1
|
Archie WH, Baimas-George M, Haynes N, Kundu S, Peterson K, Wehrle CJ, Huckleberry D, Eskind L, Levi D, Soto JR, Denny R, Casingal V, Cochran A, Rein EH, Vrochides D. Upper limit of normothermic machine preservation of liver grafts from donation after circulatory death yet to be defined. World J Transplant 2025; 15:99170. [DOI: 10.5500/wjt.v15.i2.99170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/07/2024] [Accepted: 12/11/2024] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND The normothermic machine perfusion pump (NMPP) could shape the future of transplantation. Providing ex-vivo optimization, NMPP attenuates ischemic insult while replenishing energy. An understanding of machine perfusion time (MPT) impact and potential clinical benefits is paramount and necessitates exploration.
AIM To investigate the relationship between MPT and post-transplant graft function.
METHODS Retrospective review of the first 50 donation after circulatory death (DCD) grafts preserved using NMPP in a tertiary institution was performed. Essential preservation time points, graft parameters, recipient information, and postoperative outcomes were prospectively recorded. Early allograft dysfunction (EAD), L-Graft7 score and 90-day outcomes were collected for all grafts. The first 20 recipients were allocated into the early group, considered the learning curve population for the center. The subsequent 30 were allocated into the late group. Recipients were also stratified into cohorts depending on MPT, i.e., short (< 8 hours), medium (8-16 hours) and long (> 16 hours).
RESULTS NMPP operational parameters were not predictive of EAD, L-GrAFT7 or 90-day outcomes. The early group had significantly less MPT and cold ischemia time than the late group (553 minutes vs 850 minutes, P < 0.001) and (127.5 minutes vs 154 minutes, P = 0.025), respectively. MPT had no impact in either group.
CONCLUSION Increased MPT of DCD liver grafts had no adverse recipient results for the times utilized in this population, indicating its upper limits, likely beyond 24 hours, are not demonstrated within this study. Future studies are necessary to determine whether longer MPT is beneficial or detrimental to graft function and, if the latter, what is the maximum safe duration. Further studies of the effect of normothermic machine perfusion pump duration on long-term outcomes are also needed.
Collapse
Affiliation(s)
- William H Archie
- Division of Adominal Transplant, Department of Surgery, Carolinas Medical Center, Charlotte, NC 28203, United States
| | - Maria Baimas-George
- Division of Adominal Transplant, Department of Surgery, Carolinas Medical Center, Charlotte, NC 28203, United States
| | - Nathanael Haynes
- Division of Adominal Transplant, Department of Surgery, Carolinas Medical Center, Charlotte, NC 28203, United States
| | - Souma Kundu
- Division of Adominal Transplant, Department of Surgery, Carolinas Medical Center, Charlotte, NC 28203, United States
| | - Katheryn Peterson
- Division of Adominal Transplant, Department of Surgery, Carolinas Medical Center, Charlotte, NC 28203, United States
| | - Chase J Wehrle
- Department of Hepato-Pancreato-Biliary/Liver Transplant Surgery, Cleveland Clinic Transplant Research Center, Cleveland, OH 44195, United States
| | - Damien Huckleberry
- Division of Adominal Transplant, Department of Surgery, Carolinas Medical Center, Charlotte, NC 28203, United States
| | - Lon Eskind
- Division of Adominal Transplant, Department of Surgery, Carolinas Medical Center, Charlotte, NC 28203, United States
| | - David Levi
- Division of Adominal Transplant, Department of Surgery, Carolinas Medical Center, Charlotte, NC 28203, United States
| | - Jose R Soto
- Division of Adominal Transplant, Department of Surgery, Carolinas Medical Center, Charlotte, NC 28203, United States
| | - Roger Denny
- Division of Adominal Transplant, Department of Surgery, Carolinas Medical Center, Charlotte, NC 28203, United States
| | - Vincent Casingal
- Division of Adominal Transplant, Department of Surgery, Carolinas Medical Center, Charlotte, NC 28203, United States
| | - Allyson Cochran
- Department of Surgery, Carolinas Center for Surgical Outcomes Science, Carolinas Medical Center, Charlotte, NC 28203, United States
| | - Erin H Rein
- Division of Adominal Transplant, Department of Surgery, Carolinas Medical Center, Charlotte, NC 28203, United States
| | - Dionisios Vrochides
- Division of Adominal Transplant, Department of Surgery, Carolinas Medical Center, Charlotte, NC 28203, United States
| |
Collapse
|
2
|
Li T, Chang P, Wang Y, Song Y, Qu P, Wang B, Lyu Y, Hu L. HOPE and AMPK activation reduce reperfusion injury and metabolic dysfunction in primate steatotic liver grafts. Sci Rep 2025; 15:11762. [PMID: 40189683 PMCID: PMC11973157 DOI: 10.1038/s41598-025-96265-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 03/27/2025] [Indexed: 04/09/2025] Open
Abstract
Living liver transplantation has become a significant and evolving aspect of organ transplantation, with a notable proportion of cases involving pediatric patients. Metabolic-associated fatty liver disease (MAFLD) is the most prevalent chronic liver disease. The growing number of individuals with MAFLD has led to an annual increase in the proportion of non-alcoholic fatty liver donors for pediatric living liver transplantation. Hypothermic oxygenated perfusion (HOPE) has been demonstrated to improve graft quality through the implementation of a continuous mechanical perfusion cycle. However, there is currently a paucity of evidence regarding its ability to reduce steatosis and improve prognosis within a shorter time window of living-organ transplantation, especially in primate models. This study simulated steatotic liver grafts in living liver transplantation using the MAFLD model of the cynomolgus monkey and explored the effects of HOPE combined with the AMPK activator AICAR on the amelioration of the donor liver. The left outer lobe livers were statically cold preserved for two hours, subjected to HOPE for two hours, or treated with HOPE + AICAR (1 mmol/L) for two hours, respectively. Subsequently, a normothermic ex vivo reperfusion model (IRM) simulating post-transplant reperfusion was established using diluted autologous blood. Following simulated reperfusion in vitro, steatotic liver grafts in the static cold preservation group exhibited notable reperfusion injury. The degree of reperfusion injury induced by the remaining two groups was reduced, with the HOPE + AICAR group showing the most significant reduction (P < 0.05). The adenosine triphosphate (ATP) level of the hepatic tissues in the HOPE + AICAR group was observed to improve at two hours of reperfusion, exhibiting a significantly higher level than that in the cold-preserved group (P < 0.05). Furthermore, the HOPE + AICAR group exhibited a notable decline in MDA levels (P < 0.05), accompanied by a considerable reduction in 8-OHdG and lactate concentrations in both the liver tissue and perfusate. Additionally, there was a marked decrease in the release of TNF-α and IL-6 cytokines, along with a reduction in TLR-4 activation (P < 0.05). In comparison to the cold-preserved and HOPE groups, the HOPE + AICAR group demonstrated the capacity to alter the degree of steatosis following a two-hour treatment period, as evidenced by a notable reduction in liver tissue triglyceride and cholesterol levels (P < 0.05). Additionally, p-AMPK levels in liver tissue were significantly increased in the HOPE + AICAR group (P < 0.05). The combination of HOPE and AMPK activators has been shown to reduce the degree of steatotic liver grafts in a relatively short time, significantly reduce reperfusion injury, and improve liver function. This study contributes to the existing body of knowledge on mechanical perfusion in primate models, addressing a previously identified gap in the literature.
Collapse
Affiliation(s)
- Tao Li
- Department of Hepatobiliary Surgery, Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Pengkang Chang
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yimeng Wang
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yihong Song
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Pengxiang Qu
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Bo Wang
- Department of Hepatobiliary Surgery, Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yi Lyu
- Department of Hepatobiliary Surgery, Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Liangshuo Hu
- Department of Hepatobiliary Surgery, Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
3
|
Nguyen MC, Li X, Linares N, Jadlowiec C, Moss A, Reddy KS, Mathur AK. Ex-situ machine perfusion in clinical liver transplantation: Current practices and future directions. Liver Transpl 2025; 31:531-544. [PMID: 38967460 DOI: 10.1097/lvt.0000000000000428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 06/17/2024] [Indexed: 07/06/2024]
Abstract
Ex-situ machine perfusion of the liver has surmounted traditional limitations associated with static cold storage in the context of organ preservation. This innovative technology has changed the landscape of liver transplantation by mitigating ischemia perfusion injury, offering a platform for continuous assessment of organ quality, and providing an avenue for optimizing the use of traditionally marginal allografts. This review summarizes the contemporary clinical applications of machine perfusion devices and discusses potential future strategies for real-time viability assessment, therapeutic interventions, and modulation of organ function after recovery.
Collapse
Affiliation(s)
- Michelle C Nguyen
- Department of Surgery, Division of Transplant Surgery, Mayo Clinic, Pheonix, Arizona, USA
| | - Xingjie Li
- Department of Surgery, Division of Transplant Surgery, Mayo Clinic, Pheonix, Arizona, USA
| | | | - Caroline Jadlowiec
- Department of Surgery, Division of Transplant Surgery, Mayo Clinic, Pheonix, Arizona, USA
| | - Adyr Moss
- Department of Surgery, Division of Transplant Surgery, Mayo Clinic, Pheonix, Arizona, USA
| | - Kunam S Reddy
- Department of Surgery, Division of Transplant Surgery, Mayo Clinic, Pheonix, Arizona, USA
| | - Amit K Mathur
- Department of Surgery, Division of Transplant Surgery, Mayo Clinic, Pheonix, Arizona, USA
| |
Collapse
|
4
|
Gadour E. Lesson learnt from 60 years of liver transplantation: Advancements, challenges, and future directions. World J Transplant 2025; 15:93253. [PMID: 40104199 PMCID: PMC11612893 DOI: 10.5500/wjt.v15.i1.93253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 09/06/2024] [Accepted: 09/14/2024] [Indexed: 11/26/2024] Open
Abstract
Over the past six decades, liver transplantation (LT) has evolved from an experimental procedure into a standardized and life-saving intervention, reshaping the landscape of organ transplantation. Driven by pioneering breakthroughs, technological advancements, and a deepened understanding of immunology, LT has seen remarkable progress. Some of the most notable breakthroughs in the field include advances in immunosuppression, a revised model for end-stage liver disease, and artificial intelligence (AI)-integrated imaging modalities serving diagnostic and therapeutic roles in LT, paired with ever-evolving technological advances. Additionally, the refinement of transplantation procedures, resulting in the introduction of alternative transplantation methods, such as living donor LT, split LT, and the use of marginal grafts, has addressed the challenge of organ shortage. Moreover, precision medicine, guiding personalized immunosuppressive strategies, has significantly improved patient and graft survival rates while addressing emergent issues, such as short-term complications and early allograft dysfunction, leading to a more refined strategy and enhanced post-operative recovery. Looking ahead, ongoing research explores regenerative medicine, diagnostic tools, and AI to optimize organ allocation and post-transplantation car. In summary, the past six decades have marked a transformative journey in LT with a commitment to advancing science, medicine, and patient-centered care, offering hope and extending life to individuals worldwide.
Collapse
Affiliation(s)
- Eyad Gadour
- Department of Gastroenterology and Hepatology, King Abdulaziz National Guard Hospital, Ahsa 36428, Saudi Arabia
- Internal Medicine, Zamzam University College, Khartoum 11113, Sudan
| |
Collapse
|
5
|
Stoker AD, Gorlin AW, Rosenfeld DM, Nguyen MC, Mathur AK, Buckner-Petty SA, Lizaola-Mayo BC, Frasco PE. Donation After Circulatory Death Liver Transplantation: Impact of Normothermic Machine Perfusion on Key Variables. Anesth Analg 2025; 140:687-696. [PMID: 39808582 PMCID: PMC11805485 DOI: 10.1213/ane.0000000000007093] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND During orthotopic liver transplantation, allograft reperfusion is a dynamic point in the operation and often requires vasoactive medications and blood transfusions. Normothermic machine perfusion (NMP) of liver allografts has emerged to increase the number of transplantable organs and may have utility during donation after circulatory death (DCD) liver transplantation in reducing transfusion burden and vasoactive medication requirements. METHODS This is a single-center retrospective study involving 226 DCD liver transplant recipients who received an allograft transported with NMP (DCD-NMP group) or with static cold storage (DCD-SCS group). Veno-venous bypass was not used in any patients. Infusion doses of norepinephrine, epinephrine, and vasopressin as well as bolus doses of vasoactive medications during reperfusion were recorded. Blood component therapy was recorded according to phase of liver transplantation and during the first 24 hours postprocedure. RESULTS A total of 103 recipients in the DCD-NMP group and 123 patients in the DCD-SCS group were included. Post-reperfusion syndrome (PRS) incidence was reduced in the DCD-NMP group compared to the DCD-SCS group (10.7% [95% confidence interval, CI, 5.5%-18.3%] vs 42.3% [95% CI, 33.4%-51.5%]; P < .001). During the reperfusion period, patients in the DCD-SCS group required increased bolus doses of epinephrine and vasopressin compared to the DCD-NMP group (24.6 vs 7.5 µg; P < .001) and (5.4 vs 2.4 units; P < .001), respectively. The DCD-SCS group received a higher infusion dose of epinephrine during anhepatic phase, at reperfusion, and up to 90 minutes after reperfusion. In the postreperfusion period, there were significant increases in the transfusion of red blood cells (RBCs; 5.3 vs 3.7 units; P = .006), fresh frozen plasma (FFP; 3.4 vs 1.9 units; P < .001), cryoprecipitate (2.7 vs 1.8 pooled units; P = .015) and platelets (0.9 vs 0.4 units; P = .008) in the DCD-SCS group compared to the DCD-NMP group. During the first 24 hours postprocedure, transfusion of RBCs, FFP, and cryoprecipitate in the DCD-SCS group was increased compared to the DCD-NMP group ([2.6 vs 1.7 units; P = .028], [1.6 vs 0.8 units; P < .001], [1.5 vs 0.9 pooled units; P = .031]) respectively. Administration of tranexamic acid was more frequent in the DCD-SCS group during the post-reperfusion period compared to the DCD-NMP group (13% [95% CI, 5.7%-17.4%] vs 3.9% [95% CI, 1.1%-9.6% 95%]; P = .018). CONCLUSIONS In DCD liver transplantation, use of NMP was associated with reduced incidence of PRS and decreased vasopressor and inotrope requirements at the time of allograft reperfusion compared to using SCS. Additionally, NMP was associated with reduced transfusion of all blood product components as well as antifibrinolytic agent administration in the post-reperfusion period. Reduced transfusion burden in the DCD-NMP group also occurred during the first 24 hours posttransplant.
Collapse
Affiliation(s)
- Alexander D. Stoker
- From the Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Phoenix, Arizona
| | - Andrew W. Gorlin
- From the Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Phoenix, Arizona
| | - David M. Rosenfeld
- From the Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Phoenix, Arizona
| | | | - Amit K. Mathur
- Division of Transplant Surgery, Mayo Clinic, Phoenix, Arizona
| | | | | | - Peter E. Frasco
- From the Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Phoenix, Arizona
| |
Collapse
|
6
|
Todd R, van Leeuwen LL, Holzner M, Kim-Schluger L, Fiel MI, Puleston D, Florman SS, Akhtar MZ. Normothermic machine perfusion of explanted livers: Exploratory study of an alternative translational model for end-stage liver disease. Artif Organs 2025; 49:431-440. [PMID: 39578939 DOI: 10.1111/aor.14905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/08/2024] [Accepted: 11/01/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND Normothermic machine perfusion (NMP) is a technique for donor liver preservation and assessment in transplantation. NMP has gained momentum recently by enabling safer use of higher risk organs via organ viability assessment. It also offers a platform for investigating ex vivo organ biology. METHODS In this exploratory study, we completed a complex vascular reconstruction of explanted, diseased livers from patients undergoing transplantation and then perfused them normothermically on a closed perfusion circuit. We compared these livers to non-diseased donor livers via perfusate samples collected during perfusion. RESULTS Five hepatectomized grafts and eight donor livers were perfused for 1 h or longer. Four hepatectomized livers cleared lactate, and all consumed glucose; all control livers cleared lactate, and seven utilized glucose. Significantly higher portal vein flows were achieved in the control group. CONCLUSIONS Our findings illustrate the feasibility of using closed-circuit NMP as a platform to study hepatectomized organs, which could reshape the research landscape in mechanisms of disease and applied therapeutics for patients with end-stage liver disease.
