1
|
Yonese I, Yasuda Y, Takemura K, Toide M, Soma T, Yoneoka Y, Fujiwara R, Ito M, Oguchi T, Numao N, Yamamoto S, Yuasa T, Koga F, Yonese J. Impact of IRAES on the outcomes of pembrolizumab therapy in patients with MUC: A comprehensive analysis of severity and the type and number of affected organs. Urol Oncol 2025; 43:441.e1-441.e10. [PMID: 39971635 DOI: 10.1016/j.urolonc.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/26/2025] [Accepted: 02/01/2025] [Indexed: 02/21/2025]
Abstract
BACKGROUND Immune-related adverse events (irAEs) are reportedly associated with favorable outcomes in patients with metastatic urothelial carcinoma (mUC) receiving pembrolizumab. Previous studies on this topic focused on the severity of irAEs. The type and number of organs affected by irAEs may also be associated with the therapeutic outcomes. METHODS The present, retrospective study included 146 patients with mUC receiving pembrolizumab between January 2018 and March 2022. The primary endpoints were the overall response rate (ORR), progression-free survival (PFS), and overall survival (OS) associated with the type and number of organs affected by irAEs and the severity of the symptoms. IrAEs were graded using the Common Terminology Criteria for Adverse Events version 5.0. The treatment response was assessed using the Response Evaluation Criteria in Solid Tumors version 1.1. Cox proportional hazards was used to assess for any association between the variables and survival. Time-dependent analysis was used to assess the status of irAEs as a prognostic factor. RESULTS IrAEs ≥ grade (G) 2 were observed in 48 (33%) patients, of whom 9 (6%) had multiple irAEs. IrAEs ≥G2 were significantly associated with a higher ORR (57% vs. 22% for CONCLUSIONS The severity and number of irAEs and the organs affected by them appeared to be relevant to the therapeutic efficacy of pembrolizumab in patients with mUC.
Collapse
MESH Headings
- Humans
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal, Humanized/therapeutic use
- Male
- Female
- Retrospective Studies
- Middle Aged
- Aged
- Treatment Outcome
- Antineoplastic Agents, Immunological/adverse effects
- Antineoplastic Agents, Immunological/therapeutic use
- Carcinoma, Transitional Cell/drug therapy
- Carcinoma, Transitional Cell/pathology
- Carcinoma, Transitional Cell/mortality
- Aged, 80 and over
- Severity of Illness Index
- Adult
- Urologic Neoplasms/drug therapy
- Urologic Neoplasms/pathology
- Urologic Neoplasms/mortality
- Urinary Bladder Neoplasms/drug therapy
- Urinary Bladder Neoplasms/pathology
Collapse
Affiliation(s)
- Ichiro Yonese
- Departments of Genitourinary Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan; Department of Urology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Yosuke Yasuda
- Departments of Genitourinary Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan.
| | - Kosuke Takemura
- Departments of Genitourinary Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Masahiro Toide
- Department of Urology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Takahiko Soma
- Department of Urology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Yusuke Yoneoka
- Departments of Genitourinary Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Ryo Fujiwara
- Departments of Genitourinary Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Masaya Ito
- Department of Urology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Tomohiko Oguchi
- Departments of Genitourinary Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Noboru Numao
- Departments of Genitourinary Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Shinya Yamamoto
- Departments of Genitourinary Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Takeshi Yuasa
- Departments of Genitourinary Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Fumitaka Koga
- Department of Urology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Junji Yonese
- Departments of Genitourinary Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
2
|
Chen G, Li T, Duan R, Liang W, Li B, Xie X, Yang L, Shuai X, Meng X. Cognate Nanovaccine Promotes Tertiary Lymphoid Structures Function and Strengthens Immune Cell Cross-Talk by Targeting Exhausted T Cells in Nonimmunogenic Cancers. ACS NANO 2025; 19:21385-21399. [PMID: 40478679 DOI: 10.1021/acsnano.5c01280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2025]
Abstract
Tertiary lymphoid structures (TLSs) serve as hubs for immune cell activation and coordination to generate qualitative local immune responses within tumors. However, the effect of TLSs in pancreatic adenocarcinoma is limited by a poorly immunogenic tumor microenvironment and severe T-cell exhaustion. In this study, we found that tumor-infiltrating T cells, particularly TLS-associated T cells, predominantly exhibit terminal exhaustion characterized by high T-cell immunoglobulin and mucin domain-containing protein 3 (TIM-3) expression in patients with pancreatic cancer, affecting their contribution to antitumor immunity. Thus, we developed a therapeutic nanovaccine by fusing antigen-sensitized dendritic cell membranes with TIM-3-targeted lipid nanoparticles (MLP-aTIM-3) to synergistically reverse T-cell exhaustion. The prepared nanovaccine provides cognate antigens and costimulation to the exhausted T cells by the TIM-3/aTIM-3 interaction. In vitro and in vivo studies demonstrate that targeting T-cell exhaustion through the MLP-aTIM-3 not only restores T-cell reactivity but also promotes the formation and maturation of TLSs, leading to superior antitumor efficacy in an orthotopic pancreatic cancer model. Additionally, the therapeutic efficacy of MLP-aTIM-3 extends to other tumor models, such as liver metastasis and colorectal cancer. Our study suggests that targeting T-cell exhaustion while enhancing TLS function with MLP-aTIM-3 offers a promising strategy for improving the immune response in nonimmunogenic cancers.
Collapse
Affiliation(s)
- Gengjia Chen
- Department of Radiology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Tan Li
- Department of Minimally Invasive Interventional Radiology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Rui Duan
- Department of Radiology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Weiye Liang
- Department of Radiology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Bo Li
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Xiaoxue Xie
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Long Yang
- Department of Radiology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Xintao Shuai
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Xiaochun Meng
- Department of Radiology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| |
Collapse
|
3
|
Osuch S, Kazek M, Emmel P, Berak H, Radkowski M, Cortés-Fendorf K. Persistence of hepatitis C virus in peripheral blood mononuclear cells of patients who achieved sustained virological response following treatment with direct-acting antivirals is associated with a distinct pre-existing immune exhaustion status. Sci Rep 2025; 15:19918. [PMID: 40481150 PMCID: PMC12144158 DOI: 10.1038/s41598-025-05084-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 05/30/2025] [Indexed: 06/11/2025] Open
Abstract
Hepatitis C virus (HCV) is a primary hepatotropic pathogen responsible for acute and chronic hepatitis C, however, it can also cause "occult" infection (OCI), defined as the presence of the virus' genetic material in hepatocytes and/or peripheral blood cells, but not in plasma/serum. Assessment of the sustained virologic response (SVR) after treatment with direct-acting antivirals (DAA) is based exclusively on HCV-RNA testing in plasma/serum, which may preclude the diagnosis of post-treatment OCI. Possible clinical consequences of OCI were described previously, but its occurrence after DAA-based antiviral treatment programs and determinants of the virus persistence are not fully elucidated. The aim of this study was to assess the incidence of post-treatment OCI after successful DAA-based treatment and to identify clinical and immunological factors associated with this phenomenon. In 97 patients treated with DAA, HCV-RNA was tested by RT-PCR in peripheral blood mononuclear cells (PBMC) at baseline (i.e., before the onset of treatment) and at the time of SVR assessment. Before treatment, HCV-RNA was detectable in all patients' PBMC. All subjects responded to therapy according to the clinical criteria, but 9 (9.3%) patients revealed the HCV-RNA in PBMC at SVR. In most of these cases, post-DAA OCI was related to switch of the dominant infecting genotype. Post-treatment OCI was characterized by significantly lower pre-treatment HCV viral load and lower expression of Tim-3 (T-cell immunoglobulin and mucin domain-containing protein 3) on CD8+ T-cells. Our results imply that post-treatment OCI may be related to lower pretreatment viral load as well as distinct pre-existing immune exhaustion status.
Collapse
Affiliation(s)
- Sylwia Osuch
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, 3C Pawińskiego Street, 02-106, Warsaw, Poland
| | - Marta Kazek
- Laboratory of Genetics, University Clinical Center of the Medical University of Warsaw, Warsaw, Poland
| | - Paulina Emmel
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, 3C Pawińskiego Street, 02-106, Warsaw, Poland
| | - Hanna Berak
- Outpatient Clinic, Warsaw Hospital for Infectious Diseases, Warsaw, Poland
| | - Marek Radkowski
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, 3C Pawińskiego Street, 02-106, Warsaw, Poland
| | - Kamila Cortés-Fendorf
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, 3C Pawińskiego Street, 02-106, Warsaw, Poland.
| |
Collapse
|
4
|
Park B, Kim J, Baylink DJ, Hino C, Kwon C, Tran V, Xiao J, Cao H, Lee S, Tan L, Chang A, Saca L, Matus M, Lobo Moreno P, Schill-Depew A, Abdel-Azim H, Mirshahidi H, Xu Y. Nutrient-gene therapy as a strategy to enhance CAR T cell function and overcome barriers in the tumor microenvironment. J Transl Med 2025; 23:633. [PMID: 40481543 PMCID: PMC12144745 DOI: 10.1186/s12967-025-06606-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 05/12/2025] [Indexed: 06/11/2025] Open
Abstract
Cancer immunotherapy is transforming the treatment landscape of both hematological and solid cancers. Although T-cell-based adoptive cell transfer (ACT) therapies have demonstrated initial success, several recurrent obstacles limit their long-term anti-tumor efficacy, including: (1) lack of antigen specificity; (2) poor long-term survival of transplanted T cells in vivo; and (3) a hostile tumor microenvironment (TME). While numerous approaches have been explored to enhance the antigen specificity of Chimeric Antigen Receptor (CAR) T-cell therapies, the field still lacks an effective strategy to optimize the long-term retention and in vivo expansion of engrafted T cells within the TME-a critical factor for the durable efficacy of T-cell-based immunotherapies for both blood and solid cancers. Here, we hypothesize that the success of CAR T-cell therapy can be enhanced by targeting donor T cells' ability to compete with cancer cells for key nutrients, thereby overcoming T-cell exhaustion and sustaining durable anti-tumor function in the TME. To explore this hypothesis, we first provide a comprehensively review of the current understanding of the metabolic interactions (e.g., glucose metabolism) between T cells and tumor cells. To address the challenges, we propose an innovative strategy: utilizing nutrient gene therapy (genetic overexpression of glucose transporter 1, GLUT1) to fortify the metabolic competency of adoptive CAR T-cells, deprive tumors of critical metabolites and ATP, and disrupt the TME. Altogether, our proposed approach combining precision medicine (adoptive CAR T-cell therapy) with tumor metabolism-targeting strategies offers a promising and cost-effective solution to enhance the efficacy and durability of ACT therapies, ultimately improving outcomes for cancer patients.
Collapse
Affiliation(s)
- Brandon Park
- Division of Discovery, Innovation and Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA92354, USA
| | - Joshua Kim
- Division of Discovery, Innovation and Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA92354, USA
| | - David J Baylink
- Division of Discovery, Innovation and Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA92354, USA
| | - Christopher Hino
- Division of Discovery, Innovation and Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA92354, USA
| | - Cedric Kwon
- Division of Discovery, Innovation and Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA92354, USA
| | - Victoria Tran
- Division of Discovery, Innovation and Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA92354, USA
| | - Jeffrey Xiao
- Division of Discovery, Innovation and Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA92354, USA
| | - Huynh Cao
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA92354, USA
- Loma Linda University Cancer Center, Loma Linda, CA, 92354, USA
| | - Scott Lee
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA92354, USA
| | - Laren Tan
- Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA92354, USA
| | - Andrew Chang
- Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA92354, USA
| | - Luis Saca
- Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA92354, USA
| | - Michael Matus
- Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA92354, USA
| | - Pamela Lobo Moreno
- Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA92354, USA
| | - Amy Schill-Depew
- Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA92354, USA
| | - Hisham Abdel-Azim
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA92354, USA
- Loma Linda University Cancer Center, Loma Linda, CA, 92354, USA
| | - Hamid Mirshahidi
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA92354, USA
- Loma Linda University Cancer Center, Loma Linda, CA, 92354, USA
| | - Yi Xu
- Division of Discovery, Innovation and Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA92354, USA.
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA92354, USA.
- Loma Linda University Cancer Center, Loma Linda, CA, 92354, USA.
| |
Collapse
|
5
|
Giovarelli M, Mocciaro E, Carnovale C, Cervia D, Perrotta C, Clementi E. Immunosenescence in skeletal muscle: The role-play in cancer cachexia chessboard. Semin Cancer Biol 2025; 111:48-59. [PMID: 40020976 DOI: 10.1016/j.semcancer.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/03/2025]
Abstract
With the increase in life expectancy, age-related conditions and diseases have become a widespread and relevant social burden. Among these, immunosenescence and cancer cachexia play a significant often intertwined role. Immunosenescence is the progressive aging decline of both the innate and adaptive immune systems leading to increased infection susceptibility, poor vaccination efficacy, autoimmune disease, and malignancies. Cancer cachexia affects elderly patients with cancer causing severe weight loss, muscle wasting, inflammation, and reduced response to therapies. Whereas the connections between immunosenescence and cancer cachexia have been raising attention, the molecular mechanisms still need to be completely elucidated. This review aims at providing the current knowledge about the interplay between immunosenescence, skeletal muscle, and cancer cachexia, analyzing the molecular pathways known so far to be involved. Finally, we highlight potential therapeutic strategies suited for elderly population aimed to block immunosenescence and to preserve muscle mass in cachexia, also presenting the analysis of the current state-of-the-art of related clinical trials.
Collapse
Affiliation(s)
- Matteo Giovarelli
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, Milan 20157, Italy.
| | - Emanuele Mocciaro
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, Milan 20157, Italy
| | - Carla Carnovale
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, Milan 20157, Italy
| | - Davide Cervia
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università degli Studi della Tuscia, Viterbo 01100, Italy
| | - Cristiana Perrotta
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, Milan 20157, Italy
| | - Emilio Clementi
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, Milan 20157, Italy.
| |
Collapse
|
6
|
Halvorsen S, Thomas M, Mino-Kenudson M, Kinowaki Y, Burke KE, Morgan D, Miller KC, Williams KM, Gurung J, McGoldrick J, Hopton M, Hoppe B, Samanta N, Martin S, Tirard A, Arnold BY, Tantivit J, Yarze J, Staller K, Chung DC, Villani AC, Sassi S, Khalili H. Single-cell transcriptomic characterization of microscopic colitis. Nat Commun 2025; 16:4618. [PMID: 40383833 PMCID: PMC12086216 DOI: 10.1038/s41467-025-59648-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 04/30/2025] [Indexed: 05/20/2025] Open
Abstract
Microscopic colitis (MC) is a chronic inflammatory disease of the large intestine and a common cause of chronic diarrhea in older adults. Here, we use single-cell RNA sequencing analysis of colonic mucosal tissue to build a cellular and molecular model for MC. Our results show that in MC, there is a substantial expansion of tissue CD8+ T cells, likely arising from local expansion following T cell receptor engagement. Within the T cell compartment, MC is characterized by a shift in CD8 tissue-resident memory T cells towards a highly cytotoxic and inflammatory phenotype and expansion of CD4+ T regulatory cells. These results provide insight into inflammatory cytokines shaping MC pathogenesis and highlight notable similarities and differences with other immune-mediated intestinal diseases, including a common upregulation of IL26 and an MC-specific upregulation of IL10. These data help identify targets against enteric T cell subsets as an effective strategy for treatment of MC.
