1
|
Ito Y, Nakajima K, Masubuchi Y, Kikuchi S, Saito F, Akahori Y, Jin M, Yoshida T, Shibutani M. Differential responses on energy metabolic pathway reprogramming between genotoxic and non-genotoxic hepatocarcinogens in rat liver cells. J Toxicol Pathol 2019; 32:261-274. [PMID: 31719753 PMCID: PMC6831489 DOI: 10.1293/tox.2019-0048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 06/25/2019] [Indexed: 12/12/2022] Open
Abstract
To clarify difference in the responses on the reprogramming of metabolism toward carcinogenesis between genotoxic and non-genotoxic hepatocarcinogens in the liver, rats were repeatedly administered genotoxic hepatocarcinogens (N-nitrosodiethylamine, aflatoxin B1, N-nitrosopyrrolidine, or carbadox) or non-genotoxic hepatocarcinogens (carbon tetrachloride, thioacetamide, or methapyrilene hydrochloride) for 28, 84, or 90 days. Non-genotoxic hepatocarcinogens revealed transcript expression changes suggestive of suppressed mitochondrial oxidative phosphorylation (OXPHOS) after 28 days and increased glutathione S-transferase placental form-positive (GST-P+) foci downregulating adenosine triphosphate (ATP) synthase subunit beta, mitochondrial precursor (ATPB), compared with genotoxic hepatocarcinogens after 84 or 90 days, suggesting that non-genotoxic hepatocarcinogens are prone to suppress OXPHOS from the early stage of treatment, which is in contrast to genotoxic hepatocarcinogens. Both genotoxic and non-genotoxic hepatocarcinogens upregulated glycolytic enzyme genes and increased cellular membrane solute carrier family 2, facilitated glucose transporter member 1 (GLUT1) expression in GST-P+ foci for up to 90 days, suggesting induction of a metabolic shift from OXPHOS to glycolysis at early hepatocarcinogenesis by hepatocarcinogens unrelated to genotoxic potential. Non-genotoxic hepatocarcinogens increased c-MYC+ cells after 28 days and downregulated Tp53 after 84 or 90 days, suggesting a commitment to enhanced metabolic shift and cell proliferation. Genotoxic hepatocarcinogens also enhanced c-MYC activation-related metabolic shift until 84 or 90 days. In addition, both genotoxic and non-genotoxic hepatocarcinogens upregulated glutaminolysis-related Slc1a5 or Gls, or both, after 28 days and induced liver cell foci immunoreactive for neutral amino acid transporter B(0) (SLC1A5) in the subpopulation of GST-P+ foci after 84 or 90 days, suggesting glutaminolysis-mediated facilitation of cell proliferation toward hepatocarcinogenesis. These results suggest differential responses between genotoxic and non-genotoxic hepatocarcinogens on reprogramming of energy metabolic pathways toward carcinogenesis in liver cells from the early stage of hepatocarcinogen treatment.
Collapse
Affiliation(s)
- Yuko Ito
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan
| | - Kota Nakajima
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan
| | - Yasunori Masubuchi
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan
| | - Satomi Kikuchi
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Fumiyo Saito
- Chemicals Evaluation and Research Institute, Japan, 1-4-25 Kouraku, Bunkyo-ku, Tokyo 112-0004, Japan
| | - Yumi Akahori
- Chemicals Evaluation and Research Institute, Japan, 1-4-25 Kouraku, Bunkyo-ku, Tokyo 112-0004, Japan
| | - Meilan Jin
- Laboratory of Veterinary Pathology, College of Animal Science and Technology Veterinary Medicine, Southwest University, No.2 Tiansheng Road, BeiBei District, Chongqing 400715, P.R. China
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| |
Collapse
|
2
|
Expression of mitochondrial genes predicts survival in pediatric acute myeloid leukemia. Int J Hematol 2019; 110:205-212. [DOI: 10.1007/s12185-019-02666-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/10/2019] [Accepted: 05/14/2019] [Indexed: 12/24/2022]
|
3
|
Chakraborty S, Uddin A, Mazumder TH, Choudhury MN, Malakar AK, Paul P, Halder B, Deka H, Mazumder GA, Barbhuiya RA, Barbhuiya MA, Devi WJ. Codon usage and expression level of human mitochondrial 13 protein coding genes across six continents. Mitochondrion 2018; 42:64-76. [DOI: 10.1016/j.mito.2017.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/09/2017] [Accepted: 11/27/2017] [Indexed: 02/03/2023]
|
4
|
Mizukami S, Watanabe Y, Nakajima K, Hasegawa-Baba Y, Jin M, Yoshida T, Shibutani M. Downregulation of TMEM70 in Rat Liver Cells After Hepatocarcinogen Treatment Related to the Warburg Effect in Hepatocarcinogenesis Producing GST-P-Expressing Proliferative Lesions. Toxicol Sci 2017; 159:211-223. [DOI: 10.1093/toxsci/kfx131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
5
|
Abstract
Mitochondrial structural and functional integrity defines the health of a cell by regulating cellular metabolism. Thus, mitochondria play an important role in both cell proliferation and cell death. Cancer cells are metabolically altered compared to normal cells for their ability to survive better and proliferate faster. Resistance to apoptosis is an important characteristic of cancer cells and given the contribution of mitochondria to apoptosis, it is imperative that mitochondria could behave differently in a tumor situation. The other feature associated with cancer cells is the Warburg effect, which engages a shift in metabolism. Although the Warburg effect often occurs in conjunction with dysfunctional mitochondria, the relationship between mitochondria, the Warburg effect, and cancer cell metabolism is not clearly decoded. Other than these changes, several mitochondrial gene mutations occur in cancer cells, mitochondrial biogenesis is affected and mitochondria see structural and functional variations. In cancer pharmacology, targeting mitochondria and mitochondria associated signaling pathways to reduce tumor proliferation is a growing field of interest. This chapter summarizes various changes in mitochondria in relevance to cancer, behavior of mitochondria during tumorigenesis, and the progress on using mitochondria as a therapeutic target for cancer.
Collapse
Affiliation(s)
- Shubha Gururaja Rao
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA.
| |
Collapse
|
6
|
Im CN, Seo JS. Overexpression of tumor necrosis factor receptor-associated protein 1 (TRAP1), leads to mitochondrial aberrations in mouse fibroblast NIH/3T3 cells. BMB Rep 2014; 47:280-5. [PMID: 24286320 PMCID: PMC4163861 DOI: 10.5483/bmbrep.2014.47.5.174] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Indexed: 11/20/2022] Open
Abstract
Cancer cells undergo uncontrolled proliferation, and aberrant mitochondrial alterations. Tumor necrosis factor receptorassociated protein 1 (TRAP1) is a mitochondrial heat shock protein. TRAP1 mRNA is highly expressed in some cancer cell lines and tumor tissues. However, the effects of its overexpression on mitochondria are unclear. In this study, we assessed mitochondrial changes accompanying TRAP1 overexpression, in a mouse cell line, NIH/3T3. We found that overexpression of TRAP1 leads to a series of mitochondrial aberrations, including increase in basal ROS levels, and decrease in mitochondrial biogenesis, together with a decrease in peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) mRNA levels. We also observed increased extracellular signal-regulated kinase (ERK) phosphorylation, and enhanced proliferation of TRAP1 overexpressing cells. This study suggests that overexpression of TRAP1 might be a critical link between mitochondrial disturbances and carcinogenesis. [BMB Reports 2014; 47(5): 280-285]
Collapse
Affiliation(s)
- Chang-Nim Im
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine; ILCHUN Molecular Medicine Institute MRC, Seoul 110-799; Department of Biochemistry, The Catholic University of Korea College of Medicine, Seoul 137-701, Korea
| | - Jeong-Sun Seo
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine; ILCHUN Molecular Medicine Institute MRC, Seoul 110-799, Korea
| |
Collapse
|
7
|
Yao J, Zhou E, Wang Y, Xu F, Zhang D, Zhong D. microRNA-200a Inhibits Cell Proliferation by Targeting Mitochondrial Transcription Factor A in Breast Cancer. DNA Cell Biol 2014; 33:291-300. [PMID: 24684598 DOI: 10.1089/dna.2013.2132] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Jia Yao
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Enxiang Zhou
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yichun Wang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Feng Xu
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Danhua Zhang
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Dewu Zhong
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
8
|
Wu S, Zhou F, Wei Y, Chen WR, Chen Q, Xing D. Cancer phototherapy via selective photoinactivation of respiratory chain oxidase to trigger a fatal superoxide anion burst. Antioxid Redox Signal 2014; 20:733-46. [PMID: 23992126 PMCID: PMC3910666 DOI: 10.1089/ars.2013.5229] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AIMS Here, we develop a novel cancer treatment modality using mitochondria-targeting, high-fluence, low-power laser irradiation (HF-LPLI) in mouse tumor models and explore the mechanism of mitochondrial injury by HF-LPLI. RESULTS We demonstrated that the initial reaction after photon absorption was photosensitization of cytochrome c oxidase (COX), to inhibit enzymatic activity of COX in situ and cause respiratory chain superoxide anion (O2(-•)) burst. We also found that HF-LPLI exerted its main tumor killing effect through mitochondrial O2(-•) burst via electron transport chain (ETC). These phenomena were completely absent in the respiration-deficient cells and COX knockdown cells. With a carefully selected irradiation protocol, HF-LPLI could efficaciously destroy tumors. The inhibition of enzymatic activity of COX and generation of O2(-•) by HF-LPLI in vivo were also detected. INNOVATION It is the first time that the mechanism involved in the interaction between light and its photoacceptor under HF-LPLI treatment is clarified. Our results clearly indicate that HF-LPLI initiates its effects via targeted COX photoinactivation and that the tumor-killing efficacy is dependent of the subsequent mitochondrial O2(-•) burst via ETC. CONCLUSION Based on both in vitro and in vivo results, we conclude that HF-LPLI can selectively photoinactivate respiratory chain oxidase to trigger a fatal mitochondrial O2(-•) burst, producing oxidative damage on cancer cells. This study opens up the possibilities of applications of HF-LPLI as a mitochondria-targeting cancer phototherapy.
