1
|
Kim H, Lee YY, Kim VN. The biogenesis and regulation of animal microRNAs. Nat Rev Mol Cell Biol 2025; 26:276-296. [PMID: 39702526 DOI: 10.1038/s41580-024-00805-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 12/21/2024]
Abstract
MicroRNAs (miRNAs) are small, yet profoundly influential, non-coding RNAs that base-pair with mRNAs to induce RNA silencing. Although the basic principles of miRNA biogenesis and function have been established, recent breakthroughs have yielded important new insights into the molecular mechanisms of miRNA biogenesis. In this Review, we discuss the metazoan miRNA biogenesis pathway step-by-step, focusing on the key biogenesis machinery, including the Drosha-DGCR8 complex (Microprocessor), exportin-5, Dicer and Argonaute. We also highlight newly identified cis-acting elements and their impact on miRNA maturation, informed by advanced high-throughput and structural studies, and discuss recently discovered mechanisms of clustered miRNA processing, target recognition and target-directed miRNA decay (TDMD). Lastly, we explore multiple regulatory layers of miRNA biogenesis, mediated by RNA-protein interactions, miRNA tailing (uridylation or adenylation) and RNA modifications.
Collapse
Affiliation(s)
- Haedong Kim
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Young-Yoon Lee
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - V Narry Kim
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea.
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Bamahel AS, Sun X, Wu W, Mu C, Liu J, Bi S, Xu H. Regulatory Roles and Therapeutic Potential of miR-122-5p in Hypoxic-Ischemic Brain Injury: Comprehensive Review. Cell Biochem Biophys 2025:10.1007/s12013-025-01686-6. [PMID: 40016565 DOI: 10.1007/s12013-025-01686-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2025] [Indexed: 03/01/2025]
Abstract
In the regulation of gene expression, epigenetic factors, including non-coding RNAs (ncRNAs) play a role in genetics. Among the ncRNA family, microRNAs (miRNAs) have gained significant attention for their involvement in post-transcriptional gene regulation, with profound implications for both normal and pathological processes including neurological diseases such as hypoxic-ischemic brain injury. A specific miRNA, called miR-122-5p, has gained attention in hypoxic-ischemic conditions, where it modulates critical pathways such as inflammation, oxidative stress, and neuronal survival. The purpose of this review is to highlight recent advances in the biogenesis, expression, and regulation of miR-122-5p, focusing on its role in hypoxic-ischemic conditions and its potential as a therapeutic target. We first studied the therapeutic strategies and potential clinical applications of miR-122-5p, our research showing it interacts with key transcription factors, such as HIF-1α and NF-κB, influencing cellular responses to low oxygen levels. Our findings revealed that miR-122-5p plays a vital role in hypoxic-ischemic brain injury, with its abnormal levels strongly associated with increased brain damage and neuroinflammation, suggesting its potential as a promising therapeutic target. Furthermore, miR-122-5p influences various biological processes in the brain, such as metabolism and blood vessel formation. The use of miR-122-5p inhibitor has been shown to increase autophagy, reduce apoptosis, and decrease oxidative stress and inflammation, thereby protecting neurons and improving outcomes in hypoxic encephalopathy by targeting multiple genes related to these processes. Conversely, miR-122-5p mimics exacerbate oxidative stress and reduce autophagy. These findings highlight the therapeutic potential of miR-122-5p inhibition in reducing brain injury and promoting recovery in hypoxic-ischemic encephalopathy through enhanced neuroprotective mechanisms and the suppression of harmful cellular processes. However, further experimental studies are needed to fully understand the therapeutic potential of targeting miR-122-5p and its related genes in hypoxic-ischemic encephalopathy.
Collapse
Affiliation(s)
| | - Xun Sun
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Wei Wu
- Public Health College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Chenxi Mu
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Jia Liu
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Sheng Bi
- Clinical Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Hui Xu
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China.
| |
Collapse
|
3
|
Xiao X, Kong L, Xie Z, Liu H, Cai L, Zhao S, Zhou J, Liu S, Wu J, Wu Y, Wu P, James AA, Chen XG. miR-2940-1 is involved in the circadian regulation of oviposition in Aedes albopictus. INSECT SCIENCE 2025; 32:69-79. [PMID: 38556782 PMCID: PMC11439969 DOI: 10.1111/1744-7917.13362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 04/02/2024]
Abstract
The vast majority of all global species have circadian rhythm cycles that allow them to adapt to natural environments. These regular rhythms are regulated by core clock genes and recent studies have also implicated roles for microRNAs in this regulation. Oviposition is an important circadian behavior in the reproductive cycle of insect vectors of diseases, and little is known about the rhythm or its regulation in mosquitoes. Aedes albopictus is a diurnal mosquito that transmits arboviruses and is the major cause of outbreaks of dengue fever in China. We analyzed the oviposition rhythm patterns of A. albopictus under different light/dark conditions and show that the mosquitoes have an oviposition peak between zeitgeber time 9 (ZT 9) and ZT 12. Furthermore, the antagomir-mediated knockdown of expression of the microRNA miR-2940-1 affected the oviposition rhythm of A. albopictus. These data support the conclusion that miR-2940-1 is involved in the regulation of oviposition rhythm in A. albopictus and provide a foundation for using oviposition rhythms as a new target for vector mosquito control.
Collapse
Affiliation(s)
- Xiaolin Xiao
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Ling Kong
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhensheng Xie
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Hongkai Liu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Lijun Cai
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Siyu Zhao
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jiayong Zhou
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Shuang Liu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jing Wu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yiming Wu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Peilin Wu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Anthony A. James
- Department of Microbiology & Molecular Genetics, University of California, Irvine CA 92697-4025, USA
- Department of Molecular Biology & Biochemistry, University of California, Irvine CA 92697-3900, USA
| | - Xiao-Guang Chen
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Mao W, Ge X, Chen Q, Li JD. Epigenetic Mechanisms in the Transcriptional Regulation of Circadian Rhythm in Mammals. BIOLOGY 2025; 14:42. [PMID: 39857273 PMCID: PMC11762092 DOI: 10.3390/biology14010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/27/2025]
Abstract
Almost all organisms, from the simplest bacteria to advanced mammals, havea near 24 h circadian rhythm. Circadian rhythms are highly conserved across different life forms and are regulated by circadian genes as well as by related transcription factors. Transcription factors are fundamental to circadian rhythms, influencing gene expression, behavior in plants and animals, and human diseases. This review examines the foundational research on transcriptional regulation of circadian rhythms, emphasizing histone modifications, chromatin remodeling, and Pol II pausing control. These studies have enhanced our understanding of transcriptional regulation within biological circadian rhythms and the importance of circadian biology in human health. Finally, we summarize the progress and challenges in these three areas of regulation to move the field forward.
Collapse
Affiliation(s)
- Wei Mao
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou 310000, China; (W.M.); (X.G.)
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310000, China
| | - Xingnan Ge
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou 310000, China; (W.M.); (X.G.)
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310000, China
| | - Qianping Chen
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou 310000, China; (W.M.); (X.G.)
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310000, China
| | - Jia-Da Li
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| |
Collapse
|
5
|
Luo YW, Fang Y, Zeng HX, Ji YC, Wu MZ, Li H, Chen JY, Zheng LM, Fang JH, Zhuang SM. HIF1α Counteracts TGFβ1-Driven TSP1 Expression in Endothelial Cells to Stimulate Angiogenesis in the Hypoxic Tumor Microenvironment. Cancer Res 2025; 85:69-83. [PMID: 39356626 DOI: 10.1158/0008-5472.can-24-2324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/12/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Emerging evidence suggests that TGFβ1 can inhibit angiogenesis, contradicting the coexistence of active angiogenesis and high abundance of TGFβ1 in the tumor microenvironment. Here, we investigated how tumors overcome the antiangiogenic effect of TGFβ1. TGFβ1 treatment suppressed physiologic angiogenesis in chick chorioallantoic membrane and zebrafish models but did not affect angiogenesis in mouse hepatoma xenografts. The suppressive effect of TGFβ1 on angiogenesis was recovered in mouse xenografts by a hypoxia-inducible factor 1α (HIF1α) inhibitor. In contrast, a HIF1α stabilizer abrogated angiogenesis in zebrafish, indicating that hypoxia may attenuate the antiangiogenic role of TGFβ1. Under normoxic conditions, TGFβ1 inhibited angiogenesis by upregulating antiangiogenic factor thrombospondin 1 (TSP1) in endothelial cells (EC) via TGFβ type I receptor (TGFβR1)-SMAD2/3 signaling. In a hypoxic microenvironment, HIF1α induced miR145 expression; miR145 abolished the inhibitory effect of TGFβ1 on angiogenesis by binding and repressing SMAD2/3 expression and subsequently reducing TSP1 levels in ECs. Primary ECs isolated from human hepatocellular carcinoma displayed increased miR145 and decreased SMAD3 and TSP1 compared with ECs from adjacent nontumor livers. The reduced SMAD3 or TSP1 in ECs was associated with increased angiogenesis in hepatocellular carcinoma tissues. Collectively, this study identified that TGFβ1-TGFβR1-SMAD2/3-TSP1 signaling in ECs inhibits angiogenesis. This inhibition can be circumvented by a hypoxia-HIF1α-miR145 axis, elucidating a mechanism by which hypoxia promotes angiogenesis. Significance: Suppression of angiogenesis by TGFβ1 is mediated by TSP1 upregulation in endothelial cells and abrogated by HIF1α-miR145 activity in the hypoxic tumor microenvironment, providing potential targets to remodel the tumor vasculature.