Collapse
Affiliation(s)
- Stefan Halvorsen
- Center for Computational and Integrative Biology, Massachusetts General Hospital (MGH), Boston, MA, USA
| | - Molly Thomas
- Center for Immunology and Inflammatory Diseases, Department of Medicine, MGH, Boston, MA, USA
- Krantz Family Center for Cancer Research, Department of Medicine, MGH, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Harvard Medical School (HMS), Boston, MA, USA
- Division of Gastroenterology, Department of Medicine, MGH, Boston, MA, USA
| | - Mari Mino-Kenudson
- Harvard Medical School (HMS), Boston, MA, USA
- Department of Pathology, HMS, MGH, Boston, MA, USA
| | | | - Kristin E Burke
- Division of Gastroenterology, Department of Medicine, MGH, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, MGH, Boston, MA, USA
| | - David Morgan
- Clinical and Translational Epidemiology Unit, MGH, Boston, MA, USA
| | - Kaia C Miller
- Clinical and Translational Epidemiology Unit, MGH, Boston, MA, USA
- Department of Medicine, Duke University Health System, NC, Durham, USA
| | | | - Jenny Gurung
- Clinical and Translational Epidemiology Unit, MGH, Boston, MA, USA
| | | | - Megan Hopton
- Center for Computational and Integrative Biology, Massachusetts General Hospital (MGH), Boston, MA, USA
| | - Brooke Hoppe
- Center for Computational and Integrative Biology, Massachusetts General Hospital (MGH), Boston, MA, USA
| | - Nandini Samanta
- Center for Immunology and Inflammatory Diseases, Department of Medicine, MGH, Boston, MA, USA
- Krantz Family Center for Cancer Research, Department of Medicine, MGH, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Sidney Martin
- Center for Immunology and Inflammatory Diseases, Department of Medicine, MGH, Boston, MA, USA
- Krantz Family Center for Cancer Research, Department of Medicine, MGH, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Alice Tirard
- Center for Immunology and Inflammatory Diseases, Department of Medicine, MGH, Boston, MA, USA
- Krantz Family Center for Cancer Research, Department of Medicine, MGH, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Benjamin Y Arnold
- Center for Immunology and Inflammatory Diseases, Department of Medicine, MGH, Boston, MA, USA
- Krantz Family Center for Cancer Research, Department of Medicine, MGH, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Jessica Tantivit
- Center for Immunology and Inflammatory Diseases, Department of Medicine, MGH, Boston, MA, USA
- Krantz Family Center for Cancer Research, Department of Medicine, MGH, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Joseph Yarze
- Division of Gastroenterology, Department of Medicine, MGH, Boston, MA, USA
| | - Kyle Staller
- Division of Gastroenterology, Department of Medicine, MGH, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, MGH, Boston, MA, USA
| | - Daniel C Chung
- Division of Gastroenterology, Department of Medicine, MGH, Boston, MA, USA
| | - Alexandra-Chloé Villani
- Center for Immunology and Inflammatory Diseases, Department of Medicine, MGH, Boston, MA, USA
- Krantz Family Center for Cancer Research, Department of Medicine, MGH, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
- Harvard Medical School (HMS), Boston, MA, USA
| | - Slim Sassi
- Center for Computational and Integrative Biology, Massachusetts General Hospital (MGH), Boston, MA, USA
- Harvard Medical School (HMS), Boston, MA, USA
- Department of Orthopedic Surgery, MGH, Boston, MA, USA
| | - Hamed Khalili
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA.
- Division of Gastroenterology, Department of Medicine, MGH, Boston, MA, USA.
- Clinical and Translational Epidemiology Unit, MGH, Boston, MA, USA.
- Institute of Environmental Medicine, Nutrition Epidemiology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
7
|
Osuch S, Kumorek A, Kozłowski P, Berak H, Kochanowicz AM, Cortés-Fendorf K. Plasma levels of soluble PD-1, TIM-3, LAG-3 and galectin-3 and the degree of liver fibrosis in CHC and the impact of successful antiviral treatment on their levels. Sci Rep 2025; 15:15436. [PMID: 40316644 PMCID: PMC12048671 DOI: 10.1038/s41598-025-99096-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 04/16/2025] [Indexed: 05/04/2025] Open
Abstract
Chronic hepatitis C (CHC), caused by the hepatitis C virus, commonly leads to liver fibrosis. CHC is also related to T-cell exhaustion, phenotypically manifesting as overexpression of inhibitory receptors (iRs), e.g., programmed death receptor-1 (PD-1), T cell immunoglobulin and mucin domain-containing protein 3 (TIM-3) and lymphocyte activation gene 3 (LAG-3), which have corresponding plasma-soluble analogs. Galectin-3 (Gal-3) is a pro-fibrotic and pro-inflammatory molecule, but its role in CHC is controversial. The study aimed to assess the relationship between plasma levels of soluble PD-1 (sPD-1), sTIM-3, sLAG-3 and Gal-3 and the degree of fibrosis in CHC and successful CHC treatment effect on these markers. The study comprised 98 CHC patients, qualified for treatment with direct-acting antivirals. Plasma samples were collected prior to and six months post-treatment. iRs were determined by ELISA. sPD-1 levels were significantly higher in more advanced fibrosis (F2 + F3 vs. F0/1). Regardless of the degree of fibrosis, sPD-1 and sLAG-3 levels significantly decreased after therapy. sTIM-3 levels also decreased, however, mostly in patients with no or mild (i.e., F0/1) fibrosis. Furthermore, Gal-3 increased in patients with more advanced fibrosis (F2 + F3). sPD-1 is associated with liver disease stage in CHC and effective treatment is related to the iRs levels reduction.
Collapse
Affiliation(s)
- Sylwia Osuch
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, 3c Pawińskiego Street, Warsaw, 02-106, Poland
| | - Aleksandra Kumorek
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, 3c Pawińskiego Street, Warsaw, 02-106, Poland
| | - Paweł Kozłowski
- Central Laboratory, University Clinical Centre of Medical University of Warsaw, Warsaw, Poland
| | - Hanna Berak
- Outpatient Clinic, Warsaw Hospital for Infectious Diseases, Warsaw, Poland
| | - Anna Maria Kochanowicz
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, 3c Pawińskiego Street, Warsaw, 02-106, Poland
| | - Kamila Cortés-Fendorf
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, 3c Pawińskiego Street, Warsaw, 02-106, Poland.
| |
Collapse
|
8
|
Patra KSL, Hanumanthu V, Vinay K. Clustering of varicella over active superficial dermatophytosis: An underreported co-existence. Indian J Dermatol Venereol Leprol 2025; 91:S58-S59. [PMID: 39152859 DOI: 10.25259/ijdvl_708_2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 03/10/2024] [Indexed: 08/19/2024]
Affiliation(s)
- Kumari Sweta Leena Patra
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Vinod Hanumanthu
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Keshavamurthy Vinay
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
9
|
Mariano NC, Marotti JD, Chen Y, Karakyriakou B, Salgado R, Christensen BC, Miller TW, Kettenbach AN. Quantitative proteomics analysis of triple-negative breast cancers. NPJ Precis Oncol 2025; 9:117. [PMID: 40269124 PMCID: PMC12019170 DOI: 10.1038/s41698-025-00907-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 04/05/2025] [Indexed: 04/25/2025] Open
Abstract
Triple-negative breast cancer (TNBC) accounts for approximately 15% of all Breast Cancer (BC) cases with poorer prognosis and clinical outcomes compared to other BC subtypes due to greater tumor heterogeneity and few therapeutically targetable oncogenic drivers. To reveal actionable pathways for anti-cancer treatment, we use a proteomic approach to quantitatively compare the abundances of 6306 proteins across 55 formalin-fixed and paraffin-embedded (FFPE) TNBC tumors. We identified four major TNBC clusters by unsupervised clustering analysis of protein abundances. Analyses of clinicopathological characteristics revealed associations between the proteomic profiles and clinical phenotypes exhibited by each subtype. We validate the findings by inferring immune and stromal cell type composition from genome-wide DNA methylation profiles. Finally, quantitative proteomics on TNBC cell lines was conducted to identify in vitro models for each subtype. Collectively, our data provide subtype-specific insights into molecular drivers, clinicopathological phenotypes, tumor microenvironment (TME) compositions, and potential pharmacologic vulnerabilities for further investigations.
Collapse
Affiliation(s)
| | - Jonathan D Marotti
- Department of Pathology and Laboratory Medicine, Lebanon, NH, USA
- Dartmouth Cancer Center, Lebanon, NH, USA
| | | | | | - Roberto Salgado
- Department of Pathology, GZA-ZNA Hospitals, Antwerp, Belgium
- Division of Research, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Brock C Christensen
- Department of Pathology and Laboratory Medicine, Lebanon, NH, USA
- Dartmouth Cancer Center, Lebanon, NH, USA
- Department of Molecular and Systems Biology, Lebanon, NH, USA
- Department of Epidemiology, Lebanon, NH, USA
- Department of Community and Family Medicine, Lebanon, NH, USA
| | - Todd W Miller
- Dartmouth Cancer Center, Lebanon, NH, USA
- Department of Molecular and Systems Biology, Lebanon, NH, USA
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Arminja N Kettenbach
- Department of Biochemistry and Cell Biology, Hanover, NH, USA.
- Dartmouth Cancer Center, Lebanon, NH, USA.
| |
Collapse
|
10
|
Chauvet M, Bourges D, Scotet E. From ex vivo to in vitro models: towards a novel approach to investigate the efficacy of immunotherapies on exhausted Vγ9Vδ2 T cells? Front Immunol 2025; 16:1556982. [PMID: 40330479 PMCID: PMC12052970 DOI: 10.3389/fimmu.2025.1556982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/31/2025] [Indexed: 05/08/2025] Open
Abstract
Human γδ T cells demonstrate remarkable and diverse antitumor properties driven by TCR-dependent activation. Their non-alloreactive nature and pivotal role in cancer immunity position them as attractive targets for immunotherapies. However, upon infiltrating tumors, due to mechanisms induced by the tumor microenvironment's immune evasion strategies, these cells frequently become exhausted, greatly weakening the efficacy and antitumor potential of novel immunotherapeutic treatments. While being extensively characterized in CD8+ T cells, research on γδ T cell exhaustion remains scarce. There is a growing need for comprehensive models to investigate the reinvigoration properties of exhausted γδ T cells. This review synthesizes current strategies and models for evaluating novel immunotherapies aimed at rejuvenating exhausted γδ T cells. It explores a progression of approaches, from ex vivo studies and in vivo murine models to emerging in vitro systems. The advantages and limitations of these models are discussed to provide a comprehensive understanding of their potential in advancing therapeutic research. Furthermore, recent findings suggesting in vitro exhaustion phenotypes closely mirror those observed ex vivo highlight opportunities for preclinical innovation. By refining these models, researchers can better optimize the immunotherapies targeting this unique T cell subset.
Collapse
Affiliation(s)
- Morgane Chauvet
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d’AngersCRCI2NA, Nantes, France
- LabEx IGO “Immunotherapy, Graft, Oncology”, Nantes, France
- Sanofi, Oncology, Vitry-sur-Seine, France
| | | | - Emmanuel Scotet
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d’AngersCRCI2NA, Nantes, France
- LabEx IGO “Immunotherapy, Graft, Oncology”, Nantes, France
| |
Collapse
|
11
|
Nair R, Somasundaram V, Kuriakose A, Krishn SR, Raben D, Salazar R, Nair P. Deciphering T-cell exhaustion in the tumor microenvironment: paving the way for innovative solid tumor therapies. Front Immunol 2025; 16:1548234. [PMID: 40236693 PMCID: PMC11996672 DOI: 10.3389/fimmu.2025.1548234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/14/2025] [Indexed: 04/17/2025] Open
Abstract
In solid tumors, the tumor microenvironment (TME) is a complex mix of tumor, immune, stromal cells, fibroblasts, and the extracellular matrix. Cytotoxic T lymphocytes (CTLs) constitute a fraction of immune cells that may infiltrate into the TME. The primary function of these T-cells is to detect and eliminate tumor cells. However, due to the immunosuppressive factors present in the TME primarily mediated by Myeloid-Derived Suppressor Cells (MDSCs), Tumor associated macrophages (TAMs), Cancer Associated Fibroblasts (CAFs) as well as the tumor cells themselves, T-cells fail to differentiate into effector cells or become dysfunctional and are unable to eliminate the tumor. In addition, chronic antigen stimulation within the TME also leads to a phenomenon, first identified in chronic lymphocytic choriomeningitis virus (LCMV) infection in mice, where the T-cells become exhausted and lose their effector functions. Exhausted T-cells (Tex) are characterized by the presence of remarkably conserved inhibitory receptors, transcription and signaling factors and the downregulation of key effector molecules. Tex cells have been identified in various malignancies, including melanoma, colorectal and hepatocellular cancers. Recent studies have indicated novel strategies to reverse T-cell exhaustion. These include checkpoint inhibitor blockade targeting programmed cell death protein 1 (PD-1), T-cell immunoglobulin and mucin-domain containing-3 (Tim-3), cytotoxic T-lymphocyte associated protein 4 (CTLA-4), or combinations of different immune checkpoint therapies (ICTs) or combination of ICTs with cytokine co-stimulation. In this review, we discuss aspects of T-cell dysfunction within the TME with a focus on T-cell exhaustion. We believe that gaining insight into the mechanisms of T-cell exhaustion within the TME of human solid tumors will pave the way for developing therapeutic strategies to target and potentially re-invigorate exhausted T-cells in cancer.
Collapse
Affiliation(s)
- Reshmi Nair
- Syngene International Limited, Bengaluru, India
| | | | | | | | - David Raben
- Bicara Therapeutics, Boston, MA, United States
| | | | - Pradip Nair
- Syngene International Limited, Bengaluru, India
| |
Collapse
|
12
|
Juthi RT, Sazed SA, Mareboina M, Zaravinos A, Georgakopoulos-Soares I. Characterization of Exhausted T Cell Signatures in Pan-Cancer Settings. Int J Mol Sci 2025; 26:2311. [PMID: 40076932 PMCID: PMC11899893 DOI: 10.3390/ijms26052311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
T cells play diverse roles in cancer immunology, acting as tumor suppressors, cytotoxic effectors, enhancers of cytotoxic T lymphocyte responses and immune suppressors; providing memory and surveillance; modulating the tumor microenvironment (TME); or activating innate immune cells. However, cancer cells can disrupt T cell function, leading to T cell exhaustion and a weakened immune response against the tumor. The expression of exhausted T cell (Tex) markers plays a pivotal role in shaping the immune landscape of multiple cancers. Our aim was to systematically investigate the role of known T cell exhaustion (Tex) markers across multiple cancers while exploring their molecular interactions, mutation profiles, and potential implications for immunotherapy. The mRNA expression profile of six Tex markers, LAG-3, PDCD1, TIGIT, HAVCR2, CXCL13, and LAYN was investigated in pan-cancer. Utilizing data from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), The Cancer Proteome Atlas (TCPA), and other repositories, we characterized the differential expression of the Tex markers, their association with the patients' survival outcome, and their mutation profile in multiple cancers. Additionally, we analyzed the effects on cancer-related pathways and immune infiltration within the TME, offering valuable insights into mechanisms of cancer immune evasion and progression. Finally, the correlation between their expression and sensitivity to multiple anti-cancer drugs was investigated extensively. Differential expression of all six markers was significantly associated with KIRC and poor prognosis in several cancers. They also played a potential activating role in apoptosis, EMT, and hormone ER pathways, as well as a potential inhibitory role in the DNA damage response and RTK oncogenic pathways. Infiltration of different immune cells was also found to be associated with the expression of the Tex-related genes in most cancer types. These findings underline that the reviving of exhausted T cells can be used to enhance the efficacy of immunotherapy in cancer patients.
