before and after SPS exposure indicated significant differences in the gut microbial composition, functionality, and metabolites of the SPS-R and SPS-S subgroups. In line with the observed distinct behavioral phenotypes, the SPS-S subgroup displayed higher blood-brain barrier permeability and neuroinflammation relative to the SPS-R and/or controls. These results indicate, for the first time, pre-existing and trauma-induced differences in the gut microbial composition and functionality of female rats that relate to their ability to cope with traumatic stress. Further characterization of these factors will be crucial for understanding susceptibility and fostering resilience, especially in females, who are more likely than males to develop mood disorders.
Collapse
|
24
|
Kim H, Seo J, Park T, Seo K, Cho HW, Chun JL, Kim KH. Obese dogs exhibit different fecal microbiome and specific microbial networks compared with normal weight dogs. Sci Rep 2023; 13:723. [PMID: 36639715 PMCID: PMC9839755 DOI: 10.1038/s41598-023-27846-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Canine obesity is a major health concern that predisposes dogs to various disorders. The fecal microbiome has been attracting attention because of their impact on energy efficiency and metabolic disorders of host. However, little is known about specific microbial interactions, and how these may be affected by obesity in dogs. The objective of this study was to investigate the differences in fecal microbiome and specific microbial networks between obese and normal dogs. A total of 20 beagle dogs (males = 12, body weight [BW]: 10.5 ± 1.08 kg; females = 8, BW: 11.3 ± 1.71 kg; all 2-year-old) were fed to meet the maintenance energy requirements for 18 weeks. Then, 12 beagle dogs were selected based on body condition score (BCS) and divided into two groups: high BCS group (HBCS; BCS range: 7-9, males = 4, females = 2) and normal BCS group (NBCS; BCS range: 4-6, males = 4, females = 2). In the final week of the experiment, fecal samples were collected directly from the rectum, before breakfast, for analyzing the fecal microbiome using 16S rRNA gene amplicon sequencing. The HBCS group had a significantly higher final BW than the NBCS group (P < 0.01). The relative abundances of Faecalibacterium, Phascolarctobacterium, Megamonas, Bacteroides, Mucispirillum, and an unclassified genus within Ruminococcaceae were significantly higher in the HBCS group than those in the NBCS group (P < 0.05). Furthermore, some Kyoto Encyclopedia of Genes and Genomes (KEGG) modules related to amino acid biosynthesis and B vitamins biosynthesis were enriched in the HBCS group (P < 0.10), whereas those related to carbohydrate metabolism were enriched in the NBCS group (P < 0.10). Microbial network analysis revealed distinct co-occurrence and mutually exclusive interactions between the HBCS and NBCS groups. In conclusion, several genera related to short-chain fatty acid production were enriched in the HBCS group. The enriched KEGG modules in the HBCS group enhanced energy efficiency through cross-feeding between auxotrophs and prototrophs. However, further studies are needed to investigate how specific networks can be interpreted in the context of fermentation characteristics in the lower gut and obesity in dogs.
Collapse
Affiliation(s)
- Hanbeen Kim
- Department of Animal Science, Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea
| | - Jakyeom Seo
- Department of Animal Science, Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea
| | - Tansol Park
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-Do, 17546, Republic of Korea
| | - Kangmin Seo
- Animal Welfare Research Team, National Institute of Animal Science, Wanju-gun, 55365, Republic of Korea
| | - Hyun-Woo Cho
- Animal Welfare Research Team, National Institute of Animal Science, Wanju-gun, 55365, Republic of Korea
| | - Ju Lan Chun
- Animal Welfare Research Team, National Institute of Animal Science, Wanju-gun, 55365, Republic of Korea
| | - Ki Hyun Kim
- Animal Welfare Research Team, National Institute of Animal Science, Wanju-gun, 55365, Republic of Korea.
| |
Collapse
|
25
|
Ji X, Li R, Hu X, Tian Y, Liu L, Zhang C, Xu L, Chen Y, Xie H, Mao L, Cai T, Li W. Construction of model animals to explore intestinal microbiome for detection of breast cancer. PLoS One 2023; 18:e0280971. [PMID: 37195935 DOI: 10.1371/journal.pone.0280971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/26/2023] [Indexed: 05/19/2023] Open
Abstract
Breast cancer ranks first among female cancers and has become a major public health problem in the current society. More studies indicated that these cancers are related to the change in the gut microbiome that can cause metabolic and immune system disorders in the body. However, there are few studies on the changes in gut microbiome caused by the onset of breast cancer, and the relationship between breast cancer and gut microbiome needs to be further clarified. In this study, we inoculated 4T1 breast cancer cells to induce breast cancer tumorigenesis in mice and collected their feces samples at different stages during this process. These intestinal florae were analyzed using 16S rRNA gene amplicon sequencing, and the results showed that at the phylum level, the ratio of Firmicutes/Bacteroidetes decreased with the development of the tumor; at the family level, the intestinal microbiome had obvious variations of Lachnospiraceae, Bacteroidaceae, Erysipelotrichaceae, etc. The Kyoto Encyclopedia of Genes and Genomes (KEGG) and COG annotation demonstrated that decreased abundance of cancer-related signaling pathways. This study elucidated the relationship between breast cancer and intestinal microbiome, and the research results can be used as an important biomarker for the diagnosis of breast cancer.
Collapse
Affiliation(s)
- Xia Ji
- School of Life Science, Huizhou University, Huizhou, China
| | - Ruipeng Li
- School of Life Science, Huizhou University, Huizhou, China
| | - Xiaoyu Hu
- School of Life Science, Huizhou University, Huizhou, China
| | - Yufang Tian
- School of Life Science, Huizhou University, Huizhou, China
| | - Liqiong Liu
- School of Life Science, Huizhou University, Huizhou, China
| | - Chenyu Zhang
- School of Life Science, Huizhou University, Huizhou, China
| | - Liangxiong Xu
- School of Life Science, Huizhou University, Huizhou, China
| | - Yongzhi Chen
- School of Life Science, Huizhou University, Huizhou, China
| | - Haiwei Xie
- School of Life Science, Huizhou University, Huizhou, China
| | - Lutian Mao
- School of Life Science, Huizhou University, Huizhou, China
| | - Tianshu Cai
- Huizhou Health Sciences Polytechnic, Huizhou, China
| | - Weiwei Li
- Huizhou Health Sciences Polytechnic, Huizhou, China
| |
Collapse
|
26
|
Arumugam R, Ravichandran P, Yeap SK, Sharma RSK, Zulkifly SB, Yawah D, Annavi G. Application of High-Throughput Sequencing (HTS) to Enhance the Well-Being of an Endangered Species (Malayan Tapir): Characterization of Gut Microbiome Using MG-RAST. Methods Mol Biol 2023; 2649:175-194. [PMID: 37258862 DOI: 10.1007/978-1-0716-3072-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The Tapirus indicus, also known as Malayan tapir, has been listed as a rapidly declining animal species in the past decades, along with being declared and categorized as an endangered species by the International Union for Conservation of Nature (IUCN) 2016. This tapir species is geographically distributed across several countries in Southeast Asia such as Peninsular Malaysia, Indonesia (Sumatra), South Thailand, and Myanmar. Amongst these countries, the Peninsula Malaysia forest is recorded to contain the highest number of Malayan tapir population. Unfortunately, in the past decades, the population of Malayan tapirs has declined swiftly due to serious deforestation, habitat fragmentation, and heavy vehicle accidents during road crossings at forest routes. Concerned by this predicament, the Department of Wildlife and National Parks (DWNP) Peninsular Malaysia collaborated with a few local universities to conduct various studies aimed at increasing the population number of tapirs in Malaysia. Several studies were conducted with the aim of enhancing the well-being of tapirs in captivity. Veterinarians face problems when it comes to selecting healthy and suitable tapirs for breeding programs at conservation centers. Conventional molecular methods using high-throughput sequencing provides a solution in determining the health condition of Malayan tapirs using the Next-Generation Sequencing (NGS) technology. Unaware by most, gut microbiome plays an important role in determining the health condition of an organism by various aspects: (1) digestion control; (2) benefiting the immune system; and (3) playing a role as a "second brain." Commensal gut bacterial communities (microbiomes) are predicted to influence organism health and disease. Imbalance of unhealthy and healthy microbes in the gut may contribute to weight gain, high blood sugar, high cholesterol, and other disorders. In infancy, neonatal gut microbiomes are colonized with maternal and environmental flora, and mature toward a stable composition in two to three years. Interactions between the microorganism communities and the host allow for the establishment of microbiological roles. Identifying the core microbiome(s) are essential in the prediction of diseases and changes in environmental behavior of microorganisms. The dataset of 16S rRNA amplicon sequencing of Malayan tapir was deposited in the MG-RAST portal. Parameters such as quality control, taxonomic prediction (unknown and predicted), diversity (rarefaction), and diversity (alpha) were analyzed using sequencing approaches (Amplicon sequencing). Comparisons of parameters, according to the type of sequencing, showed significant differences, except for the prediction variable. In the Amplicon sequencing datasets, the parameters Rarefaction and Unknown had the highest correlation, while Alpha and Predicted had the lowest. Firmicutes, Bacteroidetes, Proteobacteria, Bacilli, and Bacteroidia were the most representative genera in Malayan tapir amplicon sequences, which indicated that most of the tapirs were healthy. However, continuous assessment to maintain the well-being of tapir for long term is still required. This chapter focuses on the introduction of 16S rRNA amplicon metagenomics in analyzing Malayan tapir gut microbiome dataset.