Collapse
MESH Headings
- Animals
- Humans
- Thrombospondin 1/metabolism
- Thrombospondin 1/genetics
- Tumor Microenvironment
- Transforming Growth Factor beta1/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Mice
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Neovascularization, Pathologic/genetics
- Zebrafish
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Liver Neoplasms/blood supply
- Liver Neoplasms/genetics
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/blood supply
- Carcinoma, Hepatocellular/genetics
- Signal Transduction
- Cell Line, Tumor
- Chick Embryo
- Gene Expression Regulation, Neoplastic
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Mice, Nude
- Xenograft Model Antitumor Assays
- Angiogenesis
Collapse
Affiliation(s)
- Yu-Wei Luo
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, P. R. China
| | - Yang Fang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, P. R. China
| | - Hui-Xian Zeng
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, P. R. China
| | - Yu-Chen Ji
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, P. R. China
| | - Meng-Zhi Wu
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, P. R. China
| | - Hui Li
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, P. R. China
| | - Jie-Ying Chen
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, P. R. China
| | - Li-Min Zheng
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, P. R. China
| | - Jian-Hong Fang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, P. R. China
| | - Shi-Mei Zhuang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, P. R. China
- Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| |
Collapse
|
6
|
Burckard O, Teboul M, Delaunay F, Chaves M. Benchmark for quantitative characterization of circadian clock cycles. Biosystems 2025; 247:105363. [PMID: 39551427 DOI: 10.1016/j.biosystems.2024.105363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/03/2024] [Indexed: 11/19/2024]
Abstract
Understanding circadian clock mechanisms is fundamental in order to counteract the harmful effects of clock malfunctioning and associated diseases. Biochemical, genetic and systems biology approaches have provided invaluable information on the mechanisms of the circadian clock, from which many mathematical models have been developed to understand the dynamics and quantitative properties of the circadian oscillator. To better analyze and compare quantitatively all these circadian cycles, we propose a method based on a previously proposed circadian cycle segmentation into stages. We notably identify a sequence of eight stages that characterize the progress of the circadian cycle. Next, we apply our approach to an experimental dataset and to five different models, all built with ordinary differential equations. Our method permits to assess the agreement of mathematical model cycles with biological properties or to detect some inconsistencies. As another application of our method, we provide insights on how this segmentation into stages can help to analyze the effect of a clock gene loss of function on the dynamic of a genetic oscillator. The strength of our method is to provide a benchmark for characterization, comparison and improvement of new mathematical models of circadian oscillators in a wide variety of model systems.
Collapse
Affiliation(s)
- Odile Burckard
- Centre Inria d'Université Côte d'Azur, INRAE, CNRS, Macbes team, Sophia Antipolis, France.
| | | | | | - Madalena Chaves
- Centre Inria d'Université Côte d'Azur, INRAE, CNRS, Macbes team, Sophia Antipolis, France
| |
Collapse
|
7
|
Wu L, Zhao M, Chen X, Wang H. A miR-219-5p-bmal1b negative feedback loop contributes to circadian regulation in zebrafish. Commun Biol 2024; 7:1671. [PMID: 39702498 DOI: 10.1038/s42003-024-07309-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024] Open
Abstract
MicroRNAs post-transcriptionally regulate gene expression and contribute to numerous life processes, including circadian rhythms. However, whether miRNAs contribute to zebrafish circadian regulation has not yet been investigated. Here, we showed that mature miR-219-5p, and its three pre-miRNAs, mir-219-1, mir-219-2, and mir-219-3, are rhythmically expressed primarily in Tectum opticum (TeO), Corpus cerebelli (CCe), and Crista cerellaris (CC) of the zebrafish brain. While mir-219-1 and mir-219-2 are regulated by the circadian clock through the E-like box, mir-219-3 is regulated by light via the D-box. Deleting mir-219-1, mir-219-2, or mir-219-3 individually or knocking down miR-219-5p all results in a shortened period of locomotor rhythms and up-regulation of bmal1b. RIP assays with Ago2 and miRNA pull-down assays show that miR-219-5p binds to bmal1b in the RISC. Cell transfection and in Vivo assays show that miR219-5p inhibits bmal1b through binding to its 3'UTR. Further, transcriptome analysis of miR-219-5p knockdown zebrafish adult brain reveals possible roles of miR-219-5p in phototransduction and neuroactive ligand-receptor interaction. Together, our findings demonstrate that mir-219-1, mir-219-2, and mir-219-3 are controlled directly by the circadian clock; and in turn, miR-219-5p contributes to circadian regulation by targeting bmal1b, highlighting a miR-219-5p-bmal1b negative feedback loop in the zebrafish circadian circuit.
Collapse
Affiliation(s)
- Lianxin Wu
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu, China
- School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Meng Zhao
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu, China
- School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Xifeng Chen
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu, China
- School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Han Wang
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu, China.
- School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
8
|
Dey Bhowmik A, Shaw P, Gopinatha Pillai MS, Rao G, Dwivedi SKD. Evolving landscape of detection and targeting miRNA/epigenetics for therapeutic strategies in ovarian cancer. Cancer Lett 2024; 611:217357. [PMID: 39615646 DOI: 10.1016/j.canlet.2024.217357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/14/2024]
Abstract
Ovarian cancer (OC) accounts for the highest mortality rates among all gynecologic malignancies. The high mortality of OC is often associated with delayed detection, prolonged latency, enhanced metastatic potential, acquired drug resistance, and frequent recurrence. This review comprehensively explores key aspects of OC, including cancer diagnosis, mechanisms of disease resistance, and the pivotal role of epigenetic regulation, particularly by microRNAs (miRs) in cancer progression. We highlight the intricate regulatory mechanisms governing miR expression within the context of OC and the current status of epigenetic advancement in the therapeutic development and clinical trial progression. Through network analysis we elucidate the regulatory interactions between dysregulated miRs in OC and their targets which are involved in different signaling pathways. By exploring these interconnected facets and critical analysis, we endeavor to provide a nuanced understanding of the molecular dynamics underlying OC, its detection and shedding light on potential avenues for miRs and epigenetics-based therapeutic intervention and management strategies.
Collapse
Affiliation(s)
- Arpan Dey Bhowmik
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Pallab Shaw
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Mohan Shankar Gopinatha Pillai
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Geeta Rao
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Shailendra Kumar Dhar Dwivedi
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
9
|
Nahar S, Morales Moya LJ, Brunner J, Hendriks GJ, Towbin B, Hauser Y, Brancati G, Gaidatzis D, Großhans H. Dynamics of miRNA accumulation during C. elegans larval development. Nucleic Acids Res 2024; 52:5336-5355. [PMID: 38381904 PMCID: PMC11109986 DOI: 10.1093/nar/gkae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/23/2024] Open
Abstract
Temporally and spatially controlled accumulation underlies the functions of microRNAs (miRNAs) in various developmental processes. In Caenorhabditis elegans, this is exemplified by the temporal patterning miRNAs lin-4 and let-7, but for most miRNAs, developmental expression patterns remain poorly resolved. Indeed, experimentally observed long half-lives may constrain possible dynamics. Here, we profile miRNA expression throughout C. elegans postembryonic development at high temporal resolution, which identifies dynamically expressed miRNAs. We use mathematical models to explore the underlying mechanisms. For let-7, we can explain, and experimentally confirm, a striking stepwise accumulation pattern through a combination of rhythmic transcription and stage-specific regulation of precursor processing by the RNA-binding protein LIN-28. By contrast, the dynamics of several other miRNAs cannot be explained by regulation of production rates alone. Specifically, we show that a combination of oscillatory transcription and rhythmic decay drive rhythmic accumulation of miR-235, orthologous to miR-92 in other animals. We demonstrate that decay of miR-235 and additional miRNAs depends on EBAX-1, previously implicated in target-directed miRNA degradation (TDMD). Taken together, our results provide insight into dynamic miRNA decay and establish a resource to studying both the developmental functions of, and the regulatory mechanisms acting on, miRNAs.
