1
|
Doghish AS, Abdel Mageed SS, Mohammed OA, Abdel-Reheim MA, Zaki MB, Mohamed AH, Rizk NI, Abulsoud AI, Abdelmaksoud NM, El-Dakroury WA, Aly SH. Natural compounds as regulators of miRNAs: exploring a new avenue for treating colorectal cancer. Funct Integr Genomics 2025; 25:42. [PMID: 39982533 DOI: 10.1007/s10142-025-01547-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/15/2025] [Accepted: 02/01/2025] [Indexed: 02/22/2025]
Abstract
Colorectal cancer (CRC) ranks as the second leading cause of cancer-related death globally, impacting both genders equally. The increasing global mortality rates from CRC are strongly linked to contemporary dietary habits, characterized by excessive meat consumption, alcohol intake, and insufficient physical activity. Thus, there is an unprecedented need to develop less hazardous and new therapies for CRC. CRC affects a substantial global population. The main treatments for CRC include chemotherapy and surgical intervention. Nonetheless, the advancement of innovative, safer, and more effective pharmaceuticals for CRC therapy is of paramount importance due to the widespread adverse effects and the dynamic nature of drug resistance. A growing amount of research suggests that natural chemicals may effectively battle CRC and, in certain cases, serve as alternatives to chemotherapeutics. Evidence suggests that miRNAs control important cancer features, including the maintenance of proliferative signals. These features also involve evasion of growth inhibition, resistance to cell death, and immortalization of replication. Additionally, miRNAs play a role in angiogenesis, invasion, and metastasis. Numerous compounds, including those exhibiting cytotoxic and apoptogenic properties against different malignancies, such as CRC, are sourced from diverse marine and medicinal plants. These chemicals stimulate several signaling pathways originating from different phytochemical families. This article evaluates the existing understanding of the anti-CRC capabilities of several phytochemical substances. Furthermore, their impact on several signaling pathways associated with cancer is examined. This article also highlights the potential of medicinal plants as a source of promising anti-CRC chemicals through modulating miRNA expression and the role of nanoparticle-based miRNA therapeutics in enhancing CRC treatment by improving tumor targeting and minimizing off-target effects.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt.
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | | | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Menoufia, 32897, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Menoufia National University, km Cairo- Alexandria Agricultural Road, Tukh Tanbisha, Menofia, Egypt
| | - Ashraf Hassan Mohamed
- Faculty of Physical Therapy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Nehal I Rizk
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, 11786, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Shaza H Aly
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| |
Collapse
|
2
|
Moustafa HAM, Elsakka EGE, Abulsoud AI, Elshaer SS, Rashad AA, El-Dakroury WA, Sallam AAM, Rizk NI, Zaki MB, Gomaa RM, Elesawy AE, Mohammed OA, Abdel Mageed SS, Eleragi AMS, ElBoghdady JA, El-Fayoumi SH, Abdel-Reheim MA, Doghish AS. The miRNA Landscape in Crohn's disease: Implications for novel therapeutic approaches and interactions with Existing therapies. Exp Cell Res 2024; 442:114234. [PMID: 39233267 DOI: 10.1016/j.yexcr.2024.114234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/25/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
MicroRNAs (miRNAs), which are non-coding RNAs consisting of 18-24 nucleotides, play a crucial role in the regulatory pathways of inflammatory diseases. Several recent investigations have examined the potential role of miRNAs in forming Crohn's disease (CD). It has been suggested that miRNAs serve as diagnostics for both fibrosis and inflammation in CD due to their involvement in the mechanisms of CD aggravation and fibrogenesis. More information on CD pathophysiology could be obtained by identifying the miRNAs concerned with CD and their target genes. These findings have prompted several in vitro and in vivo investigations into the putative function of miRNAs in CD treatment. Although there are still many unanswered questions, the growing body of evidence has brought miRNA-based therapy one step closer to clinical practice. This extensive narrative study offers a concise summary of the most current advancements in CD. We go over what is known about the diagnostic and therapeutic benefits of miRNA mimicry and inhibition so far, and we see what additional miRNA family targets could be useful for treating CD-related inflammation and fibrosis.
Collapse
Affiliation(s)
- Hebatallah Ahmed Mohamed Moustafa
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Shereen Saeid Elshaer
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11823, Egypt
| | - Ahmed A Rashad
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
| | - Al-Aliaa M Sallam
- epartment of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Nehal I Rizk
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mohamed Bakr Zaki
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Rania M Gomaa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Industries, Badr University in Cairo (BUC), Badr City, Cairo P.O. Box 11829, Egypt
| | - Ahmed E Elesawy
- epartment of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Ali M S Eleragi
- Department of Microorganisms and Clinical Parasitology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Jasmine A ElBoghdady
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Shaimaa H El-Fayoumi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | | | - Ahmed S Doghish
- epartment of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| |
Collapse
|
3
|
Zhang Z, Sha W. MicroRNA-513b-5p inhibits epithelial mesenchymal transition of colon cancer stem cells through IL-6/STAT3 signaling pathway. Discov Oncol 2024; 15:267. [PMID: 38967742 PMCID: PMC11226582 DOI: 10.1007/s12672-024-01137-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 07/01/2024] [Indexed: 07/06/2024] Open
Abstract
OBJECTIVE To reveal the mechanisms by which miR-513b-5p inhibits metastasis of colon cancer stem cells (CCSCs) through IL-6/STAT3 in HCT116 cells. METHODS Sphere formation media and magnetic cell sorting were used to enrich and screen CCSCs. We used a colony formation assay, cell proliferation and viability assays, and a nude mouse transplantation tumor assay to identify CCSCs. ELISA was performed to identify IL-6 in the cell culture medium, and the growth, viability, wound healing, and transwell migration of distinct cell groups were compared to differentiate them. Dual-luciferase reporter assay, RT-PCR, and/or Western Blot analysis were conducted to determine the correlation between them. RESULTS CD133+CD44+ HCT116 cells were shown to have higher cloning efficiency, greater proliferation ability and viability, and stronger tumorigenicity. A dual-luciferase reporter assay revealed that miR-513b-5p negatively affected STAT3 expression. RT-PCR and/or Western Blot analysis suggested that miR-513b-5p negatively affected STAT3 and Vimentin, while positively affecting E-cadherin expression. The STAT3 overexpression vector + miR-513b-5p inhibitor cell group had the highest efficiency, greatest proliferation ability and viability, and the highest IL-6 level in the experiments. CONCLUSIONS Mir-513b-5p inhibited the epithelial-mesenchymal transition (EMT) of CCSCs through IL-6/STAT3. This potential mechanism may provide a new therapeutic target for colon cancer.
Collapse
Affiliation(s)
- Zefeng Zhang
- Department of Gastroenterology and Digestive Endoscopy Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China
| | - Weihong Sha
- Department of Gastroenterology and Digestive Endoscopy Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
4
|
Housini M, Dariya B, Ahmed N, Stevens A, Fiadjoe H, Nagaraju GP, Basha R. Colorectal cancer: Genetic alterations, novel biomarkers, current therapeutic strategies and clinical trials. Gene 2024; 892:147857. [PMID: 37783294 DOI: 10.1016/j.gene.2023.147857] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/04/2023]
Abstract
Colorectal cancer (CRC) is the third most commonly detected cancer with a serious global health issue. The rates for incidence and mortality for CRC are alarming, especially since the prognosis is abysmal when the CRC is diagnosed at an advanced or metastatic stage. Both type of (modifiable/ non-modifiable) types of risk factors are established for CRC. Despite the advances in recent technology and sophisticated research, the survival rate is still meager due to delays in diagnosis. Therefore, there is urgently required to identify critical biomarkers aiming at early diagnosis and improving effective therapeutic strategies. Additionally, a complete understanding of the dysregulated pathways like PI3K/Akt, Notch, and Wnt associated with CRC progression and metastasis is very beneficial in designing a therapeutic regimen. This review article focused on the dysregulated signaling pathways, genetics and epigenetics alterations, and crucial biomarkers of CRC. This review also provided the list of clinical trials targeting signaling cascades and therapies involving small molecules. This review discusses up-to-date information on novel diagnostic and therapeutic strategies alongside specific clinical trials.
Collapse
Affiliation(s)
- Mohammad Housini
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX 76107, United States
| | - Begum Dariya
- Center for Drug Design, University of Minnesota, Minneapolis, MN 5545, United States
| | - Nadia Ahmed
- Department of Diagnostic Radiology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Alyssa Stevens
- Missouri Southern State University, Joplin, MO 64801, United States
| | - Hope Fiadjoe
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, United States
| | - Ganji Purnachandra Nagaraju
- Division of Hematology & Oncology, The University of Alabama at Birmingham, Birmingham, AL 35233, United States.
| | - Riyaz Basha
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX 76107, United States; Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, United States.
| |
Collapse
|
5
|
Ashrafizadeh M, Mohan CD, Rangappa S, Zarrabi A, Hushmandi K, Kumar AP, Sethi G, Rangappa KS. Noncoding RNAs as regulators of STAT3 pathway in gastrointestinal cancers: Roles in cancer progression and therapeutic response. Med Res Rev 2023; 43:1263-1321. [PMID: 36951271 DOI: 10.1002/med.21950] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/09/2022] [Accepted: 02/28/2023] [Indexed: 03/24/2023]
Abstract
Gastrointestinal (GI) tumors (cancers of the esophagus, gastric, liver, pancreas, colon, and rectum) contribute to a large number of deaths worldwide. STAT3 is an oncogenic transcription factor that promotes the transcription of genes associated with proliferation, antiapoptosis, survival, and metastasis. STAT3 is overactivated in many human malignancies including GI tumors which accelerates tumor progression, metastasis, and drug resistance. Research in recent years demonstrated that noncoding RNAs (ncRNAs) play a major role in the regulation of many signaling pathways including the STAT3 pathway. The major types of endogenous ncRNAs that are being extensively studied in oncology are microRNAs, long noncoding RNAs, and circular RNAs. These ncRNAs can either be tumor-promoters or tumor-suppressors and each one of them imparts their activity via different mechanisms. The STAT3 pathway is also tightly modulated by ncRNAs. In this article, we have elaborated on the tumor-promoting role of STAT3 signaling in GI tumors. Subsequently, we have comprehensively discussed the oncogenic as well as tumor suppressor functions and mechanism of action of ncRNAs that are known to modulate STAT3 signaling in GI cancers.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chakrabhavi D Mohan
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, India
| | - Shobith Rangappa
- Adichunchanagiri Institute for Molecular Medicine, Adichunchanagiri University, Nagamangala Taluk, India
| | - Ali Zarrabi
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Sariyer, Turkey
| | - Kiavash Hushmandi
- Division of Epidemiology, Faculty of Veterinary Medicine, Department of Food Hygiene and Quality Control, University of Tehran, Tehran, Iran
| | - Alan Prem Kumar
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Gautam Sethi
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | |
Collapse
|
6
|
Breast cancer tumor microenvironment affects Treg/IL-17-producing Treg/Th17 cell axis: Molecular and therapeutic perspectives. Mol Ther Oncolytics 2023; 28:132-157. [PMID: 36816749 PMCID: PMC9922830 DOI: 10.1016/j.omto.2023.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The tumor microenvironment (TME) comprises a variety of immune cells, among which T cells exert a prominent axial role in tumor development or anti-tumor responses in patients with breast cancer (BC). High or low levels of anti-inflammatory cytokines, such as transforming growth factor β, in the absence or presence of proinflammatory cytokines, such as interleukin-6 (IL-6), delineate the fate of T cells toward either regulatory T (Treg) or T helper 17 (Th17) cells, respectively. The transitional state of RORγt+Foxp3+ Treg (IL-17-producing Treg) resides in the middle of this reciprocal polarization, which is known as Treg/IL-17-producing Treg/Th17 cell axis. TME secretome, including microRNAs, cytokines, and extracellular vesicles, can significantly affect this axis. Furthermore, immune checkpoint inhibitors may be used to reconstruct immune cells; however, some of these novel therapies may favor tumor development. Therefore, understanding secretory and cell-associated factors involved in their differentiation or polarization and functions may be targeted for BC management. This review discusses microRNAs, cytokines, and extracellular vesicles (as secretome), as well as transcription factors and immune checkpoints (as cell-associated factors), which influence the Treg/IL-17-producing Treg/Th17 cell axis in BC. Furthermore, approved or ongoing clinical trials related to the modulation of this axis in the TME of BC are described to broaden new horizons of promising therapeutic approaches.
Collapse
|
7
|
Ren J, Guo W, Feng K, Huang T, Cai Y. Identifying MicroRNA Markers That Predict COVID-19 Severity Using Machine Learning Methods. Life (Basel) 2022; 12:1964. [PMID: 36556329 PMCID: PMC9784129 DOI: 10.3390/life12121964] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Individuals with the SARS-CoV-2 infection may experience a wide range of symptoms, from being asymptomatic to having a mild fever and cough to a severe respiratory impairment that results in death. MicroRNA (miRNA), which plays a role in the antiviral effects of SARS-CoV-2 infection, has the potential to be used as a novel marker to distinguish between patients who have various COVID-19 clinical severities. In the current study, the existing blood expression profiles reported in two previous studies were combined for deep analyses. The final profiles contained 1444 miRNAs in 375 patients from six categories, which were as follows: 30 patients with mild COVID-19 symptoms, 81 patients with moderate COVID-19 symptoms, 30 non-COVID-19 patients with mild symptoms, 137 patients with severe COVID-19 symptoms, 31 non-COVID-19 patients with severe symptoms, and 66 healthy controls. An efficient computational framework containing four feature selection methods (LASSO, LightGBM, MCFS, and mRMR) and four classification algorithms (DT, KNN, RF, and SVM) was designed to screen clinical miRNA markers, and a high-precision RF model with a 0.780 weighted F1 was constructed. Some miRNAs, including miR-24-3p, whose differential expression was discovered in patients with acute lung injury complications brought on by severe COVID-19, and miR-148a-3p, differentially expressed against SARS-CoV-2 structural proteins, were identified, thereby suggesting the effectiveness and accuracy of our framework. Meanwhile, we extracted classification rules based on the DT model for the quantitative representation of the role of miRNA expression in differentiating COVID-19 patients with different severities. The search for novel biomarkers that could predict the severity of the disease could aid in the clinical diagnosis of COVID-19 and in exploring the specific mechanisms of the complications caused by SARS-CoV-2 infection. Moreover, new therapeutic targets for the disease may be found.
