1
|
Zhang Q, Yu J, You Q, Wang L. Modulating Phosphorylation by Proximity-Inducing Modalities for Cancer Therapy. J Med Chem 2024; 67:21695-21716. [PMID: 39648992 DOI: 10.1021/acs.jmedchem.4c02624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Abnormal phosphorylation of proteins can lead to various diseases, particularly cancer. Therefore, the development of small molecules for precise regulation of protein phosphorylation holds great potential for drug design. While the traditional kinase/phosphatase small-molecule modulators have shown some success, achieving precise phosphorylation regulation has proven to be challenging. The emergence of heterobifunctional molecules, such as phosphorylation-inducing chimeric small molecules (PHICSs) and phosphatase recruiting chimeras (PHORCs), with proximity-inducing modalities is expected to lead to a breakthrough by specifically recruiting kinase or phosphatase to the protein of interest. Herein, we summarize the drug targets with aberrant phosphorylation in cancer and underscore the potential of correcting phosphorylation in cancer therapy. Through reported cases of heterobifunctional molecules targeting phosphorylation regulation, we highlight the current design strategies and features of these molecules. We also provide a systematic elaboration of the link between aberrantly phosphorylated targets and cancer as well as the existing challenges and future research directions for developing heterobifunctional molecular drugs for phosphorylation regulation.
Collapse
Affiliation(s)
- Qiuyue Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jia Yu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
2
|
Ramezani F, Takhshid MA, Abuei H, Farhadi A, Mosleh-Shirazi MA, Ramezani P. Combined Effects of Annexin A5 Overexpression, 5-Fluorouracil Treatment, and Irradiation on Cell Viability of Caski Cervical Cancer Cell Line. Reprod Sci 2024; 31:2654-2666. [PMID: 38811453 DOI: 10.1007/s43032-024-01575-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/22/2024] [Indexed: 05/31/2024]
Abstract
Cervical cancer is the fourth leading cause of cancer deaths in women globally. Combining gene therapy with chemo- and radiotherapy may improve cervical cancer treatment outcomes. This study evaluated the effects of Annexin A5(ANXA5) overexpression alongside 5-fluorouracil (5-FU) and irradiation on the viability of CaSki cervical squamous cell carcinoma (SCC) cells. pAdenoVator-CMV-ANXA5-IRES-GFP-plasmid and mock plasmid were transfected into CaSki cells using calcium-phosphate. Seventy-two hours post-transfection, GFP expression was quantified by fluorescence microscopy and flow cytometry to evaluate transfection efficiency. ANXA5 overexpression was confirmed via qPCR. Twenty-four hours post-transfection, cells received a single dose of 8 Gy and were treated with 1 and 2 µg/ml of 5-FU (IC50 = 2.783 µg/ml). Cell viability, apoptosis, cell cycle stage, and Bcl-2 and Bax gene expression were assessed via MTT, annexin V/7-AAD, PI staining, and qPCR assays, respectively. ANXA5 was overexpressed 31.5-fold compared to control (p < 0.0001). MTT assays showed ANXA5 overexpression dose-dependently reduced CaSki cell viability (p < 0.001). IC50 of 5-FU was reduced from 2.783 μg/mL to 1.794 μg/mL when combined with ANXA5 overexpression. Additive effects on cell death were observed for ANXA5 plus 5-FU or irradiation versus ANXA5 alone. Apoptosis assays indicated combinatorial treatment increased CaSki cell apoptosis over ANXA5 alone. Cell cycle analysis revealed ANXA5 arrested cell cycle at G1/S phases; the percentage of cells in the S phase further rose with combination treatment. Finally, combination therapy significantly decreased Bcl-2 expression and increased Bax versus control (p < 0.001). Altogether, ANXA5 overexpression alongside 5-FU and irradiation may improve cervical squamous cell carcinoma (SCC) treatment efficacy. Further, in vivo investigations are warranted to confirm these in vitro results.
Collapse
Affiliation(s)
- Faezeh Ramezani
- Division of Medical Biotechnology, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Ali Takhshid
- Division of Medical Biotechnology, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
- School of Paramedical Sciences, Diagnostic Laboratory Sciences and Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Haniyeh Abuei
- Division of Medical Biotechnology, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Farhadi
- Division of Medical Biotechnology, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- School of Paramedical Sciences, Diagnostic Laboratory Sciences and Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Amin Mosleh-Shirazi
- Ionizing and Non-Ionizing Radiation Protection Research Center (INIRPRC), School of Paramedical Sciences, Shiraz University of Medical Sciences, Meshkinfam St, Shiraz, Iran
- Physics Unit, Department of Radio-Oncology, School of Medicine, Shiraz University of Medical Sciences, Namazi Teaching Hospital, Namazi Square, Shiraz, Iran
| | - Pouya Ramezani
- Division of Medical Biotechnology, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Menadi S, Kucuk B, Cacan E. Promoter Hypomethylation Upregulates ANXA2 Expression in Pancreatic Cancer and is Associated with Poor Prognosis. Biochem Genet 2024; 62:2721-2742. [PMID: 38001391 DOI: 10.1007/s10528-023-10577-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 10/26/2023] [Indexed: 11/26/2023]
Abstract
Pancreatic cancer (PC) is one of the world's most aggressive and deadly cancers, owing to non-specific early clinical symptoms, late-stage diagnosis, and poor survival. Therefore, it is critical to identify specific biomarkers for its early diagnosis. Annexin A2 (ANXA2) is a calcium-dependent phospholipid-binding protein that has been reported to be upregulated in several cancer types, making it an emerging biomarker and potential cancer therapeutic target. However, the mechanism underlying the regulation of ANXA2 overexpression is still unclear. It is well established that genetic and epigenetic alterations may lead to widespread dysregulation of gene expression. Hence, in this study, we focused on exploring the regulatory mechanism of ANXA2 by investigating the transcriptional profile, methylation pattern, somatic mutation, and prognostic value of ANXA2 in PC using several bioinformatics databases. Our results revealed that the expression levels of ANXA2 were remarkably increased in PC tissues comparing to normal tissues. Furthermore, the high expression of ANXA2 was significantly related to the poor prognosis of PC patients. More importantly, we demonstrated for the first time that the ANXA2 promoter is hypomethylated in PC tissues compared to normal tissues which may result in ANXA2 overexpression in PC. However, more experimental research is required to corroborate our findings.
Collapse
Affiliation(s)
- Soumaya Menadi
- Department of Molecular Biology and Genetics, Tokat Gaziosmanpasa University, 60250, Tokat, Turkey
| | - Burak Kucuk
- Department of Molecular Biology and Genetics, Tokat Gaziosmanpasa University, 60250, Tokat, Turkey
| | - Ercan Cacan
- Department of Molecular Biology and Genetics, Tokat Gaziosmanpasa University, 60250, Tokat, Turkey.
| |
Collapse
|
4
|
Jiang H, Tian M. Cancer. TRANSPATHOLOGY 2024:297-305. [DOI: 10.1016/b978-0-323-95223-1.00009-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Lagal DJ, López-Grueso MJ, Pedrajas JR, Leto TL, Bárcena JA, Requejo-Aguilar R, Padilla CA. Loss of PRDX6 Aborts Proliferative and Migratory Signaling in Hepatocarcinoma Cell Lines. Antioxidants (Basel) 2023; 12:1153. [PMID: 37371884 DOI: 10.3390/antiox12061153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Peroxiredoxin 6 (PRDX6), the only mammalian 1-Cys member of the peroxiredoxin family, has peroxidase, phospholipase A2 (PLA2), and lysophosphatidylcholine (LPC) acyltransferase (LPCAT) activities. It has been associated with tumor progression and cancer metastasis, but the mechanisms involved are not clear. We constructed an SNU475 hepatocarcinoma cell line knockout for PRDX6 to study the processes of migration and invasiveness in these mesenchymal cells. They showed lipid peroxidation but inhibition of the NRF2 transcriptional regulator, mitochondrial dysfunction, metabolic reprogramming, an altered cytoskeleton, down-regulation of PCNA, and a diminished growth rate. LPC regulatory action was inhibited, indicating that loss of both the peroxidase and PLA2 activities of PRDX6 are involved. Upstream regulators MYC, ATF4, HNF4A, and HNF4G were activated. Despite AKT activation and GSK3β inhibition, the prosurvival pathway and the SNAI1-induced EMT program were aborted in the absence of PRDX6, as indicated by diminished migration and invasiveness, down-regulation of bottom-line markers of the EMT program, MMP2, cytoskeletal proteins, and triggering of the "cadherin switch". These changes point to a role for PRDX6 in tumor development and metastasis, so it can be considered a candidate for antitumoral therapies.
Collapse
Affiliation(s)
- Daniel J Lagal
- Department Biochemistry and Molecular Biology, University of Córdoba, 14071 Córdoba, Spain
| | - María J López-Grueso
- Department Biochemistry and Molecular Biology, University of Córdoba, 14071 Córdoba, Spain
| | - José R Pedrajas
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Institute of Research in Olive Groves and Olive Oils, University of Jaén, 23071 Jaén, Spain
| | - Thomas L Leto
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20892, USA
| | - J Antonio Bárcena
- Department Biochemistry and Molecular Biology, University of Córdoba, 14071 Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14004 Córdoba, Spain
| | - Raquel Requejo-Aguilar
- Department Biochemistry and Molecular Biology, University of Córdoba, 14071 Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14004 Córdoba, Spain
| | - C Alicia Padilla
- Department Biochemistry and Molecular Biology, University of Córdoba, 14071 Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14004 Córdoba, Spain
| |
Collapse
|
6
|
Kumarasamy G, Ismail MN, Tuan Sharif SE, Desire C, Mittal P, Hoffmann P, Kaur G. Protein Profiling in Human Papillomavirus-Associated Cervical Carcinogenesis: Cornulin as a Biomarker for Disease Progression. Curr Issues Mol Biol 2023; 45:3603-3627. [PMID: 37185759 PMCID: PMC10137006 DOI: 10.3390/cimb45040235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 05/17/2023] Open
Abstract
Nearly 90% of cervical cancers are linked to human papillomavirus (HPV). Uncovering the protein signatures in each histological phase of cervical oncogenesis provides a path to biomarker discovery. The proteomes extracted from formalin-fixed paraffin-embedded tissues of the normal cervix, HPV16/18-associated squamous intraepithelial lesion (SIL), and squamous cell carcinoma (SCC) were compared using liquid chromatography-mass spectrometry (LC-MS). A total of 3597 proteins were identified, with 589, 550, and 1570 proteins unique to the normal cervix, SIL, and SCC groups, respectively, while 332 proteins overlapped between the three groups. In the transition from normal cervix to SIL, all 39 differentially expressed proteins were downregulated, while all 51 proteins discovered were upregulated in SIL to SCC. The binding process was the top molecular function, while chromatin silencing in the SIL vs. normal group, and nucleosome assembly in SCC vs. SIL groups was the top biological process. The PI3 kinase pathway appears crucial in initiating neoplastic transformation, while viral carcinogenesis and necroptosis are important for cell proliferation, migration, and metastasis in cervical cancer development. Annexin A2 and cornulin were selected for validation based on LC-MS results. The former was downregulated in the SIL vs. normal cervix and upregulated in the progression from SIL to SCC. In contrast, cornulin exhibited the highest expression in the normal cervix and lowest in SCC. Although other proteins, such as histones, collagen, and vimentin, were differentially expressed, their ubiquitous expression in most cells precluded further analysis. Immunohistochemical analysis of tissue microarrays found no significant difference in Annexin A2 expression between the groups. Conversely, cornulin exhibited the strongest expression in the normal cervix and lowest in SCC, supporting its role as a tumor suppressor and potential biomarker for disease progression.
Collapse
Affiliation(s)
- Gaayathri Kumarasamy
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden 11800, Pulau Pinang, Malaysia
| | - Mohd Nazri Ismail
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden 11800, Pulau Pinang, Malaysia
- Analytical Biochemistry Research Centre (ABrC), Universiti Sains Malaysia, Bayan Lepas 11900, Pulau Pinang, Malaysia
| | - Sharifah Emilia Tuan Sharif
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Christopher Desire
- Clinical Health Sciences, University of South Australia, City West Campus, Adelaide, SA 5000, Australia
| | - Parul Mittal
- Clinical Health Sciences, University of South Australia, City West Campus, Adelaide, SA 5000, Australia
| | - Peter Hoffmann
- Clinical Health Sciences, University of South Australia, City West Campus, Adelaide, SA 5000, Australia
| | - Gurjeet Kaur
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden 11800, Pulau Pinang, Malaysia
| |
Collapse
|
7
|
Asgari R, Vaisi-Raygani A, Aleagha MSE, Mohammadi P, Bakhtiari M, Arghiani N. CD147 and MMPs as key factors in physiological and pathological processes. Biomed Pharmacother 2023; 157:113983. [PMID: 36370522 DOI: 10.1016/j.biopha.2022.113983] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
Cluster of differentiation 147 (CD147) or extracellular matrix metalloproteinase inducer (EMMPRIN) is a transmembrane glycoprotein that induces the synthesis of matrix metalloproteinases (MMPs). MMPs, as zinc-dependent proteases and versatile enzymes, play critical roles in the degradation of the extracellular matrix (ECM) components, cleaving of the receptors of cellular surfaces, signaling molecules, and other precursor proteins, which may lead to attenuation or activation of such targets. CD147 and MMPs play essential roles in physiological and pathological conditions and any disorder in the expression, synthesis, or function of CD147 and MMPs may be associated with various types of disease. In this review, we have focused on the roles of CD147 and MMPs in some major physiological and pathological processes.
