1
|
Brown JA, Bashir H, Zeng MY. Lifelong partners: Gut microbiota-immune cell interactions from infancy to old age. Mucosal Immunol 2025; 18:509-523. [PMID: 39862964 DOI: 10.1016/j.mucimm.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
Our immune system and gut microbiota are intricately coupled from birth, both going through maturation during early life and senescence during aging almost in a synchronized fashion. The symbiotic relationship between the human host and microbiota is critically dependent on a healthy immune system to keep our microbiota in check, while the microbiota provides essential functions to promote the development and fitness of our immune system. The partnership between our immune system and microbiota is particularly important during early life, when microbial ligands and metabolites shape the development of the immune cells and immune tolerance; during aging, having sufficient beneficial gut bacteria is critical for the maintenance of intact mucosal barriers, immune metabolic fitness, and strong immunity against pathogens. The immune system during childhood is programmed, with the support of the microbiota, to develop robust immune tolerance, and limit autoimmunity and metabolic dysregulation, which are prevalent during aging. This review comprehensively explores the mechanistic underpinnings of gut microbiota-immune cell interactions during infancy and old age, with the goal to gain a better understanding of potential strategies to leverage the gut microbiota to combat age-related immune decline.
Collapse
Affiliation(s)
- Julia A Brown
- Gale and Ira Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY 10065, United States; Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, United States
| | - Hilal Bashir
- Gale and Ira Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY 10065, United States; Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, United States
| | - Melody Y Zeng
- Gale and Ira Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY 10065, United States; Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, United States; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School, New York, NY 10065, United States.
| |
Collapse
|
2
|
Mendes E, Umana ERP, Di Pace Soares Penna D, de Oliveira FA, Lemos LN, Ribeiro WR, Casaro MB, Lazarini M, Oliveira VM, Ferreira CM. Probiotic Administration Contributes to the Improvement in Intestinal Dysregulation Induced by Allergic Contact Dermatitis. Microorganisms 2025; 13:1082. [PMID: 40431255 PMCID: PMC12114202 DOI: 10.3390/microorganisms13051082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/09/2025] [Accepted: 04/22/2025] [Indexed: 05/29/2025] Open
Abstract
Recent studies have emphasized the impact of gut microbiota on skin health, but the reverse, how skin diseases affect gut homeostasis, has received less attention. Allergic contact dermatitis (ACD), a common skin disorder affecting one in four people worldwide, can be accompanied by intestinal disturbances. To explore this, we used an experimental model of ACD to investigate the intestinal changes induced by the disease. Parameters assessed included intestinal microbiota, short-chain fatty acids (SCFAs), gene expression related to intestinal permeability, inflammatory cytokines, and mucus production. To evaluate potential therapeutic interventions, the probiotic Bifidobacterium longum strain BB536 was administered via gavage, starting 10 days before dermatitis induction and continuing until the last day of disease induction. ACD caused alterations in the composition of intestinal microbiota compared to naïve mice but did not affect SCFA production. The probiotic altered microbiota composition and increased acetate production in dermatitis-induced mice. ACD decreased the gene expression of TjP1, ATHO1, and MUC2, while probiotic treatment restored TjP1 and ATHO1 to normal levels. The cytokine IL-6 increased in the ACD group compared to naïve mice, whereas IL-10 decreased; probiotic treatment also restored these levels. Intestinal mucus production, affected by ACD, was partially restored by probiotic treatment. The findings suggest that probiotics could be a therapeutic strategy to prevent intestinal issues caused by skin diseases.
Collapse
Affiliation(s)
- Eduardo Mendes
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Department of Pharmaceutics Sciences, University Federal de São Paulo, Diadema 04021-001, Brazil; (E.M.); (E.R.P.U.); (W.R.R.); (M.B.C.); (M.L.)
| | - Evelyn Roxana Perez Umana
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Department of Pharmaceutics Sciences, University Federal de São Paulo, Diadema 04021-001, Brazil; (E.M.); (E.R.P.U.); (W.R.R.); (M.B.C.); (M.L.)
| | - Daniel Di Pace Soares Penna
- Division of Microbial Resources, Multidisciplinary Center for Chemical, Biological and Agricultural Research (CPQBA), State University of Campinas (UNICAMP), Paulínia 13148-218, Brazil; (D.D.P.S.P.); (V.M.O.)
| | - Fernando Augusto de Oliveira
- Cellular and Molecular Neurobiology Laboratory (LaNeC), Center of Mathematics, Computing and Cognition (CMCC), Federal University of ABC, São Bernardo do Campo 09280-560, Brazil;
| | - Leandro Nascimento Lemos
- Ilum School of Science, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-100, Brazil;
| | - Willian Rodrigues Ribeiro
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Department of Pharmaceutics Sciences, University Federal de São Paulo, Diadema 04021-001, Brazil; (E.M.); (E.R.P.U.); (W.R.R.); (M.B.C.); (M.L.)
| | - Mateus Barbosa Casaro
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Department of Pharmaceutics Sciences, University Federal de São Paulo, Diadema 04021-001, Brazil; (E.M.); (E.R.P.U.); (W.R.R.); (M.B.C.); (M.L.)
| | - Mariana Lazarini
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Department of Pharmaceutics Sciences, University Federal de São Paulo, Diadema 04021-001, Brazil; (E.M.); (E.R.P.U.); (W.R.R.); (M.B.C.); (M.L.)
| | - Valéria Maia Oliveira
- Division of Microbial Resources, Multidisciplinary Center for Chemical, Biological and Agricultural Research (CPQBA), State University of Campinas (UNICAMP), Paulínia 13148-218, Brazil; (D.D.P.S.P.); (V.M.O.)
| | - Caroline Marcantonio Ferreira
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Department of Pharmaceutics Sciences, University Federal de São Paulo, Diadema 04021-001, Brazil; (E.M.); (E.R.P.U.); (W.R.R.); (M.B.C.); (M.L.)
| |
Collapse
|
3
|
Kim S, Ndwandwe C, Devotta H, Kareem L, Yao L, O'Mahony L. Role of the microbiome in regulation of the immune system. Allergol Int 2025; 74:187-196. [PMID: 39955207 DOI: 10.1016/j.alit.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 02/17/2025] Open
Abstract
Immune health and metabolic functions are intimately connected via diet and the microbiota. Immune cells are continuously exposed to a wide range of microbes and microbial-derived compounds, with important mucosal and systemic ramifications. Microbial fermentation of dietary components in vivo generates thousands of molecules, some of which are integral components of the molecular circuitry that regulates immune and metabolic functions. These in turn protect against aberrant inflammatory or hyper-reactive processes and promote effector immune responses that quickly eliminate pathogens, such as SARS-CoV-2. Potent tolerance mechanisms should ensure that these immune cells do not over-react to non-pathogenic factors (e.g. food proteins), while maintaining the ability to respond to infectious challenges in a robust, effective and well controlled manner. In this review we examine the factors and mechanisms that shape microbiota composition and interactions with the host immune system, their associations with immune mediated disorders and strategies for intervention.
Collapse
Affiliation(s)
- Songhui Kim
- School of Microbiology, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Cebile Ndwandwe
- School of Microbiology, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Hannah Devotta
- School of Microbiology, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Lamiah Kareem
- School of Microbiology, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Lu Yao
- School of Microbiology, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Liam O'Mahony
- School of Microbiology, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Medicine, University College Cork, Cork, Ireland.
| |
Collapse
|
4
|
Bu F, Lou Z. A Review of Recent Progress in the Mechanisms and Effectiveness of Acupuncture for Treating Allergic Rhinitis. Int J Gen Med 2025; 18:1-10. [PMID: 39790716 PMCID: PMC11708199 DOI: 10.2147/ijgm.s501158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/05/2024] [Indexed: 01/12/2025] Open
Abstract
This review aims to summarize and evaluate the latest clinical evidence and mechanistic studies regarding acupuncture for the treatment of allergic rhinitis AR. Compared with traditional medical treatment, acupuncture treatment of allergic rhinitis has fewer side effects and drug dependence, especially for those patients who do not respond well to medical treatment, acupuncture treatment has become a new hope. By analyzing results from RCTs, systematic reviews, and meta-analyses, the significant effectiveness of acupuncture in improving AR symptoms is clarified. We explore the mechanisms of acupuncture in immune regulation, neural modulation, inflammation modulation, and microbiota modulation, and assess its clinical efficacy and safety. The results indicate that acupuncture significantly alleviates AR symptoms through multiple biological regulatory mechanisms. Future research should further standardize acupuncture treatment protocols and deepen mechanistic studies to optimize its clinical application.
Collapse
Affiliation(s)
- Fan Bu
- The Third Affiliated Hospital of Xinxiang Medical University, Henan, 453000, People’s Republic of China
| | - Zhengchi Lou
- The Third Affiliated Hospital of Xinxiang Medical University, Henan, 453000, People’s Republic of China
| |
Collapse
|
5
|
Pahirah N, Narkwichean A, Taweechotipatr M, Wannaiampikul S, Duang-Udom C, Laosooksathit W. Comparison of Gut Microbiomes Between Neonates Born by Cesarean Section and Vaginal Delivery: Prospective Observational Study. BIOMED RESEARCH INTERNATIONAL 2024; 2024:8302361. [PMID: 39640900 PMCID: PMC11620805 DOI: 10.1155/bmri/8302361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 11/02/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024]
Abstract
Background: Balanced diversity and abundance of gut microbiome play important roles in human health, including neonatal health. Though not established, there is evidence that the delivery route could alter the diversity of neonatal gut microbiomes. Objective: The objective of the study was to investigate the differences in the gut microbiomes of neonates delivered via cesarean section compared to those born by vaginal delivery and to identify the predominant microbial taxa present in each group. Study Design: A prospective observational study of 281 healthy neonates born between February 2021 and April 2023 at Her Royal Highness Maha Chakri Sirindhorn Medical Center, Srinakharinwirot University, Thailand, was performed. The study population was divided into two groups: 139 neonates born via vaginal delivery and 141 neonates born via cesarean section. The microbiota composition of each neonate's fecal sample was identified by using 16S ribosomal ribonucleic acid metagenomic sequencing. Results: Neonates delivered vaginally exhibited a gut microbiome with higher abundance and diversity than those delivered by cesarean delivery. Bifidobacterium was the dominant genus in both groups. Bifidobacterium breve was the dominant species and was significantly higher in cesarean-delivered neonates compared to those delivered vaginally (24.0% and 9.2%, respectively) (p < 0.001). However, the taxonomy of only 89 (64.0%) and 44 (31.43%) fecal samples could be identified from the vaginal and cesarean delivery groups, respectively. Conclusion: Route of delivery is associated with neonatal gut microbiome abundance and diversity. Neonates delivered via vaginal delivery exhibited higher diversity but lower abundance of the dominant species in the gut microbiome. Trial Registration: Thai Clinical Trials Registry identifier: TCTR20221024003.
Collapse
Affiliation(s)
- Nichapat Pahirah
- Department of Obstetrics and Gynecology, Faculty of Medicine, Srinakharinwirot University, Nakhon Nayok, Thailand
| | - Amarin Narkwichean
- Department of Obstetrics and Gynecology, Faculty of Medicine, Srinakharinwirot University, Nakhon Nayok, Thailand
| | - Malai Taweechotipatr
- Department of Microbiology, Faculty of Medicine, Srinakharinwirot University, Bangkok, Thailand
| | - Sivaporn Wannaiampikul
- Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok, Thailand
| | | | - Wipada Laosooksathit
- Department of Obstetrics and Gynecology, Faculty of Medicine, Srinakharinwirot University, Nakhon Nayok, Thailand
| |
Collapse
|
6
|
Guamán LP, Carrera-Pacheco SE, Zúñiga-Miranda J, Teran E, Erazo C, Barba-Ostria C. The Impact of Bioactive Molecules from Probiotics on Child Health: A Comprehensive Review. Nutrients 2024; 16:3706. [PMID: 39519539 PMCID: PMC11547800 DOI: 10.3390/nu16213706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
Background: This review investigates the impact of bioactive molecules produced by probiotics on child health, focusing on their roles in modulating gut microbiota, enhancing immune function, and supporting overall development. Key metabolites, including short-chain fatty acids (SCFAs), bacteriocins, exopolysaccharides (EPSs), vitamins, and gamma-aminobutyric acid (GABA), are highlighted for their ability to maintain gut health, regulate inflammation, and support neurodevelopment. Objectives: The aim of this review is to examine the mechanisms of action and clinical evidence supporting the use of probiotics and postbiotics in pediatric healthcare, with a focus on promoting optimal growth, development, and overall health in children. Methods: The review synthesizes findings from clinical studies that investigate the effects of probiotics and their metabolites on pediatric health. The focus is on specific probiotics and their ability to influence gut health, immune responses, and developmental outcomes. Results: Clinical studies demonstrate that specific probiotics and their metabolites can reduce gastrointestinal disorders, enhance immune responses, and decrease the incidence of allergies and respiratory infections in pediatric populations. Additionally, postbiotics-bioactive compounds from probiotic fermentation-offer promising benefits, such as improved gut barrier function, reduced inflammation, and enhanced nutrient absorption, while presenting fewer safety concerns compared to live probiotics. Conclusions: By examining the mechanisms of action and clinical evidence, this review underscores the potential of integrating probiotics and postbiotics into pediatric healthcare strategies to promote optimal growth, development, and overall health in children.
Collapse
Affiliation(s)
- Linda P. Guamán
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (S.E.C.-P.); (J.Z.-M.)
| | - Saskya E. Carrera-Pacheco
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (S.E.C.-P.); (J.Z.-M.)
| | - Johana Zúñiga-Miranda
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (S.E.C.-P.); (J.Z.-M.)
| | - Enrique Teran
- Colegio de Ciencias de la Salud, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador; (E.T.); (C.E.)
| | - Cesar Erazo
- Colegio de Ciencias de la Salud, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador; (E.T.); (C.E.)
| | - Carlos Barba-Ostria
- Colegio de Ciencias de la Salud, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador; (E.T.); (C.E.)
- Instituto de Microbiología, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador
| |
Collapse
|
7
|
Mousavian AH, Zare Garizi F, Ghoreshi B, Ketabi S, Eslami S, Ejtahed HS, Qorbani M. The association of infant and mother gut microbiomes with development of allergic diseases in children: a systematic review. J Asthma 2024; 61:1121-1135. [PMID: 38506489 DOI: 10.1080/02770903.2024.2332921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024]
Abstract
OBJECTIVE It is believed that gut microbiota alteration leads to both intestinal and non-intestinal diseases in children. Since infants inherit maternal microbiota during pregnancy and lactation, recent studies suggest that changes in maternal microbiota can cause immune disorders as well. This systematic review was designed to assess the association between the child and mother's gut microbiome and allergy development in childhood. DATA SOURCES In this systematic review, international databases including PubMed, Scopus, and ISI/WOS were searched until January 2023 to identify relevant studies. STUDY SELECTIONS Observational studies that analyzed infant or maternal stool microbiome and their association with allergy development in children were included in this study. Data extraction and quality assessment of the included studies were independently conducted by two researchers. RESULTS Of the 1694 papers evaluated, 21 studies examined neonate gut microbiome by analyzing stool samples and six studies examined maternal gut microbiota. A total of 5319 participants were included in this study. Asthma followed by eczema and dermatitis were the most common allergy disorders among children. Urbanization caused a lack of diversity in the bacterial microbiota as well as lower levels of Bifidobacterium and Lachnospira associated with a higher risk of allergy. In contrast, higher levels of Roseburia and Flavonifractor were associated with lower allergy risk. CONCLUSIONS This systematic review shows that gut microbiota may be associated with allergy development. Further studies are required to provide a definitive answer.