Collapse
Affiliation(s)
- Jingxin Ren
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Wei Guo
- Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200030, China
| | - Kaiyan Feng
- Department of Computer Science, Guangdong AIB Polytechnic College, Guangzhou 510507, China
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yudong Cai
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
8
|
Shademan B, Masjedi S, Karamad V, Isazadeh A, Sogutlu F, Rad MHS, Nourazarian A. CRISPR Technology in Cancer Diagnosis and Treatment: Opportunities and Challenges. Biochem Genet 2022; 60:1446-1470. [PMID: 35092559 DOI: 10.1007/s10528-022-10193-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022]
Abstract
A novel gene editing tool, the Cas system, associated with the CRISPR system, is emerging as a potential method for genome modification. This simple method, based on the adaptive immune defense system of prokaryotes, has been developed and used in human cancer research. These technologies have tremendous therapeutic potential, especially in gene therapy, where a patient-specific mutation is genetically corrected to cure diseases that cannot be cured with conventional treatments. However, translating CRISPR/Cas9 into the clinic will be challenging, as we still need to improve the efficiency, specificity, and application of the technology. In this review, we will explain how CRISPR-Cas9 technology can treat cancer at the molecular level, focusing on ordination and the epigenome. We will also focus on the promise and shortcomings of this system to ensure its application in the treatment and prevention of cancer.
Collapse
Affiliation(s)
- Behrouz Shademan
- Department of Medical Biology, Faculty of Medicine, EGE University, Izmir, Turkey
| | - Sepideh Masjedi
- Department of Cellular and Molecular Biology Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Vahidreza Karamad
- Department of Medical Biology, Faculty of Medicine, EGE University, Izmir, Turkey
| | - Alireza Isazadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatma Sogutlu
- Department of Medical Biology, Faculty of Medicine, EGE University, Izmir, Turkey
| | | | - Alireza Nourazarian
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran.
| |
Collapse
|
9
|
Hawkins S, Namboori SC, Tariq A, Blaker C, Flaxman C, Dey NS, Henley P, Randall A, Rosa A, Stanton LW, Bhinge A. Upregulation of β-catenin due to loss of miR-139 contributes to motor neuron death in amyotrophic lateral sclerosis. Stem Cell Reports 2022; 17:1650-1665. [PMID: 35750046 PMCID: PMC9287677 DOI: 10.1016/j.stemcr.2022.05.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 01/12/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the loss of motor neurons (MNs). There are no effective treatments and patients usually die within 2-5 years of diagnosis. Emerging commonalities between familial and sporadic cases of this complex multifactorial disorder include disruption to RNA processing and cytoplasmic inclusion bodies containing TDP-43 and/or FUS protein aggregates. Both TDP-43 and FUS have been implicated in RNA processing functions, including microRNA biogenesis, transcription, and splicing. In this study, we explore the misexpression of microRNAs in an iPSC-based disease model of FUS ALS. We identify the downregulation of miR-139, an MN-enriched microRNA, in FUS and sporadic ALS MN. We discover that miR-139 downregulation leads to the activation of canonical WNT signaling and demonstrate that the WNT transcriptional mediator β-catenin is a major driver of MN degeneration in ALS. Our results highlight the importance of homeostatic RNA networks in ALS.
Collapse
Affiliation(s)
- Sophie Hawkins
- College of Medicine and Health, University of Exeter, Exeter EX1 2LU, UK; Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
| | - Seema C Namboori
- College of Medicine and Health, University of Exeter, Exeter EX1 2LU, UK; Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
| | - Ammarah Tariq
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK; Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Catherine Blaker
- College of Medicine and Health, University of Exeter, Exeter EX1 2LU, UK
| | - Christine Flaxman
- College of Medicine and Health, University of Exeter, Exeter EX1 2LU, UK
| | - Nidhi S Dey
- York Biomedical Research Institute, Hull York Medical School, University of York, York YO10 5DD, UK
| | - Peter Henley
- College of Medicine and Health, University of Exeter, Exeter EX1 2LU, UK
| | - Andrew Randall
- College of Medicine and Health, University of Exeter, Exeter EX1 2LU, UK
| | - Alessandro Rosa
- Department of Biology and Biotechnologies Charles Darwin, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Lawrence W Stanton
- Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Akshay Bhinge
- College of Medicine and Health, University of Exeter, Exeter EX1 2LU, UK; Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK.
| |
Collapse
|
10
|
Hypoxia as a Modulator of Inflammation and Immune Response in Cancer. Cancers (Basel) 2022; 14:cancers14092291. [PMID: 35565420 PMCID: PMC9099524 DOI: 10.3390/cancers14092291] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023] Open
Abstract
A clear association between hypoxia and cancer has heretofore been established; however, it has not been completely developed. In this sense, the understanding of the tumoral microenvironment is critical to dissect the complexity of cancer, including the reduction in oxygen distribution inside the tumoral mass, defined as tumoral hypoxia. Moreover, hypoxia not only influences the tumoral cells but also the surrounding cells, including those related to the inflammatory processes. In this review, we analyze the participation of HIF, NF-κB, and STAT signaling pathways as the main components that interconnect hypoxia and immune response and how they modulate tumoral growth. In addition, we closely examine the participation of the immune cells and how they are affected by hypoxia, the effects of the progression of cancer, and some innovative applications that take advantage of this knowledge, to suggest potential therapies. Therefore, we contribute to the understanding of the complexity of cancer to propose innovative therapeutic strategies in the future.
Collapse
|
11
|
Vaghari-Tabari M, Targhazeh N, Moein S, Qujeq D, Alemi F, Majidina M, Younesi S, Asemi Z, Yousefi B. From inflammatory bowel disease to colorectal cancer: what's the role of miRNAs? Cancer Cell Int 2022; 22:146. [PMID: 35410210 PMCID: PMC8996392 DOI: 10.1186/s12935-022-02557-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 03/21/2022] [Indexed: 12/27/2022] Open
Abstract
Inflammatory Bowel Disease (IBD) is a chronic inflammatory disease with relapse and remission periods. Ulcerative colitis and Crohn's disease are two major forms of the disease. IBD imposes a lot of sufferings on the patient and has many consequences; however, the most important is the increased risk of colorectal cancer, especially in patients with Ulcerative colitis. This risk is increased with increasing the duration of disease, thus preventing the progression of IBD to cancer is very important. Therefore, it is necessary to know the details of events contributed to the progression of IBD to cancer. In recent years, the importance of miRNAs as small molecules with 20-22 nucleotides has been recognized in pathophysiology of many diseases, in which IBD and colorectal cancer have not been excluded. As a result, the effectiveness of these small molecules as therapeutic target is hopefully confirmed. This paper has reviewed the related studies and findings about the role of miRNAs in the course of events that promote the progression of IBD to colorectal carcinoma, as well as a review about the effectiveness of some of these miRNAs as therapeutic targets.
Collapse
Affiliation(s)
- Mostafa Vaghari-Tabari
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Niloufar Targhazeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soheila Moein
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Forough Alemi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Majidina
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Simin Younesi
- Schoole of Health and Biomedical Sciences, RMIT University, Melborne, VIC, Australia
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran.
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
12
|
Stavast CJ, van Zuijen I, Erkeland SJ. MicroRNA-139, an Emerging Gate-Keeper in Various Types of Cancer. Cells 2022; 11:cells11050769. [PMID: 35269391 PMCID: PMC8909004 DOI: 10.3390/cells11050769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/17/2022] [Accepted: 02/19/2022] [Indexed: 11/25/2022] Open
Abstract
Mounting data show that MIR139 is commonly silenced in solid cancer and hematological malignancies. MIR139 acts as a critical tumor suppressor by tuning the cellular response to different types of stress, including DNA damage, and by repressing oncogenic signaling pathways. Recently, novel insights into the mechanism of MIR139 silencing in tumor cells have been described. These include epigenetic silencing, inhibition of POL-II transcriptional activity on gene regulatory elements, enhanced expression of competing RNAs and post-transcriptional regulation by the microprocessor complex. Some of these MIR139-silencing mechanisms have been demonstrated in different types of cancer, suggesting that these are more general oncogenic events. Reactivation of MIR139 expression in tumor cells causes inhibition of tumor cell expansion and induction of cell death by the repression of oncogenic mRNA targets. In this review, we discuss the different aspects of MIR139 as a tumor suppressor gene and give an overview on different transcriptional mechanisms regulating MIR139 in oncogenic stress and across different types of cancer. The novel insights into the expression regulation and the tumor-suppressing activities of MIR139 may pave the way to new treatment options for cancer.
Collapse
|
13
|
Differential Expression Profiles and Functional Prediction of circRNAs in Necrotizing Enterocolitis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9862066. [PMID: 34778461 PMCID: PMC8581514 DOI: 10.1155/2021/9862066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 10/12/2021] [Indexed: 12/31/2022]
Abstract
Circular RNAs (circRNAs), a novel type of noncoding RNAs, have been demonstrated to behave as microRNA (miRNA) sponges to exert their effects during pathological processes of diseases. However, the roles of circRNAs have not been explored in necrotizing enterocolitis (NEC). This study sought to identify differentially expressed circRNAs and predict their potential biological functions in NEC. circRNA expression profiles in terminal ileum from newborn rats with NEC and normal controls were explored using next-generation sequencing. In the NEC group, 53 circRNAs were significantly differentially expressed, including 9 upregulated and 44 downregulated. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were conducted, and circRNA-miRNA interaction networks were generated to predict the potential roles of circRNAs in NEC progression. Further investigation revealed that most circRNAs include miRNA binding sites and that some are implicated in NEC development. In conclusion, this study's findings demonstrate that differentially expressed circRNAs are involved in NEC development via their interactions with miRNAs, making them prospective targets for NEC diagnosis and treatment.
Collapse
|
14
|
Shi Z, Gao Y, Feng L, Tian W, Dou Z, Liu C, Liu J, Xu Y, Wang Y, Yan J, Wu Q, Li J, Yang L, Zhang Z, Yang J, Qi Z. TR35 Exerts Anti-tumor Effects by Modulating Mitogen-Activated Protein Kinase and STAT3 Signaling in Lung Cancer Cells. Front Cell Dev Biol 2021; 9:723346. [PMID: 34760885 PMCID: PMC8573214 DOI: 10.3389/fcell.2021.723346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/05/2021] [Indexed: 11/20/2022] Open
Abstract
Cancer is a complex disease extremely dependent on its microenvironment and is highly regulated by a variety of stimuli inside and outside the cell. Evidence suggests that active camel whey fraction (TR35) confer anti-tumor effects in non-small cell lung cancer (NSCLC). However, its exact mechanisms remain elusive. Here, we investigated the mechanisms underlying suppression of NSCLC cell growth and proliferation by TR35. Treatment of A549 and H1299 cells with TR35 suppressed their growth and enhanced apoptosis, as revealed by CCK-8, colony formation and flow cytometric analyses. We find that TR35 suppresses tumor growth in a xenograft nude mouse model without losses in body weight. RNA-seq and KEGG pathway analyses showed that the DEGs were enriched in mitogen-activated protein kinase (MAPK) and Jak-STAT signaling pathways. After test the key factors’ activity associated with these pathways by Immunohistochemical (IHC) staining and western blotting, the activation of JNK phosphorylation and inhibition of p38 and STAT3 phosphorylation was observed both in TR35 treated lung cancer cell and tumor tissue. Taken together, these results showed that TR35 play a significant role in the NSCLC progression in the tumor microenvironment via MAPK and Jak-STAT signaling, highlighting TR35 as a potential therapeutic agent against lung cancer.
Collapse
Affiliation(s)
- Zhiyong Shi
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
| | - Yang Gao
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
| | - Lifeng Feng
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
| | - Wencong Tian
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
| | - Zhihua Dou
- Department of Bioengineering, College of Life Science and Technology, Xinjiang University, Ürümqi, China
| | - Chen Liu
- Department of Bioengineering, College of Life Science and Technology, Xinjiang University, Ürümqi, China
| | - Jie Liu
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
| | - Yang Xu
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
| | - Yachen Wang
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
| | - Jie Yan
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
| | - Qiang Wu
- Key Laboratory of Emergency and Trauma of Ministry of Education, Research Unit of Island Emergency Medicine, School of Tropical Medicine and Laboratory Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University, Haikou, China
| | - Jing Li
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
| | - Liang Yang
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
| | - Zhaocai Zhang
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Zhaocai Zhang,
| | - Jie Yang
- Department of Bioengineering, College of Life Science and Technology, Xinjiang University, Ürümqi, China
- Jie Yang,
| | - Zhi Qi
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
- Zhi Qi,
| |
Collapse
|
15
|
Zhao X, Wang M, Sun Z, Zhuang S, Zhang W, Yang Z, Han X, Nie S. MicroRNA-139-5p improves sepsis-induced lung injury by targeting Rho-kinase1. Exp Ther Med 2021; 22:1059. [PMID: 34434273 PMCID: PMC8353635 DOI: 10.3892/etm.2021.10493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/24/2021] [Indexed: 02/03/2023] Open
Abstract
Sepsis-induced acute lung injury (ALI) is an inflammatory process that involves inflammatory cytokine production and cell apoptosis. In the present study, the regulatory role of microRNA (miR)-139-5p in sepsis-induced ALI was investigated using a murine model of cecal ligation puncture (CLP) and an in vitro model using lipopolysaccharide (LPS)-induced normal human bronchial epithelial cells (NHBEs). Sepsis-induced pathological changes in the lungs of ALI mice were detected using hematoxylin and eosin staining. Lung water content was determined, and the expression of proinflammatory cytokines in the bronchoalveolar lavage fluid and serum of sepsis-induced ALI mice were quantified using ELISA. The levels of oxidative stress in lung tissues were determined using commercial kits. The degree of apoptosis was determined using a TUNEL assay. The expression levels of miR-139-5p and Rho-kinase 1 (ROCK1) were determined using reverse transcription-quantitative PCR and western blot analyses. A dual-luciferase reporter assay was used to confirm the direct targeting of ROCK1 by miR-139-5p. NHBEs were co-transfected with vectors expressing ROCK1 (or empty vector) and miR-139-5p mimics or control mimics prior to LPS treatment. The transcriptional activity of caspase-3, the ratio of apoptotic cells, the expression levels of mucin 5AC, mucin 1, TNF-α, IL-1β, IL-6, NLR family pyrin domain containing 3, apoptosis-associated speck-like protein containing a CARD and caspase-1 were evaluated. Compared with the normal group, mice that underwent CLP exhibited abnormal lung morphology, enhanced production of TNF-α, IL-1β and IL-6, increased reactive oxygen species (ROS), malondialdehyde and lactate dehydrogenase levels, an increased proportion of apoptotic cells and increased ROCK1 expression. Superoxide dismutase, glutathione peroxidase and miR-139-5p levels were decreased following CLP. In the NHBEs, stimulation with LPS caused a marked increase in inflammatory cytokine levels and apoptosis compared with the untreated cells. Overexpression of miR-139-5p attenuated cell apoptosis and inflammation. Overexpression of ROCK1 in NHBEs restored the ROS levels and proinflammatory cytokine production inhibited by miR-139-5p. In conclusion, miR-139-5p alleviated sepsis-induced ALI via suppression of its downstream target, ROCK1, suggesting that miR-139-5p may hold promise in the treatment of sepsis-induced ALI.