Collapse
Affiliation(s)
- Smita Nahar
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
| | | | - Jana Brunner
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Gert-Jan Hendriks
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
| | - Benjamin Towbin
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
- University of Bern, Bern, Switzerland
| | - Yannick P Hauser
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Giovanna Brancati
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Dimos Gaidatzis
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Helge Großhans
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
10
|
Wang X, Feng L, Lu Y, Zhang H. miR-122/PPARβ axis is involved in hypoxic exercise and modulates fatty acid metabolism in skeletal muscle of obese rats. Heliyon 2024; 10:e26572. [PMID: 38434053 PMCID: PMC10906430 DOI: 10.1016/j.heliyon.2024.e26572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024] Open
Abstract
Hypoxic exercise is an effective intervention for obesity, because it promotes weight loss by regulating fatty acid (FA) metabolism. The regulation of peroxisome proliferator-activated receptor β (PPARβ) by miR-122 may be involved in this process, but the detailed mechanisms are unknown. In order to address this issue, we probed how miR-122 affected the expression of factors associated with FA metabolism in skeletal muscle of obese rats undergoing hypoxic training. By injecting adeno-associated virus 9 containing miR-122 overexpression vector or miR-122 inhibitor into skeletal muscles of rats with a 4-week hypoxic exercise regimen, the miR-122 expression level can be regulated. Body composition and blood lipid levels were analyzed, and PPARβ, carnitine palmitoyltransferase 1b (CPT1b), acetylCoA carboxylase 2 (ACC2), and FA synthase (FAS) mRNA and protein levels were evaluated using quantitative reverse transcription quantitative PCR(RT-qPCR) and Western blot analysis. We found that miR-122 overexpression increased low-density lipoprotein cholesterol (LDL-C) and triglyceride (TG) levels and decreased PPARβ, ACC2, and FAS expression. Conversely, miR-122 inhibition decreased TG level, increased high-density lipoprotein cholesterol (HDL-C) level, and upregulated PPARβ, ACC2, FAS, and CPT1b. These data indicated that the negative regulation of PPARβ by miR-122 promotes FA metabolism by altering the levels of the factors related to FA metabolism in skeletal muscle of obese rat under hypoxic training, thus providing molecular-level insight into the beneficial effects of this intervention.
Collapse
Affiliation(s)
- Xuebing Wang
- College of Physical Education, Guangxi University, Nanning, China
| | - Lianshi Feng
- Exercise Biology Research Center, China Institute of Sport Science, Beijing, China
| | - Yingli Lu
- Exercise Biology Research Center, China Institute of Sport Science, Beijing, China
| | - Haibo Zhang
- Exercise Biology Research Center, China Institute of Sport Science, Beijing, China
| |
Collapse
|
11
|
Unruh BA, Weidemann DE, Miao L, Kojima S. Coordination of rhythmic RNA synthesis and degradation orchestrates 24- and 12-h RNA expression patterns in mouse fibroblasts. Proc Natl Acad Sci U S A 2024; 121:e2314690121. [PMID: 38315868 PMCID: PMC10873638 DOI: 10.1073/pnas.2314690121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/02/2024] [Indexed: 02/07/2024] Open
Abstract
Circadian RNA expression is essential to ultimately regulate a plethora of downstream rhythmic biochemical, physiological, and behavioral processes. Both transcriptional and posttranscriptional mechanisms are considered important to drive rhythmic RNA expression; however, the extent to which each regulatory process contributes to the rhythmic RNA expression remains controversial. To systematically address this, we monitored RNA dynamics using metabolic RNA labeling technology during a circadian cycle in mouse fibroblasts. We find that rhythmic RNA synthesis is the primary contributor of 24-h RNA rhythms, while rhythmic degradation is more important for 12-h RNA rhythms. These rhythms were predominantly regulated by Bmal1 and/or the core clock mechanism, and the interplay between rhythmic synthesis and degradation has a significant impact in shaping rhythmic RNA expression patterns. Interestingly, core clock RNAs are regulated by multiple rhythmic processes and have the highest amplitude of synthesis and degradation, presumably critical to sustain robust rhythmicity of cell-autonomous circadian rhythms. Our study yields invaluable insights into the temporal dynamics of both 24- and 12-h RNA rhythms in mouse fibroblasts.
Collapse
Affiliation(s)
- Benjamin A. Unruh
- Department of Biological Sciences, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA24061
| | - Douglas E. Weidemann
- Department of Biological Sciences, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA24061
| | - Lin Miao
- Department of Biological Sciences, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA24061
| | - Shihoko Kojima
- Department of Biological Sciences, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA24061
| |
Collapse
|
12
|
Štefánik P, Morová M, Herichová I. Impact of Long-Lasting Environmental Factors on Regulation Mediated by the miR-34 Family. Biomedicines 2024; 12:424. [PMID: 38398026 PMCID: PMC10887245 DOI: 10.3390/biomedicines12020424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The present review focuses on the interactions of newly emerging environmental factors with miRNA-mediated regulation. In particular, we draw attention to the effects of phthalates, electromagnetic fields (EMFs) and a disrupted light/dark cycle. miRNAs are small non-coding RNA molecules with a tremendous regulatory impact, which is usually executed via gene expression inhibition. To address the capacity of environmental factors to influence miRNA-mediated regulation, the miR-34 family was selected for its well-described oncostatic and neuro-modulatory properties. The expression of miR-34 is in a tissue-dependent manner to some extent under the control of the circadian system. There is experimental evidence implicating that phthalates, EMFs and the circadian system interact with the miR-34 family, in both lines of its physiological functioning. The inhibition of miR-34 expression in response to phthalates, EMFs and light contamination has been described in cancer tissue and cell lines and was associated with a decline in oncostatic miR-34a signalling (decrease in p21 expression) and a promotion of tumorigenesis (increases in Noth1, cyclin D1 and cry1 expressions). The effects of miR-34 on neural functions have also been influenced by phthalates, EMFs and a disrupted light/dark cycle. Environmental factors shifted the effects of miR-34 from beneficial to the promotion of neurodegeneration and decreased cognition. Moreover, the apoptogenic capacity of miR-34 induced via phthalate administration in the testes has been shown to negatively influence germ cell proliferation. To conclude, as the oncostatic and positive neuromodulatory functions of the miR-34 family can be strongly influenced by environmental factors, their interactions should be taken into consideration in translational medicine.
Collapse
Affiliation(s)
- Peter Štefánik
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Martina Morová
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Iveta Herichová
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 84215 Bratislava, Slovakia
| |
Collapse
|
13
|
Henin G, Loumaye A, Leclercq IA, Lanthier N. Myosteatosis: Diagnosis, pathophysiology and consequences in metabolic dysfunction-associated steatotic liver disease. JHEP Rep 2024; 6:100963. [PMID: 38322420 PMCID: PMC10844870 DOI: 10.1016/j.jhepr.2023.100963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 02/08/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is associated with an increased risk of multisystemic complications, including muscle changes such as sarcopenia and myosteatosis that can reciprocally affect liver function. We conducted a systematic review to highlight innovative assessment tools, pathophysiological mechanisms and metabolic consequences related to myosteatosis in MASLD, based on original articles screened from PUBMED, EMBASE and COCHRANE databases. Forty-six original manuscripts (14 pre-clinical and 32 clinical studies) were included. Microscopy (8/14) and tissue lipid extraction (8/14) are the two main assessment techniques used to measure muscle lipid content in pre-clinical studies. In clinical studies, imaging is the most used assessment tool and included CT (14/32), MRI (12/32) and ultrasound (4/32). Assessed muscles varied across studies but mainly included paravertebral (4/14 in pre-clinical; 13/32 in clinical studies) and lower limb muscles (10/14 in preclinical; 13/32 in clinical studies). Myosteatosis is already highly prevalent in non-cirrhotic stages of MASLD and correlates with disease activity when using muscle density assessed by CT. Numerous pathophysiological mechanisms were found and included: high-fat and high-fructose diet, dysregulation in fatty acid transport and ketogenesis, endocrine disorders and impaired microRNA122 pathway signalling. In this review we also uncover several potential consequences of myosteatosis in MASLD, such as insulin resistance, MASLD progression from steatosis to metabolic steatohepatitis and loss of muscle strength. In conclusion, data on myosteatosis in MASLD are already available. Screening for myosteatosis could be highly relevant in the context of MASLD, considering its correlation with MASLD activity as well as its related consequences.