Collapse
Affiliation(s)
- Shengnan Wu
- 1 MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University , Guangzhou, China
| | | | | | | | | | | |
Collapse
|
9
|
Koochekpour S, Marlowe T, Singh KK, Attwood K, Chandra D. Reduced mitochondrial DNA content associates with poor prognosis of prostate cancer in African American men. PLoS One 2013; 8:e74688. [PMID: 24086362 PMCID: PMC3781126 DOI: 10.1371/journal.pone.0074688] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 08/08/2013] [Indexed: 11/18/2022] Open
Abstract
Reduction or depletion of mitochondrial DNA (mtDNA) has been associated with cancer progression. Although imbalanced mtDNA content is known to occur in prostate cancer, differences in mtDNA content between African American (AA) and Caucasian American (CA) men are not defined. We provide the first evidence that tumors in AA men possess reduced level of mtDNA compared to CA men. The median tumor mtDNA content was reduced in AA men. mtDNA content was also reduced in normal prostate tissues of AA men compared to CA men, suggesting a possible predisposition to cancer in AA men. mtDNA content was also reduced in benign prostatic hyperplasia (BPH) tissue from AA men. Tumor and BPH tissues from patients ≥ 60 years of age possess reduced mtDNA content compared to patients <60 years of age. In addition, mtDNA content was higher in normal tissues from patients with malignant T3 stage disease compared to patients with T2 stage disease. mtDNA levels in matched normal prostate tissues were nearly doubled in Gleason grade of >7 compared to ≤ 7, whereas reduced mtDNA content was observed in tumors of Gleason grade >7 compared to ≤ 7. Together, our data suggest that AA men possess lower mtDNA levels in normal and tumor tissues compared to CA men, which could contribute to higher risk and more aggressive prostate cancer in AA men.
Collapse
Affiliation(s)
- Shahriar Koochekpour
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York, United States of America
- Department of Urology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Timothy Marlowe
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Keshav K. Singh
- Departments of Genetics, Pathology, and Environmental Health, UAB Comprehensive Cancer Center and Center for Free Radical Biology, School of Medicine, University of Alabama, Birmingham, Alabama, United States of America
| | - Kristopher Attwood
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Dhyan Chandra
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
10
|
De Paepe B. Mitochondrial Markers for Cancer: Relevance to Diagnosis, Therapy, and Prognosis and General Understanding of Malignant Disease Mechanisms. ACTA ACUST UNITED AC 2012. [DOI: 10.5402/2012/217162] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cancer cells display changes that aid them to escape from cell death, sustain their proliferative powers, and shift their metabolism toward glycolytic energy production. Mitochondria are key organelles in many metabolic and biosynthetic pathways, and the adaptation of mitochondrial function has been recognized as crucial to the changes that occur in cancer cells. This paper zooms in on the pathologic evaluation of mitochondrial markers for diagnosing and staging of human cancer and determining the patients’ prognoses.
Collapse
Affiliation(s)
- Boel De Paepe
- Laboratories for Neuropathology & Mitochondrial Disorders, Ghent University Hospital, Building K5 3rd Floor, De Pintelaan 185, 9000 Ghent, Belgium
| |
Collapse
|
11
|
Albracht SPJ, Meijer AJ, Rydström J. Mammalian NADH:ubiquinone oxidoreductase (Complex I) and nicotinamide nucleotide transhydrogenase (Nnt) together regulate the mitochondrial production of H₂O₂--implications for their role in disease, especially cancer. J Bioenerg Biomembr 2011; 43:541-64. [PMID: 21882037 DOI: 10.1007/s10863-011-9381-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 08/03/2011] [Indexed: 12/20/2022]
Abstract
Mammalian NADH:ubiquinone oxidoreductase (Complex I) in the mitochondrial inner membrane catalyzes the oxidation of NADH in the matrix. Excess NADH reduces nine of the ten prosthetic groups of the enzyme in bovine-heart submitochondrial particles with a rate of at least 3,300 s⁻¹. This results in an overall NADH→O₂ rate of ca. 150 s⁻¹. It has long been known that the bovine enzyme also has a specific reaction site for NADPH. At neutral pH excess NADPH reduces only three to four of the prosthetic groups in Complex I with a rate of 40 s⁻¹ at 22 °C. The reducing equivalents remain essentially locked in the enzyme because the overall NADPH→O₂ rate (1.4 s⁻¹) is negligible. The physiological significance of the reaction with NADPH is still unclear. A number of recent developments has revived our thinking about this enigma. We hypothesize that Complex I and the Δp-driven nicotinamide nucleotide transhydrogenase (Nnt) co-operate in an energy-dependent attenuation of the hydrogen-peroxide generation by Complex I. This co-operation is thought to be mediated by the NADPH/NADP⁺ ratio in the vicinity of the NADPH site of Complex I. It is proposed that the specific H₂O₂ production by Complex I, and the attenuation of it, is of importance for apoptosis, autophagy and the survival mechanism of a number of cancers. Verification of this hypothesis may contribute to a better understanding of the regulation of these processes.
Collapse
Affiliation(s)
- Simon P J Albracht
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, NL-1098 XH, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
12
|
Feng S, Xiong L, Ji Z, Cheng W, Yang H. Correlation between increased copy number of mitochondrial DNA and clinicopathological stage in colorectal cancer. Oncol Lett 2011; 2:899-903. [PMID: 22866147 DOI: 10.3892/ol.2011.322] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 05/24/2011] [Indexed: 01/05/2023] Open
Abstract
Change of mitochondrial DNA (mtDNA) copy numbers is considered to be an important hallmark of cancers. However, whether quantitative changes in mtDNA occur during the initiation and progression of colorectal cancer remains to be determined. Quantitative change in mtDNA was observed during the initiation and progression of colorectal cancer and possible correlations of the mtDNA copy number in colorectal cancer with the clinicopathological stage were investigated. Tumor tissues and the corresponding non-cancerous tissues were surgically resected from 24 colon and 20 rectal patients between 2008 and 2009. β-actin expression was quantified in all of the specimens, and the copy numbers were calculated. In colorectal cancer, the quantitative changes of mtDNA exhibited a significant increase. In 24 cases of colon cancer, the average relative mtDNA copy number ratios were 115.15±31.57 in cancer tissues and 54.09±13.22 in the corresponding non-cancerous tissues (p<0.01). Furthermore, in 20 cases of rectal cancer, the ratios were 145.6±43.83 in cancer tissues and 55.58±12.47 in the corresponding non-cancerous tissues (p<0.001). Following correlation with clinicopathological data, change of the mtDNA copy number in colorectal cancer exhibited a significant association with clinicopathological stage, but no association with gender. Moreover, this increase was particularly marked in stages Ⅰ and Ⅱ. Our results indicate that mtDNA copy number plays a significant role during the initiation and progression of colorectal cancer, particularly during early clinicopathological stages.
Collapse
Affiliation(s)
- Shi Feng
- Department of Human Anatomy, Academy of Preclinical and Forensic Medicine, West China Medicine College, Sichuan University, Chengdu, Sichuan, P.R. China
| | | | | | | | | |
Collapse
|
13
|
Choudhury Y, Sharan RN. Ultrastructural alterations in liver of mice exposed chronically and transgenerationally to aqueous extract of betel nut: Implications in betel nut-induced carcinogenesis. Microsc Res Tech 2010; 73:530-9. [PMID: 19839060 DOI: 10.1002/jemt.20791] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The aqueous extract of betel nut (AEBN) induces the formation of preneoplastic nodules in the liver of Swiss Albino mice and leads to increased predisposition to cancer when administered transgenerationally. The aim of this investigation was to elucidate the alterations in ultrastructure of subcellular organelles in the liver nodules using transmission electron microscopy and to determine whether these alterations have implications in AEBN-induced carcinogenesis. Male and female Swiss Albino mice were exposed to AEBN chronically and transgenerationally at a dose of 2 mg/mL in drinking water for 24 weeks. Extensive polymorphism was noted in nuclear shape and heterochromatin organization. Heterochromatin aggregation and marginalization were observed in the nuclei of chronically exposed mice, whereas transgenerationally exposed mice exhibited dispersion or loss of heterochromatin. The nuclear envelope was disrupted, and the nucleoli were enlarged in chronically exposed mice, whereas in transgenerationally exposed mice the nucleoli were reduced in size or totally absent. The cisternae of the rough endoplasmic reticulum were dilated and disrupted, and a large number of autophagic vesicles were observed in both chronically and transgenerationally exposed mice. Atypical mitochondria that underwent extensive cristolysis and progressively declined in size and number from the chronically exposed mice to the different generations of transgenerationally exposed mice were also observed. Thus, exposure to AEBN resulted in severe loss of ultrastructural integrity of cells in the liver nodules, and the progressive loss of mitochondrial function appeared to play a significant role in increasing the predisposition to cancer of mice exposed transgenerationally to AEBN.