Collapse
Affiliation(s)
- Rezvan Asgari
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Asad Vaisi-Raygani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Sajad Emami Aleagha
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pantea Mohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mitra Bakhtiari
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Nahid Arghiani
- Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden; School of Life Science, Department of Biochemistry and Biomedicine, University of Sussex, Brighton, United Kingdom.
| |
Collapse
|
8
|
Huang D, Rao D, Jin Q, Lai M, Zhang J, Lai Z, Shen H, Zhong T. Role of CD147 in the development and diagnosis of hepatocellular carcinoma. Front Immunol 2023; 14:1149931. [PMID: 37090718 PMCID: PMC10115957 DOI: 10.3389/fimmu.2023.1149931] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/28/2023] [Indexed: 04/25/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer, and the third leading cause of cancer-related deaths worldwide. HCC is characterized by insidious onset, and most patients are diagnosed at an advanced stage with a poor prognosis. Identification of biomarkers for HCC onset and progression is imperative to development of effective diagnostic and therapeutic strategies. CD147 is a glycoprotein that is involved in tumor cell invasion, metastasis and angiogenesis through multiple mechanisms. In this review, we describe the molecular structure of CD147 and its role in regulating HCC invasion, metastasis and angiogenesis. We highlight its potential as a diagnostic and therapeutic target for HCC.
Collapse
Affiliation(s)
- Defa Huang
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Dingyu Rao
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Qing Jin
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Mi Lai
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jiali Zhang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| | - Zhonghong Lai
- Department of traumatology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Haibin Shen
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Haibin Shen, ; Tianyu Zhong,
| | - Tianyu Zhong
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Precision Medicine Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Haibin Shen, ; Tianyu Zhong,
| |
Collapse
|
9
|
Abdelraouf EM, Hussein RRS, Shaaban AH, El-Sherief HAM, Embaby AS, Abd El-Aleem SA. Annexin A2 (AnxA2) association with the clinicopathological data in different breast cancer subtypes: A possible role for AnxA2 in tumor heterogeneity and cancer progression. Life Sci 2022; 308:120967. [PMID: 36116530 DOI: 10.1016/j.lfs.2022.120967] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Breast cancer is a highly heterogeneous type of neoplasia with molecular and biochemical alterations in the ductal epithelium. AnxA2 has a diverse functions and through intracellular interaction with other molecules promotes carcinogenesis. AIMS To study the possible involvement of AnxA2 in breast cancer heterogeneity and cancer progression. PATIENTS AND METHODS Tumor tissue and serum were obtained from different breast cancer subtypes. Tumor tissues were processed for histopathological studies. AnxA2 levels were assessed in the tissues by H scoring and in the serum by ELISA. AnxA2 levels were correlated with HER2 and Ki67 and with clinicopathological data. Normal breast tissues and serum from healthy subjects were used as controls. RESULTS AnxA2 showed a peculiar distribution in tumor tissues and nearby interstitial tissues. Pattern of expressions varied in different subtypes with the highest expression in triple negative subtype. Tissue and serum AnxA2 showed significant co-upregulations in breast cancer. Moreover, they showed positive correlations with HER2 and Ki67 and associations with clinicopathological data including cancer staging and lymph node metastasis. CONCLUSION For the best of our knowledge this is the first study showing correlation between AnxA2, the proposed prognostic marker and the well-established tumor markers; HER2 and Ki67. AnxA2 might contribute to breast cancer heterogeneity and is associated with poor prognosis. AnxA2 might be a prognostic marker and an additional marker for breast cancer grading and clinical staging. Interestingly, tissue and serum AnxA2 showed a strong correlation. Thus, assessing serum AnxA2 can be a noninvasive prognostic tool.
Collapse
Affiliation(s)
| | - Raghda R S Hussein
- Clinical Pharmacy, Faculty of Pharmacy, Beni-Suef University, Egypt; Department of Clinical Pharmacy, Faculty of Pharmacy, October 6 University, 6 October City, Giza, Egypt
| | - Ahmed Hassan Shaaban
- Department of clinical Oncology, Faculty of Medicine, Beni-Suef University, Egypt
| | - Hany A M El-Sherief
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, Egypt
| | - Azza S Embaby
- Department of Histology, Faculty of Medicine, Beni-Suef University, Egypt
| | - Seham A Abd El-Aleem
- Department of Cell Biology and Histology, Faculty of Medicine, Minia University, Egypt.
| |
Collapse
|
10
|
Zheng J, Chen G, Li T, He X, Luo Y, Yang K. Isoflurane Promotes Cell Proliferation, Invasion, and Migration by Regulating BACH1 and miR-375 in Prostate Cancer Cells In Vitro. Int J Toxicol 2022; 41:212-224. [PMID: 35532539 DOI: 10.1177/10915818221084906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of this study was to investigate the mechanism of isoflurane in proliferation, invasion, and migration in prostate cancer (PC) cells in vitro by regulating BACH1 and miR-375. The effect of different concentrations of isoflurane (0%, 0.5%, 1%, and 2%) on PC cell proliferation (PC3 and 22RV1) was measured. After PC cells and normal human prostate stromal immortalized WPMY-1 cells were treated with isoflurane, BACH1 and miR-375 expression was measured. Subsequently, PC3 and 22RV1 cells underwent gain- and loss-of-function assays with or without 4-h 2% isoflurane pretreatment. The levels of miR-375, BACH1, and PTEN were assessed. The binding of BACH1 to miR-375 promoter was detected by ChIP assay. Dual-luciferase reporter assay detected the targeting relationship of miR-375 with BACH1 and PTEN. Isoflurane promoted PC3 and 22RV1 cell proliferation. In addition, isoflurane elevated the levels of BACH1 and miR-375 in a dosage-dependent manner in PC cells. Transfection with miR-375 inhibitor or sh-BACH1 repressed PC cell proliferation, invasion, and migration, while exposure to 2% isoflurane for 4 h before transfection counteracted the inhibitory effects of sh-BACH1 or miR-375 inhibitor on PC cells. PTEN expression was suppressed after 2% isoflurane treatment, but the transfection with miR-375 inhibitor partly abrogated this suppressive effect in PC cells. Moreover, BACH1 bound to miR-375 and miR-375 negatively targeted PTEN. miR-375 mimic could partially reverse the inhibitory effects of sh-BACH1 on the proliferation, invasion, and migration of isoflurane-treated PC cells. Isoflurane facilitated PC cell proliferation, migration, and invasion by activating BACH1 to upregulate miR-375.
Collapse
Affiliation(s)
- Jue Zheng
- Department of Urology, 87803Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, P.R. China
| | - Guiheng Chen
- Department of Urology, 87803Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, P.R. China
| | - Tieqiu Li
- Department of Urology, 87803Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, P.R. China
| | - Xiang He
- Department of Urology, 87803Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, P.R. China
| | - Yuanman Luo
- Department of Urology, 87803Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, P.R. China
| | - Ke Yang
- Department of Urology, 87803Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, P.R. China
| |
Collapse
|
11
|
Recombinantly expressed MeICT, a new toxin from Mesobuthus eupeus scorpion, inhibits glioma cell proliferation and downregulates Annexin A2 and FOXM1 genes. Biotechnol Lett 2022; 44:703-712. [PMID: 35524923 DOI: 10.1007/s10529-022-03254-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 04/12/2022] [Indexed: 11/02/2022]
Abstract
Gliomas are highly invasive and lethal malignancy that do not respond to current therapeutic approaches. Novel therapeutic agents are required to target molecular mechanisms involved in glioma progression. MeICT is a new short-chain toxin isolated from Mesobuthus eupeus scorpion venom. This toxin contained 34 amino acid residues and belongs to chloride channels toxins. In this study, the coding sequence of MeICT was cloned into the pET32Rh vector and a high yield of soluble recombinant MeICT was expressed and purified. Recombinant MeICT-His significantly inhibited the proliferation and migration of glioma cells at low concentration. In vivo studies showed that MeICT was not toxic when administrated to mice at high doses. We also determined the effect of MeICT on the mRNA expression of MMP-2, Annexin A2 and FOXM-2 that are key molecules in the progression and invasion of glioma. Expression of Annexin A2 and FOXM1 mRNA was significantly down-regulated following treatment with MeICT. However, no significant decrease in the expression of MMP-2 gene was identified. In this study a short toxin with four disulfide bonds was successfully produced and its anti-cancer effects was detected. Our findings suggest that recombinant MeICT can be considered as a new potent agent for glioma targeting.
Collapse
|
12
|
Al‐Qahtani SM, Gadalla SE, Guo M, Ericsson C, Hägerstrand D, Nistér M. The association between Annexin A2 and epithelial cell adhesion molecule in breast cancer cells. Cancer Rep (Hoboken) 2022; 5:e1498. [PMID: 34240826 PMCID: PMC9124509 DOI: 10.1002/cnr2.1498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/05/2021] [Accepted: 06/14/2021] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND The epithelial cell adhesion molecule (EpCAM) is a type I transmembrane and glycosylated protein, which is overexpressed in many neoplasms. However, EpCAM has no known ligand partners and the mechanisms by which it functions are not fully understood. AIM This study was performed to discover novel partners of EpCAM, which may provide a better understanding of its functions. METHODS The membrane fraction of the ERα+ noninvasive breast cancer cell line ZR-75-1 and MCF-7 was extracted and followed by co-immunoprecipitation of EpCAM using C-10, a mouse monoclonal antibody raised against amino acids 24-93 of the EpCAM molecule. As a negative control, MDA-MB-231 and Hs578T were used since they express a negligible amount of EpCAM and are known as EpCAM-/low ERα-/low invasive and tumorigenic breast cancer cell lines. RESULTS Annexin A2 (ANXA2) was found to be selectively and differentially co-immunoprecipitated with EpCAM in the ERα+ breast cancer cells MCF-7 and ZR-75-1. ANXA2 is a multifunctional protein and known to act as a co-receptor for tissue plasminogen activator (tPA) on the surface of endothelial and cancer cells, thereby affecting fibrinolytic activity and neoangiogenesis as well as invasive and metastatic properties. In this study, the association between EpCAM and ANXA2 was found to affect the activity of tPA. CONCLUSION This study concludes that ANXA2 co-localizes with EpCAM at the plasma membrane, and the co-localization may have functional implications. Data suggest that EpCAM supports ANXA2 to function as a co-receptor for the tPA, and that EpCAM has a regulatory function on the expression and subcellular localization of ANXA2.
