1
|
Zhuang JK, Huang ZR, Qin W, Li CL, Li Q, Xiang C, Tuo YH, Liu Z, Chen QY, Shi ZS. MicroRNAs Associated with Parenchymal Hematoma After Endovascular Mechanical Reperfusion for Acute Ischemic Stroke in Rats. Biomedicines 2025; 13:449. [PMID: 40002863 PMCID: PMC11853160 DOI: 10.3390/biomedicines13020449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/30/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Hemorrhagic transformation after endovascular thrombectomy predicts poor outcomes in acute ischemic stroke with large-vessel occlusion. The roles of microRNAs (miRNAs) in the pathogenesis of parenchymal hematoma (PH) after endovascular thrombectomy still remain unclear. This study aimed to investigate the miRNA and mRNA regulatory network associated with PH after mechanical reperfusion in an animal stroke model and an oxygen-glucose deprivation/reoxygenation (OGD/R) model. Methods: Twenty-five miRNAs were assessed in a mechanical reperfusion-induced hemorrhage transformation model in rats under hyperglycemic conditions receiving 5 h middle cerebral artery occlusion. The differentially expressed miRNAs associated with PH were assessed in a neuron, astrocyte, microglia, brain microvascular endothelial cell (BMEC), and pericyte model of OGD/R. The predicted target genes of the differentially expressed miRNAs were further assessed in the animal model. The miRNA-mRNA regulatory network of PH was established. Results: Thirteen down-regulated miRNAs (miRNA-29a-5p, miRNA-29c-3p, miRNA-126a-5p, miRNA-132-3p, miRNA-136-3p, miRNA-142-3p, miRNA-153-5p, miRNA-218a-5p, miRNA-219a-2-3p, miRNA-369-5p, miRNA-376a-5p, miRNA-376b-5p, and miRNA-383-5p) and one up-regulated miRNA (miRNA-195-3p) were found in the rat peri-infarct with PH after mechanical reperfusion. Of these 14 PH-related miRNAs, 10 were significantly differentially expressed in at least two of the five neuron, astrocyte, microglia, BMEC, and pericyte models after OGD/R, consistent with the animal stroke model results. Thirty-one predicted hub target genes were significantly differentially expressed in the rat peri-infarct with PH after mechanical reperfusion. Forty-nine miRNA-mRNA regulatory axes of PH were revealed, and they were related to the mechanisms of inflammation, immunity, oxidative stress, and apoptosis. Conclusions: Fourteen miRNAs were associated with PH after mechanical reperfusion in the rat stroke and the OGD/R models. Simultaneously differentially expressed miRNAs and related genes in several cells of the neurovascular unit may serve as valuable targets for PH after endovascular thrombectomy in acute ischemic stroke.
Collapse
Affiliation(s)
- Jin-Kun Zhuang
- Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; (J.-K.Z.); (Z.-R.H.); (W.Q.); (C.-L.L.); (Q.L.); (C.X.)
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China;
| | - Zhong-Run Huang
- Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; (J.-K.Z.); (Z.-R.H.); (W.Q.); (C.-L.L.); (Q.L.); (C.X.)
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China;
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Foshan 528208, China
| | - Wang Qin
- Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; (J.-K.Z.); (Z.-R.H.); (W.Q.); (C.-L.L.); (Q.L.); (C.X.)
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China;
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Foshan 528208, China
| | - Chang-Luo Li
- Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; (J.-K.Z.); (Z.-R.H.); (W.Q.); (C.-L.L.); (Q.L.); (C.X.)
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China;
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Foshan 528208, China
| | - Qi Li
- Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; (J.-K.Z.); (Z.-R.H.); (W.Q.); (C.-L.L.); (Q.L.); (C.X.)
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China;
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Foshan 528208, China
| | - Chun Xiang
- Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; (J.-K.Z.); (Z.-R.H.); (W.Q.); (C.-L.L.); (Q.L.); (C.X.)
| | - Yong-Hua Tuo
- Department of Neurosurgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; (Y.-H.T.); (Z.L.)
- Department of Neurosurgery, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Zhong Liu
- Department of Neurosurgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; (Y.-H.T.); (Z.L.)
- Department of Neurosurgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Qian-Yu Chen
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China;
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Foshan 528208, China
| | - Zhong-Song Shi
- Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; (J.-K.Z.); (Z.-R.H.); (W.Q.); (C.-L.L.); (Q.L.); (C.X.)
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China;
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Foshan 528208, China
- Department of Neurosurgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; (Y.-H.T.); (Z.L.)
- Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
2
|
Beard DJ, Brown LS, Morris GP, Couch Y, Adriaanse BA, Karali CS, Schneider AM, Howells DW, Redzic ZB, Sutherland BA, Buchan AM. Rapamycin Treatment Reduces Brain Pericyte Constriction in Ischemic Stroke. Transl Stroke Res 2024:10.1007/s12975-024-01298-x. [PMID: 39331260 DOI: 10.1007/s12975-024-01298-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/18/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024]
Abstract
The contraction and subsequent death of brain pericytes may play a role in microvascular no-reflow following the reopening of an occluded artery during ischemic stroke. Mammalian target of rapamycin (mTOR) inhibition has been shown to reduce motility/contractility of various cancer cell lines and reduce neuronal cell death in stroke. However, the effects of mTOR inhibition on brain pericyte contraction and death during ischemia have not yet been investigated. Cultured pericytes exposed to simulated ischemia for 12 h in vitro contracted after less than 1 h, which was about 7 h prior to cell death. Rapamycin significantly reduced the rate of pericyte contraction during ischemia; however, it did not have a significant effect on pericyte viability at any time point. Rapamycin appeared to reduce pericyte contraction through a mechanism that is independent of changes in intracellular calcium. Using a mouse model of middle cerebral artery occlusion, we showed that rapamycin significantly increased the diameter of capillaries underneath pericytes and increased the number of open capillaries 30 min following recanalisation. Our findings suggest that rapamycin may be a useful adjuvant therapeutic to reduce pericyte contraction and improve cerebral reperfusion post-stroke.