Collapse
Affiliation(s)
- Yashmin Choudhury
- Department of Biochemistry, Radiation and Molecular Biology Unit, North-Eastern Hill University, Shillong 793022, India
| | | |
Collapse
|
14
|
|
15
|
Abstract
Down-regulation of β-F1-ATPase (the catalytic subunit of the mitochondrial H+-ATP synthase) is a hallmark of many human tumours. The expression level of β-F1-ATPase provides a marker of the prognosis of cancer patients, as well as of the tumour response to chemotherapy. However, the mechanisms that participate in down-regulating its expression in human tumours remain unknown. In the present study, we have investigated the expression of β-F1-ATPase mRNA (termed β-mRNA) in breast, colon and lung adenocarcinomas and squamous carcinomas of the lung. Despite the down-regulation of the protein, tumour β-mRNA levels remained either unchanged (breast and lung adenocarcinomas) or significantly increased (colon and squamous lung carcinomas) when compared with paired normal tissues, suggesting a specific translation-masking event for β-mRNA in human cancer. Consistently, we show using cell-free translation assays that a large fraction (~70%) of protein extracts derived from breast and lung adenocarcinomas specifically repress the translation of β-mRNA. We show that the 3′UTR (3′ untranslated region) of human β-mRNA is a relevant cis-acting element required for efficient translation of the transcript. However, an RNA chimaera bearing the 3′UTR of human β-mRNA does not recapitulate the inhibitory effect of tumour extracts on β-mRNA translation. Overall, the findings of the present study support the hypothesis that down-regulation of the bioenergetic activity of mitochondria in human tumours is exerted by translation silencing of β-mRNA.
Collapse
|
16
|
Kurtoglu M, Lampidis TJ. From delocalized lipophilic cations to hypoxia: blocking tumor cell mitochondrial function leads to therapeutic gain with glycolytic inhibitors. Mol Nutr Food Res 2009; 53:68-75. [PMID: 19072739 PMCID: PMC2928140 DOI: 10.1002/mnfr.200700457] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
An unexpected similarity between cancer and cardiac muscle cells in their sensitivity to anthracyclines and delocalized lipophilic cations (DLC) prompted a series of studies in which it was shown that the positive charge of these compounds is central to their selective accumulation and toxicity in these two distinct cell types. An initial finding to explain this phenomenon was that cancer and cardiac muscle cells exhibit high negative plasma membrane potentials resulting in increased uptake of these agents. However, the p-glycoprotein efflux pump was shown to be another factor underlying differential accumulation of these compounds, since it recognizes positively charged drugs and thereby actively reduces their intracellular concentrations. The delocalized positive charge and lipophilicity of DLCs leads to their retention and inhibition of ATP synthesis in mitochondria. Years later it was realized that cancer cells in the hypoxic portions of solid tumors were similar to those treated with DLCs in relying mainly on anaerobic metabolism for survival and could thus be targeted with a glycolytic inhibitor, 2-deoxy-D-glucose (2-DG). This hypothesis has lead to a Phase I clinical trial in which 2-DG is used to selectively kill the hypoxic tumor cell population which are resistant to standard chemotherapy or radiation.
Collapse
Affiliation(s)
- Metin Kurtoglu
- Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | | |
Collapse
|
17
|
Naito A, Cook CC, Mizumachi T, Wang M, Xie CH, Evans TT, Kelly T, Higuchi M. Progressive tumor features accompany epithelial-mesenchymal transition induced in mitochondrial DNA-depleted cells. Cancer Sci 2008; 99:1584-8. [PMID: 18754870 DOI: 10.1111/j.1349-7006.2008.00879.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The growth of LNCaP, a human prostate adenocarcinoma cell line, and MCF-7, a human breast adenocarcinoma cell line, is initially hormone dependent. We previously demonstrated that LNrho0-8 and MCFrho0, derived from LNCaP and MCF-7 by depleting mitochondrial DNA (mtDNA), exhibited hormone-independent growth that led to progressed phenotypes. Here, we demonstrate that LNrho0-8 and MCFrho0 have invasive characters as evaluated by the ability of invasion through the extracellular matrix (ECM) in vitro. In addition, the induction of vimentin and the repression of E-cadherin expression in rho0 cells indicate that they are mesenchymal cells. Since LNrho0-8 and MCFrho0 were derived from epithelial cancer cell lines, LNCaP and MCF-7 must have lost epithelial features and gained the mesenchymal phenotype by epithelial-mesenchymal transition (EMT) during the mtDNA depletion. In the rho0 cell lines, the Raf/MAPK signaling cascade was highly activated together with the expressions of transforming growth factor-beta (TGF-beta) and type I TGF-beta receptor (TGF-betaRI). EMT requires cooperation of TGF-beta signaling with activation of the Raf/MAPK cascade, suggesting that EMT was induced in mtDNA depleted cells resulting in the acquisition of progressive tumor features, such as higher invasiveness and loss of hormone dependent growth. Our results indicate that decreasing mtDNA content induces EMT, enabling the progressive phenotypes observed in cancer.
Collapse
Affiliation(s)
- Akihiro Naito
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham, Little Rock, Arkansas 72205-7199, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
|
19
|
Ma W, Sung HJ, Park JY, Matoba S, Hwang PM. A pivotal role for p53: balancing aerobic respiration and glycolysis. J Bioenerg Biomembr 2008; 39:243-6. [PMID: 17551815 DOI: 10.1007/s10863-007-9083-0] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The genetic basis of increased glycolytic activity observed in cancer cells is likely to be the result of complex interactions of multiple regulatory pathways. Here we review the recent evidence of a simple genetic mechanism by which tumor suppressor p53 regulates mitochondrial respiration with secondary changes in glycolysis that are reminiscent of the Warburg effect. The biological significance of this regulation of the two major pathways of energy generation by p53 remains to be seen.
Collapse
Affiliation(s)
- Wenzhe Ma
- Cardiology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
20
|
Mizumachi T, Muskhelishvili L, Naito A, Furusawa J, Fan CY, Siegel ER, Kadlubar FF, Kumar U, Higuchi M. Increased distributional variance of mitochondrial DNA content associated with prostate cancer cells as compared with normal prostate cells. Prostate 2008; 68:408-17. [PMID: 18196528 PMCID: PMC2268637 DOI: 10.1002/pros.20697] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Mitochondria are key organelles for apoptosis, and mitochondrial DNA (mtDNA) content can regulate cancer progression. Increases in mtDNA mutations and deletions have been reported in cancer; however, a detailed investigation of mtDNA content in cancer cells has not yet been conducted. METHODS Quantitative real-time PCR and improved extraction method were established to investigate the mtDNA content in a single prostate cell. RESULTS The heterogeneity of mtDNA content was demonstrated between the clones of prostate cancer cell line LNCaP and individual cells in each clone. To investigate whether large distributional variance of mtDNA content is associated with cancer initiation and/or progression, we first compared PZ-HPV-7, an HPV-transformed normal prostate epithelial cell line, with CA-HPV-10, transformed from prostate cancer cells derived from the same donor. We found an enhanced distributional variance of mtDNA content in CA-HPV-10. Then, we investigated mtDNA content in individual cells in laser microdisssected cancer and adjacent normal cells from prostate cancer tissue specimens using quantitative real-time PCR method. Results showed that the mtDNA content per cell follows a higher skewed distribution in cancer cells as compared in normal cells. We also observed that mtDNA content was increased in seven of nine (78%) of prostate cancers compared to normal prostate tissue. CONCLUSIONS These results indicate that prostate carcinogenesis may involve dysregulation of mtDNA content.