Collapse
Affiliation(s)
- Saad Misfer Al‐Qahtani
- Department of Oncology‐PathologyKarolinska InstitutetStockholmSweden
- Department of Pathology, College of Medicine and Najran University HospitalNajran UniversityNajranSaudi Arabia
| | | | - Min Guo
- Department of Oncology‐PathologyKarolinska InstitutetStockholmSweden
| | | | | | - Monica Nistér
- Department of Oncology‐PathologyKarolinska InstitutetStockholmSweden
| |
Collapse
|
13
|
Wang Z, Jiang C, Pang L, Jia W, Wang C, Gao X, Zhang X, Dang H, Ren Y. ANXA2 is a potential marker for the diagnosis of human cervical cancer. Biomark Med 2021; 15:57-67. [PMID: 33315468 DOI: 10.2217/bmm-2020-0629] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/13/2020] [Indexed: 01/26/2023] Open
Abstract
Aim: The aim is to study ANXA2 biomarkers for early diagnosis of cervical cancer. Materials & methods: The study used bioinformatics analysis and experimental verification of ANXA2 expression in cervical cancer. Results:ANXA2 expression was higher in cancer tissues than in non-cancer tissues (p = 0.002). ANXA2 was expressed in cell membranes of non-cancer tissues, whereas in cancer tissues it was expressed in both the cell membranes and the cytoplasm. Moreover, ANXA2 expression was more pronounced in squamous cell carcinomas. ANXA2 expression decreased overall survival of patients, and the data suggested that protein expression was associated with invasion and migration of tumors. Conclusion:ANXA2 has high specificity and sensitivity as a detection marker for cervical cancer and can assist in the diagnosis of cervical cancer.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Pathology & Key Laboratory for Xinjiang Endemic & Ethnic Diseases (Ministry of Education) /Department of Pathology, the First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang, 832000, China
| | - Chenhao Jiang
- Department of Pathology & Key Laboratory for Xinjiang Endemic & Ethnic Diseases (Ministry of Education) /Department of Pathology, the First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang, 832000, China
| | - Lijuan Pang
- Department of Pathology & Key Laboratory for Xinjiang Endemic & Ethnic Diseases (Ministry of Education) /Department of Pathology, the First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang, 832000, China
| | - Wei Jia
- Department of Pathology & Key Laboratory for Xinjiang Endemic & Ethnic Diseases (Ministry of Education) /Department of Pathology, the First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang, 832000, China
| | - Chengyan Wang
- Department of Pathology & Key Laboratory for Xinjiang Endemic & Ethnic Diseases (Ministry of Education) /Department of Pathology, the First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang, 832000, China
| | - Xiangting Gao
- Department of Pathology & Key Laboratory for Xinjiang Endemic & Ethnic Diseases (Ministry of Education) /Department of Pathology, the First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang, 832000, China
| | - Xuxuan Zhang
- Department of Pathology & Key Laboratory for Xinjiang Endemic & Ethnic Diseases (Ministry of Education) /Department of Pathology, the First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang, 832000, China
| | - Hongwei Dang
- Department of Obstetrics & Gynecology, the First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang, 832000, China
| | - Yan Ren
- Department of Pathology & Key Laboratory for Xinjiang Endemic & Ethnic Diseases (Ministry of Education) /Department of Pathology, the First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang, 832000, China
| |
Collapse
|
14
|
Qin YY, Huang SN, Chen G, Pang YY, Li XJ, Xing WW, Wei DM, He Y, Rong MH, Tang XZ. Clinicopathological value and underlying molecular mechanism of annexin A2 in 992 cases of thyroid carcinoma. Comput Biol Chem 2020; 86:107258. [PMID: 32304977 DOI: 10.1016/j.compbiolchem.2020.107258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/30/2019] [Accepted: 03/23/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Thyroid carcinoma (THCA) is one of the most frequent endocrine cancers and has increasing morbidity. Annexin A2 (ANXA2) has been found to be highly expressed in various cancers; however, its expression level and potential mechanism in THCA remain unknown. This study investigated the clinicopathological value and primary molecular machinery of ANXA2 in THCA. MATERIAL AND METHODS Public RNA-sequencing and microarray data were obtained and analyzed with ANXA2 expression in THCA and corresponding non-cancerous thyroid tissue. A Pearson correlation coefficient calculation was used for the acquisition of ANXA2 coexpressed genes, while edgR, limma, and Robust Rank Aggregation were employed for differentially expressed gene (DEG) in THCA. The probable mechanism of ANXA2 in THCA was predicted by gene ontology and pathway enrichment. A dual-luciferase reporter assay was employed to confirm the targeting relationships between ANXA2 and its predicted microRNA (miRNA). RESULTS Expression of ANXA2 was significantly upregulated in THCA tissues with a summarized standardized mean difference of 1.09 (P < 0.0001) based on 992 THCA cases and 589 cases of normal thyroid tissue. Expression of ANXA2 was related to pathologic stage. Subsequently, 1442 genes were obtained when overlapping 4542 ANXA2 coexpressed genes with 2248 DEGs in THCA; these genes were mostly enriched in pathways of extracellular matrix-receptor interaction, cell adhesion molecules, and complement and coagulation cascades. MiR-23b-3p was confirmed to target ANXA2 by dual-luciferase reporter assay. CONCLUSIONS Upregulated expression of ANXA2 may promote the malignant biological behavior of THCA by affecting the involving pathways or being targeted by miR-23b-3p.
Collapse
Affiliation(s)
- Yong-Ying Qin
- Department of Head and Neck Tumor Surgery, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Su-Ning Huang
- Department of Radiotherapy, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Yu-Yan Pang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Xiao-Jiao Li
- Department of PET/CT, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Wen-Wen Xing
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Dan-Ming Wei
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Yun He
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Min-Hua Rong
- Department of Research, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, Guangxi Zhuang Autonomous Region, PR China.
| | - Xiao-Zhun Tang
- Department of Head and Neck Tumor Surgery, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, Guangxi Zhuang Autonomous Region, PR China.
| |
Collapse
|
15
|
Enhanced glucose metabolism mediated by CD147 contributes to immunosuppression in hepatocellular carcinoma. Cancer Immunol Immunother 2020; 69:535-548. [PMID: 31965268 DOI: 10.1007/s00262-019-02457-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 12/18/2019] [Indexed: 12/17/2022]
Abstract
From a metabolic perspective, cancer may be considered as a metabolic disease characterized by reprogrammed glycolytic metabolism. The aim of the present study was to investigate CD147-mediated glucose metabolic regulation in hepatocellular carcinoma (HCC) and its contribution to altered immune responses in the tumor microenvironment. Several HCC cell lines and corresponding nude mice xenografts models differing in CD147 expressions were established to directly investigate the role of CD147 in the reprogramming of glucose metabolism, and to determine the underlying molecular mechanisms. Immunohistochemistry (IHC) analyses and flow cytometry were used to identify the relationship between reprogrammed glycolysis and immunosuppression in HCC. Upregulated CD147 expressions were found to be associated with enhanced expressions of GLUT1, MCT1 in HCC tumorous tissues. CD147 promoted the glycolytic metabolism in HCC cell lines in vitro via the PI3K/Akt/mTOR signaling pathway. A positive correlation existed between a profile of immunosuppressive lymphocytes infiltration and CD147 expression in HCC tissues. Accumulation of FOXP3-expressing regulatory T cells was induced under a stimulation with lactate in vitro. In conclusion, CD147 promoted glycolytic metabolism in HCC via the PI3K/Akt/mTOR signaling pathway, and was related to immunosuppression in HCC.
Collapse
|
16
|
Aoki M, Koga K, Miyazaki M, Hamasaki M, Koshikawa N, Oyama M, Kozuka-Hata H, Seiki M, Toole BP, Nabeshima K. CD73 complexes with emmprin to regulate MMP-2 production from co-cultured sarcoma cells and fibroblasts. BMC Cancer 2019; 19:912. [PMID: 31510956 PMCID: PMC6739984 DOI: 10.1186/s12885-019-6127-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 09/03/2019] [Indexed: 12/14/2022] Open
Abstract
Background Interaction between cancer cells and fibroblasts mediated by extracellular matrix metalloproteinase inducer (emmprin, CD147) is important in the invasion and proliferation of cancer cells. However, the exact mechanism of emmprin mediated stimulation of matrix metalloprotease-2 (MMP-2) production from fibroblasts has not been elucidated. Our previous studies using an inhibitory peptide against emmprin suggested the presence of a molecule on the cell membrane which forms a complex with emmprin. Here we show that CD73 expressed on fibroblasts interacts with emmprin and is a required factor for MMP-2 production in co-cultures of sarcoma cells with fibroblasts. Methods CD73 along with CD99 was identified by mass spectrometry analysis as an emmprin interacting molecule from a co-culture of cancer cells (epithelioid sarcoma cell line FU-EPS-1) and fibroblasts (immortalized fibroblasts cell line ST353i). MMP-2 production was measured by immunoblot and ELISA. The formation of complexes of CD73 with emmprin was confirmed by immunoprecipitation, and their co-localization in tumor cells and fibroblasts was shown by fluorescent immunostaining and proximity ligation assays. Results Stimulated MMP-2 production in co-culture of cancer cells and fibroblasts was completely suppressed by siRNA knockdown of CD73, but not by CD99 knockdown. MMP-2 production was not suppressed by CD73-specific enzyme inhibitor (APCP). However, MMP-2 production was decreased by CD73 neutralizing antibodies, suggesting that CD73-mediated suppression of MMP-2 production is non-enzymatic. In human epithelioid sarcoma tissues, emmprin was immunohistochemically detected to be mainly expressed in tumor cells, and CD73 was expressed in fibroblasts and tumor cells: emmprin and CD73 were co-localized predominantly on tumor cells. Conclusion This study provides a novel insight into the role of CD73 in emmprin-mediated regulation of MMP-2 production.
Collapse
Affiliation(s)
- M Aoki
- Department of Pathology, Fukuoka University School of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - K Koga
- Department of Pathology, Fukuoka University School of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - M Miyazaki
- Department of Pathology, Fukuoka University School of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - M Hamasaki
- Department of Pathology, Fukuoka University School of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - N Koshikawa
- Division of Cancer Cell Research, Kanagawa Cancer Center Research Institute, Yokohama, Japan.,Division of Cancer Cell Research, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - M Oyama
- Medical Proteomics Laboratory, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - H Kozuka-Hata
- Medical Proteomics Laboratory, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - M Seiki
- Division of Cancer Cell Research, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - B P Toole
- Regenerative Medicine & Cell Biology, Medical University of South Carolina, Charleston, USA
| | - K Nabeshima
- Department of Pathology, Fukuoka University School of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| |
Collapse
|
17
|
YIPF2 is a novel Rab-GDF that enhances HCC malignant phenotypes by facilitating CD147 endocytic recycle. Cell Death Dis 2019; 10:462. [PMID: 31189879 PMCID: PMC6561952 DOI: 10.1038/s41419-019-1709-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/24/2019] [Accepted: 05/27/2019] [Indexed: 02/05/2023]
Abstract
An increased surface level of CIE (clathrin-independent endocytosis) proteins is a new feature of malignant neoplasms. CD147 is a CIE glycoprotein highly up-regulated in hepatocellular carcinoma (HCC). The ability to sort out the early endosome and directly target the recycling pathway confers on CD147 a prolonged surface half-life. However, current knowledge on CD147 trafficking to and from the cell-surface is limited. In this study, an MSP (membrane and secreted protein)-cDNA library was screened against EpoR/LR-F3/CD147EP-expressed cells by MAPPIT (mammalian protein–protein interaction trap). CD147 co-expressing with the new binder was investigated by GEPIA (gene expression profiling interactive analysis). The endocytosis, ER-Golgi trafficking and recycling of CD147 were measured by confocal imaging, flow cytometry, and biotin-labeled chase assays, respectively. Rab GTPase activation was checked by GST-RBD pull-down and MMP activity was measured by gelatin zymography. HCC malignant phenotypes were determined by cell adhesion, proliferation, migration, Transwell motility, and invasion assays. An ER-Golgi-resident transmembrane protein YIPF2 was identified as an intracellular binder to CD147. YIPF2 correlated and co-expressed with CD147, which is a survival predictor for HCC patients. YIPF2 is critical for CD147 glycosylation and trafficking functions in HCC cells. YIPF2 acts as a Rab-GDF (GDI-displacement factor) regulating three independent trafficking steps. First, YIPF2 recruits and activates Rab5 and Rab22a GTPases to the endomembrane structures. Second, YIPF2 modulates the endocytic recycling of CD147 through distinctive regulation on Rab5 and Rab22a. Third, YIPF2 mediates the mature processing of CD147 via the ER-Golgi trafficking route. Decreased YIPF2 expression induced a CD147 efficient delivery to the cell-surface, promoted MMP secretion, and enhanced the adhesion, motility, migration, and invasion behaviors of HCC cells. Thus, YIPF2 is a new trafficking determinant essential for CD147 glycosylation and transport. Our findings revealed a novel YIPF2-controlled ER-Golgi trafficking signature that promotes CD147-medated malignant phenotypes in HCC.
Collapse
|
18
|
Hypo-phosphorylated CD147 promotes migration and invasion of hepatocellular carcinoma cells and predicts a poor prognosis. Cell Oncol (Dordr) 2019; 42:537-554. [DOI: 10.1007/s13402-019-00444-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2019] [Indexed: 02/08/2023] Open
|
19
|
Lou Y, Yu Y, Xu X, Zhou S, Shen H, Fan T, Wu D, Yin J, Li G. Long non-coding RNA LUCAT1 promotes tumourigenesis by inhibiting ANXA2 phosphorylation in hepatocellular carcinoma. J Cell Mol Med 2018; 23:1873-1884. [PMID: 30588744 PMCID: PMC6378214 DOI: 10.1111/jcmm.14088] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/10/2018] [Accepted: 11/22/2018] [Indexed: 01/09/2023] Open
Abstract
Long non‐coding RNAs (lncRNAs) play essential roles in diverse biological processes; however, current understanding of the mechanism underlying the regulation of tumour proliferation and metastasis is limited. Lung cancer‐associated transcript 1 (LUCAT1) has been reported in a variety of human cancers, while its role in hepatocellular carcinoma (HCC) remains unclear. This study aimed to determine the biological role and underlying mechanism of LUCAT1 on progression and metastasis in HCC cells and clinical specimens. Our results demonstrated that LUCAT1 was up‐regulated in HCC tissues and cells. Loss‐ and gain‐of‐function studies revealed that LUCAT1 promotes the proliferation and metastasis of HCC cells in vitro and in vivo. Furthermore, RNA pulldown and Western blot assays indicated that LUCAT1 inhibited the phosphorylation of Annexin A2 (ANXA2) to reduce the degradation of ANXA2‐S100A10 heterotetramer (AIIt), which in turn accelerated the secretion of plasminogen into plasmin, thereby resulting in the activation of metalloprotease proteins. In conclusion, we propose that LUCAT1 serves as a novel diagnostic and therapeutic target for HCC.