Collapse
Affiliation(s)
- Xinmin Zhao
- Department of Emergency Medicine, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, Jiangsu 210002, P.R. China.,Department of Anesthesiology, Yancheng Maternity and Child Health Hospital, Yancheng, Jiangsu 224002, P.R. China
| | - Mengmeng Wang
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Zhaorui Sun
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Suyuan Zhuang
- Department of Emergency Medicine, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, Jiangsu 210002, P.R. China
| | - Wei Zhang
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Zhizhou Yang
- Department of Emergency Medicine, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, Jiangsu 210002, P.R. China.,Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Xiaoqin Han
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Shinan Nie
- Department of Emergency Medicine, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, Jiangsu 210002, P.R. China.,Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| |
Collapse
|
16
|
Yan Q, Wang K, Han X, Tan Z. The Regulatory Mechanism of Feeding a Diet High in Rice Grain on the Growth and microRNA Expression Profiles of the Spleen, Taking Goats as an Artiodactyl Model. BIOLOGY 2021; 10:biology10090832. [PMID: 34571708 PMCID: PMC8467863 DOI: 10.3390/biology10090832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 12/28/2022]
Abstract
Several researchers have testified that feeding with diets high in rice grain induces subacute ruminal acidosis and increases the risk of gastrointestinal inflammation. However, whether diets high in rice grain affect spleen growth and related molecular events remains unknown. Therefore, the present study was conducted to investigate the effects of feeding a high-concentrate (HC) diet based on rice on the growth and microRNA expression profiles in goat spleen. Sixteen Liuyang black goats were used as an artiodactyl model and fed an HC diet for five weeks. Visceral organ weight, LPS (lipopolysaccharide) concentration in the liver and spleen, and microRNA expression were analyzed. The results showed that feeding an HC diet increased the heart and spleen indexes and decreased the liver LPS concentration (p < 0.05). In total, 596 microRNAs were identified, and twenty-one of them were differentially expressed in the spleens of goats fed with the HC diet. Specifically, several microRNAs (miR-107, miR-512, miR-51b, miR-191, miR-296, miR-326, miR-6123 and miR-433) were upregulated. Meanwhile, miR-30b, miR-30d, miR-1468, miR-502a, miR-145, miR-139, miR-2284f, miR-101 and miR-92a were downregulated. Additionally, their target gene CPPED1, CDK6, CCNT1 and CASP7 expressions were inhibited (p < 0.05). These results indicated that the HC diet promoted the growth of the heart and spleen. The HC diet also regulated the expression of miR-326, miR-512-3p, miR-30b, miR-30d, miR-502a and their target genes (CPPED1, CDK6 and CCNT1) related to the enhancement of splenocyte proliferation. The HC diet also modulated the expression of miR-15b-5p, miR-1468 and miR-92a, related to the suppression of splenocyte apoptosis.
Collapse
Affiliation(s)
- Qiongxian Yan
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (Q.Y.); (K.W.); (X.H.)
| | - Kaijun Wang
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (Q.Y.); (K.W.); (X.H.)
| | - Xuefeng Han
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (Q.Y.); (K.W.); (X.H.)
| | - Zhiliang Tan
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (Q.Y.); (K.W.); (X.H.)
- Hunan Co-Innovation Center of Animal Production Safety—CICAPS, Changsha 410128, China
- Correspondence:
| |
Collapse
|
17
|
Xie D, Tong M, Xia B, Feng G, Wang L, Li A, Luo G, Wan H, Zhang Z, Zhang H, Yang YG, Zhou Q, Wang M, Wang XJ. Long noncoding RNA lnc-NAP sponges mmu-miR-139-5p to modulate Nanog functions in mouse ESCs and embryos. RNA Biol 2021; 18:875-887. [PMID: 32991228 PMCID: PMC8081037 DOI: 10.1080/15476286.2020.1827591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/30/2020] [Accepted: 09/20/2020] [Indexed: 12/30/2022] Open
Abstract
The pluripotency of embryonic stem cells (ESCs) is controlled by a multilayer regulatory network, of which the key factors include core pluripotency genes Oct4, Sox2 and Nanog, and multiple microRNAs (miRNAs). Recently, long noncoding RNAs (lncRNAs) have been discovered as a class of new regulators for ESCs, and some lncRNAs could function as competing endogenous RNAs (ceRNAs) to regulate mRNAs by competitively binding to miRNAs. Here, we identify mmu-miR-139-5p as a new regulator for Nanog by targeting Nanog 3' untranslated region (UTR) to repress Nanog expression in mouse ESCs and embryos. Such regulation could be released by an ESC-specifically expressed ceRNA named lnc-NAP. The expression of lnc-NAP is activated by OCT4, SOX2, as well as NANOG through promoter binding. Downregulation of lnc-NAP reduces Nanog abundance, which leads to decreased pluripotency of mouse ESCs and embryonic lethality. These results reveal lnc-NAP as a new regulator for Nanog in mouse ESCs, and uncover a feed-forward regulatory loop of Nanog through the participation of lnc-NAP.
Collapse
MESH Headings
- 3' Untranslated Regions/genetics
- Animals
- Cell Differentiation/genetics
- Embryo, Mammalian/cytology
- Embryo, Mammalian/embryology
- Embryo, Mammalian/metabolism
- Embryonic Stem Cells/cytology
- Embryonic Stem Cells/metabolism
- Gene Expression Regulation, Developmental
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Mice, Inbred NOD
- Mice, SCID
- MicroRNAs/genetics
- Nanog Homeobox Protein/genetics
- Nanog Homeobox Protein/metabolism
- Octamer Transcription Factor-3/genetics
- Octamer Transcription Factor-3/metabolism
- Promoter Regions, Genetic/genetics
- Protein Binding
- RNA, Long Noncoding/genetics
- RNA-Seq/methods
- Reverse Transcriptase Polymerase Chain Reaction/methods
- SOXB1 Transcription Factors/genetics
- SOXB1 Transcription Factors/metabolism
- Mice
Collapse
Affiliation(s)
- Dongfang Xie
- Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Man Tong
- Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Baolong Xia
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guihai Feng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Leyun Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ang Li
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Guanzheng Luo
- Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Haifeng Wan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zeyu Zhang
- Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Hao Zhang
- Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Yun-Gui Yang
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Meng Wang
- Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Xiu-Jie Wang
- Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
Feng J, Wei Q, Yang M, Wang X, Liu B, Li J. Development and validation of a novel miRNA classifier as a prognostic signature for stage II/III colorectal cancer. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:747. [PMID: 34268360 PMCID: PMC8246165 DOI: 10.21037/atm-20-1751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 10/19/2020] [Indexed: 12/04/2022]
Abstract
Background The TNM staging remains the gold standard for determining the prognosis of patients with colorectal cancer (CRC), which is inadequate at identifying the subset of high-risk stage II and III patients that have a high potential of developing tumor recurrence and may experience death. Emerging evidence indicates that not only microRNAs (miRNAs) play important functional role in CRC development but may serve as important disease biomarkers. In this study we aimed to develop a miRNA-based classifier as a prognostic signature for improving the clinical outcome of patients with stage II/III CRC. Methods We performed a systematic and comprehensive discovery step to identify differentially expressed miRNAs in CRC. We subsequently determined the prognostic relevance of these miRNAs in stage II/III patients using qRT-PCR and developed a miRNA-based classifier for predicting disease-free survival (DFS) in a clinical cohort (n=186). Results Based upon miRNA expression profiling studies, we identified a panel of 10 miRNAs which are consistently differentially expressed in CRC vs. normal tissues. By using cox proportional hazard models, we then developed 6-miRNA-classifier (miR-183, -20a, -21, -195, -139 and -20a) to predict prognosis in clinical cohort, that had significantly superior predictive performance compared to other clinicopathological factors, and could successfully identify high-risk stage II and III CRC patients with poor prognosis [hazard ratio (HR) =2.16; P=0.0048]. In a multivariate analysis, this miRNA-based classifier emerged as an independent prognostic signature for poor DFS. Conclusions Our miRNA-based classifier is a reliable predictive tool for determining prognosis in patents with stage II/III CRC, and might be able to identify high-risk patients that are candidates for more targeted personalized clinical management and surveillance.
Collapse
Affiliation(s)
- Junlan Feng
- Department of General Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qing Wei
- Department of Pathology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Muqing Yang
- Department of General Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaodong Wang
- Department of General Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bin Liu
- Department of General Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiyu Li
- Department of General Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
19
|
Zhu HC, Jia XK, Fan Y, Xu SH, Li XY, Huang MQ, Lan ML, Xu W, Wu SS. Alisol B 23-Acetate Ameliorates Azoxymethane/Dextran Sodium Sulfate-Induced Male Murine Colitis-Associated Colorectal Cancer via Modulating the Composition of Gut Microbiota and Improving Intestinal Barrier. Front Cell Infect Microbiol 2021; 11:640225. [PMID: 33996624 PMCID: PMC8117151 DOI: 10.3389/fcimb.2021.640225] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/12/2021] [Indexed: 12/16/2022] Open
Abstract
Hunting for natural compounds that can modulate the structure of the intestinal flora is a new hotspot for colitis‐associated cancer (CAC) prevention or treatment. Alisol B 23-acetate (AB23A) is a natural tetracyclic triterpenoid found in Alismatis rhizoma which is well known for dietary herb. Alismatis rhizoma is often used clinically to treat gastrointestinal diseases in China. In this study, we investigated the potential prevention of AB23A in male mouse models of azoxymethane (AOM) and dextran sulfate sodium (DSS)-induced CAC. AB23A intervention alleviated the body weight loss, disease activity index, colon tumor load, tissue injury, and inflammatory cytokine changes in CAC mice. AB23A intervention leads to remarkable reductions in the activation of TLR, NF-κB and MAPK. AB23A significantly decreased the phosphorylation of p38, ERK, and JNK and up-regulated mucin-2 and the expression of tight junction proteins. The gut microbiota of AB23A-interfered mice was characterized with high microbial diversity, the reduced expansion of pathogenic bacteria, such as Klebsiella, Citrobacter, and Akkermansia, and the increased growth of bacteria including Bacteroides, Lactobacillus, and Alloprevotella. These data reveal that AB23A has the potential to be used to treat CAC in the future.
Collapse
Affiliation(s)
- Huai-Chang Zhu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Centre of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xiao-Kang Jia
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Centre of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yong Fan
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Centre of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Shao-Hua Xu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Centre of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xiao-Yan Li
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Centre of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Ming-Qing Huang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Centre of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Meng-Liu Lan
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Centre of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Wen Xu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Centre of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Shui-Sheng Wu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Centre of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
20
|
Bocchetti M, Ferraro MG, Ricciardiello F, Ottaiano A, Luce A, Cossu AM, Scrima M, Leung WY, Abate M, Stiuso P, Caraglia M, Zappavigna S, Yau TO. The Role of microRNAs in Development of Colitis-Associated Colorectal Cancer. Int J Mol Sci 2021; 22:ijms22083967. [PMID: 33921348 PMCID: PMC8068787 DOI: 10.3390/ijms22083967] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/01/2021] [Accepted: 04/08/2021] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC) is the third most deadly cancer worldwide, and inflammatory bowel disease (IBD) is one of the critical factors in CRC carcinogenesis. IBD is responsible for an unphysiological and sustained chronic inflammation environment favoring the transformation. MicroRNAs (miRNAs) belong to a class of highly conserved short single-stranded segments (18-25 nucleotides) non-coding RNA and have been extensively discussed in both CRC and IBD. However, the role of miRNAs in the development of colitis-associated CRC (CAC) is less clear. The aim of this review is to summarize the major upregulated (miR-18a, miR-19a, miR-21, miR-31, miR-155 and miR-214) and downregulated (miR-124, miR-193a-3p and miR-139-5p) miRNAs in CAC, and their roles in genes' expression modulation in chronic colonic-inflammation-induced carcinogenesis, including programmed cell-death pathways. These miRNAs dysregulation could be applied for early CAC diagnosis, to predict therapy efficacy and for precision treatment.
Collapse
Affiliation(s)
- Marco Bocchetti
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (M.B.); (A.L.); (A.M.C.); (M.A.); (P.S.); (M.C.)
- Biogem Scarl, Molecular Oncology and Precision Medicine Laboratory, via Camporeale, 83031 Ariano Irpino, Italy;
| | - Maria Grazia Ferraro
- Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, via D. Montesano 49, 80131 Naples, Italy;
| | | | - Alessandro Ottaiano
- SSD-Innovative Therapies for Abdominal Metastases, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy;
| | - Amalia Luce
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (M.B.); (A.L.); (A.M.C.); (M.A.); (P.S.); (M.C.)