Collapse
Affiliation(s)
- Ramitha Arumugam
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia
- Dataplx Consultancy, Puchong, Selangor, Malaysia
| | - Prithivan Ravichandran
- Perdana University Graduate School (PUGSOM), Perdana University, Serdang, Selangor, Malaysia
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang, Selangor, Malaysia
| | | | - Shahrizim Bin Zulkifly
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia
| | - Donny Yawah
- Department of Wildlife and National Parks (DWNP), Wildlife Genetic Resource Banking Laboratory, Ex-Situ Conservation Division, Peninsular Malaysia, Ministry of Natural Resources and Environment Malaysia (NRE), Kuala Lumpur, Malaysia
| | - Geetha Annavi
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
27
|
Liu X, Huang L, Shi Y, Wang X, Luo Y, Wei S, Qin Y, Lu Y, Zhang W, Ju Y, Yan Y, Liao Y. Ganoderma lingzhi culture enhance growth performance via improvement of antioxidant activity and gut probiotic proliferation in Sanhuang broilers. Front Vet Sci 2023; 10:1143649. [PMID: 37138906 PMCID: PMC10150954 DOI: 10.3389/fvets.2023.1143649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/27/2023] [Indexed: 05/05/2023] Open
Abstract
Introduction The experiment was conducted to evaluate the effects of Ganoderma lingzhi culture (GLC) as a fermented feed on growth performance, serum biochemical profile, meat quality, and intestinal morphology and microbiota in Sanhuang broilers. In addition, the association between gut bacteria and metabolites was investigated via untargeted metabolomic analysis. Methods A total of 192 Sanhuang broilers (112 days old) with an initial body weight of 1.62 ± 0.19 kg were randomly allocated to four treatments, six replicate pens per treatment with 8 broilers per pen. The four treatments contain a control diet (corn-soybean meal basal diet, CON), a positive control diet (basal diet + 75 mg/kg chlortetracycline, PCON), and the experimental diets supplemented with 1.5 and 3% of GLC, respectively. The trial includes phase 1 (day 1-28) and phase 2 (day 29-56). Results The results showed that broilers in PCON and GLC-added treatments showed a lower FCR (P < 0.05) in phase 2 and overall period and a higher ADG (P < 0.05) in phase 2. On day 56, the concentrations of serum SOD (P < 0.05), and HDL (P < 0.05) and cecal SCFA contents (P < 0.05) were increased in broilers fed GLC diets. Broilers fed GLC also showed a higher microbiota diversity and an elevated abundance of SCFA-related bacteria in the caecum. The association between intestinal bacteria and metabolites was investigated via correlation analysis. The differential metabolites in the caecum, such as L-beta-aspartyl-L-aspartic acid and nicotinamide riboside, were identified. Conclusion In summary, dietary GCL supplementation could increase growth performance to some extent. Moreover, GLC might benefit broilers' health by improving serum HDL content, antioxidant status, SCFAs contents, bacterial diversity, and probiotic proliferation in the caecum.
Collapse
Affiliation(s)
- Xuzhou Liu
- Institute of Microbiology, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Liling Huang
- Institute of Microbiology, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yan Shi
- Guangxi Veterinary Research Institute, Nanning, China
| | - Xiaoguo Wang
- Institute of Microbiology, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yanglan Luo
- Institute of Microbiology, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Shiyan Wei
- Institute of Microbiology, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yanchun Qin
- Yulin Institute of Microbiology, Yulin, China
| | - Yuwen Lu
- Yulin Institute of Microbiology, Yulin, China
| | - Wenlong Zhang
- Institute of Microbiology, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Ying Ju
- Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yong Yan
- Institute of Microbiology, Guangxi Academy of Agricultural Sciences, Nanning, China
- *Correspondence: Yong Yan
| | - Yuying Liao
- Guangxi Veterinary Research Institute, Nanning, China
- Yuying Liao
| |
Collapse
|
28
|
Jinno C, Li X, Liu Y. Dietary supplementation of Bacillus subtilis or antibiotics modified intestinal microbiome of weaned pigs under enterotoxigenic Escherichia coli infection. Front Microbiol 2022; 13:1064328. [PMID: 36620005 PMCID: PMC9816667 DOI: 10.3389/fmicb.2022.1064328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Our previous research reported that supplementation of Bacillus subtilis DSM 25841 promoted growth and disease resistance of weaned pigs under enterotoxigenic Escherichia coli (ETEC) challenge and its efficacy is comparable to carbadox. This follow-up study aimed to characterize the effects of ETEC infection, supplementing B. subtilis DSM 25841 or carbadox on intestinal microbiota of pigs. Forty-eight weaned pigs (6.17 ± 0.36 kg BW) were randomly allotted to one of four treatments: negative control (NC), positive control (PC), antibiotics (AGP, 50 mg/kg of carbadox), and direct fed microbials (DFM, 2.56 × 109 CFU/kg of B. subtilis). The experiment lasted 28 days with 7 days before and 21 days after first E. coli inoculation (day 0). Pigs in the PC, AGP, and DFM groups were orally inoculated with F18 ETEC for 3 consecutive days with 1010 CFU per dose per day. Fecal samples were collected on day -7, and day 7 and day 21 post inoculation, digesta samples were collected from jejunum, ileum, and distal colon on day 21 post inoculation to perform 16S rRNA sequencing. Sampling days and locations influenced (p < 0.05) Chao1 index and beta-diversity. Age increased (p < 0.05) the relative abundance of Firmicutes but decreased (p < 0.05) the relative abundance of Bacteroidetes in feces. ETEC infection increased (p < 0.05) the relative abundance of Proteobacteria in feces on day 7 post inoculation. AGP reduced (p < 0.05) relative abundance of Firmicutes and Lactobacillaceae in feces compared with PC and DFM. AGP reduced (p < 0.05) relative abundance of Bifidobacteriaceae in jejunum and ileum, while DFM reduced (p < 0.05) relative abundance of Actinomycetaceae in jejunum and Lachnospiraceae in ileum, compared with PC. Pigs fed with DFM had greater (p < 0.05) relative abundance of Ruminococcaceae, Veillonellaceae, Bifidobacteriaceae in jejunum, Lactobacillaceae in ileum and colon, and Bifidobacteriaceae in colon than pigs in AGP. Current results indicate that carbadox or B. subtilis had stronger influences on microbial diversity and composition in ileum than other intestinal segments and feces. Supplementation of B. subtilis could increase or maintain the relative abundance of beneficial bacteria in ileum compared with carbadox.
Collapse
Affiliation(s)
- Cynthia Jinno
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Xunde Li
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Yanhong Liu
- Department of Animal Science, University of California, Davis, Davis, CA, United States,*Correspondence: Yanhong Liu,
| |
Collapse
|
29
|
Neoagaro-Oligosaccharides Ameliorate Chronic Restraint Stress-Induced Depression by Increasing 5-HT and BDNF in the Brain and Remodeling the Gut Microbiota of Mice. Mar Drugs 2022; 20:md20110725. [PMID: 36422003 PMCID: PMC9693468 DOI: 10.3390/md20110725] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Neoagaro-oligosaccharides (NAOs) belong to the algae oligosaccharides. NAOs have been found to have diverse biological activities. However, the effects of NAOs on depression and their underlying mechanism have not been thoroughly studied. A chronic restraint stress (CRS)-induced C57BL/6J mouse model was used to assess the antidepressant effects of NAOs. Anxiety and depression behaviors were assessed by open field tests (OFT) and forced swimming tests (FST), while interleukin 18 (IL-18), 5-hydroxytryptamine (5-HT) and brain-derived neurotrophic factor (BDNF) were the molecular biomarkers of depression. Fecal microbiota transplantation (FMT) was performed. The results showed that NAO treatment significantly improved the body weight of depressed mice and reduced the central area time in the OFT and immobility time in the FST. NAO treatment decreased the levels of IL-18 in the serum and increased the levels of 5-HT in the serum and whole brain and of BDNF in the whole brain. NAO treatment mitigated the gut microbiota dysbiosis in the depressed mice and reversed the decreased levels of short-chain fatty acids (SCFAs) in the cecum of the depressed mice. FMT indicated that the gut microbiota is, indeed, linked to depression, which was reflected in the changes in weight gain and behaviors. In a word, NAOs effectively reversed the CRS-induced mice model of depression, which depended on the changes in the gut microbiota and SCFAs, as well as its modulation of 5-HT and BDNF.