Collapse
Affiliation(s)
- Daniel J Beard
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia.
| | - Lachlan S Brown
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | - Gary P Morris
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | - Yvonne Couch
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Bryan A Adriaanse
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | - Anna M Schneider
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - David W Howells
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | - Zoran B Redzic
- Department of Physiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Brad A Sutherland
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Australia.
| | - Alastair M Buchan
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Brown LS, King NE, Courtney JM, Gasperini RJ, Foa L, Howells DW, Sutherland BA. Brain pericytes in culture display diverse morphological and functional phenotypes. Cell Biol Toxicol 2023; 39:2999-3014. [PMID: 37322257 PMCID: PMC10693527 DOI: 10.1007/s10565-023-09814-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/23/2023] [Indexed: 06/17/2023]
Abstract
Pericytes play several important functions in the neurovascular unit including contractile control of capillaries, maintenance of the BBB, regulation of angiogenesis, and neuroinflammation. There exists a continuum of pericyte subtypes along the vascular tree which exhibit both morphological and transcriptomic differences. While different functions have been associated with the pericyte subtypes in vivo, numerous recent publications have used a primary human brain vascular pericytes (HBVP) cell line where this pericyte heterogeneity has not been considered. Here, we used primary HBVP cultures, high-definition imaging, cell motility tracking, and immunocytochemistry to characterise morphology, protein expression, and contractile behaviour to determine whether heterogeneity of pericytes also exists in cultures. We identified five distinct morphological subtypes that were defined using both qualitative criteria and quantitative shape analysis. The proportion of each subtype present within the culture changed as passage number increased, but pericytes did not change morphological subtype over short time periods. The rate and extent of cellular and membrane motility differed across the subtypes. Immunocytochemistry revealed differential expression of alpha-smooth muscle actin (αSMA) across subtypes. αSMA is essential for cell contractility, and consequently, only subtypes with high αSMA expression contracted in response to physiological vasoconstrictors endothelin-1 (ET1) and noradrenaline (NA). We conclude that there are distinct morphological subtypes in HBVP culture, which display different behaviours. This has significance for the use of HBVP when modelling pericyte physiology in vitro where relevance to in vivo pericyte subtypes along the vascular tree must be considered.
Collapse
Affiliation(s)
- Lachlan S Brown
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Level 4 Medical Sciences Precinct, 17 Liverpool St, Hobart, TAS, 7000, Australia
| | - Natalie E King
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Level 4 Medical Sciences Precinct, 17 Liverpool St, Hobart, TAS, 7000, Australia
| | - Jo-Maree Courtney
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Level 4 Medical Sciences Precinct, 17 Liverpool St, Hobart, TAS, 7000, Australia
| | - Robert J Gasperini
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Level 4 Medical Sciences Precinct, 17 Liverpool St, Hobart, TAS, 7000, Australia
| | - Lisa Foa
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Level 4 Medical Sciences Precinct, 17 Liverpool St, Hobart, TAS, 7000, Australia
- School of Psychological Sciences, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - David W Howells
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Level 4 Medical Sciences Precinct, 17 Liverpool St, Hobart, TAS, 7000, Australia
| | - Brad A Sutherland
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Level 4 Medical Sciences Precinct, 17 Liverpool St, Hobart, TAS, 7000, Australia.
| |
Collapse
|
4
|
Li J, Dai F, Kou X, Wu B, Xu J, He S. β-Actin: An Emerging Biomarker in Ischemic Stroke. Cell Mol Neurobiol 2023; 43:683-696. [PMID: 35556192 PMCID: PMC11415192 DOI: 10.1007/s10571-022-01225-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/10/2022] [Indexed: 11/03/2022]
Abstract
At present, the diagnosis of ischemic stroke mainly depends on neuroimaging technology, but it still has many limitations. Therefore, it is very important to find new biomarkers of ischemic stroke. Recently, β-actin has attracted extensive attention as a biomarker of a variety of cancers. Although several recent studies have been investigating its role in ischemic stroke and other cerebrovascular diseases, the understanding of this emerging biomarker in neurology is still limited. We examined human and preclinical studies to gain a comprehensive understanding of the literature on the subject. Most relevant literatures focus on preclinical research, and pay more attention to the role of β-actin in the process of cerebral ischemia, but some recent literatures reported that in human studies, serum β-actin increased significantly in the early stage of acute cerebral ischemia. This review will investigate the basic biology of β-actin, pay attention to the potential role of serum β-actin as an early diagnostic blood biomarker of ischemic stroke, and explore its potential mechanism in ischemic stroke and new strategies for stroke treatment in the future.
Collapse
Affiliation(s)
- Jiaqian Li
- Department of Neurology, School of Medicine, Zhoushan Hospital, Zhejiang University, Zhoushan, 316000, Zhejiang Province, China
| | - Fangyu Dai
- Department of Neurology, School of Medicine, Zhoushan Hospital, Zhejiang University, Zhoushan, 316000, Zhejiang Province, China
| | - Xuelian Kou
- Department of Neurology, School of Medicine, Zhoushan Hospital, Zhejiang University, Zhoushan, 316000, Zhejiang Province, China
| | - Bin Wu
- Department of Neurology, School of Medicine, Zhoushan Hospital, Zhejiang University, Zhoushan, 316000, Zhejiang Province, China
| | - Jie Xu
- Department of Neurology, School of Medicine, Zhoushan Hospital, Zhejiang University, Zhoushan, 316000, Zhejiang Province, China
| | - Songbin He
- Department of Neurology, School of Medicine, Zhoushan Hospital, Zhejiang University, Zhoushan, 316000, Zhejiang Province, China.
| |
Collapse
|
5
|
Yang Y, Zhao X, Zhu Z, Zhang L. Vascular dementia: A microglia's perspective. Ageing Res Rev 2022; 81:101734. [PMID: 36113763 DOI: 10.1016/j.arr.2022.101734] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/28/2022] [Accepted: 09/11/2022] [Indexed: 01/31/2023]
Abstract
Vascular dementia (VaD) is a second most common form of age-related dementia. It is characterized by cognitive impairment associated with vascular pathology, symptoms mainly caused by cerebral damage due to inadequate blood flow to the brain. The pathogenesis of VaD is complex, and a growing body of literature emphasizes on the involvement of microglia in disease development and progression. Here, we review the current knowledge on the role of microglia in regulating neuroinflammation under the pathogenesis of VaD. The commonly used animal and cell models for understanding the disease pathogenesis were summarized. The mechanisms by which microglia contribute to VaD are multifactorial, and we specifically focus on some of the predominant functions of microglia, including chemotaxis, secretory property, phagocytosis, and its crosstalk with other neurovascular unit cells. Finally, potential therapeutic strategies targeting microglia-modulated neuroinflammation are discussed.
Collapse
Affiliation(s)
- Yi Yang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Hangzhou Key Laboratory of Medical Neurobiology, Hangzhou Normal University, Hangzhou 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China.
| | - Xinyuan Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Hangzhou Key Laboratory of Medical Neurobiology, Hangzhou Normal University, Hangzhou 311121, China
| | - Zirui Zhu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Hangzhou Key Laboratory of Medical Neurobiology, Hangzhou Normal University, Hangzhou 311121, China
| | - Lihui Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Hangzhou Key Laboratory of Medical Neurobiology, Hangzhou Normal University, Hangzhou 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
6
|
Liu C, Xie J, Sun S, Li H, Li T, Jiang C, Chen X, Wang J, Le A, Wang J, Li Z, Wang J, Wang W. Hemorrhagic Transformation After Tissue Plasminogen Activator Treatment in Acute Ischemic Stroke. Cell Mol Neurobiol 2022; 42:621-646. [PMID: 33125600 PMCID: PMC11441267 DOI: 10.1007/s10571-020-00985-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/22/2020] [Indexed: 12/17/2022]
Abstract
Hemorrhagic transformation (HT) is a common complication after thrombolysis with recombinant tissue-type plasminogen activator (rt-PA) in ischemic stroke. In this article, recent research progress of HT in vivo and in vitro studies was reviewed. We have discussed new potential mechanisms and possible experimental models of HT development, as well as possible biomarkers and treatment methods. Meanwhile, we compared and analyzed rodent models, large animal models and in vitro BBB models of HT, and the limitations of these models were discussed. The molecular mechanism of HT was investigated in terms of BBB disruption, rt-PA neurotoxicity and the effect of neuroinflammation, matrix metalloproteinases, reactive oxygen species. The clinical features to predict HT were represented including blood biomarkers and clinical factors. Recent progress in neuroprotective strategies to improve HT after stroke treated with rt-PA is outlined. Further efforts need to be made to reduce the risk of HT after rt-PA therapy and improve the clinical prognosis of patients with ischemic stroke.