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Alessia Maria Cossu
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (M.B.); (A.L.); (A.M.C.); (M.A.); (P.S.); (M.C.)
- Biogem Scarl, Molecular Oncology and Precision Medicine Laboratory, via Camporeale, 83031 Ariano Irpino, Italy;
| | - Marianna Scrima
- Biogem Scarl, Molecular Oncology and Precision Medicine Laboratory, via Camporeale, 83031 Ariano Irpino, Italy;
| | - Wing-Yan Leung
- Division of Haematology, Department of Medicine, The University of Hong Kong, Hong Kong, China;
| | - Marianna Abate
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (M.B.); (A.L.); (A.M.C.); (M.A.); (P.S.); (M.C.)
| | - Paola Stiuso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (M.B.); (A.L.); (A.M.C.); (M.A.); (P.S.); (M.C.)
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (M.B.); (A.L.); (A.M.C.); (M.A.); (P.S.); (M.C.)
- Biogem Scarl, Molecular Oncology and Precision Medicine Laboratory, via Camporeale, 83031 Ariano Irpino, Italy;
| | - Silvia Zappavigna
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (M.B.); (A.L.); (A.M.C.); (M.A.); (P.S.); (M.C.)
- Correspondence: (S.Z.); (T.O.Y.)
| | - Tung On Yau
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
- Correspondence: (S.Z.); (T.O.Y.)
| |
Collapse
|
21
|
Fei S, Cao L, Li S. RETRACTED: microRNA-139-5p alleviates neurological deficit in hypoxic-ischemic brain damage via HDAC4 depletion and BCL-2 activation. Brain Res Bull 2021; 169:73-80. [PMID: 33400954 DOI: 10.1016/j.brainresbull.2020.12.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/15/2020] [Accepted: 12/28/2020] [Indexed: 01/03/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief as there are concerns about the reliability of the results. Concerns have been raised about the western blot bands in Figs. 5A, 6D having the same eyebrow shaped phenotype as found in many other publications as tabulated here (https://docs.google.com/spreadsheets/d/149EjFXVxpwkBXYJOnOHb6RhAqT4a2llhj9LM60MBffM/edit#gid=0). The journal requested the corresponding author to comment on these concerns and send the raw data, however the author was not able to provide uncropped images of the original gels. The Editor-in-Chief therefore no longer has confidence in the data and conclusions of this study.
Collapse
Affiliation(s)
- Shinuan Fei
- Department of Pediatrics, Edong Healthcare Group, Huangshi Maternity and Children's Health Hospital, Huangshi, 435000, Hubei, PR China
| | - Lichun Cao
- Department of Medical Customer Service, Huangshi Central Hospital•Affiliated Hospital of Hubei Polytechnic University, No. 293, Yiyuan Street, XiSaiShan District, Huangshi, 435000, Hubei, PR China.
| | - Sheng Li
- Department of Laboratory Medicine, Edong Healthcare Group, Huangshi Maternity and Children's Health Hospital, No. 80, Guilin South Road, Xialu District, Huangshi, 435000, Hubei, PR China
| |
Collapse
|
22
|
Shan D, Guo X, Yang G, He Z, Zhao R, Xue H, Li G. Integrated Transcriptional Profiling Analysis and Immune-Related Risk Model Construction for Intracranial Aneurysm Rupture. Front Neurosci 2021; 15:613329. [PMID: 33867914 PMCID: PMC8046927 DOI: 10.3389/fnins.2021.613329] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 03/04/2021] [Indexed: 12/15/2022] Open
Abstract
Intracranial aneurysms (IAs) may cause lethal subarachnoid hemorrhage upon rupture, but the molecular mechanisms are poorly understood. The aims of this study were to analyze the transcriptional profiles to explore the functions and regulatory networks of differentially expressed genes (DEGs) in IA rupture by bioinformatics methods and to identify the underlying mechanisms. In this study, 1,471 DEGs were obtained, of which 619 were upregulated and 852 were downregulated. Gene enrichment analysis showed that the DEGs were mainly enriched in the inflammatory response, immune response, neutrophil chemotaxis, and macrophage differentiation. Related pathways include the regulation of actin cytoskeleton, leukocyte transendothelial migration, nuclear factor κB signaling pathway, Toll-like receptor signaling pathway, tumor necrosis factor signaling pathway, and chemokine signaling pathway. The enrichment analysis of 20 hub genes, subnetworks, and significant enrichment modules of weighted gene coexpression network analysis showed that the inflammatory response and immune response had a causal relationship with the rupture of unruptured IAs (UIAs). Next, the CIBERSORT method was used to analyze immune cell infiltration into ruptured IAs (RIAs) and UIAs. Macrophage infiltration into RIAs increased significantly compared with that into UIAs. The result of principal component analysis revealed that there was a difference between RIAs and UIAs in immune cell infiltration. A 4-gene immune-related risk model for IA rupture (IRMIR), containing CXCR4, CXCL3, CX3CL1, and CXCL16, was established using the glmnet package in R software. The receiver operating characteristic value revealed that the model represented an excellent clinical situation for potential application. Enzyme-linked immunosorbent assay was performed and showed that the concentrations of CXCR4 and CXCL3 in serum from RIA patients were significantly higher than those in serum from UIA patients. Finally, a competing endogenous RNA network was constructed to provide a potential explanation for the mechanism of immune cell infiltration into IAs. Our findings highlighted the importance of immune cell infiltration into RIAs, providing a direction for further research.
Collapse
Affiliation(s)
- Dezhi Shan
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
| | - Xing Guo
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Guozheng Yang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
| | - Zheng He
- Department of Neurosurgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Rongrong Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Hao Xue
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| |
Collapse
|
23
|
Zhu MX, Huang LH, Zhu YK, Cai XJ. LncRNA NEAT1 promotes airway smooth muscle cell inflammation by activating the JAK3/STAT5 pathway through targeting of miR-139. Exp Lung Res 2021; 47:161-172. [PMID: 33590796 DOI: 10.1080/01902148.2021.1876792] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background Asthma is a chronic inflammatory heterogeneous respiratory disease. Previous studies showed that the lncRNA NEAT1 (nuclear paraspeckle assembly transcript 1) might play an important role in the pathogenesis of asthma, but its potential mechanism in airway smooth muscle cell (ASMC) inflammation remains largely unknown and needs further investigation.Methods We performed cellular immunofluorescence to identify the features of ASMCs and detected the expression levels of lncRNA NEAT1, miR-139, TNF-α, IL-6, IL-8 and IL-1β by quantitative real-time PCR (Q-PCR) and ELISA. Western blotting (WB) was used to measure the protein expression of the related genes, and bioinformatics as well as dual luciferase assays were used to validate the interaction between lncRNA NEAT1 and miR-139 and the interaction between miR-139 and the 3'-UTR of JAK3.Results The expression of lncRNA NEAT1 was increased in the ASMCs of asthma patients, but miR-139 was decreased. Overexpression of lncRNA NEAT1 promoted the expression of the inflammatory cytokines such as TNF-α, IL-6, IL-8 and IL-1β in ASMCs. LncRNA NEAT1 was able to target miR-139 to activate the JAK3/STAT5 signaling pathway and induced the expression of these inflammatory cytokines in ASMCs. Overexpression of miR-139 or suppression of the JAK3/STAT5 signaling pathway reversed the inflammatory effect of lncRNA NEAT1.Conclusion LncRNA NEAT1 played a pivotal role in ASMC inflammation and exerted its function through the miR-139/JAK3/STAT5 signaling network.
Collapse
Affiliation(s)
- Meng-Xia Zhu
- Department of Respiratory and Critical Care Medicine, Hainan General Hospital, Haikou, Hainan Province, China
| | - Lin-Hui Huang
- Department of Respiratory and Critical Care Medicine, Hainan General Hospital, Haikou, Hainan Province, China
| | - Yi-Ke Zhu
- Department of Respiratory and Critical Care Medicine, Hainan General Hospital, Haikou, Hainan Province, China
| | - Xing-Jun Cai
- Department of Respiratory and Critical Care Medicine, Hainan General Hospital, Haikou, Hainan Province, China
| |
Collapse
|
24
|
Zhang W, Qu X, Zhu Z, Wang L, Qi Q, Zhou P, Wang X, Li W. Inhibition of miR-139-5p by topical JTXK gel promotes healing of Staphylococcus aureus-infected skin wounds. Cells Dev 2021; 166:203658. [PMID: 33994349 DOI: 10.1016/j.cdev.2021.203658] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/21/2020] [Accepted: 01/04/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND The inflammatory skin wound response is regulated by argonaute 2-bound microRNAs (Ago2-miRNAs) such as miR-139-5p, which inhibit transcription of their target mRNAs. Jiang Tang Xiao Ke (JTXK) is a traditional Chinese medicine that reduces miR-139-5p expression, suggesting that topical application of JTXK may have effects on wound healing. METHODS miR-139-/- mice and wild-type (WT) mice were employed to characterize the in vivo effects of miR-139-5p on sterile wound healing. Neutrophil migration and activation into the wound site were examined by live imaging analysis in lys-EGFP mice and myeloperoxidase/aminophenyl fluorescein assays, respectively. In silico and in vitro studies in differentiated HL60 cells were performed to identify miR-139-5p's downstream mediator(s). miR-139-/- neutrophil transplantation (with or without Eif4g2-knockdown rescue) or a topical JTXK gel preparation (with or without miR-139-5p mimic rescue) were employed to characterize the in vivo effects of miR-139-5p and JTXK, respectively, on Staphylococcus aureus (S. aureus)-infected wound healing. RESULTS miR-139-/- mice display impaired sterile wound healing but improved S. aureus-infected wound healing. Eif4g2, a protein that supports neutrophil proliferation and differentiation, was identified as a key downstream mediator of miR-139-5p. miR-139-/- mice show elevated neutrophilic activation and Eif4g2 upregulation. miR-139-/- neutrophils enhanced S. aureus-infected wound healing in an Eif4g2-dependent manner. Moreover, topical JTXK gel therapy also enhanced S. aureus-infected wound healing in a miR-139-5p-dependent manner. CONCLUSIONS miR-139-5p negatively regulates the neutrophilic response during S. aureus-infected wound healing, suggesting that JTXK or other miR-139-5p suppressants may be effective for treating infected skin wounds.
Collapse
Affiliation(s)
- Weitao Zhang
- Department of Dermatology, Affiliated Hospital of Shaanxi University of traditional Chinese Medicine, Xianyang, China.
| | - Xu Qu
- Department of Dermatology, Affiliated Hospital of Shaanxi University of traditional Chinese Medicine, Xianyang, China
| | - Zhang Zhu
- Department of Dermatology, Affiliated Hospital of Shaanxi University of traditional Chinese Medicine, Xianyang, China
| | - Liwen Wang
- Department of Dermatology, Affiliated Hospital of Shaanxi University of traditional Chinese Medicine, Xianyang, China
| | - Qian Qi
- Shaanxi University of Traditional Chinese Medicine, Xianyang, China
| | - Pengjun Zhou
- Department of Dermatology, Affiliated Hospital of Shaanxi University of traditional Chinese Medicine, Xianyang, China
| | - Xiaoli Wang
- Department of Dermatology, Affiliated Hospital of Shaanxi University of traditional Chinese Medicine, Xianyang, China
| | - Wenna Li
- Department of Dermatology, Affiliated Hospital of Shaanxi University of traditional Chinese Medicine, Xianyang, China
| |
Collapse
|
25
|
Zhang X, Liu X, Chang R, Li Y. miR-139-5p protects septic mice with acute lung injury by inhibiting Toll-like receptor 4/Myeloid differentiation factor 88/Nuclear factor-&mac_kgr;B signaling pathway. Clinics (Sao Paulo) 2021; 76:e2484. [PMID: 33681946 PMCID: PMC7920407 DOI: 10.6061/clinics/2021/e2484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/26/2020] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVES To investigate the role of miR-139-5p and the TLR4/MyD88/NF-κB signaling pathway in acute lung injury in septic mice. METHOD A total of 140 healthy male SPF C57BL/6 mice were divided into seven groups, i.e., Normal, Control, NC, miR-139-5p mimic, miR-139-5p inhibitor, TAK-242, and miR-139-5p inhibitor+TAK-242 groups. The levels of miR-139-5p, proteins related to the TLR4/MyD88/NF-κB signaling pathway (TLR4, MyD88, and p-NF-κB p50), and MPO, SOD, GSH, and MDA in lung tissue were measured. The lung tissue wet-to-dry mass ratio (W/D), arterial oxygen partial pressure (PaO2), and carbon dioxide partial pressure (PaCO2) were measured. RESULTS A web-based bioinformatic tool predicted that MyD88 was a target of miR-139-5p, which was verified by a dual luciferase reporter assay. Compared with those in the Normal group, the levels of miR-139-5p, PaO2, SOD, and GSH were significantly lower, while those of TLR4, MyD88, p-NF-κB p50, W/D, PaCO2, IL-1β, TNF-α, IL-6, MPO, and MDA were higher in all other groups. Moreover, compared with their levels in the Control group, these indicators exhibited contrasting results in the miR-139-5p mimic and TAK-242 groups, but were similar in the miR-139-5p inhibitor group. In the miR-139-5p inhibitor+TAK-242 group, acute lung injury, aggravated by miR-139-5p inhibitor, was partially rescued by TAK-242. CONCLUSION miR-139-5p inhibits the TLR4/MyD88/NF-κB signaling pathway to alleviate acute lung injury in septic mice.