Collapse
Affiliation(s)
- Amir-Hossein Mousavian
- Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fateme Zare Garizi
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Behnaz Ghoreshi
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Siavash Ketabi
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Solat Eslami
- Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Hanieh-Sadat Ejtahed
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Qorbani
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
8
|
Perna A, Venditti N, Merolla F, Fusco S, Guerra G, Zoroddu S, De Luca A, Bagella L. Nutraceuticals in Pregnancy: A Special Focus on Probiotics. Int J Mol Sci 2024; 25:9688. [PMID: 39273635 PMCID: PMC11395456 DOI: 10.3390/ijms25179688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
The placenta is crucial to fetal development and performs vital functions such as nutrient exchange, waste removal and hormone regulation. Abnormal placental development can lead to conditions such as fetal growth restriction, pre-eclampsia and stillbirth, affecting both immediate and long-term fetal health. Placental development is a highly complex process involving interactions between maternal and fetal components, imprinted genes, signaling pathways, mitochondria, fetal sexomes and environmental factors such as diet, supplementation and exercise. Probiotics have been shown to make a significant contribution to prenatal health, placental health and fetal development, with associations with reduced risk of preterm birth and pre-eclampsia, as well as improvements in maternal health through effects on gut microbiota, lipid metabolism, vaginal infections, gestational diabetes, allergic diseases and inflammation. This review summarizes key studies on the influence of dietary supplementation on placental development, with a focus on the role of probiotics in prenatal health and fetal development.
Collapse
Affiliation(s)
- Angelica Perna
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Via F. De Sanctis, 86100 Campobasso, Italy
| | - Noemi Venditti
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Via F. De Sanctis, 86100 Campobasso, Italy
- UO Laboratory Analysis, Responsible Research Hospital, Largo Agostino Gemelli, 1, 86100 Campobasso, Italy
| | - Francesco Merolla
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Via F. De Sanctis, 86100 Campobasso, Italy
| | - Sabato Fusco
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Via F. De Sanctis, 86100 Campobasso, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Via F. De Sanctis, 86100 Campobasso, Italy
| | - Stefano Zoroddu
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy
| | - Antonio De Luca
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Luigi Bagella
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Centre for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
9
|
Ottria R, Xynomilakis O, Casati S, Ciuffreda P. Pre- to Postbiotics: The Beneficial Roles of Pediatric Dysbiosis Associated with Inflammatory Bowel Diseases. Microorganisms 2024; 12:1582. [PMID: 39203424 PMCID: PMC11356122 DOI: 10.3390/microorganisms12081582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
Probiotics are "live microorganisms which, when administered in adequate amount, confer health benefits on the host". They can be found in certain foods like yogurt and kefir and in dietary supplements. The introduction of bacterial derivatives has not only contributed to disease control but has also exhibited promising outcomes, such as improved survival rates, immune enhancement, and growth promotion effects. It is interesting to note that the efficacy of probiotics goes beyond the viability of the bacteria, giving rise to concepts like paraprobiotics, non-viable forms of probiotics, and postbiotics. Paraprobiotics offer various health benefits in children with intestinal dysbiosis, contributing to improved digestive health, immune function, and overall well-being. In this review, the potential of these therapeutic applications as alternatives to pharmacological agents for treating pediatric intestinal dysbiosis will be thoroughly evaluated. This includes an analysis of their efficacy, safety, long-term benefits, and their ability to restore gut microbiota balance, improve digestive health, enhance immune function, and reduce inflammation. The aim is to determine if these non-pharmacological interventions can effectively and safely manage intestinal dysbiosis in children, reducing the need for conventional medications and their side effects.
Collapse
Affiliation(s)
- Roberta Ottria
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, 20157 Milan, Italy; (O.X.); (S.C.); (P.C.)
| | | | | | | |
Collapse
|
10
|
Wei T, Mueed A, Luo T, Sun Y, Zhang B, Zheng L, Deng Z, Li J. 1,3-Dioleoyl-2-palmitoyl-glycerol and 1-oleoyl-2-palmitoyl-3-linoleoyl-glycerol: Structure-function relationship, triacylglycerols preparation, nutrition value. Food Chem 2024; 443:138560. [PMID: 38295563 DOI: 10.1016/j.foodchem.2024.138560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/31/2023] [Accepted: 01/21/2024] [Indexed: 02/02/2024]
Abstract
Based on multivariate statistics, this review compared major triacylglycerols (TAGs) in animal milk and human milk fat from China and other countries. Human milk fat differs from animal milk fat in that it has longer acyl chains and higher concentrations of 1,3-dioleoyl-2-palmitoyl-glycerol (O-P-O) and 1-oleoyl-2-palmitoyl-3-linoleoylglycerol (O-P-L). O-P-L is a significant and distinct TAG in human milk fat, particularly in China. 1-oleoyl-2-palmitoyl-3-linoleoylglycerol (OPL) is human milk's major triglyceride molecule of O-P-L, accounting for more than 70%. As a result, OPL has piqued the interest of Chinese academics. The synthesis process and nutritional outcomes of OPL have been studied, including changes in gut microbiota, serum lipid composition, improved fatty acid and calcium absorption, and increased total bile acid levels. However, current OPL research is limited. Therefore, this review discussed enzymatic preparation of 1,3-dioleoyl-2-palmitoyl-glycerol (OPO) and OPL and their nutritional and physiological activity to direct future research direction for sn-2 palmitate and OPL.
Collapse
Affiliation(s)
- Teng Wei
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China.
| | - Abdul Mueed
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Ting Luo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China; International Institute of Food Innovation, Nanchang University, Nanchang 330031, China.
| | - Yong Sun
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China; International Institute of Food Innovation, Nanchang University, Nanchang 330031, China.
| | - Bing Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China; International Institute of Food Innovation, Nanchang University, Nanchang 330031, China.
| | - Liufeng Zheng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China; International Institute of Food Innovation, Nanchang University, Nanchang 330031, China.
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China; International Institute of Food Innovation, Nanchang University, Nanchang 330031, China; National Center of Technology Innovation for Dairy, Hohhot, Inner Mongolia 010110, China.
| | - Jing Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China; International Institute of Food Innovation, Nanchang University, Nanchang 330031, China; National Center of Technology Innovation for Dairy, Hohhot, Inner Mongolia 010110, China.
| |
Collapse
|
11
|
Xu J, Duar RM, Quah B, Gong M, Tin F, Chan P, Sim CK, Tan KH, Chong YS, Gluckman PD, Frese SA, Kyle D, Karnani N. Delayed colonization of Bifidobacterium spp. and low prevalence of B. infantis among infants of Asian ancestry born in Singapore: insights from the GUSTO cohort study. Front Pediatr 2024; 12:1421051. [PMID: 38915873 PMCID: PMC11194334 DOI: 10.3389/fped.2024.1421051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 05/29/2024] [Indexed: 06/26/2024] Open
Abstract
Background The loss of ancestral microbes, or the "disappearing microbiota hypothesis" has been proposed to play a critical role in the rise of inflammatory and immune diseases in developed nations. The effect of this loss is most consequential during early-life, as initial colonizers of the newborn gut contribute significantly to the development of the immune system. Methods In this longitudinal study (day 3, week 3, and month 3 post-birth) of infants of Asian ancestry born in Singapore, we studied how generational immigration status and common perinatal factors affect bifidobacteria and Bifidobacterium longum subsp. infantis (B. infantis) colonization. Cohort registry identifier: NCT01174875. Results Our findings show that first-generation migratory status, perinatal antibiotics usage, and cesarean section birth, significantly influenced the abundance and acquisition of bifidobacteria in the infant gut. Most importantly, 95.6% of the infants surveyed in this study had undetectable B. infantis, an early and beneficial colonizer of infant gut due to its ability to metabolize the wide variety of human milk oligosaccharides present in breastmilk and its ability to shape the development of a healthy immune system. A comparative analysis of B. infantis in 12 countries by their GDP per capita showed a remarkably low prevalence of this microbe in advanced economies, especially Singapore. Conclusion This study provides new insights into infant gut microbiota colonization, showing the impact of generational immigration on early-life gut microbiota acquisition. It also warrants the need to closely monitor the declining prevalence of beneficial microbes such as B. infantis in developed nations and its potential link to increasing autoimmune and allergic diseases.
Collapse
Affiliation(s)
- Jia Xu
- Department of Human Development, Singapore Institute for Clinical Sciences, Agency for Science (SICS), Technology and Research, Singapore (A*STAR), Singapore, Singapore
| | | | - Baoling Quah
- Department of Human Development, Singapore Institute for Clinical Sciences, Agency for Science (SICS), Technology and Research, Singapore (A*STAR), Singapore, Singapore
| | - Min Gong
- Department of Human Development, Singapore Institute for Clinical Sciences, Agency for Science (SICS), Technology and Research, Singapore (A*STAR), Singapore, Singapore
| | - Felicia Tin
- Department of Human Development, Singapore Institute for Clinical Sciences, Agency for Science (SICS), Technology and Research, Singapore (A*STAR), Singapore, Singapore
| | - Penny Chan
- Department of Human Development, Singapore Institute for Clinical Sciences, Agency for Science (SICS), Technology and Research, Singapore (A*STAR), Singapore, Singapore
- Department of Clinical Data Engagement, Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Choon Kiat Sim
- Department of Human Development, Singapore Institute for Clinical Sciences, Agency for Science (SICS), Technology and Research, Singapore (A*STAR), Singapore, Singapore
| | - Kok Hian Tan
- SingHealth Duke-NUS Institute for Patient Safety and Quality, Academic Clinical Program in Obstetrics and Gynaecology, Duke-NUS Medical School, Singapore, Singapore
- Department of Maternal Fetal Medicine, KK Women’s and Children’s Hospital, Singapore, Singapore
| | - Yap Seng Chong
- Department of Human Development, Singapore Institute for Clinical Sciences, Agency for Science (SICS), Technology and Research, Singapore (A*STAR), Singapore, Singapore
- Department of Obstetrics and Gynecology and Human Potential Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Peter D. Gluckman
- Department of Human Development, Singapore Institute for Clinical Sciences, Agency for Science (SICS), Technology and Research, Singapore (A*STAR), Singapore, Singapore
- Centre for SPDS Centre for Informed Futures, Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Steven A. Frese
- Department of Nutrition, University of Nevada, Reno, NV, United States
| | - David Kyle
- Infinant Health, Inc., Davis, CA, United States
| | - Neerja Karnani
- Department of Human Development, Singapore Institute for Clinical Sciences, Agency for Science (SICS), Technology and Research, Singapore (A*STAR), Singapore, Singapore
- Department of Clinical Data Engagement, Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
12
|
Kallio S, Jian C, Korpela K, Kukkonen AK, Salonen A, Savilahti E, Kuitunen M, M. de Vos W. Early-life gut microbiota associates with allergic rhinitis during 13-year follow-up in a Finnish probiotic intervention cohort. Microbiol Spectr 2024; 12:e0413523. [PMID: 38687061 PMCID: PMC11324021 DOI: 10.1128/spectrum.04135-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/06/2024] [Indexed: 05/02/2024] Open
Abstract
Perinatal and early-life factors reported to affect risk of allergic diseases may be mediated by changes in the gut microbiota. Here, we explored the associations between the infant gut microbiota and allergic morbidity in childhood until 13 years of age in a subgroup of the FLORA probiotic intervention cohort. A mixture of four probiotic strains with galacto-oligosaccharides was administrated to the mothers from the 36th week of the pregnancy and later to their infants until 6 months of age. The infants were monitored for the manifestations of atopic eczema, food allergy, allergic rhinitis, and asthma by a pediatrician at 2 and 5 years of age; the allergic status was subsequently verified by a questionnaire at 10 and 13 years of age. The fecal microbiota at 3 months was profiled by 16S rRNA amplicon sequencing targeting the V3-V4 region, with and without adjusting for potentially important early-life factors. Overall, the positive diagnosis for allergic rhinitis between 2 and 13 years was associated with microbiota composition both in non-adjusted and adjusted models. This association was more pronounced in children born to one parent with confirmed atopic diseases compared to those who had two atopic parents and was characterized by a lower relative abundance of Bifidobacterium and Escherichia/Shigella spp. and a higher proportion of Bacteroides. While the probiotic and galacto-oligosaccharides intervention in the entire cohort was previously shown to reduce the prevalence of eczema to a certain extent, no associations were found between the 3-month gut microbiota and childhood eczema in the studied sub-cohort.IMPORTANCEAllergic diseases have increased in prevalence during the past decades globally. Although probiotics have been considered a promising strategy for preventing certain allergy related symptoms, studies connecting the infant gut microbiota and later life allergic morbidity in various populations remain limited. The present study supports an association between the infant microbiota and allergic morbidity after first years of life, which has been rarely examined.CLINICAL TRIALSRegistered at ClinicalTrials.gov (NCT00298337).
Collapse
Affiliation(s)
- Sampo Kallio
- Children’s
Hospital, University of Helsinki and Helsinki University
Hospital, Helsinki,
Finland
| | - Ching Jian
- Human Microbiome
Research Program, Faculty of Medicine, University of
Helsinki, Helsinki,
Finland
| | - Katri Korpela
- Human Microbiome
Research Program, Faculty of Medicine, University of
Helsinki, Helsinki,
Finland
| | - Anna Kaarina Kukkonen
- Children’s
Hospital, University of Helsinki and Helsinki University
Hospital, Helsinki,
Finland
| | - Anne Salonen
- Human Microbiome
Research Program, Faculty of Medicine, University of
Helsinki, Helsinki,
Finland
| | - Erkki Savilahti
- Children’s
Hospital, University of Helsinki and Helsinki University
Hospital, Helsinki,
Finland
| | - Mikael Kuitunen
- Children’s
Hospital, University of Helsinki and Helsinki University
Hospital, Helsinki,
Finland
| | - Willem M. de Vos
- Human Microbiome
Research Program, Faculty of Medicine, University of
Helsinki, Helsinki,
Finland
- Laboratory of
Microbiology, Wageningen University,
Wageningen, the Netherlands
| |
Collapse
|
13
|
Forouhandeh H, Soofiyani SR, Hosseini K, Beirami SM, Ahangari H, Moammer Y, Ebrahimzadeh S, Nejad MK, Farjami A, Khodaiefar F, Tarhriz V. Modulation of the Immune System Mechanisms using Probiotic Bacteria in Allergic Diseases: Focus on Allergic Retinitis and Food Allergies. RECENT ADVANCES IN INFLAMMATION & ALLERGY DRUG DISCOVERY 2024; 18:11-26. [PMID: 37842889 DOI: 10.2174/0127722708246899230928080651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/28/2023] [Accepted: 08/21/2023] [Indexed: 10/17/2023]
Abstract
Allergic illnesses occur when an organism's immune system is excessively responsive to certain antigens, such as those that are presented in the environment. Some people suffer from a wide range of immune system-related illnesses including allergic rhinitis, asthma, food allergies, hay fever, and even anaphylaxis. Immunotherapy and medications are frequently used to treat allergic disorders. The use of probiotics in bacteriotherapy has lately gained interest. Probiotics are essential to human health by modulating the gut microbiota in some ways. Due to probiotics' immunomodulatory properties present in the gut microbiota of all animals, including humans, these bacterial strains can prevent a wide variety of allergic disorders. Probiotic treatment helps allergy patients by decreasing inflammatory cytokines and enhancing intestinal permeability, which is important in the battle against allergy. By altering the balance of Th1 and Th2 immune responses in the intestinal mucosa, probiotics can heal allergic disorders. Numerous studies have shown a correlation between probiotics and a reduced risk of allergy disorders. A wide range of allergic disorders, including atopic dermatitis, asthma, allergic retinitis and food allergies has been proven to benefit from probiotic bacteria. Therefore, the use of probiotics in the treatment of allergic diseases offers a promising perspective. Considering that probiotic intervention in the treatment of diseases is a relatively new field of study, more studies in this regard seem necessary.