Collapse
Affiliation(s)
- Chengli Liu
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Jie Xie
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Shanshan Sun
- Department of Ultrasound Imaging, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Hui Li
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Tianyu Li
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Chao Jiang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Xuemei Chen
- Department of Anatomy, College of Basic Medical Sciences, Zhengzhou University, Henan, 450000, People's Republic of China
| | - Junmin Wang
- Department of Anatomy, College of Basic Medical Sciences, Zhengzhou University, Henan, 450000, People's Republic of China
| | - Anh Le
- Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Jiarui Wang
- The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Zhanfei Li
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Jian Wang
- Department of Anatomy, College of Basic Medical Sciences, Zhengzhou University, Henan, 450000, People's Republic of China.
| | - Wei Wang
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
7
|
Baumann J, Tsao CC, Patkar S, Huang SF, Francia S, Magnussen SN, Gassmann M, Vogel J, Köster-Hegmann C, Ogunshola OO. Pericyte, but not astrocyte, hypoxia inducible factor-1 (HIF-1) drives hypoxia-induced vascular permeability in vivo. Fluids Barriers CNS 2022; 19:6. [PMID: 35033138 PMCID: PMC8760662 DOI: 10.1186/s12987-021-00302-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/22/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Ways to prevent disease-induced vascular modifications that accelerate brain damage remain largely elusive. Improved understanding of perivascular cell signalling could provide unparalleled insight as these cells impact vascular stability and functionality of the neurovascular unit as a whole. Identifying key drivers of astrocyte and pericyte responses that modify cell-cell interactions and crosstalk during injury is key. At the cellular level, injury-induced outcomes are closely entwined with activation of the hypoxia-inducible factor-1 (HIF-1) pathway. Studies clearly suggest that endothelial HIF-1 signalling increases blood-brain barrier permeability but the influence of perivascular HIF-1 induction on outcome is unknown. Using novel mouse lines with astrocyte and pericyte targeted HIF-1 loss of function, we herein show that vascular stability in vivo is differentially impacted by perivascular hypoxia-induced HIF-1 stabilization. METHODS To facilitate HIF-1 deletion in adult mice without developmental complications, novel Cre-inducible astrocyte-targeted (GFAP-CreERT2; HIF-1αfl/fl and GLAST-CreERT2; HIF-1αfl/fl) and pericyte-targeted (SMMHC-CreERT2; HIF-1αfl/fl) transgenic animals were generated. Mice in their home cages were exposed to either normoxia (21% O2) or hypoxia (8% O2) for 96 h in an oxygen-controlled humidified glove box. All lines were similarly responsive to hypoxic challenge and post-Cre activation showed significantly reduced HIF-1 target gene levels in the individual cells as predicted. RESULTS Unexpectedly, hypoxia-induced vascular remodelling was unaffected by HIF-1 loss of function in the two astrocyte lines but effectively blocked in the pericyte line. In correlation, hypoxia-induced barrier permeability and water accumulation were abrogated only in pericyte targeted HIF-1 loss of function mice. In contrast to expectation, brain and serum levels of hypoxia-induced VEGF, TGF-β and MMPs (genes known to mediate vascular remodelling) were unaffected by HIF-1 deletion in all lines. However, in agreement with the permeability data, immunofluorescence and electron microscopy showed clear prevention of hypoxia-induced tight junction disruption in the pericyte loss of function line. CONCLUSION This study shows that pericyte but not astrocyte HIF-1 stabilization modulates endothelial tight junction functionality and thereby plays a pivotal role in hypoxia-induced vascular dysfunction. Whether the cells respond similarly or differentially to other injury stimuli will be of significant relevance.
Collapse
Affiliation(s)
- Julia Baumann
- Institute of Veterinary Physiology and Center for Clinical Studies, University of Zurich, Vetsuisse Faculty, Winterthurerstrasse 260, CH-8057, Zurich, Switzerland
| | - Chih-Chieh Tsao
- Institute of Veterinary Physiology and Center for Clinical Studies, University of Zurich, Vetsuisse Faculty, Winterthurerstrasse 260, CH-8057, Zurich, Switzerland
| | - Shalmali Patkar
- Institute of Veterinary Physiology and Center for Clinical Studies, University of Zurich, Vetsuisse Faculty, Winterthurerstrasse 260, CH-8057, Zurich, Switzerland
| | - Sheng-Fu Huang
- Institute of Veterinary Physiology and Center for Clinical Studies, University of Zurich, Vetsuisse Faculty, Winterthurerstrasse 260, CH-8057, Zurich, Switzerland
| | - Simona Francia
- Institute of Veterinary Physiology and Center for Clinical Studies, University of Zurich, Vetsuisse Faculty, Winterthurerstrasse 260, CH-8057, Zurich, Switzerland
| | - Synnøve Norvoll Magnussen
- Institute of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Max Gassmann
- Institute of Veterinary Physiology and Center for Clinical Studies, University of Zurich, Vetsuisse Faculty, Winterthurerstrasse 260, CH-8057, Zurich, Switzerland
| | - Johannes Vogel
- Institute of Veterinary Physiology and Center for Clinical Studies, University of Zurich, Vetsuisse Faculty, Winterthurerstrasse 260, CH-8057, Zurich, Switzerland
| | - Christina Köster-Hegmann
- Institute of Veterinary Physiology and Center for Clinical Studies, University of Zurich, Vetsuisse Faculty, Winterthurerstrasse 260, CH-8057, Zurich, Switzerland
| | - Omolara O Ogunshola
- Institute of Veterinary Physiology and Center for Clinical Studies, University of Zurich, Vetsuisse Faculty, Winterthurerstrasse 260, CH-8057, Zurich, Switzerland.
| |
Collapse
|
8
|
Moya Gómez A, Font LP, Brône B, Bronckaers A. Electromagnetic Field as a Treatment for Cerebral Ischemic Stroke. Front Mol Biosci 2021; 8:742596. [PMID: 34557522 PMCID: PMC8453690 DOI: 10.3389/fmolb.2021.742596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/04/2021] [Indexed: 11/24/2022] Open
Abstract
Cerebral stroke is a leading cause of death and adult-acquired disability worldwide. To this date, treatment options are limited; hence, the search for new therapeutic approaches continues. Electromagnetic fields (EMFs) affect a wide variety of biological processes and accumulating evidence shows their potential as a treatment for ischemic stroke. Based on their characteristics, they can be divided into stationary, pulsed, and sinusoidal EMF. The aim of this review is to provide an extensive literature overview ranging from in vitro to even clinical studies within the field of ischemic stroke of all EMF types. A thorough comparison between EMF types and their effects is provided, as well as an overview of the signal pathways activated in cell types relevant for ischemic stroke such as neurons, microglia, astrocytes, and endothelial cells. We also discuss which steps have to be taken to improve their therapeutic efficacy in the frame of the clinical translation of this promising therapy.