Collapse
Affiliation(s)
- Yun Lou
- Department of Liver Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu province, China
| | - Yue Yu
- Key Laboratory of Living Donor Transplantation of Ministry of Public Health, Nanjing, Jiangsu province, China
| | - Xiaolia Xu
- Medical School of Southeast University, Nanjing, Jiangsu province, P.R. China
| | - Shu Zhou
- Department of Liver Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu province, China
| | - Haiyuan Shen
- Department of Liver Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu province, China
| | - Tianlong Fan
- Department of Liver Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu province, China
| | - Di Wu
- Department of Liver Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu province, China
| | - Jie Yin
- Department of Respiratory Medicine, Jinling Hospital, Nanjing, Jiangsu province, China
| | - Guoqiang Li
- Department of Hepatobiliary Surgery of Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, China.,Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
20
|
Sharma MC. Annexin A2 (ANX A2): An emerging biomarker and potential therapeutic target for aggressive cancers. Int J Cancer 2018; 144:2074-2081. [PMID: 30125343 DOI: 10.1002/ijc.31817] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/08/2018] [Accepted: 08/13/2018] [Indexed: 12/12/2022]
Abstract
ANX A2 is an important member of annexin family of proteins expressed on surface of endothelial cells (ECs), macrophages, mononuclear cells and various types of cancer cells. It exhibits high affinity binding for calcium (Ca++ ) and phospholipids. ANX A2 plays an important role in many biological processes such as endocytosis, exocytosis, autophagy, cell-cell communications and biochemical activation of plasminogen. On the cell surface ANX A2 organizes the assembly of plasminogen (PLG) and tissue plasminogen activator (tPA) for efficient conversion of PLG to plasmin, a serine protease. Proteolytic activity of plasmin is required for activation of inactive pro-metalloproteases (pro-MMPs) and latent growth factors for their biological actions. These activation steps are critical for degradation of extracellular matrix (ECM) and basement proteins (BM) for cancer cell invasion and metastasis. Increased expression of ANX A2 protein/gene has been correlated with invasion and metastasis in a variety of human cancers. Moreover, clinical studies have positively correlated ANX A2 protein expression with aggressive cancers and with resistance to anticancer drugs, shorter disease-free survival (DFS), and worse overall survival (OS). The mechanism(s) by which ANX A2 regulates cancer invasion and metastasis are beginning to emerge. Investigators used various technologies to target ANX A2 in preclinical model of human cancers and demonstrated exciting results. In this review article, we analyzed existing literature concurrent with our own findings and provided a critical overview of ANX A2-dependent mechanism(s) of cancer invasion and metastasis.
Collapse
Affiliation(s)
- Mahesh C Sharma
- Research Service, Veterans Affairs Medical Center, Washington, DC.,Department of Biochemistry and Molecular Medicine, George Washington University, Washington, DC
| |
Collapse
|
21
|
Norouzi S, Gorgi Valokala M, Mosaffa F, Zirak MR, Zamani P, Behravan J. Crosstalk in cancer resistance and metastasis. Crit Rev Oncol Hematol 2018; 132:145-153. [PMID: 30447920 DOI: 10.1016/j.critrevonc.2018.09.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/17/2018] [Accepted: 09/29/2018] [Indexed: 01/26/2023] Open
Abstract
The main obstacles that lead to clinical failure in cancer treatment are the development of resistant to chemotherapy and a rise in invasive characteristics in cancer tumor cells due to prolonged chemotherapeutic processes. Recent studies have revealed some evidence about the existence of a direct relationship between development of drug resistance and triggering of invasive capability in tumor cells. Therefore, devising and application of chemotherapeutic procedures that are not prone to the development of chemotherapy resistance are necessary. Here, we focus on CD147, CD44, ANAX2, P-gp, MMPs, and UCH-L1 proteins involved in the crosstalk between metastasis and cancer treatment. We think that further structural and functional analysis of these proteins may direct scientists towards designing highly effective chemotherapy procedures.
Collapse
Affiliation(s)
- Saeed Norouzi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Gorgi Valokala
- Department of Pharmacodynamy and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Mosaffa
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Zirak
- Department of Pharmacodynamy and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parvin Zamani
- Student Research Committee, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Behravan
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Mediphage Bioceuticals, Inc., 661 University Avenue, Suite 1300, MaRS Centre, West Tower, Toronto, Canada; School of Pharmacy, University of Waterloo, 200 University Ave W., Waterloo, Canada.
| |
Collapse
|
22
|
Yoneura N, Takano S, Yoshitomi H, Nakata Y, Shimazaki R, Kagawa S, Furukawa K, Takayashiki T, Kuboki S, Miyazaki M, Ohtsuka M. Expression of annexin II and stromal tenascin C promotes epithelial to mesenchymal transition and correlates with distant metastasis in pancreatic cancer. Int J Mol Med 2018; 42:821-830. [PMID: 29749431 PMCID: PMC6034933 DOI: 10.3892/ijmm.2018.3652] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 04/30/2018] [Indexed: 12/24/2022] Open
Abstract
The interaction between cancer cells and stromal components contributes to cancer invasion and metastasis in pancreatic ductal adenocarcinoma (PDAC). The present study investigated the role of the correlation between annexin II (ANX2) and stromal tenascin C (TNC) with the progression of PDAC. The functions of the expression ANX2 and TNC were assessed in in vitro experiments using mouse and human PDAC cells, and the clinical effect was analyzed using immunohistochemistry with surgically resected PDAC tissues. The effects on epithelial to mesenchymal transition (EMT), invasion, putative cancer stemness, and anoikis resistance were examined in vitro using murine precancerous pancreatic intraepithelial neoplasia (PanIN) cells and murine and human invasive PDAC cells with ANX2 knockdown using specific small interfering RNA (siRNA)s and recombinant TNC (rTNC). ANX2 was expressed at a high level in primary PanIN cells and invasive PDAC cells, compared with the levels in liver metastatic PDAC cells. In the ANX2-knockdown cells, there were fewer cells with a morphological mesenchymal appearance in three-dimensional culture and invasion was reduced compared with that in the control cells. Morphological change into the mesenchymal phenotype and invasion were enhanced by rTNC treatment in the control PDAC cells but not in the ANX2-knockdown cells. Pancreatosphere formation assays showed that ANX2 and TNC facilitated the maintenance of stem-like characters in PDAC cells. Furthermore, anoikis assays indicated that the interaction of ANX2-TNC contributed to anoikis resistance in PDAC cells. In the immunohistochemistry analyses, the group with a high expression of ANX2 and high stromal TNC was significantly correlated with distant metastasis, and was associated with hematogenous/peritoneal recurrence and poor outcomes following surgery in resected human primary PDAC tissues. In conclusion, the results demonstrated that ANX2 and stromal TNC regulated invasion in addition to stemness and anoikis resistance, which are crucial for metastasis in the progression of PDAC. These results indicate the potential of the ANX2-TNC axis as a therapeutic target for PDAC metastasis.
Collapse
Affiliation(s)
- Naoko Yoneura
- Department of General Surgery, Chiba University, Graduate School of Medicine, Chiba 260‑8677, Japan
| | - Shigetsugu Takano
- Department of General Surgery, Chiba University, Graduate School of Medicine, Chiba 260‑8677, Japan
| | - Hideyuki Yoshitomi
- Department of General Surgery, Chiba University, Graduate School of Medicine, Chiba 260‑8677, Japan
| | - Yasuyuki Nakata
- Department of General Surgery, Chiba University, Graduate School of Medicine, Chiba 260‑8677, Japan
| | - Reiri Shimazaki
- Department of General Surgery, Chiba University, Graduate School of Medicine, Chiba 260‑8677, Japan
| | - Shingo Kagawa
- Department of General Surgery, Chiba University, Graduate School of Medicine, Chiba 260‑8677, Japan
| | - Katsunori Furukawa
- Department of General Surgery, Chiba University, Graduate School of Medicine, Chiba 260‑8677, Japan
| | - Tsukasa Takayashiki
- Department of General Surgery, Chiba University, Graduate School of Medicine, Chiba 260‑8677, Japan
| | - Satoshi Kuboki
- Department of General Surgery, Chiba University, Graduate School of Medicine, Chiba 260‑8677, Japan
| | - Masaru Miyazaki
- Department of General Surgery, Chiba University, Graduate School of Medicine, Chiba 260‑8677, Japan
| | - Masayuki Ohtsuka
- Department of General Surgery, Chiba University, Graduate School of Medicine, Chiba 260‑8677, Japan
| |
Collapse
|
23
|
Lin CH, Lin YW, Chen YC, Liao CC, Jou YS, Hsu MT, Chen CF. FNDC3B promotes cell migration and tumor metastasis in hepatocellular carcinoma. Oncotarget 2018; 7:49498-49508. [PMID: 27385217 PMCID: PMC5226524 DOI: 10.18632/oncotarget.10374] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/13/2016] [Indexed: 01/07/2023] Open
Abstract
Recurrence and metastasis are common in hepatocellular carcinoma (HCC) and correlate with poor prognosis. We investigated the role of fibronectin type III domain containing 3B (FNDC3B) in HCC metastasis. Overexpression of FNDC3B in HCC cell lines enhanced cell migration and invasion. On the other hand, knockdown of FNDC3B using short-hairpin RNA reduced tumor nodule formation in both intra- and extra-hepatic metastasis. High levels of FNDC3B were observed in metastatic HCCs and correlated with poor patient survival and shorter recurrence time. Mutagenesis and LC-MS/MS analyses showed that FNDC3B promotes cell migration by cooperating with annexin A2 (ANXA2). Furthermore, FNDC3B and ANXA2 expression correlated negatively with patient survival. Our results indicate that FNDC3B behaves like an oncogene by promoting cell migration. This suggests FNDC3B could serve as a biomarker and therapeutic target for HCC metastasis.
Collapse
Affiliation(s)
- Chin-Hui Lin
- VYM Genome Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Yao-Wen Lin
- VYM Genome Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Ying-Chun Chen
- VYM Genome Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Chen-Chung Liao
- Proteomics Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Yuh-Shan Jou
- Institutes of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ming-Ta Hsu
- VYM Genome Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Chian-Feng Chen
- VYM Genome Research Center, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
24
|
Extracellular Matrix Metalloproteinase Inducer EMMPRIN (CD147) in Cardiovascular Disease. Int J Mol Sci 2018; 19:ijms19020507. [PMID: 29419744 PMCID: PMC5855729 DOI: 10.3390/ijms19020507] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 12/22/2022] Open
Abstract
The receptor EMMPRIN is involved in the development and progression of cardiovascular diseases and in the pathogenesis of myocardial infarction. There are several binding partners of EMMPRIN mediating the effects of EMMPRIN in cardiovascular diseases. EMMPRIN interaction with most binding partners leads to disease progression by mediating cytokine or chemokine release, the activation of platelets and monocytes, as well as the formation of monocyte-platelet aggregates (MPAs). EMMPRIN is also involved in atherosclerosis by mediating the infiltration of pro-inflammatory cells. There is also evidence that EMMPRIN controls energy metabolism of cells and that EMMPRIN binding partners modulate intracellular glycosylation and trafficking of EMMPRIN towards the cell membrane. In this review, we systematically discuss these multifaceted roles of EMMPRIN and its interaction partners, such as Cyclophilins, in cardiovascular disease.
Collapse
|
25
|
Li X, Yu X, Dai D, Song X, Xu W. The altered glucose metabolism in tumor and a tumor acidic microenvironment associated with extracellular matrix metalloproteinase inducer and monocarboxylate transporters. Oncotarget 2018; 7:23141-55. [PMID: 27009812 PMCID: PMC5029616 DOI: 10.18632/oncotarget.8153] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 01/13/2016] [Indexed: 02/06/2023] Open
Abstract
Extracellular matrix metalloproteinase inducer, also knowns as cluster of differentiation 147 (CD147) or basigin, is a widely distributed cell surface glycoprotein that is involved in numerous physiological and pathological functions, especially in tumor invasion and metastasis. Monocarboxylate transporters (MCTs) catalyze the proton-linked transport of monocarboxylates such as L-lactate across the plasma membrane to preserve the intracellular pH and maintain cell homeostasis. As a chaperone to some MCT isoforms, CD147 overexpression significantly contributes to the metabolic transformation of tumor. This overexpression is characterized by accelerated aerobic glycolysis and lactate efflux, and it eventually provides the tumor cells with a metabolic advantage and an invasive phenotype in the acidic tumor microenvironment. This review highlights the roles of CD147 and MCTs in tumor cell metabolism and the associated molecular mechanisms. The regulation of CD147 and MCTs may prove to be with a therapeutic potential for tumors through the metabolic modification of the tumor microenvironment.
Collapse
Affiliation(s)
- Xiaofeng Li
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Xiaozhou Yu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Dong Dai
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Xiuyu Song
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Wengui Xu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| |
Collapse
|
26
|
Annexin 2A sustains glioblastoma cell dissemination and proliferation. Oncotarget 2018; 7:54632-54649. [PMID: 27429043 PMCID: PMC5342369 DOI: 10.18632/oncotarget.10565] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/03/2016] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma (GBM) is the most devastating tumor of the brain, characterized by an almost inevitable tendency to recur after intensive treatments and a fatal prognosis. Indeed, despite recent technical improvements in GBM surgery, the complete eradication of cancer cell disseminated outside the tumor mass still remains a crucial issue for glioma patients management. In this context, Annexin 2A (ANXA2) is a phospholipid-binding protein expressed in a variety of cell types, whose expression has been recently associated with cell dissemination and metastasis in many cancer types, thus making ANXA2 an attractive putative regulator of cell invasion also in GBM. Here we show that ANXA2 is over-expressed in GBM and positively correlates with tumor aggressiveness and patient survival. In particular, we associate the expression of ANXA2 to a mesenchymal and metastatic phenotype of GBM tumors. Moreover, we functionally characterized the effects exerted by ANXA2 inhibition in primary GBM cultures, demonstrating its ability to sustain cell migration, matrix invasion, cytoskeletal remodeling and proliferation. Finally, we were able to generate an ANXA2-dependent gene signature with a significant prognostic potential in different cohorts of solid tumor patients, including GBM. In conclusion, we demonstrate that ANXA2 acts at multiple levels in determining the disseminating and aggressive behaviour of GBM cells, thus proving its potential as a possible target and strong prognostic factor in the future management of GBM patients.