Collapse
Affiliation(s)
- Xiuxiu Zhang
- Departments of Critical Care Medicine, Eastern District of the Ji’ning No.1 People’s Hospital, Ji’ning, Shandong 272000, P.R. China
- *Corresponding author. E-mail:
| | - Xin Liu
- Departments of Critical Care Medicine, Eastern District of the Ji’ning No.1 People’s Hospital, Ji’ning, Shandong 272000, P.R. China
- *Corresponding author. E-mail:
| | - Rui Chang
- Departments of Critical Care Medicine, Eastern District of the Ji’ning No.1 People’s Hospital, Ji’ning, Shandong 272000, P.R. China
- *Corresponding author. E-mail:
| | - Yue Li
- Departments of Emergency Critical Care Medicine, Eastern District of the Ji’ning No.1 People’s Hospital, Ji’ning, Shandong 272000, P.R. China
- *Corresponding author. E-mail:
| |
Collapse
|
26
|
Zheng X, Zhao X, Han Z, Chen K. Enhancer of zeste homolog 2 participates in the process of atherosclerosis by modulating microRNA-139-5p methylation and signal transducer and activator of transcription 1 expression. IUBMB Life 2020; 73:238-251. [PMID: 33331071 DOI: 10.1002/iub.2423] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 11/06/2020] [Accepted: 11/23/2020] [Indexed: 12/21/2022]
Abstract
Atherosclerosis (AS) is the main cause of coronary heart disease, in which enhancer of zeste homolog 2 (EZH2) has been implied to participate in this process. Thus, this work proposed to explore the effect of EZH2 on AS from microRNA-139-5p (miR-139-5p)/signal transducer and activator of transcription 1 (STAT1) axis. EZH2, miR-139-5p, and STAT1 expression in arterial tissues of AS patients were detected. Human arterial smooth muscle cells (HASMCs) induced with oxidized low-density lipoprotein (ox-LDL) and the mice fed with high fat diet were treated with silenced EZH2 or upregulated miR-139-5p to explore their roles in proliferation and apoptosis of HASMCs, together with inflammation response and oxidative stress of mice. Chromatin immunoprecipitation experiment was applied to verify the regulatory effect of EZH2 on miR-139-5p through methylation of H3K27me3. The targeting relationship between miR-139-5p and STAT1 was verified by online website and luciferase activity assay. Reduced miR-139-5p and overexpressed EHZ2 and STAT1 were found in AS. Silenced EZH2 or elevated miR-139-5p decreased the production of cholesterol and inhibited inflammation reaction in serum of mice with AS. Silenced EZH2 or elevated miR-139-5p facilitated proliferation and restrained apoptosis of ox-LDL-treated HASMCs, and restrained oxidative stress and cell apoptosis in arterial tissues of AS mice. EZH2 regulated miR-139-5p through H3K27me3, and miR-139-5p targeted STAT1. miR-139-5p silencing antagonized the effects of EZH2 down-regulation on AS. This study manifests that down-regulated EZH2 or elevated miR-139-5p inhibits ox-LDL-induced HASMCs apoptosis, plaque formation, and inflammatory response in AS mice, which may be related to down-regulated STAT1.
Collapse
Affiliation(s)
- Xuwei Zheng
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoyan Zhao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhanying Han
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kui Chen
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
27
|
Xu D, Wu Y, Wang X, Hu X, Qin W, Li Y, Wang Y, Zhang Z, Lu S, Sun T, Wu Z, Fu D, Fu B, Zhang J, Chen Q, Wei M, Zhao L, Wu H. Identification of functional circRNA/miRNA/mRNA regulatory network for exploring prospective therapy strategy of colorectal cancer. J Cell Biochem 2020; 121:4785-4797. [PMID: 32115780 DOI: 10.1002/jcb.29703] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/31/2020] [Indexed: 02/06/2023]
Abstract
Circular RNA (circRNA) has been reported to have great scientific significance and clinical value in multiple cancers including colorectal cancer (CRC). However, the biological function of most circRNAs in CRC is still in its infancy. Herein, we discovered the differential expressed circRNAs (DECs) between CRC tissues and matched adjacent using deep RNA sequencing and further confirmed the DECs expression by combining with another Gene Expression Omnibus dataset. Furthermore, we validated the expression of the top four upregulated circRNAs (hsa_circ_0030632, hsa_circ_0004887, hsa_circ_0001550, and hsa_circ_0001681) in both of paired CRC tissues and CRC cell lines. Then, a circRNA/microRNA/messenger RNA regulatory network was established and the Gene Ontology analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed these four circRNAs participated in various biological processed including apoptotic process and multiple metabolic processes. Moreover, based on the regulatory network, three bioactive compounds (pergolide, pivampicillin, and methylergometrine) for the treatment of CRC were also found. In conclusion, this study improved our understanding of circRNAs and may also facilitate the finding of promising targets and biomarkers in CRC.
Collapse
Affiliation(s)
- Dongping Xu
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Antitumor Drug Development and Evaluation, China Medical University, Shenyang, China
| | - Yutong Wu
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Antitumor Drug Development and Evaluation, China Medical University, Shenyang, China
| | - Xiufang Wang
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Antitumor Drug Development and Evaluation, China Medical University, Shenyang, China
| | - Xiaoyun Hu
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Antitumor Drug Development and Evaluation, China Medical University, Shenyang, China
| | - Wenyan Qin
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Antitumor Drug Development and Evaluation, China Medical University, Shenyang, China
| | - Yalun Li
- Department of Anorectal Surgery, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yilin Wang
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Antitumor Drug Development and Evaluation, China Medical University, Shenyang, China
| | - Zhen Zhang
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Antitumor Drug Development and Evaluation, China Medical University, Shenyang, China
| | - Senxu Lu
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Antitumor Drug Development and Evaluation, China Medical University, Shenyang, China
| | - Tong Sun
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Antitumor Drug Development and Evaluation, China Medical University, Shenyang, China
| | - Zhikun Wu
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Antitumor Drug Development and Evaluation, China Medical University, Shenyang, China
| | - Dandan Fu
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Antitumor Drug Development and Evaluation, China Medical University, Shenyang, China
| | - Boshi Fu
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Antitumor Drug Development and Evaluation, China Medical University, Shenyang, China
| | - Jing Zhang
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Antitumor Drug Development and Evaluation, China Medical University, Shenyang, China
| | - Qiuchen Chen
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Antitumor Drug Development and Evaluation, China Medical University, Shenyang, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Antitumor Drug Development and Evaluation, China Medical University, Shenyang, China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Antitumor Drug Development and Evaluation, China Medical University, Shenyang, China
| | - Huizhe Wu
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Antitumor Drug Development and Evaluation, China Medical University, Shenyang, China
| |
Collapse
|
28
|
Liu Z, Liao Z, Chen Y, Zhou L, Huangting W, Xiao H. Research on CRISPR/system in major cancers and its potential in cancer treatments. Clin Transl Oncol 2020; 23:425-433. [PMID: 32671729 DOI: 10.1007/s12094-020-02450-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/02/2020] [Indexed: 12/24/2022]
Abstract
Cancer is a serious public health problem in the world and the prevention and control of cancer has become one of the health strategies of governments around the world. According to the data of the International Agency for Research on Cancer (IARC), about 8 million people die of cancer every year in the world. With the continuous progress of medical technology, there are many methods to treat cancer at present. However, many treatment methods have achieved different therapeutic effects, some of them have obvious toxic and side effects. Therefore, it is necessary to study simpler and more effective new therapies for alleviating pain and prolonging lifetime of patients. In this view, we focus on the application progress of CRISPR system in some major cancers and its potential in cancer treatments.
Collapse
Affiliation(s)
- Z Liu
- Department of Clinical Pharmacy, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, No. 55, Section 4, South Renmin Road, Chengdu, 610041, Sichuan, China.,Personalized Drug Therapy Key Laboratory of Sichuan Province, Chengdu, China
| | - Z Liao
- Department of Gynecology and Obstetrics, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Y Chen
- Department of Clinical Pharmacy, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, No. 55, Section 4, South Renmin Road, Chengdu, 610041, Sichuan, China
| | - L Zhou
- Department of Clinical Pharmacy, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, No. 55, Section 4, South Renmin Road, Chengdu, 610041, Sichuan, China.,Personalized Drug Therapy Key Laboratory of Sichuan Province, Chengdu, China
| | - W Huangting
- Department of Clinical Pharmacy, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, No. 55, Section 4, South Renmin Road, Chengdu, 610041, Sichuan, China.,Personalized Drug Therapy Key Laboratory of Sichuan Province, Chengdu, China
| | - H Xiao
- Department of Clinical Pharmacy, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, No. 55, Section 4, South Renmin Road, Chengdu, 610041, Sichuan, China. .,Personalized Drug Therapy Key Laboratory of Sichuan Province, Chengdu, China.
| |
Collapse
|
29
|
Li H, Tang W, Jin Y, Dong W, Yan Y, Zhou J. Differential CircRNA Expression Profiles in PK-15 Cells Infected with Pseudorabies Virus Type II. Virol Sin 2020; 36:75-84. [PMID: 32617900 DOI: 10.1007/s12250-020-00255-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 05/26/2020] [Indexed: 12/21/2022] Open
Abstract
Circular RNAs (circRNAs) belong to a class of non-coding RNAs with diverse biological functions. However, little is known about their roles in case of pseudorabies virus (PrV) infection. Here, we analyzed the expression profile of host circRNAs from a virulent PrV type II strain DX (PrV-DX) infected and an attenuated gE/TK deficient (gE-TK-PrV) strain of PrV infected PK-15 cells. CircRNAs were identified by find_circ and analyzed with DESeq 2. Compared with the mock cells, 449 differentially expressed (DE) circRNAs (233 down-regulated and 216 up-regulated) from PrV-DX infected and 578 DE circRNAs (331 down-regulated and 247 up-regulated) from gE-TK- PrV infected PK-15 cells were identified. In addition, 459 DE circRNAs (164 down-regulated and 295 up-regulated) between the PrV-DX and gE-TK-PrV infected cells were identified. The expression patterns of 13 circRNAs were validated by reverse transcription quantitative real-time PCR (RT-qPCR) and results were similar as of RNA-seq. The putative target miRNA binding sites of DE circRNAs were predicted by using miRanda and psRobot. The circRNA-miRNA-mRNA network was constructed and certain miRNAs that have possible roles in antiviral immune response, such as miR-210 and miR-340, were predicted. GO and KEGG pathway analysis demonstrated that DE circRNAs were enriched in the processes such as cellular metabolism, protein binding, RNA degradation and regulation of actin cytoskeleton. Collectively, these findings might provide the useful information for a better understanding of mechanisms underlying the interaction between PrV-II and host cells.
Collapse
Affiliation(s)
- Haimin Li
- MOA Key Laboratory of Animal Virology, Center of Veterinary Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wen Tang
- MOA Key Laboratory of Animal Virology, Center of Veterinary Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yulan Jin
- MOA Key Laboratory of Animal Virology, Center of Veterinary Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Weiren Dong
- MOA Key Laboratory of Animal Virology, Center of Veterinary Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yan Yan
- MOA Key Laboratory of Animal Virology, Center of Veterinary Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jiyong Zhou
- MOA Key Laboratory of Animal Virology, Center of Veterinary Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
30
|
Xu WT, Shen GN, Li TZ, Zhang Y, Zhang T, Xue H, Zuo WB, Li YN, Zhang DJ, Jin CH. Isoorientin induces the apoptosis and cell cycle arrest of A549 human lung cancer cells via the ROS‑regulated MAPK, STAT3 and NF‑κB signaling pathways. Int J Oncol 2020; 57:550-561. [PMID: 32626938 DOI: 10.3892/ijo.2020.5079] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 05/05/2020] [Indexed: 12/24/2022] Open
Abstract
Isoorientin (ISO) is a naturally occurring C‑glycosyl flavone that has various pharmacological properties, such as anti‑bacterial and anti‑inflammatory effects. However, its underlying molecular mechanisms in human lung cancer cells remain unknown. In the present study, the effects of ISO on the induction of apoptosis and relative molecular mechanisms in A549 human lung cancer cells were investigated. The results of Cell Counting Kit‑8 assay (CCK‑8) indicated that ISO exerted significant cytotoxic effects on 3 lung cancer cell lines, but had no obvious side‑effects on normal cells. Moreover, flow cytometry and western blot analysis revealed that ISO induced mitochondrial‑dependent apoptosis by reducing mitochondrial membrane potential. ISO also increased the expression levels of Bax, cleaved‑caspase‑3 (cle‑cas‑3) and poly(ADP‑ribose) polymerase (PARP; cle‑PARP), and decreased the expression levels of Bcl‑2 in A549 cells. Furthermore, ISO induced G2/M cell cycle arrest by decreasing the expression levels of cyclin B1 and CDK1/2, and increasing the expression levels of p21 and p27 in A549 cells. As the duration of ISO treatment increased, intracellular reactive oxygen species (ROS) levels in A549 cells also increased. However, pre‑treatment of the cells with the ROS scavenger, N‑acetylcysteine (NAC), inhibited ISO‑induced apoptosis. In addition, ISO increased the expression levels of p‑p38, p‑JNK and IκB‑α; and decreased the expression levels of p‑extracellular signal‑regulated kinase (ERK), p‑signal transducer and activator of transcription (STAT)3, p‑nuclear factor (NF)‑κB, NF‑κB and p‑IκB; these effects were induced by mitogen‑activated protein kinase (MAPK) inhibitors and blocked by NAC. Taken together, the results of the present study indicate that ISO induces the apoptosis of A549 lung cancer cells via the ROS‑mediated MAPK/STAT3/NF‑κB signaling pathway, and thus may be a potential drug for use in the treatment of lung cancer.