Collapse
Affiliation(s)
- Rifat Tasnim Juthi
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh;
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (S.A.S.); (M.M.)
| | - Saiful Arefeen Sazed
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (S.A.S.); (M.M.)
| | - Manvita Mareboina
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (S.A.S.); (M.M.)
| | - Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, 22006, 1516 Nicosia, Cyprus
- Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), 22006, 1516 Nicosia, Cyprus
| | - Ilias Georgakopoulos-Soares
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (S.A.S.); (M.M.)
| |
Collapse
|
13
|
Boschiero C, Beshah E, Bakshi M, Miramontes E, Hebert D, Thompson PC, Li CJ, Zhu X, Zarlenga D, Liu GE, Tuo W. Transcriptional Profiling of Abomasal Mucosa from Young Calves Experimentally Infected with Ostertagia ostertagi. Int J Mol Sci 2025; 26:2264. [PMID: 40076885 PMCID: PMC11900041 DOI: 10.3390/ijms26052264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Ostertagia ostertagi, also known as the brown stomach worm, causes significant pathology in the abomasum, resulting in production and nutritional losses in cattle. Alternative control measures, such as vaccination, are urgently needed because of rapidly growing anthelmintic drug resistance. There is a need to understand host responses to the infection, especially immune responses, to advance vaccine discovery and design. Therefore, the present study investigated comprehensive changes in gene transcription in the abomasal mucosa of cattle infected with O. ostertagi at 0, 3-5, 7-9, 10, and 21 days post-infection (dpi) using RNA sequencing (RNA-seq). Compared to uninfected controls, infected animals exhibited significant increases in differentially expressed genes (DEGs) throughout the infection period. Infection induced more upregulated than downregulated genes in the abomasal fundic mucosa (FUN) when compared to the abomasal pyloric mucosa (PYL). The largest transcriptional changes occurred between 7-9 and 10 dpi during the final development of the L4 and their emergence from the gastric glands. Most DEGs are associated with host immunity, cellular reorganization, cell migration, and proliferation. Tuft/epithelial cell response to the infection was atypical, lacking an anticipated increase in key alarmin cytokine genes. Numerous genes associated with T helper (Th) 1, Th2, and Th17 responses and T cell exhaustion were upregulated, suggesting altered immune regulation. The data collectively indicate that O. ostertagi infection elicits massive host responses, particularly immune responses, which are intertwined with the parasite's disruption of abomasal function, which likely impairs the nutrient utilization of the host. The infection is characterized by the absence of a dominant Th response and displaying a mixed activation of Th1, Th2, and Th17 pathways. Elevated expression of T cell exhaustion genes and lack of increase in epithelial alarmin cytokine genes suggest a downregulation of, or a deficiency in initiating, effective host immunity to the infection. Understanding mechanisms of parasite-mediated immune evasion and their nutritional consequences will facilitate the rational design of protective vaccines against infections of complex nematode parasites.
Collapse
Affiliation(s)
- Clarissa Boschiero
- Animal Parasitic Diseases Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
- Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | - Ethiopia Beshah
- Animal Parasitic Diseases Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Mariam Bakshi
- Animal Parasitic Diseases Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
- Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | - Eliseo Miramontes
- Animal Parasitic Diseases Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Deborah Hebert
- Animal Parasitic Diseases Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Peter C. Thompson
- Animal Parasitic Diseases Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Cong-Jun Li
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Xiaoping Zhu
- Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | - Dante Zarlenga
- Animal Parasitic Diseases Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - George E. Liu
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Wenbin Tuo
- Animal Parasitic Diseases Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| |
Collapse
|
14
|
Cantone AF, Burgaletto C, Di Benedetto G, Gaudio G, Giallongo C, Caltabiano R, Broggi G, Bellanca CM, Cantarella G, Bernardini R. Rebalancing Immune Interactions within the Brain-Spleen Axis Mitigates Neuroinflammation in an Aging Mouse Model of Alzheimer's Disease. J Neuroimmune Pharmacol 2025; 20:15. [PMID: 39918606 PMCID: PMC11805801 DOI: 10.1007/s11481-025-10177-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/24/2025] [Indexed: 02/11/2025]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia worldwide, characterized by accumulation of amyloid-β protein and hyperphosphorylated tau protein in the brain. Neuroinflammation, resulting from chronic activation of brain-resident innate immune cells as well as enhanced peripheral leukocyte access across the blood-brain barrier, crucially affects AD progression. In this context, TNFSF10, a cytokine substantially expressed in the AD brain, has been shown to modulate both the innate and the adaptive branches of the immune response in AD-related neuroinflammation. In this study, we explored whether a TNFSF10-neutralizing treatment could represent a tool to re-balance the overall overshooting inflammatory response in a mouse model of AD. Specifically, 3xTg-AD mice were treated sub-chronically with an anti-TNFSF10 monoclonal antibody for three months, and were then sacrificed at 15 months. TNFSF10 neutralization reduced the expression of the inflammatory marker CD86, inversely related to levels of the anti-inflammatory marker CD206 in the brain of 3xTg-AD mice, suggesting a switch of microglia towards a neuroprotective phenotype. Similar results were observed in the splenic macrophage population. Moreover, flow cytometry revealed a significant decrease of CD4+CD25+FOXP3+ T regulatory cells as well as reduced number of CD11b+LY6Chigh proinflammatory monocytes in both the brain and the spleen of 3xTg-AD mice treated with anti-TNFSF10 monoclonal antibody. Finally, the treatment resulted in lower count of splenic CD4+ and CD8+ T cells expressing PD1. The data suggest that TNFSF10 system-targeted treatment effectively restrain overshooting central and peripheral inflammation by rebalancing the overall immune response, mitigating the progression of AD pathology.
Collapse
Affiliation(s)
- Anna Flavia Cantone
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Chiara Burgaletto
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Giulia Di Benedetto
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy.
- Clinical Toxicology Unit, University Hospital of Catania, Catania, Italy.
| | - Gabriella Gaudio
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Cesarina Giallongo
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Division of Hematology, University of Catania, Catania, Italy
| | - Rosario Caltabiano
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Anatomic Pathology, University of Catania, Catania, Italy
| | - Giuseppe Broggi
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Anatomic Pathology, University of Catania, Catania, Italy
| | - Carlo Maria Bellanca
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
- Clinical Toxicology Unit, University Hospital of Catania, Catania, Italy
| | - Giuseppina Cantarella
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Renato Bernardini
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
- Clinical Toxicology Unit, University Hospital of Catania, Catania, Italy
| |
Collapse
|
15
|
Zhao Y, Tang Y, Wang QY, Li J. Ocular neuroinflammatory response secondary to SARS-CoV-2 infection-a review. Front Immunol 2025; 16:1515768. [PMID: 39967658 PMCID: PMC11832381 DOI: 10.3389/fimmu.2025.1515768] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/13/2025] [Indexed: 02/20/2025] Open
Abstract
With the consistent occurrence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the prevalence of various ocular complications has increased over time. SARS-CoV-2 infection has been shown to have neurotropism and therefore to lead to not only peripheral inflammatory responses but also neuroinflammation. Because the receptor for SARS-CoV-2, angiotensin-converting enzyme 2 (ACE2), can be found in many intraocular tissues, coronavirus disease 2019 (COVID-19) may also contribute to persistent intraocular neuroinflammation, microcirculation dysfunction and ocular symptoms. Increased awareness of neuroinflammation and future research on interventional strategies for SARS-CoV-2 infection are important for improving long-term outcomes, reducing disease burden, and improving quality of life. Therefore, the aim of this review is to focus on SARS-CoV-2 infection and intraocular neuroinflammation and to discuss current evidence and future perspectives, especially possible connections between conditions and potential treatment strategies.
Collapse
Affiliation(s)
| | | | | | - Jia Li
- Department of Glaucoma, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
16
|
Joshkon A, Traboulsi W, Terme M, Bachelier R, Fayyad-Kazan H, Dignat-George F, Foucault-Bertaud A, Leroyer AS, Bardin N, Blot-Chabaud M. Soluble CD146 Cooperates with VEGFa to Generate an Immunosuppressive Microenvironment in CD146-Positive Tumors: Interest of a Combined Antibody-Based Therapy. Mol Cancer Ther 2025; 24:275-285. [PMID: 39431288 DOI: 10.1158/1535-7163.mct-24-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/09/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Tumor development necessitates immune escape through different mechanisms. To counteract these effects, the development of therapies targeting immune checkpoints (ICP) has generated interest as they have produced lasting objective responses in patients with advanced metastatic tumors. However, many tumors do not respond to inhibitors of ICPs, necessitating to further study the underlying mechanisms of exhaustion. VEGFa, a proangiogenic molecule secreted by tumors, was described to participate to tumor immune exhaustion by increasing ICPs, justifying in part the use of an anti-VEGFa mAb, bevacizumab, in patients. However, recent studies from our group have demonstrated that tumors can escape anti-VEGFa therapy through the secretion of soluble CD146 (sCD146). In this study, we show that both VEGFa and sCD146 cooperate to create an immunosuppressive microenvironment by increasing the expression of ICPs. In addition, sCD146 favors protumoral M2-type macrophages and induces the secretion of proinflammatory cytokines. An anti-sCD146 mAb reverses these effects and displays additive effects with the anti-VEGFa antibody to eliminate tumors in a syngeneic murine model grafted with melanoma cells. Combining bevacizumab with mucizumab could thus be of major therapeutic interest to prevent immune escape in malignant melanoma and other CD146-positive tumors.
Collapse
Affiliation(s)
- Ahmad Joshkon
- Aix-Marseille Univ, INSERM1263, INRAE1260, C2VN, Marseille, France
- Massalia Therapeutics, Marseille, France
| | - Wael Traboulsi
- Aix-Marseille Univ, INSERM1263, INRAE1260, C2VN, Marseille, France
| | - Magali Terme
- Université Paris Cité, Inserm, PARCC, Paris, France
| | | | - Hussein Fayyad-Kazan
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Science, Lebanese University, Hadath, Lebanon
| | | | | | | | - Nathalie Bardin
- Aix-Marseille Univ, INSERM1263, INRAE1260, C2VN, Marseille, France
- Massalia Therapeutics, Marseille, France
- Laboratory of Immunology, Biogenopole, APHM, Marseille, France
| | - Marcel Blot-Chabaud
- Aix-Marseille Univ, INSERM1263, INRAE1260, C2VN, Marseille, France
- Massalia Therapeutics, Marseille, France
| |
Collapse
|
17
|
Riazati N, Engle-Stone R, Stephensen CB. Association of Vitamin D Status with Immune Markers in a Cohort of Healthy Adults. J Nutr 2025; 155:621-633. [PMID: 39716659 DOI: 10.1016/j.tjnut.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/06/2024] [Accepted: 12/13/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND Immune function is affected by vitamin D status, but the optimal serum 25-hydroxy vitamin D [25(OH)D] concentration for immune function is not known. OBJECTIVES We hypothesized that 25(OH)D would be associated with markers of inflammation and immune activation. METHODS We identified associations between 25(OH)D and immune markers from 361 healthy adults using polynomial regression. Linear regression was used to define the slope (β) of significant linear associations, and piecewise regression identified inflection points (IPs) for curvilinear associations with P < 0.05. IPs with a slope difference (SD) P < 0.05 before and after were significant. RESULTS 25(OH)D had linear, negative associations with interleukin (IL)-6 (β: -0.126; P = 0.009) and macrophage-derived chemokine (MDC) (β: -0.108; P = 0.04) and a linear, positive association with matrix metalloproteinase (MMP)-1 (β: 0.108; P = 0.04). Among the significant curvilinear associations, 2 showed negative associations below but positive associations above an IP with nearly significant SD P values, including percentage of effector-memory CD8 T cells (IP: 56.2 nmol/L; SD P = 0.067) and platelet concentration (IP: 38.9 nmol/L; SD P = 0.058). The opposite associations, positive below and negative above an IP, were seen for eotaxin (IP: 49.5 nmol/L; SD P = 0.049); interferon (IFN)-γ-induced protein-10 (IP-10) (IP: 71.8 nmol/L; SD P = 0.02); percentage of CD4 T cells expressing programmed cell death protein (PD)-1 (IP: 71.2 nmol/L; SD P = 0.01); percentage of Tregs expressing human leukocyte antigen, DR isotype (HLA-DR) (IP: 67.5 nmol/L; SD P < 0.0001); percentage of memory Tregs (IP: 68.8 nmol/L; SD P = 0.002); and percentage of memory Tregs expressing HLA-DR (IP: 68.8 nmol/L; SD P = 0.0008). CONCLUSIONS These findings are consistent with low vitamin D status allowing and higher vitamin D status dampening inflammation and immune activation. IP analysis identified possible thresholds for vitamin D effects on immune function. Two of 3 IPs at ∼50 nmol/L show higher inflammation below this concentration, suggesting 50 nmol/L as a minimum target for dampening inflammation. IPs at ∼70 nmol/L identify a threshold for CD4 T-cell activity, including Treg activation and IFN-γ-driven production of the T-cell chemokine IP-10, suggesting an optimal concentration for regulating adaptive immunity. This study was registered at clinicaltrials.gov as NCT02367287.
Collapse
Affiliation(s)
- Niknaz Riazati
- Graduate Group of Molecular, Cellular, and Integrative Physiology, University of California, Davis, Davis, CA, United States; USDA Western Human Nutrition Research Center, University of California, Davis, Davis, CA, United States
| | - Reina Engle-Stone
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Charles B Stephensen
- USDA Western Human Nutrition Research Center, University of California, Davis, Davis, CA, United States; Department of Nutrition, University of California, Davis, Davis, CA, United States.
| |
Collapse
|
18
|
Sergeeva OV, Luo L, Guiseppi-Elie A. Cancer theragnostics: closing the loop for advanced personalized cancer treatment through the platform integration of therapeutics and diagnostics. Front Bioeng Biotechnol 2025; 12:1499474. [PMID: 39898278 PMCID: PMC11782185 DOI: 10.3389/fbioe.2024.1499474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/30/2024] [Indexed: 02/04/2025] Open
Abstract
Cancer continues to be one of the leading causes of death worldwide, and conventional cancer therapies such as chemotherapy, radiation therapy, and surgery have limitations. RNA therapy and cancer vaccines hold considerable promise as an alternative to conventional therapies for their ability to enable personalized therapy with improved efficacy and reduced side effects. The principal approach of cancer vaccines is to induce a specific immune response against cancer cells. However, a major challenge in cancer immunotherapy is to predict which patients will respond to treatment and to monitor the efficacy of the vaccine during treatment. Theragnostics, an integration of diagnostic and therapeutic capabilities into a single hybrid platform system, has the potential to address these challenges by enabling real-time monitoring of treatment response while allowing endogenously controlled personalized treatment adjustments. In this article, we review the current state-of-the-art in theragnostics for cancer vaccines and RNA therapy, including imaging agents, biomarkers, and other diagnostic tools relevant to cancer, and their application in cancer therapy development and personalization. We also discuss the opportunities and challenges for further development and clinical translation of theragnostics in cancer vaccines.
Collapse
Affiliation(s)
| | - Liang Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Anthony Guiseppi-Elie
- Bioelectronics, Biosensors and Biochips (C3B), Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
- Department of Cardiovascular Sciences, Houston Methodist Institute for Academic Medicine and Full Affiliate Member, Houston Methodist Research Institute, Houston, TX, United States
- ABTECH Scientific, Inc., Biotechnology Research Park, Richmond, VA, United States
| |
Collapse
|
19
|
Lefèvre A, Parra-Guillen ZP, Trocóniz IF, Boetsch C, Frances N. Mechanistic PKPD modeling to describe cytokine release associated with CD3 T-cell engager therapies. Front Immunol 2025; 15:1463915. [PMID: 39896804 PMCID: PMC11782561 DOI: 10.3389/fimmu.2024.1463915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 12/19/2024] [Indexed: 02/04/2025] Open
Abstract
Introduction T-cell engagers (TCE), a therapeutic class of cancer immunotherapy (CIT), offer a novel approach to cancer treatment by harnessing and reactivating the patient's immune system to eradicate tumor cells. However, the use of TCE in the clinic can lead to severe side effects, including cytokine release syndrome (CRS). Therefore, innovative dosing strategies need to be implemented to mitigate the risk of developing CRS. Method In the presented work, a mechanistic pharmacokinetics/pharmacodynamics (PKPD) model describing cytokine release following TCE therapy has been developed combining literature knowledge and preclinical data. The model was developed to explore and test hypotheses regarding the mechanisms behind the decrease of cytokine release following two repeated TCE administrations. Results The model is able to successfully reproduce the observed dynamics of cytokine levels associated with the initial and subsequent TCE doses, accounting for different dosing intervals. In addition, the model suggests a mechanism of action that uncouples cytokine release from tumor cell killing. Discussion This model provides an initial mechanistic framework to support the design of experiments and paves the way for the application of mathematical modeling to support clinical dosing regimen selection of any TCE.