Collapse
Affiliation(s)
- Takatsugu Mizumachi
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Central Arkansas Veterans Health Care System, Little Rock, Arkansas
| | - Levan Muskhelishvili
- Division of Toxicologic Pathology Associates, National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas
| | - Akihiro Naito
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Central Arkansas Veterans Health Care System, Little Rock, Arkansas
| | - Jun Furusawa
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Central Arkansas Veterans Health Care System, Little Rock, Arkansas
| | - Chun-Yang Fan
- Department of Pathology, University of Arkansas for Medical Sciences, Central Arkansas Veterans Health Care System, Little Rock, Arkansas
| | - Eric R. Siegel
- Department of Biostatistics, University of Arkansas for Medical Sciences, Central Arkansas Veterans Health Care System, Little Rock, Arkansas
| | - Fred F. Kadlubar
- Department of Epidemiology, University of Arkansas for Medical Sciences, Central Arkansas Veterans Health Care System, Little Rock, Arkansas
| | - Udaya Kumar
- Department of Urology, University of Arkansas for Medical Sciences, Central Arkansas Veterans Health Care System, Little Rock, Arkansas
| | - Masahiro Higuchi
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Central Arkansas Veterans Health Care System, Little Rock, Arkansas
- *Correspondence to: Masahiro Higuchi, 4301 W. Markham St., Slot 516 Little Rock, AR 72205. E-mail:
| |
Collapse
|
21
|
Cuezva JM, Sánchez-Aragó M, Sala S, Blanco-Rivero A, Ortega AD. A message emerging from development: the repression of mitochondrial β-F1-ATPase expression in cancer. J Bioenerg Biomembr 2007; 39:259-65. [PMID: 17712532 DOI: 10.1007/s10863-007-9087-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mitochondrial research has experienced a considerable boost during the last decade because organelle malfunctioning is in the genesis and/or progression of a vast array of human pathologies including cancer. The renaissance of mitochondria in the cancer field has been promoted by two main facts: (1) the molecular and functional integration of mitochondrial bioenergetics with the execution of cell death and (2) the implementation of (18)FDG-PET for imaging and staging of tumors in clinical practice. The latter, represents the bed-side translational development of the metabolic hallmark that describes the bioenergetic phenotype of most cancer cells as originally predicted at the beginning of previous century by Otto Warburg. In this minireview we will briefly summarize how the study of energy metabolism during liver development forced our encounter with Warburg's postulates and prompted us to study the mechanisms that regulate the biogenesis of mitochondria in the cancer cell.
Collapse
Affiliation(s)
- José M Cuezva
- Departamento de Biología Molecular, Centro de Biología Molecular "Severo Ochoa", Centro de Investigación Biomédica en Red de Enfermedades Raras, Universidad Autónoma de Madrid, 28049. Madrid, Spain.
| | | | | | | | | |
Collapse
|
22
|
|
23
|
Van Trappen PO, Cullup T, Troke R, Swann D, Shepherd JH, Jacobs IJ, Gayther SA, Mein CA. Somatic mitochondrial DNA mutations in primary and metastatic ovarian cancer. Gynecol Oncol 2007; 104:129-33. [PMID: 16942794 DOI: 10.1016/j.ygyno.2006.07.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Revised: 06/28/2006] [Accepted: 07/07/2006] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To date, most mtDNA mutations in cancer have been identified in the control region (D-loop) containing the major promoters. However, almost all studies used one sample per tumor and there is no clear evidence whether metastatic deposits harbor different mtDNA variants. To establish whether different mtDNA variants can be found in the same cancer but at different sites, we analyzed a series of unilateral and bilateral primary epithelial ovarian cancers as well as paired metastatic tumor deposits. METHODS We sequenced the D-loop region in 52 different tumor samples of 35 ovarian cancer cases, as well as matched normal tissues. Seventeen of those 35 cases had bilateral ovarian cancer, with a sample from each tumor analyzed. RESULTS Eighty-six polymorphisms (4 new in ovarian cancer) were detected, and 9 different somatic mtDNA mutations were found in 26% (9 of 35) of ovarian cancer cases; all were homoplasmic in nature. Six of the mutations were novel in ovarian cancer. In 24% (4 of 17) of cases with bilateral ovarian tumors, different mtDNA variants were found between paired tumors, suggesting the presence of different clonal populations of cancer cells. Metastatic tumor deposits showed identical mtDNA variants to those found in at least one of the ovarian tumors in cases with bilateral ovarian cancer. CONCLUSION Our data demonstrate that multiple tumor samples from the same patient may harbor different mtDNA variants.
Collapse
Affiliation(s)
- P O Van Trappen
- Gynaecological Cancer Centre and Centre for Translational Oncology, Institute of Cancer and CR-UK Clinical Centre, Barts and The London, Queen Mary's School of Medicine and Dentistry, John Vane Science Centre, London, UK.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Somatic mitochondrial DNA (mtDNA) mutations have been increasingly observed in primary human cancers. As each cell contains many mitochondria with multiple copies of mtDNA, it is possible that wild-type and mutant mtDNA can co-exist in a state called heteroplasmy. During cell division, mitochondria are randomly distributed to daughter cells. Over time, the proportion of the mutant mtDNA within the cell can vary and may drift toward predominantly mutant or wild type to achieve homoplasmy. Thus, the biological impact of a given mutation may vary, depending on the proportion of mutant mtDNAs carried by the cell. This effect contributes to the various phenotypes observed among family members carrying the same pathogenic mtDNA mutation. Most mutations occur in the coding sequences but few result in substantial amino acid changes raising questions as to their biological consequence. Studies reveal that mtDNA play a crucial role in the development of cancer but further work is required to establish the functional significance of specific mitochondrial mutations in cancer and disease progression. The origin of somatic mtDNA mutations in human cancer and their potential diagnostic and therapeutic implications in cancer are discussed. This review article provides a detailed summary of mtDNA mutations that have been reported in various types of cancer. Furthermore, this review offers some perspective as to the origin of these of mutations, their functional consequences in cancer development, and possible therapeutic implications.
Collapse
Affiliation(s)
- A Chatterjee
- Department of Otolaryngology-Head and Neck Surgery, Head and Neck Cancer Research Division, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2196, USA
| | | | | |
Collapse
|
25
|
Mazzanti R, Giulivi C. Coordination of nuclear- and mitochondrial-DNA encoded proteins in cancer and normal colon tissues. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:618-23. [PMID: 16730322 DOI: 10.1016/j.bbabio.2006.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Revised: 03/17/2006] [Accepted: 04/06/2006] [Indexed: 11/29/2022]
Abstract
To support the rapid growth of tumors, the cell can respond by increasing the number of mitochondria, in a concerted biosynthesis of mitochondrial constituents (nuclear and mitochondria encoded). Increased transcription, availability and stability of oxidative phosphorylation mRNAs, without increasing mitochondria number could also lead to more rapid energy-yielding effects. Mitochondria biogenesis and de novo formation of respiratory chain components imply coordination of nuclear and mt gene transcription. The mitochondrial mass is regulated by a number of physiopathological conditions. In response to external stimuli, mitochondria biogenesis is dependent on an orchestrated crosstalk between the nuclear and the mitochondrial genomes. Based on the higher incidence of glycolysis over oxidative phosphorylation in cancer tissues, we studied by differential proteomics the energy metabolism pathway of matched samples of normal and cancer tissue. Our results indicated that oxidative phosphorylation in cancer cells seemed altered because there is an unbalanced coordination between nuclear- and mitochondria-encoded mitochondrial proteins.
Collapse
Affiliation(s)
- Roberto Mazzanti
- Department Internal Medicine, University of Florence, Florence, Italy
| | | |
Collapse
|
26
|
Lorenc A, Bryk J, Golik P, Kupryjańczyk J, Ostrowski J, Pronicki M, Semczuk A, Szołkowska M, Bartnik E. Homoplasmic MELAS A3243G mtDNA mutation in a colon cancer sample. Mitochondrion 2005; 3:119-24. [PMID: 16120350 DOI: 10.1016/s1567-7249(03)00106-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2003] [Revised: 07/24/2003] [Accepted: 07/29/2003] [Indexed: 10/27/2022]
Abstract
We have analyzed mtDNA variation in various cancer samples, comparing them with normal tissue controls, and identified mutations and polymorphisms, both known and novel, in mitochondrial tRNA, rRNA and protein genes. Most remarkably, in a colon cancer sample we have found the A3243G mutation in the homoplasmic state. This mutation is known to cause severe mitochondrial dysfunction and, until now, has not been found in cancer cells, nor in the homoplasmic state in living subjects. The mutation was absent from normal tissue, suggesting that mtDNA mutation and resulting respiratory deficiency played a role in carcinogenesis.
Collapse
Affiliation(s)
- Anna Lorenc
- Postgraduate School of Molecular Medicine, ul. Chalubinskiego 5, 02-004 Warsaw, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Mambo E, Chatterjee A, Xing M, Tallini G, Haugen BR, Yeung SCJ, Sukumar S, Sidransky D. Tumor-specific changes in mtDNA content in human cancer. Int J Cancer 2005; 116:920-4. [PMID: 15856456 DOI: 10.1002/ijc.21110] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Mitochondrial DNA (mtDNA) alterations are associated with various cancer types, suggesting that the mitochondrial genome may be a critical contributing factor in carcinogenesis. mtDNA alterations have been suggested as a potentially sensitive and specific biomarker for several cancer types. We examined mtDNA content in 25 pairs of normal and tumor breast tissue samples, 37 papillary thyroid carcinoma (PTC), 21 benign thyroid neoplasms and in 20 paired normal and PTC samples. Our results showed that mtDNA content was reduced in 80% of the breast tumors relative to their corresponding normal. mtDNA was increased in papillary thyroid carcinomas, however, when compared to the corresponding normal DNA taken from the same individual. Also, mtDNA content was increased in none-paired PTC samples compared to the normal controls. Our findings indicate that changes in mtDNA content during carcinogenesis may be regulated in a tumor specific manner. Additionally, changes in mtDNA levels did not correlate with tumor grade and metastasis, suggesting that these alterations may occur in the early stages of tumorigenesis. Our findings suggest that mtDNA content can be used as a molecular diagnostic tool to help identify genetic abnormalities in human tumors.