Collapse
|
27
|
Soluble factors from adipose tissue-derived mesenchymal stem cells promote canine hepatocellular carcinoma cell proliferation and invasion. PLoS One 2018; 13:e0191539. [PMID: 29346427 PMCID: PMC5773216 DOI: 10.1371/journal.pone.0191539] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/05/2018] [Indexed: 12/21/2022] Open
Abstract
The potential effects of adipose tissue-derived mesenchymal stem cells (AT-MSCs) on the growth and invasion of canine tumours including hepatocellular carcinoma (HCC) are not yet understood. Moreover in humans, the functional contribution of AT-MSCs to malignancies remains controversial. The purpose of this study was to investigate the effects of AT-MSCs on the proliferation and invasion of canine HCC cells in vitro. The effect of AT-MSCs on mRNA levels of factors related to HCC progression were also evaluated. Conditioned medium from AT-MSCs (AT-MSC-CM) significantly enhanced canine HCC cell proliferation and invasion. Moreover, mRNA expression levels of transforming growth factor-beta 1, epidermal growth factor A, hepatocyte growth factor, platelet-derived growth factor-beta, vascular endothelial growth factor, and insulin-like growth factor 2 were 2.3 ± 0.4, 2.0 ± 0.5, 5.7 ± 1.9, 1.7 ± 0.2, 2.1 ± 0.4, and 1.4 ± 0.3 times higher, respectively (P < 0.05). The mRNA expression level of MMP-2 also increased (to 4.0 ± 1.2 times control levels) in canine HCC cells co-cultured with AT-MSCs, but MMP-9 mRNA significantly decreased (to 0.5 ± 0.1 times control levels). These findings suggest that soluble factors from AT-MSCs promote the proliferation and invasion of canine HCC cells.
Collapse
|
28
|
Solbak SMØ, Abdurakhmanov E, Vedeler A, Danielson UH. Characterization of interactions between hepatitis C virus NS5B polymerase, annexin A2 and RNA - effects on NS5B catalysis and allosteric inhibition. Virol J 2017; 14:236. [PMID: 29228983 PMCID: PMC5725786 DOI: 10.1186/s12985-017-0904-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/27/2017] [Indexed: 12/12/2022] Open
Abstract
Background Direct acting antivirals (DAAs) provide efficient hepatitis C virus (HCV) therapy and clearance for a majority of patients, but are not available or effective for all patients. They risk developing HCV-induced hepatocellular carcinoma (HCC), for which the mechanism remains obscure and therapy is missing. Annexin A2 (AnxA2) has been reported to co-precipitate with the non-structural (NS) HCV proteins NS5B and NS3/NS4A, indicating a role in HCC tumorigenesis and effect on DAA therapy. Methods Surface plasmon resonance biosensor technology was used to characterize direct interactions between AnxA2 and HCV NS5B, NS3/NS4 and RNA, and the subsequent effects on catalysis and inhibition. Results No direct interaction between AnxA2 and NS3/NS4A was detected, while AnxA2 formed a slowly dissociating, high affinity (KD = 30 nM), complex with NS5B, decreasing its catalytic activity and affinity for the allosteric inhibitor filibuvir. The RNA binding of the two proteins was independent and AnxA2 and NS5B interacted with different RNAs in ternary complexes of AnxA2:NS5B:RNA, indicating specific preferences. Conclusions The complex interplay revealed between NS5B, AnxA2, RNA and filibuvir, suggests that AnxA2 may have an important role for the progression and treatment of HCV infections and the development of HCC, which should be considered also when designing new allosteric inhibitors. Electronic supplementary material The online version of this article (10.1186/s12985-017-0904-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sara M Ø Solbak
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | | | - Anni Vedeler
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - U Helena Danielson
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden. .,Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
29
|
Intracellular targeting of annexin A2 inhibits tumor cell adhesion, migration, and in vivo grafting. Sci Rep 2017; 7:4243. [PMID: 28652618 PMCID: PMC5484684 DOI: 10.1038/s41598-017-03470-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 05/03/2017] [Indexed: 12/22/2022] Open
Abstract
Cytoskeletal-associated proteins play an active role in coordinating the adhesion and migration machinery in cancer progression. To identify functional protein networks and potential inhibitors, we screened an internalizing phage (iPhage) display library in tumor cells, and selected LGRFYAASG as a cytosol-targeting peptide. By affinity purification and mass spectrometry, intracellular annexin A2 was identified as the corresponding binding protein. Consistently, annexin A2 and a cell-internalizing, penetratin-fused version of the selected peptide (LGRFYAASG-pen) co-localized and specifically accumulated in the cytoplasm at the cell edges and cell-cell contacts. Functionally, tumor cells incubated with LGRFYAASG-pen showed disruption of filamentous actin, focal adhesions and caveolae-mediated membrane trafficking, resulting in impaired cell adhesion and migration in vitro. These effects were paralleled by a decrease in the phosphorylation of both focal adhesion kinase (Fak) and protein kinase B (Akt). Likewise, tumor cells pretreated with LGRFYAASG-pen exhibited an impaired capacity to colonize the lungs in vivo in several mouse models. Together, our findings demonstrate an unrecognized functional link between intracellular annexin A2 and tumor cell adhesion, migration and in vivo grafting. Moreover, this work uncovers a new peptide motif that binds to and inhibits intracellular annexin A2 as a candidate therapeutic lead for potential translation into clinical applications.
Collapse
|
30
|
Shen L, Dong X, Yu M, Luo Z, Wu S. β3GnT8 Promotes Gastric Cancer Invasion by Regulating the Glycosylation of CD147. J Cancer 2017; 8:314-322. [PMID: 28243336 PMCID: PMC5327381 DOI: 10.7150/jca.16526] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 10/17/2016] [Indexed: 12/17/2022] Open
Abstract
β1, 3-N-acetylglucosminyltransferase 8(β3GnT8) synthesizes a unique cabohydrate structure known as polylactosamine, and plays a vital role in progression of various human cancer types. However, its involvement in gastric cancer remains unclear. In this study, we analyzed the expression and clinical significance of β3GnT8 by Western blot in 6 paired fresh gastric cancer tissues, noncancerous tissues and immunohistochemistry on 110 paraffin-embedded slices. β3GnT8 was found to be over-expressed in gastric cancer tissues, which correlated with lymph node metastasis and TNM stage. Forced the expression of β3GnT8 promoted migration and invasion of gastric cancer cells, whereas β3GnT8 knockdown led to the opposite results. Further studies showed that the regulated β3GnT8 could convert the heterogeneous N-glycosylated forms of CD147 and change the polylactosamine structures carried on CD147. In addition, our data suggested the annexin A2 (ANXA2) to be an essential interaction partner of β3GnT8 during the process of CD147 glycosylation. Collectively, these results provide a novel molecular mechanism for β3GnT8 in promotion of gastric cancer invasion and metastasis. Targeting β3GnT8 could serve as a new strategy for future gastric cancer therapy.
Collapse
Affiliation(s)
- Li Shen
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China; Department of Biochemistry and Molecular Biology, Soochow University, Suzhou 215123, Jiangsu, China
| | - Xiaoxia Dong
- Department of pharmacology, School of Basic Medicine, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Meiyun Yu
- Department of Biochemistry and Molecular Biology, Soochow University, Suzhou 215123, Jiangsu, China
| | - Zhiguo Luo
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China; Institute of Cancer Research, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Shiliang Wu
- Department of Biochemistry and Molecular Biology, Soochow University, Suzhou 215123, Jiangsu, China
| |
Collapse
|
31
|
Cui HY, Wang SJ, Miao JY, Fu ZG, Feng F, Wu J, Yang XM, Chen ZN, Jiang JL. CD147 regulates cancer migration via direct interaction with Annexin A2 and DOCK3-β-catenin-WAVE2 signaling. Oncotarget 2016; 7:5613-29. [PMID: 26716413 PMCID: PMC4868709 DOI: 10.18632/oncotarget.6723] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 12/12/2015] [Indexed: 12/31/2022] Open
Abstract
The acquisition of inappropriate migratory feature is crucial for tumor metastasis. It has been suggested that CD147 and Annexin A2 are involved in regulating tumor cell movement, while the regulatory mechanisms are far from clear. In this study, we demonstrated that CD147 physically interacted with the N-terminal domain of Annexin A2 and decreased Annexin A2 phosphorylation on tyrosine 23. In vitro kinase assay showed that the I domain of CD147 was indispensable for CD147-mediated downregulation of Annexin A2 phosphorylation by Src. Furthermore, we determined that p-Annexin A2 promoted the expression of dedicator of cytokinesis 3 (DOCK3) and DOCK3 blocked β-catenin nuclear translocation, resulting in inhibition of β-catenin signaling. In addition, DOCK3 inhibited lamellipodium dynamics and tumor cell movement. Also, we found that β-catenin signaling increased WAVE2 expression. Therefore, DOCK3 was characterized as a negative regulator of WAVE2 expression via inhibiting β-catenin signaling. Our study provides the first evidence that CD147 promotes tumor cell movement and metastasis via direct interaction with Annexin A2 and DOCK3-β-catenin-WAVE2 signaling axis.
Collapse
Affiliation(s)
- Hong-Yong Cui
- Cell Engineering Research Center and Department of Cell Biology, State Key Laboratory of Cancer Biology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, P.R. China
| | - Shi-Jie Wang
- Cell Engineering Research Center and Department of Cell Biology, State Key Laboratory of Cancer Biology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, P.R. China
| | - Ji-Yu Miao
- Cell Engineering Research Center and Department of Cell Biology, State Key Laboratory of Cancer Biology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, P.R. China
| | - Zhi-Guang Fu
- Cell Engineering Research Center and Department of Cell Biology, State Key Laboratory of Cancer Biology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, P.R. China
| | - Fei Feng
- Cell Engineering Research Center and Department of Cell Biology, State Key Laboratory of Cancer Biology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, P.R. China
| | - Jiao Wu
- Cell Engineering Research Center and Department of Cell Biology, State Key Laboratory of Cancer Biology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, P.R. China
| | - Xiang-Min Yang
- Cell Engineering Research Center and Department of Cell Biology, State Key Laboratory of Cancer Biology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, P.R. China
| | - Zhi-Nan Chen
- Cell Engineering Research Center and Department of Cell Biology, State Key Laboratory of Cancer Biology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, P.R. China
| | - Jian-Li Jiang
- Cell Engineering Research Center and Department of Cell Biology, State Key Laboratory of Cancer Biology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, P.R. China
| |
Collapse
|
32
|
Cui L, Song J, Wu L, Cheng L, Chen A, Wang Y, Huang Y, Huang L. Role of Annexin A2 in the EGF-induced epithelial-mesenchymal transition in human CaSki cells. Oncol Lett 2016; 13:377-383. [PMID: 28123570 DOI: 10.3892/ol.2016.5406] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 10/18/2016] [Indexed: 01/08/2023] Open
Abstract
The epidermal growth factor receptor (EGF-R) signaling pathway is thought to have an important role in the development and progression of several carcinomas, as it is associated with cell proliferation, differentiation and migration. Activation of EGF-R signaling regulates epithelial-mesenchymal transition (EMT)-associated invasion and migration in normal and malignant epithelial cells. However, the specific mechanisms have not yet been fully elucidated. The present study utilized wound healing assays, western blotting, flow cytometry and MTT assays to demonstrate that Annexin A2 (ANXA2) is a key regulatory factor in EGF-induced EMT in CaSki cervical cancer cells. Moreover, the increased expression levels of ANXA2 promoted cell viability and migration in human CaSki cells. It was also found that silencing ANXA2 partially reverses EGF-induced EMT and inhibits cell viability and migration in CaSki cells. These findings suggest that ANXA2 is a key regulator of EGF-induced EMT in CaSki cervical cancer cells.