Collapse
Affiliation(s)
- Rachel Todd
- Recanati/Miller Transplantation Institute, The Mount Sinai Hospital, New York, New York, USA
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - L Leonie van Leeuwen
- Recanati/Miller Transplantation Institute, The Mount Sinai Hospital, New York, New York, USA
| | - Matthew Holzner
- Recanati/Miller Transplantation Institute, The Mount Sinai Hospital, New York, New York, USA
| | - Leona Kim-Schluger
- Recanati/Miller Transplantation Institute, The Mount Sinai Hospital, New York, New York, USA
| | - Maria Isabel Fiel
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Daniel Puleston
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sander S Florman
- Recanati/Miller Transplantation Institute, The Mount Sinai Hospital, New York, New York, USA
| | - M Zeeshan Akhtar
- Recanati/Miller Transplantation Institute, The Mount Sinai Hospital, New York, New York, USA
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
7
|
Viana P, Castillo-Flores S, Mora MMR, Cabral TDD, Martins PN, Kueht M, Faria I. Normothermic Machine Perfusion vs. Static Cold Storage in Liver Transplantation: A Systematic Review and Meta-Analysis. Artif Organs 2025. [PMID: 39887468 DOI: 10.1111/aor.14960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/30/2024] [Accepted: 01/16/2025] [Indexed: 02/01/2025]
Abstract
BACKGROUND Normothermic machine perfusion (NMP) represents an alternative to prolong liver preservation and reduce organ discard rates. We performed an updated systematic review and meta-analysis to compare NMP with static cold storage (SCS) in liver transplantation. METHODS MEDLINE, Embase, and Cochrane were searched for randomized controlled trials (RCTs) or observational studies. Risk ratios (RR) and mean differences were calculated. p < 0.05 was considered significant. A random-effects model was applied for all outcomes. PROSPERO ID CRD42023486184. RESULTS We included 1295 patients from 5 RCTs and 6 observational studies from 2016 to 2023. 592 (45.7%) underwent NMP. A subgroup RCT analysis favored NMP for non-anastomotic strictures (RR 0.4; 95% CI 0.2, 0.9), postreperfusion syndrome (RR 0.4; 95% CI 0.27, 0.56), and early allograft dysfunction (RR 0.6; 95% CI 0.4, 0.9). NMP favored higher organ utilization rates (RR 1.1; 95% CI 1.02, 1.18). No significant differences between NMP and SCS were observed in graft survival or patient survival at 12 months, primary non-function, serious adverse events, overall biliary complications, AST, or bilirubin levels peak within the first 7 days, ICU or hospital length of stay. CONCLUSION Our findings suggest that NMP is associated with lower non-anastomotic biliary stricture rates, postreperfusion syndrome, early allograft dysfunction, and higher organ utilization in the RCT subgroup analysis, without increasing adverse events.
Collapse
Affiliation(s)
- Patricia Viana
- University of Extreme South of Santa Catarina, Criciuma, Brazil
| | | | - Maria M R Mora
- Univeristat Internacional de Catalunya, Barcelona, Spain
| | | | - Paulo N Martins
- Division of Organ Transplantation, Department of Surgery, University of Massachusetts, Worcester, Massachusetts, USA
| | - Michael Kueht
- Division of Transplant Surgery, Department of Surgery, University of Texas Medical Branch, Galveston, Texas, USA
| | - Isabella Faria
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
8
|
Nguyen MC, Zhang C, Chang YH, Li X, Ohara SY, Kumm KR, Cosentino CP, Aqel BA, Lizaola-Mayo BC, Frasco PE, Nunez-Nateras R, Hewitt WR, Harbell JW, Katariya NN, Singer AL, Moss AA, Reddy KS, Jadlowiec C, Mathur AK. Improved Outcomes and Resource Use With Normothermic Machine Perfusion in Liver Transplantation. JAMA Surg 2025:2829515. [PMID: 39878966 PMCID: PMC11780509 DOI: 10.1001/jamasurg.2024.6520] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/02/2024] [Indexed: 01/31/2025]
Abstract
Importance Normothermic machine perfusion (NMP) has been shown to reduce peritransplant complications. Despite increasing NMP use in liver transplant (LT), there is a scarcity of real-world clinical experience data. Objective To compare LT outcomes between donation after brain death (DBD) and donation after circulatory death (DCD) allografts preserved with NMP or static cold storage (SCS). Design, Setting, and Participants This single-center, retrospective observational cohort study included all consecutive adult LTs performed between January 2019 and December 2023 at the Mayo Clinic in Arizona. Data analysis was performed between February 2024 and June 2024. Outcomes of DBD-SCS, DBD-NMP, DCD-SCS, and DCD-NMP transplants were compared. Exposure DBD and DCD livers preserved on NMP or SCS. Main Outcomes and Measures The primary outcomes were early allograft dysfunction (EAD), intraoperative transfusion, and post-LT hospital resource use, including length of stay (LOS) and readmissions. Secondary outcomes included acute kidney injury (AKI) and 1-year graft and patient survival. Results A total of 1086 LTs were included in the following 4 groups: DBD-SCS (n = 480), DBD-NMP (n = 63), DCD-SCS (n = 264), and DCD-NMP (n = 279). Among LT recipients, median (IQR) age was 60.0 years (52.0-66.0); 399 LT recipients (36.7%) were female. DCD-NMP had the lowest EAD rate (17.5%), followed by DCD-SCS (50.0%), DBD-NMP (36.8%), and DBD-SCS (27.3%) (P < .001). DCD-NMP had the lowest intraoperative transfusion requirement compared to all other groups. Hospital and intensive care unit (ICU) LOS were shortest in DCD-NMP (median [IQR] hospital LOS, 5.0 days [4.0-7.0]; P = .01; median [IQR] ICU LOS, 1.5 days [1.2-3.1]; P = .01). One-year cumulative readmission probability was 86% lower for DCD-NMP vs DCD-SCS (95% CI, 0.09-0.22; P < .001) and 53% lower for DBD-NMP vs DBD-SCS (95% CI, 0.26-0.87; P < .001). AKI events were lower in DCD-NMP (31.1%) vs DCD-SCS (47.4%) (P = .001). Compared to SCS, the NMP group had a 78% overall reduction in graft failure (hazard ratio [HR], 0.22; 95% CI, 0.10-0.49; P < .001). For those receiving DCD allografts, the risk reduction was even more pronounced, with an 87% decrease in graft failure (HR, 0.13; 95% CI, 0.05-0.33; P < .001). NMP was significantly protective from patient mortality vs SCS (HR, 0.31; 95% CI, 0.12-0.80; P = .02). Conclusions and Relevance In this observational high-volume cohort study, NMP significantly improved LT clinical outcomes and reduced hospital resource use, especially in DCD allografts. NMP may enhance access to LT by addressing the challenges historically linked with DCD liver use.
Collapse
Affiliation(s)
- Michelle C. Nguyen
- Division of Transplant Surgery, Department of Surgery, Mayo Clinic Arizona, Phoenix
| | - Chi Zhang
- Division of Transplant Surgery, Department of Surgery, Mayo Clinic Arizona, Phoenix
| | - Yu-Hui Chang
- Department of Quantitative Health Sciences, Mayo Clinic Arizona, Phoenix
| | - Xingjie Li
- Division of Transplant Surgery, Department of Surgery, Mayo Clinic Arizona, Phoenix
| | - Stephanie Y. Ohara
- Division of Transplant Surgery, Department of Surgery, Mayo Clinic Arizona, Phoenix
| | - Kayla R. Kumm
- Division of Transplant Surgery, Department of Surgery, Mayo Clinic Arizona, Phoenix
| | | | - Bashar A. Aqel
- Division of Gastroenterology & Hepatology, Department of Internal Medicine, Mayo Clinic Arizona, Phoenix
| | - Blanca C. Lizaola-Mayo
- Division of Gastroenterology & Hepatology, Department of Internal Medicine, Mayo Clinic Arizona, Phoenix
| | | | | | - Winston R. Hewitt
- Division of Transplant Surgery, Department of Surgery, Mayo Clinic Arizona, Phoenix
| | - Jack W. Harbell
- Division of Transplant Surgery, Department of Surgery, Mayo Clinic Arizona, Phoenix
| | - Nitin N. Katariya
- Division of Transplant Surgery, Department of Surgery, Mayo Clinic Arizona, Phoenix
| | - Andrew L. Singer
- Division of Transplant Surgery, Department of Surgery, Mayo Clinic Arizona, Phoenix
| | - Adyr A. Moss
- Division of Transplant Surgery, Department of Surgery, Mayo Clinic Arizona, Phoenix
| | - Kunam S. Reddy
- Division of Transplant Surgery, Department of Surgery, Mayo Clinic Arizona, Phoenix
| | - Caroline Jadlowiec
- Division of Transplant Surgery, Department of Surgery, Mayo Clinic Arizona, Phoenix
| | - Amit K. Mathur
- Division of Transplant Surgery, Department of Surgery, Mayo Clinic Arizona, Phoenix
| |
Collapse
|
9
|
Kim JJ, Kurial SNT, Choksi PK, Nunez M, Lunow-Luke T, Bartel J, Driscoll J, Her CL, Dhillon S, Yue W, Murti A, Mao T, Ramos JN, Tiyaboonchai A, Grompe M, Mattis AN, Syed SM, Wang BM, Maher JJ, Roll GR, Willenbring H. AAV capsid prioritization in normal and steatotic human livers maintained by machine perfusion. Nat Biotechnol 2025:10.1038/s41587-024-02523-6. [PMID: 39881029 DOI: 10.1038/s41587-024-02523-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 12/02/2024] [Indexed: 01/31/2025]
Abstract
Therapeutic efficacy and safety of adeno-associated virus (AAV) liver gene therapy depend on capsid choice. To predict AAV capsid performance under near-clinical conditions, we established side-by-side comparison at single-cell resolution in human livers maintained by normothermic machine perfusion. AAV-LK03 transduced hepatocytes much more efficiently and specifically than AAV5, AAV8 and AAV6, which are most commonly used clinically, and AAV-NP59, which is better at transducing human hepatocytes engrafted in immune-deficient mice. AAV-LK03 preferentially transduced periportal hepatocytes in normal liver, whereas AAV5 targeted pericentral hepatocytes in steatotic liver. AAV5 and AAV8 transduced liver sinusoidal endothelial cells as efficiently as hepatocytes. AAV capsid and steatosis influenced vector episome formation, which determines gene therapy durability, with AAV5 delaying concatemerization. Our findings inform capsid choice in clinical AAV liver gene therapy, including consideration of disease-relevant hepatocyte zonation and effects of steatosis, and facilitate the development of AAV capsids that transduce hepatocytes or other therapeutically relevant cell types in the human liver with maximum efficiency and specificity.
Collapse
Affiliation(s)
- Jae-Jun Kim
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Simone N T Kurial
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Pervinder K Choksi
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Miguel Nunez
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Tyler Lunow-Luke
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
- School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Jan Bartel
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Julia Driscoll
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Chris L Her
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Liver Center, University of California, San Francisco, San Francisco, CA, USA
- Pliant Therapeutics, South San Francisco, CA, USA
| | - Simaron Dhillon
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Liver Center, University of California, San Francisco, San Francisco, CA, USA
- Stone Research Foundation, San Francisco, CA, USA
| | - William Yue
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Abhishek Murti
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Tin Mao
- Ambys Medicines, South San Francisco, CA, USA
- Genentech, South San Francisco, CA, USA
| | - Julian N Ramos
- Ambys Medicines, South San Francisco, CA, USA
- Adverum Biotechnologies, Redwood City, CA, USA
| | - Amita Tiyaboonchai
- Oregon Stem Cell Center, Oregon Health & Science University, Portland, OR, USA
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
| | - Markus Grompe
- Oregon Stem Cell Center, Oregon Health & Science University, Portland, OR, USA
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Aras N Mattis
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Liver Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Shareef M Syed
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Bruce M Wang
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Liver Center, University of California, San Francisco, San Francisco, CA, USA
| | - Jacquelyn J Maher
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Liver Center, University of California, San Francisco, San Francisco, CA, USA
| | - Garrett R Roll
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Holger Willenbring
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA.
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.
- Liver Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
10
|
Zhao Y, Lyu X, Sun Z, Zhang X, Cen J, Yang T, Xu X, Xing W, Zhao S, Wang B, Luo G. Continuous Blood Gas Control Based on Active Disturbance Rejection Control During Ex Vivo Porcine Liver Perfusion. Artif Organs 2025. [PMID: 39868805 DOI: 10.1111/aor.14955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/20/2024] [Accepted: 01/10/2025] [Indexed: 01/28/2025]
Abstract
BACKGROUND Membrane oxygenators facilitate extracorporeal gas exchange, necessitating the monitoring of blood gas. Recent advances in normothermic machine perfusion (NMP) for ex vivo liver offer solutions to the shortage of donor liver. However, maintaining physiological blood gas levels during prolonged NMP is complex and costly. METHODS We introduce a noninvasive and economical approach for regulating the blood gas during NMP of ex vivo porcine livers. By monitoring gas fractions at the outlet of oxygenator, real-time adjustments of blood gas can be made without the online blood gas analyzer. The method involves constructing multivariate linear regression (MLR) models, aligning target setpoints of gas, and employing active disturbance rejection control (ADRC) to achieve closed-loop regulation. RESULTS Ex vivo porcine liver perfusion experiments demonstrated the effectiveness of the method, maintaining blood gas within physiological levels over 24 h (oxygen partial pressure: 150.36 ± 3.33 mmHg, carbon dioxide partial pressure: 41.34 ± 0.91 mmHg). CONCLUSION ADRC-based continuous regulation of gas fraction at the outlet of oxygenator is a feasible and effective approach for managing blood gas during ex vivo porcine liver perfusion.
Collapse
Affiliation(s)
- Yilong Zhao
- Division of Life Science and Medicine, School of Biomedical Engineering (Suzhou), University of Science and Technology of China, Hefei, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Xin Lyu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Zhen Sun
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xiaoliang Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Jin Cen
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Tianhang Yang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Xiaoliang Xu
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Wenhui Xing
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, Hainan, China
| | - Sihan Zhao
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Bidou Wang
- Division of Life Science and Medicine, School of Biomedical Engineering (Suzhou), University of Science and Technology of China, Hefei, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Gangyin Luo
- Division of Life Science and Medicine, School of Biomedical Engineering (Suzhou), University of Science and Technology of China, Hefei, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| |
Collapse
|
11
|
Morawski M, Zhylko A, Kubiszewski H, Rochoń J, Rykowski P, Staszewski M, Krasnodębski M, Figiel W, Krawczyk M, Grąt M. Normothermic Machine Perfusion in Orphan Liver Graft Viability Assessment. J Clin Med 2025; 14:777. [PMID: 39941448 PMCID: PMC11818235 DOI: 10.3390/jcm14030777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/31/2024] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Background: Liver transplantation constitutes a well-established treatment for patients with end-stage liver disease and selected hepatic malignancies. The introduction of normothermic machine perfusion (NMP) offers a platform for both extracorporeal organ maintenance and viability assessment, especially for organs with suspicious malfunction. These organs, discarded by the majority of transplant centers (so-called 'orphan livers'), may help to safely expand the donor pool thanks to pre-transplant appraisal; Methods: We identified all grafts undergoing normothermic ma-chine perfusions performed in the Department of General, Transplant, and Liver Surgery between December 2022 and August 2023. Their perfusion characteristics and immediate postoperative periods, as well as complications that occurred in the 90-day postoperative periods, were analyzed; Results: There were eight orphan liver grafts that underwent NMP in our Department. Postoperative complications occurring in patients receiving grafts after NMP did not seem associated with the procedure. One patient required laparotomy within the 90-day postoperative period due to biliary fistula and underwent bile duct stenting due to both fistula and nonanastomotic stricture. In one patient we observed the occurrence of anastomotic biliary stricture more than 90 days after LTx; Conclusions: NMP allows for the viability assessment of grafts with suspicious prepreservation malfunction. Some of these organs may help to expand the donor pool.