Collapse
Affiliation(s)
- Guillaume Henin
- Service d’Hépato-Gastroentérologie, Cliniques universitaires Saint-Luc, UCLouvain, Brussels, Belgium
- Laboratory of Hepatogastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Audrey Loumaye
- Service d’Endocrinologie, Diabétologie et Nutrition, Cliniques universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | - Isabelle A. Leclercq
- Laboratory of Hepatogastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Nicolas Lanthier
- Service d’Hépato-Gastroentérologie, Cliniques universitaires Saint-Luc, UCLouvain, Brussels, Belgium
- Laboratory of Hepatogastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
14
|
Atteia HH. MicroRNAs in Anticancer Drugs Hepatotoxicity: From Pathogenic Mechanism and Early Diagnosis to Therapeutic Targeting by Natural Products. Curr Pharm Biotechnol 2024; 25:1791-1806. [PMID: 38178678 DOI: 10.2174/0113892010282155231222071903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/11/2023] [Accepted: 11/24/2023] [Indexed: 01/06/2024]
Abstract
Patients receiving cancer therapies experience severe adverse effects, including hepatotoxicity, even at therapeutic doses. Consequently, monitoring patients on cancer therapy for hepatic functioning is necessary to avoid permanent liver damage. Several pathways of anticancer drug-induced hepatotoxicity involve microRNAs (miRNAs) via targeting mRNAs. These short and non-coding RNAs undergo rapid modulation in non-targeted organs due to cancer therapy insults. Recently, there has been an interest for miRNAs as useful and promising biomarkers for monitoring toxicity since they have conserved sequences across species and are cellular-specific, stable, released during injury, and simple to analyze. Herein, we tried to review the literature handling miRNAs as mediators and biomarkers of anticancer drug-induced hepatotoxicity. Natural products and phytochemicals are suggested as safe and effective candidates in treating cancer. There is also an attempt to combine anticancer drugs with natural compounds to enhance their efficiencies and reduce systemic toxicities. We also discussed natural products protecting against chemotherapy hepatotoxicity via modulating miRNAs, given that miRNAs have pathogenic and diagnostic roles in chemotherapy-induced hepatotoxicity and that many natural products can potentially regulate their expression. Future studies should integrate these findings into clinical trials by formulating suitable therapeutic dosages of natural products to target miRNAs involved in anticancer drug hepatotoxicity.
Collapse
Affiliation(s)
- Hebatallah Husseini Atteia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Sharkia, 44519, Egypt
| |
Collapse
|
15
|
Wu S, Wu Y, Deng S, Lei X, Yang X. The Impact of miR-122 on Cancer. Curr Pharm Biotechnol 2024; 25:1489-1499. [PMID: 38258767 DOI: 10.2174/0113892010272106231109065912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 01/24/2024]
Abstract
MiRNAs are confirmed to be a kind of short and eminently conserved noncoding RNAs, which regulate gene expression at the post-transcriptional level via binding to the 3'- untranslated region (3'-UTR) of targeting multiple target messenger RNAs. Recently, growing evidence stresses the point that they play a crucial role in a variety of pathological processes, including human cancers. Dysregulated miRNAs act as oncogenes or tumor suppressor genes in many cancer types. Among them, we noticed that miR-122 has been widely reported to significantly influence carcinogenicity in a variety of tumors by regulating target genes and signaling pathways. Here, we focused on the expression of miR-122 in regulatory mechanisms and tumor biological processes. We also discussed the effects of miR-122 dysregulation in various types of human malignancies and the potential to develop new molecular miR-122-targeted therapies. The present review suggests that miR-122 may be a potentially useful cancer diagnosis and treatment biomarker. More clinical diagnoses need to be further launched in the future. A promising direction to improve the outcomes for cancer patients will likely combine miR-122 with other traditional tumor biomarkers.
Collapse
Affiliation(s)
- Shijie Wu
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, Hunan, P.R. China
| | - Yiwen Wu
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, Hunan, P.R. China
| | - Sijun Deng
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, Hunan, P.R. China
| | - Xiaoyong Lei
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, Hunan, P.R. China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, Hunan, 421001, P.R. China
| | - Xiaoyan Yang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, Hunan, P.R. China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, Hunan, 421001, P.R. China
| |
Collapse
|
16
|
Oikawa S, Yuan S, Kato Y, Akimoto T. Skeletal muscle-enriched miRNAs are highly unstable in vivo and may be regulated in a Dicer-independent manner. FEBS J 2023; 290:5692-5703. [PMID: 37525425 DOI: 10.1111/febs.16917] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/24/2023] [Accepted: 07/31/2023] [Indexed: 08/02/2023]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that control essential cellular processes. For several decades, the molecular mechanisms underlying the functions and biogenesis of miRNAs have been clarified, whereas the molecular dynamics of miRNAs are poorly understood. We recently found that muscle-enriched miRNAs were reduced by only 20 ~ 50% in the skeletal muscles even 4 weeks after the suppression of miRNA processing through an inducible depletion of Dicer1 gene. These data suggest that miRNAs are stably expressed in skeletal muscle. In this study, we investigated the half-lives of those miRNAs in adult skeletal muscle with an in vivo metabolic labeling strategy and a genetic mouse model. In contrast to the hypothesis, in vivo metabolic labeling revealed that the half-lives of skeletal-muscle-enriched miRNAs were approximately 11-20 h. Furthermore, the levels of mature miR-23a decreased rapidly in the skeletal muscle of mice lacking miR-23 clusters in a tamoxifen-inducible manner. These data suggest that skeletal-muscle-enriched miRNAs are not highly stable in vivo. We also observed that the transfer of miR-150 into Dicer1-deficient muscle increased the miR-150 level to the same as that in control muscle. Taken together, our data demonstrate that miRNAs are degraded within a few days in adult skeletal muscle and that a Dicer-independent biogenetic pathway may produce mature miRNAs.
Collapse
Affiliation(s)
- Satoshi Oikawa
- Laboratory of Muscle Biology, Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
- Waseda Institute for Sport Sciences, Waseda University, Tokorozawa, Japan
| | - Shuaibang Yuan
- Graduate School of Sport Sciences, Waseda University, Tokorozawa, Japan
| | - Yoshio Kato
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Takayuki Akimoto
- Laboratory of Muscle Biology, Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
| |
Collapse
|
17
|
Waseem M, Gujrati H, Wang BD. Tumor suppressive miR-99b-5p as an epigenomic regulator mediating mTOR/AR/SMARCD1 signaling axis in aggressive prostate cancer. Front Oncol 2023; 13:1184186. [PMID: 38023145 PMCID: PMC10661933 DOI: 10.3389/fonc.2023.1184186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction African American (AA) men exhibited 2.3-fold higher PCa incidence and 1.7-fold higher PCa mortality rates when compared to the European American (EA) men. Besides the socioeconomic factors, emerging evidence has highlighted that biological risk factors may play critical roles in the AA PCa disparities. Previously, we have shown that downregulated miR-99b-5p and upregulated mTOR cooperatively promotes the AA PCa aggressiveness and drug resistance. Methods In this study, we aimed to explore the miR-99b-5p/mTOR/AR/SMARCD1 signaling axis in AA PCa aggressiveness. The analyses used in the study included immunofluorescence, western blot, in-vitro functional assays (TUNEL, colony forming, and MTT), and chromatin immunoprecipitation (ChIP)-qPCR assays in 2D and/or 3D culture model of EA PCa and AA PCa cell lines. Results Specifically, the immunofluorescence staining, and western blot analysis has revealed that nuclear mTOR, AR, and SMARCD1 were highly expressed in AA PCa (MDA PCa 2b) compared to EA PCa (LNCaP) cell line. Western blot analysis further revealed that miR-99b-5p inhibited protein levels of mTOR, AR/AR-V7 and SMARCD1 in cytoplasm and nuclei of EA and AA PCa. The in-vitro functional (MTT, TUNEL, and clonogenic) assays have demonstrated that miR-99b-5p effectively inhibited cell proliferation/survival and induced cell apoptosis in EA and AA PCa cells. Moreover, combination of miR-99b-5p and enzalutamide (Enz) synergistically enhances the cytotoxicity against aggressive AA PCa and castration-resistant prostate cancer (CRPC). mTOR ChIP-qPCR assays further demonstrated that miR-99b-5p or miR-99b-5p/Enz significantly reduces the recruitment of mTOR to the genes involved in the metabolic reprogramming in CRPC. Discussion Taken together, miR-99b-5p may function as an epigenomic driver to modulate the mTOR/AR/SMARCD1 signaling axis in AA PCa and resistant CRPC.