Collapse
Affiliation(s)
- Lei Cui
- Department of General Surgery, Yichang Central People's Hospital, The First College of Clinical Medical Science, Three Gorges University, Yichang, Hubei 443002, P.R. China
| | - Jian Song
- Department of Biochemistry, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Liting Wu
- Institute of Molecular Biology of Three Gorges University, Yichang, Hubei 443002, P.R. China
| | - Luhui Cheng
- Department of General Surgery, Yichang Central People's Hospital, The First College of Clinical Medical Science, Three Gorges University, Yichang, Hubei 443002, P.R. China
| | - Aijun Chen
- Department of General Surgery, Yichang Central People's Hospital, The First College of Clinical Medical Science, Three Gorges University, Yichang, Hubei 443002, P.R. China
| | - Yanlin Wang
- Institute of Molecular Biology of Three Gorges University, Yichang, Hubei 443002, P.R. China
| | - Yingdi Huang
- Institute of Molecular Biology of Three Gorges University, Yichang, Hubei 443002, P.R. China
| | - Liming Huang
- Institute of Molecular Biology of Three Gorges University, Yichang, Hubei 443002, P.R. China
| |
Collapse
|
33
|
Ricciardelli C, Lokman NA, Ween MP, Oehler MK. WOMEN IN CANCER THEMATIC REVIEW: Ovarian cancer-peritoneal cell interactions promote extracellular matrix processing. Endocr Relat Cancer 2016; 23:T155-T168. [PMID: 27578826 DOI: 10.1530/erc-16-0320] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 08/30/2016] [Indexed: 12/13/2022]
Abstract
Ovarian cancer has a distinct tendency for metastasising via shedding of cancerous cells into the peritoneal cavity and implanting onto the peritoneum that lines the pelvic organs. Once ovarian cancer cells adhere to the peritoneal cells, they migrate through the peritoneal layer and invade the local organs. Alterations in the extracellular environment are critical for tumour initiation, progression and intra-peritoneal dissemination. To increase our understanding of the molecular mechanisms involved in ovarian cancer metastasis and to identify novel therapeutic targets, we recently studied the interaction of ovarian cancer and peritoneal cells using a proteomic approach. We identified several extracellular matrix (ECM) proteins including, fibronectin, TGFBI, periostin, annexin A2 and PAI-1 that were processed as a result of the ovarian cancer-peritoneal cell interaction. This review focuses on the functional role of these proteins in ovarian cancer metastasis. Our findings together with published literature support the notion that ECM processing via the plasminogen-plasmin pathway promotes the colonisation and attachment of ovarian cancer cells to the peritoneum and actively contributes to the early steps of ovarian cancer metastasis.
Collapse
Affiliation(s)
- C Ricciardelli
- Discipline of Obstetrics and GynaecologyAdelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - N A Lokman
- Discipline of Obstetrics and GynaecologyAdelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - M P Ween
- Lung Research LaboratoryHanson Institute, Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - M K Oehler
- Discipline of Obstetrics and GynaecologyAdelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
- Department of Gynaecological OncologyRoyal Adelaide Hospital, Adelaide, South Australia, Australia
| |
Collapse
|
34
|
Choi CH, Chung JY, Chung EJ, Sears JD, Lee JW, Bae DS, Hewitt SM. Prognostic significance of annexin A2 and annexin A4 expression in patients with cervical cancer. BMC Cancer 2016; 16:448. [PMID: 27402115 PMCID: PMC4940752 DOI: 10.1186/s12885-016-2459-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 06/23/2016] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The annexins (ANXs) have diverse roles in tumor development and progression, however, their clinical significance in cervical cancer has not been elucidated. The present study was to investigate the clinical significance of annexin A2 (ANXA2) and annexin A4 (ANXA4) expression in cervical cancer. METHODS ANXA2 and ANXA4 immunohistochemical staining were performed on a cervical cancer tissue microarray consisting of 46 normal cervical epithelium samples and 336 cervical cancer cases and compared the data with clinicopathological variables, including the survival of cervical cancer patients. RESULTS ANXA2 expression was lower in cancer tissue (p = 0.002), whereas ANXA4 staining increased significantly in cancer tissues (p < 0.001). ANXA2 expression was more prominent in squamous cell carcinoma (p < 0.001), whereas ANXA4 was more highly expressed in adeno/adenosquamous carcinoma (p < 0.001). ANXA2 overexpression was positively correlated with advanced cancer phenotypes, whereas ANXA4 expression was associated with resistance to radiation with or without chemotherapy (p = 0.029). Notably, high ANXA2 and ANXA4 expression was significantly associated with shorter disease-free survival (p = 0.004 and p = 0.033, respectively). Multivariate analysis indicated that ANXA2+ (HR = 2.72, p = 0.003) and ANXA2+/ANXA4+ (HR = 2.69, p = 0.039) are independent prognostic factors of disease-free survival in cervical cancer. Furthermore, a random survival forest model using combined ANXA2, ANXA4, and clinical variables resulted in improved predictive power (mean C-index, 0.76) compared to that of clinical-variable-only models (mean C-index, 0.70) (p = 0.006). CONCLUSIONS These findings indicate that detecting ANXA2 and ANXA4 expression may aid the evaluation of cervical carcinoma prognosis.
Collapse
Affiliation(s)
- Chel Hun Choi
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, MSC 1500, Bethesda, MD, 20892, USA.,Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong, Gangnam-gu, Seoul, 135-710, Republic of Korea
| | - Joon-Yong Chung
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, MSC 1500, Bethesda, MD, 20892, USA
| | - Eun Joo Chung
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD, 20892, USA
| | - John D Sears
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, MSC 1500, Bethesda, MD, 20892, USA
| | - Jeong-Won Lee
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong, Gangnam-gu, Seoul, 135-710, Republic of Korea
| | - Duk-Soo Bae
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong, Gangnam-gu, Seoul, 135-710, Republic of Korea.
| | - Stephen M Hewitt
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, MSC 1500, Bethesda, MD, 20892, USA.
| |
Collapse
|
35
|
Chen W, Chen L, Cai Z, Liang D, Zhao B, Zeng Y, Liu X, Liu J. Overexpression of annexin A4 indicates poor prognosis and promotes tumor metastasis of hepatocellular carcinoma. Tumour Biol 2016; 37:9343-9355. [PMID: 26779633 DOI: 10.1007/s13277-016-4823-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/08/2016] [Indexed: 01/07/2023] Open
Abstract
The prognosis of hepatocellular carcinoma (HCC) after surgical resection remains unsatisfactory for the majority of HCC patients who developed early recurrence or metastasis. There is still a lack of reliable biomarkers that can be used to predict the possibility of recurrence/metastasis in HCC patients after operation. In the current study, annexin A4, a calcium-dependent phospholipid-binding protein, has been found to be significantly elevated in HCC patients with early recurrence/metastasis, and had a strong correlation with portal vein tumor thrombosis (p = 0.03) and advanced BCLC stage (p = 0.002). Cox proportional hazards regression analysis revealed that annexin A4 was an independent prognostic predictor for both early recurrence/metastasis (HR = 1.519, p = 0.032) and overall survival (HR = 1.827, p = 0.009) after surgical resection. Meanwhile, Kaplan-Meier analysis showed that Patients with high-expression levels of annexin A4 had higher recurrence rate and shorter overall survival than those with low expression (log-rank test, p < 0.001). Furthermore, in vitro studies have demonstrated that overexpression of annexin A4 facilitated HCC cell migration and invasion via regulating epithelial-mesenchymal transition (EMT). In conclusion, annexin A4 has played important roles in the progression of HCC, and might act as a potential prognostic biomarker for HCC.
Collapse
MESH Headings
- Annexin A4/genetics
- Annexin A4/metabolism
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Blotting, Western
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/secondary
- Cell Movement
- Cell Proliferation
- Female
- Follow-Up Studies
- Humans
- Immunoenzyme Techniques
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Male
- Middle Aged
- Neoplasm Invasiveness
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/metabolism
- Neoplasm Recurrence, Local/pathology
- Neoplasm Staging
- Prognosis
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Survival Rate
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Wenwei Chen
- Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People's Republic of China
| | - Lihong Chen
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Xihong Road 312, Fuzhou, 350025, Fujian Province, People's Republic of China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, People's Republic of China
- Department of Pathology, School of Basic Medical Science, Fujian Medical University, Fuzhou, 350004, People's Republic of China
| | - Zhixiong Cai
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Xihong Road 312, Fuzhou, 350025, Fujian Province, People's Republic of China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, People's Republic of China
| | - Dong Liang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Xihong Road 312, Fuzhou, 350025, Fujian Province, People's Republic of China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, People's Republic of China
| | - Bixing Zhao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Xihong Road 312, Fuzhou, 350025, Fujian Province, People's Republic of China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, People's Republic of China
| | - Yongyi Zeng
- Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People's Republic of China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Xihong Road 312, Fuzhou, 350025, Fujian Province, People's Republic of China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, People's Republic of China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Xihong Road 312, Fuzhou, 350025, Fujian Province, People's Republic of China.
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, People's Republic of China.
| | - Jingfeng Liu
- Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People's Republic of China.
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Xihong Road 312, Fuzhou, 350025, Fujian Province, People's Republic of China.
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, People's Republic of China.
| |
Collapse
|
36
|
Bai DS, Wu C, Yang LX, Zhang C, Zhang PF, He YZ, Cai JB, Song ZJ, Dong ZR, Huang XY, Ke AW, Shi GM. UBAP2 negatively regulates the invasion of hepatocellular carcinoma cell by ubiquitinating and degradating Annexin A2. Oncotarget 2016; 7:32946-32955. [PMID: 27121050 PMCID: PMC5078065 DOI: 10.18632/oncotarget.8783] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 03/28/2016] [Indexed: 12/13/2022] Open
Abstract
The ubiquitin-dependent proteasomal degradation of proteins controls signaling and cellular survival. In this study, we found that ubiquitin associated protein 2 (UBAP2) was significantly downregulated in hepatocellular carcinoma (HCC) tissues compared with adjacent normal tissues. Furthermore, higher expression of UBAP2 in cancer tissues was correlated with good prognosis in HCC patients. Knockdown of UBAP2 significantly enhanced the invasion and proliferation of HCC cells in vitro and promoted tumor growth in vivo, while enforced expression of UBAP2 impaired the aggressive ability and tumor growth of HCC cells. Mechanistically, UBAP2 formed a complex with Annexin A2 and promoted the degradation of Annexin A2 protein by ubiquitination, and then inhibited HCC progression. Collectively, UBAP2 appears as a novel marker for predicting prognosis and a therapeutic target for HCC.
Collapse
Affiliation(s)
- Dou-Sheng Bai
- Department of Hepatobiliary and Pancreatic Surgery, Clinical Medical College of Yangzhou University, Jiangsu, 225001, P.R. China
- Liver Cancer Institute and Department of Liver Surgery of Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, 200032, P.R. China
| | - Chao Wu
- Department of Hepatobiliary and Pancreatic Surgery, Clinical Medical College of Yangzhou University, Jiangsu, 225001, P.R. China
- Liver Cancer Institute and Department of Liver Surgery of Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, 200032, P.R. China
| | - Liu-Xiao Yang
- Liver Cancer Institute and Department of Liver Surgery of Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, 200032, P.R. China
| | - Chi Zhang
- Liver Cancer Institute and Department of Liver Surgery of Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, 200032, P.R. China
| | - Peng-Fei Zhang
- Liver Cancer Institute and Department of Liver Surgery of Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, 200032, P.R. China
| | - Yi-Zhou He
- Liver Cancer Institute and Department of Liver Surgery of Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, 200032, P.R. China
| | - Jia-Bin Cai
- Liver Cancer Institute and Department of Liver Surgery of Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, 200032, P.R. China
| | - Zheng-Ji Song
- Department of Digestion, The First People's Hospital of Yunnan Province, Yunnan, 650000, P.R. China
| | - Zhao-Ru Dong
- Liver Cancer Institute and Department of Liver Surgery of Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, 200032, P.R. China
| | - Xiao-Yong Huang
- Liver Cancer Institute and Department of Liver Surgery of Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, 200032, P.R. China
| | - Ai-Wu Ke
- Liver Cancer Institute and Department of Liver Surgery of Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, 200032, P.R. China
| | - Guo-Ming Shi
- Liver Cancer Institute and Department of Liver Surgery of Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, 200032, P.R. China
| |
Collapse
|
37
|
Sharma MC, Tuszynski GP, Blackman MR, Sharma M. Long-term efficacy and downstream mechanism of anti-annexinA2 monoclonal antibody (anti-ANX A2 mAb) in a pre-clinical model of aggressive human breast cancer. Cancer Lett 2016; 373:27-35. [PMID: 26797420 DOI: 10.1016/j.canlet.2016.01.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 01/06/2016] [Accepted: 01/07/2016] [Indexed: 01/09/2023]
Abstract
There is considerable direct evidence that calcium binding protein ANX A2 is a potential target for treating aggressive breast cancer. The most compelling data are based on the finding of ANX A2 overexpression in aggressive triple negative human breast cancer (TNBC) cell lines and in human breast cancer tissues. Previously, we and others reported a unique role of ANX A2 in cancer invasion, including breast cancer. Moreover, we demonstrated that anti-ANX A2 mAb-mediated immunoneutralization of ANX A2 inhibited invasive human breast cancer growth in a xenograft model. We further evaluated the long-term effects of multiple treatments with anti-ANX A2 mAb and its mechanism of inhibition on human breast tumor growth. We now demonstrate that three treatments with anti-ANX A2 mAb led to significant inhibition of breast tumor growth in immunodeficient mice, and that the anti-tumor response was demonstrable from day 94. After treatment, we followed tumor growth for 172 days and demonstrated 67% inhibition of tumor growth without detectable adverse effects. Biochemical analysis demonstrated that anti-ANX A2 mAb treatment caused significant inhibition of conversion of tissue plasminogen activator (tPA) in the tumor microenvironment. This led to disruption of plasmin generation that consequently inhibited activation of MMP-9 and MMP-2. These results suggest that ANX A2 plays an important role in aggressive breast tumor growth by regulating proteolytic pathways in the tumor microenvironment. ANX A2 may represent a new target for the development of therapeutics for treatment of aggressive breast cancer.