Collapse
Affiliation(s)
- Haleh Forouhandeh
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saiedeh Razi Soofiyani
- Clinical Research Development Unit, Sina Educational, Research and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kamran Hosseini
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sohrab Minaei Beirami
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Ahangari
- Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yusif Moammer
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Ebrahimzadeh
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoomeh Kashef Nejad
- Clinical Research Development Unit, Sina Educational, Research and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afsaneh Farjami
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fariba Khodaiefar
- Department of Traditional Medicine, Faculty of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahideh Tarhriz
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
14
|
Ma J, Urgard E, Runge S, Classon CH, Mathä L, Stark JM, Cheng L, Álvarez JA, von Zedtwitz S, Baleviciute A, Martinez Hoyer S, Li M, Gernand AM, Osbelt L, Bielecka AA, Lesker TR, Huang HJ, Vrtala S, Boon L, Beyaert R, Adner M, Martinez Gonzalez I, Strowig T, Du J, Nylén S, Rosshart SP, Coquet JM. Laboratory mice with a wild microbiota generate strong allergic immune responses. Sci Immunol 2023; 8:eadf7702. [PMID: 37774008 DOI: 10.1126/sciimmunol.adf7702] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 08/30/2023] [Indexed: 10/01/2023]
Abstract
Allergic disorders are caused by a combination of hereditary and environmental factors. The hygiene hypothesis postulates that early-life microbial exposures impede the development of subsequent allergic disease. Recently developed "wildling" mice are genetically identical to standard laboratory specific pathogen-free (SPF) mice but are housed under seminatural conditions and have rich microbial exposures from birth. Thus, by comparing conventional SPF mice with wildlings, we can uncouple the impact of lifelong microbial exposures from genetic factors on the allergic immune response. We found that wildlings developed larger populations of antigen-experienced T cells than conventional SPF mice, which included interleukin-10-producing CD4 T cells specific for commensal Lactobacilli strains and allergy-promoting T helper 2 (TH2) cells. In models of airway exposure to house dust mite (HDM), recombinant interleukin-33, or Alternaria alternata, wildlings developed strong allergic inflammation, characterized by eosinophil recruitment, goblet cell metaplasia, and antigen-specific immunoglobulin G1 (IgG1) and IgE responses. Wildlings developed robust de novo TH2 cell responses to incoming allergens, whereas preexisting TH2 cells could also be recruited into the allergic immune response in a cytokine-driven and TCR-independent fashion. Thus, wildling mice, which experience diverse and lifelong microbial exposures, were not protected from developing pathological allergic immune responses. Instead, wildlings mounted robust allergic responses to incoming allergens, shedding new light on the hygiene hypothesis.
Collapse
Affiliation(s)
- Junjie Ma
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Egon Urgard
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
- Leo Foundation Skin Immunology Research Centre, Department of Immunology and Microbiology, University of Copenhagen, Denmark
| | - Solveig Runge
- Department of Microbiome Research, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Cajsa H Classon
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Laura Mathä
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Julian M Stark
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Liqin Cheng
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Javiera A Álvarez
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Silvia von Zedtwitz
- Department of Medicine II, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Austeja Baleviciute
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Sergio Martinez Hoyer
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Muzhen Li
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Anne Marleen Gernand
- Department of Medicine II, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Lisa Osbelt
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Agata Anna Bielecka
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Till R Lesker
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Huey-Jy Huang
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna, Austria
| | - Susanne Vrtala
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna, Austria
| | | | - Rudi Beyaert
- VIB Centre for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Mikael Adner
- Institute of Environmental Medicine and Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden
| | - Itziar Martinez Gonzalez
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Till Strowig
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany
- Center for Individualized Infection Medicine (CiiM), a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Juan Du
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Susanne Nylén
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Stephan P Rosshart
- Department of Microbiome Research, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Department of Medicine II, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Jonathan M Coquet
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
- Leo Foundation Skin Immunology Research Centre, Department of Immunology and Microbiology, University of Copenhagen, Denmark
| |
Collapse
|
15
|
Weng TH, Huang KY, Jhong JH, Kao HJ, Chen CH, Chen YC, Weng SL. Microbiome analysis of maternal and neonatal microbial communities associated with the different delivery modes based on 16S rRNA gene amplicon sequencing. Taiwan J Obstet Gynecol 2023; 62:687-696. [PMID: 37678996 DOI: 10.1016/j.tjog.2023.07.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2023] [Indexed: 09/09/2023] Open
Abstract
OBJECTIVE With the rising number of cases of non-vaginal delivery worldwide, scientists have been concerned about the influence of the different delivery modes on maternal and neonatal microbiomes. Although the birth rate trend is decreasing rapidly in Taiwan, more than 30 percent of newborns are delivered by caesarean section every year. However, it remains unclear whether the different delivery modes could have a certain impact on the postpartum maternal microbiome and whether it affects the mother-to-newborn vertical transmission of bacteria at birth. MATERIALS AND METHODS To address this, we recruited 30 mother-newborn pairs to participate in this study, including 23 pairs of vaginal delivery (VD) and seven pairs of caesarean section (CS). We here investigate the development of the maternal prenatal and postnatal microbiomes across multiple body habitats. Moreover, we also explore the early acquisition of neonatal gut microbiome through a vertical multi-body site microbiome analysis. RESULTS AND CONCLUSION The results indicate that no matter the delivery mode, it only slightly affects the maternal microbiome in multiple body habitats from pregnancy to postpartum. On the other hand, about 95% of species in the meconium microbiome were derived from one of the maternal body habitats; notably, the infants born by caesarean section acquire bacterial communities resembling their mother's oral microbiome. Consequently, the delivery modes play a crucial role in the initial colonization of the neonatal gut microbiome, potentially impacting children's health and development.
Collapse
Affiliation(s)
- Tzu-Hsiang Weng
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei City 104, Taiwan
| | - Kai-Yao Huang
- Department of Medical Research, Hsinchu MacKay Memorial Hospital, Hsinchu City 300, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City 252, Taiwan
| | - Jhih-Hua Jhong
- Department of Medical Research, Hsinchu MacKay Memorial Hospital, Hsinchu City 300, Taiwan
| | - Hui-Ju Kao
- Department of Medical Research, Hsinchu MacKay Memorial Hospital, Hsinchu City 300, Taiwan
| | - Chia-Hung Chen
- Department of Medical Research, Hsinchu MacKay Memorial Hospital, Hsinchu City 300, Taiwan
| | - Yu-Chi Chen
- Department of Medical Research, Hsinchu MacKay Memorial Hospital, Hsinchu City 300, Taiwan
| | - Shun-Long Weng
- Department of Medicine, MacKay Medical College, New Taipei City 252, Taiwan; Department of Obstetrics and Gynecology, Hsinchu MacKay Memorial Hospital, Hsinchu City 300, Taiwan; MacKay Junior College of Medicine, Nursing and Management, Taipei City 112, Taiwan.
| |
Collapse
|
16
|
Wang C, Du Z, Li R, Luo Y, Zhu C, Ding N, Lei A. Interferons as negative regulators of ILC2s in allergic lung inflammation and respiratory viral infections. J Mol Med (Berl) 2023; 101:947-959. [PMID: 37414870 DOI: 10.1007/s00109-023-02345-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023]
Abstract
Group 2 innate lymphoid cells (ILC2s), characterized by a lack of antigen receptors, have been regarded as an important component of type 2 pulmonary immunity. Analogous to Th2 cells, ILC2s are capable of releasing type 2 cytokines and amphiregulin, thus playing an essential role in a variety of diseases, such as allergic diseases and virus-induced respiratory diseases. Interferons (IFNs), an important family of cytokines with potent antiviral effects, can be triggered by microbial products, microbial exposure, and pathogen infections. Interestingly, the past few years have witnessed encouraging progress in revealing the important role of IFNs and IFN-producing cells in modulating ILC2 responses in allergic lung inflammation and respiratory viral infections. This review underscores recent progress in understanding the role of IFNs and IFN-producing cells in shaping ILC2 responses and discusses disease phenotypes, mechanisms, and therapeutic targets in the context of allergic lung inflammation and infections with viruses, including influenza virus, rhinovirus (RV), respiratory syncytial virus (RSV), and severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2).
Collapse
Affiliation(s)
- Cui Wang
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Zhaoxiang Du
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Ranhui Li
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Ying Luo
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Cuiming Zhu
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Nan Ding
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Aihua Lei
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China.
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China.
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China.
| |
Collapse
|
17
|
Husein-ElAhmed H, Steinhoff M. Metaanalyse zu präventiven und therapeutischen Effekten probiotischer Supplementierung bei Kindern mit atopischer Dermatitis. J Dtsch Dermatol Ges 2023; 21:833-844. [PMID: 37574674 DOI: 10.1111/ddg.15120_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 04/10/2023] [Indexed: 08/15/2023]
Abstract
ZusammenfassungTrotz zahlreicher wissenschaftlicher Untersuchungen gibt es zur Wirkung von Probiotika auf die Inzidenz und Schwere der atopischen Dermatitis (AD) widersprüchliche Ergebnisse. Wir untersuchten, ob die Supplementierung mit Probiotika diese Parameter verringern. Dazu wurden drei Datenbanken systematisch durchsucht. In der Probiotika‐Gruppe war die AD‐Inzidenz um 22% geringer. Bei Verabreichung der Probiotika an schwangere und stillende Mütter betrug die Verringerung der Inzidenz 49% und bei Verabreichung an schwangere Mütter und Kinder 27%. Bei Verabreichung an schwangere und stillende Mütter sowie Kinder wurde eine 39%ige Verringerung der AD‐Inzidenz erreicht. Es wurden signifikante Unterschiede beim SCORAD (SCORing Atopic Dermatitis) zugunsten der Probiotika beobachtet, die IDLQI blieb jedoch unverändert. Lactobacillus (L.) rhamnosus war der am häufigsten dokumentierte Stamm, erwies sich jedoch bezüglich der Verringerung des SCORAD als unwirksam. Im Gegensatz dazu zeigte sich bei L. paracasei und L. sakei eine signifikante Verringerung des SCORAD. Während Probiotika bei der Prävention einer AD effektiv sind, ist die Wirkung bei der Behandlung einer AD weniger eindeutig, insbesondere bei Kindern <1 Jahr. Die Einnahme von Probiotika durch stillende Mütter ist eine wichtige Maßnahme und kann eine neue prophylaktische Strategie darstellen. Der präventive Effekt von Probiotika bei AD ist nicht mit dem familiären Hintergrund oder dem AD‐Risiko assoziiert. Bei L. paracasei und L. sakei zeigte sich die größte Verringerung des SCORAD.
Collapse
Affiliation(s)
- Husein Husein-ElAhmed
- Department of Dermatology and Venereology, Hospital de Baza, Granada, Spanien
- Translational Research Institute, Hamad Medical Corporation, Doha, Katar
| | - Martin Steinhoff
- Translational Research Institute, Hamad Medical Corporation, Doha, Katar
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Katar
- Weill Cornell Medicine-Qatar, College of Medicine, Doha, Katar
- Qatar University, Medical School, Doha, Katar
- Department of Dermatology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
18
|
Husein-ElAhmed H, Steinhoff M. Meta-analysis on preventive and therapeutic effects of probiotic supplementation in infant atopic dermatitis. J Dtsch Dermatol Ges 2023; 21:833-843. [PMID: 37345893 DOI: 10.1111/ddg.15120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 04/10/2023] [Indexed: 06/23/2023]
Abstract
Despite a large body of research, the effect of probiotic administration on the incidence and severity of atopic dermatitis (AD) shows conflicting results. We aimed to investigate whether probiotic supplementation reduces the incidence and severity of AD. Three databases were systematically searched. A 22% lower incidence of AD was found in the probiotic group. The reduction in incidence was 49% when probiotics were given to pregnant and lactating mothers, and 27% when they were given to pregnant mothers and infants. A 39% reduction of AD incidence was achieved when administered to pregnant-breastfeeding mothers and infants. Significant differences in SCORAD (SCORing Atopic Dermatitis) favoring probiotics were observed, but the IDLQI remained unchanged. Lactobacillus (L.) rhamnosus was the most documented strain, but it turned out to be ineffective in reducing SCORAD. Conversely, L. paracasei and L. sakei showed a significant decrease in SCORAD. Probiotics are effective in the prevention of AD, but the effect is less conclusive for the treatment of AD, especially in infants <1 year. The intake of probiotics by breastfeeding mothers is an important measure and may become a novel preventive strategy. The preventive effect of probiotics against AD is not associated with family background or AD risk. L. paracasei and L. sakei show the greatest reduction in SCORAD.
Collapse
Affiliation(s)
- Husein Husein-ElAhmed
- Department of Dermatology and Venereology, Hospital de Baza, Granada, Spain
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Martin Steinhoff
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
- Weill Cornell Medicine-Qatar, College of Medicine, Doha, Qatar
- Qatar University, Medical School, Doha, Qatar
- Department of Dermatology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
19
|
Colella M, Charitos IA, Ballini A, Cafiero C, Topi S, Palmirotta R, Santacroce L. Microbiota revolution: How gut microbes regulate our lives. World J Gastroenterol 2023; 29:4368-4383. [PMID: 37576701 PMCID: PMC10415973 DOI: 10.3748/wjg.v29.i28.4368] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/16/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023] Open
Abstract
The human intestine is a natural environment ecosystem of a complex of diversified and dynamic microorganisms, determined through a process of competition and natural selection during life. Those intestinal microorganisms called microbiota and are involved in a variety of mechanisms of the organism, they interact with the host and therefore are in contact with the organs of the various systems. However, they play a crucial role in maintaining host homeostasis, also influencing its behaviour. Thus, microorganisms perform a series of biological functions important for human well-being. The host provides the microorganisms with the environment and nutrients, simultaneously drawing many benefits such as their contribution to metabolic, trophic, immunological, and other functions. For these reasons it has been reported that its quantitative and qualitative composition can play a protective or harmful role on the host health. Therefore, a dysbiosis can lead to an association of unfavourable factors which lead to a dysregulation of the physiological processes of homeostasis. Thus, it has pre-viously noted that the gut microbiota can participate in the pathogenesis of autoimmune diseases, chronic intestinal inflammation, diabetes mellitus, obesity and atherosclerosis, neurological disorders (e.g., neurological diseases, autism, etc.) colorectal cancer, and more.
Collapse
Affiliation(s)
- Marica Colella
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, University of Bari “Aldo Moro”, Bari 70124, Italy
| | - Ioannis Alexandros Charitos
- Maugeri Clinical Scientific Research Institutes (IRCCS) of Pavia - Division of Pneumology and Respiratory Rehabilitation, Scientific Institute of Bari, Bari 70124, Italy
| | - Andrea Ballini
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia 71122, Italy
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples 80138, Italy
| | - Concetta Cafiero
- Area of Molecular Pathology, Anatomic Pathology Unit, Fabrizio Spaziani Hospital, Frosinone 03100, Italy
| | - Skender Topi
- Department of Clinical Disciplines, School of Technical Medical Sciences, University of Elbasan “A. Xhuvani”, Elbasan 3001, Albania
| | - Raffaele Palmirotta
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, University of Bari “Aldo Moro”, Bari 70124, Italy
| | - Luigi Santacroce
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, University of Bari “Aldo Moro”, Bari 70124, Italy
| |
Collapse
|
20
|
Kang M, Jung JH, Kim JY, Hong SH, Her Y. Therapeutic and Preventive Effect of Orally Administered Prebiotics on Atopic Dermatitis in a Mouse Model. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2023; 15:303-315. [PMID: 37075794 DOI: 10.4168/aair.2023.15.3.303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 10/04/2022] [Accepted: 10/04/2022] [Indexed: 05/17/2023]
Abstract
PURPOSE Recently, interest is increasing in using prebiotics, which are nutrient ingredients of live microorganism that improve the intestinal environments by promoting the growth of beneficial gut microflora. Although numerous studies have demonstrated the beneficial effects of probiotics on atopic dermatitis (AD) development, few have examined preventive and therapeutic effects of prebiotics on the onset and progression of AD. METHODS In this study, we investigated therapeutic and preventive effect of prebiotics, including β-glucan and inulin, using an oxazolone (OX)-induced AD-like mouse model. Prebiotics were orally administered 2 weeks after the end of sensitization period (therapeutic study) and 3 weeks before the initial sensitization (prevention study). The physiological and histological alterations in the skin and gut of the mice were investigated. RESULTS In the therapeutic study, the severity of skin lesions and inflammatory responses were effectively reduced after administering β-glucan and inulin, respectively. The expression level of calprotectin was significantly decreased by approximately 2-fold (P < 0.05) in the skin and gut of prebiotics-treated mice compared to the control. In addition, epidermal thickness and the number of infiltrated immune cells were markedly reduced in the dermis of prebiotics-treated mice compared <strike>with</strike> to those in the OX-induced mice (P < 0.05). These findings were same as in the prevention study. Importantly, pre-administration of β-glucan and inulin prevented the progression of AD by promoting the growth of good bacteria in the gut of OX-induced AD mice. However, the co-administration of β-glucan and inulin did not show enhanced preventive effects on these alterations. CONCLUSIONS Prebiotics has a therapeutic effect on AD in OX-induced AD mouse model. Moreover, our study suggests that prebiotics prevents the development of AD and this effect is associated with a change in gut microbiome.