Collapse
Affiliation(s)
- Mohammad Waseem
- Department of Pharmaceutical Sciences, University of Maryland Eastern Shore School of Pharmacy and Health Professions, Princess Anne, MD, United States
| | - Himali Gujrati
- Department of Pharmaceutical Sciences, University of Maryland Eastern Shore School of Pharmacy and Health Professions, Princess Anne, MD, United States
| | - Bi-Dar Wang
- Department of Pharmaceutical Sciences, University of Maryland Eastern Shore School of Pharmacy and Health Professions, Princess Anne, MD, United States
- Hormone Related Cancers Program, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| |
Collapse
|
18
|
Moravčík R, Olejárová S, Zlacká J, Herichová I. Effect of miR-34a on the expression of clock and clock-controlled genes in DLD1 and Lovo human cancer cells with different backgrounds with respect to p53 functionality and 17β-estradiol-mediated regulation. PLoS One 2023; 18:e0292880. [PMID: 37831728 PMCID: PMC10575541 DOI: 10.1371/journal.pone.0292880] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023] Open
Abstract
The small non-coding RNA miR-34a is a p53-regulated miRNA that acts as a tumour suppressor of colorectal cancer (CRC). Oncogenesis is also negatively influenced by deregulation of the circadian system in many types of tumours with various genetic backgrounds. As the clock gene per2 was recently recognized as one of the target genes of miR-34a, we focused on the miR-34a-mediated influence on the circadian oscillator in CRC cell lines DLD1 and LoVo, which differ in their p53 status. Previously, a sex-dependent association between the expression of per2 and that of miR-34a was demonstrated in CRC patients. Therefore, we also investigated the effect of 17β-estradiol (E2) on miR-34a oncostatic functions. miR-34a mimic caused a pronounced inhibition of per2 expression in both cell lines. Moreover, miR-34a mimic significantly inhibited bmal1 expression in LoVo and rev-erbα expression in DLD1 cells and induced clock gene expression in both cell lines. miR-34a mimic caused a pronounced decrease in sirt1 and cyclin D1 expression, which may be related to the inhibition of proliferation observed after mir-34a administration in DLD1 cells. E2 administration inhibited the migration and proliferation of DLD1 cells. E2 and miR-34a, when administered simultaneously, did not potentiate each other's effects. To conclude, miR-34a strongly influences the expression of components of the circadian oscillator without respect to p53 status and exerts its oncostatic effects via inhibition of sirt1 and cyclin D1 mRNA expression. E2 administration inhibits the growth of DLD1 cells; however, this effect seems to be independent of miR-34a-mediated action. With respect to the possible use of miR-34a in cancer treatment, clock genes can be considered as off-target genes, as changes in their expression induced by miR-34a treatment do not contribute to the oncostatic functions of miR-34a. Possible ambiguous oncogenic characteristics should be taken into consideration in future clinical studies focused on miR-34a.
Collapse
Affiliation(s)
- Roman Moravčík
- Faculty of Natural Sciences, Department of Animal Physiology and Ethology, Comenius University, Bratislava, Slovak Republic
| | - Soňa Olejárová
- Faculty of Natural Sciences, Department of Animal Physiology and Ethology, Comenius University, Bratislava, Slovak Republic
| | - Jana Zlacká
- Faculty of Natural Sciences, Department of Animal Physiology and Ethology, Comenius University, Bratislava, Slovak Republic
| | - Iveta Herichová
- Faculty of Natural Sciences, Department of Animal Physiology and Ethology, Comenius University, Bratislava, Slovak Republic
| |
Collapse
|
19
|
Ramzan F, Sequeira-Bisson IR, Lu LW, Mitchell CJ, D’Souza RF, Vickers MH, Poppitt SD, Cameron-Smith D. Circulatory miRNAs as Correlates of Elevated Intra-Pancreatic Fat Deposition in a Mixed Ethnic Female Cohort: The TOFI_Asia Study. Int J Mol Sci 2023; 24:14393. [PMID: 37762694 PMCID: PMC10532072 DOI: 10.3390/ijms241814393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Ectopic lipid accumulation, including intra-pancreatic fat deposition (IPFD), exacerbates type 2 diabetes risk in susceptible individuals. Dysregulated circulating microRNAs (miRNAs) have been identified as correlating with clinical measures of pancreatitis, pancreatic cancer and type 1 diabetes. The aim of the current study was therefore to examine the association between circulating abundances of candidate miRNAs, IPFD and liver fat deposition as quantified using magnetic resonance imaging (MRI) and spectroscopy (MRS). Asian Chinese (n = 34; BMI = 26.7 ± 4.2 kg/m2) and European Caucasian (n = 34; BMI = 28.0 ± 4.5 kg/m2) females from the TOFI_Asia cohort underwent MRI and MRS analysis of pancreas (MR-%IPFD) and liver fat (MR-%liver fat), respectively, to quantify ectopic lipid deposition. Plasma miRNA abundances of a subset of circulatory miRNAs associated with IPFD and liver fat deposition were quantified by qRT-PCR. miR-21-3p and miR-320a-5p correlated with MR-%IPFD, plasma insulin and HOMA2-IR, but not MR-%liver fat. MR-%IPFD remained associated with decreasing miR-21-3p abundance following multivariate regression analysis. miR-21-3p and miR-320a were demonstrated to be negatively correlated with MR-%IPFD, independent of ethnicity. For miR-21-3p, this relationship persists with the inclusion of MR-%liver fat in the model, suggesting the potential for a wider application as a specific circulatory correlate of IPFD.
Collapse
Affiliation(s)
- Farha Ramzan
- Liggins Institute, The University of Auckland, Auckland 1023, New Zealand (D.C.-S.)
| | - Ivana R. Sequeira-Bisson
- The High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand (S.D.P.)
- Human Nutrition Unit, School of Biological Sciences, Faculty of Science, The University of Auckland, Auckland 1010, New Zealand
- The Riddet Institute, Massey University, Palmerston North 4410, New Zealand
| | - Louise W. Lu
- The High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand (S.D.P.)
- Human Nutrition Unit, School of Biological Sciences, Faculty of Science, The University of Auckland, Auckland 1010, New Zealand
| | - Cameron J. Mitchell
- School of Kinesiology, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Randall F. D’Souza
- School of Medical Sciences, The University of Auckland, Auckland 1023, New Zealand
| | - Mark H. Vickers
- Liggins Institute, The University of Auckland, Auckland 1023, New Zealand (D.C.-S.)
| | - Sally D. Poppitt
- The High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand (S.D.P.)
- Human Nutrition Unit, School of Biological Sciences, Faculty of Science, The University of Auckland, Auckland 1010, New Zealand
- The Riddet Institute, Massey University, Palmerston North 4410, New Zealand
- Department of Medicine, The University of Auckland, Auckland 1023, New Zealand
| | - David Cameron-Smith
- Liggins Institute, The University of Auckland, Auckland 1023, New Zealand (D.C.-S.)
- School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Melbourne 3010, Australia
| |
Collapse
|
20
|
Shafaati M, Sadeghniiat K, Priyanka, Najafia A, Zandi M, Akbarpour S, Choudhary OP. The relevance of the circadian timing system role in patients with HIV/AIDS: a quick glance. Int J Surg 2023; 109:2831-2834. [PMID: 36928027 PMCID: PMC10498842 DOI: 10.1097/js9.0000000000000103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/16/2022] [Indexed: 03/18/2023]
Affiliation(s)
- Maryam Shafaati
- Occupational Sleep Research Center, Baharloo Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, Faculty Science, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| | - Khosro Sadeghniiat
- Occupational Sleep Research Center, Baharloo Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Priyanka
- Department of Veterinary Microbiology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Rampura Phul, Bathinda, Punjab, India
| | - Arezu Najafia
- Occupational Sleep Research Center, Baharloo Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Zandi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Akbarpour
- Occupational Sleep Research Center, Baharloo Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Sleep Breathing Disorders Research Center (SBDRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Om Prakash Choudhary
- Department of Veterinary Anatomy and Histology, College of Veterinary Sciences and Animal Husbandry, Central Agricultural University (I), Selesih, Aizawl, Mizoram, India
| |
Collapse
|
21
|
Saiz N, Herrera-Castillo L, Gómez-Boronat M, Delgado MJ, Isorna E, de Pedro N. Daily rhythms of REV-ERBα and its role as transcriptional repressor of clock genes in fish hepatic oscillator. Comp Biochem Physiol A Mol Integr Physiol 2023; 283:111458. [PMID: 37290737 DOI: 10.1016/j.cbpa.2023.111458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
The REV-ERBα nuclear receptor is a key component of the molecular machinery of circadian oscillators in mammals. While the rhythmic expression of this receptor has been described in teleosts, several critical aspects of its regulation remain unknown, such as which synchronizers entrain its rhythm, and whether it can modulate the expression of other clock genes. The objective of this study was to gain deeper understanding of the role of REV-ERBα in the fish circadian system. To this end, we first investigated the cues that entrain the rhythm of rev-erbα expression in the goldfish (Carassius auratus) liver and hypothalamus. A 12-h shift in feeding time induced a parallel shift in the hepatic rhythm of rev-erbα expression, confirming that this gene is food-entrainable in the goldfish liver. In contrast, light seems the main driver of rev-erbα rhythmic expression in the hypothalamus. Next, we examined the effects of REV-ERBα activation on locomotor activity and hepatic expression of clock genes. Subchronic treatment with the REV-ERBα agonist SR9009 slightly decreased locomotor activity anticipating light onset and food arrival, and downregulated hepatic bmal1a, clock1a, cry1a, per1a and pparα expression. This generalized repressing action of REV-ERBα on the expression of hepatic clock genes was confirmed in vitro by using agonists (SR9009 and GSK4112) and antagonist (SR8278) of this receptor. Overall, the present work reveals that REV-ERBα modulates the daily expression of the main genes of the teleostean liver clock, reinforcing its role in the liver temporal homeostasis, which seems highly conserved in both fish and mammals.