Collapse
|
30
|
Mukhopadhya I, Martin JC, Shaw S, McKinley AJ, Gratz SW, Scott KP. Comparison of microbial signatures between paired faecal and rectal biopsy samples from healthy volunteers using next-generation sequencing and culturomics. MICROBIOME 2022; 10:171. [PMID: 36242064 PMCID: PMC9563177 DOI: 10.1186/s40168-022-01354-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/18/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Faecal samples are frequently used to characterise the gut microbiota in health and disease, yet there is considerable debate about how representative faecal bacterial profiles are of the overall gut community. A particular concern is whether bacterial populations associated with the gut mucosa are properly represented in faecal samples, since these communities are considered critical in the aetiology of gastrointestinal diseases. In this study we compared the profiles of the faecal and mucosal microbiota from ten healthy volunteers using bacterial culturing (culturomics) and next-generation sequencing targeting the 16S ribosomal nucleic acid (rRNA) gene. Paired fresh rectal biopsies and faecal samples were processed under stringent anaerobic conditions to maintain the viability of the bacteria. Four different sample types were analysed: faecal (F), faecal homogenised (FHg), biopsy tissue (B) and biopsy wash (BW) samples. RESULTS: There were no significant statistical differences in either bacterial richness or diversity between biopsy washes (BW) and faecal (F) or faecal homogenised (FHg) samples. Principal coordinates analysis of a Bray-Curtis distance matrix generated from sequence variant tables did not show distinct clustering between these samples (PERMANOVA; p = 0.972) but showed strong clustering of samples from individual donors. However, the rectal biopsy tissue (B) samples had a significantly altered bacterial signature with greater abundance of Proteobacteria and Acidobacteria compared to faecal (F) and faecal homogenised (FHg) samples. A total of 528 bacteria encompassing 92 distinct bacterial species were isolated and cultured from a subset of six volunteer samples (biopsy washes and faeces). This included isolation of 22 novel bacterial species. There was significant similarity between the bacterial species grown in anaerobic culture and those identified by 16S rRNA gene sequencing (Spearman correlation; rho = 0.548, p = 0.001). CONCLUSION This study showed that the bacterial profiles of paired faecal and rectal biopsy wash samples were very similar, validating the use of faecal samples as a convenient surrogate for rectal biopsy-associated microbiota. Anaerobic bacterial culture results showed similar taxonomic patterns to the amplicon sequence analysis disproving the dogma that culture-based methods do not reflect findings of molecular assessments of gut bacterial composition. Video abstract.
Collapse
Affiliation(s)
| | - Jennifer C. Martin
- Gut Health Group, Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - Sophie Shaw
- Centre for Genome Enabled Biology and Medicine, University of Aberdeen, Old Aberdeen, UK
- Current Address - All Wales Medical Genomics Service, Institute of Medical Genetics, University Hospital of Wales, Heath Park, Cardiff, UK
| | - Aileen J. McKinley
- Department of Surgery, Aberdeen Royal Infirmary Foresterhill, Aberdeen, UK
| | - Silvia W. Gratz
- Gut Health Group, Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - Karen P. Scott
- Gut Health Group, Rowett Institute, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
31
|
Guo J, Lou X, Gong W, Bian J, Liao Y, Wu Q, Jiao Q, Zhang X. The effects of different stress on intestinal mucosal barrier and intestinal microecology were discussed based on three typical animal models. Front Cell Infect Microbiol 2022; 12:953474. [PMID: 36250050 PMCID: PMC9557054 DOI: 10.3389/fcimb.2022.953474] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Recent studies have revealed that the effect of intestinal microecological disorders on organismal physiology is not limited to the digestive system, which provides new perspectives for microecological studies and new ideas for clinical diagnosis and prevention of microecology-related diseases. Stress triggers impairment of intestinal mucosal barrier function, which could be duplicated by animal models. In this paper, pathological animal models with high prevalence and typical stressors-corresponding to three major stressors of external environmental factors, internal environmental factors, and social psychological factors, respectively exemplified by burns, intestinal ischemia-reperfusion injury (IIRI), and depression models-were selected. We summarized the construction and evaluation of these typical animal models and the effects of stress on the organism and intestinal barrier, as well as systematically discussed the effects of different stresses on the intestinal mucosal barrier and intestinal microecology.
Collapse
Affiliation(s)
- Junfeng Guo
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Xiaokun Lou
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Wenyan Gong
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Jing Bian
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Yuhan Liao
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Qi Wu
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Qibin Jiao
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Xingwei Zhang
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
32
|
Effect of Fructooligosaccharides Supplementation on the Gut Microbiota in Human: A Systematic Review and Meta-Analysis. Nutrients 2022; 14:nu14163298. [PMID: 36014803 PMCID: PMC9413759 DOI: 10.3390/nu14163298] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Numerous studies have investigated the effects of the supplementation of fructooligosaccharides (FOS) on the number of bacteria in the gut that are good for health, but the results have been inconsistent. Additionally, due to its high fermentability, supplementation of FOS may be associated with adverse gastrointestinal symptoms such as bloating and flatulence. Therefore, we assessed the effects of FOS interventions on the composition of gut microbiota and gastrointestinal symptoms in a systematic review and meta-analysis. Design: All randomized controlled trials published before 10 July 2022 that investigated the effects of FOS supplementation on the human gut microbiota composition and gastrointestinal symptoms and met the selection criteria were included in this study. Using fixed or random-effects models, the means and standard deviations of the differences between the two groups before and after the intervention were combined into weighted mean differences using 95% confidence intervals (CIs). Results: Eight studies containing 213 FOS supplements and 175 controls remained in this meta-analysis. Bifidobacterium spp. counts significantly increased during FOS ingestion (0.579, 95% CI: 0.444−0.714) in comparison with that of the control group. Subgroup analysis showed greater variation in Bifidobacterium spp. in adults (0.861, 95% CI: 0.614−1.108) than in infants (0.458, 95% CI: 0.297−0.619). The increase in Bifidobacterium spp. counts were greater in the group with an intervention duration greater than 4 weeks (0.841, 95% CI: 0.436−1.247) than an intervention time less than or equal to four weeks (0.532, 95% CI: 0.370−0.694), and in the group with intervention doses > 5 g (1.116, 95% CI: 0.685−1.546) the counts were higher than those with doses ≤ 5 g (0.521, 95% CI: 0.379−0.663). No differences in effect were found between FOS intervention and comparators in regard to the abundance of other prespecified bacteria or adverse gastrointestinal symptoms. Conclusions: This is the first meta-analysis to explore the effect of FOS on gut microbiota and to evaluate the adverse effects of FOS intake on the gastrointestinal tract. FOS supplementation could increase the number of colonic Bifidobacterium spp. while higher dose (7.5−15 g/d) and longer duration (>4 weeks) showed more distinct effects and was well tolerated.
Collapse
|
33
|
Gut microbiome profiles and associated metabolic pathways in patients of adult-onset immunodeficiency with anti-interferon-gamma autoantibodies. Sci Rep 2022; 12:9126. [PMID: 35650243 PMCID: PMC9159984 DOI: 10.1038/s41598-022-13289-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/05/2022] [Indexed: 11/08/2022] Open
Abstract
Autoantibodies against interferon-gamma (AutoAbs-IFN-γ) can cause the immunodeficiency condition following various opportunistic infections. Gut microbiota can affect the human immune system in many ways. Many studies have shown that gut dysbiosis was associated with some immune diseases, such as autoimmune diseases and human immunodeficiency virus (HIV) infection, while its relationship at anti-IFN-γ AAbs remains unknown. We aimed to identify the anti-IFN-γ AAbs specific microbiome and the possible association with immunodeficiency. We profiled fecal microbiome for two cohorts of forty subjects, including seven patients with anti-IFN-γ AAbs and 33 individuals with competent immune. The study shows that patients with anti-IFN-γ AAbs have characterized the gut microbiome and have lower alpha diversity indexes than healthy controls (HC). There are significant differences in the microbiome structure at both the family and genera level between the two cohorts. The anti-IFN-γ AAbs cohort featured some microbiome such as Clostridium, including the possible opportunistic pathogen and fewer genera including Bacteroides, Ruminococcus, and Faecalibacterium, some of them with possible immune-related genera. The PICRUSt2 pathway demonstrated the decreased abundance of some immune-related pathways and one potential pathway related to the immune alternations in the anti- IFN-γ AAbs cohort. This was the first study to examine the gut microbiome characteristics in patients with anti-IFN-γ AAbs. It could be involved in the pathogenesis of anti-IFN-γ AAbs and contribute to the derived immune condition in this disease. This could lead to new strategies for treating and preventing patients suffering from this disease.