Collapse
Affiliation(s)
- Amanda Moya Gómez
- UHasselt Hasselt University, BIOMED, Diepenbeek, Belgium.,Department of Biomedical Engineering, Faculty of Telecommunications, Informatics and Biomedical Engineering, Universidad de Oriente, Santiago de Cuba, Cuba
| | - Lena Pérez Font
- Centro Nacional de Electromagnetismo Aplicado, Universidad de Oriente, Santiago de Cuba, Cuba
| | - Bert Brône
- UHasselt Hasselt University, BIOMED, Diepenbeek, Belgium
| | | |
Collapse
|
9
|
Pericyte hypoxia-inducible factor-1 (HIF-1) drives blood-brain barrier disruption and impacts acute ischemic stroke outcome. Angiogenesis 2021; 24:823-842. [PMID: 34046769 PMCID: PMC8487886 DOI: 10.1007/s10456-021-09796-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/04/2021] [Indexed: 12/19/2022]
Abstract
Pericytes play essential roles in blood-brain barrier integrity and their dysfunction is implicated in neurological disorders such as stroke although the underlying mechanisms remain unknown. Hypoxia-inducible factor-1 (HIF-1), a master regulator of injury responses, has divergent roles in different cells especially during stress scenarios. On one hand HIF-1 is neuroprotective but on the other it induces vascular permeability. Since pericytes are critical for barrier stability, we asked if pericyte HIF-1 signaling impacts barrier integrity and injury severity in a mouse model of ischemic stroke. We show that pericyte HIF-1 loss of function (LoF) diminishes ischemic damage and barrier permeability at 3 days reperfusion. HIF-1 deficiency preserved barrier integrity by reducing pericyte death thereby maintaining vessel coverage and junctional protein organization, and suppressing vascular remodeling. Importantly, considerable improvements in sensorimotor function were observed in HIF-1 LoF mice indicating that better vascular functionality post stroke improves outcome. Thus, boosting vascular integrity by inhibiting pericytic HIF-1 activation and/or increasing pericyte survival may be a lucrative option to accelerate recovery after severe brain injury.
Collapse
|
10
|
Riemann S, Kolibabka M, Busch S, Lin J, Hoffmann S, Gretz N, Feng Y, Wohlfart P, Hammes HP. Microglial Activation Is Associated With Vasoprotection in a Rat Model of Inflammatory Retinal Vasoregression. Front Physiol 2021; 12:660164. [PMID: 33981252 PMCID: PMC8107726 DOI: 10.3389/fphys.2021.660164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/16/2021] [Indexed: 02/02/2023] Open
Abstract
Vascular dysfunction and vasoregression are hallmarks of a variety of inflammatory central nervous system disorders and inflammation-related retinal diseases like diabetic retinopathy. Activation of microglia and the humoral innate immune system are contributing factors. Anti-inflammatory approaches have been proposed as therapies for neurovascular diseases, which include the modulation of microglial activation. The present study aimed at investigating the effects of microglial activation by clodronate-coated liposomes on vasoregression in a model of retinal degeneration. Clodronate treatment over 5 weeks led to an increase in activated CD74+ microglia and completely prevented acellular capillaries and pericyte loss. Gene expression analyses indicated that vasoprotection was due to the induction of vasoprotective factors such as Egr1, Stat3, and Ahr while expression of pro-inflammatory genes remained unchanged. We concluded that activated microglia led to a shift toward induction of pleiotropic protective pathways supporting vasoprotection in neurovascular retinal diseases.
Collapse
Affiliation(s)
- Sarah Riemann
- 5th Medical Department, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Matthias Kolibabka
- 5th Medical Department, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stephanie Busch
- 5th Medical Department, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jihong Lin
- 5th Medical Department, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sigrid Hoffmann
- Medical Research Center, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Norbert Gretz
- Medical Research Center, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Yuxi Feng
- Experimental Pharmacology, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Paulus Wohlfart
- Sanofi Aventis Deutschland GmbH, TA Diabetes R&D, Frankfurt, Germany
| | - Hans-Peter Hammes
- 5th Medical Department, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
11
|
Ma G, Pan Z, Kong L, Du G. Neuroinflammation in hemorrhagic transformation after tissue plasminogen activator thrombolysis: Potential mechanisms, targets, therapeutic drugs and biomarkers. Int Immunopharmacol 2020; 90:107216. [PMID: 33296780 DOI: 10.1016/j.intimp.2020.107216] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/18/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022]
Abstract
Hemorrhagic transformation (HT) is a common and serious complication following ischemic stroke, especially after tissue plasminogen activator (t-PA) thrombolysis, which is associated with increased mortality and disability. Due to the unknown mechanisms and targets of HT, there are no effective therapeutic drugs to decrease the incidence of HT. In recent years, many studies have found that neuroinflammation is closely related to the occurrence and development of HT after t-PA thrombolysis, including glial cell activation in the brain, peripheral inflammatory cell infiltration and the release of inflammatory factors, involving inflammation-related targets such as NF-κB, MAPK, HMGB1, TLR4 and NLRP3. Some drugs with anti-inflammatory activity have been shown to protect the BBB and reduce the risk of HT in preclinical experiments and clinical trials, including minocycline, fingolimod, tacrolimus, statins and some natural products. In addition, the changes in MMP-9, VAP-1, NLR, sICAM-1 and other inflammatory factors are closely related to the occurrence of HT, which may be potential biomarkers for the diagnosis and prognosis of HT. In this review, we summarize the potential inflammation-related mechanisms, targets, therapeutic drugs, and biomarkers associated with HT after t-PA thrombolysis and discuss the relationship between neuroinflammation and HT, which provides a reference for research on the mechanisms, prevention and treatment drugs, diagnosis and prognosis of HT.