Collapse
Affiliation(s)
- Nuria Saiz
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, Spain
| | - Lisbeth Herrera-Castillo
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, Spain
| | - Miguel Gómez-Boronat
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, Spain
| | - María Jesús Delgado
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, Spain
| | - Esther Isorna
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, Spain
| | - Nuria de Pedro
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, Spain.
| |
Collapse
|
22
|
Paluschinski M, Kordes C, Vucur M, Buettner V, Roderburg C, Xu HC, Shinte PV, Lang PA, Luedde T, Castoldi M. Differential Modulation of miR-122 Transcription by TGFβ1/BMP6: Implications for Nonresolving Inflammation and Hepatocarcinogenesis. Cells 2023; 12:1955. [PMID: 37566034 PMCID: PMC10416984 DOI: 10.3390/cells12151955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/12/2023] Open
Abstract
Chronic inflammation is widely recognized as a significant factor that promotes and worsens the development of malignancies, including hepatocellular carcinoma. This study aimed to explore the potential role of microRNAs in inflammation-associated nonresolving hepatocarcinogenesis. By conducting a comprehensive analysis of altered microRNAs in animal models with liver cancer of various etiologies, we identified miR-122 as the most significantly downregulated microRNA in the liver of animals with inflammation-associated liver cancer. Although previous research has indicated the importance of miR-122 in maintaining hepatocyte function, its specific role as either the trigger or the consequence of underlying diseases remains unclear. Through extensive analysis of animals and in vitro models, we have successfully demonstrated that miR-122 transcription is differentially regulated by the immunoregulatory cytokines, by the transforming growth factor-beta 1 (TGFβ1), and the bone morphogenetic protein-6 (BMP6). Furthermore, we presented convincing evidence directly linking reduced miR-122 transcription to inflammation and in chronic liver diseases. The results of this study strongly suggest that prolonged activation of pro-inflammatory signaling pathways, leading to disruption of cytokine-mediated regulation of miR-122, may significantly contribute to the onset and exacerbation of chronic liver disease.
Collapse
Affiliation(s)
- Martha Paluschinski
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital, Heinrich Heine University Dusseldorf, 40225 Dusseldorf, Germany; (M.P.); (C.K.); (M.V.); (V.B.); (C.R.); (T.L.)
| | - Claus Kordes
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital, Heinrich Heine University Dusseldorf, 40225 Dusseldorf, Germany; (M.P.); (C.K.); (M.V.); (V.B.); (C.R.); (T.L.)
| | - Mihael Vucur
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital, Heinrich Heine University Dusseldorf, 40225 Dusseldorf, Germany; (M.P.); (C.K.); (M.V.); (V.B.); (C.R.); (T.L.)
| | - Veronika Buettner
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital, Heinrich Heine University Dusseldorf, 40225 Dusseldorf, Germany; (M.P.); (C.K.); (M.V.); (V.B.); (C.R.); (T.L.)
| | - Christoph Roderburg
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital, Heinrich Heine University Dusseldorf, 40225 Dusseldorf, Germany; (M.P.); (C.K.); (M.V.); (V.B.); (C.R.); (T.L.)
| | - Haifeng C. Xu
- Institute for Molecular Medicine II, Medical Faculty, Heinrich-Heine University Hospital, 40225 Dusseldorf, Germany; (H.C.X.); (P.V.S.); (P.A.L.)
| | - Prashant V. Shinte
- Institute for Molecular Medicine II, Medical Faculty, Heinrich-Heine University Hospital, 40225 Dusseldorf, Germany; (H.C.X.); (P.V.S.); (P.A.L.)
| | - Philipp A. Lang
- Institute for Molecular Medicine II, Medical Faculty, Heinrich-Heine University Hospital, 40225 Dusseldorf, Germany; (H.C.X.); (P.V.S.); (P.A.L.)
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital, Heinrich Heine University Dusseldorf, 40225 Dusseldorf, Germany; (M.P.); (C.K.); (M.V.); (V.B.); (C.R.); (T.L.)
| | - Mirco Castoldi
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital, Heinrich Heine University Dusseldorf, 40225 Dusseldorf, Germany; (M.P.); (C.K.); (M.V.); (V.B.); (C.R.); (T.L.)
| |
Collapse
|
23
|
Unruh BA, Weidemann DE, Kojima S. Coordination of rhythmic RNA synthesis and degradation orchestrates 24-hour and 12-hour RNA expression patterns in mouse fibroblasts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.26.550672. [PMID: 37546997 PMCID: PMC10402069 DOI: 10.1101/2023.07.26.550672] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Circadian RNA expression is essential to ultimately regulate a plethora of downstream rhythmic biochemical, physiological, and behavioral processes. Both transcriptional and post-transcriptional mechanisms are considered important to drive rhythmic RNA expression, however, the extent to which each regulatory process contributes to the rhythmic RNA expression remains controversial. To systematically address this, we monitored RNA dynamics using metabolic RNA labeling technology during a circadian cycle in mouse fibroblasts. We find that rhythmic RNA synthesis is the primary contributor of 24 hr RNA rhythms, while rhythmic degradation is more important for 12 hr RNA rhythms. These rhythms were predominantly regulated by Bmal1 and/or the core clock mechanism, and interplay between rhythmic synthesis and degradation has a significant impact in shaping rhythmic RNA expression patterns. Interestingly, core clock RNAs are regulated by multiple rhythmic processes and have the highest amplitude of synthesis and degradation, presumably critical to sustain robust rhythmicity of cell-autonomous circadian rhythms. Our study yields invaluable insights into the temporal dynamics of both 24 hr and 12 hr RNA rhythms in mouse fibroblasts.
Collapse
Affiliation(s)
- Benjamin A Unruh
- Department of Biological Sciences, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA USA
| | - Douglas E Weidemann
- Department of Biological Sciences, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA USA
| | - Shihoko Kojima
- Department of Biological Sciences, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA USA
| |
Collapse
|
24
|
Jones BT, Han J, Zhang H, Hammer RE, Evers BM, Rakheja D, Acharya A, Mendell JT. Target-directed microRNA degradation regulates developmental microRNA expression and embryonic growth in mammals. Genes Dev 2023; 37:661-674. [PMID: 37553261 PMCID: PMC10499020 DOI: 10.1101/gad.350906.123] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023]
Abstract
MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression that play critical roles in development and disease. Target-directed miRNA degradation (TDMD), a pathway in which miRNAs that bind to specialized targets with extensive complementarity are rapidly decayed, has emerged as a potent mechanism of controlling miRNA levels. Nevertheless, the biological role and scope of miRNA regulation by TDMD in mammals remains poorly understood. To address these questions, we generated mice with constitutive or conditional deletion of Zswim8, which encodes an essential TDMD factor. Loss of Zswim8 resulted in developmental defects in the heart and lungs, growth restriction, and perinatal lethality. Small RNA sequencing of embryonic tissues revealed widespread miRNA regulation by TDMD and greatly expanded the known catalog of miRNAs regulated by this pathway. These experiments also uncovered novel features of TDMD-regulated miRNAs, including their enrichment in cotranscribed clusters and examples in which TDMD underlies "arm switching," a phenomenon wherein the dominant strand of a miRNA precursor changes in different tissues or conditions. Importantly, deletion of two miRNAs, miR-322 and miR-503, rescued growth of Zswim8-null embryos, directly implicating the TDMD pathway as a regulator of mammalian body size. These data illuminate the broad landscape and developmental role of TDMD in mammals.
Collapse
Affiliation(s)
- Benjamin T Jones
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Jaeil Han
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - He Zhang
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Robert E Hammer
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Bret M Evers
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Dinesh Rakheja
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Asha Acharya
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Joshua T Mendell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA;
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
25
|
Jones BT, Han J, Zhang H, Hammer RE, Evers BM, Rakheja D, Acharya A, Mendell JT. Target-directed microRNA degradation regulates developmental microRNA expression and embryonic growth in mammals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.26.546601. [PMID: 37425885 PMCID: PMC10327180 DOI: 10.1101/2023.06.26.546601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression that play critical roles in development and disease. Target-directed miRNA degradation (TDMD), a pathway in which miRNAs that bind to specialized targets with extensive complementarity are rapidly decayed, has emerged as a potent mechanism of controlling miRNA levels. Nevertheless, the biological role and scope of miRNA regulation by TDMD in mammals remains poorly understood. To address these questions, we generated mice with constitutive or conditional deletion of Zswim8 , which encodes an essential TDMD factor. Loss of Zswim8 resulted in developmental defects in heart and lung, growth restriction, and perinatal lethality. Small RNA sequencing of embryonic tissues revealed widespread miRNA regulation by TDMD and greatly expanded the known catalog of miRNAs regulated by this pathway. These experiments also uncovered novel features of TDMD-regulated miRNAs, including their enrichment in co-transcribed clusters and examples in which TDMD underlies 'arm switching', a phenomenon wherein the dominant strand of a miRNA precursor changes in different tissues or conditions. Importantly, deletion of two miRNAs, miR-322 and miR-503, rescued growth of Zswim8 null embryos, directly implicating the TDMD pathway as a regulator of mammalian body size. These data illuminate the broad landscape and developmental role of TDMD in mammals.