Collapse
Affiliation(s)
- Apolline Lefèvre
- Roche Pharma Research and Early Development (pRED), Pharmaceutical Sciences PS, Roche Innovation Center Basel, Basel, Switzerland
- Pharmacometrics & Systems Pharmacology, Department of Pharmaceutical Science, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | - Zinnia P. Parra-Guillen
- Pharmacometrics & Systems Pharmacology, Department of Pharmaceutical Science, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Iñaki F. Trocóniz
- Pharmacometrics & Systems Pharmacology, Department of Pharmaceutical Science, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Institute of Data Science and Artificial Intelligence (DATAI), University of Navarra, Pamplona, Spain
| | - Christophe Boetsch
- Roche Pharma Research and Early Development (pRED), Pharmaceutical Sciences PS, Roche Innovation Center Basel, Basel, Switzerland
| | - Nicolas Frances
- Roche Pharma Research and Early Development (pRED), Pharmaceutical Sciences PS, Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
20
|
Liu Y, Han J, Hsu WH, LaBella KA, Deng P, Shang X, de Lara PT, Cai L, Jiang S, DePinho RA. Combined KRAS Inhibition and Immune Therapy Generates Durable Complete Responses in an Autochthonous PDAC Model. Cancer Discov 2025; 15:162-178. [PMID: 39348506 PMCID: PMC11858029 DOI: 10.1158/2159-8290.cd-24-0489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/27/2024] [Accepted: 09/26/2024] [Indexed: 10/02/2024]
Abstract
SIGNIFICANCE Clinically available KRAS* inhibitors and IO agents alleviated the immunosuppressive tumor microenvironment in PDAC. Profound tumor regression and prolonged survival in an autochthonous PDAC model provide a compelling rationale for combining KRAS* inhibition with IO agents targeting multiple arms of the immunity cycle to combat PDAC.
Collapse
Affiliation(s)
- Yonghong Liu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 USA
| | - Jincheng Han
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 USA
| | - Wen-Hao Hsu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 USA
| | - Kyle A. LaBella
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 USA
| | - Pingna Deng
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 USA
| | - Xiaoying Shang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 USA
| | - Paulino Tallón de Lara
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 USA
| | - Li Cai
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 USA
| | - Shan Jiang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 USA
| | - Ronald A. DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 USA
| |
Collapse
|
21
|
Zhai Y, Liang X, Deng M. Myeloid cells meet CD8 + T cell exhaustion in cancer: What, why and how. Chin J Cancer Res 2024; 36:616-651. [PMID: 39802897 PMCID: PMC11724180 DOI: 10.21147/j.issn.1000-9604.2024.06.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
Exhausted T cell (Tex) is a specific state of T cell dysfunction, in which these T cells gradually lose their effector function and change their phenotype during chronic antigen stimulation. The enrichment of exhausted CD8+ T cell (CD8+ Tex) in the tumor microenvironment is one of the important reasons leading to the poor efficacy of immunotherapy. Recent studies have reported many reasons leading to the CD8+ T cell exhaustion. In addition to cancer cells, myeloid cells can also contribute to T cell exhaustion via many ways. In this review, we discuss the history of the concept of exhaustion, CD8+ T cell dysfunction states, the heterogeneity, origin, and characteristics of CD8+ Tex. We then focus on the effects of myeloid cells on CD8+ Tex, including tumor-associated macrophages (TAMs), dendritic cells (DCs) and neutrophils. Finally, we systematically summarize current strategies and recent advancements in therapies reversing and CD8+ T cell exhaustion.
Collapse
Affiliation(s)
- Yijie Zhai
- School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
- State Key Laboratory of Molecular Oncology, Peking University International Cancer Institute, Health Science Center, Peking University, Beijing 100191, China
| | - Xiaoting Liang
- School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
- State Key Laboratory of Molecular Oncology, Peking University International Cancer Institute, Health Science Center, Peking University, Beijing 100191, China
| | - Mi Deng
- School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
- State Key Laboratory of Molecular Oncology, Peking University International Cancer Institute, Health Science Center, Peking University, Beijing 100191, China
- Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
22
|
Barrios EL, Balzano-Nogueira L, Polcz VE, Rodhouse C, Leary JR, Darden DB, Rincon JC, Dirain ML, Ungaro R, Nacionales DC, Larson SD, Sharma A, Upchurch G, Wallet SM, Brusko TM, Loftus TJ, Mohr AM, Maile R, Bacher R, Cai G, Kladde MP, Mathews CE, Moldawer LL, Brusko MA, Efron PA. Unique lymphocyte transcriptomic profiles in septic patients with chronic critical illness. Front Immunol 2024; 15:1478471. [PMID: 39691721 PMCID: PMC11649506 DOI: 10.3389/fimmu.2024.1478471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/13/2024] [Indexed: 12/19/2024] Open
Abstract
Introduction Despite continued improvement in post-sepsis survival, long term morbidity and mortality remain high. Chronic critical illness (CCI), defined as persistent inflammation and organ injury requiring prolonged intensive care, is a harbinger of poor long-term outcomes in sepsis survivors. Current dogma states that sepsis survivors are immunosuppressed, particularly in CCI. Investigation of this immune suppression in heterogeneous immune populations across distinct clinical trajectories and outcomes, along with limited sampling access, is accessible via single-cell RNA sequencing (scRNA-seq). Methods scRNA-seq analysis was performed on healthy subjects (n=12), acutely septic patients at day 4 ± 1 (n=4), and those defined as rapid recovery (n=4) or CCI (n=5) at day 14-21. Differential gene expression and pathway analyses were performed on peripheral blood lymphocytes at both a population and annotated cell subset level. Cellular function was assessed via enzyme-linked immunosorbent spot (ELISpot), cytokine production analysis, and T-cell proliferation assays on an additional cohort of septic patients (19 healthy, 68 acutely septic, 27 rapid recovery and 20 classified as CCI 14-21 days after sepsis onset). Results Sepsis survivors that developed CCI exhibited proportional shifts within lymphoid cell populations, with expanded frequency of CD8+ and NK cells. Differential expression and pathway analyses revealed continued activation in T cells and NK cells, with generalized suppression of B-cell function. Both T and NK cell subsets displayed transcriptomic profiles of exhaustion and immunosuppression in CCI, particularly in CD8+ T effector memory (TEM) cells and NK cells. Functional validation of T-cell behavior in an independent cohort demonstrated T cells maintained proliferative responses in vitro yet exhibited a marked loss of cytokine production. IFN-γ production at the acute phase (day 4 ± 1) was significantly reduced in subjects later classified as CCI. Discussion Sepsis patients exhibit unique T-, B-, and NK-cell transcriptional patterns that are both time- and clinical trajectory-dependent. These transcriptomic and pathway differences in sepsis patients that develop CCI are associated with exhaustion in CD8+ TEM cells and NK cells. Understanding the specific immune system patterns of different cell subsets after sepsis at a molecular level will be key to the development of personalized immunotherapy and drug-targeting intervention. Clinical trial registration https://clinicaltrials.gov/, identifier NCT02276417.
Collapse
Affiliation(s)
- Evan L. Barrios
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | | | - Valerie E. Polcz
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Christine Rodhouse
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Jack R. Leary
- Department of Biostatistics, University of Florida College of Medicine and Public Health and Health Sciences, Gainesville, FL, United States
| | - Dijoia B. Darden
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Jaimar C. Rincon
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Marvin L. Dirain
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Ricardo Ungaro
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Dina C. Nacionales
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Shawn D. Larson
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Ashish Sharma
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Gilburt Upchurch
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Shannon M. Wallet
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, United States
| | - Todd M. Brusko
- Diabetes Institute, University of Florida, Gainesville, FL, United States
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| | - Tyler J. Loftus
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Alicia M. Mohr
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Robert Maile
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Rhonda Bacher
- Diabetes Institute, University of Florida, Gainesville, FL, United States
- Department of Biostatistics, University of Florida College of Medicine and Public Health and Health Sciences, Gainesville, FL, United States
| | - Guoshuai Cai
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Michael P. Kladde
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL, United States
| | - Clayton E. Mathews
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| | - Lyle L. Moldawer
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Maigan A. Brusko
- Diabetes Institute, University of Florida, Gainesville, FL, United States
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| | - Philip A. Efron
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| |
Collapse
|
23
|
Simmons T, Levy D. Targeting CD4+ T cell Exhaustion to Improve Future Immunotherapy Strategies. Bull Math Biol 2024; 87:10. [PMID: 39623129 DOI: 10.1007/s11538-024-01389-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 11/19/2024] [Indexed: 01/12/2025]
Abstract
As of late, reinvigoration of exhausted T cells as a form of immunotherapy against cancer has been a promising strategy. However, inconsistent results highlight the uncertainties in the current understanding of cellular exhaustion and the need for research and better treatment design. In our previous work, we utilized mathematical modeling and analysis to recapitulate and complement the biological understanding of exhaustion in response to growing tumors. The results of this work recognized that the population size of progenitor exhausted CD8+ T cells played a larger factor in tumor control compared to cytotoxic abilities. From this notion, it was theorized that exhaustion in CD4+ T cells, which are known to help coordinate and promote the size of the CD8+ T cell response, would be a significant component of tumor control. To test this theory, this paper expands on the previous mathematical framework by incorporating CD4+ T cells and the exhaustion they face in response to tumoral settings. Analysis of this model supports our theory, indicating that targeting CD4+ T cell exhaustion would have a potentially large impact on tumor burden and should be investigated along with current immunotherapy strategies of exhausted CD8+ T cell reinvigoration. Ultimately, this work narrows the scope of future research, providing a potential target for improved therapeutic efforts.
Collapse
Affiliation(s)
- Tyler Simmons
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, 20742, USA.
| | - Doron Levy
- Department of Mathematics, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
24
|
Miracle CE, McCallister CL, Egleton RD, Salisbury TB. Mechanisms by which obesity regulates inflammation and anti-tumor immunity in cancer. Biochem Biophys Res Commun 2024; 733:150437. [PMID: 39074412 PMCID: PMC11455618 DOI: 10.1016/j.bbrc.2024.150437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024]
Abstract
Obesity is associated with an increased risk for 13 different cancers. The increased risk for cancer in obesity is mediated by obesity-associated changes in the immune system. Obesity has distinct effects on different types of inflammation that are tied to tumorigenesis. For example, obesity promotes chronic inflammation in adipose tissue that is tumor-promoting in peripheral tissues. Conversely, obesity inhibits acute inflammation that rejects tumors. Obesity therefore promotes cancer by differentially regulating chronic versus acute inflammation. Given that obesity is chronic, the initial inflammation in adipose tissue will lead to systemic inflammation that could induce compensatory anti-inflammatory reactions in peripheral tissues to suppress chronic inflammation. The overall effect of obesity in peripheral tissues is therefore dependent on the duration and severity of obesity. Adipose tissue is a complex tissue that is composed of many cell types in addition to adipocytes. Further, adipose tissue cellularity is different at different anatomical sites throughout the body. Consequently, the sensitivity of adipose tissue to obesity is dependent on the anatomical location of the adipose depot. For example, obesity induces more inflammation in visceral than subcutaneous adipose tissue. Based on these studies, the mechanisms by which obesity promotes tumorigenesis are multifactorial and immune cell type-specific. The objective of our paper is to discuss the cellular mechanisms by which obesity promotes tumorigenesis by regulating distinct types of inflammation in adipose tissue and the tumor microenvironment.
Collapse
Affiliation(s)
- Cora E Miracle
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV, 25755, USA.
| | - Chelsea L McCallister
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV, 25755, USA.
| | - Richard D Egleton
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV, 25755, USA.
| | - Travis B Salisbury
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV, 25755, USA.
| |
Collapse
|
25
|
Ashique S, Houshyari M, Islam A, Pal R, Ghazanfar S, Taghizadeh-Hesary F. The role of microbiota in nasopharyngeal cancer: Where do we stand? Oral Oncol 2024; 158:106982. [PMID: 39153457 DOI: 10.1016/j.oraloncology.2024.106982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/21/2024] [Accepted: 08/03/2024] [Indexed: 08/19/2024]
Abstract
Nasopharyngeal carcinoma (NPC) is a common head and neck cancer with a poor prognosis. One of the crucial challenges regarding NPC is its pathogenesis. Recent findings highlight the significance of host microbiota in the development of NPC, affected locally by nasopharyngeal microbiota or remotely by oral microbiota. The oral microbiota can migrate to the nasopharyngeal space, thereby impacting the composition of the nasopharyngeal microbiota. Specific bacterial strains have been linked to the development of nasopharyngeal cancer, including Neisseria, Staphylococcus, Leptotrichia, Staphylococcaceae, Granulicatella, Corynebacterium, Fusobacterium, and Prevotella. Several mechanisms have been proposed to elucidate how microbiota dysbiosis contributes to the development of NPC, including triggering tumor-promoting inflammation, reactivating the Epstein-Barr virus (EBV), inducing oxidative stress, weakening the immune system, and worsening tumor hypoxia. In addition, the composition of nasopharyngeal microbiota and the number of tumor-infiltrating microbiota can influence the prognosis and treatment response in patients with NPC. To the best of our knowledge, this is the first review discussing the impacts of the host microbiota on nasopharyngeal cancer pathogenesis, progression, and treatment response.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur 713212, West Bengal, India; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| | - Mohammad Houshyari
- Radio Oncology Department, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anas Islam
- Faculty of Pharmacy, Integral University, Lucknow 226026, Uttar Pradesh, India
| | - Radheshyam Pal
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur 713212, West Bengal, India; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Shakira Ghazanfar
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre (NARC), Islamabad, Pakistan
| | - Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
Zhou Z, Zheng J, Lu Y, Mai Z, Lin Y, Lin P, Zheng Y, Chen X, Xu R, Zhao X, Cui L. Optimizing CD8 + T cell-based immunotherapy via metabolic interventions: a comprehensive review of intrinsic and extrinsic modulators. Exp Hematol Oncol 2024; 13:103. [PMID: 39438986 PMCID: PMC11495118 DOI: 10.1186/s40164-024-00575-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024] Open
Abstract
CD8+ T cells are integral to the effective management of cancer and infectious diseases due to their cytotoxic functions. The efficacy of these cells is profoundly influenced by their metabolic state, which regulates their activation, differentiation, and longevity. Accordingly, the modulation of metabolic pathways within CD8+ T cells is crucial for enhancing the effectiveness of T cell-based immunotherapy. Precise metabolic control is paramount in optimizing therapeutic outcomes and minimizing potential toxicities associated with treatment. Importantly, the potential of exogenous metabolites to augment CD8+ T cell responses is critically evaluated, especially through in vivo evidence that underscores their therapeutic promise. This review also addresses current challenges, including the need for precise control of metabolic modulation to avoid adverse effects, the development of targeted delivery systems to ensure efficient metabolite delivery to CD8+ T cells, and the inherent variability of metabolic states among patients that may influence treatment outcomes. Addressing these hurdles will be crucial for the successful integration of metabolic interventions into established immunotherapeutic regimens.