Collapse
|
34
|
O'Riordan KJ, Collins MK, Moloney GM, Knox EG, Aburto MR, Fülling C, Morley SJ, Clarke G, Schellekens H, Cryan JF. Short chain fatty acids: Microbial metabolites for gut-brain axis signalling. Mol Cell Endocrinol 2022; 546:111572. [PMID: 35066114 DOI: 10.1016/j.mce.2022.111572] [Citation(s) in RCA: 223] [Impact Index Per Article: 74.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 02/08/2023]
Abstract
The role of the intestinal microbiota as a regulator of gut-brain axis signalling has risen to prominence in recent years. Understanding the relationship between the gut microbiota, the metabolites it produces, and the brain will be critical for the subsequent development of new therapeutic approaches, including the identification of novel psychobiotics. A key focus in this regard have been the short-chain fatty acids (SCFAs) produced by bacterial fermentation of dietary fibre, which include butyrate, acetate, and propionate. Ongoing research is focused on the entry of SCFAs into systemic circulation from the gut lumen, their migration to cerebral circulation and across the blood brain barrier, and their potential to exert acute and chronic effects on brain structure and function. This review aims to discuss our current mechanistic understanding of the direct and indirect influence that SCFAs have on brain function, behaviour and physiology, which will inform future microbiota-targeted interventions for brain disorders.
Collapse
Affiliation(s)
| | - Michael K Collins
- APC Microbiome Ireland, University College Cork, Ireland; Department of Anatomy & Neuroscience, University College Cork, Ireland
| | - Gerard M Moloney
- APC Microbiome Ireland, University College Cork, Ireland; Department of Anatomy & Neuroscience, University College Cork, Ireland
| | - Emily G Knox
- APC Microbiome Ireland, University College Cork, Ireland; School of Pharmacy, University College Cork, Ireland
| | - María R Aburto
- APC Microbiome Ireland, University College Cork, Ireland
| | | | - Shane J Morley
- APC Microbiome Ireland, University College Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Harriët Schellekens
- APC Microbiome Ireland, University College Cork, Ireland; Department of Anatomy & Neuroscience, University College Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Ireland; Department of Anatomy & Neuroscience, University College Cork, Ireland.
| |
Collapse
|
35
|
Murray ER, Kemp M, Nguyen TT. The Microbiota-Gut-Brain Axis in Alzheimer's Disease: A Review of Taxonomic Alterations and Potential Avenues for Interventions. Arch Clin Neuropsychol 2022; 37:595-607. [PMID: 35202456 PMCID: PMC9035085 DOI: 10.1093/arclin/acac008] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2022] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE The gut microbiome is a complex community of microorganisms that inhabit the gastrointestinal tract. The microbiota-gut-brain axis encompasses a bidirectional communication system that allows the gut to influence the brain via neural, endocrine, immune, and metabolic signaling. Differences in the gut microbiome have been associated with psychiatric and neurological disorders, including Alzheimer's Disease (ad). Understanding these ad-associated alterations may offer novel insight into the pathology and treatment of ad. METHOD We conducted a narrative review of clinical studies investigating the gut microbiome in ad, organizing the results by phyla to understand the biological contributions of the gut microbial community to ad pathology and clinical features. We also reviewed randomized clinical trials of interventions targeting the microbiome to ameliorate ad symptoms and biomarkers. RESULTS Alpha diversity is reduced in patients with ad. Within Firmicutes, taxa that produce beneficial metabolites are reduced in ad, including Clostridiaceae, Lachnospiraceae, Ruminococcus, and Eubacterium. Within Bacteroidetes, findings were mixed, with studies showing either reduced or increased abundance of Bacteroides in mild cognitive impairment or ad patients. Proteobacteria that produce toxins tend to be increased in ad patients, including Escherichia/Shigella. A Mediterranean-ketogenic dietary intervention significantly increased beneficial short-chain fatty acids and taxa that were inversely correlated with changes in ad pathological markers. Probiotic supplementation with Lactobacillus spp. and Bifidobacterium spp. improved cognitive function and reduced inflammatory and metabolic markers in patients with ad. CONCLUSIONS The gut microbiome may provide insight into ad pathology and be a novel target for intervention. Potential therapeutics include probiotics and dietary intervention.
Collapse
Affiliation(s)
- Emily R Murray
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA, USA,Department of Psychiatry, University of California at San Diego, La Jolla, CA, USA
| | - Mylon Kemp
- Department of Psychiatry, University of California at San Diego, La Jolla, CA, USA
| | - Tanya T Nguyen
- Corresponding author at: Associate Professor of Psychiatry, University of California at San Diego, 9500 Gilman Drive #0664, La Jolla, CA 92093, USA. Tel.: +(858)-246-5347; fax: +(858)-543-5475.E-mail address: (T.T. Nguyen)
| |
Collapse
|
36
|
Wang Z, Liu S, Xu X, Xiao Y, Yang M, Zhao X, Jin C, Hu F, Yang S, Tang B, Song C, Wang T. Gut Microbiota Associated With Effectiveness And Responsiveness to Mindfulness-Based Cognitive Therapy in Improving Trait Anxiety. Front Cell Infect Microbiol 2022; 12:719829. [PMID: 35281444 PMCID: PMC8908961 DOI: 10.3389/fcimb.2022.719829] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 01/24/2022] [Indexed: 11/23/2022] Open
Abstract
Objective Mindfulness-based interventions have been widely demonstrated to be effective in reducing stress, alleviating mood disorders, and improving quality of life; however, the underlying mechanisms remained to be fully understood. Along with the advanced research in the microbiota-gut-brain axis, this study aimed to explore the impact of gut microbiota on the effectiveness and responsiveness to mindfulness-based cognitive therapy (MBCT) among high trait anxiety populations. Design A standard MBCT was performed among 21 young adults with high trait anxiety. A total of 29 healthy controls were matched for age and sex. The differences in gut microbiota between the two groups were compared. The changes in fecal microbiota and psychological indicators were also investigated before and after the intervention. Results Compared with healthy controls, we found markedly decreased bacterial diversity and distinctive clusters among high trait anxiety populations, with significant overgrowth of bacteria such as Streptococcus, Blautia, and Romboutsia, and a decrease in genera such as Faecalibacterium, Coprococcus_3, and Lachnoclostridium. Moreover, MBCT attenuated trait anxiety and depression, improved mindfulness and resilience, and increased the similarity of gut microbiota to that of healthy controls. Notably, a high presence of intestinal Subdoligranulum pre-MBCT was associated with increased responsiveness to MBCT. Decreases in Subdoligranulum post-MBCT were indicative of ameliorated trait anxiety. The tryptophan metabolism pathways were significantly over-represented among high responders compared to low responders. Conclusion The significantly increased diversity post-MBCT added evidence to gut-brain communication and highlighted the utility of mycobiota-focused strategies for promoting the effectiveness and responsiveness of the MBCT to improve trait anxiety. Clinical Trial Registration chictr.org.cn, ChiCTR1900028389.