Collapse
Affiliation(s)
- Marcin Morawski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, 02-097 Warsaw, Poland; (A.Z.); (H.K.); (J.R.); (P.R.); (M.S.); (M.K.); (W.F.); (M.K.); (M.G.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Irsara C, Weissenbacher A, Krendl FJ, Anliker M, Hofmann J, Hautz T, Schneeberger S, Griesmacher A, Loacker L. Expression of sPD-L1 levels in an ex vivo liver perfusion model. Clin Exp Immunol 2025; 219:uxae094. [PMID: 39435859 PMCID: PMC11773811 DOI: 10.1093/cei/uxae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/13/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024] Open
Abstract
The programmed cell death protein 1 (PD-1) acts as a central inhibitory immune checkpoint receptor. The soluble form of its primary ligand, sPD-L1, was found to be elevated in the serum of patients with cancer, infectious diseases, and chronic inflammation. So far, the hepatic origin of sPD-L1 has received relatively little attention and is therefore the subject of this study in the context of normothermic machine perfusion (NMP) of liver grafts. sPD-L1 concentrations as well as several well-established clinically relevant laboratory parameters were determined in the perfusate of 16 donor liver grafts undergoing NMP up to 30 hours. sPD-L1 levels continuously increased during NMP and significantly correlated with markers of hepatic synthesis (cholinesterase), acute-phase proteins (von Willebrand factor, procalcitonin, antithrombin, interleukin-6, fibrinogen), and liver decay markers (gamma-glutamyltransferase, alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase). Perfusate leukocytes were in the lower reference range and decreased after 12 hours. Mean sPD-L1 levels in the perfusate correlated with donor levels of gamma-glutamyltransferase, alanine aminotransferase, creatinine, and blood urea nitrogen. Our study reveals a significant increase in the concentration of sPD-L1 following ischemia-reperfusion injury in a hepatic ex vivo model. sPD-L1 concentrations during NMP correlate with established acute-phase proteins and liver cell decay markers, suggesting that hepatic sPD-L1 synthesis or shedding increases during the acute phase and cell decay. Furthermore, sPD-L1 correlates with established liver function and synthesis parameters as well as with donor laboratory values and might therefore be a potential biomarker for the hepatic function of liver grafts.
Collapse
Affiliation(s)
- Christian Irsara
- Central Institute of Clinical and Chemical Laboratory Diagnostics, University Hospital of Innsbruck, Innsbruck, Austria
| | - Annemarie Weissenbacher
- Department of Visceral, Transplant and Thoracic Surgery, and organLife Laboratory, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Felix Julius Krendl
- Department of Visceral, Transplant and Thoracic Surgery, and organLife Laboratory, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Markus Anliker
- Central Institute of Clinical and Chemical Laboratory Diagnostics, University Hospital of Innsbruck, Innsbruck, Austria
| | - Julia Hofmann
- Department of Visceral, Transplant and Thoracic Surgery, and organLife Laboratory, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Theresa Hautz
- Department of Visceral, Transplant and Thoracic Surgery, and organLife Laboratory, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefan Schneeberger
- Department of Visceral, Transplant and Thoracic Surgery, and organLife Laboratory, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Andrea Griesmacher
- Central Institute of Clinical and Chemical Laboratory Diagnostics, University Hospital of Innsbruck, Innsbruck, Austria
| | - Lorin Loacker
- Central Institute of Clinical and Chemical Laboratory Diagnostics, University Hospital of Innsbruck, Innsbruck, Austria
| |
Collapse
|
13
|
Shi D. Application of extended criteria donor liver grafts in liver transplantation. Hepatobiliary Pancreat Dis Int 2025:S1499-3872(25)00025-6. [PMID: 39855994 DOI: 10.1016/j.hbpd.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/29/2024] [Indexed: 01/27/2025]
Affiliation(s)
- Dan Shi
- Department of Child Health Care, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China.
| |
Collapse
|
14
|
Yemaneberhan KH, Kang M, Jang JH, Kim JH, Kim KS, Park HB, Choi D. Beyond the icebox: modern strategies in organ preservation for transplantation. CLINICAL TRANSPLANTATION AND RESEARCH 2024; 38:377-403. [PMID: 39743232 PMCID: PMC11732768 DOI: 10.4285/ctr.24.0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 01/04/2025]
Abstract
Organ transplantation, a critical treatment for end-stage organ failure, has witnessed significant advancements due to the integration of improved surgical techniques, immunosuppressive therapies, and donor-recipient matching. This review explores the progress of organ preservation, focusing on the shift from static cold storage (SCS) to advanced machine perfusion techniques such as hypothermic (HMP) and normothermic machine perfusion (NMP). Although SCS has been the standard approach, its limitations in preserving marginal organs and preventing ischemia-reperfusion injury (IRI) have led to the adoption of HMP and NMP. HMP, which is now the gold standard for high-risk donor kidneys, reduces metabolic activity and improves posttransplant outcomes. NMP allows real-time organ viability assessment and reconditioning, especially for liver transplants. Controlled oxygenated rewarming further minimizes IRI by addressing mitochondrial dysfunction. The review also highlights the potential of cryopreservation for long-term organ storage, despite challenges with ice formation. These advances are crucial for expanding the donor pool, improving transplant success rates, and addressing organ shortages. Continued innovation is necessary to meet the growing demands of transplantation and save more lives.
Collapse
Affiliation(s)
- Kidus Haile Yemaneberhan
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Korea
| | - Minseok Kang
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
| | - Jun Hwan Jang
- Department of Energy Engineering, Hanyang University, Seoul, Korea
| | - Jin Hee Kim
- Department of Energy Engineering, Hanyang University, Seoul, Korea
| | - Kyeong Sik Kim
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
| | - Ho Bum Park
- Department of Energy Engineering, Hanyang University, Seoul, Korea
| | - Dongho Choi
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Korea
- Research Institute of Regenerative Medicine and Stem Cells, Hanyang University, Seoul, Korea
- Department of HY-KIST Bio-convergence, Hanyang University, Seoul, Korea
| |
Collapse
|
15
|
Mehta P, Rogers NM. Research Highlights. Transplantation 2024; 108:2153-2156. [PMID: 39760994 DOI: 10.1097/tp.0000000000005247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Affiliation(s)
- Paulomi Mehta
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Natasha M Rogers
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, NSW, Australia
- Sydney Medical School, Faculty of Health and Medicine, University of Sydney, Camperdown, Sydney, NSW, Australia
- Department of Renal Medicine, Westmead Hospital, Westmead, NSW, Australia
| |
Collapse
|
16
|
Robinson T, Vargas PA, Yemini R, Goldaracena N, Pelletier S. Are we on track to increase organ utilization? An analysis of machine perfusion preservation for liver transplantation in the United States. Artif Organs 2024; 48:1275-1287. [PMID: 39034871 DOI: 10.1111/aor.14812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/17/2024] [Accepted: 06/11/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Efforts to improve the quality of marginal grafts for transplantation are essential. Machine perfusion preservation appears as a promising solution. METHODS The United Network for Organ Sharing (UNOS) database was queried for deceased liver donor records between 2016 and 2022. The primary outcome of interest was the organ nonutilization rate. Long-term graft and patient survival among extended criteria donors (ECDs) were also analyzed. RESULTS During the study period, out of 54 578 liver grafts recovered for transplant, 5085 (9.3%) were nonutilized. Multivariable analysis identified normothermic machine perfusion (NMP) preservation as the only predictor associated with a reduction in graft nonutilization (OR = 0.12; 95% CI = 0.06-0.023, p < 0.001). Further analysis of ECD grafts that were transplanted revealed comparable 1-,2- and 3-years graft survival (89%/88%/82% vs. 90%/85%/81%, p = 0.60), and patient survival (92%/91%/84% vs. 92%/88%/84%, p = 0.65) between grafts that underwent MP vs. those who did not, respectively. CONCLUSIONS Liver nonutilization rates in the United States are at an all-time high. Available data, most likely including cases from clinical trials, showed that NMP reduced the odds of organ nonutilization by 12% among the entire deceased donor pool and by 16% among grafts from ECD. Collective efforts and further evidence reflecting day-to-day clinical practice are needed to fully reach the potential of MP for liver transplant.
Collapse
Affiliation(s)
- Todd Robinson
- Division of Transplant Surgery, Department of Surgery, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Paola A Vargas
- Division of Transplant Surgery, Department of Surgery, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Renana Yemini
- Division of Transplant Surgery, Department of Surgery, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Nicolas Goldaracena
- Division of Transplant Surgery, Department of Surgery, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Shawn Pelletier
- Division of Transplant Surgery, Department of Surgery, University of Virginia Health System, Charlottesville, Virginia, USA
| |
Collapse
|
17
|
Dong J, Luo Y, Gao Y. Therapeutic Potential of Stem Cell-Derived Extracellular Vesicles in Liver Injury. Biomedicines 2024; 12:2489. [PMID: 39595055 PMCID: PMC11591663 DOI: 10.3390/biomedicines12112489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/30/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024] Open
Abstract
Liver injury caused by various factors significantly impacts human health. Stem cell transplantation has potential for enhancing liver functionality, but safety concerns such as immune rejection, tumorigenesis, and the formation of emboli in the lungs remain. Recent studies have shown that stem cells primarily exert their effects through the secretion of extracellular vesicles (EVs). EVs have been shown to play crucial roles in reducing inflammation, preventing cell death, and promoting liver cell proliferation. Additionally, they can function as carriers to deliver targeted drugs to the liver, thereby exerting specific physiological effects. EVs possess several advantages, including structural stability, low immunogenicity, minimal tumorigenicity targeting capabilities, and convenient collection. Consequently, EVs have garnered significant attention from researchers and are expected to become alternative therapeutic agents to stem cell therapy. This article provides a comprehensive review of the current research progress in the use of stem cell-derived EVs in the treatment of liver injury.
Collapse
Affiliation(s)
- Jingjing Dong
- School of Medicine, Nankai University, Tianjin 300071, China;
| | - Ying Luo
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Institute of Hepatobiliary Disease, Nankai University Affiliated Third Center Hospital, Tianjin 300170, China;
| | - Yingtang Gao
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Institute of Hepatobiliary Disease, Nankai University Affiliated Third Center Hospital, Tianjin 300170, China;
| |
Collapse
|
18
|
Clarke G, Mao J, Hann A, Fan Y, Gupta A, Nutu A, Buckel Schaffner E, Kayani K, Murphy N, Bangash MN, Casey AL, Wootton I, Lawson AJ, Dasari BVM, Perera MTPR, Mergental H, Afford SC. A reproducible extended ex-vivo normothermic machine liver perfusion protocol utilising improved nutrition and targeted vascular flows. COMMUNICATIONS MEDICINE 2024; 4:214. [PMID: 39448795 PMCID: PMC11502869 DOI: 10.1038/s43856-024-00636-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Normothermic machine perfusion of donor livers has become standard practice in the field of transplantation, allowing the assessment of organs and safe extension of preservation times. Alongside its clinical uses, there has been expanding interest in extended normothermic machine perfusion (eNMP) of livers as a potential vehicle for medical research. Reproducible extended normothermic machine perfusion has remained elusive due to its increased complexity and monitoring requirements. We set out to develop a reproducible protocol for the extended normothermic machine perfusion of whole human livers. METHODS Human livers declined for transplantation were perfused using a blood-based perfusate at 36 °C using the Liver Assist device (XVIVO, Sweden), with continuous veno-venous haemofiltration in-parallel. We developed the protocol in a stepwise fashion. RESULTS Perfusion techniques utilised included: targeted physiological vascular flows, phosphate replacement (to prevent hypophosphataemia), N-acetylcysteine (to prevent methaemoglobin accumulation), and the utilisation of sodium lactate as both a nutritional source and real-time measure of hepatocyte function. All five human livers perfused with the developed protocol showed preserved function with a median perfusion time of 168 h (range 120-184 h), with preserved viability throughout. CONCLUSIONS Livers can be reproducibly perfused in excess of 120 (range 121-184) hours with evidence of preserved hepatocyte and cholangiocyte function.
Collapse
Affiliation(s)
- George Clarke
- Liver Unit, Queen Elizabeth Hospital Birmingham, Birmingham, B15 2TH, UK.
- Birmingham Biomedical Research Centre, National Institute for Health Research (NIHR), University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2TH, UK.
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TH, UK.
| | - Jingwen Mao
- Birmingham Biomedical Research Centre, National Institute for Health Research (NIHR), University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2TH, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TH, UK
| | - Angus Hann
- Liver Unit, Queen Elizabeth Hospital Birmingham, Birmingham, B15 2TH, UK
- Birmingham Biomedical Research Centre, National Institute for Health Research (NIHR), University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2TH, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TH, UK
| | - Yiyu Fan
- Birmingham Biomedical Research Centre, National Institute for Health Research (NIHR), University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2TH, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TH, UK
| | | | - Anisa Nutu
- Liver Unit, Queen Elizabeth Hospital Birmingham, Birmingham, B15 2TH, UK
| | | | - Kayani Kayani
- Birmingham Biomedical Research Centre, National Institute for Health Research (NIHR), University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2TH, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TH, UK
- Queen Elizabeth Hospital Birmingham, Birmingham, B15 2TH, UK
| | - Nicholas Murphy
- Intensive Care Unit, Queen Elizabeth Hospital Birmingham, Birmingham, B15 2TH, UK
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TH, UK
| | - Mansoor N Bangash
- Intensive Care Unit, Queen Elizabeth Hospital Birmingham, Birmingham, B15 2TH, UK
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TH, UK
| | - Anna L Casey
- Microbiology Department, Queen Elizabeth Hospital Birmingham, Birmingham, B15 2TH, UK
| | - Isla Wootton
- Clinical Biochemistry, Queen Elizabeth Hospital Birmingham, Birmingham, B15 2TH, UK
| | - Alexander J Lawson
- Clinical Biochemistry, Queen Elizabeth Hospital Birmingham, Birmingham, B15 2TH, UK
| | - Bobby V M Dasari
- Liver Unit, Queen Elizabeth Hospital Birmingham, Birmingham, B15 2TH, UK
| | - M Thamara P R Perera
- Liver Unit, Queen Elizabeth Hospital Birmingham, Birmingham, B15 2TH, UK
- Birmingham Biomedical Research Centre, National Institute for Health Research (NIHR), University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2TH, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TH, UK
| | - Hynek Mergental
- Liver Unit, Queen Elizabeth Hospital Birmingham, Birmingham, B15 2TH, UK
- Birmingham Biomedical Research Centre, National Institute for Health Research (NIHR), University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2TH, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TH, UK
| | - Simon C Afford
- Birmingham Biomedical Research Centre, National Institute for Health Research (NIHR), University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2TH, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TH, UK
| |
Collapse
|
19
|
Vogel T, Szardenings C, Becker F, Jordan S, Katou S, Morgul H, Flammang I, Houben P, Kneifel F, Pascher A. Viability assessment and transplantation of extended criteria donor liver grafts using normothermic machine perfusion. Surgery 2024; 176:934-941. [PMID: 38902125 DOI: 10.1016/j.surg.2024.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/26/2024] [Accepted: 05/15/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND The scarcity of available liver grafts necessitates the use of organs from extended criteria donors, a practice associated with an increased risk of graft failure. A notable percentage of deceased donor liver allografts are rejected due to subjective criteria. Normothermic machine perfusion holds promise for introducing objective parameters into this decision-making process. The aim of this study was to compare the outcomes of standard criteria and extended criteria donor allografts after liver transplantation, following viability assessment, using normothermic machine perfusion. METHODS Liver allografts preserved by normothermic machine perfusion before liver transplantation at the University Hospital of Münster were retrospectively analyzed. Organs were stratified according to the Eurotransplant Donor Risk Index. In total, 101 liver grafts were included in this study and divided into 2 groups: (1) standard criteria donors with a Donor Risk Index <1.8 (DRI-low) and (2) extended criteria donors with a Donor Risk Index ≥1.8 (DRI-high). RESULTS An increased risk profile of donor livers, as assessed by the Eurotransplant Donor Risk Index, did not correlate with patient or graft survival. High-risk liver grafts were effectively transplanted into recipients with different risk levels after viability assessment by normothermic machine perfusion. However, the recipients' model for end-stage liver disease scores showed a significant association with both overall patient and graft survival. CONCLUSION The use of normothermic machine perfusion for viability assessment allows safe transplantation of high-risk donor livers and effectively addresses the disparity between donor liver availability and transplantation demand.