Collapse
Affiliation(s)
- Zihao Zhou
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Ye Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Zizhao Mai
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Pei Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Yucheng Zheng
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Xu Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Rongwei Xu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
| | - Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
- School of Dentistry, University of California, Los Angeles, Los Angeles, 90095, CA, USA.
| |
Collapse
|
27
|
Eaton-Fitch N, Rudd P, Er T, Hool L, Herrero L, Marshall-Gradisnik S. Immune exhaustion in ME/CFS and long COVID. JCI Insight 2024; 9:e183810. [PMID: 39435656 PMCID: PMC11529985 DOI: 10.1172/jci.insight.183810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/28/2024] [Indexed: 10/23/2024] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and long COVID are debilitating multisystemic conditions sharing similarities in immune dysregulation and cellular signaling pathways contributing to the pathophysiology. In this study, immune exhaustion gene expression was investigated in participants with ME/CFS or long COVID concurrently. RNA was extracted from peripheral blood mononuclear cells isolated from participants with ME/CFS (n = 14), participants with long COVID (n = 15), and healthy controls (n = 18). Participants with ME/CFS were included according to Canadian Consensus Criteria. Participants with long COVID were eligible according to the case definition for "Post COVID-19 Condition" published by the World Health Organization. RNA was analyzed using the NanoString nCounter Immune Exhaustion gene expression panel. Differential gene expression analysis in ME/CFS revealed downregulated IFN signaling and immunoglobulin genes, and this suggested a state of immune suppression. Pathway analysis implicated dysregulated macrophage activation, cytokine production, and immunodeficiency signaling. Long COVID samples exhibited dysregulated expression of genes regarding antigen presentation, cytokine signaling, and immune activation. Differentially expressed genes were associated with antigen presentation, B cell development, macrophage activation, and cytokine signaling. This investigation elucidates the intricate role of both adaptive and innate immune dysregulation underlying ME/CFS and long COVID, emphasizing the potential importance of immune exhaustion in disease progression.
Collapse
Affiliation(s)
- Natalie Eaton-Fitch
- National Centre for Neuroimmunology and Emerging Diseases
- Consortium Health International for Myalgic Encephalomyelitis, and
| | - Penny Rudd
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast, Australia
| | - Teagan Er
- School of Human Sciences (Physiology), The University of Western Australia, Perth, Australia
| | - Livia Hool
- School of Human Sciences (Physiology), The University of Western Australia, Perth, Australia
- Victor Chang Cardiac Institute, Australia
| | - Lara Herrero
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast, Australia
| | - Sonya Marshall-Gradisnik
- National Centre for Neuroimmunology and Emerging Diseases
- Consortium Health International for Myalgic Encephalomyelitis, and
| |
Collapse
|
28
|
Luo YH, Shen CI, Chiang CL, Chen YM. Immune signatures of patients with advanced non-small-cell lung cancer for efficacy prediction after immunotherapy. Ther Adv Med Oncol 2024; 16:17588359241284946. [PMID: 39391353 PMCID: PMC11465298 DOI: 10.1177/17588359241284946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 09/03/2024] [Indexed: 10/12/2024] Open
Abstract
Background Programmed cell death protein 1 ligand 1 (PD-L1) expression alone may not be the optimal predictor of immunotherapy (IO) efficacy in advanced non-small cell lung cancer (NSCLC). Evaluation of circulating immune signatures using mass cytometry is a promising technique for predicting IO response and prognosis. The utility of circulating immune signatures for efficacy prediction after IO in advanced NSCLC remains to be elucidated. Objectives To assess the feasibility of circulating immune cells and cytokines in predicting tumor response to IO in advanced NSCLC. Design A prospective observational study. Methods To investigate dynamic changes in immune signatures, blood specimens were prospectively collected from patients with NSCLC at baseline and following chemotherapy (C/T) and/or IO. Mass cytometry and enzyme-linked immunosorbent assay were used to characterize immune signatures and cytokine patterns to identify correlations between immune profiles and treatment efficacy. Results The study enrolled 45 patients. The proportion of circulating natural killer (NK) cells and CD8+ T cells significantly increased after IO alone treatment. Cell levels of PD-1+CD8+ T cells, PD-1+CD4+ T cells, TIM-3+CD8+ T cells, LAG-3+ NK cells, and LAG-3+CD8+ T cells significantly decreased in patients with treatment response to IO alone. Tumor necrosis factor-alpha (TNF-α) levels significantly increased after IO alone treatment. Patients with high PD-1+CD8+ T cells before IO alone treatment had lower overall survival (OS) compared to those with low levels. Patients with high LAG-3+CD8+ T cells before chemotherapy plus immunotherapy treatment had lower OS compared to those with low levels. Conclusion Responses to IO in NSCLC were correlated with declines in specific exhausted T cells, suggesting that IO may exert therapeutical efficacy by decreasing circulating exhausted T cells, which were associated with poorer survival, while also increasing TNF-α. These results highlight the prognostic value of monitoring changes in circulating exhausted T cells to predict IO response and survival outcomes in advanced lung cancer.
Collapse
Affiliation(s)
- Yung-Hung Luo
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chia-I Shen
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chi-Lu Chiang
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yuh-Min Chen
- Department of Chest Medicine, Taipei Veterans General Hospital, 201, Section 2, Shih-Pai Road, Taipei 11217, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
29
|
Cao H, Xiao J, Baylink DJ, Nguyen V, Shim N, Lee J, Mallari DJR, Wasnik S, Mirshahidi S, Chen CS, Abdel-Azim H, Reeves ME, Xu Y. Development of a Competitive Nutrient-Based T-Cell Immunotherapy Designed to Block the Adaptive Warburg Effect in Acute Myeloid Leukemia. Biomedicines 2024; 12:2250. [PMID: 39457563 PMCID: PMC11504511 DOI: 10.3390/biomedicines12102250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Background: T-cell-based adoptive cell therapies have emerged at the forefront of cancer immunotherapies; however, failed long-term survival and inevitable exhaustion of transplanted T lymphocytes in vivo limits clinical efficacy. Leukemia blasts possess enhanced glycolysis (Warburg effect), exploiting their microenvironment to deprive nutrients (e.g., glucose) from T cells, leading to T-cell dysfunction and leukemia progression. Methods: Thus, we explored whether genetic reprogramming of T-cell metabolism could improve their survival and empower T cells with a competitive glucose-uptake advantage against blasts and inhibit their uncontrolled proliferation. Results: Here, we discovered that high-glucose concentration reduced the T-cell expression of glucose transporter GLUT1 (SLC2A1) and TFAM (mitochondrion transcription factor A), an essential transcriptional regulator of mitochondrial biogenesis, leading to their impaired expansion ex vivo. To overcome the glucose-induced genetic deficiency in metabolism, we engineered T cells with lentiviral overexpression of SLC2A1 and/or TFAM transgene. Multi-omics analyses revealed that metabolic reprogramming promoted T-cell proliferation by increasing IL-2 release and reducing exhaustion. Moreover, the engineered T cells competitively deprived glucose from allogenic blasts and lessened leukemia burden in vitro. Conclusions: Our findings propose a novel T-cell immunotherapy that utilizes a dual strategy of starving blasts and cytotoxicity for preventing uncontrolled leukemia proliferation.
Collapse
Affiliation(s)
- Huynh Cao
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Cancer Center, Loma Linda University, Loma Linda, CA 92354, USA
| | - Jeffrey Xiao
- Division of Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - David J. Baylink
- Division of Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Vinh Nguyen
- Division of Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Nathan Shim
- Division of Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Jae Lee
- Division of Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Dave J. R. Mallari
- Division of Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Samiksha Wasnik
- Division of Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Saied Mirshahidi
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Cancer Center, Loma Linda University, Loma Linda, CA 92354, USA
- Biospecimen Laboratory, Department of Medicine and Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Chien-Shing Chen
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Cancer Center, Loma Linda University, Loma Linda, CA 92354, USA
| | - Hisham Abdel-Azim
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Division of Transplant and Cell Therapy, Loma Linda University Cancer Center, Loma Linda, CA 92354, USA
- Division of Hematology and Oncology, Department of Pediatrics, Loma Linda University, Loma Linda, CA 92354, USA
| | - Mark E. Reeves
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Cancer Center, Loma Linda University, Loma Linda, CA 92354, USA
| | - Yi Xu
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Cancer Center, Loma Linda University, Loma Linda, CA 92354, USA
- Division of Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| |
Collapse
|
30
|
Posani SH, Gillis NE, Lange CA. Glucocorticoid receptors orchestrate a convergence of host and cellular stress signals in triple negative breast cancer. J Steroid Biochem Mol Biol 2024; 243:106575. [PMID: 38950871 PMCID: PMC11344665 DOI: 10.1016/j.jsbmb.2024.106575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 06/06/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer that lacks expression of the nuclear steroid receptors that bind estrogens (ER) and progestogens (PRs) and does not exhibit HER2 (Human epidermal growth factor 2) receptor overexpression. Even in the face of initially effective chemotherapies, TNBC patients often relapse. One primary cause for therapy-resistant tumor progression is the activation of cellular stress signaling pathways. The glucocorticoid receptor (GR), a corticosteroid-activated transcription factor most closely related to PR, is a mediator of both endocrine/host stress and local tumor microenvironment (TME)-derived and cellular stress responses. Interestingly, GR expression is associated with a good prognosis in ER+ breast cancer but predicts poor prognosis in TNBC. Classically, GR's transcriptional activity is regulated by circulating glucocorticoids. Additionally, GR is regulated by ligand-independent signaling events. Notably, the stress-activated protein kinase, p38 MAP kinase, phosphorylates GR at serine 134 (Ser134) in response to TME-derived growth factors and cytokines, including HGF and TGFβ1. Phospho-Ser134-GR (p-Ser134-GR) associates with cytoplasmic and nuclear signaling molecules, including 14-3-3ζ, aryl hydrocarbon receptors (AhR), and hypoxia-inducible factors (HIFs). Phospho-GR/HIF-containing transcriptional complexes upregulate gene sets whose protein products include the components of inducible oncogenic signaling pathways (PTK6) that further promote cancer cell survival, chemoresistance, altered metabolism, and migratory/invasive behavior in TNBC. Recent studies have implicated liganded p-Ser134-GR (p-GR) in dexamethasone-mediated upregulation of genes related to TNBC cell motility and dysregulated metabolism. Herein, we review the tumor-promoting roles of GR and discuss how both ligand-dependent and ligand-independent/stress signaling-driven inputs to p-GR converge to orchestrate metastatic TNBC progression.
Collapse
Affiliation(s)
- Sai Harshita Posani
- Molecular Pharmacology and Therapeutics Program, University of Minnesota, Minneapolis 55455, United States; Department of Pharmacology, University of Minnesota, Minneapolis 55455, United States
| | - Noelle E Gillis
- Masonic Cancer Center, University of Minnesota, Minneapolis 55455, United States
| | - Carol A Lange
- Masonic Cancer Center, University of Minnesota, Minneapolis 55455, United States; Department of Medicine (Division of Hematology, Oncology, and Transplantation), University of Minnesota, Minneapolis 55455, United States; Department of Pharmacology, University of Minnesota, Minneapolis 55455, United States.
| |
Collapse
|
31
|
Zibandeh N, Li Z, Ogg G, Bottomley MJ. Cutaneous adaptive immunity and uraemia: a narrative review. Front Immunol 2024; 15:1464338. [PMID: 39399503 PMCID: PMC11466824 DOI: 10.3389/fimmu.2024.1464338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/12/2024] [Indexed: 10/15/2024] Open
Abstract
Chronic kidney disease affects 1 in 10 people globally, with a prevalence twenty times that of cancer. A subset of individuals will progress to end-stage renal disease (ESRD) where renal replacement therapy is required to maintain health. Cutaneous disease, including xerosis and pruritus, are endemic amongst patients with ESRD. In the uraemia-associated immune deficiency of ESRD, impaired circulating immune responses contribute to increased infection risk and poorer vaccination response. Clinical manifestations of dysregulated adaptive immunity within the skin have been well-described and have been posited to play a role in cutaneous features of ESRD. However, our understanding of the mechanisms by which adaptive immunity within the skin is affected by uraemia is relatively limited. We provide an overview of how the cutaneous adaptive immune system is impacted both directly and indirectly by uraemia, highlighting that much work has been extrapolated from the circulating immune system and often has not been directly evaluated in the skin compartment. We identify knowledge gaps which may be addressed by future research. Ultimately, greater understanding of these pathways may facilitate novel therapeutic approaches to ameliorate widespread cutaneous symptomatology in ESRD.
Collapse
Affiliation(s)
- Noushin Zibandeh
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, United Kingdom
| | - Zehua Li
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, United Kingdom
| | - Graham Ogg
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, United Kingdom
- Department of Dermatology, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- MRC Translational Immune Discovery Unit , University of Oxford, Oxford, United Kingdom
| | - Matthew J. Bottomley
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, United Kingdom
- Oxford Kidney and Transplant Unit, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| |
Collapse
|
32
|
Wang X, Yao F, Yang L, Han D, Zeng Y, Huang Z, Yang C, Lin B, Chen X. Macrophage extracellular vesicle-packaged miR-23a-3p impairs maintenance and angiogenic capacity of human endothelial progenitor cells in neonatal hyperoxia-induced lung injury. Stem Cell Res Ther 2024; 15:295. [PMID: 39256862 PMCID: PMC11389047 DOI: 10.1186/s13287-024-03920-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Premature infants requiring mechanical ventilation and supplemental oxygen for respiratory support are at increased risk for bronchopulmonary dysplasia (BPD), wherein inflammation have been proposed as a driver of hyperoxia-induced injuries, including persistent loss of endothelial progenitor cells (EPCs), impaired vascularization and eventual alveolar simplification in BPD lungs. However, the underlying mechanisms linking these phenomena remain poorly defined. METHODS We used clodronate liposomes to deplete macrophages in a mouse model of neonatal hyperoxia-induced lung injury to evaluate if EPC loss in BPD lungs could be an effect of macrophage infiltration. We further generated in vitro culture systems initiated with cord blood (CB)-derived CD34+ EPCs and neonatal macrophages either polarized from CB-derived monocytes or isolated from tracheal aspirates of human preterm infants requiring mechanical ventilation and oxygen supplementation, to identify EV-transmitted molecular mechanism that is critical for inhibitory actions of hyperoxic macrophages on EPCs. RESULTS Initial experiments using mouse model identified the crucial role of macrophage infiltration in eliciting significant reduction of c-Kit+ EPCs in BPD lungs. Further examination of this concept in human system, we found that hyperoxia-exposed neonatal macrophages hamper human CD34+ EPC maintenance and impair endothelial function in the differentiated progeny via the EV transmission of miR-23a-3p. Notably, treatment with antagomiR-23a-3p to silence miR-23a-3p in vivo enhances c-Kit+ EPC maintenance, and increases capillary density, and consequently mitigates simplified alveolarization in BPD lungs. CONCLUSION Our findings highlight the importance of pulmonary intercellular communication in the pathophysiology of BPD, by identifying a linkage through vesicle transfer of miR-23a-3p from hyperoxic macrophages to EPCs, and thus demonstrating potential for novel therapeutic target in BPD.
Collapse
Affiliation(s)
- Xuan Wang
- Laboratory of Neonatology, Department of Neonatology, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, 518000, China
| | - Fang Yao
- Laboratory of Neonatology, Department of Neonatology, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, 518000, China
| | - Lingling Yang
- Laboratory of Neonatology, Department of Neonatology, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, 518000, China
| | - Dongshan Han
- Laboratory of Neonatology, Department of Neonatology, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, 518000, China
| | - Yali Zeng
- Laboratory of Neonatology, Department of Neonatology, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, 518000, China
- The First Clinical Medical School, Southern Medical University, Guangzhou, China
| | - Zilu Huang
- Laboratory of Neonatology, Department of Neonatology, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, 518000, China
| | - Chuanzhong Yang
- Laboratory of Neonatology, Department of Neonatology, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, 518000, China
- The First Clinical Medical School, Southern Medical University, Guangzhou, China
- Shenzhen Key Laboratory of Maternal and Child Health and Diseases, Shenzhen, China
| | - Bingchun Lin
- Laboratory of Neonatology, Department of Neonatology, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, 518000, China.
| | - Xueyu Chen
- Laboratory of Neonatology, Department of Neonatology, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, 518000, China.