Collapse
Affiliation(s)
- Wan-Ting Xu
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Gui-Nan Shen
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Tian-Zhu Li
- Molecular Medicine Research Center, School of Basic Medical Science, Chifeng University, Chifeng, Inner Mongolia Autonomous Region 024000, P.R. China
| | - Yu Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Tong Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Hui Xue
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Wen-Bo Zuo
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Yan-Nan Li
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Dong-Jie Zhang
- Department of Food Science and Engineering, College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Cheng-Hao Jin
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| |
Collapse
|
31
|
Chakraborty C, Sharma AR, Sharma G, Lee SS. The Interplay among miRNAs, Major Cytokines, and Cancer-Related Inflammation. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 20:606-620. [PMID: 32348938 PMCID: PMC7191126 DOI: 10.1016/j.omtn.2020.04.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/17/2020] [Accepted: 04/02/2020] [Indexed: 12/17/2022]
Abstract
Inflammation is closely related with the progression of cancer and is an indispensable component that orchestrates the tumor microenvironment. Studies suggest that different mediator and cellular effectors, including cytokines (interleukins, tumor necrosis factor-α [TNF-α], transforming growth factor-β [TGF-β], and granulocyte macrophage colony-stimulating factor [GM-CSF]), chemokines, as well as some transcription factors (nuclear factor κB [NF-κB], signal transducer and activator of transcription 3 [STAT3], hypoxia-inducible factor-1α [HIF1α]), play a crucial role during cancer-related inflammation (CRI). MicroRNAs (miRNAs) are the key components of cellular physiology. They play notable roles during posttranscriptional gene regulation and, thus, might have a potential role in controlling the inflammatory cascade during cancer progression. Taking into consideration the role identified for miRNAs in relation to inflammatory cytokines, we have tried to review their participation in neoplastic progression. Additionally, the involvement of miRNAs with some important transcription factors (NF-κB, STAT3, HIF1α) and proteins (cyclooxygenase-2 [COX-2], inducible nitric oxide synthase [iNOS]) closely associated with inflammation during cancer has also been discussed. A clear insight into the responsibility of miRNAs in cytokine signaling and inflammation related to CRI could project them as new therapeutic molecules, which could lead to improved treatment of CRI in the near future.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Road, Kolkata, West Bengal 700126, India; Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do 24252, Republic of Korea.
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do 24252, Republic of Korea
| | - Garima Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do 24252, Republic of Korea.
| |
Collapse
|
32
|
Khalili N, Nouri-Vaskeh M, Hasanpour Segherlou Z, Baghbanzadeh A, Halimi M, Rezaee H, Baradaran B. Diagnostic, prognostic, and therapeutic significance of miR-139-5p in cancers. Life Sci 2020; 256:117865. [PMID: 32502540 DOI: 10.1016/j.lfs.2020.117865] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/23/2020] [Accepted: 05/27/2020] [Indexed: 12/16/2022]
Abstract
miRNAs are a group of non-coding RNAs that have regulatory functions in post-transcriptional gene expression. These molecules play a fundamental role in cellular processes, for instance cell proliferation, apoptosis, migration, and invasion. Scientific investigations have previously established that miRNAs can either promote or suppress tumor development by mediating different signaling pathways. miR-139-5p, located on chromosome 11q13.4, has been examined extensively in cancers. Studies have demonstrated that miR-139-5p might be an attractive cancer biomarker. Herein, we will review how miR-139-5p acts in cancer diagnosis, prognosis, and therapy, as well as elucidating its major target genes and associated signaling pathways.
Collapse
Affiliation(s)
- Neda Khalili
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Masoud Nouri-Vaskeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Monireh Halimi
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Haleh Rezaee
- Infectious Diseases and Tropical Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Clinical Pharmacy (Pharmacotherapy), Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
33
|
Tian R, Liu X, Luo Y, Jiang S, Liu H, You F, Zheng C, Wu J. Apoptosis Exerts a Vital Role in the Treatment of Colitis-Associated Cancer by Herbal Medicine. Front Pharmacol 2020; 11:438. [PMID: 32410986 PMCID: PMC7199713 DOI: 10.3389/fphar.2020.00438] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 03/20/2020] [Indexed: 12/24/2022] Open
Abstract
Colitis-associated cancer (CAC) is known as inflammatory bowel disease (IBD)-developed colorectal cancer, the pathogenesis of which involves the occurrence of apoptosis. Western drugs clinically applied to CAC are often single-targeted and exert many adverse reactions after long-term administration, so it is urgent to develop new drugs for the treatment of CAC. Herbal medicines commonly have multiple components with multiple targets, and most of them are low-toxicity. Some herbal medicines have been reported to ameliorate CAC through inducing apoptosis, but there is still a lack of systematic review. In this work, we reviewed articles published in Sci Finder, Web of Science, PubMed, Google Scholar, CNKI, and other databases in recent years by setting the keywords as apoptosis in combination with colitis-associated cancer. We summarized the herbal medicine extracts or their compounds that can prevent CAC by modulating apoptosis and analyzed the mechanism of action. The results show the following. (1) Herbal medicines regulate both the mitochondrial apoptosis pathway and death receptor apoptosis pathway. (2) Herbal medicines modulate the above two apoptotic pathways by affecting signal transductions of IL-6/STAT3, MAPK/NF-κ B, Oxidative stress, Non-canonical TGF-β1, WNT/β-catenin, and Cell cycle, thereby ameliorating CAC. We conclude that following. (1) Studies on the role of herbal medicine in regulating apoptosis through the Ras/Raf/ERK, WNT/β-catenin, and Cell cycle pathways have not yet been carried out in sufficient depth. (2) The active constituents of reported anti-CAC herbal medicine mainly include polyphenols, terpenoids, and saccharide. Also, we identified other herbal medicines with the constituents mentioned above as their main components, aiming to provide a reference for the clinical use of herbal medicine in the treatment of CAC. (3) New dosage forms can be utilized to elevate the targeting and reduce the toxicity of herbal medicine.
Collapse
Affiliation(s)
- Ruimin Tian
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacology, North Sichuan Medical College, Nanchong, China
| | - Xianfeng Liu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanqin Luo
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shengnan Jiang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fengming You
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuan Zheng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiasi Wu
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
34
|
Ding S, Liu G, Jiang H, Fang J. MicroRNA Determines the Fate of Intestinal Epithelial Cell Differentiation and Regulates Intestinal Diseases. Curr Protein Pept Sci 2019; 20:666-673. [PMID: 30678626 DOI: 10.2174/1389203720666190125110626] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 12/30/2018] [Accepted: 01/10/2019] [Indexed: 12/19/2022]
Abstract
The rapid self-renewal of intestinal epithelial cells enhances intestinal function, promotes the nutritional needs of animals and strengthens intestinal barrier function to resist the invasion of foreign pathogens. MicroRNAs (miRNAs) are a class of short-chain, non-coding RNAs that regulate stem cell proliferation and differentiation by down-regulating hundreds of conserved target genes after transcription via seed pairing to the 3' untranslated regions. Numerous studies have shown that miRNAs can improve intestinal function by participating in the proliferation and differentiation of different cell populations in the intestine. In addition, miRNAs also contribute to disease regulation and therefore not only play a vital role in the gastrointestinal disease management but also act as blood or tissue biomarkers of disease. As changes to the levels of miRNAs can change cell fates, miRNA-mediated gene regulation can be used to update therapeutic strategies and approaches to disease treatment.
Collapse
Affiliation(s)
- Sujuan Ding
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China.,Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan, China.,Academician Workstation of Hunan Baodong Farming Co., Ltd., Hunan 422001, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China.,Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan, China
| | - Hongmei Jiang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
35
|
Gholami M, Larijani B, Zahedi Z, Mahmoudian F, Bahrami S, Omran SP, Saadatian Z, Hasani-Ranjbar S, Taslimi R, Bastami M, Amoli MM. Inflammation related miRNAs as an important player between obesity and cancers. J Diabetes Metab Disord 2019; 18:675-692. [PMID: 31890692 PMCID: PMC6915181 DOI: 10.1007/s40200-019-00459-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022]
Abstract
The growing trend in addition to their burden, prevalence, and death has made obesity and cancer two of the most concerning diseases worldwide. Obesity is an important risk factor for common types of cancers where the risk of some cancers is directly related to the obesity. Various inflammatory mechanisms and increased level of pro-inflammatory cytokines have been investigated in many previous studies, which play key roles in the pathophysiology and development of both of these conditions. On the other hand, in the recent years, many studies have individually focused on the biomarker's role and therapeutic targeting of microRNAs (miRNAs) in different types of cancers and obesity including newly discovered small noncoding RNAs (sncRNAs) which regulate gene expression and RNA silencing. This study is a comprehensive review of the main inflammation related miRNAs in obesity/obesity related traits. For the first time, the main roles of miRNAs in obesity related cancers have been discussed in response to the question raised in the following hypothesis; do the main inflammatory miRNAs link obesity with obesity-related cancers regarding their role as biomarkers? Graphical abstractConceptual design of inflammatory miRNAs which provide link between obesity and cancers.
Collapse
Affiliation(s)
- Morteza Gholami
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zhila Zahedi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mahmoudian
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Bahrami
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sima Parvizi Omran
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, 5th floor, Shariati Hospital, North Kargar Ave, Tehran, Iran
| | - Zahra Saadatian
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shirin Hasani-Ranjbar
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Taslimi
- Department of Gastroenterology, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Milad Bastami
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahsa M. Amoli
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, 5th floor, Shariati Hospital, North Kargar Ave, Tehran, Iran
| |
Collapse
|
36
|
Soleimani A, Rahmani F, Saeedi N, Ghaffarian R, Khazaei M, Ferns GA, Avan A, Hassanian SM. The potential role of regulatory microRNAs of RAS/MAPK signaling pathway in the pathogenesis of colorectal cancer. J Cell Biochem 2019; 120:19245-19253. [PMID: 31512778 DOI: 10.1002/jcb.29268] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/11/2019] [Indexed: 12/17/2022]
Abstract
Colorectal cancer (CRC) is the leading cause of cancer death worldwide. Dysregulation of RAS/MAPK signaling axis is frequently found in CRC patients. The RAS/MAPK axis regulates cancer cell proliferation, apoptosis, inflammation, migration, and metastasis. Oncogenic or tumor-suppressor microRNAs (miRNAs) for RAS/MAPK signaling play a key role in the pathogenesis of CRC and are considered as novel potential biomarkers for diagnosis and prognosis of human malignancies. This review summarizes the current knowledge of mechanisms of action of RAS/MAPK miRNAs in the development and progression of CRC for a better understanding and hence a better management of this disease.
Collapse
Affiliation(s)
- Atena Soleimani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzad Rahmani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nikoo Saeedi
- Student Research Committee, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Rana Ghaffarian
- Student Research Committee, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Brighton, Sussex, UK
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
37
|
Qin H, Wen DY, Que Q, Zhou CY, Wang XD, Peng YT, He Y, Yang H, Liao BM. Reduced expression of microRNA-139-5p in hepatocellular carcinoma results in a poor outcome: An exploration the roles of microRNA-139-5p in tumorigenesis, advancement and prognosis at the molecular biological level using an integrated meta-analysis and bioinformatic investigation. Oncol Lett 2019; 18:6704-6724. [PMID: 31807180 PMCID: PMC6876336 DOI: 10.3892/ol.2019.11031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/27/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is generally considered one of the most common gastrointestinal malignant tumors, characterized by high invasiveness and metastatic rate, as well as insidious onset. A relationship between carcinogenicity and aberrant microRNA-139-5p (miR-139-5p) expression has been identified in multiple tumors while the specific molecular mechanisms of miR-139-5p in HCC have not yet been thoroughly elucidated. A meta-analysis of available data from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus, ArrayExpress and Oncomine databases, as well as the published literature, was comprehensively conducted with the aim of examining the impact of miR-139-5p expression on HCC. Additionally, predicted downstream target genes were confirmed using a series of bioinformatics tools. Moreover, a correlative biological analysis was performed to ascertain the precise function of miR-139-5p in HCC. The results revealed that the expression of miR-139-5p was noticeably lower in HCC compared with non-tumor liver tissues according to the pooled standard mean difference, which was -0.84 [95% confidence interval (CI): -1.36 to -0.32; P<0.001]. Furthermore, associations were detected between miR-139-5p expression and certain clinicopathological characteristics of TCGA samples, including tumor grade, pathological stage and T stage. Moreover, the pooled hazard ratio (HR) for overall survival (HR=1.37; 95% CI: 1.07-1.76; P=0.001) indicated that decreased miR-139-5p expression was a risk factor for adverse outcomes. Additionally, 382 intersecting genes regulated by miR-139-5p were obtained and assembled in signaling pathways, including 'transcription factor activity, sequence-specific DNA binding', 'pathways in cancer' and 'Ras signaling pathway'. Notably, four targeted genes that were focused in 'pathways in cancer' were identified as hub genes and immunohistochemical staining of the proteins encoded by these four hub genes in liver tissues, explored using the Human Protein Atlas database, confirmed their expression patterns in HCC and normal liver tissues Findings of the present study suggest that reduced miR-139-5p expression is capable of accelerating tumor progression and is associated with a poor clinical outcome by modulating the expression of downstream target genes involved in tumor-associated signaling pathways.
Collapse
Affiliation(s)
- Hui Qin
- Department of Medical Ultrasonics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Dong-Yue Wen
- Department of Medical Ultrasonics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Qiao Que
- Department of Medical Ultrasonics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Chuan-Yang Zhou
- Department of Medical Ultrasonics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiao-Dong Wang
- Department of Medical Ultrasonics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yu-Ting Peng
- Department of Medical Ultrasonics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yun He
- Department of Medical Ultrasonics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Hong Yang
- Department of Medical Ultrasonics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Bo-Ming Liao
- Department of Internal Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
38
|
Huang N, Guo W, Ren K, Li W, Jiang Y, Sun J, Dai W, Zhao W. LncRNA AFAP1-AS1 Supresses miR-139-5p and Promotes Cell Proliferation and Chemotherapy Resistance of Non-small Cell Lung Cancer by Competitively Upregulating RRM2. Front Oncol 2019; 9:1103. [PMID: 31696057 PMCID: PMC6817562 DOI: 10.3389/fonc.2019.01103] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/07/2019] [Indexed: 12/12/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related death worldwide. This study aims to understand the underlying mechanism of lncRNA, actin filament-associated protein 1 antisense RNA 1(AFAP1-AS1) in mediating chemotherapeutic resistance in NSCLC. The levels of AFAP1-AS1 in NSCLC tissues and cells were determined using RT-PCR. The protein levels of RRM2, EGFR, and p-AKT were analyzed using Western blotting. Binding between AFAP1-AS1 and miR-139-5p was confirmed using dual luciferase reporter and RNA immunoprecipitation (RIP) assays, and binding between miR-139-5p and RRM2 was confirmed by a dual luciferase reporter assay. NSCLC cell proliferation, apoptosis, and colony formation were examined using MTT, flow cytometry, and colony formation assays, respectively. It was found that AFAP1-AS1 expression was upregulated in NSCLC tissues and cells. In addition, AFAP1-AS1 bound to and downregulated the expression of miR-139-5p, which was reduced in NSCLC tissues. Knockdown of AFAP1-AS1 and overexpression of miR-139-5p inhibited NSCLC cell proliferation, colony formation and chemotherapy resistance and increased cell apoptosis. Additionally, AFAP1-AS1 upregulates RRM2 expression via sponging miR-139-5p. Furthermore, AFAP1-AS1 enhanced NSCLC cell proliferation and chemotherapy resistance through upregulation of RRM2 by inhibiting miR-139-5p expression. Moreover, RRM2 promoted cellular chemotherapy resistance by activating EGFR/AKT. Finally, knockdown of AFAP1-AS1 significantly suppressed tumor growth and chemoresistance in nude mice. In conclusion, AFAP1-AS1 promoted chemotherapy resistance by supressing miR-139-5p expression and promoting RRM2/EGFR/AKT signaling pathway in NSCLC cells.