Collapse
Affiliation(s)
- Guodong Ma
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Centre for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zirong Pan
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Centre for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Linglei Kong
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Centre for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Guanhua Du
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Centre for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
12
|
Cell-specific metabolomic responses to injury: novel insights into blood-brain barrier modulation. Sci Rep 2020; 10:7760. [PMID: 32385409 PMCID: PMC7210983 DOI: 10.1038/s41598-020-64722-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 04/20/2020] [Indexed: 12/13/2022] Open
Abstract
On one hand blood-brain barrier (BBB) disturbance aggravates disease progression, on the other it prevents drug access and impedes therapeutic efficacy. Effective ways to modulate barrier function and resolve these issues are sorely needed. Convinced that better understanding of cell-oriented BBB responses could provide valuable insight, and the fact that metabolic dysregulation is prominent in many vascular-related pathological processes associated with BBB disturbance, we hypothesized that differential cell-specific metabolic adaptation majorly influences physiological and pathological barrier functionality. Untargeted liquid chromatography-mass spectrometry (LC-MS) metabolomic profiling was used to obtain individual biochemical fingerprints of primary astrocytes (AC) and brain endothelial cells (EC) during normoxic conditions and increasing hypoxic/ischemic injury and thus a functional readout of cell status. Bioinformatic analyses showed each cell had a distinct metabolic signature. Corroborating their roles in BBB and CNS protection, AC showed an innate ability to dynamically alter their metabolome depending on the insult. Surprisingly, in complete contrast, EC largely maintained their normoxic characteristics in injury situations and their profiles diverged from those of non-brain origin. Tissue specificity/origin is clearly important when considering EC responses. Focusing on energy capacity and utilization we discuss how cell-specific metabolic adaptive capabilities could influence vascular stability and the possibility that altering metabolite levels may be an effective way to modulate brain EC function. Overall this work novel insight into cell-associated metabolic changes, and provides a powerful resource for understanding BBB changes during different injury scenarios.
Collapse
|
13
|
Zhang W, Zhu L, An C, Wang R, Yang L, Yu W, Li P, Gao Y. The blood brain barrier in cerebral ischemic injury – Disruption and repair. BRAIN HEMORRHAGES 2020. [DOI: 10.1016/j.hest.2019.12.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
14
|
Zille M, Ikhsan M, Jiang Y, Lampe J, Wenzel J, Schwaninger M. The impact of endothelial cell death in the brain and its role after stroke: A systematic review. Cell Stress 2019; 3:330-347. [PMID: 31799500 PMCID: PMC6859425 DOI: 10.15698/cst2019.11.203] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The supply of oxygen and nutrients to the brain is vital for its function and requires a complex vascular network that, when disturbed, results in profound neurological dysfunction. As part of the pathology in stroke, endothelial cells die. As endothelial cell death affects the surrounding cellular environment and is a potential target for the treatment and prevention of neurological disorders, we have systematically reviewed important aspects of endothelial cell death with a particular focus on stroke. After screening 2876 publications published between January 1, 2010 and August 7, 2019, we identified 154 records to be included. We found that endothelial cell death occurs rapidly as well as later after the onset of stroke conditions. Among the different cell death mechanisms, apoptosis was the most widely investigated (92 records), followed by autophagy (20 records), while other, more recently defined mechanisms received less attention, such as lysosome-dependent cell death (2 records) and necroptosis (2 records). We also discuss the differential vulnerability of brain cells to injury after stroke and the role of endothelial cell death in the no-reflow phenomenon with a special focus on the microvasculature. Further investigation of the different cell death mechanisms using novel tools and biomarkers will greatly enhance our understanding of endothelial cell death. For this task, at least two markers/criteria are desirable to determine cell death subroutines according to the recommendations of the Nomenclature Committee on Cell Death.
Collapse
Affiliation(s)
- Marietta Zille
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Maulana Ikhsan
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Yun Jiang
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany.,DZHK (German Research Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Josephine Lampe
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany.,DZHK (German Research Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Jan Wenzel
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany.,DZHK (German Research Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany.,DZHK (German Research Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany
| |
Collapse
|
15
|
Henkel AW, Al-Abdullah LAAD, Al-Qallaf MS, Redzic ZB. Quantitative Determination of Cellular-and Neurite Motility Speed in Dense Cell Cultures. Front Neuroinform 2019; 13:15. [PMID: 30914941 PMCID: PMC6423175 DOI: 10.3389/fninf.2019.00015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 02/19/2019] [Indexed: 12/16/2022] Open
Abstract
Mobility quantification of single cells and cellular processes in dense cultures is a challenge, because single cell tracking is impossible. We developed a software for cell structure segmentation and implemented 2 algorithms to measure motility speed. Complex algorithms were tested to separate cells and cellular components, an important prerequisite for the acquisition of meaningful motility data. Plasma membrane segmentation was performed to measure membrane contraction dynamics and organelle trafficking. The discriminative performance and sensitivity of the algorithms were tested on different cell types and calibrated on computer-simulated cells to obtain absolute values for cellular velocity. Both motility algorithms had advantages in different experimental setups, depending on the complexity of the cellular movement. The correlation algorithm (COPRAMove) performed best under most tested conditions and appeared less sensitive to variable cell densities, brightness and focus changes than the differentiation algorithm (DiffMove). In summary, our software can be used successfully to analyze and quantify cellular and subcellular movements in dense cell cultures.
Collapse
Affiliation(s)
- Andreas W Henkel
- Department of Physiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | | | - Mohammed S Al-Qallaf
- Department of Physiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Zoran B Redzic
- Department of Physiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
16
|
Han N, Wang Z, Wang G, Yu J, Chen C, Huang H, Xu R. Evaluation of a self-regulated in vitro hypoxic system by using chemical reactions. Biochem Biophys Res Commun 2018; 500:772-776. [PMID: 29680660 DOI: 10.1016/j.bbrc.2018.04.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 04/17/2018] [Indexed: 10/17/2022]
Abstract
In this study, we established an in vitro hypoxic system driven by a self-regulated chemical reaction that proved effective for cell culture. The hypoxic device was modified from a 1.5 L polypropylene preservation box normally employed for food storage. Pyrogallic acid, sodium hydroxide, and sodium carbonate were dissolved in water and injected into the box. Sodium dihydrogen phosphate solution was injected into the box after 15 min. We measured the concentrations of oxygen and carbon dioxide in the box to determine viability of the hypoxic system. It maintained low levels of oxygen less than 0.2% and stabilizing levels of carbon dioxide at 5% for at least 96 h. Therefore, this device sustained a stable hypoxic environment that may be applicable for cell culture and in vitro studies of hypoxia.
Collapse
Affiliation(s)
- Ning Han
- Department of Neurosurgery, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, PR China; Department of Neurosurgery, Bayi Brain Hospital, PLA Army General Hospital, Beijing, PR China; Department of Neurosurgery, Chinese PLA Tianjin Sanatorium, 464 Hospital, Tianjin, PR China
| | - Zhaotao Wang
- Department of Neurosurgery, Bayi Brain Hospital, PLA Army General Hospital, Beijing, PR China
| | - Guoqi Wang
- Department of Neurosurgery, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, PR China
| | - Jun Yu
- Department of Neurosurgery, Chinese PLA Tianjin Sanatorium, 464 Hospital, Tianjin, PR China
| | - Chen Chen
- Department of Neurosurgery, Bayi Brain Hospital, PLA Army General Hospital, Beijing, PR China
| | - Huiyong Huang
- Department of Neurosurgery, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, PR China.
| | - Ruxiang Xu
- Department of Neurosurgery, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, PR China; Department of Neurosurgery, Bayi Brain Hospital, PLA Army General Hospital, Beijing, PR China.