Collapse
Affiliation(s)
- Mahesh C Sharma
- Research Service, Veterans Affairs Medical Center, Washington, DC 20422, USA; Department of Biochemistry and Molecular Medicine, George Washington University, Washington, DC, USA.
| | - George P Tuszynski
- Department of Neuroscience, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Marc R Blackman
- Research Service, Veterans Affairs Medical Center, Washington, DC 20422, USA; Department of Biochemistry and Molecular Medicine, George Washington University, Washington, DC, USA; Department of Medicine, George Washington University, Washington, DC, USA
| | - Meena Sharma
- University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
38
|
Zhang H, Yao M, Wu W, Qiu L, Sai W, Yang J, Zheng W, Huang J, Yao D. Up-regulation of annexin A2 expression predicates advanced clinicopathological features and poor prognosis in hepatocellular carcinoma. Tumour Biol 2015; 36:9373-9383. [PMID: 26109000 DOI: 10.1007/s13277-015-3678-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 06/15/2015] [Indexed: 12/15/2022] Open
Abstract
Hepatic annexin A2 (ANXA2) orchestrates multiple biologic processes and clinical symptoms and plays a key role in development, metastasis, and drug resistance of lethal hepatocellular carcinoma (HCC). However, the prognostic significance of ANXA2 for HCC has not been elucidated up to now. In this study, ANXA2 was frequently found to be up-regulated in HCC tissues compared with benign liver disease (BLD) tissues, which was consistent with the results in serum samples and tissue specimens of patients with HCC. Furthermore, ANXA2 expression was significantly correlated with differentiated degree, intrahepatic metastasis, portal vein thrombus, and tumor node metastasis (TNM) staging. More importantly, increased ANXA2 level was first confirmed to be closely associated with shortened overall survival of HCC (χ (2) = 12.872, P = 0.005) and identified as an independent prognostic factor (hazard ratio 1.338, 95 % confidence interval (CI) 1.013 ~ 1.766, P = 0.040), suggesting that ANXA2 up-regulation might represent an acquired metastasis phenotype of HCC, help to screen out high-risk population for HCC, or more effectively treat a subset of postsurgical HCC patients positive for ANXA2.
Collapse
Affiliation(s)
- Haijian Zhang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 West Temple Road, Jiangsu, 226001, China
| | - Min Yao
- Department of Immunology, Medical School of Nantong University, Nantong, China
| | - Wei Wu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 West Temple Road, Jiangsu, 226001, China
| | - Liwei Qiu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 West Temple Road, Jiangsu, 226001, China
| | - Wenli Sai
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 West Temple Road, Jiangsu, 226001, China
| | - Junling Yang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 West Temple Road, Jiangsu, 226001, China
| | - Wenjie Zheng
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 West Temple Road, Jiangsu, 226001, China
| | - Jianfei Huang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| | - Dengfu Yao
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 West Temple Road, Jiangsu, 226001, China.
| |
Collapse
|
39
|
How, with whom and when: an overview of CD147-mediated regulatory networks influencing matrix metalloproteinase activity. Biosci Rep 2015; 36:e00283. [PMID: 26604323 PMCID: PMC4718507 DOI: 10.1042/bsr20150256] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 11/24/2015] [Indexed: 12/11/2022] Open
Abstract
Matrix metalloproteinases (MMPs) comprise a family of 23 zinc-dependent enzymes involved in various pathologic and physiologic processes. In cancer, MMPs contribute to processes from tumour initiation to establishment of distant metastases. Complex signalling and protein transport networks regulate MMP synthesis, cell surface presentation and release. Earlier attempts to disrupt MMP activity in patients have proven to be intolerable and with underwhelming clinical efficacy; thus targeting ancillary proteins that regulate MMP activity may be a useful therapeutic approach. Extracellular matrix metalloproteinase inducer (EMMPRIN) was originally characterized as a factor present on lung cancer cells, which stimulated collagenase (MMP-1) production in fibroblasts. Subsequent studies demonstrated that EMMPRIN was identical with several other protein factors, including basigin (Bsg), all of which are now commonly termed CD147. CD147 modulates the synthesis and activity of soluble and membrane-bound [membrane-type MMPs (MT-MMPs)] in various contexts via homophilic/heterophilic cell interactions, vesicular shedding or cell-autonomous processes. CD147 also participates in inflammation, nutrient and drug transporter activity, microbial pathology and developmental processes. Despite the hundreds of manuscripts demonstrating CD147-mediated MMP regulation, the molecular underpinnings governing this process have not been fully elucidated. The present review summarizes our present knowledge of the complex regulatory systems influencing CD147 biology and provides a framework to understand how CD147 may influence MMP activity.
Collapse
|
40
|
Tumour antigen expression in hepatocellular carcinoma in a low-endemic western area. Br J Cancer 2015; 112:1911-20. [PMID: 26057582 PMCID: PMC4580401 DOI: 10.1038/bjc.2015.92] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 01/21/2015] [Accepted: 02/12/2015] [Indexed: 02/06/2023] Open
Abstract
Background: Identification of tumour antigens is crucial for the development of
vaccination strategies against hepatocellular carcinoma (HCC). Most studies
come from eastern-Asia, where hepatitis-B is the main cause of HCC. However,
tumour antigen expression is poorly studied in low-endemic, western areas
where the aetiology of HCC differs. Methods: We constructed tissue microarrays from resected HCC tissue of 133 patients.
Expression of a comprehensive panel of cancer-testis (MAGE-A1,
MAGE-A3/4, MAGE-A10, MAGE-C1, MAGE-C2, NY-ESO-1, SSX-2, sperm protein
17), onco-fetal (AFP, Glypican-3) and overexpressed tumour antigens
(Annexin-A2, Wilms tumor-1, Survivin, Midkine, MUC-1) was determined by
immunohistochemistry. Results: A higher prevalence of MAGE antigens was observed in patients with
hepatitis-B. Patients with expression of more tumour antigens in general had
better HCC-specific survival (P=0.022). The four tumour
antigens with high expression in HCC and no, or weak, expression in
surrounding tumour-free-liver tissue, were Annexin-A2, GPC-3, MAGE-C1 and
MAGE-C2, expressed in 90, 39, 17 and 20% of HCCs, respectively.
Ninety-five percent of HCCs expressed at least one of these four tumour
antigens. Interestingly, GPC-3 was associated with SALL-4 expression
(P=0.001), an oncofetal transcription factor highly
expressed in embryonal stem cells. SALL-4 and GPC-3 expression levels were
correlated with vascular invasion, poor differentiation and higher AFP
levels before surgery. Moreover, patients who co-expressed higher levels of
both GPC-3 and SALL-4 had worse HCC-specific survival
(P=0.018). Conclusions: We describe a panel of four tumour antigens with excellent coverage and good
tumour specificity in a western area, low-endemic for hepatitis-B. The
association between GPC-3 and SALL-4 is a novel finding and suggests that
GPC-3 targeting may specifically attack the tumour stem-cell
compartment.
Collapse
|
41
|
RNAi-mediated silencing of Anxa2 inhibits breast cancer cell proliferation by downregulating cyclin D1 in STAT3-dependent pathway. Breast Cancer Res Treat 2015; 153:263-75. [PMID: 26253946 DOI: 10.1007/s10549-015-3529-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/05/2015] [Indexed: 12/22/2022]
Abstract
Although the upregulated expression of Anxa2 has been implicated in carcinogenesis, cancer progression, and poor prognosis of cancer patients, the detailed molecular mechanisms involved in these processes remain unclear. In this study, we investigated the effect of Anxa2 downregulation with small interference RNA on breast cancer proliferation. To explore molecular mechanisms underlying Anxa2-mediated cancer cell proliferation. We analyzed cell cycle distribution and signaling pathways using semi-quantitative real-time PCR and Western blotting. Anxa2 depletion in breast cancer cells significantly inhibited cell proliferation by decelerating cell cycle progression. The retarded G1-to-S phase transition in Anxa2-silenced cells was attributed to the decreased levels of cyclin D1, which is a crucial promoting factor for cell proliferation because it regulates G1-to-S phase transition during cell cycle progression. We provided evidence that Anxa2 regulates epidermal growth factor-induced phosphorylation of STAT3. The reduced expression of phosphorylated STAT3 is the main factor responsible for decreased cyclin D1 levels in Anxa2-silenced breast cancer cells. Our results revealed the direct relationship between Anxa2 and activation of STAT3, a key transcription factor that plays a pivotal role in regulating breast cancer proliferation and survival. This study provides novel insights into the functions of Anxa2 as a critical molecule in cellular signal transduction and significantly improves our understanding of the mechanism through which Anxa2 regulates cell cycle and cancer cell proliferation.
Collapse
|
42
|
El-Abd N, Fawzy A, Elbaz T, Hamdy S. Evaluation of annexin A2 and as potential biomarkers for hepatocellular carcinoma. Tumour Biol 2015; 37:211-6. [PMID: 26189841 DOI: 10.1007/s13277-015-3524-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 09/04/2014] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) ranks as the fifth most common malignancy worldwide. Early detection of HCC is difficult due to the lack of reliable markers. We aimed to assess the diagnostic role of annexin A2 (ANXA2) and follistatin as serum markers for HCC patients. This study included 50 patients with confirmed diagnosis of HCC, 30 patients with chronic liver disease, and 20 normal persons. Subjects performed thorough assessment and laboratory investigations. Serum levels of alpha fetoprotein (AFP), annexin A2, and follistatin were measured using ELISA technique. Annexin A2 significantly increased in the sera of HCC patients (median, 69.6 ng/ml) compared to chronic liver disease patients (median, 16.8 ng/ml) and control group (median, 9.5 ng/ml) (p < 0.001). Follistatin was higher in sera of HCC patients (median, 24.4 ng/ml) compared to the control group (median, 4.2 ng/ml) (p = 0.002) while no such significant difference was achieved between HCC and chronic liver disease patients. At a cutoff level 29.3 ng/ml, area under the receiver-operating characteristic curve for ANXA2 was 0.910 (95 % confidence interval (CI) 0.84-0.97). For follistatin, it was 0.631 (95 % confidence interval 0.52-0.74) at cutoff level 15.7 ng/ml. Combining both annexin A2 and AFP increased the diagnostic efficiency (98 % specificity, LR + 41 and 97.6 % PPV). Follistatin combined with AFP provided 92 % specificity while lower sensitivity (50 %) was observed. Serum ANXA2 is a promising biomarker for HCC, certainly when measured with AFP. Follistatin could not differentiate between HCC and chronic liver disease, but its combination with AFP improved the specificity for HCC diagnosis.
Collapse
Affiliation(s)
- Nevine El-Abd
- Department of Clinical and Chemical Pathology, Cairo University, Cairo, Egypt
| | - Amal Fawzy
- Department of Clinical and Chemical Pathology, National Cancer Institute, Cairo, Egypt
| | - Tamer Elbaz
- Department of Endemic Hepatogastroenterology, Cairo University, Cairo, Egypt.
| | - Sherif Hamdy
- Department of Endemic Hepatogastroenterology, Cairo University, Cairo, Egypt
| |
Collapse
|
43
|
Xu XH, Pan W, Kang LH, Feng H, Song YQ. Association of annexin A2 with cancer development (Review). Oncol Rep 2015; 33:2121-8. [PMID: 25760910 DOI: 10.3892/or.2015.3837] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 02/20/2015] [Indexed: 01/11/2023] Open
Abstract
Annexin A2 (ANXA2) is a well-known calcium-dependent phospholipid binding protein widely distributed in the nucleus, cytoplasm and extracellular surface of various eukaryotic cells. It has been recognized as a pleiotropic protein affecting a wide range of molecular and cellular processes. Dysregulation and abnormal expression of ANXA2 are linked to a large number of prevalent diseases, including autoimmune and neurodegenerative disease, antiphospholipid syndrome, inflammation, diabetes mellitus and a series of cancers. Accumulating data suggest that ANXA2 is aberrantly expressed in a wide spectrum of cancers, and exerts profound effects on tumor cell adhesion, proliferation, apoptosis, invasion and metastasis as well as tumor neovascularization via different modes of action. However, despite significant research, our knowledge of the mechanism by which ANXA2 participates in cancer development remains fragmented. The present review systematically summarizes the effects of ANXA2 on tumor progression, in an attempt to gain an improved understanding of the underlying mechanisms and to provide a potential effective target for cancer therapy.