Collapse
Affiliation(s)
- Benjamin T Jones
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jaeil Han
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - He Zhang
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Robert E. Hammer
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bret M. Evers
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dinesh Rakheja
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Asha Acharya
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joshua T. Mendell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
26
|
Koustas E, Trifylli EM, Sarantis P, Papadopoulos N, Papanikolopoulos K, Aloizos G, Damaskos C, Garmpis N, Garmpi A, Matthaios D, Karamouzis MV. An Insight into the Arising Role of MicroRNAs in Hepatocellular Carcinoma: Future Diagnostic and Therapeutic Approaches. Int J Mol Sci 2023; 24:ijms24087168. [PMID: 37108330 PMCID: PMC10138911 DOI: 10.3390/ijms24087168] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) constitutes a frequent highly malignant form of primary liver cancer and is the third cause of death attributable to malignancy. Despite the improvement in the therapeutic strategies with the exploration of novel pharmacological agents, the survival rate for HCC is still low. Shedding light on the multiplex genetic and epigenetic background of HCC, such as on the emerging role of microRNAs, is considered quite promising for the diagnosis and the prediction of this malignancy, as well as for combatting drug resistance. MicroRNAs (miRNAs) constitute small noncoding RNA sequences, which play a key role in the regulation of several signaling and metabolic pathways, as well as of pivotal cellular functions such as autophagy, apoptosis, and cell proliferation. It is also demonstrated that miRNAs are significantly implicated in carcinogenesis, either acting as tumor suppressors or oncomiRs, while aberrations in their expression levels are closely associated with tumor growth and progression, as well as with local invasion and metastatic dissemination. The arising role of miRNAs in HCC is in the spotlight of the current scientific research, aiming at the development of novel therapeutic perspectives. In this review, we will shed light on the emerging role of miRNAs in HCC.
Collapse
Affiliation(s)
- Evangelos Koustas
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527 Athens, Greece
- First Department of Internal Medicine, 417 Army Equity Fund Hospital, 11521 Athens, Greece
| | - Eleni-Myrto Trifylli
- First Department of Internal Medicine, 417 Army Equity Fund Hospital, 11521 Athens, Greece
| | - Panagiotis Sarantis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527 Athens, Greece
| | - Nikolaos Papadopoulos
- Second Department of Internal Medicine, 401 General Army Hospital of Athens, 11525 Athens, Greece
| | | | - Georgios Aloizos
- First Department of Internal Medicine, 417 Army Equity Fund Hospital, 11521 Athens, Greece
| | - Christos Damaskos
- 'N.S. Christeas' Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Renal Transplantation Unit, 'Laiko' General Hospital, 11527 Athens, Greece
| | - Nikolaos Garmpis
- Second Department of Propaedeutic Surgery, 'Laiko' General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Anna Garmpi
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | | | - Michalis V Karamouzis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527 Athens, Greece
| |
Collapse
|
27
|
Yu C, Huang Z, Xu Y, Zhang B, Li Y. Deep sequencing of microRNAs reveals circadian-dependent microRNA expression in the eyestalks of the Chinese mitten crab Eriocheir sinensis. Sci Rep 2023; 13:5253. [PMID: 37002260 PMCID: PMC10066325 DOI: 10.1038/s41598-023-32277-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/24/2023] [Indexed: 04/03/2023] Open
Abstract
MicroRNAs (miRNAs) are small endogenous non-coding RNAs. In crustaceans, miRNAs might be involved in the regulation of circadian rhythms. Many physiological functions of crustaceans including immunity and hormone secretion exhibit circadian rhythms, but it remains unclear whether specific miRNAs contribute to the alteration of crustacean physiological processes under circadian rhythms. This study investigated the mechanisms of miRNA regulation of circadian rhythms in the Chinese mitten crab (Eriocheir sinensis), one of China's most important aquaculture species. We obtained eyestalks from crab specimens at four time points (6:00; 12:00; 18:00; 24:00) during a 24-h period. We identified 725 mature miRNAs, with 23 known miRNAs differentially expressed depending on the time of day. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses revealed that the putative target genes for differentially expressed miRNAs were significantly enriched in the immune response and endocrine-related pathways. Numerous putative target genes are involved in the circadian-related pathways and enriched on circadian-control genes. These results suggest that the expression of miRNAs regulates some specific physiological functions in E. sinensis under circadian cycles. We also profiled various putative target genes enriched under the circadian-related pathway. This study performed miRNA expression in the eyestalks of E. sinensis during a 24-h daily cycle, providing insights into the molecular mechanism underlying crustacean circadian rhythms and suggesting miRNAs' role in studying crustacean physiology should not be overlooked.
Collapse
Affiliation(s)
- Changyue Yu
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zhiwei Huang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yingkai Xu
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Baoli Zhang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yingdong Li
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
28
|
miR-122 dysregulation is associated with type 2 diabetes mellitus-induced dyslipidemia and hyperglycemia independently of its rs17669 variant. Mol Biol Rep 2023; 50:4217-4224. [PMID: 36899278 DOI: 10.1007/s11033-023-08344-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/15/2023] [Indexed: 03/12/2023]
Abstract
BACKGROUND miR-122 is a liver specific micro-RNA that participates in the regulation of carbohydrate and lipid metabolism. The rs17669 variant of miR-122 is positioned at the flanking region of miR-122 and may affect its stability and maturation. Therefore, this study was aimed to investigate the association of the rs17669 polymorphism with the miR-122 circulating level, risk of type 2 diabetes mellitus (T2DM) development, and biochemical parameters in T2DM patients and matched healthy controls. METHODS AND RESULTS This study involved 295 subjects (controls: n = 145 and T2DM: n = 150). The rs17669 variant genotyping was done by ARMS-PCR. Serum biochemical parameters including lipid profile, small-dense low density lipoprotein (sdLDL) and glucose were measured by colorimetric kits. Insulin and Glycated hemoglobin (HbA1c) were assayed using ELISA and capillary electrophoresis methods, respectively. miR-122 expression was measured by real-time PCR. There was no significant difference between study groups in terms of allele and genotype distribution (P > 0.05). The rs17669 variant did not have any significant association with miR-122 gene expression and biochemical parameters (P > 0.05). miR-122 expression level in T2DM patients was significantly higher than that in control subjects (5.7 ± 2.4 vs. 1.4 ± 0.78) (P < 0.001). Furthermore, miR-122 fold change had a positive and significant correlation with low-density lipoprotein cholesterol (LDL-C), sdLDL, fasting blood sugar (FBS), and insulin resistance (P < 0.05). CONCLUSION It can be concluded that the rs17669 variant of miR-122 is not associated with the miR-122 expression and T2DM-associated serum parameters. Furthermore, it can be suggested that miR-122 dysregulation is involved in T2DM development through inducing dyslipidemia, hyperglycemia, and resistance to insulin.
Collapse
|
29
|
Zeid D, Gould TJ. Chronic nicotine exposure alters sperm small RNA content in C57BL/6J mouse model. Dev Psychobiol 2023; 65:e22367. [PMID: 36811365 PMCID: PMC9978956 DOI: 10.1002/dev.22367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/10/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023]
Abstract
Multigenerational inheritance is a nongenomic form of heritability characterized by altered phenotypes in the first generation born from the exposed parent. Multigenerational factors may account for inconsistencies and gaps in heritable nicotine addiction vulnerability. Our lab previously found that F1 offspring of male C57BL/6J mice chronically exposed to nicotine exhibited altered hippocampus functioning and related learning, nicotine-seeking, nicotine metabolism, and basal stress hormones. In an effort to identify germline mechanisms underlying these multigenerational phenotypes, the current study sequenced small RNA extracted from sperm of males chronically administered nicotine using our previously established exposure model. We identified 16 miRNAs whose expression in sperm was dysregulated by nicotine exposure. A literature review of previous research on these transcripts suggested an enrichment for regulation of psychological stress and learning. mRNAs predicted to be regulated by differentially expressed sperm small RNAs were further analyzed using exploratory enrichment analysis, which suggested potential modulation of pathways related to learning, estrogen signaling, and hepatic disease, among other findings. Overall, our findings point to links between nicotine-exposed F0 sperm miRNA and altered F1 phenotypes in this multigenerational inheritance model, particularly F1 memory, stress, and nicotine metabolism. These findings provide a valuable foundation for future functional validation of these hypotheses and characterization of mechanisms underlying male-line multigenerational inheritance.