- The First Clinical Medical School, Southern Medical University, Guangzhou, China.
- Shenzhen Key Laboratory of Maternal and Child Health and Diseases, Shenzhen, China.
| |
Collapse
|
33
|
Boggiatto PM, Sterle H, Falkenberg S, Sarlo-Davila K, Putz EJ, Olsen SC. Characterization of the adaptive cellular and humoral immune responses to persistent colonization of Brucella abortus strain RB51 in a Jersey cow. Front Vet Sci 2024; 11:1367498. [PMID: 39132440 PMCID: PMC11312097 DOI: 10.3389/fvets.2024.1367498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/15/2024] [Indexed: 08/13/2024] Open
Abstract
Brucella abortus strain RB51 is the commercial cattle vaccine used in the United States (US) and many parts of the world against bovine brucellosis. RB51 was licensed for use in 1996, and it has been shown to be safe and efficacious in cattle, eliciting humoral and cellular responses in calves and adult animals. In 2017, an epidemiological trace-back investigation performed by the Centers for Disease Control and Prevention (CDC) identified human cases of brucellosis caused by infection with RB51. These infections resulted from the consumption of unpasteurized dairy products, which were traced back to otherwise healthy animals that were shedding RB51 in their milk. At the current time, six adult Jersey cows have been identified in the U.S. that are shedding RB51 in milk. One of the RB51 shedding cattle was obtained and housed at the National Animal Disease Center (NADC) for further study. Improved understanding of host cellular and humoral immune responses to RB51 in persistently colonized cattle may be achieved by the characterization of responses in shedding animals. We hypothesized, based on the lack of RB51 clearance, that the RB51 shedder animal has a diminished adaptive cellular immune response to RB51. Our data demonstrate that in the presence of persistent RB51 infection, there is a lack of peripheral anti-RB51 CD4+ T cell responses and a concurrently high anti-RB51 IgG humoral response. By understanding the mechanisms that result in RB51 persistence, the development of improved interventions or vaccinations for brucellosis may be facilitated, which would provide public health benefits, including reducing the risks associated with the consumption of non-pasteurized milk products.
Collapse
Affiliation(s)
- Paola M. Boggiatto
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Ames, IA, United States
| | - Haley Sterle
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Ames, IA, United States
- Immunobiology Interdepartmental Program, Iowa State University, Ames, IA, United States
| | - Shollie Falkenberg
- Auburn University College of Veterinary Medicine, Auburn, AL, United States
| | - Kaitlyn Sarlo-Davila
- Ruminant Diseases and Immunology Unit, National Animal Disease Center, Ames, IA, United States
| | - Ellie J. Putz
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Ames, IA, United States
| | - Steven C. Olsen
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Ames, IA, United States
| |
Collapse
|
34
|
Lei X, Zhao G, Xie Y, Cui N. mTOR Deletion Alleviates CD4+ T-Cell Dysfunction in Sepsis through Reducing CTLA4 Accumulation Mediated by Rescuing Autophagy. Mediators Inflamm 2024; 2024:4233439. [PMID: 39104632 PMCID: PMC11300103 DOI: 10.1155/2024/4233439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/09/2024] [Accepted: 06/14/2024] [Indexed: 08/07/2024] Open
Abstract
Sepsis has been the leading cause of death in ICU patients. CD4+ T cells are the mainstay of the body's immune system, and the depletion of CD4+ T cells in sepsis is of great concern. Cytotoxic T lymphocyte-associated protein 4 (CTLA4) is a negative immunomodulator for T cell activation and degradation through the autophagy-lysosome pathway. Mammalian target of rapamycin (mTOR) is the most classical upstream regulator of autophagy. With a mouse model of sepsis through cecal ligation and puncture (CLP), T cell specific-mTOR/tuberous sclerosis complex 1 (TSC1)-knockout mice, and bafilomycin A1, a specific autophagosome-lysosome (A-L) fusion inhibitor, we primarily proved that mTOR could modulate the expression and accumulation of CTLA4 by regulating the onset process of autophagy such as A-L fusion. Given such a regulatory relationship, targeting mTOR could provide new light to improve immune function in sepsis, and the prospect of using rapamycin in the clinic would be worth exploring further.
Collapse
Affiliation(s)
- Xianli Lei
- Department of Critical Care MedicineState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Guoyu Zhao
- Department of Critical Care MedicineState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Yawen Xie
- Department of Critical Care MedicineState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Na Cui
- Department of Critical Care MedicineState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
35
|
Saevarsdottir S, Bjarnadottir K, Markusson T, Berglund J, Olafsdottir TA, Halldorsson GH, Rutsdottir G, Gunnarsdottir K, Arnthorsson AO, Lund SH, Stefansdottir L, Gudmundsson J, Johannesson AJ, Sturluson A, Oddsson A, Halldorsson B, Ludviksson BR, Ferkingstad E, Ivarsdottir EV, Sveinbjornsson G, Grondal G, Masson G, Eldjarn GH, Thorisson GA, Kristjansdottir K, Knowlton KU, Moore KHS, Gudjonsson SA, Rognvaldsson S, Knight S, Nadauld LD, Holm H, Magnusson OT, Sulem P, Gudbjartsson DF, Rafnar T, Thorleifsson G, Melsted P, Norddahl GL, Jonsdottir I, Stefansson K. Start codon variant in LAG3 is associated with decreased LAG-3 expression and increased risk of autoimmune thyroid disease. Nat Commun 2024; 15:5748. [PMID: 38982041 PMCID: PMC11233504 DOI: 10.1038/s41467-024-50007-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 06/27/2024] [Indexed: 07/11/2024] Open
Abstract
Autoimmune thyroid disease (AITD) is a common autoimmune disease. In a GWAS meta-analysis of 110,945 cases and 1,084,290 controls, 290 sequence variants at 225 loci are associated with AITD. Of these variants, 115 are previously unreported. Multiomics analysis yields 235 candidate genes outside the MHC-region and the findings highlight the importance of genes involved in T-cell regulation. A rare 5'-UTR variant (rs781745126-T, MAF = 0.13% in Iceland) in LAG3 has the largest effect (OR = 3.42, P = 2.2 × 10-16) and generates a novel start codon for an open reading frame upstream of the canonical protein translation initiation site. rs781745126-T reduces mRNA and surface expression of the inhibitory immune checkpoint LAG-3 co-receptor on activated lymphocyte subsets and halves LAG-3 levels in plasma among heterozygotes. All three homozygous carriers of rs781745126-T have AITD, of whom one also has two other T-cell mediated diseases, that is vitiligo and type 1 diabetes. rs781745126-T associates nominally with vitiligo (OR = 5.1, P = 6.5 × 10-3) but not with type 1 diabetes. Thus, the effect of rs781745126-T is akin to drugs that inhibit LAG-3, which unleash immune responses and can have thyroid dysfunction and vitiligo as adverse events. This illustrates how a multiomics approach can reveal potential drug targets and safety concerns.
Collapse
Affiliation(s)
- Saedis Saevarsdottir
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland.
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
- Department of Medicine, Landspitali, the National University Hospital of Iceland, Reykjavik, Iceland.
| | | | - Thorsteinn Markusson
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Thorunn A Olafsdottir
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Gisli H Halldorsson
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Gudrun Rutsdottir
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | | | | | | | - Ari J Johannesson
- Department of Medicine, Landspitali, the National University Hospital of Iceland, Reykjavik, Iceland
| | | | | | | | - Björn R Ludviksson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Immunology, Landspitali, the National University Hospital of Iceland, Reykjavik, Iceland
| | | | - Erna V Ivarsdottir
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Gerdur Grondal
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Medicine, Landspitali, the National University Hospital of Iceland, Reykjavik, Iceland
| | | | | | | | | | - Kirk U Knowlton
- Intermountain Medical Center, Intermountain Heart Institute, Salt Lake City, UT, USA
- School of Medicine, University of Utah, Salt Lake City, UT, USA
| | | | | | | | - Stacey Knight
- Intermountain Medical Center, Intermountain Heart Institute, Salt Lake City, UT, USA
| | | | - Hilma Holm
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
| | | | | | - Daniel F Gudbjartsson
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | - Pall Melsted
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Ingileif Jonsdottir
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Immunology, Landspitali, the National University Hospital of Iceland, Reykjavik, Iceland
| | - Kari Stefansson
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland.
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
36
|
Tian JS, Tay A. Progress on Electro-Enhancement of Cell Manufacturing. SMALL METHODS 2024; 8:e2301281. [PMID: 38059759 DOI: 10.1002/smtd.202301281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/09/2023] [Indexed: 12/08/2023]
Abstract
With the long persistence of complex, chronic diseases in society, there is increasing motivation to develop cells as living medicine to treat diseases ranging from cancer to wounds. While cell therapies can significantly impact healthcare, the shortage of starter cells meant that considerable raw materials must be channeled solely for cell expansion, leading to expensive products with long manufacturing time which can prevent accessibility by patients who either cannot afford the treatment or have highly aggressive diseases and cannot wait that long. Over the last three decades, there has been increasing knowledge on the effects of electrical modulation on proliferation, but to the best of the knowledge, none of these studies went beyond how electro-control of cell proliferation may be extended to enhance industrial scale cell manufacturing. Here, this review is started by discussing the importance of maximizing cell yield during manufacturing before comparing strategies spanning biomolecular/chemical/physical to modulate cell proliferation. Next, the authors describe how factors governing invasive and non-invasive electrical stimulation (ES) including capacitive coupling electric field may be modified to boost cell manufacturing. This review concludes by describing what needs to be urgently performed to bridge the gap between academic investigation of ES to industrial applications.
Collapse
Affiliation(s)
- Johann Shane Tian
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Andy Tay
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, 117599, Singapore
- NUS Tissue Engineering Program, National University of Singapore, Singapore, 117510, Singapore
| |
Collapse
|
37
|
Lee J, Whitney JB. Immune checkpoint inhibition as a therapeutic strategy for HIV eradication: current insights and future directions. Curr Opin HIV AIDS 2024; 19:179-186. [PMID: 38747727 DOI: 10.1097/coh.0000000000000863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
PURPOSE OF REVIEW HIV-1 infection contributes substantially to global morbidity and mortality, with no immediate promise of an effective prophylactic vaccine. Combination antiretroviral therapy (ART) suppresses HIV replication, but latent viral reservoirs allow the virus to persist and reignite active replication if ART is discontinued. Moreover, inflammation and immune disfunction persist despite ART-mediated suppression of HIV. Immune checkpoint molecules facilitate immune dysregulation and viral persistence. However, their therapeutic modulation may offer an avenue to enhance viral immune control for patients living with HIV-1 (PLWH). RECENT FINDINGS The success of immune checkpoint inhibitor (ICI) therapy in oncology suggests that targeting these same immune pathways might be an effective therapeutic approach for treating PLWH. Several ICIs have been evaluated for their ability to reinvigorate exhausted T cells, and possibly reverse HIV latency, in both preclinical and clinical HIV-1 studies. SUMMARY Although there are very encouraging findings showing enhanced CD8 + T-cell function with ICI therapy in HIV infection, it remains uncertain whether ICIs alone could demonstrably impact the HIV reservoir. Moreover, safety concerns and significant clinical adverse events present a hurdle to the development of ICI approaches. This review provides an update on the current knowledge regarding the development of ICIs for the remission of HIV-1 in PWH. We detail recent findings from simian immunodeficiency virus (SIV)-infected rhesus macaque models, clinical trials in PLWH, and the role of soluble immune checkpoint molecules in HIV pathogenesis.
Collapse
Affiliation(s)
- Jina Lee
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, USA
| | | |
Collapse
|
38
|
Wei R, Xiao S, Zhao S, Guo W, Liu Y, Mullor MDMR, Rodrìguez RA, Wei Q, Wu Y. Pan-cancer analysis of T-cell proliferation regulatory genes as potential immunotherapeutic targets. Aging (Albany NY) 2024; 16:11224-11247. [PMID: 39068665 PMCID: PMC11315386 DOI: 10.18632/aging.205977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/03/2024] [Indexed: 07/30/2024]
Abstract
T cells are the key to killing tumor cells. However, the exact mechanism of their role in cancer is not fully understood. Therefore, a comprehensive understanding of the role of T-cell proliferation regulatory genes in tumors is needed. In our study, we investigated the expression levels of genes controlling T-cell proliferation, their impact on prognosis, and their genetic variations. Additionally, we explored their associations with TMB, MSI, ESTIMATEScore, ImmuneScore, StromalScore, and immune cell infiltration. We examined the role of these genes in cancer-related pathways using GSEA. Furthermore, we calculated their activity levels across various types of cancer. Drug analysis was also conducted targeting these genes. Single-cell analysis, LASSO Cox model construction, and prognosis analysis were performed. We observed distinct expression patterns of T-cell proliferation regulatory genes across different malignant tumors. Their abnormal expression may be caused by CNA and DNA methylation. In certain cancers, they also showed complex associations with TMB and MSI. Moreover, in many tumors, they exhibited significant positive correlations with ESTIMATEScores, ImmuneScore, and StromalScore. Additionally, in most tumors, their GSVA scores were significantly positively correlated with various T-cell subtypes. GSEA analysis revealed their involvement in multiple immune pathways. Furthermore, we found that model scores were associated with patient prognosis and related to tumor malignancy progression. T-cell proliferation regulatory genes are closely associated with the tumor immune microenvironment (TIM), especially T cells. Targeting them may be an essential approach for cancer immunotherapy.
Collapse
Affiliation(s)
- Ruqiong Wei
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Shihui Xiao
- Department of Orthopedic and Trauma Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Shijian Zhao
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Kunming Medical University (Fuwai Yunnan Cardiovascular Hospital), Kunming, Yunnan 650000, China
| | - Wenliang Guo
- Department of Rehabilitation Medicine, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, Guangxi 537100, China
| | - Ying Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | | | - Raquel Alarcòn Rodrìguez
- Faculty of Health Sciences, University of Almerìa, Carretera de Sacramento, Almeria 04120, Spain
| | - Qingjun Wei
- Department of Orthopedic and Trauma Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yinteng Wu
- Department of Orthopedic and Trauma Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| |
Collapse
|
39
|
Labuschagne Naidoo RB, Steel HC, Theron AJ, Anderson R, Tintinger GR, Rossouw TM. Persistently Elevated Expression of Systemic, Soluble Co-Inhibitory Immune Checkpoint Molecules in People Living with HIV before and One Year after Antiretroviral Therapy. Pathogens 2024; 13:540. [PMID: 39057767 PMCID: PMC11279922 DOI: 10.3390/pathogens13070540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/11/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
INTRODUCTION Increasing drug resistance and the absence of a cure necessitates exploration of novel treatment strategies for people living with HIV (PLWH). Targeting of soluble co-inhibitory immune checkpoint molecules (sICMs) represents a novel, potentially effective strategy in the management of HIV. METHODS In this retrospective, longitudinal, observational study, the plasma levels of five prominent co-inhibitory sICMs-CTLA-4, LAG-3, PD-1 and its ligand PD-L1, as well as TIM-3-were quantified in 68 PLWH-before and one year after antiretroviral therapy (ART)-and compared with those of 15 healthy control participants. RESULTS Relative to control participants, PLWH had substantially elevated pre-treatment levels of all five co-inhibitory sICMs (p < 0.0001-p < 0.0657), which, over the 12-month period of ART, remained significantly higher than those of controls (p < 0.0367-p < 0.0001). PLWH with advanced disease, reflected by a CD4+ T cell count <200 cells/mm3 before ART, had the lowest levels of CTLA-4 and LAG-3, while participants with pre-treatment HIV viral loads ≥100,000 copies/mL had higher pre-treatment levels of TIM-3, which also persisted at 12 months. CONCLUSIONS Plasma levels of CTLA-4, LAG-3, PD-1, PD-L1 and TIM-3 were significantly elevated in treatment-naïve PLWH and remained so following one year of virally-suppressive ART, possibly identifying LAG-3 and TIM-3 in particular as potential targets for adjuvant immunotherapy.