Collapse
Affiliation(s)
- Minje Kang
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Korea
| | - Ji-Hye Jung
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Korea
| | - Ji-Young Kim
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Korea.
| | - Young Her
- Department of Dermatology, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon, Korea.
| |
Collapse
|
21
|
Kiecka A, Macura B, Szczepanik M. Modulation of allergic contact dermatitis via gut microbiota modified by diet, vitamins, probiotics, prebiotics, and antibiotics. Pharmacol Rep 2023; 75:236-248. [PMID: 36729361 PMCID: PMC10060339 DOI: 10.1007/s43440-023-00454-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 02/03/2023]
Abstract
Allergic contact dermatitis is one of the most common recorded occupational diseases. There are many different substances that the skin comes into contact with on a daily basis and that can cause ACD, e.g., preservatives, surfactants, and antimicrobial agents. The development of a mouse model of ACD has provided insight into the immune mechanisms involved. Drugs used in the treatment of skin diseases have many side effects. Therefore, alternative methods of suppressing the immune response to reduce the symptoms of skin diseases are being sought. In recent years, high hopes have been placed on dietary modulation and supplementation to affect the intestinal microbial composition and promote anti-inflammatory responses. In addition, other studies have shown the crucial role of intestinal microbiota in many immune-mediated diseases. Recognition and characterization of pro- and anti-inflammatory nutrients and supplements may be crucial to support the treatment of diseases such as atopic dermatitis, acne vulgaris, psoriasis, and allergic contact dermatitis.
Collapse
Affiliation(s)
- Aneta Kiecka
- Faculty of Health Sciences, Institute of Physiotherapy, Chair of Biomedical Sciences, Jagiellonian University Medical College, Kopernika 7a, 31-034, Kraków, Poland.
| | - Barbara Macura
- Faculty of Health Sciences, Institute of Physiotherapy, Chair of Biomedical Sciences, Jagiellonian University Medical College, Kopernika 7a, 31-034, Kraków, Poland
| | - Marian Szczepanik
- Faculty of Health Sciences, Institute of Physiotherapy, Chair of Biomedical Sciences, Jagiellonian University Medical College, Kopernika 7a, 31-034, Kraków, Poland
| |
Collapse
|
22
|
Sarkar S, Routhray S, Ramadass B, Parida PK. A Review on the Nasal Microbiome and Various Disease Conditions for Newer Approaches to Treatments. Indian J Otolaryngol Head Neck Surg 2023; 75:755-763. [PMID: 37206729 PMCID: PMC10188862 DOI: 10.1007/s12070-022-03205-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/23/2022] [Indexed: 12/14/2022] Open
Abstract
Introduction: Commensal bacteria have always played a significant role in the maintenance of health and disease but are being unravelled only recently. Studies suggest that the nasal microbiome has a significant role in the development of various disease conditions. Search engines were used for searching articles having a nasal microbiome and disease correlation. In olfactory dysfunction, dysbiosis of the microbiome may have a significant role to play in the pathogenesis. The nasal microbiome influences the phenotype of CRS and is also capable of modulating the immune response and plays a role in polyp formation. Microbiome dysbiosis has a pivotal role in the development of Allergic Rhinitis; but, yet known how is this role played. The nasal microbiome has a close association with the severity and phenotype of asthma. They contribute significantly to the onset, severity, and development of asthma. The nasal microbiome has a significant impact on the immunity and protection of its host. The nasal microbiome has been a stimulus in the development of Otitis Media and its manifestations. Studies suggest that the resident nasal microbiome is responsible for the initiation of neurodegenerative diseases like Parkinson's Disease.Materials and Methods: Literature search from PubMed, Medline, and Google with the Mesh terms: nasal microbiome AND diseases. Conclusion: With increasing evidence on the role of the nasal microbiome on various diseases, it would be interesting to see how this microbiome can be modulated by pro/pre/post biotics to prevent a disease or the severity of illness.
Collapse
Affiliation(s)
- Saurav Sarkar
- Department of Otorhinolaryngology and Head Neck Surgery, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Samapika Routhray
- Department of Dentistry, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Balamurugan Ramadass
- Department of Biochemistry, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Pradipta Kumar Parida
- Department of Otorhinolaryngology and Head Neck Surgery, All India Institute of Medical Sciences, Bhubaneswar, India
| |
Collapse
|
23
|
A Synopsis of Guidance for Allergic Rhinitis Diagnosis and Management From ICAR 2023. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:773-796. [PMID: 36894277 DOI: 10.1016/j.jaip.2023.01.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 03/09/2023]
Abstract
An updated edition of the International Consensus Statement on Allergy and Rhinology: Allergic Rhinitis (ICAR:AR) has recently been published. This consensus document, which included the participation of 87 primary authors and 40 additional consultant authors, who critically appraised evidence on 144 individual topics concerning allergic rhinitis, provides guidance for health care providers using the evidence-based review with recommendations (EBRR) methodology. This synopsis highlights topical areas including pathophysiology, epidemiology, disease burden, risk and protective factors, evaluation and diagnosis, aeroallergen avoidance and environmental controls, single and combination pharmacotherapy options, allergen immunotherapy (subcutaneous, sublingual, rush, cluster), pediatric considerations, alternative and emerging therapies, and unmet needs. Based on the EBRR methodology, ICAR:AR includes strong recommendations for the treatment of allergic rhinitis: (1) for the use of newer generation antihistamines compared with first-generation alternatives, intranasal corticosteroid, intranasal saline, combination therapy with intranasal corticosteroid plus intranasal antihistamine for patients not responding to monotherapy, and subcutaneous immunotherapy and sublingual tablet immunotherapy in properly selected patients; (2) against the use of oral decongestant monotherapy and routine use of oral corticosteroids.
Collapse
|
24
|
Bisgaard H, Chawes B, Stokholm J, Mikkelsen M, Schoos AMM, Bønnelykke K. 25 Years of translational research in the Copenhagen Prospective Studies on Asthma in Childhood (COPSAC). J Allergy Clin Immunol 2023; 151:619-633. [PMID: 36642652 DOI: 10.1016/j.jaci.2022.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/28/2022] [Accepted: 11/04/2022] [Indexed: 01/15/2023]
Abstract
The Copenhagen Prospective Studies on Asthma in Childhood (COPSAC) mother-child cohorts have provided a foundation of 25 years of research on the origins, prevention, and natural history of childhood asthma and related disorders. COPSAC's approach is characterized by clinical translational research with longitudinal deep phenotyping and exposure assessments from pregnancy, in combination with multi-omic data layers and embedded randomized controlled trials. One trial showed that fish oil supplementation during pregnancy prevented childhood asthma and identified pregnant women with the highest benefits from supplementation, thereby creating the potential for personalized prevention. COPSAC revealed that airway colonization with pathogenic bacteria in early life is associated with an increased risk of asthma. Further, airway bacteria were shown to be a trigger of acute asthma-like symptoms, with benefit from antibiotic treatment. COPSAC identified an immature gut microbiome in early life as a risk factor for asthma and allergy and further demonstrated that asthma can be predicted by infant lung function. At a molecular level, COPSAC has identified novel susceptibility genes, early immune deviations, and metabolomic alterations associated with childhood asthma. Thus, the COPSAC research program has enhanced our understanding of the processes causing childhood asthma and has suggested means of personalized prevention and treatment.
Collapse
Affiliation(s)
- Hans Bisgaard
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Bo Chawes
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jakob Stokholm
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark; Department of Pediatrics, Slagelse Hospital, Slagelse, Denmark
| | - Marianne Mikkelsen
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Ann-Marie Malby Schoos
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark; Department of Pediatrics, Slagelse Hospital, Slagelse, Denmark
| | - Klaus Bønnelykke
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
25
|
Tan T, Xiao D, Li Q, Zhong C, Hu W, Guo J, Chen X, Zhang H, Lin L, Yang S, Xiong G, Yang H, Yang X, Hao L, Yang N. Maternal yogurt consumption during pregnancy and infantile eczema: a prospective cohort study. Food Funct 2023; 14:1929-1936. [PMID: 36723007 DOI: 10.1039/d2fo02064e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Maternal fermented food consumption during pregnancy was suggested to be beneficial for a healthy microbiome, and prevent infantile eczema. However, the association between yogurt and eczema has not been well investigated. To examine whether maternal yogurt consumption during pregnancy is associated with risk of infantile eczema, we performed a prospective mother-offspring cohort study in Wuhan, China. Maternal yogurt consumption in late pregnancy was assessed with a semi-quantitative food frequency questionnaire. The main outcomes were doctor-diagnosed infantile eczema collected at 3 and 6 months postpartum. Adjusted rate ratios (aRRs) were calculated by Poisson regression models adjusted for potential confounders. In our study, 182 (7.7%) of 2371 infants followed for 3 months and 84 (4.0%) of 2114 infants followed until 6 months reported doctor-diagnosed eczema. Compared to infants whose mothers had not consumed any yogurt, infants with mothers who consumed yogurt during late pregnancy had reduced risk of eczema between 3 and 6 months of age (aRR = 0.54, 95% CI 0.35-0.85); the reduction was pronounced in those with maternal yogurt intake >3 times per week (aRR = 0.48, 95% CI 0.28-0.82) and >50 g day-1 (aRR = 0.50, 95% CI 0.30-0.81). Moreover, infants with mothers who consumed yogurt showed decreased risk for recurrent eczema within the first 6 months (aRR = 0.46, 95% CI 0.22-0.98). In conclusion, this study found that maternal yogurt consumption during late pregnancy was related to a reduced incidence of eczema in infants aged 3 to 6 months, and recurrent eczema in the first 6 months of life.
Collapse
Affiliation(s)
- Tianqi Tan
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.
| | - Daxiang Xiao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.
| | - Qian Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.
| | - Chunrong Zhong
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.
| | - Wenqi Hu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.
| | - Jinrong Guo
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.
| | - Xi Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.
| | - Huaqi Zhang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.
| | - Lixia Lin
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.
| | - Seng Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.
| | | | - Hongying Yang
- Institute of Health Education, Hubei Provincial Center for Disease Control and Prevention, Hubei Provincial Academy of Preventive Medicine, Hubei, China
| | - Xuefeng Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.
| | - Liping Hao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.
| | - Nianhong Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.
| |
Collapse
|
26
|
Lajnaf R, Feki S, Ben Ameur S, Attia H, Kammoun T, Ayadi MA, Masmoudi H. Cows' milk alternatives for children with cows' milk protein allergy - Review of health benefits and risks of allergic reaction. Int Dairy J 2023. [DOI: 10.1016/j.idairyj.2023.105624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
27
|
Nascimento da Silva K, Fávero AG, Ribeiro W, Ferreira CM, Sartorelli P, Cardili L, Bogsan CS, Bertaglia Pereira JN, de Cássia Sinigaglia R, Cristina de Moraes Malinverni A, Ribeiro Paiotti AP, Miszputen SJ, Ambrogini-Júnior O. Effects of kefir fermented milk beverage on sodium dextran sulfate (DSS)-induced colitis in rats. Heliyon 2022; 9:e12707. [PMID: 36685418 PMCID: PMC9852935 DOI: 10.1016/j.heliyon.2022.e12707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/14/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Background and aim The etiopathogenesis of inflammatory bowel disease (IBD) is associated with different factors such as genetic, infectious, immunological, and environmental, including modification of the gut microbiota. IBD's conventional pharmacological therapeutic approaches have become a challenge due to side effects, complications from prolonged use, and higher costs. Kefir fermented milk beverage is a functional food that has demonstrated multiple beneficial effects including anti-inflammatory and antioxidant activity. Alternative therapeutic strategies have been used for IBD as more natural products with low-cost and easy acquisition. The aim of this study is to evaluate the anti-inflammatory effects of kefir fermented milk beverage on sodium dextran sulfate (DSS)-induced colitis in rats. Methods We used 4 groups to perform this study: baseline control (BC), kefir control (KC), 5% untreated DSS-induced colitis (DSS), and 5% DSS-induced colitis treated with kefir (DSSK). The animals received fermented kefir milk beverage ad libitum for six days and the disease activity index was recorded daily. Colon samples were processed for Transmission Electron Microscopy and histopathological evaluation. We analyzed short fatty chain acids through the fecal sample using gas chromatography. Results Kefir supplementation was able to reduce the clinical activity index and inflammatory process evidenced by decreased neutrophil accumulation, decreased reticulum edema, and increased autophagosomes. Also, showed a trend to increase the levels of acetate and propionate. Conclusions Our results suggest that kefir fermented milk beverage may have an anti-inflammatory effect minimizing the intestinal damage of DSS-induced colitis.
Collapse
Affiliation(s)
- Karina Nascimento da Silva
- Division of Gastroenterology, Universidade Federal de São Paulo – Escola Paulista de Medicina, UNIFESP, SP, Brazil
| | - Aline Garnevi Fávero
- Division of Gastroenterology, Universidade Federal de São Paulo – Escola Paulista de Medicina, UNIFESP, SP, Brazil
| | - William Ribeiro
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Department of Pharmaceutics Sciences - Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Caroline Marcantonio Ferreira
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Department of Pharmaceutics Sciences - Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Patrícia Sartorelli
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Department of Pharmaceutics Sciences - Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Leonardo Cardili
- Laboratory of Experimental and Molecular Pathology, Department of Pathology - Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Cristina Stewart Bogsan
- Laboratory of Fermented Foods of the Faculty of Pharmaceutical Sciences – University of São Paulo
| | | | | | | | - Ana Paula Ribeiro Paiotti
- Division of Gastroenterology, Universidade Federal de São Paulo – Escola Paulista de Medicina, UNIFESP, SP, Brazil,Corresponding author.
| | - Sender Jankiel Miszputen
- Division of Gastroenterology, Universidade Federal de São Paulo – Escola Paulista de Medicina, UNIFESP, SP, Brazil
| | - Orlando Ambrogini-Júnior
- Division of Gastroenterology, Universidade Federal de São Paulo – Escola Paulista de Medicina, UNIFESP, SP, Brazil
| |
Collapse
|
28
|
Block KE, Iijima K, Pierson MJ, Walsh DA, Tei R, Kucaba TA, Xu J, Khan MH, Staley C, Griffith TS, McSorley HJ, Kita H, Jameson SC. Physiological microbial exposure transiently inhibits mouse lung ILC2 responses to allergens. Nat Immunol 2022; 23:1703-1713. [PMID: 36411381 PMCID: PMC9974086 DOI: 10.1038/s41590-022-01350-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 10/05/2022] [Indexed: 11/22/2022]
Abstract
Lung group 2 innate lymphoid cells (ILC2s) control the nature of immune responses to airway allergens. Some microbial products, including those that stimulate interferons, block ILC2 activation, but whether this occurs after natural infections or causes durable ILC2 inhibition is unclear. In the present study, we cohoused laboratory and pet store mice as a model of physiological microbial exposure. Laboratory mice cohoused for 2 weeks had impaired ILC2 responses and reduced lung eosinophilia to intranasal allergens, whereas these responses were restored in mice cohoused for ≥2 months. ILC2 inhibition at 2 weeks correlated with increased interferon receptor signaling, which waned by 2 months of cohousing. Reinduction of interferons in 2-month cohoused mice blocked ILC2 activation. These findings suggest that ILC2s respond dynamically to environmental cues and that microbial exposures do not control long-term desensitization of innate type 2 responses to allergens.