| |
Collapse
|
17
|
Al-Sarraf H, Malatiali S, Al-Awadi M, Redzic Z. Effects of erythropoietin on astrocytes and brain endothelial cells in primary culture during anoxia depend on simultaneous signaling by other cytokines and on duration of anoxia. Neurochem Int 2017; 113:34-45. [PMID: 29180303 DOI: 10.1016/j.neuint.2017.11.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/08/2017] [Accepted: 11/22/2017] [Indexed: 12/13/2022]
Abstract
Studies on animals revealed neuroprotective effects of exogenously applied erythropoietin (EPO) during cerebral ischemia/hypoxia. Yet, application of exogenous EPO in stroke patients often lead to haemorrhagic transformation. To clarify potential mechanism of this adverse effect we explored effects of EPO on viabilities of astrocytes and brain endothelial cells (BECs) in primary culture during anoxia of various durations, in the presence or absence of vascular endothelial growth factor (VEGF) and angiopoietin-1 (Ang1), which are cytokines that are also released from the neurovascular unit during hypoxia. Anoxia (2-48 h) exerted marginal effects on BECs' viability and significant reductions in viability of astrocytes. Astrocyte-conditioned medium did not exert effects and exerted detrimental effects on BECs during 2 h and 24 h anoxia, respectively. This was partially reversed by inhibition of Janus kinase (Jak)2/signal transducer and activator of transcription (STAT)5 activation. Addition of rat recombinant EPO (rrEPO) during 2 h-6h anoxia was protective for astrocytes, but had no effect on BECs. Addition of rrEPO significantly reduced viability of BECs and astrocytes after 48 h anoxia and after 24 h-48 h anoxia, respectively, which was attenuated by inhibition of Jak2/STAT5 activation. Simultaneous addition of rrEPO and VEGFA (1-165) caused marginal effects on BECs, but a highly significant protective effects on astrocytes during 24-48 h anoxia, which were attenuated by inhibition of Jak2/STAT5 activation. Simultaneous addition of EPO, VEGFA 1-165 and Ang1 exerted protective effects on BECs during 24 h-48 h anoxia, which were attenuated by addition of soluble Tie2 receptor. These data revealed that EPO could exert protective, but also injurious effects on BECs and astrocytes during anoxia, which depended on the duration of anoxia and on simultaneous signaling by VEGF and Ang1. If these injurious effects occur in stroke patients, they could enhance vascular damage and haemorrhagic transformation.
Collapse
Affiliation(s)
- Hameed Al-Sarraf
- Department of Physiology, Faculty of Medicine, Kuwait University, Kuwait
| | - Slava Malatiali
- Department of Physiology, Faculty of Medicine, Kuwait University, Kuwait
| | - Mariam Al-Awadi
- Department of Physiology, Faculty of Medicine, Kuwait University, Kuwait
| | - Zoran Redzic
- Department of Physiology, Faculty of Medicine, Kuwait University, Kuwait.
| |
Collapse
|
18
|
Baldassarro VA, Marchesini A, Giardino L, Calzà L. Vulnerability of primary neurons derived from Tg2576 Alzheimer mice to oxygen and glucose deprivation: role of intraneuronal amyloid-β accumulation and astrocytes. Dis Model Mech 2017; 10:671-678. [PMID: 28237964 PMCID: PMC5451168 DOI: 10.1242/dmm.028001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 02/17/2017] [Indexed: 12/12/2022] Open
Abstract
Microvascular dysfunction is considered an integral part of Alzheimer disease (AD) pathogenesis, but the possible relationship between amyloid pathology, microvascular dysfunction and cell death is still unclear. In order to investigate the influence of intraneuronal amyloid-β (Aβ) accumulation on vulnerability to hypoxia, we isolated primary cortical neurons from Tg2576 (carrying the amyloid precursor protein APPSwe mutation) and wild-type fetal mice. We first demonstrated that neurons isolated from Tg2576 newborn mice show an increase in VEGFa mRNA expression and a decrease in the expression of the two VEGF receptors, Flt1 and Kdr, compared with wild-type cells. Moreover, APPSwe primary neurons displayed higher spontaneous and glutamate-induced cell death. We then deprived the cultures of oxygen and glucose (OGD) as an in vitro model of hypoxia. After OGD, APPSwe neurons display higher levels of cell death in terms of percentage of pyknotic/fragmented nuclei and mitochondrial depolarization, accompanied by an increase in the intraneuronal Aβ content. To explore the influence of intraneuronal Aβ peptide accumulation, we used the γ-secretase inhibitor LY450139, which showed that the reduction of the intracellular amyloid fully protects APPSwe neurons from OGD-induced degeneration. Conditioned medium from OGD-exposed APPSwe or wild-type astrocytes protected APPswe neurons but not wild-type neurons, during OGD. In conclusion, the presence of the mutated human APP gene, leading to the intracellular accumulation of APP and Aβ fragments, worsens OGD toxicity. Protection of APPSwe neurons can be obtained either using a γ-secretase inhibitor or astrocyte conditioned medium. Summary:In vitro systems derived from AD mice can be used to investigate the vulnerability of AD neurons to different neurotoxic challenges, including oxygen glucose deprivation.
Collapse
Affiliation(s)
- Vito Antonio Baldassarro
- Interdepartmental Centre for Industrial Research in Health Science and Technologies (ICIR - HST), University of Bologna, 40064 Ozzano Emilia, Bologna, Italy.,Department of Pharmacy and Biotechnology (FaBit), University of Bologna, 40127 Bologna, Italy
| | | | - Luciana Giardino
- Interdepartmental Centre for Industrial Research in Health Science and Technologies (ICIR - HST), University of Bologna, 40064 Ozzano Emilia, Bologna, Italy.,Department of Medical Veterinary Sciences (DIMEVET), University of Bologna, 40064 Ozzano Emilia, Bologna, Italy.,Fondazione IRET, 40064 Ozzano Emilia, Bologna, Italy
| | - Laura Calzà
- Interdepartmental Centre for Industrial Research in Health Science and Technologies (ICIR - HST), University of Bologna, 40064 Ozzano Emilia, Bologna, Italy .,Department of Pharmacy and Biotechnology (FaBit), University of Bologna, 40127 Bologna, Italy.,Fondazione IRET, 40064 Ozzano Emilia, Bologna, Italy
| |
Collapse
|
19
|
Lapchak PA, Zhang JH. The High Cost of Stroke and Stroke Cytoprotection Research. Transl Stroke Res 2016; 8:307-317. [PMID: 28039575 DOI: 10.1007/s12975-016-0518-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 12/18/2016] [Accepted: 12/21/2016] [Indexed: 10/20/2022]
Abstract
Acute ischemic stroke is inadequately treated in the USA and worldwide due to a lengthy history of neuroprotective drug failures in clinical trials. The majority of victims must endure life-long disabilities that not only affect their livelihood, but also have an enormous societal economic impact. The rapid development of a neuroprotective or cytoprotective compound would allow future stroke victims to receive a treatment to reduce disabilities and further promote recovery of function. This opinion article reviews in detail the enormous costs associated with developing a small molecule to treat stroke, as well as providing a timely overview of the cell-death time-course and relationship to the ischemic cascade. Distinct temporal patterns of cell-death of neurovascular unit components provide opportunities to intervene and optimize new cytoprotective strategies. However, adequate research funding is mandatory to allow stroke researchers to develop and test their novel therapeutic approach to treat stroke victims.