Collapse
Affiliation(s)
- Elizabeth Mambo
- Department of Otolaryngology-Head and Neck Surgery, Head and Neck Cancer Research Division, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Dai JG, Lei X, Min JX, Zhang GQ, Wei H. Mitochondrial DNA sequence analysis of two mouse hepatocarcinoma cell lines. World J Gastroenterol 2005; 11:264-7. [PMID: 15633228 PMCID: PMC4205414 DOI: 10.3748/wjg.v11.i2.264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study genetic difference of mitochondrial DNA (mtDNA) between two hepatocarcinoma cell lines (Hca-F and Hca-P) with diverse metastatic characteristics and the relationship between mtDNA changes in cancer cells and their oncogenic phenotype.
METHODS: Mitochondrial DNA D-loop, tRNAMet+Glu+Ile and ND3 gene fragments from the hepatocarcinoma cell lines with 1100, 1126 and 534 bp in length respectively were analysed by PCR amplification and restriction fragment length polymorphism techniques. The D-loop 3’ end sequence of the hepatocarcinoma cell lines was determined by sequencing.
RESULTS: No amplification fragment length polymorphism and restriction fragment length polymorphism were observed in tRNAMet+Glu+Ile, ND3 and D-loop of mitochondrial DNA of the hepatocarcinoma cells. Sequence differences between Hca-F and Hca-P were found in mtDNA D-loop.
CONCLUSION: Deletion mutations of mitochondrial DNA restriction fragment may not play a significant role in carcinogenesis. Genetic difference of mtDNA D-loop between Hca-F and Hca-P, which may reflect the environmental and genetic influences during tumor progression, could be linked to their tumorigenic phenotypes.
Collapse
MESH Headings
- Animals
- Base Sequence
- Carcinoma, Hepatocellular/genetics
- Cell Line, Tumor
- DNA Primers
- DNA, Mitochondrial/genetics
- Liver Neoplasms/genetics
- Mice
- Mutation
- Polymerase Chain Reaction
- Polymorphism, Restriction Fragment Length
- RNA, Transfer, Glu/genetics
- RNA, Transfer, Ile/genetics
- RNA, Transfer, Met/genetics
- Restriction Mapping
Collapse
Affiliation(s)
- Ji-Gang Dai
- Department of Thoracic Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| | | | | | | | | |
Collapse
|
29
|
Han CB, Mao XY, Xin Y, Wang SC, Ma JM, Zhao YJ. Quantitative analysis of tumor mitochondrial RNA using microarray. World J Gastroenterol 2005; 11:36-40. [PMID: 15609393 PMCID: PMC4205380 DOI: 10.3748/wjg.v11.i1.36] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To design a novel method to rapidly detect the quantitative alteration of mtRNA in patients with tumors.
METHODS: Oligo 6.22 and Primer Premier 5.0 bio-soft were used to design 15 pairs of primers of mtRNA cDNA probes in light of the functional and structural property of mtDNA, and then RT-PCR amplification was used to produce 15 probes of mtRNA from one normal gastric mucosal tissue. Total RNA extracted from 9 gastric cancers and corresponding normal gastric mucosal tissues was reverse transcribed into cDNA labeled with fluorescein. The spotted mtDNA microarrays were made and hybridized. Finally, the microarrays were scanned with a GeneTACTM laser scanner to get the hybridized results. Northern blot was used to confirm the microarray results.
RESULTS: The hybridized spots were distinct with clear and consistent backgrounds. After data was standardized according to the housekeeping genes, the results showed that the expression levels of some mitochondrial genes in gastric carcinoma were different from those in the corresponding non-cancerous regions.
CONCLUSION: The mtDNA expression microarray can rapidly, massively and exactly detect the quantity of mtRNA in tissues and cells. In addition, the whole expressive information of mtRNA from a tumor patient on just one slide can be obtained using this method, providing an effective method to investigate the relationship between mtDNA expression and tumorigenesis.
Collapse
Affiliation(s)
- Cheng-Bo Han
- Cancer Institute, First Affiliated Hospital, China Medical University, Shenyang 110001, Liaoning Province, China.
| | | | | | | | | | | |
Collapse
|
30
|
Dmitrenko V, Shostak K, Boyko O, Khomenko O, Rozumenko V, Malisheva T, Shamayev M, Zozulya Y, Kavsan V. Reduction of the transcription level of the mitochondrial genome in human glioblastoma. Cancer Lett 2005; 218:99-107. [PMID: 15639345 DOI: 10.1016/j.canlet.2004.07.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2004] [Revised: 06/28/2004] [Accepted: 07/01/2004] [Indexed: 12/30/2022]
Abstract
Screening of human fetal brain cDNA library by glioblastoma (GB) and normal human brain total cDNA probes revealed 80 differentially hybridized clones. Hybridization of the DNA from selected clones and the same cDNA probes confirmed this difference for 38 clones, of which eight clones contained Alu-repeat inserts with increased levels in GB. Thirty clones contained cDNAs corresponding to mitochondrial genes for ATP synthase subunit 6 (ATP6), cytochrome c oxidase subunit II (COXII), cytochrome c oxidase subunit III (COXIII), NADH dehydrogenase subunit 1 (ND1), NADH dehydrogenase subunit 4 (ND4), and mitochondrial 12S rRNA. The levels of all these mitochondrial transcripts were decreased in glioblastomas as compared to tumor-adjacent histologically normal brain. Earlier we found the same for cytochrome c oxidase subunit I (COXI) Serial Analysis of Gene Expression (SAGE) showed lower content of the tags for all mitochondrial genes in GB SAGE libraries and together with our experimental data could serve as evidence of general inactivation of the mitochondrial genome in glioblastoma--the most malignant and abundant form of human brain tumor.
Collapse
Affiliation(s)
- Vladimir Dmitrenko
- Department of Molecular Biology, Institute of Molecular Biology and Genetics, 150 Zabolotnogo str., 03143 Kiev, Ukraine
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Dong X, Ghoshal K, Majumder S, Yadav SP, Jacob ST. Mitochondrial transcription factor A and its downstream targets are up-regulated in a rat hepatoma. J Biol Chem 2002; 277:43309-18. [PMID: 12198131 PMCID: PMC2242728 DOI: 10.1074/jbc.m206958200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mitochondrial transcription factor A is a key regulator involved in mitochondrial DNA transcription and replication. In a poorly differentiated rat hepatoma, Morris hepatoma 3924A, the mRNA and protein levels of this factor were elevated about 10- and 11-fold, respectively, relative to the host liver. The mRNA levels for the hepatoma cytochrome c oxidase I, II, and NADH dehydrogenase 5, 6, the downstream targets of Tfam, were augmented 10-, 8-, 5-, and 3-fold, respectively. Interestingly, Tfam was also found in the hepatoma nucleus. The mRNA levels for nuclear respiratory factor 1 and 2 (NRF-1 and -2), the proteins that are known to interact with specific regulatory elements on human TFAM promoter, were 5- and 3-fold higher, respectively, in the hepatoma relative to the host liver. Unlike the human promoter, the rat Tfam promoter did not form a specific complex with the NRF-1 in the liver or hepatoma nuclear extracts, which is consistent with the absence of an NRF-1 consensus sequence in the proximal rat promoter. A single specific complex formed between the rat promoter and the NRF-2 protein was comparable in the two extracts. The DNA binding activity of Sp1 in the hepatoma nuclear extract was 4-fold greater than that in the liver extract. In vivo genomic footprinting showed occupancy of NRF-2 and Sp1 consensus sites on the promoter of rat Tfam gene. Tfam was also up-regulated in other hepatoma cells. Together, these results show up-regulation of Tfam in some tumors, particularly the liver tumors. Further, the relatively high level of Sp1 binding to the promoter in the hepatoma could play a major role in the up-regulation of Tfam in these tumor cells.
Collapse
Affiliation(s)
- Xiaocheng Dong
- Department of Molecular and Cellular Biochemistry, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|
33
|
Abstract
A number of studies have demonstrated the presence of mitochondrial DNA (mtDNA) mutations in cancer cells. In this article, we review mitochondrial genomic aberrations reported in solid tumors of the breast, colon, stomach, liver, kidney, bladder, head/neck, and lung. The tantalizing association of tumors with mtDNA mutations implicates these mutations in the process of carcinogenesis. Alterations in expression of mtDNA transcripts in a variety of cancer types are also reviewed. In solid tumors, elevated expression of mtDNA-genes coding for subunits of the mitochondrial electron respiratory chain may reflect mitochondrial adaptation to perturbations in cellular energy requirements. The role of mtDNA mutations and altered expression of mitochondrial genes in carcinogenesis is discussed. Mitochondrial DNA mutations can initiate a cascade of events leading to a continuous increase in the production of reactive oxygen species (persistent oxidative stress), a condition that probably favors tumor development.