Collapse
Affiliation(s)
- Na Huang
- Department of Respiratory Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Wei Guo
- School of Laboratory Medicine/Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, China
| | - Ke Ren
- School of Laboratory Medicine/Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, China
| | - Wancheng Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yi Jiang
- Department of Respiratory Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jian Sun
- Department of Respiratory Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Wenjing Dai
- Department of Respiratory Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Wei Zhao
- Department of Respiratory Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China.,School of Laboratory Medicine/Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, China
| |
Collapse
|
39
|
Zhu M, Zhang W, Ma J, Dai Y, Zhang Q, Liu Q, Yang B, Li G. MicroRNA-139-5p regulates chronic inflammation by suppressing nuclear factor-κB activity to inhibit cell proliferation and invasion in colorectal cancer. Exp Ther Med 2019; 18:4049-4057. [PMID: 31616518 PMCID: PMC6781828 DOI: 10.3892/etm.2019.8032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 08/22/2019] [Indexed: 12/12/2022] Open
Abstract
The inflammatory microenvironment, which mediates the initiation and malignant development of tumors, has been reported to be associated with microRNA (miRNA) dysregulation. In the present study, the expression of miR-139-5p was analyzed in colorectal cancer (CRC) cell lines SW480, HT29, HCT-8, LoVo and HCT116, aiming to investigate the function and mechanism of miR-139-5p in the regulation of the malignant phenotypes of CRC. miR-139-5p expression was found to be considerably downregulated in CRC cell lines compared with the human normal colon mucosal epithelial cell line NCM460. Subsequently, it was demonstrated that overexpression of miR-139-5p in colon cancer cell lines significantly suppressed the cell proliferation in vitro and in vivo. In addition, overexpression of miR-139-5p further inhibited the invasion ability of colon cancer cells in vitro, concomitantly with downregulation of key invasion-associated proteins, including matrix metalloproteinase 9 (MMP9) and MMP7. Furthermore, it was demonstrated that overexpression of miR-139-5p decreased the expression levels of inflammatory cytokines, including interleukin-1β (IL-1β), IL-6 and tumor necrosis factor-α (TNF-α), by suppressing nuclear factor (NF)-κB activity. Therefore, these findings collectively indicated that miR-139-5p regulated chronic inflammation by suppressing NF-κB activity in order to inhibit cell proliferation and invasion in CRC, thereby indicating a novel molecular mechanism in CRC therapy.
Collapse
Affiliation(s)
- Mingming Zhu
- Department of Abdominal Tumor Surgery, Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, P.R. China
| | - Wen Zhang
- Department of Abdominal Tumor Surgery, Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, P.R. China
| | - Jun Ma
- Department of Abdominal Tumor Surgery, Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, P.R. China
| | - Youguo Dai
- Department of Abdominal Tumor Surgery, Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, P.R. China
| | - Qi Zhang
- Department of Abdominal Tumor Surgery, Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, P.R. China
| | - Qin Liu
- Department of Abdominal Tumor Surgery, Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, P.R. China
| | - Burong Yang
- Department of Abdominal Tumor Surgery, Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, P.R. China
| | - Gang Li
- Department of Abdominal Tumor Surgery, Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, P.R. China
| |
Collapse
|
40
|
Improving the anticancer effect of afatinib and microRNA by using lipid polymeric nanoparticles conjugated with dual pH-responsive and targeting peptides. J Nanobiotechnology 2019; 17:89. [PMID: 31426807 PMCID: PMC6699136 DOI: 10.1186/s12951-019-0519-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/30/2019] [Indexed: 02/06/2023] Open
Abstract
Background The emergence of resistance to chemotherapy or target therapy, tumor metastasis, and systemic toxicity caused by available anticancer drugs hamper the successful colorectal cancer (CRC) treatment. The rise in epidermal growth factor receptor (EGFR; human epidermal growth factor receptor 1; HER1) expression and enhanced phosphorylation of HER2 and HER3 are associated with tumor resistance, metastasis and invasion, thus resulting in poor outcome of anti-CRC therapy. The use of afatinib, a pan-HER inhibitor, is a potential therapeutic approach for resistant CRC. Additionally, miR-139 has been reported to be negatively correlated with chemoresistance, metastasis, and epithelial–mesenchymal transition (EMT) of CRC. Hence, we develop a nanoparticle formulation consisting of a polymer core to carry afatinib or miR-139, which is surrounded by lipids modified with a targeting ligand and a pH-sensitive penetrating peptide to improve the anticancer effect of cargos against CRC cells. Results Our findings show that this formulation displays a spherical shape with core/shell structure, homogeneous particle size distribution and negative zeta potential. The prepared formulations demonstrate a pH-sensitive release profile and an enhanced uptake of cargos into human colorectal adenocarcinoma Caco-2 cells in response to the acidic pH. This nanoparticle formulation incorporating afatinib and miR-139 exhibits low toxicity to normal cells but shows a better inhibitory effect on Caco-2 cells than other formulations. Moreover, the encapsulation of afatinib and miR-139 in peptide-modified nanoparticles remarkably induces apoptosis and inhibits migration and resistance of Caco-2 cells via suppression of pan-HER tyrosine kinase/multidrug resistance/metastasis pathways. Conclusion This study proposes a multifunctional nanoparticle formulation for targeted modulation of apoptosis/EGFR/HER/EMT/resistance/progression pathways to increase the sensitivity of colon cancer cells to afatinib. Electronic supplementary material The online version of this article (10.1186/s12951-019-0519-6) contains supplementary material, which is available to authorized users.
Collapse
|
41
|
Su C, Huang DP, Liu JW, Liu WY, Cao YO. miR-27a-3p regulates proliferation and apoptosis of colon cancer cells by potentially targeting BTG1. Oncol Lett 2019; 18:2825-2834. [PMID: 31452761 PMCID: PMC6676402 DOI: 10.3892/ol.2019.10629] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 05/13/2019] [Indexed: 01/16/2023] Open
Abstract
microRNA (miR/miRNA)-27a-3p has been reported to be abnormally expressed in various types of cancer, including colorectal cancer (CRC). B-cell translocation gene 1 (BTG1) has also been implicated with CRC. However, the association between miR-27a-3p and BTG1 in CRC, to the best of our knowledge, has not been investigated. In order to assess whether miR-27a-3p is associated with CRC, reverse transcription-quantitative PCR was performed on 20 paired CRC and paracancerous tissues for miRNA analysis. For the screening and validation of miR-27a-3p expression in colon cancer, several colon cancer cell lines (HCT-116, HCT8, SW480, HT29, LOVO and Caco2) and the normal colorectal epithelial cell line NCM460 were examined. The highest expression levels of miR-27a-3p were detected in the HCT-116, which was selected for further experimentation. The HCT-116 cells were divided into control, miR-27a-3p mimic and inhibitor groups, and cell proliferation was tested using an MTT assay. Additionally, miR-27a-3p inhibitor/mimic or BTG1 plasmid were transfected into the HCT-116 cells, and flow cytometry was performed to analyze cell cycle distributions. TUNEL analysis was performed to detect apoptosis. Protein levels of factors in the downstream signaling pathway mediated by miR-27a-3p [ERK/mitogen-activated extracellular signal-regulated kinase (MEK)] were detected. miR-27a-3p was revealed to be overexpressed in human CRC tissues and colon cancer cell lines. Knockdown of miR-27a-3p suppressed proliferation of HCT-116 cells and apoptosis was increased. It further markedly upregulated expression levels of BTG1 and inhibited activation of proteins of the ERK/MEK signaling pathway. In addition, overexpression of BTG1 in HCT-116 cells triggered G1/S phase cell cycle arrest and increased apoptosis via the ERK/MEK signaling pathway. In conclusion, the present study demonstrated that the effects of miR-27a-3p on colon cancer cell proliferation and apoptosis were similar to those of the tumor suppressor gene BTG1. The miR-27a-3p/BTG1 axis may have potential implications for diagnostic and therapeutic approaches in CRC.
Collapse
Affiliation(s)
- Chang Su
- Department of Surgery, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai 201199, P.R. China
| | - Dong-Ping Huang
- Department of Surgery, People's Hospital of Putuo District, Shanghai 200060, P.R. China
| | - Jian-Wen Liu
- Department of Molecular and Cellular Pharmacology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Wei-Yan Liu
- Department of Surgery, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai 201199, P.R. China
| | - Yi-Ou Cao
- Department of Surgery, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai 201199, P.R. China
| |
Collapse
|
42
|
Yang ZH, Dang YQ, Ji G. Role of epigenetics in transformation of inflammation into colorectal cancer. World J Gastroenterol 2019; 25:2863-2877. [PMID: 31249445 PMCID: PMC6589733 DOI: 10.3748/wjg.v25.i23.2863] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/24/2019] [Accepted: 05/08/2019] [Indexed: 02/06/2023] Open
Abstract
Molecular mechanisms associated with inflammation-promoted tumorigenesis have become an important topic in cancer research. Various abnormal epigenetic changes, including DNA methylation, histone modification, chromatin remodeling, and noncoding RNA regulation, occur during the transformation of chronic inflammation into colorectal cancer (CRC). These changes not only accelerate transformation but also lead to cancer progression and metastasis by activating carcinogenic signaling pathways. The NF-κB and STAT3 signaling pathways play a particularly important role in the transformation of inflammation into CRC, and both are critical to cellular signal transduction and constantly activated in cancer by various abnormal changes including epigenetics. The NF-κB and STAT3 signals contribute to the microenvironment for tumorigenesis through secretion of a large number of pro-inflammatory cytokines and their crosstalk in the nucleus makes it even more difficult to treat CRC. Compared with gene mutation that is irreversible, epigenetic inheritance is reversible or can be altered by the intervention. Therefore, understanding the role of epigenetic inheritance in the inflammation-cancer transformation may elucidate the pathogenesis of CRC and promote the development of innovative drugs targeting transformation to prevent and treat this malignancy. This review summarizes the literature on the roles of epigenetic mechanisms in the occurrence and development of inflammation-induced CRC. Exploring the role of epigenetics in the transformation of inflammation into CRC may help stimulate futures studies on the role of molecular therapy in CRC.
Collapse
Affiliation(s)
- Zhen-Hua Yang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Digestive Endoscopy Department, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yan-Qi Dang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| |
Collapse
|
43
|
Ginsenoside Rg3 protects against iE-DAP-induced endothelial-to-mesenchymal transition by regulating the miR-139-5p-NF-κB axis. J Ginseng Res 2019; 44:300-307. [PMID: 32148412 PMCID: PMC7031736 DOI: 10.1016/j.jgr.2019.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/03/2018] [Accepted: 01/14/2019] [Indexed: 01/02/2023] Open
Abstract
Background Emerging evidence suggests that endothelial-to-mesenchymal transition (EndMT) in endothelial dysfunction due to persistent inflammation is a key component and emerging concept in the pathogenesis of vascular diseases. Ginsenoside Rg3 (Rg3), an active compound from red ginseng, has been known to be important for vascular homeostasis. However, the effect of Rg3 on inflammation-induced EndMT has never been reported. Here, we hypothesize that Rg3 might reverse the inflammation-induced EndMT and serve as a novel therapeutic strategy for vascular diseases. Methods EndMT was examined under an inflammatory condition mediated by the NOD1 agonist, γ-d-glutamyl-meso-diaminopimelic acid (iE-DAP), treatment in human umbilical vein endothelial cells. The expression of EndMT markers was determined by Western blot analysis, real-time polymerase chain reaction, and immunocytochemistry. The underlying mechanisms of Rg3-mediated EndMT regulation were investigated by modulating the microRNA expression. Results The NOD1 agonist, iE-DAP, led to a fibroblast-like morphology change with a decrease in the expression of endothelial markers and an increase in the expression of the mesenchymal marker, namely EndMT. On the other hand, Rg3 markedly attenuated the iE-DAP–induced EndMT and preserved the endothelial phenotype. Mechanically, miR-139 was downregulated in cells with iE-DAP–induced EndMT and partly reversed in response to Rg3 via the regulation of NF-κB signaling, suggesting that the Rg3–miR-139-5p-NF-κB axis is a key mediator in iE-DAP-induced EndMT. Conclusion These results suggest, for the first time, that Rg3 can be used to inhibit inflammation-induced EndMT and may be a novel therapeutic option against EndMT-associated vascular diseases.
Collapse
|
44
|
Enhanced SLP-2 promotes invasion and metastasis by regulating Wnt/β-catenin signal pathway in colorectal cancer and predicts poor prognosis. Pathol Res Pract 2018; 215:57-67. [PMID: 30389319 DOI: 10.1016/j.prp.2018.10.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/26/2018] [Accepted: 10/19/2018] [Indexed: 02/07/2023]
Abstract
Stomatin-like protein-2 (SLP-2) gene belongs to the stomatin supergene family, and previous studies have revealed up-regulated SLP-2 expression in gallbladder cancer, lung cancer, and esophageal cancer, while the role of SLP-2 in colorectal cancer (CRC) remains unclear and needs further investigation. Therefore, the expression levels of SLP-2 in CRC tissue and cell lines were tested in this study. Besides, we further explored the role of SLP-2 in CRC invasion and metastasis at molecular level via gene intervention technique. Our results demonstrated that the positive rate of SLP-2 expression in CRC tissues was higher than that in the adjacent non-cancerous tissues (P < 0.05); positive SLP-2 expression predicted poorer prognosis of CRC patients as an independent risk factor (P < 0.05). Cell activities and the capacity of migration and invasion significantly decreased after the suppression of SLP-2 in SW620 cells (P < 0.05). Furthermore, the suppression of SLP-2 in SW620 cells resulted in varieties of invasion and metastasis-related genes and Wnt/β-catenin signal pathway (P < 0.05). The present study identified that SLP-2 may predict a poor prognosis in CRC patients as a novel marker, and SLP-2 may facilitate the migration and invasion of CRC via regulating Wnt/β-catenin pathway activities.