Collapse
Affiliation(s)
- Paul A Lapchak
- Director of Translational Research, Department of Neurology & Neurosurgery, Advanced Health Sciences Pavilion, Suite 8305, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd, Los Angeles, CA, 90048, USA.
| | - John H Zhang
- Director, Center for Neuroscience Research, Loma Linda University School of Medicine, 11175 Campus St, Loma Linda, CA, 92350, USA
| |
Collapse
|
20
|
Hu YL, Yin Y, Liu HY, Feng YY, Bian ZH, Zhou LY, Zhang JW, Fei BJ, Wang YG, Huang ZH. Glucose deprivation induces chemoresistance in colorectal cancer cells by increasing ATF4 expression. World J Gastroenterol 2016; 22:6235-6245. [PMID: 27468213 PMCID: PMC4945982 DOI: 10.3748/wjg.v22.i27.6235] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/25/2016] [Accepted: 06/15/2016] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the role of activating transcription factor 4 (ATF4) in glucose deprivation (GD) induced colorectal cancer (CRC) drug resistance and the mechanism involved.
METHODS: Chemosensitivity and apoptosis were measured under the GD condition. Inhibition of ATF4 using short hairpin RNA in CRC cells under the GD condition and in ATF4-overexpressing CRC cells was performed to identify the role of ATF4 in the GD induced chemoresistance. Quantitative real-time RT-PCR and Western blot were used to detect the mRNA and protein expression of drug resistance gene 1 (MDR1), respectively.
RESULTS: GD protected CRC cells from drug-induced apoptosis (oxaliplatin and 5-fluorouracil) and induced the expression of ATF4, a key gene of the unfolded protein response. Depletion of ATF4 in CRC cells under the GD condition can induce apoptosis and drug re-sensitization. Similarly, inhibition of ATF4 in the ATF4-overexpressing CRC cells reintroduced therapeutic sensitivity and apoptosis. In addition, increased MDR1 expression was observed in GD-treated CRC cells.
CONCLUSION: These data indicate that GD promotes chemoresistance in CRC cells through up-regulating ATF4 expression.
Collapse
|
21
|
Abstract
Stroke not only causes initial cell death, but also a limited process of repair and recovery. As an overall biological process, stroke has been most often considered from the perspective of early phases of ischemia, how these inter-relate and lead to expansion of the infarct. However, just as the biology of later stages of stroke becomes better understood, the clinical realities of stroke indicate that it is now more a chronic disease than an acute killer. As an overall biological process, it is now more important to understand how early cell death leads to the later, limited recovery so as develop an integrative view of acute to chronic stroke. This progression from death to repair involves sequential stages of primary cell death, secondary injury events, reactive tissue progenitor responses, and formation of new neuronal circuits. This progression is radial: from the tissue that suffers the infarct secondary injury signals, including free radicals and inflammatory cytokines, radiate out from the stroke core to trigger later regenerative events. Injury and repair processes occur not just in the local stroke site, but are also triggered in the connected networks of neurons that had existed in the stroke center: damage signals are relayed throughout a brain network. From these relayed, distributed damage signals, reactive astrocytosis, inflammatory processes, and the formation of new connections occur in distant brain areas. In short, emerging data in stroke cell death studies and the development of the field of stroke neural repair now indicate a continuum in time and in space of progressive events that can be considered as the 3 Rs of stroke biology: radial, relayed, and regenerative.
Collapse
Affiliation(s)
- S Thomas Carmichael
- Departments of Neurology and Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
22
|
Barakat R, Redzic Z. The Role of Activated Microglia and Resident Macrophages in the Neurovascular Unit during Cerebral Ischemia: Is the Jury Still Out? Med Princ Pract 2016; 25 Suppl 1:3-14. [PMID: 26303836 PMCID: PMC5588523 DOI: 10.1159/000435858] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 06/10/2015] [Indexed: 12/13/2022] Open
Abstract
Paracrine signaling in the neurovascular unit (NVU) is aimed to adjust the supply of oxygen and nutrients to metabolic demands of the brain in a feed-forward manner. Cerebral ischemia (CI) severely disrupts this homeostatic mechanism and also causes activation of microglia and resident macrophages in the brain. Contradictory data exist on the time pattern of microglial activation and polarization during CI, on molecular mechanisms that trigger them and on effects of microglia-derived cytokines on brain cells. It appears that conditions that occur during transient ischemia or in the penumbra of focal ischemia in vivo or equivalent conditions in vitro trigger polarization of resting microglia/macrophages into the M2 phenotype, which mainly exerts anti-inflammatory and protective effects in the brain, while prolonged ischemia with abundant necrosis promotes microglial polarization into the M1 phenotype. During the later stages of recovery, microglia that polarized initially into the M2 phenotype can shift into the M1 phenotype. Thus, it appears that cells with both phenotypes are present in the affected area, but their relative amount changes in time and probably depends on the proximity to the ischemic core. It was assumed that cells with the M1 phenotype exert detrimental effects on neurons and contribute to the blood-brain barrier opening. Several M1 phenotype-specific cytokines exert protective effects on astrocytes, which could be important for reactive gliosis occurring after ischemia. Thus, whether or not suppression of microglial activity after CI is beneficial for neurological outcome still remains unclear and current evidence suggests that no simple answer could be given to this question.