Collapse
Affiliation(s)
- William C Copeland
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, P.O. Box 12233, Research Triangle Park, NC 27709, USA.
| | | | | | | |
Collapse
|
34
|
Ishigure K, Shimomura Y, Murakami T, Kaneko T, Takeda S, Inoue S, Nomoto S, Koshikawa K, Nonami T, Nakao A. Human liver disease decreases methacrylyl-CoA hydratase and beta-hydroxyisobutyryl-CoA hydrolase activities in valine catabolism. Clin Chim Acta 2001; 312:115-21. [PMID: 11580916 DOI: 10.1016/s0009-8981(01)00597-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Methacrylyl-coenzyme A (MC-CoA) hydratase and beta-hydroxyisobutyryl-coenzyme A (HIB-CoA) hydrolase are key enzymes regulating the toxic concentration of MC-CoA generated in valine catabolism. MATERIALS AND METHODS We studied the activities and mRNA expression levels of these enzymes in normal human livers and in human livers with chronic hepatitis, cirrhosis, or hepatocellular carcinoma. RESULTS The activities of both enzymes were significantly lower by 36% to 46% in livers with cirrhosis or hepatocellular carcinoma compared with normals, suggesting a decrease in the capability of detoxifying MC-CoA with these diseases. The mRNA levels for both enzymes measured by quantitative polymerase chain reaction were significantly increased in livers with cirrhosis, but were not altered in those with chronic hepatitis or hepatocellular carcinoma when compared with normal livers. CONCLUSION Our results suggest that low levels of these enzyme activities in livers with cirrhosis or hepatocellular carcinoma are the result of posttranscriptional regulation in the damaged liver.
Collapse
Affiliation(s)
- K Ishigure
- Department of Surgery II, Nagoya University School of Medicine, 466-8550, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Modica-Napolitano JS, Aprille JR. Delocalized lipophilic cations selectively target the mitochondria of carcinoma cells. Adv Drug Deliv Rev 2001; 49:63-70. [PMID: 11377803 DOI: 10.1016/s0169-409x(01)00125-9] [Citation(s) in RCA: 424] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Traditional chemotherapies, aimed at DNA replication in rapidly dividing cells, have achieved only limited success in the treatment of carcinomas due largely to their lack of specificity for cells of tumorigenic origin. It is important, therefore, to investigate treatment strategies aimed at novel cellular targets that are sufficiently different between normal cells and cancer cells so as to provide a basis for selective tumor cell killing. Delocalized lipophilic cations (DLCs) are concentrated by cells and into mitochondria in response to negative inside transmembrane potentials. The higher plasma and/or mitochondrial membrane potentials of carcinoma cells compared to normal epithelial cells account for the selective accumulation of DLCs in carcinoma mitochondria. Since most DLCs are toxic to mitochondria at high concentrations, their selective accumulation in carcinoma mitochondria and consequent mitochondrial toxicity provide a basis for selective carcinoma cell killing. Several of these compounds have already displayed some degree of efficacy as chemotherapeutic agents in vitro and in vivo. The effectiveness of DLCs can also be enhanced by their use in photochemotherapy or combination drug therapy. Discovery of the biochemical differences that account for the higher membrane potentials in carcinoma cells is expected to lead to the design of new DLCs targeted specifically to those differences, resulting in even greater selectivity and efficacy for tumor cell killing.
Collapse
Affiliation(s)
- J S Modica-Napolitano
- Department of Biology, Merrimack College, 315 Turnpike Street, North Andover, MA 01845, USA.
| | | |
Collapse
|
36
|
Abstract
Alterations in expression of mitochondrial DNA (mtDNA)-encoded polypeptides required for oxidative phosphorylation and cellular ATP generation may be a general characteristic of cancer cells. Mitochondrial DNA has been proposed to be involved in carcinogenesis because of high susceptibility to mutations and limited repair mechanisms in comparison to nuclear DNA. Since mtDNA lacks introns, it has been suggested that most mutations will occur in coding sequences and subsequent accumulation of mutations may lead to tumor formation. The mitochondrial genome is dependent upon the nuclear genome for transcription, translation, replication and repair, but precise mechanisms for how the two genomes interact and integrate with each other are poorly understood. In solid tumors, elevated expression of mtDNA-encoded subunits of the mitochondrial electron respiratory chain may reflect mitochondrial adaptation to perturbations in cellular energy requirements. In this paper, we review mitochondrial genomic aberrations reported in solid tumors of the breast, colon, stomach, liver, kidney, bladder, head/neck and lung as well as for hematologic diseases such as leukemia, myelodysplastic syndrome and lymphoma. We include data for elevated expression of mtDNA-encoded electron respiratory chain subunits in breast, colon and liver cancers and also the mutations reported in cancers of the colon, stomach, bladder, head/neck and lung. Finally, we examine the role of reactive oxygen species (ROS) generated by mitochondria in the process of carcinogenesis.
Collapse
Affiliation(s)
- J S Penta
- Office of Clinical Research, National Institute of Environmental Health Sciences, National Institutes of Health, P.O. Box 12233, MD A2-05, Research Triangle Park, NC 27709, USA.
| | | | | | | |
Collapse
|
37
|
Durand S, Dumur C, Flury A, Abadie P, Patrito L, Podhajcer O, Genti-Raimondi S. Altered mitochondrial gene expression in human gestational trophoblastic diseases. Placenta 2001; 22:220-6. [PMID: 11170827 DOI: 10.1053/plac.2000.0601] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To assess the molecular basis of phenotypic alterations present in the gestational trophoblastic diseases (GTDs) and to identify genes whose expression is specifically associated with these placental proliferative disorders we performed differential display (DD) techniques. This strategy resulted in the isolation of four mitochondrial transcripts downregulated in benign, as well as in malignant, trophoblastic diseases encoding the cytochrome oxidase subunit I (COX I), the ATPase subunit 6, the 12S ribosomal RNA (12S rRNA) and the transfer RNA for phenylalanine (tRNA(Phe)). This expression pattern was confirmed by Northern blot in normal early placenta (NEP), complete hydatidiform mole (CHM), persistent gestational trophoblastic disease (PGTD) and the human choriocarcinoma derived cell line JEG-3. Quantification of mitochondrial DNA by dot blot indicated that these changes in expression were not associated with a significant alteration in the number of mitochondrial genome. In addition, a reduction in the mitochondrial transcription factor A (mtTFA) mRNA level was observed in benign as well as in malignant trophoblastic diseases in correlation with the decrease in the mitochondrial transcript levels. Furthermore, Western blot analysis for COX-I showed a close parallelism with the expression level of the cognate RNA. Taken together, these data demonstrate that a significant change in mitochondrial transcription is associated with the phenotypic alteration present in GTDs.
Collapse
MESH Headings
- Adenosine Triphosphatases/genetics
- Base Sequence
- Blotting, Northern
- Blotting, Western
- Choriocarcinoma/genetics
- Cloning, Molecular
- DNA, Mitochondrial/chemistry
- DNA, Mitochondrial/genetics
- Electron Transport Complex IV/genetics
- Female
- Gene Expression
- Humans
- Hydatidiform Mole/genetics
- Isoenzymes
- Membrane Proteins
- Molecular Sequence Data
- Pregnancy
- Prostaglandin-Endoperoxide Synthases
- RNA, Messenger/analysis
- RNA, Transfer, Phe/genetics
- Sequence Analysis, DNA
- Sequence Homology
- Trophoblastic Neoplasms/genetics
- Tumor Cells, Cultured
- Uterine Neoplasms/genetics
Collapse
Affiliation(s)
- S Durand
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Pabellón Argentina, Ala Oeste, Ciudad Universitaria, 5000 Córdoba, Argentina
| | | | | | | | | | | | | |
Collapse
|
38
|
Jung MH, Kim SC, Jeon GA, Kim SH, Kim Y, Choi KS, Park SI, Joe MK, Kimm K. Identification of differentially expressed genes in normal and tumor human gastric tissue. Genomics 2000; 69:281-6. [PMID: 11056045 DOI: 10.1006/geno.2000.6338] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The search for differentially expressed genes in gastric cancer may help define molecular alterations and molecular diagnosis of gastric cancer. Using the differential display PCR technique, we identified 18 genes that are differentially expressed between normal and tumor human gastric tissues. Their expressions were verified with reverse Northern blot analysis and Northern blot analysis. Oxidative phosphorylation-related genes, antizyme inhibitor of ornithine decarboxylase, protein phosphatase-1beta, 35-kDa peroxisomal membrane protein, and cystic fibrosis transmembrane conductance receptor were highly expressed in tumor tissue, whereas pepsinogen A, Na-K ATPase alpha subunit, nerve growth factor receptor, and alpha-tropomyosin were highly expressed in normal tissue. In addition, 3 unknown genes were found to be differentially expressed in paired gastric tissues. These differentially expressed genes may provide significant opportunities for further understanding of gastric carcinogenesis and the molecular diagnosis of gastric cancer.