Collapse
Affiliation(s)
- Zonghua Wang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
- Department of Clinical Nursing, School of Nursing, Army Medical University, Chongqing, China
| | - Shuang Liu
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xiaoxiao Xu
- Department of Basic Psychology, School of Psychology, Army Medical University, Chongqing, China
| | - Yufeng Xiao
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Min Yang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xiaoyan Zhao
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Cancan Jin
- Department of Basic Psychology, School of Psychology, Army Medical University, Chongqing, China
| | - Feng Hu
- Department of Basic Psychology, School of Psychology, Army Medical University, Chongqing, China
| | - Shiming Yang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Bo Tang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Caiping Song
- Department of Nursing, Xinqiao Hospital, Army Medical University, Chongqing, China
- *Correspondence: Caiping Song, ; Tao Wang,
| | - Tao Wang
- Department of Basic Psychology, School of Psychology, Army Medical University, Chongqing, China
- *Correspondence: Caiping Song, ; Tao Wang,
| |
Collapse
|
37
|
Bian X, Shi T, Wang Y, Ma Y, Yu Y, Gao W, Guo C. Gut dysbiosis induced by antibiotics is improved by tangerine pith extract in mice. Nutr Res 2022; 101:1-13. [DOI: 10.1016/j.nutres.2022.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 12/19/2022]
|
38
|
Dawood A, Zuberi A, Shi W. Plant-based β-mannanase supplemented diet modulates the gut microbiota and up-regulates the expression of immunity and digestion-related genes in Cyprinus carpio. JOURNAL OF APPLIED ANIMAL RESEARCH 2022. [DOI: 10.1080/09712119.2021.2018327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Aneesa Dawood
- Department of Microbiology, Quaid-I-Azam University, Islamabad, Pakistan
- Department of Zoology, Quaid-I-Azam University, Islamabad, Pakistan
| | - Amina Zuberi
- Department of Zoology, Quaid-I-Azam University, Islamabad, Pakistan
| | - Weibin Shi
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
39
|
Wang L, Zhang Y, Liu L, Huang F, Dong B. Effects of Three-Layer Encapsulated Tea Tree Oil on Growth Performance, Antioxidant Capacity, and Intestinal Microbiota of Weaned Pigs. Front Vet Sci 2021; 8:789225. [PMID: 34926648 PMCID: PMC8674471 DOI: 10.3389/fvets.2021.789225] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
Tea tree oil (TTO) exerts key roles in improving growth performance of pigs. However, knowledge is limited regarding comparative effects of Encp TTO and Un-encp TTO supplementation on growth performance of pigs. A study determined the effects of TTO or its capsulation on growth performance, antioxidant capacity, and intestinal microbiome of weaned pigs. A total of 144 healthy pigs (8.5 ± 0.24 kg) were subjected to four treatments for a 28-d trial with six replicates per treatment and six pigs per pen: negative control, NC; positive control, PC (antibiotic supplemented); Un-encp TTO (supplemented with unencapsulated TTO); Encp TTO (supplemented with encapsulated TTO). NC, TTO, and PC treatments were compared with regard to improved average daily gain (ADG), average daily feed intake (ADFI), feed conversion rate, nutrient digestibility, and intestinal morphology (p < 0.05) and decreased diarrhea rate. TTO- and PC-treated pigs had higher levels of serum superoxide dismutase, glutathione peroxidase, and immunoglobulin G; lower levels of liver aspartate aminotransferase and alanine aminotransferase; and improved concentrations of interleukin 10 (IL-10), tumor necrosis factor α, and IL-1β (p < 0.05). TTO- and PC-treated pigs had higher abundance of beneficial bacterial species Subdoligranulum and lower abundance of diarrhea associated species Escherichia-Shigella in cecal and colonic digesta (p < 0.05). Encapsulation of TTO preserved more activities of TTO than its unencapsulated counterpart by showing higher ADG, ADFI, and feed conversion rate during day 1 (d1) to d14 (p < 0.05) and tended to lower diarrhea rate (p = 0.083) and improve villous height/crypt depth (VH/CD) ratio (p = 0.089) in jejunum. Encapsulation of TTO also improved antioxidant indexes and decreased liver injury and inflammation accordingly (p < 0.05). Encapsulated TTO-treated pigs had higher abundance of beneficial Clostridium_sensu_stricto_1 and lower the abundance of harmful Escherichia-Shigella in cecal and colonic digesta (p < 0.05). Our results demonstrated TTO benefits on improving growth performance of weaned pigs and further proved that encapsulation of TTO was superior to its unencapsulated counterpart at multiples. Encapsulated TTO was similar to the PC group and could be potentially an alternative of feed antibiotics for weaned pigs.
Collapse
Affiliation(s)
| | | | | | | | - Bing Dong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
40
|
Piacentino D, Grant-Beurmann S, Vizioli C, Li X, Moore CF, Ruiz-Rodado V, Lee MR, Joseph PV, Fraser CM, Weerts EM, Leggio L. Gut microbiome and metabolome in a non-human primate model of chronic excessive alcohol drinking. Transl Psychiatry 2021; 11:609. [PMID: 34853299 PMCID: PMC8636625 DOI: 10.1038/s41398-021-01728-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/27/2021] [Accepted: 11/05/2021] [Indexed: 02/08/2023] Open
Abstract
A relationship between the gut microbiome and alcohol use disorder has been suggested. Excessive alcohol use produces changes in the fecal microbiome and metabolome in both rodents and humans. Yet, these changes can be observed only in a subgroup of the studied populations, and reversal does not always occur after abstinence. We aimed to analyze fecal microbial composition and function in a translationally relevant baboon model of chronic heavy drinking that also meets binge criteria (drinking too much, too fast, and too often), i.e., alcohol ~1 g/kg and blood alcohol levels (BALs) ≥ 0.08 g/dL in a 2-hour period, daily, for years. We compared three groups of male baboons (Papio anubis): L = Long-term alcohol drinking group (12.1 years); S = Short-term alcohol drinking group (2.7 years); and C = Control group, drinking a non-alcoholic reinforcer (Tang®) (8.2 years). Fecal collection took place during 3 days of Drinking (D), followed by a short period (3 days) of Abstinence (A). Fecal microbial alpha- and beta-diversity were significantly lower in L vs. S and C (p's < 0.05). Members of the commensal families Lachnospiraceae and Prevotellaceae showed a relative decrease, whereas the opportunistic pathogen Streptococcus genus showed a relative increase in L vs. S and C (p's < 0.05). Microbiota-related metabolites of aromatic amino acids, tricarboxylic acid cycle, and pentose increased in L vs. S and C (FDR-corrected p < 0.01), with the latter two suggesting high energy metabolism and enhanced glycolysis in the gut lumen in response to alcohol. Consistent with the long-term alcohol exposure, mucosal damage and oxidative stress markers (N-acetylated amino acids, 2-hydroxybutyrate, and metabolites of the methionine cycle) increased in L vs. S and C (FDR-corrected p < 0.01). Overall, S showed few differences vs. C, possibly due to the long-term, chronic alcohol exposure needed to alter the normal gut microbiota. In the three groups, the fecal microbiome barely differed between conditions D and A, whereas the metabolome shifted in the transition from condition D to A. In conclusion, changes in the fecal microbiome and metabolome occur after significant long-term excessive drinking and are only partially affected by acute forced abstinence from alcohol. These results provide novel information on the relationship between the fecal microbiome and metabolome in a controlled experimental setting and using a unique non-human primate model of chronic excessive alcohol drinking.
Collapse
Affiliation(s)
- Daria Piacentino
- grid.94365.3d0000 0001 2297 5165Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224 USA ,grid.94365.3d0000 0001 2297 5165Center on Compulsive Behaviors, National Institutes of Health, 10 Center Dr, Bethesda, MD 20892 USA
| | - Silvia Grant-Beurmann
- grid.411024.20000 0001 2175 4264Institute for Genome Sciences, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD USA
| | - Carlotta Vizioli
- grid.420085.b0000 0004 0481 4802Sensory Science and Metabolism Unit, National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research and National Institute of Nursing Research Division of Intramural Research, 10 Center Dr, Bethesda, MD 20892 USA
| | - Xiaobai Li
- grid.94365.3d0000 0001 2297 5165Biostatistics and Clinical Epidemiology Services, National Institutes of Health, Bethesda, MD USA
| | - Catherine F. Moore
- grid.21107.350000 0001 2171 9311Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Nathan Shock Drive, Baltimore, MD 21224 USA
| | - Victor Ruiz-Rodado
- grid.94365.3d0000 0001 2297 5165Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, 10 Center Dr, Bethesda, MD 20892 USA
| | - Mary R. Lee
- grid.94365.3d0000 0001 2297 5165Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224 USA
| | - Paule V. Joseph
- grid.420085.b0000 0004 0481 4802Sensory Science and Metabolism Unit, National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research and National Institute of Nursing Research Division of Intramural Research, 10 Center Dr, Bethesda, MD 20892 USA
| | - Claire M. Fraser
- grid.411024.20000 0001 2175 4264Institute for Genome Sciences, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD USA
| | - Elise M. Weerts
- grid.21107.350000 0001 2171 9311Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Nathan Shock Drive, Baltimore, MD 21224 USA
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD, 21224, USA. .,Center on Compulsive Behaviors, National Institutes of Health, 10 Center Dr, Bethesda, MD, 20892, USA. .,Medication Development Program, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD, 21224, USA. .,Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University School of Public Health, 121 South Main Street, Providence, RI, USA. .,Division of Addiction Medicine, Department of Medicine, Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD, 21205, USA. .,Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Rd NW, Washington, DC, 20007, USA.
| |
Collapse
|
41
|
Kim SE, Park JW, Kim HS, Jang MK, Suk KT, Kim DJ. The Role of Gut Dysbiosis in Acute-on-Chronic Liver Failure. Int J Mol Sci 2021; 22:11680. [PMID: 34769109 PMCID: PMC8584227 DOI: 10.3390/ijms222111680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
Acute-on-chronic liver failure (ACLF) is an important syndrome of liver failure that has a high risk of short-term mortality in patients with chronic liver disease. The development of ACLF is associated with proinflammatory precipitating events, such as infection, alcoholic hepatitis, and intense systemic inflammation. Recently, the role of the gut microbiome has increasingly emerged in human health and disease. Additionally, the gut microbiome might have a major role in the development of liver disease. In this review, we examine evidence to support the role of gut dysbiosis in cirrhosis and ACLF. Additionally, we explore the mechanism by which the gut microbiome contributes to the development of ACLF, with a focus on alcohol-induced liver disease.