Collapse
Affiliation(s)
- Thomas Vogel
- Department of General, Visceral, and Transplant Surgery, University Hospital Münster, Germany
| | - Carsten Szardenings
- Institute of Biostatistics and Clinical Research, University Münster, Germany
| | - Felix Becker
- Department of General, Visceral, and Transplant Surgery, University Hospital Münster, Germany
| | - Stephanie Jordan
- Department of General, Visceral, and Transplant Surgery, University Hospital Münster, Germany
| | - Shadi Katou
- Department of General, Visceral, and Transplant Surgery, University Hospital Münster, Germany
| | - Haluk Morgul
- Department of General, Visceral, and Transplant Surgery, University Hospital Münster, Germany
| | - Isabelle Flammang
- Department of General, Visceral, and Transplant Surgery, University Hospital Münster, Germany
| | - Philipp Houben
- Department of General, Visceral, and Transplant Surgery, University Hospital Münster, Germany
| | - Felicia Kneifel
- Department of General, Visceral, and Transplant Surgery, University Hospital Münster, Germany.
| | - Andreas Pascher
- Department of General, Visceral, and Transplant Surgery, University Hospital Münster, Germany
| |
Collapse
|
20
|
Aboelez MO, Ezelarab HAA, Alotaibi G, Abouzed DEE. Inflammatory setting, therapeutic strategies targeting some pro-inflammatory cytokines and pathways in mitigating ischemia/reperfusion-induced hepatic injury: a comprehensive review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6299-6315. [PMID: 38643452 DOI: 10.1007/s00210-024-03074-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/28/2024] [Indexed: 04/22/2024]
Abstract
Ischemia/reperfusion injury (IRI) is a key determining agent in the pathophysiology of clinical organ dysfunction. It is characterized by an aseptic local inflammatory reaction due to a decrease in blood supply, hence deprivation of dependent oxygen and nutrients. In instances of liver transplantation, this injury may have irreversible implications, resulting in eventual organ rejection. The deterioration associated with IRI is affected by the hepatic health status and various factors such as alterations in metabolism, oxidative stress, and pro-inflammatory cytokines. The primary cause of inflammation is the initial immune response of pro-inflammatory cytokines, while Kupffer cells (KFCs) and neutrophil-produced chemokines also play a significant role. Upon reperfusion, the activation of inflammatory responses can elicit further cellular damage and organ dysfunction. This review discusses the interplay between chemokines, pro-inflammatory cytokines, and other inflammatory mediators that contribute to the damage to hepatocytes and liver failure in rats following IR. Furthermore, it delves into the impact of anti-inflammatory therapies in safeguarding against liver failure and hepatocellular damage in rats following IR. This review investigates the correlation between cytokine factors and liver dysfunction via examining databases, such as PubMed, Google Scholar, Science Direct, Egyptian Knowledge Bank (EKB), and Research Gate.
Collapse
Affiliation(s)
- Moustafa O Aboelez
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, Sohag, 82524, Egypt.
| | - Hend A A Ezelarab
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minya, 61519, Egypt.
| | - Ghallab Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Al-Dawadmi Campus, 11961, Al-Dawadmi, Saudi Arabia
| | - Deiaa E Elsayed Abouzed
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Sohag University, Sohag, 82524, Egypt
| |
Collapse
|
21
|
Goto T, Noguchi Y, Linares I, Mazilescu L, Nogueira E, Hobeika C, Ray S, Parmentier C, Ganesh S, Peranantharuban J, Chan HH, Reichman T, Selzner N, Selzner M. Indocyanine green fluorescence quantification during normothermic ex situ perfusion for the assessment of porcine liver grafts after circulatory death. Liver Transpl 2024; 30:907-917. [PMID: 38869990 PMCID: PMC11332378 DOI: 10.1097/lvt.0000000000000416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 04/25/2024] [Indexed: 06/15/2024]
Abstract
Current graft evaluation during normothermic ex situ liver perfusion lacks real-time parameters for predicting posttransplant hepatocyte and biliary function. Indocyanine green (ICG) imaging has been widely used in liver surgery, enabling the visualization of hepatic uptake and excretion through bile using near-infrared light. In this research, porcine livers under various ischemic conditions were examined during a 5-hour normothermic ex situ liver perfusion procedure, introducing ICG at 1 hour through the hepatic artery. These conditions included livers from heart-beating donors, donation after circulatory death (DCD) with warm ischemic durations of 60 minutes (DCD60) and 120 minutes (DCD120), as well as interventions utilizing tissue plasminogen activator in DCD120 cases (each n = 5). Distinct hepatic fluorescence patterns correlated with different degrees of ischemic injury ( p = 0.01). Low ICG uptake in the parenchyma (less than 40% of maximum intensity) was more prevalent in DCD120 (21.4%) compared to heart-beating donors (6.2%, p = 0.06) and DCD60 (3.0%, p = 0.02). Moreover, ICG clearance from 60 minutes to 240 minutes was significantly higher in heart-beating donors (69.3%) than in DCD60 (17.5%, p < 0.001) and DCD120 (32.1%, p = 0.01). Furthermore, thrombolytic intervention using tissue plasminogen activator in DCD120 resulted in noteworthy outcomes, including significantly reduced ALP levels ( p = 0.04) and improved ICG clearance ( p = 0.02) with a trend toward mitigating fibrin deposition similar to DCD60, as well as enhancements in bile production ( p = 0.09). In conclusion, ICG fluorescence imaging during normothermic ex situ liver perfusion provides real-time classification of hepatic vascular and biliary injuries, offering valuable insights for the more accurate selection and postintervention evaluation of marginal livers in transplantation.
Collapse
Affiliation(s)
- Toru Goto
- Department of Surgery, Ajmera Transplant Centre, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
- Department of Surgery, Divisions of Hepato-biliary-Pancreatic Surgery and Transplantation, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuki Noguchi
- Department of Surgery, Ajmera Transplant Centre, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Ivan Linares
- Department of Surgery, Ajmera Transplant Centre, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Laura Mazilescu
- Department of Surgery, Ajmera Transplant Centre, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Emmanuel Nogueira
- Department of Surgery, Ajmera Transplant Centre, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Christian Hobeika
- Department of Surgery, Ajmera Transplant Centre, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Samrat Ray
- Department of Surgery, Ajmera Transplant Centre, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Catherine Parmentier
- Department of Surgery, Ajmera Transplant Centre, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Sujani Ganesh
- Department of Surgery, Ajmera Transplant Centre, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Jathuya Peranantharuban
- Department of Surgery, Ajmera Transplant Centre, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Harley H.L. Chan
- TECHNA Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Trevor Reichman
- Department of Surgery, Ajmera Transplant Centre, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Nazia Selzner
- Department of Surgery, Ajmera Transplant Centre, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Markus Selzner
- Department of Surgery, Ajmera Transplant Centre, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
22
|
Tran MH, Gao J, Wang X, Liu R, Parris CL, Esquivel C, Fan Y, Wang L. Enhancing Liver Transplant Outcomes through Liver Precooling to Mitigate Inflammatory Response and Protect Mitochondrial Function. Biomedicines 2024; 12:1475. [PMID: 39062048 PMCID: PMC11275024 DOI: 10.3390/biomedicines12071475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Transplanted organs experience several episodes of ischemia and ischemia-reperfusion. The graft injury resulting from ischemia-reperfusion (IRI) remains a significant obstacle to the successful survival of transplanted grafts. Temperature significantly influences cellular metabolic rates because biochemical reactions are highly sensitive to temperature changes. Consequently, lowering the temperature could reduce the degradative reactions triggered by ischemia. In mitigating IRI in liver grafts, the potential protective effect of localized hypothermia on the liver prior to blood flow obstruction has yet to be explored. In this study, we applied local hypothermia to mouse donor livers for a specific duration before stopping blood flow to liver lobes, a procedure called "liver precooling". Mouse donor liver temperature in control groups was controlled at 37 °C. Subsequently, the liver donors were preserved in cold University of Wisconsin solution for various durations followed by orthotopic liver transplantation. Liver graft injury, function and inflammation were assessed at 1 and 2 days post-transplantation. Liver precooling exhibited a significant improvement in graft function, revealing more than a 47% decrease in plasma aspartate transaminase (AST) and alanine aminotransferase (ALT) levels, coupled with a remarkable reduction of approximately 50% in liver graft histological damage compared to the control group. The protective effects of liver precooling were associated with the preservation of mitochondrial function, a substantial reduction in hepatocyte cell death, and a significantly attenuated inflammatory response. Taken together, reducing the cellular metabolism and enzymatic activity to a minimum level before ischemia protects against IRI during transplantation.
Collapse
Affiliation(s)
- Minh H. Tran
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Jie Gao
- School of Health Professions, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Xinzhe Wang
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Ruisheng Liu
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Colby L. Parris
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Carlos Esquivel
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Yingxiang Fan
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Lei Wang
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, FL 33612, USA
| |
Collapse
|
23
|
Semash K, Salimov U, Dzhanbekov T, Sabirov D. Liver Graft Machine Perfusion: From History Perspective to Modern Approaches in Transplant Surgery. EXP CLIN TRANSPLANT 2024; 22:497-508. [PMID: 39223808 DOI: 10.6002/ect.2024.0137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The shortage of donor organs remains an unresolved issue in livertransplantation worldwide. Consequently, strategies for expanding the donor pool are currently being developed. Donors meeting extended criteria undergo thorough evaluation, as livers obtained from marginal donors yield poorer outcomes in recipients, including exacerbated reperfusion injury, acute kidney injury, early graft dysfunction, and primary nonfunctioning graft. However, the implementation of machine perfusion has shown excellent potential in preserving donor livers and improving their characteristics to achieve better outcomes for recipients. In this review, we analyzed the global experience of using machine perfusion in livertransplantation through the history ofthe development ofthis method to the latest trends and possibilities for increasing the number of liver transplants.
Collapse
|
24
|
Mahboub P, Aburawi M, Ozgur OS, Pendexter C, Cronin S, Lin FM, Jain R, Karabacak MN, Karimian N, Tessier SN, Markmann JF, Yeh H, Uygun K. Gradual rewarming with a hemoglobin-based oxygen carrier improves viability of donation after circulatory death in rat livers. FRONTIERS IN TRANSPLANTATION 2024; 3:1353124. [PMID: 38993754 PMCID: PMC11235298 DOI: 10.3389/frtra.2024.1353124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 06/10/2024] [Indexed: 07/13/2024]
Abstract
Background Donation after circulatory death (DCD) grafts are vital for increasing available donor organs. Gradual rewarming during machine perfusion has proven effective in mitigating reperfusion injury and enhancing graft quality. Limited data exist on artificial oxygen carriers as an effective solution to meet the increasing metabolic demand with temperature changes. The aim of the present study was to assess the efficacy and safety of utilizing a hemoglobin-based oxygen carrier (HBOC) during the gradual rewarming of DCD rat livers. Methods Liver grafts were procured after 30 min of warm ischemia. The effect of 90 min of oxygenated rewarming perfusion from ice cold temperatures (4 °C) to 37 °C with HBOC after cold storage was evaluated and the results were compared with cold storage alone. Reperfusion at 37 °C was performed to assess the post-preservation recovery. Results Gradual rewarming with HBOC significantly enhanced recovery, demonstrated by markedly lower lactate levels and reduced vascular resistance compared to cold-stored liver grafts. Increased bile production in the HBOC group was noted, indicating improved liver function and bile synthesis capacity. Histological examination showed reduced cellular damage and better tissue preservation in the HBOC-treated livers compared to those subjected to cold storage alone. Conclusion This study suggests the safety of using HBOC during rewarming perfusion of rat livers as no harmful effect was detected. Furthermore, the viability assessment indicated improvement in graft function.
Collapse
Affiliation(s)
- Paria Mahboub
- Department of Surgery, University Medical Center Groningen, Groningen, Netherlands
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Research, Shriners Hospitals for Children, Boston, MA, United States
| | - Mohamed Aburawi
- Department of Research, Shriners Hospitals for Children, Boston, MA, United States
- Transplant Center, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - O Sila Ozgur
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Research, Shriners Hospitals for Children, Boston, MA, United States
| | - Casie Pendexter
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Research, Shriners Hospitals for Children, Boston, MA, United States
| | - Stephanie Cronin
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Research, Shriners Hospitals for Children, Boston, MA, United States
| | - Florence Min Lin
- Department of Research, Shriners Hospitals for Children, Boston, MA, United States
| | - Rohil Jain
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Research, Shriners Hospitals for Children, Boston, MA, United States
| | - Murat N Karabacak
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Research, Shriners Hospitals for Children, Boston, MA, United States
| | - Negin Karimian
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Research, Shriners Hospitals for Children, Boston, MA, United States
| | - Shannon N Tessier
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Research, Shriners Hospitals for Children, Boston, MA, United States
| | - James F Markmann
- Transplant Center, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Heidi Yeh
- Transplant Center, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Korkut Uygun
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Research, Shriners Hospitals for Children, Boston, MA, United States
| |
Collapse
|
25
|
Abbas SH, Ceresa CDL, Hodson L, Nasralla D, Watson CJE, Mergental H, Coussios C, Kaloyirou F, Brusby K, Mora A, Thomas H, Kounali D, Keen K, Pollok JM, Gaurav R, Iype S, Jassem W, Perera MTP, Hakeem AR, Knight S, Friend PJ. Defatting of donor transplant livers during normothermic perfusion-a randomised clinical trial: study protocol for the DeFat study. Trials 2024; 25:386. [PMID: 38886851 PMCID: PMC11181618 DOI: 10.1186/s13063-024-08189-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Liver disease is the third leading cause of premature death in the UK. Transplantation is the only successful treatment for end-stage liver disease but is limited by a shortage of suitable donor organs. As a result, up to 20% of patients on liver transplant waiting lists die before receiving a transplant. A third of donated livers are not suitable for transplant, often due to steatosis. Hepatic steatosis, which affects 33% of the UK population, is strongly associated with obesity, an increasing problem in the potential donor pool. We have recently tested defatting interventions during normothermic machine perfusion (NMP) in discarded steatotic human livers that were not transplanted. A combination of therapies including forskolin (NKH477) and L-carnitine to defat liver cells and lipoprotein apheresis filtration were investigated. These interventions resulted in functional improvement during perfusion and reduced the intrahepatocellular triglyceride (IHTG) content. We hypothesise that defatting during NMP will allow more steatotic livers to be transplanted with improved outcomes. METHODS In the proposed multi-centre clinical trial, we will randomly assign 60 livers from donors with a high-risk of hepatic steatosis to either NMP alone or NMP with defatting interventions. We aim to test the safety and feasibility of the defatting intervention and will explore efficacy by comparing ex-situ and post-reperfusion liver function between the groups. The primary endpoint will be the proportion of livers that achieve predefined functional criteria during perfusion which indicate potential suitability for transplantation. These criteria reflect hepatic metabolism and injury and include lactate clearance, perfusate pH, glucose metabolism, bile composition, vascular flows and transaminase levels. Clinical secondary endpoints will include proportion of livers transplanted in the two arms, graft function; cell-free DNA (cfDNA) at follow-up visits; patient and graft survival; hospital and ITU stay; evidence of ischemia-reperfusion injury (IRI); non-anastomotic biliary strictures and recurrence of steatosis (determined on MRI at 6 months). DISCUSSION This study explores ex-situ pharmacological optimisation of steatotic donor livers during NMP. If the intervention proves effective, it will allow the safe transplantation of livers that are currently very likely to be discarded, thereby reducing waiting list deaths. TRIAL REGISTRATION ISRCTN ISRCTN14957538. Registered in October 2022.