Collapse
Affiliation(s)
- Robyn-Brooke Labuschagne Naidoo
- Department of Internal Medicine, School of Medicine, Faculty of Health Sciences, University of Pretoria and Steve Biko Academic Hospital, Pretoria 0002, South Africa; (R.-B.L.N.); (G.R.T.)
| | - Helen C. Steel
- Department of Immunology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa; (H.C.S.); (A.J.T.); (R.A.)
| | - Annette J. Theron
- Department of Immunology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa; (H.C.S.); (A.J.T.); (R.A.)
| | - Ronald Anderson
- Department of Immunology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa; (H.C.S.); (A.J.T.); (R.A.)
| | - Gregory R. Tintinger
- Department of Internal Medicine, School of Medicine, Faculty of Health Sciences, University of Pretoria and Steve Biko Academic Hospital, Pretoria 0002, South Africa; (R.-B.L.N.); (G.R.T.)
| | - Theresa M. Rossouw
- Department of Immunology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa; (H.C.S.); (A.J.T.); (R.A.)
| |
Collapse
|
40
|
Wang L, Liao F, Yang L, Jiang L, Duan L, Wang B, Mu D, Chen J, Huang Y, Hu Q, Chen W. KLRG1-expressing CD8+ T cells are exhausted and polyfunctional in patients with chronic hepatitis B. PLoS One 2024; 19:e0303945. [PMID: 38776335 PMCID: PMC11111010 DOI: 10.1371/journal.pone.0303945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/03/2024] [Indexed: 05/24/2024] Open
Abstract
Killer cell lectin-like receptor G1 (KLRG1) has traditionally been regarded as an inhibitory receptor of T cell exhaustion in chronic infection and inflammation. However, its exact role in hepatitis B virus (HBV) infection remains elusive. CD8+ T cells from 190 patients with chronic hepatitis B were analyzed ex vivo for checkpoint and apoptosis markers, transcription factors, cytokines and subtypes in 190 patients with chronic hepatitis B. KLRG1+ and KLRG1- CD8+ T cells were sorted for transcriptome analysis. The impact of the KLRG1-E-cadherin pathway on the suppression of HBV replication mediated by virus-specific T cells was validated in vitro. As expected, HBV-specific CD8+ T cells expressed higher levels of KLRG1 and showed an exhausted molecular phenotype and function. However, despite being enriched for the inhibitory molecules, thymocyte selection-associated high mobility group box protein (TOX), eomesodermin (EOMES), and Helios, CD8+ T cells expressing KLRG1 produced significant levels of tumour necrosis factor (TNF)-α, interferon (IFN)-γ, perforin, and granzyme B, demonstrating not exhausted but active function. Consistent with the in vitro phenotypic assay results, RNA sequencing (RNA-seq) data showed that signature effector T cell and exhausted T cell genes were enriched in KLRG1+ CD8+ T cells. Furthermore, in vitro testing confirmed that KLRG1-E-cadherin binding inhibits the antiviral efficacy of HBV-specific CD8+ T cells. Based on these findings, we concluded that KLRG1+ CD8+ T cells are not only a terminally exhausted subgroup but also exhibit functional diversity, despite inhibitory signs in HBV infection.
Collapse
Affiliation(s)
- Li Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fangli Liao
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liping Yang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Linshan Jiang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liang Duan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bo Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Di Mu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Juan Chen
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Ying Huang
- Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Qin Hu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weixian Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
41
|
Wallings R, McFarland K, Staley H, Neighbarger N, Schaake S, Brueggemann N, Zittel S, Usnich T, Klein C, Sammler E, Tansey MG. The R1441C-LRRK2 mutation induces myeloid immune cell exhaustion in an age- and sex-dependent manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.12.562063. [PMID: 37905053 PMCID: PMC10614788 DOI: 10.1101/2023.10.12.562063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Considering age is the greatest risk factor for many neurodegenerative diseases, aging, in particular aging of the immune system, is the most underappreciated and understudied contributing factor in the neurodegeneration field. Genetic variation around the LRRK2 gene affects risk of both familial and sporadic Parkinson's disease (PD). The leucine-rich repeat kinase 2 (LRRK2) protein has been implicated in peripheral immune signaling, however, the effects of an aging immune system on LRRK2 function have been neglected to be considered. We demonstrate here that the R1441C mutation induces a hyper-responsive phenotype in macrophages from young female mice, characterized by increased effector functions, including stimulation-dependent antigen presentation, cytokine release, phagocytosis, and lysosomal function. This is followed by age-acquired immune cell exhaustion in a Lrrk2-kinase-dependent manner. Immune-exhausted macrophages exhibit suppressed antigen presentation and hypophagocytosis, which is also demonstrated in myeloid cells from R1441C and Y1699C-PD patients. Our novel findings that LRRK2 mutations confer immunological advantage at a young age but may predispose the carrier to age-acquired immune exhaustion have significant implications for LRRK2 biology and therapeutic development. Indeed, LRRK2 has become an appealing target in PD, but our findings suggest that more research is required to understand the cell-type specific consequences and optimal timing of LRRK2-targeting therapeutics.
Collapse
|
42
|
Chen RJ, Nabila A, Gal Toth J, Stuhlmann H, Toth M. The chemokine XCL1 functions as a pregnancy hormone to program offspring innate anxiety. Brain Behav Immun 2024; 118:178-189. [PMID: 38428650 PMCID: PMC11044916 DOI: 10.1016/j.bbi.2024.02.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024] Open
Abstract
Elevated levels of cytokines in maternal circulation increase the offspring's risk for neuropsychiatric disease. Because of their low homeostatic levels, circulating maternal cytokines during normal pregnancies have not been considered to play a role in fetal brain development and offspring behavior. Here we report that the T/NK cell chemotactic cytokine XCL1, a local paracrine immune signal, can function as a pregnancy hormone and is required for the proper development of placenta and male offspring approach-avoidance behavior. We found that circulating XCL1 levels were at a low pregestational level throughout pregnancy except for a midgestational rise and fall. Blunted elevation in maternal plasma XCL1 in dams with a genetic 5HT1A receptor deficit or following neutralization by anti-XCL1 antibodies increased the expression of tissue damage associated factors in WT fetal placenta and led to increased innate anxiety and stress reactivity in the WT male offspring. Therefore, chemokines like XCL1 may act as pregnancy hormones to regulate placenta development and offspring emotional behavior.
Collapse
Affiliation(s)
- Rosa J Chen
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Anika Nabila
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Judit Gal Toth
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Heidi Stuhlmann
- Cell and Developmental Biology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Miklos Toth
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
43
|
Hay ZL, Kim DD, Cimons JM, Knapp JR, Kohler ME, Quansah M, Zúñiga TM, Camp FA, Fujita M, Wang XJ, O’Connor BP, Slansky JE. Granzyme F: Exhaustion Marker and Modulator of Chimeric Antigen Receptor T Cell-Mediated Cytotoxicity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1381-1391. [PMID: 38416029 PMCID: PMC10984789 DOI: 10.4049/jimmunol.2300334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 01/03/2024] [Indexed: 02/29/2024]
Abstract
Granzymes are a family of proteases used by CD8 T cells to mediate cytotoxicity and other less-defined activities. The substrate and mechanism of action of many granzymes are unknown, although they diverge among the family members. In this study, we show that mouse CD8+ tumor-infiltrating lymphocytes (TILs) express a unique array of granzymes relative to CD8 T cells outside the tumor microenvironment in multiple tumor models. Granzyme F was one of the most highly upregulated genes in TILs and was exclusively detected in PD1/TIM3 double-positive CD8 TILs. To determine the function of granzyme F and to improve the cytotoxic response to leukemia, we constructed chimeric Ag receptor T cells to overexpress a single granzyme, granzyme F or the better-characterized granzyme A or B. Using these doubly recombinant T cells, we demonstrated that granzyme F expression improved T cell-mediated cytotoxicity against target leukemia cells and induced a form of cell death other than chimeric Ag receptor T cells expressing only endogenous granzymes or exogenous granzyme A or B. However, increasing expression of granzyme F also had a detrimental impact on the viability of the host T cells, decreasing their persistence in circulation in vivo. These results suggest a unique role for granzyme F as a marker of terminally differentiated CD8 T cells with increased cytotoxicity, but also increased self-directed cytotoxicity, suggesting a potential mechanism for the end of the terminal exhaustion pathway.
Collapse
Affiliation(s)
- Zachary L.Z. Hay
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Dale D. Kim
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jennifer M. Cimons
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jennifer R. Knapp
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, 80206, USA
| | - M. Eric Kohler
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
- Center for Cancer and Blood Disorders, Children’s Hospital Colorado and Department of Pediatrics, Aurora, CO, USA
| | - Mary Quansah
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Tiffany M. Zúñiga
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Faye A. Camp
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Mayumi Fujita
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA and Department of Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, CO 80045, USA
| | - Xiao-Jing Wang
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA and Department of Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, CO 80045, USA
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO, USA, and since moved to Department of Pathology and Laboratory Medicine, University of California Davis, CA, USA
| | - Brian P. O’Connor
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, 80206, USA
| | - Jill E. Slansky
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
44
|
Sharma S, Kumar N, Rouse BT, Sharma K, Chaubey KK, Singh S, Kumar P, Kumar P. The role, relevance and management of immune exhaustion in bovine infectious diseases. Heliyon 2024; 10:e28663. [PMID: 38596123 PMCID: PMC11002068 DOI: 10.1016/j.heliyon.2024.e28663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/11/2024] Open
Abstract
Immune exhaustion is a state of immune cell dysfunction that occurs most commonly following chronic exposure to an antigen which persists after the immune response fails to remove it. Exhaustion has been studied most thoroughly with several cancers, but has also been observed in several chronic infectious diseases. The topic has mainly been studied with CD8+ T cells, but it can also occur with CD4+ T cells and other immune cell types too. Exhaustion is characterized by a hierarchical loss of effector cell functions, up-regulation of immuno-inhibitory receptors, disruption of metabolic activities, and altered chromatin landscapes. Exhaustion has received minimal attention so far in diseases of veterinary significance and this review's purpose is to describe examples where immune exhaustion is occurring in several bovine disease situations. We also describe methodology to evaluate immune exhaustion as well as the prospects of controlling exhaustion and achieving a more suitable outcome of therapy in some chronic disease scenarios.
Collapse
Affiliation(s)
- Shalini Sharma
- Department of Veterinary Physiology and Biochemistry, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125004, Haryana, India
| | - Naveen Kumar
- National Center for Veterinary Type Cultures, ICAR-NRC on Equines, Sirsa Road, Hisar, Haryana, 125001, India
| | - Barry T. Rouse
- College of Veterinary Medicine, University of Tennessee, Knoxville, TN, 37996-0845, USA
| | - Khushbu Sharma
- Department of Veterinary Physiology and Biochemistry, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125004, Haryana, India
| | - Kundan Kumar Chaubey
- Department of Biotechnology, School of Basic and Applied Sciences, Sanskriti University, Mathura, Uttar Pradesh, 281 401, India
| | - ShoorVir Singh
- Department of Bio-technology, GLA University, Post-Chaumuhan, Dist. Mathura, Uttar Pradesh, 281 406, India
| | - Praveen Kumar
- Department of Veterinary Medicine, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125004, Haryana, India
| | - Pradeep Kumar
- Department of Veterinary Medicine, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125004, Haryana, India
| |
Collapse
|
45
|
Hood T, Slingsby F, Sandner V, Geis W, Schmidberger T, Bevan N, Vicard Q, Hengst J, Springuel P, Dianat N, Rafiq QA. A quality-by-design approach to improve process understanding and optimise the production and quality of CAR-T cells in automated stirred-tank bioreactors. Front Immunol 2024; 15:1335932. [PMID: 38655265 PMCID: PMC11035805 DOI: 10.3389/fimmu.2024.1335932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Ex vivo genetically-modified cellular immunotherapies, such as chimeric antigen receptor T cell (CAR-T) therapies, have generated significant clinical and commercial outcomes due to their unparalleled response rates against relapsed and refractory blood cancers. However, the development and scalable manufacture of these novel therapies remains challenging and further process understanding and optimisation is required to improve product quality and yield. In this study, we employ a quality-by-design (QbD) approach to systematically investigate the impact of critical process parameters (CPPs) during the expansion step on the critical quality attributes (CQAs) of CAR-T cells. Utilising the design of experiments (DOE) methodology, we investigated the impact of multiple CPPs, such as number of activations, culture seeding density, seed train time, and IL-2 concentration, on CAR-T CQAs including, cell yield, viability, metabolism, immunophenotype, T cell differentiation, exhaustion and CAR expression. Initial studies undertaken in G-Rex® 24 multi-well plates demonstrated that the combination of a single activation step and a shorter, 3-day, seed train resulted in significant CAR-T yield and quality improvements, specifically a 3-fold increase in cell yield, a 30% reduction in exhaustion marker expression and more efficient metabolism when compared to a process involving 2 activation steps and a 7-day seed train. Similar findings were observed when the CPPs identified in the G-Rex® multi-well plates studies were translated to a larger-scale automated, controlled stirred-tank bioreactor (Ambr® 250 High Throughput) process. The single activation step and reduced seed train time resulted in a similar, significant improvement in CAR-T CQAs including cell yield, quality and metabolism in the Ambr® 250 High Throughput bioreactor, thereby validating the findings of the small-scale studies and resulting in significant process understanding and improvements. This study provides a methodology for the systematic investigation of CAR-T CPPs and the findings demonstrate the scope and impact of enhanced process understanding for improved CAR-T production.