Collapse
Affiliation(s)
- Katharine E Block
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Koji Iijima
- Division of Allergy, Asthma and Clinical Immunology and Department of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Mark J Pierson
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Daniel A Walsh
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Rinna Tei
- Division of Allergy, Asthma and Clinical Immunology and Department of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University, Tochigi, Japan
| | - Tamara A Kucaba
- Department of Urology, University of Minnesota, Minneapolis, MN, USA
| | - Julie Xu
- Department of Urology, University of Minnesota, Minneapolis, MN, USA
| | | | | | - Thomas S Griffith
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA
- Department of Urology, University of Minnesota, Minneapolis, MN, USA
| | - Henry J McSorley
- Division of Cell signaling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Hirohito Kita
- Division of Allergy, Asthma and Clinical Immunology and Department of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA.
| | - Stephen C Jameson
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA.
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
29
|
Fan X, Zang T, Dai J, Wu N, Hope C, Bai J, Liu Y. The associations of maternal and children's gut microbiota with the development of atopic dermatitis for children aged 2 years. Front Immunol 2022; 13:1038876. [PMID: 36466879 PMCID: PMC9714546 DOI: 10.3389/fimmu.2022.1038876] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/03/2022] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND It is critical to investigate the underlying pathophysiological mechanisms in the development of atopic dermatitis. The microbiota hypothesis suggested that the development of allergic diseases may be attributed to the gut microbiota of mother-offspring pairs. The purpose of this study was to investigate the relationship among maternal-offspring gut microbiota and the subsequent development of atopic dermatitis in infants and toddlers at 2 years old. METHODS A total of 36 maternal-offspring pairs were enrolled and followed up to 2 years postpartum in central China. Demographic information and stool samples were collected perinatally from pregnant mothers and again postpartum from their respective offspring at the following time intervals: time of birth, 6 months, 1 year and 2 years. Stool samples were sequenced with the 16S Illumina MiSeq platform. Logistic regression analysis was used to explore the differences in gut microbiota between the atopic dermatitis group and control group. RESULTS Our results showed that mothers of infants and toddlers with atopic dermatitis had higher abundance of Candidatus_Stoquefichus and Pseudomonas in pregnancy and that infants and toddlers with atopic dermatitis had higher abundance of Eubacterium_xylanophilum_group at birth, Ruminococcus_gauvreauii_group at 1 year and UCG-002 at 2 years, and lower abundance of Gemella and Veillonella at 2 years. Additionally, the results demonstrated a lower abundance of Prevotella in mothers of infants and toddlers with atopic dermatitis compared to mothers of the control group, although no statistical difference was found in the subsequent analysis. CONCLUSION The results of this study support that gut microbiota status among mother-offspring pairs appears to be associated with the pathophysiological development of pediatric atopic dermatitis.
Collapse
Affiliation(s)
- Xiaoxiao Fan
- Wuhan University School of Nursing, Wuhan University, Wuhan, China
| | - Tianzi Zang
- Wuhan University School of Nursing, Wuhan University, Wuhan, China
| | - Jiamiao Dai
- Wuhan University School of Nursing, Wuhan University, Wuhan, China
| | - Ni Wu
- Wuhan University School of Nursing, Wuhan University, Wuhan, China
| | - Chloe Hope
- Emory University Nell Hodgson Woodruff School of Nursing, Atlanta, GA, United States
| | - Jinbing Bai
- Emory University Nell Hodgson Woodruff School of Nursing, Atlanta, GA, United States
| | - Yanqun Liu
- Wuhan University School of Nursing, Wuhan University, Wuhan, China
| |
Collapse
|
30
|
Moriki D, Francino MP, Koumpagioti D, Boutopoulou B, Rufián-Henares JÁ, Priftis KN, Douros K. The Role of the Gut Microbiome in Cow's Milk Allergy: A Clinical Approach. Nutrients 2022; 14:4537. [PMID: 36364799 PMCID: PMC9656688 DOI: 10.3390/nu14214537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 07/30/2023] Open
Abstract
Cow's milk allergy (CMA) is the most prevalent food allergy (FA) in infancy and early childhood and can be present with various clinical phenotypes. The significant increase in FA rates recorded in recent decades has been associated with environmental and lifestyle changes that limit microbial exposure in early life and induce changes in gut microbiome composition. Gut microbiome is a diverse community of microbes that colonize the gastrointestinal tract (GIT) and perform beneficial functions for the host. This complex ecosystem interacts with the immune system and has a pivotal role in the development of oral tolerance to food antigens. Emerging evidence indicates that alterations of the gut microbiome (dysbiosis) in early life cause immune dysregulation and render the host susceptible to immune-mediated diseases later in life. Therefore, the colonization of the gut by "healthy" microbes that occurs in the first years of life determines the lifelong health of the host. Here, we present current data on the possible role of the gut microbiome in the development of CMA. Furthermore, we discuss how gut microbiome modification might be a potential strategy for CMA prevention and treatment.
Collapse
Affiliation(s)
- Dafni Moriki
- Allergology and Pulmonology Unit, 3rd Pediatric Department, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Maria Pilar Francino
- Department of Genomics and Health, Fundación Para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valencia (FISABIO), 46020 Valencia, Spain
- CIBER en Epidemiología y Salud Pública, 28001 Madrid, Spain
| | - Despoina Koumpagioti
- Department of Nursing, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Barbara Boutopoulou
- Department of Nursing, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - José Ángel Rufián-Henares
- Departamento de Nutrición y Bromatología, Instituto de Nutrición y Tecnología de los Alimentos, Centro de Investigación Biomédica, Universidad de Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Universidad de Granada, 18071 Granada, Spain
| | - Kostas N. Priftis
- Allergology and Pulmonology Unit, 3rd Pediatric Department, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Konstantinos Douros
- Allergology and Pulmonology Unit, 3rd Pediatric Department, National and Kapodistrian University of Athens, 12462 Athens, Greece
| |
Collapse
|
31
|
Uwaezuoke SN, Ayuk AC, Eze JN, Odimegwu CL, Ndiokwelu CO, Eze IC. Postnatal probiotic supplementation can prevent and optimize treatment of childhood asthma and atopic disorders: A systematic review of randomized controlled trials. Front Pediatr 2022; 10:956141. [PMID: 36061384 PMCID: PMC9437454 DOI: 10.3389/fped.2022.956141] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Although several randomized controlled trials (RCTs) published over the past 5 years show that prenatal or postnatal probiotics may prevent or optimize the treatment of childhood asthma and atopic disorders, findings from the systematic reviews and meta-analyses of these studies appear inconsistent. More recent RCTs have focused on postnatal probiotics, and linked specific probiotic strains to better disease outcomes. OBJECTIVE This systematic review aimed to determine if postnatal probiotics are as effective as prenatal probiotics in preventing or treating childhood asthma and atopic disorders. METHODS We searched the PubMed, Medline, Google Scholar, and EMBASE databases for RCTs published within the past 5 years (from 2017 to 2022). We included only full-text RCTs on human subjects published in or translated into the English language. We retrieved relevant data items with a preconceived data-extraction form and assessed the methodological quality of the selected RCTs using the Cochrane Collaboration's tool for assessing the risk of bias in randomized trials. We qualitatively synthesized the retrieved data to determine any significant differences in study endpoints of the probiotic and placebo groups. RESULTS A total of 1,320 participants (688 and 632 in the probiotic and placebo groups) from six RCTs were investigated. One RCT showed that early Lactobacillus rhamnosus GG (LGG) led to a reduction in the cumulative incidence rate of asthma. Another study demonstrated that mixed strains of Lactobacillus paracasei and Lactobacillus fermentum could support clinical improvement in children with asthma while one trial reported a significant reduction in the frequency of asthma exacerbations using a mixture of Ligilactobacillus salivarius and Bifidobacterium breve. Three trials showed that a combination of LGG and Bifidobacterium animalis subsp lactis, Lactobacillus rhamnosus alone, and a probiotic mixture of Lactobacillus ŁOCK strains improved clinical outcomes in children with atopic dermatitis and cow-milk protein allergy. CONCLUSIONS Postnatal strain-specific probiotics (in single or mixed forms) are beneficial in preventing and treating atopic dermatitis and other allergies. Similarly, specific strains are more effective in preventing asthma or improving asthma outcomes. We recommend more interventional studies to establish the most useful probiotic strain in these allergic diseases.
Collapse
Affiliation(s)
- Samuel N. Uwaezuoke
- Department of Paediatrics, University of Nigeria Teaching Hospital, Ituku-Ozalla, Enugu, Nigeria
- Department of Pediatrics, College of Medicine, University of Nigeria, Ituku-Ozalla Enugu Campus, Enugu, Nigeria
| | - Adaeze C. Ayuk
- Department of Paediatrics, University of Nigeria Teaching Hospital, Ituku-Ozalla, Enugu, Nigeria
- Department of Pediatrics, College of Medicine, University of Nigeria, Ituku-Ozalla Enugu Campus, Enugu, Nigeria
| | - Joy N. Eze
- Department of Paediatrics, University of Nigeria Teaching Hospital, Ituku-Ozalla, Enugu, Nigeria
- Department of Pediatrics, College of Medicine, University of Nigeria, Ituku-Ozalla Enugu Campus, Enugu, Nigeria
| | - Chioma L. Odimegwu
- Department of Paediatrics, University of Nigeria Teaching Hospital, Ituku-Ozalla, Enugu, Nigeria
- Department of Pediatrics, College of Medicine, University of Nigeria, Ituku-Ozalla Enugu Campus, Enugu, Nigeria
| | - Chibuzo O. Ndiokwelu
- Department of Paediatrics, University of Nigeria Teaching Hospital, Ituku-Ozalla, Enugu, Nigeria
| | - Ikenna C. Eze
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
32
|
Anania C, Brindisi G, Martinelli I, Bonucci E, D’Orsi M, Ialongo S, Nyffenegger A, Raso T, Spatuzzo M, De Castro G, Zicari AM, Carraro C, Piccioni MG, Olivero F. Probiotics Function in Preventing Atopic Dermatitis in Children. Int J Mol Sci 2022; 23:ijms23105409. [PMID: 35628229 PMCID: PMC9141149 DOI: 10.3390/ijms23105409] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/04/2022] [Accepted: 05/07/2022] [Indexed: 11/16/2022] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disorder characterized by relapsing eczematous injuries and severe pruritus. In the last few years, the AD prevalence has been increasing, reaching 20% in children and 10% in adults in high-income countries. Recently, the potential role of probiotics in AD prevention has generated considerable interest. As many clinical studies show, the gut microbiota is able to modulate systemic inflammatory and immune responses influencing the development of sensitization and allergy. Probiotics are used increasingly against AD. However, the molecular mechanisms underlying the probiotics mediated anti-allergic effect remain unclear and there is controversy about their efficacy. In this narrative review, we examine the actual evidence on the effect of probiotic supplementation for AD prevention in the pediatric population, discussing also the potential biological mechanisms of action in this regard.
Collapse
Affiliation(s)
- Caterina Anania
- Department of Mother-Child, Urological Science, Sapienza University of Rome, 00161 Rome, Italy; (G.B.); (I.M.); (E.B.); (M.D.); (S.I.); (A.N.); (T.R.); (M.S.); (G.D.C.); (A.M.Z.); (C.C.); (M.G.P.)
- Correspondence:
| | - Giulia Brindisi
- Department of Mother-Child, Urological Science, Sapienza University of Rome, 00161 Rome, Italy; (G.B.); (I.M.); (E.B.); (M.D.); (S.I.); (A.N.); (T.R.); (M.S.); (G.D.C.); (A.M.Z.); (C.C.); (M.G.P.)
| | - Ivana Martinelli
- Department of Mother-Child, Urological Science, Sapienza University of Rome, 00161 Rome, Italy; (G.B.); (I.M.); (E.B.); (M.D.); (S.I.); (A.N.); (T.R.); (M.S.); (G.D.C.); (A.M.Z.); (C.C.); (M.G.P.)
| | - Edoardo Bonucci
- Department of Mother-Child, Urological Science, Sapienza University of Rome, 00161 Rome, Italy; (G.B.); (I.M.); (E.B.); (M.D.); (S.I.); (A.N.); (T.R.); (M.S.); (G.D.C.); (A.M.Z.); (C.C.); (M.G.P.)
| | - Miriam D’Orsi
- Department of Mother-Child, Urological Science, Sapienza University of Rome, 00161 Rome, Italy; (G.B.); (I.M.); (E.B.); (M.D.); (S.I.); (A.N.); (T.R.); (M.S.); (G.D.C.); (A.M.Z.); (C.C.); (M.G.P.)
| | - Sara Ialongo
- Department of Mother-Child, Urological Science, Sapienza University of Rome, 00161 Rome, Italy; (G.B.); (I.M.); (E.B.); (M.D.); (S.I.); (A.N.); (T.R.); (M.S.); (G.D.C.); (A.M.Z.); (C.C.); (M.G.P.)
| | - Anna Nyffenegger
- Department of Mother-Child, Urological Science, Sapienza University of Rome, 00161 Rome, Italy; (G.B.); (I.M.); (E.B.); (M.D.); (S.I.); (A.N.); (T.R.); (M.S.); (G.D.C.); (A.M.Z.); (C.C.); (M.G.P.)
| | - Tonia Raso
- Department of Mother-Child, Urological Science, Sapienza University of Rome, 00161 Rome, Italy; (G.B.); (I.M.); (E.B.); (M.D.); (S.I.); (A.N.); (T.R.); (M.S.); (G.D.C.); (A.M.Z.); (C.C.); (M.G.P.)
| | - Mattia Spatuzzo
- Department of Mother-Child, Urological Science, Sapienza University of Rome, 00161 Rome, Italy; (G.B.); (I.M.); (E.B.); (M.D.); (S.I.); (A.N.); (T.R.); (M.S.); (G.D.C.); (A.M.Z.); (C.C.); (M.G.P.)
| | - Giovanna De Castro
- Department of Mother-Child, Urological Science, Sapienza University of Rome, 00161 Rome, Italy; (G.B.); (I.M.); (E.B.); (M.D.); (S.I.); (A.N.); (T.R.); (M.S.); (G.D.C.); (A.M.Z.); (C.C.); (M.G.P.)
| | - Anna Maria Zicari
- Department of Mother-Child, Urological Science, Sapienza University of Rome, 00161 Rome, Italy; (G.B.); (I.M.); (E.B.); (M.D.); (S.I.); (A.N.); (T.R.); (M.S.); (G.D.C.); (A.M.Z.); (C.C.); (M.G.P.)
| | - Carlo Carraro
- Department of Mother-Child, Urological Science, Sapienza University of Rome, 00161 Rome, Italy; (G.B.); (I.M.); (E.B.); (M.D.); (S.I.); (A.N.); (T.R.); (M.S.); (G.D.C.); (A.M.Z.); (C.C.); (M.G.P.)
| | - Maria Grazia Piccioni
- Department of Mother-Child, Urological Science, Sapienza University of Rome, 00161 Rome, Italy; (G.B.); (I.M.); (E.B.); (M.D.); (S.I.); (A.N.); (T.R.); (M.S.); (G.D.C.); (A.M.Z.); (C.C.); (M.G.P.)
| | - Francesca Olivero
- Pediatric Clinic, Department of Pediatrics, Fondazione IRCSS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy;
| |
Collapse
|
33
|
Kielenniva K, Ainonen S, Vänni P, Paalanne N, Renko M, Salo J, Tejesvi MV, Pokka T, Pirttilä AM, Tapiainen T. Microbiota of the first-pass meconium and subsequent atopic and allergic disorders in children. Clin Exp Allergy 2022; 52:684-696. [PMID: 35212058 PMCID: PMC9314137 DOI: 10.1111/cea.14117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/28/2022] [Accepted: 02/07/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Some cohort studies have suggested that gut microbiota composition is associated with allergic diseases in children. The microbiota of the first-pass meconium, which forms before birth, represents the first gut microbiota that is easily available for research and little is known about any relationship with allergic disease development. OBJECTIVE We investigated whether the bacterial composition of the first-pass meconium is associated with the development of allergic diseases before 4 years of age. METHODS Prospective birth cohort study. Bacterial composition of first-pass meconium was analysed using bacterial 16S rRNA gene amplicon sequencing. Atopic and allergic diseases were evaluated via online survey or telephone to age 4 years, based on the International Study of Asthma and Allergies in Childhood questionnaire. RESULTS During a 6-week period in 2014, 312 children were born at the Central Finland Central Hospital. Meconium was collected from 212 at a mean of 8-hour age. Outcome data at 4 years were available for 177 (83%) children, and 159 of these had sufficient amplification of bacterial DNA in meconium. Meconium microbiota composition, including diversity indices and relative abundances of the main phyla and genera, was not associated with subsequent atopic eczema, wheezing or cow's milk allergy. Principal components analysis did not identify any clustering of the meconium microbiomes of children with respect to wheezing or cow's milk allergy. CONCLUSIONS We found no evidence that gut microbiota composition of first-pass meconium is associated with atopic manifestations to age 4 years. However, larger studies are needed to fully exclude a relationship.