Collapse
Affiliation(s)
- Syed Hussain Abbas
- Nuffield Department of Surgical Sciences, University of Oxford, The Churchill Hospital, Oxford, OX3 7LJ, UK.
| | - Carlo D L Ceresa
- Royal Free London NHS Foundation Trust, The Royal Free Hospital, Pond St, Hampstead, London, NW3 2QG, UK
| | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, The Churchill Hospital, Oxford, OX3 7LJ, UK
| | - David Nasralla
- Royal Free London NHS Foundation Trust, The Royal Free Hospital, Pond St, Hampstead, London, NW3 2QG, UK
| | - Christopher J E Watson
- Department of Surgery, Addenbrooke's Hospital, Hills Road, University of Cambridge, Box 202, Cambridge, CB2 2QQ, UK
| | - Hynek Mergental
- Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Mindelsohn Way, Birmingham, B15 2TH, UK
- TransMedics Inc, 200 Minuteman Road, Andover, MA, 01810, USA
| | - Constantin Coussios
- Institute of Biomedical Engineering, Old Road Campus Research Building, University of Oxford, Oxford, OX3 7DQ, UK
| | | | | | - Ana Mora
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0BB, UK
| | - Helen Thomas
- NHS Blood and Transplant Clinical Trials Unit, Fox Den Road, Stoke Gifford, Bristol, BS34 8RR, UK
| | - Daphne Kounali
- Oxford Clinical Trials Research Unit (OCTRU), Centre for Statistics in Medicine (CSM), Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), Medical Sciences Division, The Botnar Research Centre, University of Oxford, Windmill Road, Oxford, OX3 7LD, UK
| | - Katie Keen
- NHSBT CTU, Long Road, Cambridge, CB2 0PT, UK
| | - Joerg-Matthias Pollok
- Royal Free London NHS Foundation Trust, The Royal Free Hospital, Pond St, Hampstead, London, NW3 2QG, UK
| | - Rohit Gaurav
- Department of Surgery, Addenbrooke's Hospital, Hills Road, University of Cambridge, Box 202, Cambridge, CB2 2QQ, UK
| | - Satheesh Iype
- Royal Free London NHS Foundation Trust, The Royal Free Hospital, Pond St, Hampstead, London, NW3 2QG, UK
| | - Wayel Jassem
- Kings College Hospital, King's College Hospital NHS Foundation Trust, Denmark Hill, London, SE5 9RS, UK
| | - M Thamara Pr Perera
- Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Mindelsohn Way, Birmingham, B15 2TH, UK
| | - Abdul Rahman Hakeem
- Kings College Hospital, King's College Hospital NHS Foundation Trust, Denmark Hill, London, SE5 9RS, UK
- St James's University Hospital, Leeds Teaching Hospitals NHS Trust, Beckett Street, Leeds, LS9 7TF, UK
| | - Simon Knight
- Nuffield Department of Surgical Sciences, University of Oxford, The Churchill Hospital, Oxford, OX3 7LJ, UK
| | - Peter J Friend
- Nuffield Department of Surgical Sciences, University of Oxford, The Churchill Hospital, Oxford, OX3 7LJ, UK
| |
Collapse
|
26
|
Lindemann J, Yu J, Doyle MM. Normothermic machine perfusion for liver transplantation: current state and future directions. Curr Opin Organ Transplant 2024; 29:186-194. [PMID: 38483109 DOI: 10.1097/mot.0000000000001141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2024]
Abstract
PURPOSE OF REVIEW The number of patients on the liver transplant waitlist continues to grow and far exceeds the number of livers available for transplantation. Normothermic machine perfusion (NMP) allows for ex-vivo perfusion under physiologic conditions with the potential to significantly increase organ yield and expand the donor pool. RECENT FINDINGS Several studies have found increased utilization of donation after cardiac death and extended criteria brain-dead donor livers with implementation of NMP, largely due to the ability to perform viability testing during machine perfusion. Recently, proposed viability criteria include lactate clearance, maintenance of perfusate pH more than 7.2, ALT less than 6000 u/l, evidence of glucose metabolism and bile production. Optimization of liver grafts during NMP is an active area of research and includes interventions for defatting steatotic livers, preventing ischemic cholangiopathy and rejection, and minimizing ischemia reperfusion injury. SUMMARY NMP has resulted in increased organ utilization from marginal donors with acceptable outcomes. The added flexibility of prolonged organ storage times has the potential to improve time constraints and transplant logistics. Further research to determine ideal viability criteria and investigate ways to optimize marginal and otherwise nontransplantable liver grafts during NMP is warranted.
Collapse
Affiliation(s)
- Jessica Lindemann
- Department of Surgery, Section of Abdominal Organ Transplantation, Washington University School of Medicine, Saint Louis, Missouri, USA
| | | | | |
Collapse
|
27
|
Tang Y, Li J, Wang T, Zhang Z, Huang S, Zhu Z, Wang L, Zhao Q, Guo Z, He X. Development of a Large Animal Model of Ischemia-free Liver Transplantation in Pigs. Transplant Direct 2024; 10:e1597. [PMID: 38617464 PMCID: PMC11013694 DOI: 10.1097/txd.0000000000001597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 04/16/2024] Open
Abstract
Background In organ transplantation, ischemia, and reperfusion injury (IRI) is considered as an inevitable event and the major contributor to graft failure. Ischemia-free liver transplantation (IFLT) is a novel transplant procedure that can prevent IRI and provide better transplant outcomes. However, a large animal model of IFLT has not been reported. Therefore, we develop a new, reproducible, and stable model of IFLT in pigs for investigating mechanisms of IFLT in IRI. Methods Ten pigs were subjected to IFLT or conventional liver transplantation (CLT). Donor livers in IFLT underwent 6-h continuous normothermic machine perfusion (NMP) throughout graft procurement, preservation, and implantation, whereas livers in CLT were subjected to 6-h cold storage before implantation. The early reperfusion injury was compared between the 2 groups. Results Continuous bile production, low lactate, and liver enzyme levels were observed during NMP in IFLT. All animals survived after liver transplantation. The posttransplant graft function was improved with IFLT when compared with CLT. Minimal histologic changes, fewer apoptotic hepatocytes, less sinusoidal endothelial cell injury, and proinflammatory cytokine (interleukin [IL]-1β, IL-6, and tumor necrosis factor-α) release after graft revascularization were documented in the IFLT group versus the CLT group. Conclusions We report that the concept of IFLT is achievable in pigs. This innovation provides a potential strategy to investigate the mechanisms of IRI and provide better transplant outcomes for clinical practice.
Collapse
Affiliation(s)
- Yunhua Tang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Jiahao Li
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Tielong Wang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Zhiheng Zhang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Shanzhou Huang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Zebin Zhu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Linhe Wang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Qiang Zhao
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Zhiyong Guo
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Xiaoshun He
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| |
Collapse
|
28
|
Wang BK, Shubin AD, Harvey JA, MacConmara MM, Hwang CS, Patel MS, Vagefi PA. From Patients to Providers: Assessing Impact of Normothermic Machine Perfusion on Liver Transplant Practices in the US. J Am Coll Surg 2024; 238:844-852. [PMID: 38078619 DOI: 10.1097/xcs.0000000000000924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
BACKGROUND Normothermic machine perfusion (NMP) of livers allows for the expansion of the donor pool and minimization of posttransplant complications. Results to date have focused on both donor and recipient outcomes, but there remains potential for NMP to also impact transplant providers. STUDY DESIGN Using United Network for Organ Sharing Standard Transplant Analysis file data, adult deceased donors who underwent transplantation between January 1, 2016, and December 31, 2022, were identified. Transplanted livers were divided by preservation methods (static cold storage [SCS] and NMP) and case time (day-reperfusion 8 am to 6 pm ). Patient factors, transplant characteristics, and short-term outcomes were analyzed between Mahalanobis-metric-matched groups. RESULTS NMP livers represented 742 (1.4%) of 52,132 transplants. NMP donors were more marginal with higher Donor Risk Index scores (1.78 ± 0.50 NMP vs 1.49 ± 0.38 SCS, p < 0.001) and donation after cardiac death frequency (36.9% vs 8.4%, p < 0.001). NMP recipients more often had model for end-stage liver disease (MELD) exception status (29.9% vs 23.4%, p < 0.001), lower laboratory MELD scores (20.7 ± 9.7 vs 24.3 ± 10.9, p < 0.001), and had been waitlisted longer (111.5 [21.0 to 307.0] vs 60.0 [9.0 to 245.0] days, p < 0.001). One-year graft survival (90.2% vs 91.6%, p = 0.505) was similar between groups, whereas length of stay was lower for NMP recipients (8.0 [6.0 to 14.0] vs 10.0 [6.0 to 16.0], p = 0.017) after adjusting for confounders. Notably, peak case volume occurred at 11 am with NMP livers (vs 9 pm with SCS). Overall, a higher proportion of transplants was performed during daytime hours with NMP (51.5% vs 43.0%, p < 0.001). CONCLUSIONS NMP results in increased use of marginal allografts, which facilitated transplantation in lower laboratory MELD recipients who have been waitlisted longer and often have exception points. Importantly, NMP also appeared to shift peak caseloads from nighttime to daytime, which may have significant effects on the quality of life for the entire liver transplant team.
Collapse
Affiliation(s)
- Benjamin K Wang
- From the Division of Surgical Transplantation, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX (Wang, Shubin, Harvey, Hwang, Patel, Vagefi)
| | - Andrew D Shubin
- From the Division of Surgical Transplantation, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX (Wang, Shubin, Harvey, Hwang, Patel, Vagefi)
| | - Jalen A Harvey
- From the Division of Surgical Transplantation, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX (Wang, Shubin, Harvey, Hwang, Patel, Vagefi)
| | | | - Christine S Hwang
- From the Division of Surgical Transplantation, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX (Wang, Shubin, Harvey, Hwang, Patel, Vagefi)
| | - Madhukar S Patel
- From the Division of Surgical Transplantation, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX (Wang, Shubin, Harvey, Hwang, Patel, Vagefi)
| | - Parsia A Vagefi
- From the Division of Surgical Transplantation, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX (Wang, Shubin, Harvey, Hwang, Patel, Vagefi)
| |
Collapse
|
29
|
Abbas SH, Ceresa CDL, Pollok JM. Steatotic Donor Transplant Livers: Preservation Strategies to Mitigate against Ischaemia-Reperfusion Injury. Int J Mol Sci 2024; 25:4648. [PMID: 38731866 PMCID: PMC11083584 DOI: 10.3390/ijms25094648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Liver transplantation (LT) is the only definitive treatment for end-stage liver disease, yet the UK has seen a 400% increase in liver disease-related deaths since 1970, constrained further by a critical shortage of donor organs. This shortfall has necessitated the use of extended criteria donor organs, including those with evidence of steatosis. The impact of hepatic steatosis (HS) on graft viability remains a concern, particularly for donor livers with moderate to severe steatosis which are highly sensitive to the process of ischaemia-reperfusion injury (IRI) and static cold storage (SCS) leading to poor post-transplantation outcomes. This review explores the pathophysiological predisposition of steatotic livers to IRI, the limitations of SCS, and alternative preservation strategies, including novel organ preservation solutions (OPS) and normothermic machine perfusion (NMP), to mitigate IRI and improve outcomes for steatotic donor livers. By addressing these challenges, the liver transplant community can enhance the utilisation of steatotic donor livers which is crucial in the context of the global obesity crisis and the growing need to expand the donor pool.
Collapse
Affiliation(s)
- Syed Hussain Abbas
- Oxford Transplant Centre, Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX1 2JD, UK;
| | - Carlo Domenico Lorenzo Ceresa
- Department of Hepatopancreatobiliary and Liver Transplant Surgery, Royal Free Hospital, Pond Street, Hampstead, London NW3 2QG, UK;
| | - Joerg-Matthias Pollok
- Department of Hepatopancreatobiliary and Liver Transplant Surgery, Royal Free Hospital, Pond Street, Hampstead, London NW3 2QG, UK;
- Division of Surgery & Interventional Science, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
30
|
Parente A, Sun K, Dutkowski P, Shapiro AMJ, Schlegel A. Routine utilization of machine perfusion in liver transplantation: Ready for prime time? World J Gastroenterol 2024; 30:1488-1493. [PMID: 38617447 PMCID: PMC11008417 DOI: 10.3748/wjg.v30.i11.1488] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/30/2024] [Accepted: 02/28/2024] [Indexed: 03/21/2024] Open
Abstract
The last decade has been notable for increasing high-quality research and dramatic improvement in outcomes with dynamic liver preservation. Robust evidence from numerous randomized controlled trials has been pooled by meta-analyses, providing the highest available evidence on the protective effect of machine perfusion (MP) over static cold storage in liver transplantation (LT). Based on a protective effect with less complications and improved graft survival, the field has seen a paradigm shift in organ preservation. This editorial focuses on the role of MP in LT and how it could become the new "gold standard". Strong collaborative efforts are needed to explore its effects on long-term outcomes.
Collapse
Affiliation(s)
- Alessandro Parente
- Department of Surgery, Division of Transplantation, University of Alberta Hospital, Edmonton T6G 2B7, Canada
| | - Keyue Sun
- Immunity and Inflammation, Lerner Research Institute, Cleveland, OH 44195, United States
| | - Philipp Dutkowski
- Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplantation Surgery, University Hospital Zurich, Zurich 8091, Switzerland
| | - AM James Shapiro
- Department of Surgery, Division of Transplantation, University of Alberta Hospital, Edmonton T6G 2B7, Canada
| | - Andrea Schlegel
- Immunity and Inflammation, Digestive Disease and Surgery Institute, Cleveland, OH 44195, United States
| |
Collapse
|
31
|
Flores Carvalho M, Boteon YL, Guarrera JV, Modi PR, Lladó L, Lurje G, Kasahara M, Dutkowski P, Schlegel A. Obstacles to implement machine perfusion technology in routine clinical practice of transplantation: Why are we not there yet? Hepatology 2024; 79:713-730. [PMID: 37013926 DOI: 10.1097/hep.0000000000000394] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 03/05/2023] [Indexed: 04/05/2023]
Abstract
Machine perfusion of solid human organs is an old technique, and the basic principles were presented as early as 1855 by Claude Barnard. More than 50 years ago, the first perfusion system was used in clinical kidney transplantation. Despite the well-known benefits of dynamic organ preservation and significant medical and technical development in the last decades, perfusion devices are still not in routine use. This article describes the various challenges to implement this technology in practice, critically analyzing the role of all involved stakeholders, including clinicians, hospitals, regulatory, and industry, on the background of regional differences worldwide. The clinical need for this technology is discussed first, followed by the current status of research and the impact of costs and regulations. Considering the need for strong collaborations between clinical users, regulatory bodies, and industry, integrated road maps and pathways required to achieve a wider implementation are presented. The role of research development, clear regulatory pathways, and the need for more flexible reimbursement schemes is discussed together with potential solutions to address the most relevant hurdles. This article paints an overall picture of the current liver perfusion landscape and highlights the role of clinical, regulatory, and financial stakeholders worldwide.
Collapse
Affiliation(s)
- Mauricio Flores Carvalho
- Department of Clinical and Experimental Medicine, Hepatobiliary Unit, University of Florence, AOU Careggi, Florence, Italy
| | - Yuri L Boteon
- Liver Unit, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - James V Guarrera
- Division of Abdominal Transplant Surgery, Rutgers New Jersey Medical School, Department of Surgery, Newark, New Jersey, USA
| | - Pranjal R Modi
- Department of Transplantation Surgery, Institute of Kidney Diseases and Research Center and Dr. H L Trivedi Institute of Transplantation Sciences (IKDRC-ITS), Ahmedabad, India
| | - Laura Lladó
- Liver Transplant Unit, Hospital Universitario de Bellvitge, Barcelona, Spain
| | - Georg Lurje
- Department of Surgery, Campus Charité Mitte, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Mureo Kasahara
- Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Philipp Dutkowski
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, Switzerland
| | - Andrea Schlegel
- Department of Clinical and Experimental Medicine, Hepatobiliary Unit, University of Florence, AOU Careggi, Florence, Italy
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, Switzerland
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Center for Preclinical Research, 20100 Milan, Italy
| |
Collapse
|
32
|
Watson CJ, Gaurav R, Butler AJ. Current Techniques and Indications for Machine Perfusion and Regional Perfusion in Deceased Donor Liver Transplantation. J Clin Exp Hepatol 2024; 14:101309. [PMID: 38274508 PMCID: PMC10806097 DOI: 10.1016/j.jceh.2023.101309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/27/2023] [Indexed: 01/27/2024] Open
Abstract
Since the advent of University of Wisconsin preservation solution in the 1980s, clinicians have learned to work within its confines. While affording improved outcomes, considerable limitations still exist and contribute to the large number of livers that go unused each year, often for fear they may never work. The last 10 years have seen the widespread availability of new perfusion modalities which provide an opportunity for assessing organ viability and prolonged organ storage. This review will discuss the role of in situ normothermic regional perfusion for livers donated after circulatory death. It will also describe the different modalities of ex situ perfusion, both normothermic and hypothermic, and discuss how they are thought to work and the opportunities afforded by them.