Collapse
Affiliation(s)
- Sung-Eun Kim
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon 24252, Korea; (S.-E.K.); (J.W.P.); (H.S.K.); (M.-K.J.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Korea
| | - Ji Won Park
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon 24252, Korea; (S.-E.K.); (J.W.P.); (H.S.K.); (M.-K.J.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Korea
| | - Hyung Su Kim
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon 24252, Korea; (S.-E.K.); (J.W.P.); (H.S.K.); (M.-K.J.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Korea
| | - Myoung-Kuk Jang
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon 24252, Korea; (S.-E.K.); (J.W.P.); (H.S.K.); (M.-K.J.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Korea
| | - Ki Tae Suk
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon 24252, Korea; (S.-E.K.); (J.W.P.); (H.S.K.); (M.-K.J.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Korea
| | - Dong Joon Kim
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon 24252, Korea; (S.-E.K.); (J.W.P.); (H.S.K.); (M.-K.J.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
42
|
Skeen HR, Cooper NW, Hackett SJ, Bates JM, Marra PP. Repeated sampling of individuals reveals impact of tropical and temperate habitats on microbiota of a migratory bird. Mol Ecol 2021; 30:5900-5916. [PMID: 34580952 DOI: 10.1111/mec.16170] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 08/26/2021] [Accepted: 09/02/2021] [Indexed: 01/04/2023]
Abstract
Migratory animals experiencing substantial change in diet and habitat across the annual cycle may have corresponding shifts in host-associated microbial diversity. Using automated telemetry and radio tags to recapture birds, we examined gut microbiota structure in the same population and often same individual of Kirtland's Warblers (Setophaga kirtlandii) initially sampled on their wintering grounds in The Bahamas and subsequently resampled within their breeding territories in Michigan, USA. Initial sampling occurred in March and April and resampling occurred in May, June and early July. The composition of the most abundant phyla and classes of the warblers' microbiota is similar to that of other migratory birds. However, we detected notable variation in abundance and diversity of numerous bacterial taxa, including a decrease in microbial richness and significant differences in microbial communities when comparing the microbiota of birds first captured in The Bahamas to that of birds recaptured in Michigan. This is observed at the individual and population level. Furthermore, we found that 22 bacterial genera exhibit heightened abundance within specific sampling periods and are probably associated with diet and environmental change. Finally, we described a small, species-specific shared microbial profile that spans multiple time periods and environments within the migratory cycle. Our research highlights that the avian gut microbiota is dynamic over time, most significantly impacted by changing environments associated with migration. These results support the need for full annual cycle monitoring of migratory bird microbiota to improve understanding of seasonal host movement ecologies and response to recurrent physiological stressors.
Collapse
Affiliation(s)
- Heather R Skeen
- Committee on Evolutionary Biology, University of Chicago, Chicago, Illinois, USA.,Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, Illinois, USA
| | - Nathan W Cooper
- Migratory Bird Center, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia, USA.,Department of Biology and McCourt School of Public Policy, Georgetown University, Washington, District of Columbia, USA
| | - Shannon J Hackett
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, Illinois, USA
| | - John M Bates
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, Illinois, USA
| | - Peter P Marra
- Department of Biology and McCourt School of Public Policy, Georgetown University, Washington, District of Columbia, USA
| |
Collapse
|
43
|
Singh AK, Mishra B, Bedford MR, Jha R. Effects of supplemental xylanase and xylooligosaccharides on production performance and gut health variables of broiler chickens. J Anim Sci Biotechnol 2021; 12:98. [PMID: 34482841 PMCID: PMC8419990 DOI: 10.1186/s40104-021-00617-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/01/2021] [Indexed: 12/02/2022] Open
Abstract
Background This study evaluated the effects of supplemental xylanase and xylooligosaccharides (XOS) in a corn-soybean meal (SBM)-based diet on growth performance and intestinal health of broilers. A total of 288 day-old chicks (Cobb 500) were allocated to 36 floor pens (8 birds/pen) equally in 9 dietary treatments in a 3 × 3 factorial arrangement. The treatments were combinations of 3 levels of xylanase (0, 0.005% and 0.01% Econase XT) and 3 levels of prebiotics (0, 0.005% and 0.01% XOS) added to basal mash diets formulated in three phases (starter, d 0–14; grower, d 15–28; finisher, d 29–42). The feed intake and body weights were recorded weekly. On d 42, ileal sections were collected for histomorphometric and gene expression analysis, and cecal content was collected for determining short-chain fatty acids (SCFA) and microbiota. Results Xylanase linearly (P < 0.01) increased the average daily gain (ADG) in both the finisher and total period and the final body weight gain (FBWG, 2940 & 2932 vs. 2760 g) of broilers. XOS did not significantly increase either ADG or FBWG (P > 0.05). Supplemental xylanase and XOS did not affect average daily feed intake and feed conversion ratio (P > 0.05). Xylanase and XOS did not change villus height (VH) or crypt depth (CD) ratio (P > 0.05). However, xylanase exhibited a trend (P = 0.097) on VH:CD ratio. The inclusion of 0.01% XOS without xylanase increased the level of IL-10 (a marker of anti-inflammatory cytokine) and IL-4 (a T-cell differentiation cytokine) genes compared with control (P < 0.05). The acetate production was increased by xylanase (P < 0.01) and XOS (P < 0.05) without an additive effect. Xylanase increased total SCFA (P < 0.01) while XOS had a tendency to increase (P = 0.052). Alpha and beta diversity of microbiota among treatments were not different (P > 0.05). However, the mean proportion of family Ruminococcaceae was increased by the supplemental 0.01% xylanase (P < 0.01). Conclusion It can be concluded that XOS can enhance cecal fermentation, while xylanase can increase the body weight gain along with the fermentation metabolites in the ceca of broilers fed the corn-SBM-based diet but the effects may not always translate into an improved mucosal absorptive capacity and a better feed efficiency. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-021-00617-8.
Collapse
Affiliation(s)
- Amit K Singh
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Birendra Mishra
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | | | - Rajesh Jha
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA.
| |
Collapse
|
44
|
Zheng S, Zhu Y, Wu W, Zhang Q, Wang Y, Wang Z, Yang F. A correlation study of intestinal microflora and first-episode depression in Chinese patients and healthy volunteers. Brain Behav 2021; 11:e02036. [PMID: 33960717 PMCID: PMC8413750 DOI: 10.1002/brb3.2036] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/22/2020] [Accepted: 12/25/2020] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE This research examines the intestinal-associated flora of patients with depression compared with healthy volunteers to identify the characteristics and differences of flora associated with depression. It provides a theoretical basis for the prevention and treatment of depression through intestinal micro-ecological regulation. METHODS We recruited 30 patients with depression to participate in the patient group (PG), and 30 volunteers were recruited for the healthy control group (HG) from the Beijing Hui-long-guan Hospital. Thereafter, the 16S rRNA high-throughput sequencing method, using the Hamilton Depression Scale, was applied to analyze patient and healthy groups. RESULTS PG and HG microflora were different regarding phylum, Family, Genus, and Order. The results showed that Barnesiella was the dominant flora in depression patients, while Lachnospiraceae and Alloprevotella were the dominant bacteria in healthy participants. The proportion of Betaproteobateria (Proteobacteria), Alcaligenaceae (proinflammatory), Peptostreptococcaceae, Catenibacterium, Romboutsia, Sutterella, and Burkholderiales in the anxiety-negative depressed group was significantly higher than in the anxiety-positive group; and the proportion of Anaerostipes (inflammation) and Faecalibacterium (anti-inflammatory) bacteria was significantly lower than that of patients with anxiety. CONCLUSION Results showed there were differences in intestinal micro-ecology between patients with depression and healthy volunteers. We found that the level of inflammation-related bacteria in anxiety-positive patients was lower than that in anxiety-negative patients. These results enrich the knowledge of relationships between depression and intestinal flora and provide a theoretical basis for probiotics to assist in the treatment of depression.