Collapse
Affiliation(s)
- Katja Kielenniva
- PEDEGO (Pediatrics, Dermatology, Gynecology, Obstetrics) Research Unit and Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Sofia Ainonen
- PEDEGO (Pediatrics, Dermatology, Gynecology, Obstetrics) Research Unit and Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Petri Vänni
- Ecology and Genetics, Faculty of Science, University of Oulu, Oulu, Finland.,Genobiomics Ltd., Oulu, Finland
| | - Niko Paalanne
- PEDEGO (Pediatrics, Dermatology, Gynecology, Obstetrics) Research Unit and Medical Research Center Oulu, University of Oulu, Oulu, Finland.,Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, Oulu, Finland
| | - Marjo Renko
- PEDEGO (Pediatrics, Dermatology, Gynecology, Obstetrics) Research Unit and Medical Research Center Oulu, University of Oulu, Oulu, Finland.,Department of Pediatrics, University of Eastern Finland, Kuopio, Finland
| | - Jarmo Salo
- PEDEGO (Pediatrics, Dermatology, Gynecology, Obstetrics) Research Unit and Medical Research Center Oulu, University of Oulu, Oulu, Finland.,Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, Oulu, Finland
| | - Mysore V Tejesvi
- Ecology and Genetics, Faculty of Science, University of Oulu, Oulu, Finland.,Genobiomics Ltd., Oulu, Finland
| | - Tytti Pokka
- PEDEGO (Pediatrics, Dermatology, Gynecology, Obstetrics) Research Unit and Medical Research Center Oulu, University of Oulu, Oulu, Finland.,Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, Oulu, Finland
| | | | - Terhi Tapiainen
- PEDEGO (Pediatrics, Dermatology, Gynecology, Obstetrics) Research Unit and Medical Research Center Oulu, University of Oulu, Oulu, Finland.,Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
34
|
Celebi Sozener Z, Ozdel Ozturk B, Cerci P, Turk M, Gorgulu Akin B, Akdis M, Altiner S, Ozbey U, Ogulur I, Mitamura Y, Yilmaz I, Nadeau K, Ozdemir C, Mungan D, Akdis CA. Epithelial barrier hypothesis: Effect of the external exposome on the microbiome and epithelial barriers in allergic disease. Allergy 2022; 77:1418-1449. [PMID: 35108405 PMCID: PMC9306534 DOI: 10.1111/all.15240] [Citation(s) in RCA: 211] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/25/2022] [Accepted: 01/29/2022] [Indexed: 12/11/2022]
Abstract
Environmental exposure plays a major role in the development of allergic diseases. The exposome can be classified into internal (e.g., aging, hormones, and metabolic processes), specific external (e.g., chemical pollutants or lifestyle factors), and general external (e.g., broader socioeconomic and psychological contexts) domains, all of which are interrelated. All the factors we are exposed to, from the moment of conception to death, are part of the external exposome. Several hundreds of thousands of new chemicals have been introduced in modern life without our having a full understanding of their toxic health effects and ways to mitigate these effects. Climate change, air pollution, microplastics, tobacco smoke, changes and loss of biodiversity, alterations in dietary habits, and the microbiome due to modernization, urbanization, and globalization constitute our surrounding environment and external exposome. Some of these factors disrupt the epithelial barriers of the skin and mucosal surfaces, and these disruptions have been linked in the last few decades to the increasing prevalence and severity of allergic and inflammatory diseases such as atopic dermatitis, food allergy, allergic rhinitis, chronic rhinosinusitis, eosinophilic esophagitis, and asthma. The epithelial barrier hypothesis provides a mechanistic explanation of how these factors can explain the rapid increase in allergic and autoimmune diseases. In this review, we discuss factors affecting the planet's health in the context of the 'epithelial barrier hypothesis,' including climate change, pollution, changes and loss of biodiversity, and emphasize the changes in the external exposome in the last few decades and their effects on allergic diseases. In addition, the roles of increased dietary fatty acid consumption and environmental substances (detergents, airborne pollen, ozone, microplastics, nanoparticles, and tobacco) affecting epithelial barriers are discussed. Considering the emerging data from recent studies, we suggest stringent governmental regulations, global policy adjustments, patient education, and the establishment of individualized control measures to mitigate environmental threats and decrease allergic disease.
Collapse
Affiliation(s)
| | - Betul Ozdel Ozturk
- School of MedicineDepartment of Chest DiseasesDivision of Immunology and Allergic DiseasesAnkara UniversityAnkaraTurkey
| | - Pamir Cerci
- Clinic of Immunology and Allergic DiseasesEskisehir City HospitalEskisehirTurkey
| | - Murat Turk
- Clinic of Immunology and Allergic DiseasesKayseri City HospitalKayseriTurkey
| | - Begum Gorgulu Akin
- Clinic of Immunology and Allergic DiseasesAnkara City HospitalAnkaraTurkey
| | - Mubeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland
| | - Seda Altiner
- Clinic of Internal Medicine Division of Immunology and Allergic DiseasesKahramanmaras Necip Fazil City HospitalKahramanmarasTurkey
| | - Umus Ozbey
- Department of Nutrition and DietAnkara UniversityAnkaraTurkey
| | - Ismail Ogulur
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland
| | - Yasutaka Mitamura
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland
| | - Insu Yilmaz
- Department of Chest DiseasesDivision of Immunology and Allergic DiseasesErciyes UniversityKayseriTurkey
| | - Kari Nadeau
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University School of MedicineDivision of Pulmonary and Critical Care MedicineDepartment of MedicineStanford UniversityStanfordCaliforniaUSA
| | - Cevdet Ozdemir
- Institute of Child HealthDepartment of Pediatric Basic SciencesIstanbul UniversityIstanbulTurkey
- Istanbul Faculty of MedicineDepartment of PediatricsDivision of Pediatric Allergy and ImmunologyIstanbul UniversityIstanbulTurkey
| | - Dilsad Mungan
- School of MedicineDepartment of Chest DiseasesDivision of Immunology and Allergic DiseasesAnkara UniversityAnkaraTurkey
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland
- Christine Kühne‐Center for Allergy Research and Education (CK‐CARE)DavosSwitzerland
| |
Collapse
|
35
|
Increased fecal human beta-defensin-2 expression in preterm infants is associated with allergic disease development in early childhood. World Allergy Organ J 2022; 15:100633. [PMID: 35600835 PMCID: PMC9109190 DOI: 10.1016/j.waojou.2022.100633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 01/23/2022] [Accepted: 02/07/2022] [Indexed: 02/07/2023] Open
Abstract
Background This study aimed to investigate whether fecal human beta-defensins (HBD)-2 and eosinophil cationic protein (ECP) expression in preterm infants are associated with allergic disease development by age 2 years. Methods Preterm infants' stool samples were collected at the age of 6 and 12 months postnatally. Information regarding medication exposure histories (antibiotics, antipyretics, probiotics) and physician-diagnosed allergic diseases was obtained using age-specific questionnaires and medical records. We compared the 6-month and 12-month fecal HBD-2 and ECP concentrations between the medication exposure and non-exposure group, respectively, and between children who developed allergic diseases and those who did not by 2 years of age. Univariate and multivariable logistic regression analyses were performed to investigate independent variables related to physician-diagnosed allergic diseases by 2 years of age. Results Seventy-four preterm infants (gestational age, 31–36 weeks) were included. Fecal HBD-2 levels were significantly increased at 12 months of age among children who developed allergic diseases compared to those who did not (37.18 ± 11.80 ng/g vs. 8.56 ± 4.33 ng/g, P = 0.011). This association was more apparent among allergic children given antibiotics (50.23 ± 16.15 ng/g vs. 9.75 ± 7.16 ng/g, P = 0.008) or antipyretics (46.12 ± 14.22 ng/g vs. 10.82 ± 6.81 ng/g, P = 0.018) during the first year, whereas among allergic children who were previously not exposed to antibiotics or antipyretics, the differences were not significant. Results of the multivariable logistic regression analysis indicated that HBD-2 concentration in 12-month stools was an independent indicator associated with physician-diagnosed allergic diseases by 2 years of age (adjusted odds ratio: 1.03 [95% confidence interval: 1.00–1.05], P = 0.036). Our data revealed a lack of association between fecal ECP and allergic diseases. Conclusions We found that preterm infants who expressed high fecal HBD-2 at 12 months of age were associated with physician-diagnosed allergic diseases by the age of 2 years. Further studies are needed to determine the role of fecal HBD-2 in the development of allergic diseases.
Collapse
|
36
|
Niewiem M, Grzybowska-Chlebowczyk U. Intestinal Barrier Permeability in Allergic Diseases. Nutrients 2022; 14:nu14091893. [PMID: 35565858 PMCID: PMC9101724 DOI: 10.3390/nu14091893] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023] Open
Abstract
The role of intestinal permeability (IP) markers among children and adults with food allergies is not fully understood, and the identification of biological indicators/markers that predict growth retardation in children with allergic diseases and atopy has not been well explained. Studies have shown that patients with atopic diseases respond abnormally to food allergens. Accordingly, differences in the types of immune complexes formed in response to antigen challenges are significant, which seems to underlie the systemic signs of the food allergy. Increased intestinal permeability over the course of a food allergy allows allergens to penetrate through the intestinal barrier and stimulate the submucosal immune system. Additionally, the release of cytokines and inflammatory mediators enhances the degradation of the epithelial barrier and leads to an improper cycle, resulting in increased intestinal permeability. Several studies have also demonstrated increased permeability of the epithelial cells in those afflicted with atopic eczema and bronchial asthma. Ongoing research is aimed at finding various indicators to assess IP in patients with atopic diseases.
Collapse
|
37
|
Fiore G, Di Profio E, Sculati M, Verduci E, Zuccotti GV. Health effects of yogurt consumption during paediatric age: a narrative review. Int J Food Sci Nutr 2022; 73:738-759. [PMID: 35450518 DOI: 10.1080/09637486.2022.2065467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Yogurt is a fermented milk product characterised by a peculiar nutritional composition with live and viable cultures of bacteria. Few studies have analysed the benefits of yogurt consumption on health outcomes during paediatric age. Recent epidemiological studies evaluating the nutritional impact of yogurt have demonstrated its significant contribution to nutrients intakes among children. Thus, consuming yogurt is a strategy to achieve recommended nutrient intake and healthier dietary choices, with potential impact on obesity and cardiometabolic outcome in children. Yogurt's effects on paediatric infectious diseases, gastrointestinal diseases and atopic-related disorders are ascribed to the specific probiotic strain administered. Interestingly, the benefits of yogurt consumption are most likely due to effects mediated through the gut microbiota and the enhancement of innate and adaptive immune responses. Therefore, supplementing standard yogurt cultures with probiotic strains could be useful to promote health at different paediatric ages, although more evidence is needed regarding the strain-related effects and their interplay within the paediatric immune system.
Collapse
Affiliation(s)
- Giulia Fiore
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy.,Department of Health, Animal Science and Food Safety, University of Milan, Milan, Italy
| | - Elisabetta Di Profio
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy.,Department of Health, Animal Science and Food Safety, University of Milan, Milan, Italy
| | - Michele Sculati
- Department of Public Health, Experimental and Forensic Medicine, Master Course in Dietetics and Clinical Nutrition, University of Pavia, Pavia, Italy.,Italian Danone Institute Foundation, Milan, Italy
| | - Elvira Verduci
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy.,Department of Health Sciences, University of Milan, Milan, Italy
| | - Gian Vincenzo Zuccotti
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy.,Department of Health Sciences, University of Milan, Milan, Italy
| |
Collapse
|
38
|
Sakata N, Mantani Y, Nakanishi S, Morishita R, Yokoyama T, Hoshi N. Histological study of diurnal changes in bacterial settlement in the rat alimentary tract. Cell Tissue Res 2022; 389:71-83. [PMID: 35403967 DOI: 10.1007/s00441-022-03626-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 03/30/2022] [Indexed: 11/28/2022]
Abstract
The composition of fecal bacteria is reported to change throughout the day, whereas the circadian rhythmicity of indigenous bacteria that settle on the epithelium is mostly unknown. The present study aimed to clarify the diurnal changes in the settlement of indigenous bacteria in the rat alimentary tract using histological analysis. The settlement of indigenous bacteria on the mucosal epithelium throughout the day and the diurnal changes in settlement levels were observed in the esophagus, the nonglandular area of the stomach, and the ileum. The peak of zeitgeber time (ZT) in the settlement level differed by segment: ZT 12 in the esophagus, ZT 6 in the nonglandular area of the stomach, and ZT 0 in the ileum. Moreover, 16S rRNA amplicon sequencing using tissue sections revealed that the compositions of the indigenous bacteria in the ileum differed among ZT. In the intervillous spaces of the ileum, the formation level of the mucus layer, one of the most fundamental host defenses against bacteria, was lowest at ZT 0. Bacteria were preferentially adjacent to the villous epithelium in the area without coverage by the mucus layer at ZT 0. These findings collectively suggest that the settlement level and possibly the composition of the indigenous bacteria changed diurnally in various segments of the alimentary tract, and the formation of the mucus layer might be the most likely to lead to such diurnal changes in indigenous bacteria, at least in the ileum.
Collapse
Affiliation(s)
- Nanami Sakata
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Youhei Mantani
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.
| | - Satoki Nakanishi
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Rinako Morishita
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Toshifumi Yokoyama
- Laboratory of Animal Molecular Morphology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Nobuhiko Hoshi
- Laboratory of Animal Molecular Morphology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| |
Collapse
|
39
|
Widhiati S, Purnomosari D, Wibawa T, Soebono H. The role of gut microbiome in inflammatory skin disorders: A systematic review. Dermatol Reports 2022; 14:9188. [PMID: 35371420 PMCID: PMC8969879 DOI: 10.4081/dr.2022.9188] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 10/13/2021] [Indexed: 12/13/2022] Open
Abstract
The close relationship between the intestine and the skin has been widely stated, seen from gastrointestinal (GI) disorders often accompanied by skin manifestations. Exactly how the gut microbiome is related to skin inflammation and influences the pathophysiology mechanism of skin disorders are still unclear. Many studies have shown a two-way relationship between gut and skin associated with GI health and skin homeostasis and allostasis. This systematic review aimed to explore the associations between the gut microbiome with inflammatory skin disorders, such as acne, psoriasis, atopic dermatitis, and urticaria, and to discover the advanced concept of this relationship. The literature search was limited to any articles published up to December 2020 using PubMed and EBSCOHost. The review followed the PRISMA guidelines for conducting a systematic review. Of the 319 articles screened based on title and abstract, 111 articles underwent full-text screening. Of these, 23 articles met our inclusion criteria, comprising 13 atopic dermatitis (AD), three psoriasis, four acne vulgaris, and four chronic urticaria articles. Acne vulgaris, atopic dermatitis, psoriasis, and chronic urticaria are inflammation skin disorders that were studied recently to ascertain the relationship of these disorders with dysbiosis of the GI microbiome. All acne vulgaris, psoriasis, and chronic urticaria studies stated the association of gut microbiome with skin manifestations. However, the results in atopic dermatitis are still conflicting. Most of the articles agree that Bifidobacterium plays an essential role as anti-inflammation bacteria, and Proteobacteria and Enterobacteria impact inflammation in inflammatory skin disorders.