Collapse
Affiliation(s)
- Christopher J.E. Watson
- University of Cambridge Department of Surgery, Box 210, Addenbrooke's Hospital, Cambridge, CB2 2QQ, UK
- The Roy Calne Transplant Unit, Addenbrooke's Hospital, Cambridge, CB2 2QQ, UK
| | - Rohit Gaurav
- The Roy Calne Transplant Unit, Addenbrooke's Hospital, Cambridge, CB2 2QQ, UK
| | - Andrew J. Butler
- University of Cambridge Department of Surgery, Box 210, Addenbrooke's Hospital, Cambridge, CB2 2QQ, UK
- The Roy Calne Transplant Unit, Addenbrooke's Hospital, Cambridge, CB2 2QQ, UK
| |
Collapse
|
33
|
Cui M, Chen F, Shao L, Wei C, Zhang W, Sun W, Wang J. Mesenchymal stem cells and ferroptosis: Clinical opportunities and challenges. Heliyon 2024; 10:e25251. [PMID: 38356500 PMCID: PMC10864896 DOI: 10.1016/j.heliyon.2024.e25251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/16/2024] Open
Abstract
Objective This review discusses recent experimental and clinical findings related to ferroptosis, with a focus on the role of MSCs. Therapeutic efficacy and current applications of MSC-based ferroptosis therapies are also discussed. Background Ferroptosis is a type of programmed cell death that differs from apoptosis, necrosis, and autophagy; it involves iron metabolism and is related to the pathogenesis of many diseases, such as Parkinson's disease, cancers, and liver diseases. In recent years, the use of mesenchymal stem cells (MSCs) and MSC-derived exosomes has become a trend in cell-free therapies. MSCs are a heterogeneous cell population isolated from a diverse range of human tissues that exhibit immunomodulatory functions, regulate cell growth, and repair damaged tissues. In addition, accumulating evidence indicates that MSC-derived exosomes play an important role, mainly by carrying a variety of bioactive substances that affect recipient cells. The potential mechanism by which MSC-derived exosomes mediate the effects of MSCs on ferroptosis has been previously demonstrated. This review provides the first overview of the current knowledge on ferroptosis, MSCs, and MSC-derived exosomes and highlights the potential application of MSCs exosomes in the treatment of ferroptotic conditions. It summarizes their mechanisms of action and techniques for enhancing MSC functionality. Results obtained from a large number of experimental studies revealed that both local and systemic administration of MSCs effectively suppressed ferroptosis in injured hepatocytes, neurons, cardiomyocytes, and nucleus pulposus cells and promoted the survival and regeneration of injured organs. Methods We reviewed the role of ferroptosis in related tissues and organs, focusing on its characteristics in different diseases. Additionally, the effects of MSCs and MSC-derived exosomes on ferroptosis-related pathways in various organs were reviewed, and the mechanism of action was elucidated. MSCs were shown to improve the disease course by regulating ferroptosis.
Collapse
Affiliation(s)
- Mengling Cui
- Department of Radiology, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, PR China
| | - Fukun Chen
- Department of Radiology, Kunming Medical University & the Third Affiliated Hospital, Kunming, Yunnan, 650101, PR China
| | - Lishi Shao
- Department of Radiology, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, PR China
| | - Chanyan Wei
- Department of Radiology, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, PR China
| | - Weihu Zhang
- Department of Radiology, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, PR China
| | - Wenmei Sun
- Department of Radiology, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, PR China
| | - Jiaping Wang
- Department of Radiology, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, PR China
| |
Collapse
|
34
|
Ghinolfi D, Patrono D, De Carlis R, Melandro F, Buscemi V, Farnesi F, Torri F, Lauterio A, Di Salvo M, Cerchione R, Zanierato M, Morganti R, Romagnoli R, De Simone P, De Carlis L. Liver transplantation with uncontrolled versus controlled DCD donors using normothermic regional perfusion and ex-situ machine perfusion. Liver Transpl 2024; 30:46-60. [PMID: 37450659 DOI: 10.1097/lvt.0000000000000219] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
In Italy, 20 minutes of continuous, flat-line electrocardiogram are required for death declaration, which significantly increases the risks of donation after circulatory death (DCD) LT. Despite prolonged warm ischemia time, Italian centers reported good outcomes in controlled donation after circulatory death LT by combining normothermic regional and end-ischemic machine perfusion. However, data on uncontrolled DCD (uDCD) LT performed by this approach are lacking. This was a multicenter, retrospective study performed at 3 large-volume centers comparing clinical outcomes of uncontrolled versus controlled DCD LT. The aim of the study was to assess outcomes of sequential normothermic regional perfusion and end-ischemic machine perfusion in uncontrolled DCD liver transplantation (LT). Of 153 DCD donors evaluated during the study period, 40 uDCD and 59 donation after circulatory death grafts were transplanted (utilization rate 52% vs. 78%, p = 0.004). Recipients of uDCD grafts had higher MEAF (4.9 vs. 3.5, p < 0.001) and CCI scores at discharge (24.4 vs. 8.7, p = 0.026), longer ICU stay (5 vs. 4 d, p = 0.047), and a trend toward more severe AKI. At multivariate analysis, 90-day graft loss was associated with recipient BMI and lactate downtrend during normothermic regional perfusion. One-year graft survival was lower in uDCD (75% vs. 90%, p = 0.007) but became comparable when non-liver-related graft losses were treated as censors (77% vs. 90%, p = 0.100). The incidence of ischemic cholangiopathy was 10% in uDCD versus 3% in donation after circulatory death, p = 0.356. uDCD LT with prolonged warm ischemia is feasible by the sequential use of normothermic regional perfusion and end-ischemic machine perfusion. Proper donor and recipient selection are key to achieving good outcomes in this setting.
Collapse
Affiliation(s)
- Davide Ghinolfi
- Division of Hepatic Surgery and Liver Transplantation, University of Pisa Hospital, Pisa, Italy
| | - Damiano Patrono
- General Surgery 2U-Liver Transplant Unit, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante, Turin, Italy
| | - Riccardo De Carlis
- Department of General Surgery and Transplantation, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
- PhD Course in Clinical and Experimental Sciences, University of Padua, Padua, Italy
| | - Fabio Melandro
- Division of Hepatic Surgery and Liver Transplantation, University of Pisa Hospital, Pisa, Italy
| | - Vincenzo Buscemi
- Department of General Surgery and Transplantation, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Francesca Farnesi
- General Surgery 2U-Liver Transplant Unit, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante, Turin, Italy
| | - Francesco Torri
- Division of Hepatic Surgery and Liver Transplantation, University of Pisa Hospital, Pisa, Italy
| | - Andrea Lauterio
- Department of General Surgery and Transplantation, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Maria Di Salvo
- General Surgery 2U-Liver Transplant Unit, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante, Turin, Italy
| | - Raffaele Cerchione
- Department of General Surgery and Transplantation, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Marinella Zanierato
- Anesthesia and Critical Care, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante, Turin, Italy
| | | | - Renato Romagnoli
- General Surgery 2U-Liver Transplant Unit, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante, Turin, Italy
| | - Paolo De Simone
- Division of Hepatic Surgery and Liver Transplantation, University of Pisa Hospital, Pisa, Italy
| | - Luciano De Carlis
- Department of General Surgery and Transplantation, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
35
|
López-Martínez S, Simón C, Santamaria X. Normothermic Machine Perfusion Systems: Where Do We Go From Here? Transplantation 2024; 108:22-44. [PMID: 37026713 DOI: 10.1097/tp.0000000000004573] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Normothermic machine perfusion (NMP) aims to preserve organs ex vivo by simulating physiological conditions such as body temperature. Recent advancements in NMP system design have prompted the development of clinically effective devices for liver, heart, lung, and kidney transplantation that preserve organs for several hours/up to 1 d. In preclinical studies, adjustments to circuit structure, perfusate composition, and automatic supervision have extended perfusion times up to 1 wk of preservation. Emerging NMP platforms for ex vivo preservation of the pancreas, intestine, uterus, ovary, and vascularized composite allografts represent exciting prospects. Thus, NMP may become a valuable tool in transplantation and provide significant advantages to biomedical research. This review recaps recent NMP research, including discussions of devices in clinical trials, innovative preclinical systems for extended preservation, and platforms developed for other organs. We will also discuss NMP strategies using a global approach while focusing on technical specifications and preservation times.
Collapse
Affiliation(s)
- Sara López-Martínez
- Carlos Simon Foundation, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Carlos Simón
- Carlos Simon Foundation, Centro de Investigación Príncipe Felipe, Valencia, Spain
- Department of Obstetrics and Gynecology, Universidad de Valencia, Valencia, Spain
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX
| | - Xavier Santamaria
- Carlos Simon Foundation, Centro de Investigación Príncipe Felipe, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
| |
Collapse
|
36
|
Clarke G, Mao J, Fan Y, Hann A, Gupta A, Nutu A, Buckel E, Kayani K, Murphy N, Bangash MN, Casey AL, Wootton I, Lawson AJ, Dasari BVM, Perera MTPR, Mergental H, Afford SC. N-acetylcysteine: a novel approach to methaemoglobinaemia in normothermic liver machine perfusion. Sci Rep 2023; 13:19022. [PMID: 37923778 PMCID: PMC10624848 DOI: 10.1038/s41598-023-45206-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 10/17/2023] [Indexed: 11/06/2023] Open
Abstract
Extended duration of normothermic machine perfusion (NMP) provides opportunities to resuscitate suboptimal donor livers. This intervention requires adequate oxygen delivery typically provided by a blood-based perfusion solution. Methaemoglobin (MetHb) results from the oxidation of iron within haemoglobin and represents a serious problem in perfusions lasting > 24 h. We explored the effects of anti-oxidant, N-acetylcysteine (NAC) on the accumulation of methaemoglobin. NMP was performed on nine human donor livers declined for transplantation: three were perfused without NAC (no-NAC group), and six organs perfused with an initial NAC bolus, followed by continuous infusion (NAC group), with hourly methaemoglobin perfusate measurements. In-vitro experiments examined the impact of NAC (3 mg) on red cells (30 ml) in the absence of liver tissue. The no-NAC group sustained perfusions for an average of 96 (range 87-102) h, universally developing methaemoglobinaemia (≥ 2%) observed after an average of 45 h, with subsequent steep rise. The NAC group was perfused for an average of 148 (range 90-184) h. Only 2 livers developed methaemoglobinaemia (peak MetHb of 6%), with an average onset of 116.5 h. Addition of NAC efficiently limits formation and accumulation of methaemoglobin during NMP, and allows the significant extension of perfusion duration.
Collapse
Affiliation(s)
- George Clarke
- Liver Unit, Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Birmingham, B15 2TH, UK.
- Birmingham Biomedical Research Centre, National Institute for Health Research (NIHR), University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2TH, UK.
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TH, UK.
| | - Jingwen Mao
- Birmingham Biomedical Research Centre, National Institute for Health Research (NIHR), University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2TH, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TH, UK
| | - Yiyu Fan
- Birmingham Biomedical Research Centre, National Institute for Health Research (NIHR), University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2TH, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TH, UK
| | - Angus Hann
- Liver Unit, Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Birmingham, B15 2TH, UK
- Birmingham Biomedical Research Centre, National Institute for Health Research (NIHR), University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2TH, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TH, UK
| | | | - Anisa Nutu
- Liver Unit, Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Birmingham, B15 2TH, UK
| | - Erwin Buckel
- Liver Unit, Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Birmingham, B15 2TH, UK
| | - Kayani Kayani
- Birmingham Biomedical Research Centre, National Institute for Health Research (NIHR), University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2TH, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TH, UK
- Queen Elizabeth Hospital Birmingham, Birmingham, B15 2TH, UK
| | - Nicholas Murphy
- Intensive Care Unit, Queen Elizabeth Hospital Birmingham, Birmingham, B15 2TH, UK
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TH, UK
| | - Mansoor N Bangash
- Intensive Care Unit, Queen Elizabeth Hospital Birmingham, Birmingham, B15 2TH, UK
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TH, UK
| | - Anna L Casey
- Microbiology Department, Queen Elizabeth Hospital Birmingham, Birmingham, B15 2TH, UK
| | - Isla Wootton
- Clinical Biochemistry, Queen Elizabeth Hospital Birmingham, Birmingham, B15 2TH, UK
| | - Alexander J Lawson
- Clinical Biochemistry, Queen Elizabeth Hospital Birmingham, Birmingham, B15 2TH, UK
| | - Bobby V M Dasari
- Liver Unit, Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Birmingham, B15 2TH, UK
| | - M Thamara P R Perera
- Liver Unit, Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Birmingham, B15 2TH, UK
- Birmingham Biomedical Research Centre, National Institute for Health Research (NIHR), University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2TH, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TH, UK
| | - Hynek Mergental
- Liver Unit, Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Birmingham, B15 2TH, UK
- Birmingham Biomedical Research Centre, National Institute for Health Research (NIHR), University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2TH, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TH, UK
| | - Simon C Afford
- Birmingham Biomedical Research Centre, National Institute for Health Research (NIHR), University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2TH, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TH, UK
| |
Collapse
|
37
|
Singh K, Kaistha S, Jain R, Khurana S. The yesterday, today and tomorrow of liver transplant. Med J Armed Forces India 2023; 79:638-644. [PMID: 37981927 PMCID: PMC10654371 DOI: 10.1016/j.mjafi.2023.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/20/2023] [Indexed: 11/21/2023] Open
Abstract
With a very long history of setbacks and successes, organ transplantation is one of the greatest medical achievements of the twentieth century. Liver transplantation is currently the most effective method for treating end-stage liver disease. From humble beginnings, improvements in surgical technique, perioperative management, and immunosuppressive therapy have yielded excellent graft and patient outcomes. Most established 'liver transplant' (LT) centres have a 1-year survival rate exceeding 90%, and a 3-year survival rate of over 80%. With immense success, the need for hepatic grafts substantially exceeds their availability. This problem has been partially addressed by using split grafts, living donor liver transplantation (LDLT), and extended criteria grafts (ECG). This article reviews the immense progress made in various aspects of LT including evaluation, increasing donor pool, surgical advances, immunosuppression and anaesthesia related aspects and the way forward. With ongoing cutting edge research in technologies like artificial liver devices, tissue bioengineering and hepatocyte 'farms', the future of LT is more exciting than ever before.
Collapse
Affiliation(s)
- K.J. Singh
- Dy Commandant, Army Hospital (R&R), Delhi Cantt, India
| | - Sumesh Kaistha
- Senior Advisor (Surgery) & GI Surgeon, Army Hospital (R&R), Delhi Cantt, India
| | - Rahul Jain
- Senior Advisor (Medicine) & Gastroenterologist, Army Hospital (R&R), Delhi Cantt, India
| | - Saurabh Khurana
- Classified Specialist (Anaesthesia), Army Hospital (R&R), Delhi Cantt, India
| |
Collapse
|
38
|
Chapman WC, Barbas AS, D'Alessandro AM, Vianna R, Kubal CA, Abt P, Sonnenday C, Barth R, Alvarez-Casas J, Yersiz H, Eckhoff D, Cannon R, Genyk Y, Sher L, Singer A, Feng S, Roll G, Cohen A, Doyle MB, Sudan DL, Al-Adra D, Khan A, Subramanian V, Abraham N, Olthoff K, Tekin A, Berg L, Coussios C, Morris C, Randle L, Friend P, Knechtle SJ. Normothermic Machine Perfusion of Donor Livers for Transplantation in the United States: A Randomized Controlled Trial. Ann Surg 2023; 278:e912-e921. [PMID: 37389552 DOI: 10.1097/sla.0000000000005934] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
OBJECTIVE To compare conventional low-temperature storage of transplant donor livers [static cold storage (SCS)] with storage of the organs at physiological body temperature [normothermic machine perfusion (NMP)]. BACKGROUND The high success rate of liver transplantation is constrained by the shortage of transplantable organs (eg, waiting list mortality >20% in many centers). NMP maintains the liver in a functioning state to improve preservation quality and enable testing of the organ before transplantation. This is of greatest potential value with organs from brain-dead donor organs (DBD) with risk factors (age and comorbidities), and those from donors declared dead by cardiovascular criteria (donation after circulatory death). METHODS Three hundred eighty-three donor organs were randomized by 15 US liver transplant centers to undergo NMP (n = 192) or SCS (n = 191). Two hundred sixty-six donor livers proceeded to transplantation (NMP: n = 136; SCS: n = 130). The primary endpoint of the study was "early allograft dysfunction" (EAD), a marker of early posttransplant liver injury and function. RESULTS The difference in the incidence of EAD did not achieve significance, with 20.6% (NMP) versus 23.7% (SCS). Using exploratory, "as-treated" rather than "intent-to-treat," subgroup analyses, there was a greater effect size in donation after circulatory death donor livers (22.8% NMP vs 44.6% SCS) and in organs in the highest risk quartile by donor risk (19.2% NMP vs 33.3% SCS). The incidence of acute cardiovascular decompensation at organ reperfusion, "postreperfusion syndrome," as a secondary outcome was reduced in the NMP arm (5.9% vs 14.6%). CONCLUSIONS NMP did not lower EAD, perhaps related to the inclusion of lower-risk liver donors, as higher-risk donor livers seemed to benefit more. The technology is safe in standard organ recovery and seems to have the greatest benefit for marginal donors.