Collapse
Affiliation(s)
- Xiao-Heng Xu
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Wei Pan
- Department of Pediatrics, The Second Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Li-Hua Kang
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Hui Feng
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Yan-Qiu Song
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, P.R. China
| |
Collapse
|
44
|
Zhang Z, Zhang Y, Sun Q, Feng F, Huhe M, Mi L, Chen Z. Preclinical Pharmacokinetics, Tolerability, and Pharmacodynamics of Metuzumab, a Novel CD147 Human–Mouse Chimeric and Glycoengineered Antibody. Mol Cancer Ther 2014; 14:162-73. [DOI: 10.1158/1535-7163.mct-14-0104] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
CD147 and CD98 complex-mediated homotypic aggregation attenuates the CypA-induced chemotactic effect on Jurkat T cells. Mol Immunol 2014; 63:253-63. [PMID: 25089027 DOI: 10.1016/j.molimm.2014.07.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/11/2014] [Accepted: 07/05/2014] [Indexed: 12/27/2022]
Abstract
Homotypic cell aggregation plays important roles in physiological and pathological processes, including embryogenesis, immune responses, angiogenesis, tumor cell invasion and metastasis. CD147 has been implicated in most of these phenomena, and it was identified as a T cell activation-associated antigen due to its obvious up-regulation in activated T cells. However, the explicit function and mechanism of CD147 in T cells have not been fully elucidated. In this study, large and compact aggregates were observed in Jurkat T cells after treatment with the specific CD147 monoclonal antibody HAb18 or after the expression of CD147 was silenced by RNA interference, which indicated an inhibitory effect of CD147 in T cell homotypic aggregation. Knocking down CD147 expression resulted in a significant decrease in CD98, along with prominent cell aggregation, similar to that treated by CD98 and CD147 monoclonal antibodies. Furthermore, decreased cell chemotactic activity was observed following CD147- and CD98-mediated cell aggregation, and increased aggregation was correlated with a decrease in the chemotactic ability of the Jurkat T cells, suggesting that CD147- and CD98-mediated homotypic cell aggregation plays a negative role in T cell chemotaxis. Our data also showed that p-ERK, p-ZAP70, p-CD3ζ and p-LCK were significantly decreased in the CD147- and CD98-knocked down Jurkat T cells, which suggested that decreased CD147- and/or CD98-induced homotypic T cell aggregation and aggregation-inhibited chemotaxis might be associated with these signaling pathways. A role for CD147 in cell aggregation and chemotaxis was further indicated in primary CD4(+) T cells. Similarly, low expression of CD147 in primary T cells induced prominent cell aggregation and this aggregation attenuated primary T cell chemotactic ability in response to CypA. Our results have demonstrated the correlation between homotypic cell aggregation and the chemotactic response of T cells to CypA, and these data indicate that CD147 and CD98 might play important roles in cyclophilin-induced cell migration.
Collapse
|
46
|
Calabro SR, Maczurek AE, Morgan AJ, Tu T, Wen VW, Yee C, Mridha A, Lee M, d'Avigdor W, Locarnini SA, McCaughan GW, Warner FJ, McLennan SV, Shackel NA. Hepatocyte produced matrix metalloproteinases are regulated by CD147 in liver fibrogenesis. PLoS One 2014; 9:e90571. [PMID: 25076423 PMCID: PMC4116334 DOI: 10.1371/journal.pone.0090571] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 02/02/2014] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The classical paradigm of liver injury asserts that hepatic stellate cells (HSC) produce, remodel and turnover the abnormal extracellular matrix (ECM) of fibrosis via matrix metalloproteinases (MMPs). In extrahepatic tissues MMP production is regulated by a number of mechanisms including expression of the glycoprotein CD147. Previously, we have shown that CD147 is expressed on hepatocytes but not within the fibrotic septa in cirrhosis [1]. Therefore, we investigated if hepatocytes produce MMPs, regulated by CD147, which are capable of remodelling fibrotic ECM independent of the HSC. METHODS Non-diseased, fibrotic and cirrhotic livers were examined for MMP activity and markers of fibrosis in humans and mice. CD147 expression and MMP activity were co-localised by in-situ zymography. The role of CD147 was studied in-vitro with siRNA to CD147 in hepatocytes and in-vivo in mice with CCl4 induced liver injury using ãCD147 antibody intervention. RESULTS In liver fibrosis in both human and mouse tissue MMP expression and activity (MMP-2, -9, -13 and -14) increased with progressive injury and localised to hepatocytes. Additionally, as expected, MMPs were abundantly expressed by activated HSC. Further, with progressive fibrosis there was expression of CD147, which localised to hepatocytes but not to HSC. Functionally significant in-vitro regulation of hepatocyte MMP production by CD147 was demonstrated using siRNA to CD147 that decreased hepatocyte MMP-2 and -9 expression/activity. Further, in-vivo α-CD147 antibody intervention decreased liver MMP-2, -9, -13, -14, TGF-β and α-SMA expression in CCl4 treated mice compared to controls. CONCLUSION We have shown that hepatocytes produce active MMPs and that the glycoprotein CD147 regulates hepatocyte MMP expression. Targeting CD147 regulates hepatocyte MMP production both in-vitro and in-vivo, with the net result being reduced fibrotic matrix turnover in-vivo. Therefore, CD147 regulation of hepatocyte MMP is a novel pathway that could be targeted by future anti-fibrogenic agents.
Collapse
Affiliation(s)
- Sarah R. Calabro
- Liver Cell Biology, Centenary Institute, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Annette E. Maczurek
- Liver Cell Biology, Centenary Institute, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Alison J. Morgan
- Liver Cell Biology, Centenary Institute, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Thomas Tu
- Liver Cell Biology, Centenary Institute, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Victoria W. Wen
- Liver Cell Biology, Centenary Institute, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Christine Yee
- Liver Cell Biology, Centenary Institute, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Auvro Mridha
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Maggie Lee
- Liver Cell Biology, Centenary Institute, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - William d'Avigdor
- Liver Cell Biology, Centenary Institute, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | | | - Geoffrey W. McCaughan
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
- A.W. Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Camperdown, Sydney, NSW, Australia
- Liver Injury and Cancer, Centenary Institute, Sydney, NSW, Australia
| | - Fiona J. Warner
- Liver Cell Biology, Centenary Institute, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Susan V. McLennan
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
- Department of Endocrinology, Royal Prince Alfred Hospital, Camperdown, Sydney, NSW, Australia
| | - Nicholas A. Shackel
- Liver Cell Biology, Centenary Institute, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
- A.W. Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Camperdown, Sydney, NSW, Australia
| |
Collapse
|
47
|
Liang Q, Han Q, Huang W, Nan G, Xu BQ, Jiang JL, Chen ZN. HAb18G/CD147 regulates vinculin-mediated focal adhesion and cytoskeleton organization in cultured human hepatocellular carcinoma cells. PLoS One 2014; 9:e102496. [PMID: 25033086 PMCID: PMC4102505 DOI: 10.1371/journal.pone.0102496] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 06/18/2014] [Indexed: 11/19/2022] Open
Abstract
Focal adhesions (FAs), integrin-mediated macromolecular complexes located at the cell membrane extracellular interface, have been shown to regulate cell adhesion and migration. Our previous studies have indicated that HAb18G/CD147 (CD147) is involved in cytoskeleton reorganization and FA formation in human hepatocellular carcinoma (HCC) cells. However, the precise mechanisms underlying these processes remain unclear. In the current study, we determined that CD147 was involved in vinculin-mediated FA focal adhesion formation in HCC cells. We also found that deletion of CD147 led to reduced vinculin-mediated FA areas (P<0.0001), length/width ratios (P<0.0001), and mean intensities (P<0.0001). CD147 promoted lamellipodia formation by localizing Arp2/3 to the leading edge of the cell. Deletion of CD147 significantly reduced the fluorescence (t1/2) recovery times (22.7±3.3 s) of vinculin-mediated focal adhesions (P<0.0001). In cell-spreading assays, CD147 was found to be essential for dynamic focal adhesion enlargement and disassembly. Furthermore, the current data showed that CD147 reduced tyrosine phosphorylation in vinculin-mediated focal adhesions, and enhanced the accumulation of the acidic phospholipid phosphatidylinositol-4, 5-bisphosphate (PIP2). Together, these results revealed that CD147 is involved in vinculin-mediated focal adhesion formation, which subsequently promotes cytoskeleton reorganization to facilitate invasion and migration of human HCC cells.
Collapse
Affiliation(s)
- Qiang Liang
- Cell Engineering Research Centre and Department of Cell Biology, State Key Discipline of Cell Biology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Qing Han
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi’ an, Shaanxi, China
| | - Wan Huang
- Cell Engineering Research Centre and Department of Cell Biology, State Key Discipline of Cell Biology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Gang Nan
- Cell Engineering Research Centre and Department of Cell Biology, State Key Discipline of Cell Biology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Bao-Qing Xu
- Cell Engineering Research Centre and Department of Cell Biology, State Key Discipline of Cell Biology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Jian-Li Jiang
- Cell Engineering Research Centre and Department of Cell Biology, State Key Discipline of Cell Biology, Fourth Military Medical University, Xi’an, Shaanxi, China
- * E-mail: (JLJ); (ZNC)
| | - Zhi-Nan Chen
- Cell Engineering Research Centre and Department of Cell Biology, State Key Discipline of Cell Biology, Fourth Military Medical University, Xi’an, Shaanxi, China
- * E-mail: (JLJ); (ZNC)
| |
Collapse
|
48
|
Abstract
Our recent research identified the protein annexin A2 to be regulated by ovarian cancer-peritoneal cell interactions. This study investigated the role of annexin A2 in ovarian cancer metastasis and its potential utility as a novel therapeutic target, using in vitro and in vivo ovarian cancer models. Annexin A2 expression was examined by qRT-PCR and western blotting in ovarian cancer cell lines and immunohistochemistry in serous ovarian carcinoma tissues. Annexin A2 siRNAs were used to evaluate the effects of annexin A2 suppression on ovarian cancer cell adhesion, motility, and invasion. Furthermore, annexin A2 neutralizing antibodies were used to examine the role of annexin A2 in tumor invasion and metastasis in vivo using a chick chorioallantoic membrane assay and an intraperitoneal xenograft mouse model. Strong annexin A2 immunostaining was observed in 90% (38/42) of the serous ovarian cancer cells and was significantly increased in the cancer-associated stroma compared to non-malignant ovarian tissues. Annexin A2 siRNA significantly inhibited the motility and invasion of serous ovarian cancer cells and adhesion to the peritoneal cells. Annexin A2 neutralizing antibodies significantly inhibited OV-90 cell motility and invasion in vitro and in vivo using the chick chorioallantoic membrane assay. The growth of SKOV-3 cells and their peritoneal dissemination in nude mice was significantly inhibited by annexin A2 neutralizing antibodies. Annexin A2 plays a critical role in ovarian cancer metastasis and is therefore a potential novel therapeutic target against ovarian cancer.
Collapse
|
49
|
Lu CM, Lin JJ, Huang HH, Ko YC, Hsu JL, Chen JC, Din ZH, Wu YJ. A panel of tumor markers, calreticulin, annexin A2, and annexin A3 in upper tract urothelial carcinoma identified by proteomic and immunological analysis. BMC Cancer 2014; 14:363. [PMID: 24884814 PMCID: PMC4039341 DOI: 10.1186/1471-2407-14-363] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 05/20/2014] [Indexed: 12/25/2022] Open
Abstract
Background Upper tract urothelial carcinoma (UTUC) is a tumor with sizable metastases and local recurrence. It has a worse prognosis than bladder cancer. This study was designed to investigate the urinary potential tumor markers of UTUC. Methods Between January 2008 and January 2009, urine was sampled from 13 patients with UTUC and 20 healthy adults. The current study identified biomarkers for UTUC using non-fixed volume stepwise weak anion exchange chromatography for fractionation of urine protein prior to two-dimensional gel electrophoresis. Results Fifty five differential proteins have been determined by comparing with the 2-DE maps of the urine of UTUC patients and those of healthy people. Western blotting analysis and immunohistochemistry of tumor tissues and normal tissues from patients with UTUC were carried out to further verify five possible UTUC biomarkers, including zinc-alpha-2-glycoprotein, calreticulin, annexin A2, annexin A3 and haptoglobin. The data of western blot and immunohistochemical analysis are consistent with the 2-DE data. Combined the experimental data in the urine and in tumor tissues collected from patients with UTUC, the crucial over-expressed proteins are calreticulin, annexin A2, and annexin A3. Conclusions Calreticulin, annexin A2, and annexin A3 are very likely a panel of biomarkers with potential value for UTUC diagnosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yu-Jen Wu
- Department of Beauty Science, Meiho University, Pingtung, Taiwan.
| |
Collapse
|
50
|
Novel regulators of spermatogenesis. Semin Cell Dev Biol 2014; 29:31-42. [PMID: 24594193 DOI: 10.1016/j.semcdb.2014.02.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/14/2014] [Accepted: 02/17/2014] [Indexed: 02/07/2023]
Abstract
Spermatogenesis is a multistep process that supports the production of millions of sperm daily. Understanding of the molecular mechanisms that regulate spermatogenesis has been a major focus for decades. Yet, the regulators involved in different cellular processes of spermatogenesis remain largely unknown. Human diseases that result in defective spermatogenesis have provided hints on the molecular mechanisms regulating this process. In this review, we have summarized recent findings on the function and signaling mechanisms of several genes that are known to be associated with disease or pathological processes, including CFTR, CD147, YWK-II and CT genes, and discuss their potential roles in regulating different processes of spermatogenesis.
Collapse
|