Collapse
Affiliation(s)
- Suci Widhiati
- Departments of Dermatology and Venereology, Faculty of Medicine, Universitas Sebelas Maret/RSUD Dr. Moewardi, Surakarta
| | - Dewajani Purnomosari
- Department of Histology and Cell Biology Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta
| | - Tri Wibawa
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta
| | - Hardyanto Soebono
- Department of Dermatology and Venereology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
40
|
Lin TL, Fan YH, Chang YL, Ho HJ, Wu CY, Chen YJ. Early-life infections in association with development of atopic dermatitis in infancy and early childhood: A nationwide nested case-control study. J Eur Acad Dermatol Venereol 2022; 36:615-622. [PMID: 35000246 DOI: 10.1111/jdv.17908] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/07/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Microbial dysbiosis has been implicated in the development of atopic dermatitis (AD). The risk of development of AD following early-life infections remains unclear. OBJECTIVE To investigate the impact of early-life infections on AD development. METHODS This population-based nested case-control study was conducted using the Taiwan's National Health Insurance Research Database. A total of 5,454 AD patients and 16,362 control subjects without AD were identified, for the period 1997 to 2013. Demographic characteristics, comorbidities, and maternal factors were compared. Adjusted odds ratio (aOR) was calculated to examine the associations between early-life infections and subsequent AD by conditional stepwise logistic regression analysis. RESULTS Mean age was 2.6±2.9 years in both groups. Overall infections (41.8% vs 28.9%) before the diagnosis of AD were more common in AD patients than in control subjects (p<.001). Infectious diseases (aOR, 1.40; 95% confidence interval [CI], 1.29-1.51), skin infections (aOR, 1.55; 95% CI, 1.40-1.71) and systemic antibiotic exposure (aOR 1.67, 95% CI 1.55-1.79) before AD diagnosis were independently associated with AD development on multivariate analyses. These results were consistent across observation periods (0-1, 1-2, and >2 years after birth) and sensitivity analyses after redefining the index date as 3 or 6 months before the date of AD diagnosis. Other independent risk factors included asthma, allergic rhinitis, intussusception, and neonatal hyperbilirubinemia. No association with subsequent AD was found for maternal age at delivery, Cesarean delivery, or prenatal antibiotic exposure. CONCLUSION Infections in early life are associated with AD development in infancy and early childhood.
Collapse
Affiliation(s)
- Teng-Li Lin
- Department of Dermatology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yi-Hsuan Fan
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yi-Ling Chang
- Department of Dermatology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Hsiu J Ho
- Institute of Biomedical Informatics, Institute of Public Health, National Yang-Ming University, Taipei, Taiwan
| | - Chun-Ying Wu
- Institute of Biomedical Informatics, Institute of Public Health, National Yang-Ming University, Taipei, Taiwan.,Faculty of Medicine and Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Translational Research and Center of Excellence for Cancer Research, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Public Health, China Medical University, Taichung, Taiwan.,National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Yi-Ju Chen
- Department of Dermatology, Taichung Veterans General Hospital, Taichung, Taiwan.,Faculty of Medicine and Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Translational Medicine, National Chung-Hsing University, Taichung, Taiwan
| |
Collapse
|
41
|
Sakarya E, Sanlier NT, Sanlier N. The relationship between human milk, a functional nutrient, and microbiota. Crit Rev Food Sci Nutr 2021:1-13. [PMID: 34872407 DOI: 10.1080/10408398.2021.2008301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The intestinal microbiota begins to take shape in the mother's womb, changes depending on many factors. It is known that the intestinal microbiota has an important role in the maturation of the immune system, also in the prevention of diseases that occur in newborn, childhood, adulthood. Nutrition is the main factor on the development of microbiota in infants after birth. The microbiota compositions of breastfed infants are different from formula-fed infants. Breast milk oligosaccharides play an important role in the development of infants' microbiota. The higher number of Bifidobacterium species and lower α and β diversity in breastfed infants are considered protective. A dysbiosis occurring in the microbiota can cause adverse effects on health. Human milk oligosaccharides also have protective effects on the microbiota. These protective effects are to promote the growth of intestinal microbiota, prevent the adhesion of viruses to the colon, promote the growth of Bifidobacterium with its prebiotic effect. Short-chain fatty acids resulting from their digestion, also have protective effects. Another component that shapes the gut microbiota is HM glycoproteins. The aim of this study is to examine the effect of breast milk on the development of microbiota, to present the results by scanning the literature.
Collapse
Affiliation(s)
- Elif Sakarya
- Department of Nutrition and Dietetics, Ankara Medipol University, Institute of Health Sciences, Ankara, Turkey
| | - Nazlı Tunca Sanlier
- Department of Obstetrics and Gynecology, Ankara City Hospital, Ankara, Turkey
| | - Nevin Sanlier
- School of Health Sciences, Department of Nutrition and Dietetics, Ankara Medipol University, Ankara, Turkey
| |
Collapse
|
42
|
Jin BY, Li Z, Xia YN, Li LX, Zhao ZX, Li XY, Li Y, Li B, Zhou RC, Fu SC, Li SY, Li YQ. Probiotic Interventions Alleviate Food Allergy Symptoms Correlated With Cesarean Section: A Murine Model. Front Immunol 2021; 12:741371. [PMID: 34650564 PMCID: PMC8505808 DOI: 10.3389/fimmu.2021.741371] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/08/2021] [Indexed: 11/23/2022] Open
Abstract
Delivery by cesarean section (CS) is linked to an increased incidence of food allergies in children and affects early gut microbiota colonization. Furthermore, emerging evidence has connected disordered intestinal microbiota to food allergies. Here, we investigated the impact of CS on a rat model for food allergy to ovalbumin (OVA). Rats delivered by CS were found to be more responsive to OVA sensitization than vaginally born ones, displaying a greater reduction in rectal temperature upon challenge, worse diarrhea, and higher levels of OVA-specific antibodies and histamine. 16S rRNA sequencing of feces revealed reduced levels of Lactobacillus and Bifidobacterium in the CS rats. Preventative supplementation with a probiotic combination containing Lactobacillus and Bifidobacterium could protect CS rats against an allergic response to OVA, indicating that the microbiota dysbiosis contributes to CS-related response. Additionally, probiotic intervention early in life might help to rebuild aberrant Th2 responses and tight junction proteins, both of which have been linked to CS-related high allergic reactions. Taken together, this study shows that disordered intestinal microbiota plays an essential role in the pathogenesis of food allergy mediated by CS. More importantly, interventions that modulate the microbiota composition in early life are therapeutically relevant for CS-related food allergies.
Collapse
Affiliation(s)
- Bi-Ying Jin
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China.,Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, China.,Robot Engineering Laboratory for Precise Diagnosis and Therapy of Gastrointestinal Tumor, Qilu Hospital of Shandong University, Jinan, China
| | - Zhen Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China.,Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, China.,Robot Engineering Laboratory for Precise Diagnosis and Therapy of Gastrointestinal Tumor, Qilu Hospital of Shandong University, Jinan, China
| | - Ya-Nan Xia
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China.,Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, China.,Robot Engineering Laboratory for Precise Diagnosis and Therapy of Gastrointestinal Tumor, Qilu Hospital of Shandong University, Jinan, China
| | - Li-Xiang Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China.,Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, China.,Robot Engineering Laboratory for Precise Diagnosis and Therapy of Gastrointestinal Tumor, Qilu Hospital of Shandong University, Jinan, China
| | - Zi-Xiao Zhao
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China.,Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, China.,Robot Engineering Laboratory for Precise Diagnosis and Therapy of Gastrointestinal Tumor, Qilu Hospital of Shandong University, Jinan, China
| | - Xiao-Yu Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China.,Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, China.,Robot Engineering Laboratory for Precise Diagnosis and Therapy of Gastrointestinal Tumor, Qilu Hospital of Shandong University, Jinan, China
| | - Yan Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China.,Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, China.,Robot Engineering Laboratory for Precise Diagnosis and Therapy of Gastrointestinal Tumor, Qilu Hospital of Shandong University, Jinan, China
| | - Bing Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China.,Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, China.,Robot Engineering Laboratory for Precise Diagnosis and Therapy of Gastrointestinal Tumor, Qilu Hospital of Shandong University, Jinan, China
| | - Ru-Chen Zhou
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China.,Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, China.,Robot Engineering Laboratory for Precise Diagnosis and Therapy of Gastrointestinal Tumor, Qilu Hospital of Shandong University, Jinan, China
| | - Shi-Chen Fu
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China.,Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, China.,Robot Engineering Laboratory for Precise Diagnosis and Therapy of Gastrointestinal Tumor, Qilu Hospital of Shandong University, Jinan, China
| | - Shi-Yang Li
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yan-Qing Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, China.,Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, China.,Robot Engineering Laboratory for Precise Diagnosis and Therapy of Gastrointestinal Tumor, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
43
|
Morawska I, Kurkowska S, Bębnowska D, Hrynkiewicz R, Becht R, Michalski A, Piwowarska-Bilska H, Birkenfeld B, Załuska-Ogryzek K, Grywalska E, Roliński J, Niedźwiedzka-Rystwej P. The Epidemiology and Clinical Presentations of Atopic Diseases in Selective IgA Deficiency. J Clin Med 2021; 10:3809. [PMID: 34501259 PMCID: PMC8432128 DOI: 10.3390/jcm10173809] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
Selective IgA deficiency (sIgAD) is the most common primary immunodeficiency disease (PID), with an estimated occurrence from about 1:3000 to even 1:150, depending on population. sIgAD is diagnosed in adults and children after the 4th year of age, with immunoglobulin A level below 0.07 g/L and normal levels of IgM and IgG. Usually, the disease remains undiagnosed throughout the patient's life, due to its frequent asymptomatic course. If symptomatic, sIgAD is connected to more frequent viral and bacterial infections of upper respiratory, urinary, and gastrointestinal tracts, as well as autoimmune and allergic diseases. Interestingly, it may also be associated with other PIDs, such as IgG subclasses deficiency or specific antibodies deficiency. Rarely sIgAD can evolve to common variable immunodeficiency disease (CVID). It should also be remembered that IgA deficiency may occur in the course of other conditions or result from their treatment. It is hypothesized that allergic diseases (e.g., eczema, rhinitis, asthma) are more common in patients diagnosed with this particular PID. Selective IgA deficiency, although usually mildly symptomatic, can be difficult for clinicians. The aim of the study is to summarize the connection between selective IgA deficiency and atopic diseases.
Collapse
Affiliation(s)
- Izabela Morawska
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, Chodźki 4a St., 20-093 Lublin, Poland; (I.M.); (A.M.); (E.G.); (J.R.)
| | - Sara Kurkowska
- Department of Nuclear Medicine, Pomeranian Medical University, Unii Lubelskiej 1 St., 71-252 Szczecin, Poland; (S.K.); (H.P.-B.); (B.B.)
| | - Dominika Bębnowska
- Institute of Biology, University of Szczecin, Felczaka 3c St., 71-412 Szczecin, Poland; (D.B.); (R.H.)
| | - Rafał Hrynkiewicz
- Institute of Biology, University of Szczecin, Felczaka 3c St., 71-412 Szczecin, Poland; (D.B.); (R.H.)
| | - Rafał Becht
- Clinical Department of Oncology, Chemotherapy and Cancer Immunotherapy, Pomeranian Medical University of Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland;
| | - Adam Michalski
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, Chodźki 4a St., 20-093 Lublin, Poland; (I.M.); (A.M.); (E.G.); (J.R.)
| | - Hanna Piwowarska-Bilska
- Department of Nuclear Medicine, Pomeranian Medical University, Unii Lubelskiej 1 St., 71-252 Szczecin, Poland; (S.K.); (H.P.-B.); (B.B.)
| | - Bożena Birkenfeld
- Department of Nuclear Medicine, Pomeranian Medical University, Unii Lubelskiej 1 St., 71-252 Szczecin, Poland; (S.K.); (H.P.-B.); (B.B.)
| | - Katarzyna Załuska-Ogryzek
- Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8b St., 20-090 Lublin, Poland;
| | - Ewelina Grywalska
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, Chodźki 4a St., 20-093 Lublin, Poland; (I.M.); (A.M.); (E.G.); (J.R.)
| | - Jacek Roliński
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, Chodźki 4a St., 20-093 Lublin, Poland; (I.M.); (A.M.); (E.G.); (J.R.)
| | | |
Collapse
|
44
|
Fang Z, Li L, Zhang H, Zhao J, Lu W, Chen W. Gut Microbiota, Probiotics, and Their Interactions in Prevention and Treatment of Atopic Dermatitis: A Review. Front Immunol 2021; 12:720393. [PMID: 34335634 PMCID: PMC8317022 DOI: 10.3389/fimmu.2021.720393] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 06/28/2021] [Indexed: 12/15/2022] Open
Abstract
Atopic dermatitis (AD) is a public health concern and is increasing in prevalence in urban areas. Recent advances in sequencing technology have demonstrated that the development of AD not only associate with the skin microbiome but gut microbiota. Gut microbiota plays an important role in allergic diseases including AD. The hypothesis of the “gut-skin” axis has been proposed and the cross-talk mechanism between them has been gradually demonstrated in the research. Probiotics contribute to the improvement of the intestinal environment, the balance of immune responses, regulation of metabolic activity. Most studies suggest that probiotic supplements may be an alternative for the prevention and treatment of AD. This study aimed to discuss the effects of probiotics on the clinical manifestation of AD based on gut microbial alterations. Here we reviewed the gut microbial alteration in patients with AD, the association between gut microbiota, epidermal barrier, and toll-like receptors, and the interaction of probiotics and gut microbiota. The potential mechanisms of probiotics on alleviating AD via upregulation of epidermal barrier and regulation of immune signaling had been discussed, and their possible effective substances on AD had been explored. This provides the supports for targeting gut microbiota to attenuate AD.
Collapse
Affiliation(s)
- Zhifeng Fang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Lingzhi Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China.,(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, China.,Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research, Institute Wuxi Branch, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
45
|
Combined prenatal Lactobacillus reuteri and ω-3 supplementation synergistically modulates DNA methylation in neonatal T helper cells. Clin Epigenetics 2021; 13:135. [PMID: 34193262 PMCID: PMC8247185 DOI: 10.1186/s13148-021-01115-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/15/2021] [Indexed: 02/08/2023] Open
Abstract
Background Environmental exposures may alter DNA methylation patterns of T helper cells. As T helper cells are instrumental for allergy development, changes in methylation patterns may constitute a mechanism of action for allergy preventive interventions. While epigenetic effects of separate perinatal probiotic or ω-3 fatty acid supplementation have been studied previously, the combined treatment has not been assessed. We aimed to investigate epigenome-wide DNA methylation patterns from a sub-group of children in an on-going randomised double-blind placebo-controlled allergy prevention trial using pre- and postnatal combined Lactobacillus reuteri and ω-3 fatty acid treatment. To this end, > 866000 CpG sites (MethylationEPIC 850K array) in cord blood CD4+ T cells were examined in samples from all four study arms (double-treatment: n = 18, single treatments: probiotics n = 16, ω-3 n = 15, and double placebo: n = 14). Statistical and bioinformatic analyses identified treatment-associated differentially methylated CpGs and genes, which were used to identify putatively treatment-induced network modules. Pathway analyses inferred biological relevance, and comparisons were made to an independent allergy data set. Results Comparing the active treatments to the double placebo group, most differentially methylated CpGs and genes were hypermethylated, possibly suggesting induction of transcriptional inhibition. The double-treated group showed the largest number of differentially methylated CpGs, of which many were unique, suggesting synergy between interventions. Clusters within the double-treated network module consisted of immune-related pathways, including T cell receptor signalling, and antigen processing and presentation, with similar pathways revealed for the single-treatment modules. CpGs derived from differential methylation and network module analyses were enriched in an independent allergy data set, particularly in the double-treatment group, proposing treatment-induced DNA methylation changes as relevant for allergy development. Conclusion Prenatal L. reuteri and/or ω-3 fatty acid treatment results in hypermethylation and affects immune- and allergy-related pathways in neonatal T helper cells, with potentially synergistic effects between the interventions and relevance for allergic disease. Further studies need to address these findings on a transcriptional level, and whether the results associate to allergy development in the children. Understanding the role of DNA methylation in regulating effects of perinatal probiotic and ω-3 interventions may provide essential knowledge in the development of efficacious allergy preventive strategies. Trial registration ClinicalTrials.gov, ClinicalTrials.gov-ID: NCT01542970. Registered 27th of February 2012—Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT01542970. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01115-4.