Collapse
|
45
|
Li J, Liu YY, Yang XF, Shen DF, Sun HZ, Huang KQ, Zheng HC. Effects and mechanism of STAT3 silencing on the growth and apoptosis of colorectal cancer cells. Oncol Lett 2018; 16:5575-5582. [PMID: 30344711 PMCID: PMC6176248 DOI: 10.3892/ol.2018.9368] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 03/28/2018] [Indexed: 12/16/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) have roles in various cellular processes, including angiogenesis, apoptosis, cell cycle progression, cell migration and drug resistance. To clarify the effects of STAT3 in colorectal cancer (CRC) cells and the underlying molecular mechanisms, STAT3 was directly silenced, and the effects of STAT3 silencing on cell proliferation, apoptosis and growth with phenotype-associated molecules were examined.pSH1-Si-STAT3 was successfully transfected into the CRC HCT-116 and SW480 cell lines, which was verified by GFP tagging under a fluorescence microscope. An MTT assay revealed that the proliferation of both cell lines that were transfected with pSH1-Si-STAT3 was significantly suppressed in comparison with the control and mock (P<0.05). Acridine orange/ethidium bromide staining and flow cytometry indicated that the transfected cell lines had a significantly higher rate of apoptosis than the control- and mock-treated cells (P<0.05). STAT3-silienced cells were also significantly arrested at the G2/M stage compared with the cells that were transfected with control and mock plasmids (P<0.05). At the mRNA level, the expression of STAT3 and survivin was significantly downregulated (P<0.05), but p53 and caspase-3 were significantly upregulated (P<0.05). The significantly different patterns of expression were observed in western blot analysis (P<0.05). The findings of the present study indicate that STAT3 silencing may suppress the proliferation and growth of CRC cells, and induce their apoptosis by upregulating the expression of survivin, p53 and caspase-3. Therefore, STAT3 may be a good candidate for CRC gene therapy.
Collapse
Affiliation(s)
- Jing Li
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - You-Yu Liu
- Department of Orthopedics, The Central Hospital of Liaoyang, Liaoyang, Liaoning 111000, P.R. China
| | - Xue-Feng Yang
- Tumor Basic and Translational Laboratory, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Dao-Fu Shen
- Tumor Basic and Translational Laboratory, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Hong-Zhi Sun
- Tumor Basic and Translational Laboratory, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Ke-Qiang Huang
- Department of Orthodontics, School of Stomatology, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Hua-Chuan Zheng
- Tumor Basic and Translational Laboratory, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| |
Collapse
|
46
|
Jiang C, Tong Z, Fang WL, Fu QB, Gu YJ, Lv TT, Liu DM, Xue W, Lv JW. Microrna-139-5p inhibits epithelial-mesenchymal transition and fibrosis in post-menopausal women with interstitial cystitis by targeting LPAR4 via the PI3K/Akt signaling pathway. J Cell Biochem 2018; 119:6429-6441. [PMID: 29240250 DOI: 10.1002/jcb.26610] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 12/07/2017] [Indexed: 01/06/2023]
Abstract
The study explores whether miR-139-5p targeting LPAR4 affects epithelial-mesenchymal transition (EMT) and fibrosis in post-menopausal women with interstitial cystitis (IC) via the PI3K/Akt signaling pathway. Bladder tissues of IC and normal bladder tissues were collected. The pathology of bladder tissues was observed by HE, Masson and Picrosirius red staining. LPAR4 positive expression rate were determined by IHC. ELISA was performed to detect the levels of IL-6, IL-8, IL-10, and TNF-α. Rat IC models were randomized into seven different groups. miR-139-5p, LPAR1, LPAR2, LPAR3, LPAR4, LPAR5, P13K, Akt, E-cadherin, N-cadherin, Vimentin, TGF-β1, and CTGF expression were determined by RT-qPCR and Western blotting. Dual luciferase reporter gene assay verified that LPAR4 is a target gene of miR-139-5p. Fibrosis was a pathological manifestation of IC. The IC group showed higher LPAR4, PI3K, Akt, p-PI3K, p-Akt, N-cadherin, Vimentin, TGF-β1, and CTGF expression but lower miR-139-5p and E-cadherin expression than the normal group. The levels of IL-6, IL-8, IL-10, and TNF-α expression decreased while HB-EGF increased in the IC group in comparison of the normal group. Compared with the blank and NC groups, E-cadherin expression was increased in the miR-139-5p mimic and siRNA-LPAR4 groups, while LPAR4, PI3K, Akt, p-P13K, p-Akt, N-cadherin, Vimentin, TGF-β1, and CTGF expression were decreased. An opposite trend was found in the miR-139-5p inhibitor group. The miR-139-5p decreased in the miR-139-5p inhibitor + siRNA-LPAR4 and miR-139-5p inhibitor + wortmannin groups. Conclusively, miR-139-5p targeting LPAR4 inhibits EMT and fibrosis in post-menopausal IC women through the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Chen Jiang
- Department of Urology, South Campus, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P. R. China
| | - Zhen Tong
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P. R. China
| | - Wei-Lin Fang
- Department of Urology, South Campus, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P. R. China
| | - Qi-Bo Fu
- Department of Urology, South Campus, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P. R. China
| | - Yin-Jun Gu
- Department of Urology, South Campus, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P. R. China
| | - Ting-Ting Lv
- Department of Urology, South Campus, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P. R. China
| | - Dong-Ming Liu
- Department of Urology, South Campus, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P. R. China
| | - Wei Xue
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P. R. China
| | - Jian-Wei Lv
- Department of Urology, South Campus, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P. R. China
| |
Collapse
|
47
|
Chen Y, Cao XY, Li YN, Qiu YY, Li YN, Li W, Wang H. Reversal of cisplatin resistance by microRNA-139-5p-independent RNF2 downregulation and MAPK inhibition in ovarian cancer. Am J Physiol Cell Physiol 2018; 315:C225-C235. [PMID: 29719173 DOI: 10.1152/ajpcell.00283.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Some microRNAs (miRs) are dysregulated in cancers, and aberrant miR expression has been reported to correlate with chemoresistance of cancer cells. Therefore, the present study aims at investigating the effects of microRNA-139-5p (miR-139-5p) on cisplatin resistance of ovarian cancer (OC) with involvement of ring finger protein 2 (RNF2) and the mitogen-activated protein kinase (MAPK) signaling pathway. OC tissues were obtained from 66 primary OC patients. The cisplatin-sensitive A2780 and cisplatin-resistant A2780/DDP cell lines were collected for construction of RNF2 silencing and overexpressed plasmids. Cell vitality and apoptosis were detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and annexin V-FITC/propidium iodide double-staining, respectively. Next, expression of RNF2, extracellular signal-related kinase, and p38 was determined by quantitative reverse transcription-quantitative polymerase chain reaction and Western blot analysis. Finally, the volume of xenograft tumors in BALB/c nude mice was detected. RNF2 and miR-139-5p were identified to be involved in OC. In addition, MAPK activation and RNF2 were related to cisplatin resistance of OC. miR-139-5p was downregulated in cisplatin-resistant OC tissues, and miR-139-5p overexpression could inhibit cell vitality, reduce cisplatin resistance, and promote apoptosis of OC cells. Furthermore, miR-139-5p combined with MAPK inhibitors more obviously reduced cisplatin resistance of OC. Taken together, this study demonstrated that miR-139-5p overexpression combined with inactivation of the MAPK signaling pathway can reverse the cisplatin resistance of OC by suppressing RNF2. Thus, miR-139-5p overexpression might be a future therapeutic strategy for OC.
Collapse
Affiliation(s)
- Ying Chen
- Department of Obstetrics and Gynecology, Linyi People's Hospital, Linyi, People's Republic of China
| | - Xiao-Yun Cao
- Medical Insurance Management Office, Economic and Technological Development Zone, People's Hospital of Linyi, Linyi, People's Republic of China
| | - Ying-Ni Li
- Department of Obstetrics and Gynecology, Economic and Technological Development Zone, People's Hospital of Linyi, Linyi, People's Republic of China
| | - Yu-Yan Qiu
- Department of Obstetrics and Gynecology, Economic and Technological Development Zone, People's Hospital of Linyi, Linyi, People's Republic of China
| | - Ying-Na Li
- Department of Obstetrics and Gynecology, Economic and Technological Development Zone, People's Hospital of Linyi, Linyi, People's Republic of China
| | - Wen Li
- Department of Reproductive Medicine, Linyi People's Hospital, Linyi, People's Republic of China
| | - Hui Wang
- Department of Obstetrics and Gynecology, Linyi People's Hospital, Linyi, People's Republic of China
| |
Collapse
|
48
|
PTBP3 contributes to the metastasis of gastric cancer by mediating CAV1 alternative splicing. Cell Death Dis 2018; 9:569. [PMID: 29752441 PMCID: PMC5948206 DOI: 10.1038/s41419-018-0608-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 12/23/2022]
Abstract
Polypyrimidine tract-binding protein 3 (PTBP3) is an essential RNA-binding protein with roles in RNA splicing, 3' end processing and translation. Although increasing evidence implicates PTBP3 in several cancers, its role in gastric cancer metastasis remains poorly explored. In this study, we found that PTBP3 was upregulated in the gastric cancer tissues of patients with lymph node metastasis. Patients with high PTBP3 expression levels had significantly shorter survival than those with low PTBP3 expression. Overexpression/knockdown of PTBP3 expression had no effect on proliferation, whereas it regulated migration and invasion in vitro. In addition, when a mouse xenotransplant model of MKN45 was established, knockdown of PTBP3 in MKN45 cells caused the formation of tumours that were smaller in size than their counterparts, with suppression of tumour lymphangiogenesis and metastasis to regional lymph nodes. Furthermore, we identified caveolin 1 (CAV1) as a downstream target of PTBP3. RNA immunoprecipitation (RIP) assays and dual-luciferase reporter gene assays indicated that PTBP3 interacted with the CU-rich region of the CAV1 gene to downregulate CAV1α expression. Knockdown of CAV1α abrogated the reduction of FAK and Src induced by PTBP3 knockdown. In summary, our findings provide experimental evidence that PTBP3 may function as a metastatic gene in gastric cancer by regulating CAV1 through alternative splicing.
Collapse
|
49
|
Liu J, Li C, Jiang Y, Wan Y, Zhou S, Cheng W. Tumor-suppressor role of miR-139-5p in endometrial cancer. Cancer Cell Int 2018; 18:51. [PMID: 29618950 PMCID: PMC5879796 DOI: 10.1186/s12935-018-0545-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 03/19/2018] [Indexed: 12/31/2022] Open
Abstract
Background Endometrial cancer (EC) is the fourth most common malignancy of the female genital tract worldwide. MicroRNAs are important gene regulators with critical roles in diverse biological processes, including tumorigenesis. Several study’s show that miR-139-5p is involved in the tumorigenesis and metastasis of various cancers. However, its expression and potential biologic role in endometrial cancer remain to be determined. This study aimed to investigate the miR-139-5p expression and to analyze its function and underlying molecular mechanism in endometrial cancer. Methods Expression of miR-139-5p was measured using qRT-PCR. The expression of HOXA10 was detected by Immunofluorescence staining in endometrial cancer tissues and adjacent normal tissues. CCK-8 and colony formation assays were used to assess the effect of miR-139-5p on ECC1 and Ishikawa cell line proliferation. Transwell migration assay was used to study the effect of miR-139-5p on EC cell migration. Luciferase reporter assay and western blot were used to confirm targeting of HOXA10 by miR-139-5p. Result We demonstrated that miR-139-5p was down-regulated in human endometrial cancer compared to their matched adjacent non-tumor tissues. Overexpressed miR-139-5p significantly inhibited endometrial cancer cell viability and migration. Computational algorithm in combination with dual luciferase reporter assays identified HOXA10 as the target of miR-139-5p. HOXA10 expression was downregulated in endometrial cancer cells after miR-139-5p overexpression. The expression level of HOXA10 was significantly increased in endometrial cancer tissues, which was inversely correlated with miR-139-5p expression in clinical endometrial cancer tissues. Conclusion These findings indicate that miR-139-5p targets the HOXA10 transcript and suppresses endometrial cancer cell growth and migration, suggesting that miR-139-5p acts as a tumor suppressive role in human endometrial cancer pathogenesis. Electronic supplementary material The online version of this article (10.1186/s12935-018-0545-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- JinHui Liu
- 1Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 Jiangsu China
| | - ChunYu Li
- 2Emergency Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Yi Jiang
- 1Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 Jiangsu China
| | - YiCong Wan
- 1Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 Jiangsu China
| | - ShuLin Zhou
- 1Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 Jiangsu China
| | - WenJun Cheng
- 1Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 Jiangsu China
| |
Collapse
|
50
|
Abstract
MicroRNAs (miRNAs) are ∼22 nt RNAs that direct posttranscriptional repression of mRNA targets in diverse eukaryotic lineages. In humans and other mammals, these small RNAs help sculpt the expression of most mRNAs. This article reviews advances in our understanding of the defining features of metazoan miRNAs and their biogenesis, genomics, and evolution. It then reviews how metazoan miRNAs are regulated, how they recognize and cause repression of their targets, and the biological functions of this repression, with a compilation of knockout phenotypes that shows that important biological functions have been identified for most of the broadly conserved miRNAs of mammals.
Collapse
Affiliation(s)
- David P Bartel
- Howard Hughes Medical Institute and Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|