Collapse
Affiliation(s)
- Tiffany Hood
- Department of Biochemical Engineering, University College London, London, United Kingdom
| | - Fern Slingsby
- Product Excellence Bioreactor Technology, Sartorius Stedim UK Limited, Epsom, United Kingdom
| | - Viktor Sandner
- Digital Solutions, Sartorius Stedim Austria GmbH, Vienna, Austria
| | - Winfried Geis
- Digital Solutions, Sartorius Stedim Biotech GmbH, Goettingen, Germany
| | - Timo Schmidberger
- Digital Solutions, Sartorius Stedim Biotech GmbH, Goettingen, Germany
| | - Nicola Bevan
- BioAnalytics Application Development, Essen BioScience Ltd. (Part of the Sartorius Group), Royston, United Kingdom
| | - Quentin Vicard
- Cell Culture Technology Marketing, Sartorius Stedim France S.A.S., Aubagne, France
| | - Julia Hengst
- Cell Culture Technology Marketing, Sartorius Stedim Biotech GmbH, Goettingen, Germany
| | - Pierre Springuel
- Department of Biochemical Engineering, University College London, London, United Kingdom
| | - Noushin Dianat
- Cell Culture Technology Marketing, Sartorius Stedim France S.A.S., Aubagne, France
| | - Qasim A. Rafiq
- Department of Biochemical Engineering, University College London, London, United Kingdom
| |
Collapse
|
46
|
Mueller FB, Yang H, Li C, Dadhania DM, Xiang JZ, Salvatore S, Seshan SV, Sharma VK, Suthanthiran M, Muthukumar T. RNA-sequencing of Human Kidney Allografts and Delineation of T-Cell Genes, Gene Sets, and Pathways Associated With Acute T Cell-mediated Rejection. Transplantation 2024; 108:911-922. [PMID: 38291584 PMCID: PMC10963156 DOI: 10.1097/tp.0000000000004896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
BACKGROUND Delineation of T-cell genes, gene sets, pathways, and T-cell subtypes associated with acute T cell-mediated rejection (TCMR) may improve its management. METHODS We performed bulk RNA-sequencing of 34 kidney allograft biopsies (16 Banff TCMR and 18 no rejection [NR] biopsies) from 34 adult recipients of human kidneys. Computational analysis was performed to determine the differential intragraft expression of T-cell genes at the level of single-gene, gene set, and pathways. RESULTS T-cell signaling pathway gene sets for plenary T-cell activation were overrepresented in TCMR biopsies compared with NR biopsies. Heightened expression of T-cell signaling genes was validated using external TCMR biopsies. Pro- and anti-inflammatory immune gene sets were enriched, and metabolism gene sets were depleted in TCMR biopsies compared with NR biopsies. Gene signatures of regulatory T cells, Th1 cells, Th2 cells, Th17 cells, T follicular helper cells, CD4 tissue-resident memory T cells, and CD8 tissue-resident memory T cells were enriched in TCMR biopsies compared with NR biopsies. T-cell exhaustion and anergy were also molecular attributes of TCMR. Gene sets associated with antigen processing and presentation, and leukocyte transendothelial migration were overexpressed in TCMR biopsies compared with NR biopsies. Cellular deconvolution of graft infiltrating cells by gene expression patterns identified CD8 T cell to be the most abundant T-cell subtype infiltrating the allograft during TCMR. CONCLUSIONS Our delineation of intragraft T-cell gene expression patterns, in addition to yielding new biological insights, may help prioritize T-cell genes and T-cell subtypes for therapeutic targeting.
Collapse
Affiliation(s)
- Franco B. Mueller
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Hua Yang
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Carol Li
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Darshana M. Dadhania
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, NY
- Department of Transplantation Medicine, NewYork Presbyterian Hospital-Weill Cornell Medical College, New York, NY
| | - Jenny Z. Xiang
- Genomics Resources Core Facility, Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY
| | - Steven Salvatore
- Division of Renal Pathology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| | - Surya V. Seshan
- Division of Renal Pathology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| | - Vijay K. Sharma
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Manikkam Suthanthiran
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, NY
- Department of Transplantation Medicine, NewYork Presbyterian Hospital-Weill Cornell Medical College, New York, NY
| | - Thangamani Muthukumar
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, NY
- Department of Transplantation Medicine, NewYork Presbyterian Hospital-Weill Cornell Medical College, New York, NY
| |
Collapse
|
47
|
Chang CY, Chang SC, Wei YF, Tseng YT, Chou CH, Chen YY, Chen CY, Ye YL. Exploring the evolution of T cell function and diversity across different stages of non-small cell lung cancer. Am J Cancer Res 2024; 14:1243-1257. [PMID: 38590421 PMCID: PMC10998748 DOI: 10.62347/aryh6451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/11/2024] [Indexed: 04/10/2024] Open
Abstract
The immune system plays a key role in detecting and fighting cancerous tumors. T cells are a crucial component in both natural and therapeutic cancer immunoediting responses, but it is unclear if they are the primary agents of these processes. In this study, patients with lung lesions detected by CT scan were selected, and their peripheral blood samples were analyzed for T cell population and serum cytokines/chemokines. T cell subtypes (CD3, CD4, CD8, CD27, CD28, CD45, CD45RA, CD57, CCR7, and PD1) and serum cytokines/chemokines (IL-2, IL-6, IL-10, IFN-γ, TGF-β, TNFα, CXCL1, CXCL9, and CXCL12) were measured by flow cytometry and analysis before surgical resection or other cancer treatments. The frequency of T cell subpopulations in patients with lung cancer (n = 111) corresponded to those seen in patients with T cell exhaustion. As lung cancer progressed, the proportion of effector memory T cells decreased, while the proportion of naive T cells, PD-1, CD57+, CD28+CD27+, CD45RA+, and CD3+CD4+CCR7 increased. Circulating CD8+PD1+ T cells were positively correlated with intra-tumoral PD-L1 expression. Concurrently, serum levels of IL-2, TGF-β, and CXCL9 decreased, while IL-6, IL-10, IFN-γ, and CXCL12 increased during the progression of lung cancer. In conclusion, T cell dysfunction is associated with cancer progression, particularly in advanced-stage lung cancer, and cancer immunoediting will provide early-stage cancer detection and further therapeutic strategies.
Collapse
Affiliation(s)
- Cheng-Yu Chang
- Division of Chest Medicine, Department of Internal Medicine, Far Eastern Memorial HospitalNew Taipei City, Taiwan
- Department of Nursing, Cardinal Tien Junior College of Healthcare and ManagementNew Taipei, Taiwan
| | - Shih-Chieh Chang
- Division of Chest Medicine, Department of Internal Medicine, National Yang-Ming Chiao Tung University HospitalYilan City, Yilan County, Taiwan
| | - Yu-Feng Wei
- School of Medicine for International Students, College of Medicine, I-Shou UniversityKaohsiung, Taiwan
- Department of Internal Medicine, E-Da Cancer Hospital, I-Shou UniversityKaohsiung, Taiwan
| | - Yu-Ting Tseng
- Department of Surgery, National Taiwan University Hospital Yunlin BranchDouliu City, Yunlin County, Taiwan
| | - Chien-Hong Chou
- Department of Internal Medicine, National Taiwan University Hospital Yunlin BranchDouliu City, Yunlin County, Taiwan
| | - Ying-Yin Chen
- Department of Internal Medicine, National Taiwan University Hospital Yunlin BranchDouliu City, Yunlin County, Taiwan
| | - Chung-Yu Chen
- Department of Internal Medicine, National Taiwan University Hospital Yunlin BranchDouliu City, Yunlin County, Taiwan
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, National Taiwan UniversityTaipei City, Taiwan
| | - Yi-Ling Ye
- Department of Biotechnology, National Formosa UniversityHuwei City, Yunlin County, Taiwan
| |
Collapse
|
48
|
Gay CL, Bosch RJ, McKhann A, Cha R, Morse GD, Wimbish CL, Campbell DM, Moseley KF, Hendrickx S, Messer M, Benson CA, Overton ET, Paccaly A, Jankovic V, Miller E, Tressler R, Li JZ, Kuritzkes DR, Macatangay BJC, Eron JJ, Hardy WD. Safety and Immune Responses Following Anti-PD-1 Monoclonal Antibody Infusions in Healthy Persons With Human Immunodeficiency Virus on Antiretroviral Therapy. Open Forum Infect Dis 2024; 11:ofad694. [PMID: 38449916 PMCID: PMC10917183 DOI: 10.1093/ofid/ofad694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/09/2024] [Indexed: 03/08/2024] Open
Abstract
Background T cells in people with human immunodeficiency virus (HIV) demonstrate an exhausted phenotype, and HIV-specific CD4+ T cells expressing programmed cell death 1 (PD-1) are enriched for latent HIV, making antibody to PD-1 a potential strategy to target the latent reservoir. Methods This was a phase 1/2, randomized (4:1), double-blind, placebo-controlled study in adults with suppressed HIV on antiretroviral therapy with CD4+ counts ≥350 cells/μL who received 2 infusions of cemiplimab versus placebo. The primary outcome was safety, defined as any grade 3 or higher adverse event (AE) or any immune-related AE (irAE). Changes in HIV-1-specific polyfunctional CD4+ and CD8+ T-cell responses were evaluated. Results Five men were enrolled (median CD4+ count, 911 cells/μL; median age, 51 years); 2 received 1 dose of cemiplimab, 2 received 2 doses, and 1 received placebo. One participant had a probable irAE (thyroiditis, grade 2); another had a possible irAE (hepatitis, grade 3), both after a single low-dose (0.3 mg/kg) infusion. The Safety Monitoring Committee recommended no further enrollment or infusions. All 4 cemiplimab recipients were followed for 48 weeks. No other cemiplimab-related serious AEs, irAEs, or grade 3 or higher AEs occurred. One 2-dose recipient of cemiplimab had a 6.2-fold increase in polyfunctional, Gag-specific CD8+ T-cell frequency with supportive increases in plasma HIV RNA and decreases in total HIV DNA. Conclusions One of 4 participants exhibited increased HIV-1-specific T-cell responses and transiently increased HIV-1 expression following 2 cemiplimab infusions. The occurrence of irAEs after a single, low dose may limit translating the promising therapeutic results of cemiplimab for cancer to immunotherapeutic and latency reversal strategies for HIV. Clinical Trials Registration. NCT03787095.
Collapse
Affiliation(s)
- Cynthia L Gay
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ronald J Bosch
- Department of Biostatistics, Center for Biostatistics and AIDS Research, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Ashley McKhann
- Department of Biostatistics, Center for Biostatistics and AIDS Research, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Raymond Cha
- Center for Integrated Global Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Gene D Morse
- Center for Integrated Global Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Chanelle L Wimbish
- Department of Clinical Research, Social and Scientific Systems, Inc, a DLH Company, Silver Spring, Maryland, USA
| | - Danielle M Campbell
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Kendall F Moseley
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Steven Hendrickx
- Department of Medicine, University of California, San Diego, San Diego, California, USA
| | - Michael Messer
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Constance A Benson
- Department of Medicine, University of California, San Diego, San Diego, California, USA
| | - Edgar T Overton
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- North America Medical Affairs, ViiV Healthcare, Durham, North Carolina, USA
| | - Anne Paccaly
- Departments of Clinical Sciences, Translational Medicine and Precision Medicine, Regeneron Pharmaceuticals, Inc, Tarrytown, New York, USA
| | - Vladimir Jankovic
- Departments of Clinical Sciences, Translational Medicine and Precision Medicine, Regeneron Pharmaceuticals, Inc, Tarrytown, New York, USA
| | - Elizabeth Miller
- Departments of Clinical Sciences, Translational Medicine and Precision Medicine, Regeneron Pharmaceuticals, Inc, Tarrytown, New York, USA
| | - Randall Tressler
- HIV Research Branch, Division of AIDS, National Institute of AIDS, National Institutes of Health, Rockville, Maryland, USA
| | - Jonathan Z Li
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel R Kuritzkes
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Bernard J C Macatangay
- Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Joseph J Eron
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - W David Hardy
- Division of Infectious Diseases, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
49
|
Ipavec N, Rogić Vidaković M, Markotić A, Pavelin S, Buljubašić Šoda M, Šoda J, Dolić K, Režić Mužinić N. Treated and Untreated Primary Progressive Multiple Sclerosis: Walkthrough Immunological Changes of Monocytes and T Regulatory Cells. Biomedicines 2024; 12:464. [PMID: 38398067 PMCID: PMC10887021 DOI: 10.3390/biomedicines12020464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/05/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
The objective of this study was to investigate regulatory T cells (Tregs) and monocytes; specifically, the expression of CTLA-4 (CD152) and FOXP3+ in CD4+CD25+ Tregs and the expression of CD40+ and CD192+ monocyte subpopulations in subjects with primary progressive multiple sclerosis (PPMS). Immunological analysis was conducted on peripheral blood samples collected from the 28 PPMS subjects (15 treated with ocrelizumab and 13 untreated PPMS subjects) and 10 healthy control subjects (HCs). The blood samples were incubated with antihuman CD14, CD16, CD40, and CD192 antibodies for monocytes and antihuman CD4, CD25, FOXP3, and CTLA-4 antibodies for lymphocytes. The study results showed that in comparison to HCs both ocrelizumab treated (N = 15) and untreated (N = 13) PPMS subjects had significantly increased percentages of CTLA-4+ and FOXP3+ in CD4+CD25+ Tregs. Further, ocrelizumab treated PPMS subjects, compared to the untreated ones, had significantly decreased percentages of CD192+ and CD40+ nonclassical monocytes. Increased percentages of CTLA-4+ and FOXP3+ in CD4+CD25+ Tregs in both ocrelizumab treated and untreated PPMS subjects indicates the suppressive (inhibitory) role of Tregs in abnormal immune responses in PPMS subjects. Decreased percentages of CD40+ and CD192+ non-classical CD14+CD16++ monocytes for treated compared to untreated PPMS subjects suggests a possible role for ocrelizumab in dampening CNS inflammation.
Collapse
Affiliation(s)
- Nina Ipavec
- Transfusion Medicine Division, University Hospital of Split, 21000 Split, Croatia;
| | - Maja Rogić Vidaković
- Laboratory for Human and Experimental Neurophysiology, Department of Neuroscience, School of Medicine, University of Split, 21000 Split, Croatia
| | - Anita Markotić
- Department of Medical Chemistry and Biochemistry, School of Medicine, University of Split, 21000 Split, Croatia;
| | - Sanda Pavelin
- Department of Neurology, University Hospital of Split, 21000 Split, Croatia;
| | | | - Joško Šoda
- Signal Processing, Analysis, Advanced Diagnostics Research and Education Laboratory (SPAADREL), Department for Marine Electrical Engineering and Information Technologies, Faculty of Maritime Studies, University of Split, 21000 Split, Croatia;
| | - Krešimir Dolić
- Department of Interventional and Diagnostic Radiology, University Hospital of Split, 21000 Split, Croatia;
- Department of Radiology, School of Medicine, University of Split, 21000 Split, Croatia
| | - Nikolina Režić Mužinić
- Department of Medical Chemistry and Biochemistry, School of Medicine, University of Split, 21000 Split, Croatia;
| |
Collapse
|
50
|
Wu Y, Caldwell B, Wang J, Zhang Y, Li L. Alleviation of monocyte exhaustion by BCG derivative mycolic acid. iScience 2024; 27:108978. [PMID: 38323001 PMCID: PMC10845070 DOI: 10.1016/j.isci.2024.108978] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/27/2023] [Accepted: 01/16/2024] [Indexed: 02/08/2024] Open
Abstract
Monocyte exhaustion with sustained pathogenic inflammation and immune-suppression, a hallmark of sepsis resulting from systemic infections, presents a challenge with limited therapeutic solutions. This study identified Methoxy-Mycolic Acid (M-MA), a branched mycolic acid derived from Mycobacterium bovis Bacillus Calmette-Guérin (BCG), as a potent agent in alleviating monocyte exhaustion and restoring immune homeostasis. Co-treatment of monocytes with M-MA effectively blocked the expansion of Ly6Chi/CD38hi/PD-L1hi monocytes induced by LPS challenges and restored the expression of immune-enhancing CD86. M-MA treatment restored mitochondrial functions of exhausted monocytes and alleviated their suppressive activities on co-cultured T cells. Independent of TREM2, M-MA blocks Src-STAT1-mediated inflammatory polarization and reduces the production of immune suppressors TAX1BP1 and PLAC8. Whole genome methylation analyses revealed M-MA's ability to erase the methylation memory of exhausted monocytes, particularly restoring Plac8 methylation. Together, our data suggest M-MA as an effective agent in restoring monocyte homeostasis with a therapeutic potential for treating sepsis.
Collapse
Affiliation(s)
- Yajun Wu
- Department of Biological Sciences, Virginia Tech; Blacksburg, VA 24061-0910, USA
| | - Blake Caldwell
- Department of Biological Sciences, Virginia Tech; Blacksburg, VA 24061-0910, USA
| | - Jing Wang
- Department of Biological Sciences, Virginia Tech; Blacksburg, VA 24061-0910, USA
| | - Yao Zhang
- Department of Biological Sciences, Virginia Tech; Blacksburg, VA 24061-0910, USA
| | - Liwu Li
- Department of Biological Sciences, Virginia Tech; Blacksburg, VA 24061-0910, USA
| |
Collapse
|