Collapse
Affiliation(s)
- Shaojun Zheng
- College of Basic Medical and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.,Department of Pharmacology, Basic Medical College, Inner Mongolia Medical University, Huhehaote, China
| | - Yubing Zhu
- College of Basic Medical and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Weidong Wu
- Department of Pharmacology, Basic Medical College, Inner Mongolia Medical University, Huhehaote, China
| | - Qi Zhang
- HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Yongqian Wang
- HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Zhiren Wang
- HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Fude Yang
- HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| |
Collapse
|
45
|
Dowdell AS, Colgan SP. Metabolic Host-Microbiota Interactions in Autophagy and the Pathogenesis of Inflammatory Bowel Disease (IBD). Pharmaceuticals (Basel) 2021; 14:708. [PMID: 34451805 PMCID: PMC8399382 DOI: 10.3390/ph14080708] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/17/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a family of conditions characterized by chronic, relapsing inflammation of the gastrointestinal tract. IBD afflicts over 3 million adults in the United States and shows increasing prevalence in the Westernized world. Current IBD treatments center on modulation of the damaging inflammatory response and carry risks such as immunosuppression, while the development of more effective treatments is hampered by our poor understanding of the molecular mechanisms of IBD pathogenesis. Previous genome-wide association studies (GWAS) have demonstrated that gene variants linked to the cellular response to microorganisms are most strongly associated with an increased risk of IBD. These studies are supported by mechanistic work demonstrating that IBD-associated polymorphisms compromise the intestine's anti-microbial defense. In this review, we summarize the current knowledge regarding IBD as a disease of defects in host-microbe interactions and discuss potential avenues for targeting this mechanism for future therapeutic development.
Collapse
Affiliation(s)
| | - Sean P. Colgan
- Department of Medicine and the Mucosal Inflammation Program, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, CO 80045, USA;
| |
Collapse
|
46
|
Huang W, Yin H, Yang Y, Jin L, Lu G, Dang Z. Influence of the co-exposure of microplastics and tetrabromobisphenol A on human gut: Simulation in vitro with human cell Caco-2 and gut microbiota. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146264. [PMID: 33725607 DOI: 10.1016/j.scitotenv.2021.146264] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/20/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
Microplastics (MPs) pollution becomes an emergent threat to the ecosystem, and its joint effect with organic contaminants will cause more severe consequences. Recently, MPs has been observed in human feces, suggesting that we are exposed to an uncertain danger. In this study, the joint effect of polyethylene microplastics particles (PEMPs) and Tetrabromobisphenol A (TBBPA) on human gut was explored through the simulation experiment in vitro with human cell Caco-2 and gut microbiota. The toxicity of TBBPA and PEMPs on Caco-2 human cells was considered by physiological and biochemical indexes such as cell proliferation, cell cycle, reactive oxygen species, lactate dehydrogenase release, and mitochondrial membrane potential. Besides, microbial community diversity, community structure, and function changes of gut microbiota were investigated using Illumina 16S rRNA gene MiSeq sequencing to reveal the influence of TBBPA and PEMPs on human gut microbiota. The results indicated that both PEMPs and TBBPA would deteriorate the status of Caco-2 cells, and TBBPA played a major role in it; meanwhile, PEMPs affected Caco-2 cells at high concentrations. Particularly, TBBPA and PEMPs exhibited a joint effect on Caco-2 cells to a certain degree. TBBPA selectivity inhibited the growth of gram-positive bacteria such as Enterococcus and Lactobacillus, contributing to the thriving of gram-negative bacteria such as Escherichia and Bacteroides. The existence of PEMPs would enhance the proportion of Clostridium, Bacteroides, and Escherichia. Community composition changed dramatically with the interference of PEMPs and TBBPA; this was undesirable to the healthy homeostasis of the human gut. PICRUSt analysis determined both PEMPs and TBBPA interfered with the metabolism pathways of gut microbiota. Hence, the threat of MPs and TBBPA to humans should arouse vigilance.
Collapse
Affiliation(s)
- Wantang Huang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Hua Yin
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China.
| | - Yuanyu Yang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Lizhu Jin
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Guining Lu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Zhi Dang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| |
Collapse
|
47
|
Wang Y, Lv X, Li X, Zhao J, Zhang K, Hao X, Liu K, Liu H. Protective Effect of Lactobacillus plantarum P8 on Growth Performance, Intestinal Health, and Microbiota in Eimeria-Infected Broilers. Front Microbiol 2021; 12:705758. [PMID: 34305875 PMCID: PMC8299996 DOI: 10.3389/fmicb.2021.705758] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/21/2021] [Indexed: 12/23/2022] Open
Abstract
Coccidiosis is one of the major parasitic diseases in the commercial broiler industry. Probiotics can protect poultry against Eimeria infection. However, the mechanisms are not fully known. Therefore, Lactobacillus plantarum P8 (P8) was used to investigate its anti-coccidial property and mechanism. Five hundred broilers were allocated to five treatments: control diet (NC), control diet + Eimeria infection (IC), control diet containing 1 × 107 cfu/g P8 + Eimeria infection (P8L), control diet containing 1 × 108 cfu/g P8 + Eimeria infection (P8H), and control diet + Eimeria infection + Diclazuril (DIC). At day 14, all treatments except NC were inoculated with sporulated oocysts. Results indicated that Eimeria infection increased the mortality and oocysts shedding, and declined the growth performance as well as the intestinal barrier in Eimeria-treated broilers. On the contrary, dietary supplementation of low level P8, high level P8 and DIC decreased the mortality and oocysts shedding, but improved the growth performance and intestinal barrier. The impaired intestinal morphology in the IC group was also improved by P8H and DIC treatments. Besides, the elevated oxidative stress and pro-inflammation in Eimeria-infected broilers were reduced by P8L, P8H, and DIC treatments. Metagenomic analysis indicated P8 altered the structure of the gut microbiota, and the alteration was more obvious at day 21 than day 42. Notably, IC also increased the abundances of Eimeriidae, Eimeria and Eimeria tenella at day 21, while P8L and DIC decreased the abundances. Correlation analysis revealed that bacteria in Eimeria-treated broilers positively correlated with the intestinal permeability, oxidative stress and inflammation, while bacteria in broilers receiving P8L and DIC negatively correlated with the aforementioned pathological indices. Functional prediction demonstrated that the metagenomes of Eimeria-infected broilers were involved in several diseases. But the metagenomes of P8L-treated broilers were involved in energy metabolism and replication repair. In conclusion, dietary P8 supplementation inhibited oocyst shedding and improved the growth performance as well as the intestinal health of broilers infected with Eimeria, which was closely related to the regulation of gut microbiota. Moreover, the effects of P8 may be more effective in the early infection of coccidia.
Collapse
Affiliation(s)
- Yang Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Xiaoguo Lv
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Xuemin Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Jinshan Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Kai Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Xiaojing Hao
- Qingdao Institute of Animal Science and Veterinary Medicine, Qingdao, China
| | - Kaidong Liu
- Qingdao Institute of Animal Science and Veterinary Medicine, Qingdao, China
| | - Huawei Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
48
|
Xu Q, Zhang SS, Wang RR, Weng YJ, Cui X, Wei XT, Ni JJ, Ren HG, Zhang L, Pei YF. Mendelian Randomization Analysis Reveals Causal Effects of the Human Gut Microbiota on Abdominal Obesity. J Nutr 2021; 151:1401-1406. [PMID: 33768223 DOI: 10.1093/jn/nxab025] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/20/2020] [Accepted: 01/26/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Although recent studies have revealed an association between the composition of the gut microbiota and obesity, whether specific gut microbiota cause obesity has not been determined. OBJECTIVES The aim of this study is to determine the causal relationship between specific gut microbiota and abdominal obesity. Based on genome-wide association study (GWAS) summary statistics, we performed a 2-sample Mendelian randomization (MR) analysis to evaluate whether the gut microbiota affects abdominal obesity. METHODS Gut microbiota GWAS in 1126 twin pairs (age range, 18-89 years; 89% were females) from the TwinsUK study were used as exposure data. The primary outcome tested was trunk fat mass (TFM) GWAS in 492,805 participants (age range, 40-69 years; 54% were females) from the UK Biobank. The gut microbiota were classified at family, genus, and species levels. A feature was defined as a distinct family, genus, or species. MR analysis was mainly performed by an inverse variance-weighted test or Wald ratio test, depending on the number of instrumental variables (IVs) involved. A sensitivity analysis was performed on significant results by a weighted median test and a weighted genetic risk score (GRS) analysis. RESULTS Results of MR analyses provided evidence of a causal association between 3 microbiota features and TFM, including 1 family [Lachnosiraceae; P = 0.02; β = 0.001 (SEE, 4.28 × 10-4)], 1 genus [Bifidobacterium; P = 5.0 × 10-9; β = -0.08 (SEE, 0.14)], and 1 species [Prausnitzii; P = 0.03; β = -0.007 (SEE, 0.003)]. Both the weighted median test and GRS analysis successfully validated the association of the genetically predicted family, Lachnosiraceae (Pweighted median = 0.03; PGRS = 0.004). CONCLUSIONS Our findings provided evidence of a causal association between gut microbiota and TFM in UK adults and identified specific bacteria taxa that may regulate the fat metabolism, thus offering new direction for the treatment of obesity.