Collapse
Affiliation(s)
- M H Jung
- Division of Cancer Research, Department of Biomedical Science, National Institute of Health, 5 Nokbun-dong, Eunpyung-Ku, Seoul, 122-701, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
de Heredia ML, Izquierdo JM, Cuezva JM. A conserved mechanism for controlling the translation of beta-F1-ATPase mRNA between the fetal liver and cancer cells. J Biol Chem 2000; 275:7430-7. [PMID: 10702318 DOI: 10.1074/jbc.275.10.7430] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To characterize the mechanisms governing the biogenesis of mitochondria in cancer, we studied the mitochondrial phenotype and the mechanisms controlling the expression of the beta subunit of the mitochondrial H(+)-ATP synthase (beta-F1-ATPase) gene in the rat FAO and AS30D hepatomas. When compared with normal adult rat liver, the relative cellular content of the mitochondrial beta-F1-ATPase and glutamate dehydrogenase, as well as of mitochondrial DNA, was severely reduced in both cell lines. A paradoxical increase in the cellular abundance of beta-F1-ATPase mRNA was observed in cancer cells. Run-on transcription assays and the estimation of mRNA half-lives revealed that the increased abundance of beta-F1-ATPase mRNA results from the stabilization of the transcript in cancer. In vitro translation assays revealed a specific inhibition of the synthesis of the beta-precursor when translation reactions were carried out in the presence of extracts derived from cancer cells. The inhibitory effect was recapitulated using an RNA chimera that contained the 3'-untranslated region of beta-F1-ATPase mRNA. Hepatoma extracts also contained an increased activity of the developmentally regulated translation-inhibitory proteins that bind the 3'-untranslated region of beta-F1-ATPase mRNA. The results indicate that the expression of this gene in hepatoma cells is controlled by the same mechanisms that regulate its expression in the liver during fetal development.
Collapse
Affiliation(s)
- M L de Heredia
- Departamento de Biología Molecular, Centro de Biología Molecular "Severo Ochoa," Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | |
Collapse
|
40
|
Mills KI, Woodgate LJ, Gilkes AF, Walsh V, Sweeney MC, Brown G, Burnett AK. Inhibition of mitochondrial function in HL60 cells is associated with an increased apoptosis and expression of CD14. Biochem Biophys Res Commun 1999; 263:294-300. [PMID: 10491287 DOI: 10.1006/bbrc.1999.1356] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The myelomonocytic cell line HL60 can be induced by a variety of chemical agents to differentiation to either neutrophils or monocytes. Examination of gene expression, by differential display, in cells induced to monocytes with 1alpha,25-dihydroxyvitamin D(3) or neutrophils with all-trans retinoic acid (ATRA) identified a number of clones with altered patterns of expression over the period of differentiation. One of these clones was the mitochondrial gene NADH dehydrogenase subunit 4 (ND4) which showed a differential pattern of expression between the neutrophil and monocyte lineages. The potential of mitochondrial inhibitors to induce differentiation was investigated by treating the HL60 cells with either the NADH dehydrogenase inhibitor, Rotenone, the complex III inhibitor, Antimycin A, or the highly specific mitochondrial ATP-synthase inhibitor, Oligomycin. Although functional assays of differentiation did not produce any positive results, all the inhibitors resulted in a dramatic increase in CD14 expression at day 1, with CD38 markers not observed until day 3. The increased expression of CD14 was accompanied by a decrease in viability and all CD14 positive cells were also positive for Annexin V, a marker of apoptosis. These results suggest that inhibition of the components of the mitochondrial pathways may lead to the marking of some cells, via CD14, for cell death, whilst allowing commitment to differentiation to occur in the surviving population.
Collapse
Affiliation(s)
- K I Mills
- Department of Haematology, University of Wales College of Medicine, Cardiff, Heath Park, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
41
|
Luciakova K, Sokolikova B, Chloupkova M, Nelson BD. Enhanced mitochondrial biogenesis is associated with increased expression of the mitochondrial ATP-dependent Lon protease. FEBS Lett 1999; 444:186-8. [PMID: 10050756 DOI: 10.1016/s0014-5793(99)00058-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rats bearing the Zajdela hepatoma tumor and T3-treated hypothyroid rats were used to study the role of protein degradation in the process of mitochondrial biogenesis. It was shown that the activity, protein and mRNA levels of the ATP-dependent Lon protease increased in rapidly growing Zajdela hepatoma cells. The increase in the rate of mitochondrial biogenesis by thyroid hormone was similarly accompanied by enhanced expression of the Lon protease. The results imply that mitochondrial biogenesis in mammalian cells is, at least partially, regulated by the matrix Lon protease.
Collapse
Affiliation(s)
- K Luciakova
- Cancer Research Institute, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| | | | | | | |
Collapse
|
42
|
Florian V, Schönfeld P. Alteration of the ADP/ATP translocase isoform pattern improves ATP expenditure in developing rat liver mitochondria. FEBS Lett 1998; 433:261-4. [PMID: 9744807 DOI: 10.1016/s0014-5793(98)00925-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The expression of adenine nucleotide translocase isoforms (AAC) during perinatal development of the rat was studied by measuring mRNA transcript levels of AAC1 and AAC2 genes in liver, heart and brain tissue. In contrast to heart and brain, AAC1 mRNA is not present in adult liver tissue, but is transiently expressed around birth. AAC1 expression in liver did not respond to cold stress (examined with adult rats), therefore a possible involvement of AAC1 in the liver thermogenesis of newborns is excluded. Measurement of the [3H]ADP uptake by liver mitochondria revealed that the molecular activity of the AAC protein was significantly higher in mitochondria from 4-day-old neonates compared with adults. We suggest that the transient AAC1 gene expression in the perinatal liver helps to accommodate the mitochondrial ATP supply to the increased cytosolic ATP consumption initiated at birth.
Collapse
MESH Headings
- Adenosine Triphosphate/metabolism
- Aging
- Animals
- Animals, Newborn
- Brain/embryology
- Brain/enzymology
- Brain/growth & development
- Cloning, Molecular
- Embryonic and Fetal Development
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Enzymologic
- Heart/embryology
- Heart/growth & development
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Kinetics
- Liver/embryology
- Liver/growth & development
- Mitochondria, Heart/enzymology
- Mitochondria, Liver/enzymology
- Mitochondrial ADP, ATP Translocases/genetics
- Mitochondrial ADP, ATP Translocases/metabolism
- Organ Specificity
- Polymerase Chain Reaction
- RNA, Messenger/metabolism
- Rats
- Transcription, Genetic
Collapse
Affiliation(s)
- V Florian
- Institute of Biochemistry, Otto-von-Guericke University, Magdeburg, Germany
| | | |
Collapse
|
43
|
Cuezva JM, Ostronoff LK, Ricart J, López de Heredia M, Di Liegro CM, Izquierdo JM. Mitochondrial biogenesis in the liver during development and oncogenesis. J Bioenerg Biomembr 1997; 29:365-77. [PMID: 9387097 DOI: 10.1023/a:1022450831360] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The analysis of the expression of oxidative phosphorylation genes in the liver during development reveals the existence of two biological programs involved in the biogenesis of mitochondria. Differentiation is a short-term program of biogenesis that is controlled at post-transcriptional levels of gene expression and is responsible for the rapid changes in the bioenergetic phenotype of mitochondria. In contrast, proliferation is a long-term program controlled both at the transcriptional and post-transcriptional levels of gene expression and is responsible for the increase in mitochondrial mass in the hepatocyte. Recently, a specific subcellular structure involved in the localization and control of the translation of the mRNA encoding the beta-catalytic subunit of the H(+)-ATP synthase (beta-mRNA) has been identified. It is suggested that this structure plays a prominent role in the control of mitochondrial biogenesis at post-transcriptional levels. The fetal liver has many phenotypic manifestations in common with highly glycolytic tumor cells. In addition, both have a low mitochondrial content despite a paradoxical increase in the cellular representation of oxidative phosphorylation transcripts. Based on the paradigm provided by the fetal liver we hypothesize that the aberrant mitochondrial phenotype of fast-growing hepatomas represents a reversion to a fetal program of expression of oxidative phosphorylation genes by the activation, or increased expression, of an inhibitor of beta-mRNA translation.