Collapse
Affiliation(s)
- William C Chapman
- Department of Surgery, School of Medicine, Washington University, St. Louis
| | | | | | - Rodrigo Vianna
- Department of Surgery, University of Miami School of Medicine
| | | | - Peter Abt
- Department of Surgery, University of Pennsylvania School of Medicine
| | | | - Rolf Barth
- Department of Surgery, University of Chicago School of Medicine
| | | | - Hasan Yersiz
- Department of Surgery, David Geffen School of Medicine at UCLA
| | - Devin Eckhoff
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Robert Cannon
- Department of Surgery, University of Alabama School of Medicine
| | - Yuri Genyk
- Department of Surgery, Keck School of Medicine of USC
| | - Linda Sher
- Department of Surgery, Keck School of Medicine of USC
| | | | - Sandy Feng
- Department of Surgery, UCSF School of Medicine
| | | | - Ari Cohen
- Department of Surgery, Ochsner Clinic
| | - Maria B Doyle
- Department of Surgery, School of Medicine, Washington University, St. Louis
| | - Debra L Sudan
- Department of Surgery, Duke University School of Medicine
| | - David Al-Adra
- Department of Surgery, School of Medicine, University of Wisconsin, Madison
| | - Adeel Khan
- Department of Surgery, School of Medicine, Washington University, St. Louis
| | | | - Nader Abraham
- Department of Surgery, Duke University School of Medicine
| | - Kim Olthoff
- Department of Surgery, University of Pennsylvania School of Medicine
| | - Akin Tekin
- Department of Surgery, University of Miami School of Medicine
| | - Lynn Berg
- Department of Surgery, School of Medicine, University of Wisconsin, Madison
| | | | - Chris Morris
- Department of Surgery, Ochsner Medical Center, New Orleans, LA
| | - Lucy Randle
- Department of Surgery, Ochsner Medical Center, New Orleans, LA
| | - Peter Friend
- Department of Surgery, Ochsner Medical Center, New Orleans, LA
| | | |
Collapse
|
39
|
Parente A, Tirotta F, Pini A, Eden J, Dondossola D, Manzia TM, Dutkowski P, Schlegel A. Machine perfusion techniques for liver transplantation - A meta-analysis of the first seven randomized-controlled trials. J Hepatol 2023; 79:1201-1213. [PMID: 37302578 DOI: 10.1016/j.jhep.2023.05.027] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/02/2023] [Accepted: 05/19/2023] [Indexed: 06/13/2023]
Abstract
BACKGROUND & AIMS Machine perfusion is increasingly being tested in clinical transplantation. Despite this, the number of large prospective clinical trials remains limited. The aim of this study was to compare the impact of machine perfusion vs. static cold storage (SCS) on outcomes after liver transplantation. METHODS A systematic search of MEDLINE, EMBASE, CINAHL and the Cochrane Central Register of Controlled Trials (CENTRAL) was conducted to identify randomized-controlled trials (RCTs) comparing "post-transplant" outcomes following machine perfusion vs. SCS. Data were pooled using random effect models. Risk ratios (RRs) were calculated for relevant outcomes. The quality of evidence was rated using the GRADE-framework. RESULTS Seven RCTs were identified (four on hypothermic oxygenated [HOPE] and three on normothermic machine perfusion [NMP]), including a total number of 1,017 patients. Both techniques were associated with significantly lower rates of early allograft dysfunction (NMP: n = 41/282, SCS: n = 74/253, RR 0.50, 95% CI 0.30-0.86, p = 0.01, I2 = 39%; HOPE: n = 45/241, SCS: n = 97/241, RR 0.48, 95% CI 0.35-0.65, p < 0.00001, I2 = 5%). The HOPE approach led to a significant reduction in major complications (Clavien Grade ≥IIIb; HOPE: n = 90/241; SCS: n = 117/241, RR 0.76, 95% CI 0.63-0.93, p = 0.006, I2 = 0%), "re-transplantation" (HOPE: n = 1/163; SCS: n = 11/163; RR 0.21, 95% CI 0.04-0.96, p = 0.04; I2 = 0%) and graft loss (HOPE: n = 7/163; SCS: n = 19/163; RR 0.40, 95% CI 0.17-0.95, p = 0.04; I2 = 0%). Both perfusion techniques were found to 'likely' reduce overall biliary complications and non-anastomotic strictures. CONCLUSIONS Although this study provides the highest current evidence on the role of machine perfusion, outcomes remain limited to a 1-year follow-up after liver transplantation. Comparative RCTs and large real-world cohort studies with longer follow-up are required to enhance the robustness of the data further, thereby supporting the introduction of perfusion technologies into routine clinical practice. PROSPERO-REGISTRATION CRD42022355252. IMPACT AND IMPLICATIONS For a decade, two dynamic perfusion concepts have increasingly been tested in several transplant centres worldwide. We undertook the first systematic review and meta-analysis and identified seven published RCTs, including 1,017 patients, evaluating the effect of machine perfusion (hypothermic and normothermic perfusion techniques) compared to static cold storage in liver transplantation. Both perfusion techniques were associated with lower rates of early allograft dysfunction in the first week after liver transplantation. Hypothermic oxygenated perfusion led to a reduction in major complications, lower "re-transplantation" rates and better graft survival. Both perfusion strategies were found to 'likely' reduce overall biliary complications and non-anastomotic biliary strictures. This study provides the highest current evidence on the role of machine perfusion. Outcomes remain limited to a 1-year post-transplant follow-up. Larger cohort studies with longer follow-up and clinical trials comparing the perfusion techniques are required. This is especially relevant to provide clarity and optimise implementation processes further to support the commissioning of this technology worldwide.
Collapse
Affiliation(s)
- Alessandro Parente
- HPB and Transplant Unit, Department of Surgical Science, University of Rome Tor Vergata, Rome, Italy
| | - Fabio Tirotta
- Department of Surgery, Queen Elizabeth Hospital Birmingham, University Hospital Birmingham NHS Trust, Birmingham, United Kingdom
| | - Alessia Pini
- Department of Statistical Sciences, Università Cattolica del Sacro Cuore, Milan, Italy
| | - Janina Eden
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, Switzerland
| | - Daniele Dondossola
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, General and Liver Transplant Surgery Unit, Milan, 20122, Italy; Department of Pathophysiology and Transplantation Università degli Studi di Milano, Italy
| | - Tommaso M Manzia
- HPB and Transplant Unit, Department of Surgical Science, University of Rome Tor Vergata, Rome, Italy
| | - Philipp Dutkowski
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, Switzerland
| | - Andrea Schlegel
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, Switzerland; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, General and Liver Transplant Surgery Unit, Milan, 20122, Italy; Transplantation Center, Digestive Disease and Surgery Institute and Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
40
|
De Stefano N, Calleri A, Faini AC, Navarro-Tableros V, Martini S, Deaglio S, Patrono D, Romagnoli R. Extracellular Vesicles in Liver Transplantation: Current Evidence and Future Challenges. Int J Mol Sci 2023; 24:13547. [PMID: 37686354 PMCID: PMC10488298 DOI: 10.3390/ijms241713547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Extracellular vesicles (EVs) are emerging as a promising field of research in liver disease. EVs are small, membrane-bound vesicles that contain various bioactive molecules, such as proteins, lipids, and nucleic acids and are involved in intercellular communication. They have been implicated in numerous physiological and pathological processes, including immune modulation and tissue repair, which make their use appealing in liver transplantation (LT). This review summarizes the current state of knowledge regarding the role of EVs in LT, including their potential use as biomarkers and therapeutic agents and their role in graft rejection. By providing a comprehensive insight into this emerging topic, this research lays the groundwork for the potential application of EVs in LT.
Collapse
Affiliation(s)
- Nicola De Stefano
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città Della Salute e Della Scienza Di Torino, University of Turin, Corso Bramante 88-90, 10126 Turin, Italy; (N.D.S.); (R.R.)
| | - Alberto Calleri
- Gastrohepatology Unit, Azienda Ospedaliero Universitaria Città Della Salute e Della Scienza Di Torino, University of Turin, 10126 Turin, Italy; (A.C.); (S.M.)
| | - Angelo Corso Faini
- Immunogenetics and Transplant Biology Unit, Azienda Ospedaliero Universitaria Città Della Salute e Della Scienza Di Torino, University of Turin, 10126 Turin, Italy; (A.C.F.); (S.D.)
| | - Victor Navarro-Tableros
- 2i3T, Società Per La Gestione Dell’incubatore Di Imprese e Per Il Trasferimento Tecnologico, University of Turin, 10126 Turin, Italy;
| | - Silvia Martini
- Gastrohepatology Unit, Azienda Ospedaliero Universitaria Città Della Salute e Della Scienza Di Torino, University of Turin, 10126 Turin, Italy; (A.C.); (S.M.)
| | - Silvia Deaglio
- Immunogenetics and Transplant Biology Unit, Azienda Ospedaliero Universitaria Città Della Salute e Della Scienza Di Torino, University of Turin, 10126 Turin, Italy; (A.C.F.); (S.D.)
| | - Damiano Patrono
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città Della Salute e Della Scienza Di Torino, University of Turin, Corso Bramante 88-90, 10126 Turin, Italy; (N.D.S.); (R.R.)
| | - Renato Romagnoli
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città Della Salute e Della Scienza Di Torino, University of Turin, Corso Bramante 88-90, 10126 Turin, Italy; (N.D.S.); (R.R.)
| |
Collapse
|
41
|
Amin A, Panayotova GG, Guarrera JV. Maximizing the Donor Potential for Patients with Acute-on-Chronic Liver Failure Listed for Liver Transplant. Clin Liver Dis 2023; 27:763-775. [PMID: 37380296 DOI: 10.1016/j.cld.2023.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Owing to inherent limitations of static cold storage, marginal liver grafts from donors after circulatory death and extended criteria donors after brain death are prone to be discarded secondary to the increased risk of severe early allograft dysfunction and ischemic cholangiopathy. Marginal liver grafts resuscitated with hypothermic machine perfusion and normothermic machine perfusion demonstrate lower degree of ischemia-reperfusion injury and have decreased risk of severe early allograft dysfunction and ischemic cholangiopathy. Marginal grafts preserved by ex vivo machine perfusion technology can be used to rescue patients with acute-on-chronic liver failure who are underserved by the current deceased donor liver allocation system.
Collapse
Affiliation(s)
- Arpit Amin
- Division of Transplant and HPB Surgery, Department of Surgery, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Guergana G Panayotova
- Division of Transplant and HPB Surgery, Department of Surgery, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - James V Guarrera
- Division of Transplant and HPB Surgery, Department of Surgery, Rutgers New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
42
|
van den Boom BP, Bodewes SB, Lascaris B, Adelmeijer J, Porte RJ, de Meijer VE, Lisman T. The international normalised ratio to monitor coagulation factor production during normothermic machine perfusion of human donor livers. Thromb Res 2023; 228:64-71. [PMID: 37290373 DOI: 10.1016/j.thromres.2023.05.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/02/2023] [Accepted: 05/26/2023] [Indexed: 06/10/2023]
Abstract
BACKGROUND Normothermic machine perfusion (NMP) of donor livers allows for new diagnostic and therapeutic strategies. As the liver produces most of the haemostatic proteins, coagulation assays such as the International Normalised Ratio (INR) performed in perfusate may be useful to assess hepatocellular function of donor livers undergoing NMP. However, high concentrations of heparin and low levels of fibrinogen may affect coagulation assays. METHODS Thirty donor livers that underwent NMP were retrospectively included in this study, of which 18 were subsequently transplanted. We measured INRs in perfusate in presence or absence of exogenously added fibrinogen and/or polybrene. Additionally, we prospectively included 14 donor livers that underwent NMP (of which 11 were transplanted) and measured INR using both a laboratory coagulation analyser and a point-of-care device. RESULTS In untreated perfusate samples, the INR was above the detection limit in all donor livers. Addition of both fibrinogen and polybrene was required for adequate INR assessment. INRs decreased over time and detectable perfusate INR values were found in 17/18 donor livers at the end of NMP. INR results were similar between the coagulation analyser and the point-of-care device, but did not correlate with established hepatocellular viability criteria. CONCLUSIONS Most of the donor livers that were transplanted showed a detectable perfusate INR at the end of NMP, but samples require processing to allow for INR measurements using laboratory coagulation analysers. Point-of-care devices bypass this need for processing. The INR does not correlate with established viability criteria and might therefore have additional predictive value.
Collapse
Affiliation(s)
- Bente P van den Boom
- Surgical Research Laboratory and Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Silke B Bodewes
- Surgical Research Laboratory and Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Bianca Lascaris
- Surgical Research Laboratory and Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jelle Adelmeijer
- Surgical Research Laboratory and Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Robert J Porte
- Section of HPB Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Vincent E de Meijer
- Section of HPB Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ton Lisman
- Surgical Research Laboratory and Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Section of HPB Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
43
|
Patrono D, De Stefano N, Vissio E, Apostu AL, Petronio N, Vitelli G, Catalano G, Rizza G, Catalano S, Colli F, Chiusa L, Romagnoli R. How to Preserve Steatotic Liver Grafts for Transplantation. J Clin Med 2023; 12:3982. [PMID: 37373676 DOI: 10.3390/jcm12123982] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Liver allograft steatosis is a significant risk factor for postoperative graft dysfunction and has been associated with inferior patient and graft survival, particularly in the case of moderate or severe macrovesicular steatosis. In recent years, the increasing incidence of obesity and fatty liver disease in the population has led to a higher proportion of steatotic liver grafts being used for transplantation, making the optimization of their preservation an urgent necessity. This review discusses the mechanisms behind the increased susceptibility of fatty livers to ischemia-reperfusion injury and provides an overview of the available strategies to improve their utilization for transplantation, with a focus on preclinical and clinical evidence supporting donor interventions, novel preservation solutions, and machine perfusion techniques.
Collapse
Affiliation(s)
- Damiano Patrono
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Nicola De Stefano
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Elena Vissio
- Department of Pathology, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Ana Lavinia Apostu
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Nicoletta Petronio
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Giovanni Vitelli
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Giorgia Catalano
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Giorgia Rizza
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Silvia Catalano
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Fabio Colli
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Luigi Chiusa
- Department of Pathology, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Renato Romagnoli
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| |
Collapse
|
44
|
Schlegel A, Mergental H, Fondevila C, Porte RJ, Friend PJ, Dutkowski P. Machine perfusion of the liver and bioengineering. J Hepatol 2023; 78:1181-1198. [PMID: 37208105 DOI: 10.1016/j.jhep.2023.02.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 05/21/2023]
Abstract
With the increasing number of accepted candidates on waiting lists worldwide, there is an urgent need to expand the number and the quality of donor livers. Dynamic preservation approaches have demonstrated various benefits, including improving liver function and graft survival, and reducing liver injury and post-transplant complications. Consequently, organ perfusion techniques are being used in clinical practice in many countries. Despite this success, a proportion of livers do not meet current viability tests required for transplantation, even with the use of modern perfusion techniques. Therefore, devices are needed to further optimise machine liver perfusion - one promising option is to prolong machine liver perfusion for several days, with ex situ treatment of perfused livers. For example, stem cells, senolytics, or molecules targeting mitochondria or downstream signalling can be administered during long-term liver perfusion to modulate repair mechanisms and regeneration. Besides, today's perfusion equipment is also designed to enable the use of various liver bioengineering techniques, to develop scaffolds or for their re-cellularisation. Cells or entire livers can also undergo gene modulation to modify animal livers for xenotransplantation, to directly treat injured organs or to repopulate such scaffolds with "repaired" autologous cells. This review first discusses current strategies to improve the quality of donor livers, and secondly reports on bioengineering techniques to design optimised organs during machine perfusion. Current practice, as well as the benefits and challenges associated with these different perfusion strategies are discussed.