Collapse
Affiliation(s)
- Qian Xu
- Center of Translational Medicine, Taicang Affiliated Hospital of Soochow University, The First People's Hospital of Taicang, Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, 215400, SuZhou, Jiangsu, PR China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, 215123, SuZhou, Jiangsu, PR China
| | - Shan-Shan Zhang
- Center of Translational Medicine, Taicang Affiliated Hospital of Soochow University, The First People's Hospital of Taicang, Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, 215400, SuZhou, Jiangsu, PR China
| | - Rui-Rui Wang
- Center of Translational Medicine, Taicang Affiliated Hospital of Soochow University, The First People's Hospital of Taicang, Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, 215400, SuZhou, Jiangsu, PR China
| | - Yu-Jing Weng
- Center of Translational Medicine, Taicang Affiliated Hospital of Soochow University, The First People's Hospital of Taicang, Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, 215400, SuZhou, Jiangsu, PR China
| | - Xun Cui
- Center of Translational Medicine, Taicang Affiliated Hospital of Soochow University, The First People's Hospital of Taicang, Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, 215400, SuZhou, Jiangsu, PR China
| | - Xin-Tong Wei
- Center of Translational Medicine, Taicang Affiliated Hospital of Soochow University, The First People's Hospital of Taicang, Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, 215400, SuZhou, Jiangsu, PR China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, 215123, SuZhou, Jiangsu, PR China
| | - Jing-Jing Ni
- Center of Translational Medicine, Taicang Affiliated Hospital of Soochow University, The First People's Hospital of Taicang, Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, 215400, SuZhou, Jiangsu, PR China.,Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, 215123, SuZhou, Jiangsu, PR China
| | - Hai-Gang Ren
- Center of Translational Medicine, Taicang Affiliated Hospital of Soochow University, The First People's Hospital of Taicang, Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, 215400, SuZhou, Jiangsu, PR China.,Laboratory of Molecular Neuropathology, Department of Pharmacology, School of Pharmaceutical Sciences, Medical College, Soochow University, 215123, SuZhou, PR China
| | - Lei Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, 215123, SuZhou, Jiangsu, PR China.,Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, 215123, SuZhou, Jiangsu, PR China
| | - Yu-Fang Pei
- Center of Translational Medicine, Taicang Affiliated Hospital of Soochow University, The First People's Hospital of Taicang, Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, 215400, SuZhou, Jiangsu, PR China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, 215123, SuZhou, Jiangsu, PR China
| |
Collapse
|
49
|
Trzeciak P, Herbet M. Role of the Intestinal Microbiome, Intestinal Barrier and Psychobiotics in Depression. Nutrients 2021; 13:927. [PMID: 33809367 PMCID: PMC8000572 DOI: 10.3390/nu13030927] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 12/18/2022] Open
Abstract
The intestinal microbiota plays an important role in the pathophysiology of depression. As determined, the microbiota influences the shaping and modulation of the functioning of the gut-brain axis. The intestinal microbiota has a significant impact on processes related to neurotransmitter synthesis, the myelination of neurons in the prefrontal cortex, and is also involved in the development of the amygdala and hippocampus. Intestinal bacteria are also a source of vitamins, the deficiency of which is believed to be related to the response to antidepressant therapy and may lead to exacerbation of depressive symptoms. Additionally, it is known that, in periods of excessive activation of stress reactions, the immune system also plays an important role, negatively affecting the tightness of the intestinal barrier and intestinal microflora. In this review, we have summarized the role of the gut microbiota, its metabolites, and diet in susceptibility to depression. We also describe abnormalities in the functioning of the intestinal barrier caused by increased activity of the immune system in response to stressors. Moreover, the presented study discusses the role of psychobiotics in the prevention and treatment of depression through their influence on the intestinal barrier, immune processes, and functioning of the nervous system.
Collapse
Affiliation(s)
| | - Mariola Herbet
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b Street, 20-090 Lublin, Poland;
| |
Collapse
|
50
|
Тикунов АЮ, Морозов ВВ, Швалов АН, Бардашева АВ, Шрайнер ЕВ, Максимова ОА, Волошина ИО, Морозова ВВ, Власов ВВ, Тикунова НВ. [Fecal microbiome change in patients with ulcerative colitis after fecal microbiota transplantation]. Vavilovskii Zhurnal Genet Selektsii 2021; 24:168-175. [PMID: 33659796 PMCID: PMC7716530 DOI: 10.18699/vj20.610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Intestinal human microbiota is a dynamic system that is under the pressures of its host organism and external factors. Microbiota disruption caused by these factors can lead to severe diseases including inflammatory and oncological diseases of the gastrointestinal tract. One of the possible approaches in managing the intestinal microbiota is fecal microbiota transplantation (FT) - transfer of the microbiota from the stool of a healthy donor to the intestinal tract of a recipient patient. Currently, this procedure is recognized as an efficacious method to normalize the intestinal microbiota mainly in inflammatory diseases of the gastrointestinal tract. In Russia, pilot studies of the effectiveness of FT in patients with ulcerative colitis have been conducted for several years, and these studies were started in Novosibirsk. The aim of this study was to assess the change of intestinal microbiome in 20 patients with ulcerative colitis after a single FT procedure. The main method is a comparative analysis of 16S ribosomal RNA sequence libraries constructed using fecal samples obtained from patients with ulcerative colitis before and after FT and sequenced on the Illumina MiSeq platform. The obtained results showed that FT led to an increase in average biodiversity in samples after FT compared to samples before FT; however, the difference was not significant. In the samples studied, the proportion of Firmicutes sequences, the major gastrointestinal microbiota of healthy people, was decreased (~32 % vs. >70 %), while the proportion of Proteobacteria sequences was increased (>9 % vs. <5 %). In some samples collected before FT, sequences of pathogenic Firmicutes and Proteobacteria were detected, including Acinetobacter spp., Enterococcus spp., Klebsiella pneumoniae, Proteus mirabilis, Staphylococcus aureus, Stenotrophomonas maltophylia, Streptococcus spp. In most cases, the proportion of such sequences after FT substantially decreased in appropriate samples. The exception was the Clostridium difficile sequences, which accounted for <0.5 % of the sequences in samples from almost half of the patients and after FT, the share of such C. difficile sequences was significantly reduced only in samples from three patients. It should be noted that the proportion of Lactobacillus spp. increased ten-fold and their species composition significantly expanded. According to the obtained results, a preliminary conclusion can be made that even a single FT procedure can lead to an increase in the biodiversity of the gastrointestinal microbiota in patients and to the optimization of the taxonomic composition of the microbiota.
Collapse
Affiliation(s)
- А Ю Тикунов
- Институт химической биологии и фундаментальной медицины Сибирского отделения Российской академии наук, Новосибирск, Россия
| | - В В Морозов
- Институт химической биологии и фундаментальной медицины Сибирского отделения Российской академии наук, Новосибирск, Россия
| | - А Н Швалов
- Государственный научный центр вирусологии и биотехнологии «Вектор» Роспотребнадзора Российской Федерации, р. п. Кольцово, Новосибирская область, Россия 3 ООО «Центр персонализированной
| | - А В Бардашева
- Институт химической биологии и фундаментальной медицины Сибирского отделения Российской академии наук, Новосибирск, Россия
| | - Е В Шрайнер
- Институт химической биологии и фундаментальной медицины Сибирского отделения Российской академии наук, Новосибирск, Россия
| | - О А Максимова
- ООО «Центр персонализированной медицины», Новосибирск, Россия
| | - И О Волошина
- ООО «Центр персонализированной медицины», Новосибирск, Россия
| | - В В Морозова
- Институт химической биологии и фундаментальной медицины Сибирского отделения Российской академии наук, Новосибирск, Россия
| | - В В Власов
- Институт химической биологии и фундаментальной медицины Сибирского отделения Российской академии наук, Новосибирск, Россия
| | - Н В Тикунова
- Институт химической биологии и фундаментальной медицины Сибирского отделения Российской академии наук, Новосибирск, Россия
| |
Collapse
|