Collapse
Affiliation(s)
| | - Zoran Redzic
- *Dr. Zoran Redzic, Department of Physiology, Faculty of Medicine, Kuwait University, PO Box 24923, Safat 13110 (Kuwait), E-Mail
| |
Collapse
|
23
|
Barakat R, Redzic Z. Differential cytokine expression by brain microglia/macrophages in primary culture after oxygen glucose deprivation and their protective effects on astrocytes during anoxia. Fluids Barriers CNS 2015; 12:6. [PMID: 25866619 PMCID: PMC4392752 DOI: 10.1186/s12987-015-0002-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 02/09/2015] [Indexed: 12/23/2022] Open
Abstract
Background Activation of microglia/macrophages following cerebral ischemia may be beneficial or detrimental for the survival of brain cells, an ambiguity in effects that has been explained by findings that ischemia can induce transformation of resting monocytes/macrophages into two different inflammation-related phenotypes, termed M1 and M2. The extent to which this differentiation depends on paracrine signaling from other brain cells is not clear. This study explored if oxygen glucose deprivation (OGD) can trigger expression of phenotype-specific markers in rat microglia/macrophages in primary culture, in absence/low abundance of other brain cells. Time pattern of these changes was assessed and compared to time-pattern that has been revealed in vivo previously. Effects of phenotype-specific cytokines on viability of astrocytes in primary culture during anoxia were also explored. Methods Primary cultures of rat microglia/macrophages were exposed to 2h OGD and then incubated further under normal conditions; this was considered as a recovery period. Expression of mRNA for specific markers and secretion of phenotype-specific cytokines were explored at different time points by real time PCR and ELISA, respectively. Effects of cytokines that were secreted by microglia in primary culture after OGD on viability of astrocytes were determined. Results Expression and secretion of M2 phenotype-specific markers and/or cytokines after OGD increased early after OGD and then decreased in the later stages of the recovery period. Expression and secretion of M1 phenotype-specific markers and cytokines did not show a common time pattern, but there was a tendency for an increase during the recovery period. All M1 phenotype-specific and two out of the three tested M2 phenotype-specific cytokines revealed protective effects on astrocytes during near-anoxia by a marked reduction of apoptosis. Conclusions Time-pattern of expression/secretion of phenotype-specific markers suggested that polarization of the brain microglia/macrophages in vitro to M2 and M1 phenotypes were largely independent and likely dependent on signaling from other brain cells, respectively. Time-pattern of polarization to the M2 phenotype partially resembled time-pattern that has been seen in vivo. Effects of M1 phenotype-specific cytokines on primary culture of astrocytes were protective, thus largely opposite to effects that have been observed in vivo. Electronic supplementary material The online version of this article (doi:10.1186/s12987-015-0002-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rawan Barakat
- Department of Physiology, Faculty of Medicine, Kuwait University, Mail: P O Box 24923, Safat, 13110 Kuwait
| | - Zoran Redzic
- Department of Physiology, Faculty of Medicine, Kuwait University, Mail: P O Box 24923, Safat, 13110 Kuwait
| |
Collapse
|
24
|
Engelhardt S, Huang SF, Patkar S, Gassmann M, Ogunshola OO. Differential responses of blood-brain barrier associated cells to hypoxia and ischemia: a comparative study. Fluids Barriers CNS 2015; 12:4. [PMID: 25879623 PMCID: PMC4429667 DOI: 10.1186/2045-8118-12-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 12/18/2014] [Indexed: 12/20/2022] Open
Abstract
Background Undisturbed functioning of the blood–brain barrier (BBB) crucially depends on paracellular signaling between its associated cells; particularly endothelial cells, pericytes and astrocytes. Hypoxic and ischemic injuries are closely associated with disturbed BBB function and the contribution of perivascular cells to hypoxic/ischemic barrier regulation has gained increased attention. Regardless, detailed information on the basal hypoxic/ischemic responses of the barrier-associated cells is rare and the outcome of such cell-specific responses on BBB modulation is not well understood. This study investigated crucial parameters of hypoxic/ischemic adaptation in order to characterize individual perivascular cell responses to stress conditions. Methods The brain microvascular endothelial cell line RBE4 (EC cell line) as well as primary rat brain endothelial cells (ECs), pericytes (PCs) and astrocytes (ACs) were exposed to 24 and 48 hours of oxygen deprivation at 1% and 0.2% O2. All primary cells were additionally subjected to combined oxygen and glucose deprivation mimicking ischemia. Central parameters of cellular adaptation and state, such as HIF-1α and HIF-1 target gene induction, actin cytoskeletal architecture, proliferation and cell viability, were compared between the cell types. Results We show that endothelial cells exhibit greater responsiveness and sensitivity to oxygen deprivation than ACs and PCs. This higher sensitivity coincided with rapid and significant stabilization of HIF-1α and its downstream targets (VEGF, GLUT-1, MMP-9 and PHD2), early disruption of the actin cytoskeleton and metabolic impairment in conditions where the perivascular cells remain largely unaffected. Additional adaptation (suppression) of proliferation also likely contributes to astrocytic and pericytic tolerance during severe injury conditions. Moreover, unlike the perivascular cells, ECs were incapable of inducing autophagy (monitored via LC3-II and Beclin-1 expression) - a putative protective mechanism. Notably, both ACs and PCs were significantly more susceptible to glucose than oxygen deprivation with ACs proving to be most resistant overall. Conclusion In summary this work highlights considerable differences in sensitivity to hypoxic/ischemic injury between microvascular endothelial cells and the perivascular cells. This can have marked impact on barrier stability. Such fundamental knowledge provides an important foundation to better understand the complex cellular interactions at the BBB both physiologically and in injury-related contexts in vivo.
Collapse
|
25
|
Neuhaus W, Gaiser F, Mahringer A, Franz J, Riethmüller C, Förster C. The pivotal role of astrocytes in an in vitro stroke model of the blood-brain barrier. Front Cell Neurosci 2014; 8:352. [PMID: 25389390 PMCID: PMC4211409 DOI: 10.3389/fncel.2014.00352] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 10/07/2014] [Indexed: 12/14/2022] Open
Abstract
Stabilization of the blood-brain barrier during and after stroke can lead to less adverse outcome. For elucidation of underlying mechanisms and development of novel therapeutic strategies validated in vitro disease models of the blood-brain barrier could be very helpful. To mimic in vitro stroke conditions we have established a blood-brain barrier in vitro model based on mouse cell line cerebEND and applied oxygen/glucose deprivation (OGD). The role of astrocytes in this disease model was investigated by using cell line C6. Transwell studies pointed out that addition of astrocytes during OGD increased the barrier damage significantly in comparison to the endothelial monoculture shown by changes of transendothelial electrical resistance as well as fluorescein permeability data. Analysis on mRNA and protein levels by qPCR, western blotting and immunofluorescence microscopy of tight junction molecules claudin-3,-5,-12, occludin and ZO-1 revealed that their regulation and localisation is associated with the functional barrier breakdown. Furthermore, soluble factors of astrocytes, OGD and their combination were able to induce changes of functionality and expression of ABC-transporters Abcb1a (P-gp), Abcg2 (bcrp), and Abcc4 (mrp4). Moreover, the expression of proteases (matrixmetalloproteinases MMP-2, MMP-3, MMP-9, and t-PA) as well as of their endogenous inhibitors (TIMP-1, TIMP-3, PAI-1) was altered by astrocyte factors and OGD which resulted in significant changes of total MMP and t-PA activity. Morphological rearrangements induced by OGD and treatment with astrocyte factors were confirmed at a nanometer scale using atomic force microscopy. In conclusion, astrocytes play a major role in blood-brain barrier breakdown during OGD in vitro.
Collapse
Affiliation(s)
- Winfried Neuhaus
- Department of Pharmaceutical Chemistry, University of Vienna Vienna, Austria ; Department of Anesthesia and Critical Care, University Hospital Würzburg Würzburg, Germany
| | - Fabian Gaiser
- Department of Anesthesia and Critical Care, University Hospital Würzburg Würzburg, Germany
| | - Anne Mahringer
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg Heidelberg, Germany
| | - Jonas Franz
- Serend-ip GmbH, Centre for Nanotechnology Münster, Germany
| | | | - Carola Förster
- Department of Anesthesia and Critical Care, University Hospital Würzburg Würzburg, Germany
| |
Collapse
|