Collapse
Affiliation(s)
- Andrea Schlegel
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Centre of Preclinical Research, Milan, 20122, Italy; Department of Surgery and Transplantation, Swiss HPB Center, University Hospital Zurich, Switzerland
| | - Hynek Mergental
- The Liver Unit, Queen Elizabeth University Hospital Birmingham, United Kingdom
| | - Constantino Fondevila
- Hepatopancreatobiliary Surgery & Transplantation, General & Digestive Surgery Service, Hospital Universitario La Paz, IdiPAZ, CIBERehd, Madrid, Spain
| | - Robert J Porte
- Erasmus MC Transplant Institute, Department of Surgery, Division of HPB & Transplant Surgery, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Peter J Friend
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Philipp Dutkowski
- Department of Surgery and Transplantation, Swiss HPB Center, University Hospital Zurich, Switzerland.
| |
Collapse
|
45
|
Durán M, Calleja R, Hann A, Clarke G, Ciria R, Nutu A, Sanabria-Mateos R, Ayllón MD, López-Cillero P, Mergental H, Briceño J, Perera MTPR. Machine perfusion and the prevention of ischemic type biliary lesions following liver transplant: What is the evidence? World J Gastroenterol 2023; 29:3066-3083. [PMID: 37346149 PMCID: PMC10280793 DOI: 10.3748/wjg.v29.i20.3066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/01/2023] [Accepted: 04/28/2023] [Indexed: 05/26/2023] Open
Abstract
The widespread uptake of different machine perfusion (MP) strategies for liver transplant has been driven by an effort to minimize graft injury. Damage to the cholangiocytes during the liver donation, preservation, or early posttransplant period may result in stricturing of the biliary tree and inadequate biliary drainage. This problem continues to trouble clinicians, and may have catastrophic consequences for the graft and patient. Ischemic injury, as a result of compromised hepatic artery flow, is a well-known cause of biliary strictures, sepsis, and graft failure. However, very similar lesions can appear with a patent hepatic artery and these are known as ischemic type biliary lesions (ITBL) that are attributed to microcirculatory dysfunction rather than main hepatic arterial compromise. Both the warm and cold ischemic period duration appear to influence the onset of ITBL. All of the commonly used MP techniques deliver oxygen to the graft cells, and therefore may minimize the cholangiocyte injury and subsequently reduce the incidence of ITBL. As clinical experience and published evidence grows for these modalities, the impact they have on ITBL rates is important to consider. In this review, the evidence for the three commonly used MP strategies (abdominal normothermic regional perfusion [A-NRP], hypothermic oxygenated perfusion [HOPE], and normothermic machine perfusion [NMP] for ITBL prevention has been critically reviewed. Inconsistencies with ITBL definitions used in trials, coupled with variations in techniques of MP, make interpretation challenging. Overall, the evidence suggests that both HOPE and A-NRP prevent ITBL in donated after circulatory death grafts compared to cold storage. The evidence for ITBL prevention in donor after brain death grafts with any MP technique is weak.
Collapse
Affiliation(s)
- Manuel Durán
- Department of Liver Transplantation, Reina Sofía University Hospital, Córdoba 14004, Spain
| | - Rafael Calleja
- Department of Liver Transplantation, Reina Sofía University Hospital, Córdoba 14004, Spain
| | - Angus Hann
- The Liver Unit, Queen Elizabeth Hospital Birmingham, Birmingham B15 2TH, United Kingdom
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TH, United Kingdom
| | - George Clarke
- The Liver Unit, Queen Elizabeth Hospital Birmingham, Birmingham B15 2TH, United Kingdom
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TH, United Kingdom
| | - Ruben Ciria
- Department of Liver Transplantation, Reina Sofía University Hospital, Córdoba 14004, Spain
| | - Anisa Nutu
- The Liver Unit, Queen Elizabeth Hospital Birmingham, Birmingham B15 2TH, United Kingdom
| | | | - María Dolores Ayllón
- Department of Liver Transplantation, Reina Sofía University Hospital, Córdoba 14004, Spain
| | - Pedro López-Cillero
- Department of Liver Transplantation, Reina Sofía University Hospital, Córdoba 14004, Spain
| | - Hynek Mergental
- The Liver Unit, Queen Elizabeth Hospital Birmingham, Birmingham B15 2TH, United Kingdom
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TH, United Kingdom
| | - Javier Briceño
- Department of Liver Transplantation, Reina Sofía University Hospital, Córdoba 14004, Spain
| | - M Thamara P R Perera
- The Liver Unit, Queen Elizabeth Hospital Birmingham, Birmingham B15 2TH, United Kingdom
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TH, United Kingdom
| |
Collapse
|
46
|
Risbey CWG, Pulitano C. Normothermic Ex Vivo Machine Perfusion for Liver Transplantation: A Systematic Review of Progress in Humans. J Clin Med 2023; 12:jcm12113718. [PMID: 37297913 DOI: 10.3390/jcm12113718] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Liver transplantation is a lifesaving procedure for patients with end-stage liver disease (ESLD). However, many patients never receive a transplant due to insufficient donor supply. Historically, organs have been preserved using static cold storage (SCS). However, recently, ex vivo normothermic machine perfusion (NMP) has emerged as an alternative technique. This paper aims to investigate the clinical progress of NMP in humans. METHODS Papers evaluating the clinical outcomes of NMP for liver transplantation in humans were included. Lab-based studies, case reports, and papers utilizing animal models were excluded. Literature searches of MEDLINE and SCOPUS were conducted. The revised Cochrane risk-of-bias tool for randomised trials (RoB 2) and the risk of bias in nonrandomised studies for interventions (ROBINS-I) tools were used. Due to the heterogeneity of the included papers, a meta-analysis was unable to be completed. RESULTS In total, 606 records were identified, with 25 meeting the inclusion criteria; 16 papers evaluated early allograft dysfunction (EAD) with some evidence for lower rates using NMP compared to SCS; 19 papers evaluated patient or graft survival, with no evidence to suggest superior outcomes with either NMP or SCS; 10 papers evaluated utilization of marginal and donor after circulatory death (DCD) grafts, with good evidence to suggest NMP is superior to SCS. CONCLUSIONS There is good evidence to suggest that NMP is safe and that it likely affords clinical advantages to SCS. The weight of evidence supporting NMP is growing, and this review found the strongest evidence in support of NMP to be its capacity to increase the utilization rates of marginal and DCD allografts.
Collapse
Affiliation(s)
- Charles W G Risbey
- Department of Surgery, Royal Prince Alfred Hospital, Sydney 2050, Australia
- Centre for Organ Assessment, Repair & Optimization (COARO), Sydney 2050, Australia
- Central Clinical School, The University of Sydney, Sydney 2006, Australia
| | - Carlo Pulitano
- Centre for Organ Assessment, Repair & Optimization (COARO), Sydney 2050, Australia
- Central Clinical School, The University of Sydney, Sydney 2006, Australia
- Department of Transplant Surgery, Royal Prince Alfred Hospital, Sydney 2050, Australia
| |
Collapse
|
47
|
Staubli SM, Ceresa CDL, Pollok JM. The Current Role and Future Applications of Machine Perfusion in Liver Transplantation. Bioengineering (Basel) 2023; 10:bioengineering10050593. [PMID: 37237663 DOI: 10.3390/bioengineering10050593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/07/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
The relative paucity of donor livers suitable for transplantation has sparked innovations to preserve and recondition organs to expand the pool of transplantable organs. Currently, machine perfusion techniques have led to the improvement of the quality of marginal livers and to prolonged cold ischemia time and have allowed for the prediction of graft function through the analysis of the organ during perfusion, improving the rate of organ use. In the future, the implementation of organ modulation might expand the scope of machine perfusion beyond its current usage. The aim of this review was to provide an overview of the current clinical use of machine perfusion devices in liver transplantation and to provide a perspective for future clinical use, including therapeutic interventions in perfused donor liver grafts.
Collapse
Affiliation(s)
- Sebastian M Staubli
- HPB and Liver Transplantation Service, Royal Free London NHS Foundation Trust, Pond Street, London NW3 QG, UK
| | - Carlo D L Ceresa
- HPB and Liver Transplantation Service, Royal Free London NHS Foundation Trust, Pond Street, London NW3 QG, UK
- Oxford University Hospitals NHS Foundation Trust, University of Oxford, Oxfordshire OX3 9DU, UK
| | - Joerg M Pollok
- HPB and Liver Transplantation Service, Royal Free London NHS Foundation Trust, Pond Street, London NW3 QG, UK
- Division of Surgery & Interventional Science, University College London, London WC1E 6BT, UK
| |
Collapse
|
48
|
Li J, Lu H, Zhang J, Li Y, Zhao Q. Comprehensive Approach to Assessment of Liver Viability During Normothermic Machine Perfusion. J Clin Transl Hepatol 2023; 11:466-479. [PMID: 36643041 PMCID: PMC9817053 DOI: 10.14218/jcth.2022.00130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/14/2022] [Accepted: 08/10/2022] [Indexed: 01/18/2023] Open
Abstract
Liver transplantation is the most effective treatment of advanced liver disease, and the use of extended criteria donor organs has broadened the source of available livers. Although normothermic machine perfusion (NMP) has become a useful tool in liver transplantation, there are no consistent criteria that can be used to evaluate the viability of livers during NMP. This review summarizes the criteria, indicators, and methods used to evaluate liver viability during NMP. The shape, appearance, and hemodynamics of the liver can be analyzed at a macroscopic level, while markers of liver injury, indicators of liver and bile duct function, and other relevant indicators can be evaluated by biochemical analysis. The liver can also be assessed by tissue biopsy at the microscopic level. Novel methods for assessment of liver viability are introduced. The limitations of evaluating liver viability during NMP are discussed and suggestions for future clinical practice are provided.
Collapse
Affiliation(s)
| | | | | | | | - Qiang Zhao
- Correspondence to: Qiang Zhao, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China. ORCID: https://orcid.org/0000-0002-6369-1393. Tel: +86-15989196835, E-mail:
| |
Collapse
|
49
|
Yoshimoto S, Soyama A, Fukumoto M, Hara T, Hidaka M, Torai S, Kasamatsu H, Ishikawa J, Ohara M, Kobayashi E, Eguchi S. Preliminary observations of an ex vivo normothermic whole blood machine perfusion in an experimental liver transplant porcine model. Transplant Proc 2023:S0041-1345(23)00236-1. [PMID: 37117106 DOI: 10.1016/j.transproceed.2023.03.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/18/2023] [Accepted: 03/29/2023] [Indexed: 04/30/2023]
Abstract
BACKGROUND Even though transplantation is an essential treatment with no viable alternatives, a significant worldwide donor shortage persists. In this study, we assessed the metabolism of livers that underwent extended periods of circulatory death and subsequently conducted functional validation through transplantation to explore the feasibility of using livers from an uncontrolled donor after circulatory death (u-DCD). METHODS A donor model simulating u-DCD was constructed using pigs. The prolonged warm ischemia time (WIT) was set to 60, 120, and 180 minutes, and the liver function was evaluated after 24 hours of perfusion using an originally developed normothermic perfusion system. Based on the results, functional confirmation by transplantation was performed on the 2 groups with prolonged WIT of 60 and 180 minutes. RESULTS Based on the 24-hour perfusion of the liver alone, we evaluated the function by transplanting the WI 60-minute model and 180-minute model (N = 3 each). Warm ischemia was 73.5 ± 3.7 minutes and 188 ± 3 minutes in the 60-minute model and 180-minute model, respectively. In the model with 60 minutes of WI, one case survived until the endpoint, and 2 cases survived between 8 and 12 hours, whereas, in the model with 180 minutes of WI, they died within 6 hours. CONCLUSION We constructed a completely uncontrolled circulatory arrest model without anticoagulation and showed the possibility of using u-DCD livers by ex vivo machine perfusion and transplantation.
Collapse
Affiliation(s)
- Syuhei Yoshimoto
- Department of Innovative surgical technology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; R&D Department 3, SCREEN Holdings, Co, Ltd, Kyoto, Japan.
| | - Akihiko Soyama
- Department of Innovative surgical technology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Masayuki Fukumoto
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takanobu Hara
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Masaaki Hidaka
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shinji Torai
- R&D Department 3, SCREEN Holdings, Co, Ltd, Kyoto, Japan; Department of Organ Fabrication, Keio University School of Medicine, Tokyo, Japan
| | | | - Jun Ishikawa
- R&D Department 3, SCREEN Holdings, Co, Ltd, Kyoto, Japan
| | - Masayuki Ohara
- R&D Department 3, SCREEN Holdings, Co, Ltd, Kyoto, Japan
| | - Eiji Kobayashi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; Department of Organ Fabrication, Keio University School of Medicine, Tokyo, Japan
| | - Susumu Eguchi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
50
|
Hautz T, Salcher S, Fodor M, Sturm G, Ebner S, Mair A, Trebo M, Untergasser G, Sopper S, Cardini B, Martowicz A, Hofmann J, Daum S, Kalb M, Resch T, Krendl F, Weissenbacher A, Otarashvili G, Obrist P, Zelger B, Öfner D, Trajanoski Z, Troppmair J, Oberhuber R, Pircher A, Wolf D, Schneeberger S. Immune cell dynamics deconvoluted by single-cell RNA sequencing in normothermic machine perfusion of the liver. Nat Commun 2023; 14:2285. [PMID: 37085477 PMCID: PMC10121614 DOI: 10.1038/s41467-023-37674-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/27/2023] [Indexed: 04/23/2023] Open
Abstract
Normothermic machine perfusion (NMP) has emerged as an innovative organ preservation technique. Developing an understanding for the donor organ immune cell composition and its dynamic changes during NMP is essential. We aimed for a comprehensive characterization of immune cell (sub)populations, cell trafficking and cytokine release during liver NMP. Single-cell transcriptome profiling of human donor livers prior to, during NMP and after transplantation shows an abundance of CXC chemokine receptor 1+/2+ (CXCR1+/CXCR2+) neutrophils, which significantly decreased during NMP. This is paralleled by a large efflux of passenger leukocytes with neutrophil predominance in the perfusate. During NMP, neutrophils shift from a pro-inflammatory state towards an aged/chronically activated/exhausted phenotype, while anti-inflammatory/tolerogenic monocytes/macrophages are increased. We herein describe the dynamics of the immune cell repertoire, phenotypic immune cell shifts and a dominance of neutrophils during liver NMP, which potentially contribute to the inflammatory response. Our findings may serve as resource to initiate future immune-interventional studies.
Collapse
Affiliation(s)
- T Hautz
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory and D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - S Salcher
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Innsbruck, Austria
| | - M Fodor
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory and D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - G Sturm
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - S Ebner
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory and D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - A Mair
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Innsbruck, Austria
| | - M Trebo
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Innsbruck, Austria
| | - G Untergasser
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Innsbruck, Austria
- Tyrolpath Obrist Brunhuber GmbH, Zams, Austria
| | - S Sopper
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Innsbruck, Austria
| | - B Cardini
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory and D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - A Martowicz
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Innsbruck, Austria
- Tyrolpath Obrist Brunhuber GmbH, Zams, Austria
| | - J Hofmann
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory and D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - S Daum
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Innsbruck, Austria
| | - M Kalb
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Innsbruck, Austria
| | - T Resch
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory and D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - F Krendl
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory and D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - A Weissenbacher
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory and D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - G Otarashvili
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory and D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - P Obrist
- Tyrolpath Obrist Brunhuber GmbH, Zams, Austria
| | - B Zelger
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria
| | - D Öfner
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory and D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - Z Trajanoski
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - J Troppmair
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory and D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - R Oberhuber
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory and D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - A Pircher
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Innsbruck, Austria
| | - D Wolf
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Innsbruck, Austria.
| | - S Schneeberger
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory and D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|