Collapse
|
46
|
Casaro MB, Thomas AM, Mendes E, Fukumori C, Ribeiro WR, Oliveira FA, Crisma AR, Murata GM, Bizzarro B, Sá-Nunes A, Setubal JC, Mayer MPA, Martins FS, Vieira AT, Antiorio ATFB, Tavares-de-Lima W, Camara NOS, Curi R, Dias-Neto E, Ferreira CM. A probiotic has differential effects on allergic airway inflammation in A/J and C57BL/6 mice and is correlated with the gut microbiome. MICROBIOME 2021; 9:134. [PMID: 34112246 PMCID: PMC8194189 DOI: 10.1186/s40168-021-01081-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
The phenotypes of allergic airway diseases are influenced by the interplay between host genetics and the gut microbiota, which may be modulated by probiotics. We investigated the probiotic effects on allergic inflammation in A/J and C57BL/6 mice. C57BL/6 mice had increased gut microbiota diversity compared to A/J mice at baseline. Acetate producer probiotics differentially modulated and altered the genus abundance of specific bacteria, such as Akkermansia and Allistipes, in mouse strains. We induced airway inflammation followed by probiotic treatment and found that only A/J mice exhibited decreased inflammation, and the beneficial effects of probiotics in A/J mice were partially due to acetate production. To understand the relevance of microbial composition colonization in the development of allergic diseases, we implanted female C57BL/6 mice with A/J embryos to naturally modulate the microbial composition of A/J mice, which increased gut microbiota diversity and reduced eosinophilic inflammation in A/J. These data demonstrate the central importance of microbiota to allergic phenotype severity. Video Abstract.
Collapse
Affiliation(s)
- Mateus B Casaro
- Department of Pharmaceutics Sciences, Institute of Environmental, Chemistry and Pharmaceutical Sciences, Universidade Federal de São Paulo, R. São Nicolau, 210, Diadema, SP, 09913-03, Brazil
| | - Andrew M Thomas
- Department CIBIO, University of Trento, Trento, Italy
- Medical Genomics Laboratory, CIPE/A.C. Camargo Cancer Center, São Paulo, Brazil
- Department of Biochemistry, Institute of Chemistry, Universidade de São Paulo, São Paulo, Brazil
| | - Eduardo Mendes
- Department of Pharmaceutics Sciences, Institute of Environmental, Chemistry and Pharmaceutical Sciences, Universidade Federal de São Paulo, R. São Nicolau, 210, Diadema, SP, 09913-03, Brazil
| | - Claudio Fukumori
- Department of Pharmaceutics Sciences, Institute of Environmental, Chemistry and Pharmaceutical Sciences, Universidade Federal de São Paulo, R. São Nicolau, 210, Diadema, SP, 09913-03, Brazil
| | - Willian R Ribeiro
- Department of Pharmaceutics Sciences, Institute of Environmental, Chemistry and Pharmaceutical Sciences, Universidade Federal de São Paulo, R. São Nicolau, 210, Diadema, SP, 09913-03, Brazil
| | - Fernando A Oliveira
- Center for Mathematics, Computing and Cognition (CMCC), Federal University of ABC - UFABC, São Bernardo do Campo, SP, Brazil
| | - Amanda R Crisma
- Department of Clinical Analyses, Universidade Federal do Paraná, Curitiba, Brazil
| | - Gilson M Murata
- Department of Medical Clinic, Faculty of Medicine, University of São Paulo, São Paulo, 01246-903, Brazil
| | - Bruna Bizzarro
- Department of Immunology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Anderson Sá-Nunes
- Department of Immunology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Joao C Setubal
- Department of Biochemistry, Institute of Chemistry, Universidade de São Paulo, São Paulo, Brazil
| | - Marcia P A Mayer
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Flaviano S Martins
- Department of Microbiology, Institute of Biological Sciences, Federal Universidade de Minas Gerais, Belo Horizonte, Brazil
| | - Angélica T Vieira
- Department of Biochemistry and Immunology, Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ana T F B Antiorio
- Department of Pathology, School of Veterinary Medicine and Animal Science, Universidade de São Paulo, São Paulo, Brazil
| | - Wothan Tavares-de-Lima
- Department of Pharmacology, Institute of Biomedical Sciences I, Universidade de São Paulo, São Paulo, Brazil
| | - Niels O S Camara
- Department of Immunology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Rui Curi
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - Emmanuel Dias-Neto
- Medical Genomics Laboratory, CIPE/A.C. Camargo Cancer Center, São Paulo, Brazil
- Laboratory of Neurosciences (LIM-27), Institute of Psychiatry, Medical School, Universidade de São Paulo, São Paulo, Brazil
| | - Caroline M Ferreira
- Department of Pharmaceutics Sciences, Institute of Environmental, Chemistry and Pharmaceutical Sciences, Universidade Federal de São Paulo, R. São Nicolau, 210, Diadema, SP, 09913-03, Brazil.
| |
Collapse
|
47
|
Composition and Associations of the Infant Gut Fungal Microbiota with Environmental Factors and Childhood Allergic Outcomes. mBio 2021; 12:e0339620. [PMID: 34060330 PMCID: PMC8263004 DOI: 10.1128/mbio.03396-20] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Although often neglected in gut microbiota studies, recent evidence suggests that imbalanced, or dysbiotic, gut mycobiota (fungal microbiota) communities in infancy coassociate with states of bacterial dysbiosis linked to inflammatory diseases such as asthma. In the present study, we (i) characterized the infant gut mycobiota at 3 months and 1 year of age in 343 infants from the CHILD Cohort Study, (ii) defined associations among gut mycobiota community composition and environmental factors for the development of inhalant allergic sensitization (atopy) at age 5 years, and (iii) built a predictive model for inhalant atopy status at age 5 years using these data. We show that in Canadian infants, fungal communities shift dramatically in composition over the first year of life. Early-life environmental factors known to affect gut bacterial communities were also associated with differences in gut fungal community alpha diversity, beta diversity, and/or the relative abundance of specific fungal taxa. Moreover, these metrics differed among healthy infants and those who developed inhalant allergic sensitization (atopy) by age 5 years. Using a rationally selected set of early-life environmental factors in combination with fungal community composition at 1 year of age, we developed a machine learning logistic regression model that predicted inhalant atopy status at 5 years of age with 81% accuracy. Together, these data suggest an important role for the infant gut mycobiota in early-life immune development and indicate that early-life behavioral or therapeutic interventions have the potential to modify infant gut fungal communities, with implications for an infant's long-term health. IMPORTANCE Recent evidence suggests an immunomodulatory role for commensal fungi (mycobiota) in the gut, yet little is known about the composition and dynamics of early-life gut fungal communities. In this work, we show for the first time that the composition of the gut mycobiota of Canadian infants changes dramatically over the course of the first year of life, is associated with environmental factors such as geographical location, diet, and season of birth, and can be used in conjunction with knowledge of a small number of key early-life factors to predict inhalant atopy status at age 5 years. Our study highlights the importance of considering fungal communities as indicators or inciters of immune dysfunction preceding the onset of allergic disease and can serve as a benchmark for future studies aiming to examine infant gut fungal communities across birth cohorts.
Collapse
|
48
|
Wang S, Egan M, Ryan CA, Boyaval P, Dempsey EM, Ross RP, Stanton C. A good start in life is important-perinatal factors dictate early microbiota development and longer term maturation. FEMS Microbiol Rev 2021; 44:763-781. [PMID: 32821932 PMCID: PMC7685781 DOI: 10.1093/femsre/fuaa030] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 08/18/2020] [Indexed: 12/20/2022] Open
Abstract
Maternal health status is vital for the development of the offspring of humans, including physiological health and psychological functions. The complex and diverse microbial ecosystem residing within humans contributes critically to these intergenerational impacts. Perinatal factors, including maternal nutrition, antibiotic use and maternal stress, alter the maternal gut microbiota during pregnancy, which can be transmitted to the offspring. In addition, gestational age at birth and mode of delivery are indicated frequently to modulate the acquisition and development of gut microbiota in early life. The early-life gut microbiota engages in a range of host biological processes, particularly immunity, cognitive neurodevelopment and metabolism. The perturbed early-life gut microbiota increases the risk for disease in early and later life, highlighting the importance of understanding relationships of perinatal factors with early-life microbial composition and functions. In this review, we present an overview of the crucial perinatal factors and summarise updated knowledge of early-life microbiota, as well as how the perinatal factors shape gut microbiota in short and long terms. We further discuss the clinical consequences of perturbations of early-life gut microbiota and potential therapeutic interventions with probiotics/live biotherapeutics.
Collapse
Affiliation(s)
- Shaopu Wang
- APC Microbiome Ireland, Cork, Ireland, P12 YT20.,Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland, P61 C996
| | - Muireann Egan
- APC Microbiome Ireland, Cork, Ireland, P12 YT20.,Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland, P61 C996
| | - C Anthony Ryan
- APC Microbiome Ireland, Cork, Ireland, P12 YT20.,Department of Paediatrics & Child Health, University College Cork, Cork, Ireland, T12 YN60
| | - Patrick Boyaval
- DuPont Nutrition & Biosciences, Danisco France SAS - DuPont, 22, rue Brunel, F- 75017 Paris, France
| | - Eugene M Dempsey
- APC Microbiome Ireland, Cork, Ireland, P12 YT20.,Department of Paediatrics & Child Health, University College Cork, Cork, Ireland, T12 YN60
| | - R Paul Ross
- APC Microbiome Ireland, Cork, Ireland, P12 YT20
| | - Catherine Stanton
- APC Microbiome Ireland, Cork, Ireland, P12 YT20.,Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland, P61 C996
| |
Collapse
|
49
|
Neurodevelopmental Outcomes and Gut Bifidobacteria in Term Infants Fed an Infant Formula Containing High sn-2 Palmitate: A Cluster Randomized Clinical Trial. Nutrients 2021; 13:nu13020693. [PMID: 33671493 PMCID: PMC7926808 DOI: 10.3390/nu13020693] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 12/12/2022] Open
Abstract
A few studies suggested high stereo-specifically numbered (sn)-2 palmitate in a formula might favor the gut Bifidobacteria of infants. The initial colonization and subsequent development of gut microbiota in early life might be associated with development and later life functions of the central nervous system via the microbiota–gut–brain axis, such as children with autism. This study aims to assess the hypothesized effect of increasing the amount of palmitic acid esterified in the sn-2 position in infant formula on neurodevelopment in healthy full-term infants and to explore the association of this effect with the altered gut Bifidobacteria. One hundred and ninety-nine infants were enrolled in this cluster randomized clinical trial: 66 breast-fed (BF group) and 133 formula-fed infants who were clustered and randomly assigned to receive formula containing high sn-2 palmitate (sn-2 group, n = 66) or low sn-2 palmitate (control group, n = 67), where 46.3% and 10.3% of the palmitic acid (PA) was sn-2-palmitate, respectively. Infants’ neurodevelopmental outcomes were measured by the Ages and Stages Questionnaire, third edition (ASQ-3). Stool samples were collected for the analysis of Bifidobacteria (Trial registration number: ChiCTR1800014479). At week 16, the risk of scoring close to the threshold for fine motor skills (reference: scoring above the typical development threshold) was significantly lower in the sn-2 group than the control group after adjustment for the maternal education level (p = 0.036) but did not differ significantly versus the BF group (p = 0.513). At week 16 and week 24, the sn-2 group (week 16: 15.7% and week 24: 15.6%) had a significantly higher relative abundance of fecal Bifidobacteria than the control group (week 16: 6.6%, p = 0.001 and week 24:11.2%, p = 0.028) and did not differ from the BF group (week 16: 14.4%, p = 0.674 and week 24: 14.9%, p = 0.749). At week 16, a higher relative abundance of Bifidobacteria was associated with the decreased odds of only one domain scoring close to the threshold in the formula-fed infants group (odds ratio (OR), 95% confidence interval (CI): 0.947 (0.901–0.996)). Elevating the sn-2 palmitate level in the formula improved infants’ development of fine motor skills, and the beneficial effects of high sn-2 palmitate on infant neurodevelopment was associated with the increased gut Bifidobacteria level.
Collapse
|
50
|
Swann JR, Rajilic-Stojanovic M, Salonen A, Sakwinska O, Gill C, Meynier A, Fança-Berthon P, Schelkle B, Segata N, Shortt C, Tuohy K, Hasselwander O. Considerations for the design and conduct of human gut microbiota intervention studies relating to foods. Eur J Nutr 2020; 59:3347-3368. [PMID: 32246263 PMCID: PMC7669793 DOI: 10.1007/s00394-020-02232-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/18/2020] [Indexed: 12/15/2022]
Abstract
With the growing appreciation for the influence of the intestinal microbiota on human health, there is increasing motivation to design and refine interventions to promote favorable shifts in the microbiota and their interactions with the host. Technological advances have improved our understanding and ability to measure this indigenous population and the impact of such interventions. However, the rapid growth and evolution of the field, as well as the diversity of methods used, parameters measured and populations studied, make it difficult to interpret the significance of the findings and translate their outcomes to the wider population. This can prevent comparisons across studies and hinder the drawing of appropriate conclusions. This review outlines considerations to facilitate the design, implementation and interpretation of human gut microbiota intervention studies relating to foods based upon our current understanding of the intestinal microbiota, its functionality and interactions with the human host. This includes parameters associated with study design, eligibility criteria, statistical considerations, characterization of products and the measurement of compliance. Methodologies and markers to assess compositional and functional changes in the microbiota, following interventions are discussed in addition to approaches to assess changes in microbiota-host interactions and host responses. Last, EU legislative aspects in relation to foods and health claims are presented. While it is appreciated that the field of gastrointestinal microbiology is rapidly evolving, such guidance will assist in the design and interpretation of human gut microbiota interventional studies relating to foods.
Collapse
Affiliation(s)
- J. R. Swann
- Division of Integrative Systems Medicine and Digestive Diseases, Imperial College London, London, UK
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - M. Rajilic-Stojanovic
- Department for Biochemical Engineering and Biotechnology, Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - A. Salonen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - O. Sakwinska
- Société Des Produits Nestlé S.A, Nestlé Research, Lausanne, Switzerland
| | - C. Gill
- Nutrition Innovation Centre for Food and Health, Centre for Molecular Biosciences, Ulster University, Londonderry, Northern Ireland, UK
| | | | | | | | - N. Segata
- Department CIBIO, University of Trento, Trento, Italy
| | - C. Shortt
- Johnson & Johnson Consumer Services EAME Ltd., Foundation Park, Maidenhead, UK
| | - K. Tuohy
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, Trento, Italy
| | - O. Hasselwander
- DuPont Nutrition and Biosciences, c/o Danisco (UK) Limited, Reigate, UK
| |
Collapse
|