Collapse
Affiliation(s)
- J M Cuezva
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Spain
| | | | | | | | | | | |
Collapse
|
44
|
Capuano F, Guerrieri F, Papa S. Oxidative phosphorylation enzymes in normal and neoplastic cell growth. J Bioenerg Biomembr 1997; 29:379-84. [PMID: 9387098 DOI: 10.1023/a:1022402915431] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cancer cells, despite growing aerobically, have the propension to utilize the glycolytic pathway as energy source. This biochemical phenotype is accompanied by a decreased content of mitochondria and, paradoxically, by enhanced transcription of nuclear and mitochondrial-encoded genes for the enzymes of oxidative phosphorylation (OXPHOS). The role of OXPHOS enzymes in normal and neoplastic cell growth has been studied in liver regeneration and human hepatocellular carcinoma. In early liver regeneration characterized by active mtDNA replication, a decrease in the content and activity of ATP synthase occurs while transcription of the ATPsyn beta nuclear gene is activated. Translation of ATP synthase subunits seems, on the contrary, to be less effective in this phase. In the second replicative phase of liver regeneration, the repression of ATPsyn beta translation is relieved and normal cell growth starts. In this replicative phase the recovery of the liver mass appears to be directly related to the recovery of the OXPHOS capacity. Mitochondria isolated from biopsies of human hepatocellular carcinoma exhibit a decreased rate of respiratory ATP synthesis (OXPHOS) and a decreased ATPase activity. The decline in the activity of the ATP synthase is found to be associated with a decreased content of the ATPsyn beta in the inner mitochondrial membrane. In neoplastic tissue the ATPase inhibitor protein (IF1) is overexpressed. This could contribute to prevent hydrolysis of glycolytic ATP in cancer cells. A peptide segment of IF1 (IF1-(42-58)-peptide), constructed by chemical synthesis, proved to be equally effective as IF1 in inhibiting the ATPase activity of the ATP synthase complex in the mitochondrial membrane deprived of IF1. The synthetic peptide might turn out to be a useful tool to develop immunological approaches for the control of neoplastic growth.
Collapse
Affiliation(s)
- F Capuano
- Institute of Medical Biochemistry and Chemistry, University of Bari, Italy
| | | | | |
Collapse
|
45
|
Andersson U, Houstek J, Cannon B. ATP synthase subunit c expression: physiological regulation of the P1 and P2 genes. Biochem J 1997; 323 ( Pt 2):379-85. [PMID: 9163327 PMCID: PMC1218330 DOI: 10.1042/bj3230379] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Pre-translational regulation of subunit c has been suggested to control the biosynthesis of mitochondrial ATP synthase (ATPase) in brown adipose tissue (BAT). Subunit c is encoded by the genes P1 and P2, which encode identical mature proteins. We have determined here the levels of P1 and P2 mRNAs in different tissues, in response to cold acclimation in rats, during ontogenic development of BAT in hamsters, and following thyroid hormone treatment in rat BAT and liver. Quantitative ribonuclease protection analysis showed that both the P1 and P2 mRNAs were present in all rat tissues measured. Their total amount in each tissue corresponded well with the ATPase content of that tissue. While the P1/P2 mRNA ratio is high in ATPase-rich tissues, the P2 mRNA dominates in tissues with less ATPase. Cold acclimation affects P1 but not P2 gene expression in rat BAT. A rapid and transient increase in P1 mRNA is followed by sustained depression, which is accompanied by a decrease in ATPase content. Similarly, ontogenic suppression of ATPase content in hamster BAT was accompanied by suppression of the P1 mRNA levels, while P2 expression was virtually unchanged. Furthermore, when hypothyroid rats were treated with thyroid hormone, the steady-state level of P1 but not of P2 mRNA was significantly increased in liver. BAT was unaffected. We conclude that the P1 and P2 genes for subunit c are differentially regulated in vivo. While the P2 gene is expressed constitutively, the P1 gene responds to different physiological stimuli as a means of modulating the relative content of ATP synthase.
Collapse
Affiliation(s)
- U Andersson
- The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, S-106 91 Stockholm, Sweden,
| | | | | |
Collapse
|
46
|
Papa S. Mitochondrial oxidative phosphorylation changes in the life span. Molecular aspects and physiopathological implications. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1276:87-105. [PMID: 8816944 DOI: 10.1016/0005-2728(96)00077-1] [Citation(s) in RCA: 202] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- S Papa
- Institute of Medical Biochemistry and Chemistry, University of Bari, Italy.
| |
Collapse
|
47
|
Nijtmans LG, Spelbrink JN, Van Galen MJ, Zwaan M, Klement P, Van den Bogert C. Expression and fate of the nuclearly encoded subunits of cytochrome-c oxidase in cultured human cells depleted of mitochondrial gene products. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1265:117-26. [PMID: 7696340 DOI: 10.1016/0167-4889(94)00203-q] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Synthesis, import, assembly and turnover of the nuclearly encoded subunits of cytochrome-c oxidase were investigated in cultured human cells depleted of mitochondrial gene products by continuous inhibition of mitochondrial protein synthesis (OP- cells). Immunoprecipitation after pulse labeling demonstrated that the synthesis of the nuclear subunits was not preferentially inhibited, implying that there is no tight regulation in the synthesis of mitochondrial and nuclear subunits of mitochondrial enzyme complexes. Quantitative analysis of the mitochondrial membrane potential in OP- cells indicated that its magnitude was about 30% of that in control cells. This explains the normal import of the nuclearly encoded subunits of cytochrome-c oxidase and other nuclearly encoded mitochondrial proteins into the mitochondria that was found in OP- cells. The turnover rate of nuclear subunits of cytochrome-c oxidase, determined in pulse-chase experiments, showed a specific increase in OP- cells. Moreover, immunoblotting demonstrated that the steady-state levels of nuclear subunits of cytochrome-c oxidase were severely reduced in these cells, in contrast to those of the F1 part of complex V. Native electrophoresis of mitochondrial enzyme complexes showed that assembly of the nuclear subunits of cytochrome-c oxidase did not occur in OP- cells, whereas the (nuclear) subunits of F1 were assembled. The increased turnover of the nuclear subunits of cytochrome-c oxidase in OP- cells is, therefore, most likely due to an increased susceptibility of unassembled subunits to intra-mitochondrial degradation.
Collapse
Affiliation(s)
- L G Nijtmans
- Department of Neurology, University of Amsterdam, Academic Medical Center, The Netherlands
| | | | | | | | | | | |
Collapse
|
48
|
Wells J, Henkler F, Leversha M, Koshy R. A mitochondrial elongation factor-like protein is over-expressed in tumours and differentially expressed in normal tissues. FEBS Lett 1995; 358:119-25. [PMID: 7828719 DOI: 10.1016/0014-5793(94)01403-n] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The tissue-specific expression of an antigen (P43) ubiquitously expressed at high levels in a variety of tumours of human and animal origin was investigated using a monoclonal antibody to P43. Whereas low amounts of P43 are expressed in the spleen, skeletal muscle and pancreas, P43 is abundantly produced in the liver and in other tissues such as the kidney, heart and brain which have levels of oxidative metabolism. Interestingly, a related protein of higher molecular weight is abundantly expressed in the lung and in amounts which were higher than those observed with other tissues. The human cDNA for P43 was isolated from a human liver cDNA library and mapped to chromosome 16 between p11.2 and 12 and also to a position near the centromere on the long arm of chromosome 17. The deduced amino acid sequence of P43 is remarkably similar to that of E. coli EF-Tu and the mitochondrial EF-Tu of S. cerevisiae with the structurally and functionally important amino acids of EF-Tu being completely conserved in P43. A comparison of the distribution of P43 and a mitochondrial protein Hsp 60 among different cellular fractions indicated a likely mitochondrial localisation for P43. Taken together these results suggest that P43 is a human mitochondrial elongation factor.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, Neoplasm/biosynthesis
- Base Sequence
- Blotting, Northern
- Blotting, Southern
- Cells, Cultured
- Chromosome Mapping
- Chromosomes, Human, Pair 16
- Chromosomes, Human, Pair 17
- DNA, Complementary
- Humans
- In Situ Hybridization
- Male
- Mice
- Mitochondria/metabolism
- Mitochondrial Proteins
- Molecular Sequence Data
- Peptide Elongation Factor Tu/biosynthesis
- Peptide Elongation Factors/biosynthesis
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- J Wells
- Department of Pathology, University of Cambridge, UK
| | | | | | | |
Collapse
|
49
|
Villena J, Martin I, Viñas O, Cormand B, Iglesias R, Mampel T, Giralt M, Villarroya F. ETS transcription factors regulate the expression of the gene for the human mitochondrial ATP synthase beta-subunit. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)31683-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
50
|
Krähenbühl S. Alterations in mitochondrial function and morphology in chronic liver disease: pathogenesis and potential for therapeutic intervention. Pharmacol Ther 1993; 60:1-38. [PMID: 8127921 DOI: 10.1016/0163-7258(93)90020-e] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Studies assessing mitochondrial function and structure in livers from humans or experimental animals with chronic liver disease, including liver cirrhosis, revealed a variety of alterations in comparison with normal subjects or control animals. Depending on the etiology of chronic liver disease, the function of the electron transport chain and/or ATP synthesis was found to be impaired, leading to decreased oxidative metabolism of various substrates and to impaired recovery of the hepatic energy state after a metabolic insult. Changes in mitochondrial structure include megamitochondria with reduced cristae, dilatation of mitochondrial cristae and crystalloid inclusions in the mitochondrial matrix. The most important strategies to maintain an adequate mitochondrial function per liver are mitochondrial proliferation and increases in the activity of critical enzymes or in the content of cofactors per mitochondrion. Possibilities to assess hepatic mitochondrial function and to treat mitochondrial dysfunction in patients with chronic liver disease are discussed.
Collapse
Affiliation(s)
- S Krähenbühl
- Department of Internal Medicine, University of Berne, Switzerland
| |
Collapse
|