Collapse
Affiliation(s)
- Dana Zeid
- Department of Psychology, Temple University, Philadelphia PA, USA
| | - Thomas J. Gould
- Department of Biobehavioral Health, Penn State University, University Park PA, USA
| |
Collapse
|
30
|
Xia Y, Ding X, Wang S, Ren W. Circadian orchestration of host and gut microbiota in infection. Biol Rev Camb Philos Soc 2023; 98:115-131. [PMID: 36106627 DOI: 10.1111/brv.12898] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 01/12/2023]
Abstract
Circadian rhythms are present in almost every organism and regulate multiple aspects of biological and physiological processes (e.g. metabolism, immune responses, and microbial exposure). There exists a bidirectional circadian interaction between the host and its gut microbiota, and potential circadian orchestration of both host and gut microbiota in response to invading pathogens. In this review, we summarize what is known about these intestinal microbial oscillations and the relationships between host circadian clocks and various infectious agents (bacteria, fungi, parasites, and viruses), and discuss how host circadian clocks prime the immune system to fight pathogen infections as well as the direct effects of circadian clocks on viral activity (e.g. SARS-CoV-2 entry and replication). Finally, we consider strategies employed to realign normal circadian rhythmicity for host health, such as chronotherapy, dietary intervention, good sleep hygiene, and gut microbiota-targeted therapy. We propose that targeting circadian rhythmicity may provide therapeutic opportunities for the treatment of infectious diseases.
Collapse
Affiliation(s)
- Yaoyao Xia
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, 730050, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xuezhi Ding
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, 730050, China
| | - Shengyi Wang
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou, 730050, China
| | - Wenkai Ren
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
31
|
Han J, Mendell JT. MicroRNA turnover: a tale of tailing, trimming, and targets. Trends Biochem Sci 2023; 48:26-39. [PMID: 35811249 PMCID: PMC9789169 DOI: 10.1016/j.tibs.2022.06.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/06/2022] [Accepted: 06/13/2022] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) post-transcriptionally repress gene expression by guiding Argonaute (AGO) proteins to target mRNAs. While much is known about the regulation of miRNA biogenesis, miRNA degradation pathways are comparatively poorly understood. Although miRNAs generally exhibit slow turnover, they can be rapidly degraded through regulated mechanisms that act in a context- or sequence-specific manner. Recent work has revealed a particularly important role for specialized target interactions in controlling rates of miRNA degradation. Engagement of these targets is associated with the addition and removal of nucleotides from the 3' ends of miRNAs, a process known as tailing and trimming. Here we review these mechanisms of miRNA modification and turnover, highlighting the contexts in which they impact miRNA stability and discussing important questions that remain unanswered.
Collapse
Affiliation(s)
- Jaeil Han
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Joshua T Mendell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA.
| |
Collapse
|
32
|
Liver Damage and microRNAs: An Update. Curr Issues Mol Biol 2022; 45:78-91. [PMID: 36661492 PMCID: PMC9857663 DOI: 10.3390/cimb45010006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
One of the major organs in the body with multiple functions is the liver. It plays a central role in the transformation of macronutrients and clearance of chemicals and drugs. The serum biomarkers often used to indicate liver damage are not specifically for drug-induced liver injury (DILI) or liver injury caused by other xenobiotics, nor for viral infection. In this case, microRNAs (miRNAs) could play an exciting role as biomarkers of specific liver damage. In this review, we aimed to update the current literature on liver damage induced by drugs, as acute conditions and viral infections mediated by the hepatitis B virus (HBV) linked these two conditions to advanced research, with a focus on microRNAs as early biomarkers for liver damage. The undoubtable evidence that circulating miR-122 could be used as a human biomarker of DILI came from several studies in which a strong increase of it was linked with the status of liver function. In infancy, there is the possibility of an early miRNA detection for hepatitis B virus infection, but there are a lack of solid models for studying the HVB molecular mechanism of infection in detail, even if miRNAs do hold unrealized potential as biomarkers for early detection of hepatitis B virus infection mediated by HBV.
Collapse
|
33
|
Bai C, Liu Y, Zhao Y, Ye Q, Zhao C, Liu Y, Wang J. Circulating exosome-derived miR-122-5p is a novel biomarker for prediction of postoperative atrial fibrillation. J Cardiovasc Transl Res 2022; 15:1393-1405. [PMID: 35513595 DOI: 10.1007/s12265-022-10267-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/21/2022] [Indexed: 12/16/2022]
Abstract
Postoperative atrial fibrillation (POAF) is a frequent complication associated with increased periprocedural mortality and morbidity after cardiac surgery. Our study aimed to identify the difference in exosomal miRNA and further explore its role in the diagnosis of POAF. First, the differentially expressed miRNAs (DEMs) were obtained by high-throughput RNA sequencing. Second, the DEMs target genes were put into gene ontology (GO) and KEGG pathway analysis. Third, real-time quantification PCR (RT-qPCR) was used to verify the DEMs. Finally, we revealed 23 DEMs in POAF patients. Furthermore, analysis of gene function revealed that DEMs may affect atrial structure through many signaling pathways. We also found that miR-122-5p was up-regulated in POAF patients, but there are no significant changes in miR-191-5p, miR-181a-5p, miR-155-5p and miR-151a-5p. Our study revealed that exosomal miRNAs exert enormous potential in evaluating the severity or prognostic of POAF.
Collapse
Affiliation(s)
- Chen Bai
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Yisi Liu
- School of Nursing, Capital Medical University, Beijing, 100069, China
| | - Yichen Zhao
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Qing Ye
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Cheng Zhao
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Yang Liu
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Jiangang Wang
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.
| |
Collapse
|
34
|
Li T, Zhang S, Yang Y, Zhang L, Yuan Y, Zou J. Co-regulation of circadian clock genes and microRNAs in bone metabolism. J Zhejiang Univ Sci B 2022; 23:529-546. [PMID: 35794684 DOI: 10.1631/jzus.b2100958] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mammalian bone is constantly metabolized from the embryonic stage, and the maintenance of bone health depends on the dynamic balance between bone resorption and bone formation, mediated by osteoclasts and osteoblasts. It is widely recognized that circadian clock genes can regulate bone metabolism. In recent years, the regulation of bone metabolism by non-coding RNAs has become a hotspot of research. MicroRNAs can participate in bone catabolism and anabolism by targeting key factors related to bone metabolism, including circadian clock genes. However, research in this field has been conducted only in recent years and the mechanisms involved are not yet well established. Recent studies have focused on how to target circadian clock genes to treat some diseases, such as autoimmune diseases, but few have focused on the co-regulation of circadian clock genes and microRNAs in bone metabolic diseases. Therefore, in this paper we review the progress of research on the co-regulation of bone metabolism by circadian clock genes and microRNAs, aiming to provide new ideas for the prevention and treatment of bone metabolic diseases such as osteoporosis.
Collapse
Affiliation(s)
- Tingting Li
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China.,School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Shihua Zhang
- College of Graduate Education, Jinan Sport University, Jinan 250102, China
| | - Yuxuan Yang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Lingli Zhang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Yu Yuan
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China. ,
| | - Jun Zou
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
35
|
Mekbib T, Suen TC, Rollins-Hairston A, Smith K, Armstrong A, Gray C, Owino S, Baba K, Baggs JE, Ehlen JC, Tosini G, DeBruyne JP. "The ubiquitin ligase SIAH2 is a female-specific regulator of circadian rhythms and metabolism". PLoS Genet 2022; 18:e1010305. [PMID: 35789210 PMCID: PMC9286287 DOI: 10.1371/journal.pgen.1010305] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/15/2022] [Accepted: 06/22/2022] [Indexed: 01/05/2023] Open
Abstract
Circadian clocks enable organisms to predict and align their behaviors and physiologies to constant daily day-night environmental cycle. Because the ubiquitin ligase Siah2 has been identified as a potential regulator of circadian clock function in cultured cells, we have used SIAH2-deficient mice to examine its function in vivo. Our experiments demonstrate a striking and unexpected sexually dimorphic effect of SIAH2-deficiency on the regulation of rhythmically expressed genes in the liver. The absence of SIAH2 in females, but not in males, altered the expression of core circadian clock genes and drastically remodeled the rhythmic transcriptome in the liver by increasing the number of day-time expressed genes, and flipping the rhythmic expression from nighttime expressed genes to the daytime. These effects are not readily explained by effects on known sexually dimorphic pathways in females. Moreover, loss of SIAH2 in females, not males, preferentially altered the expression of transcription factors and genes involved in regulating lipid and lipoprotein metabolism. Consequently, SIAH2-deficient females, but not males, displayed disrupted daily lipid and lipoprotein patterns, increased adiposity and impaired metabolic homeostasis. Overall, these data suggest that SIAH2 may be a key component of a female-specific circadian transcriptional output circuit that directs the circadian timing of gene expression to regulate physiological rhythms, at least in the liver. In turn, our findings imply that sex-specific transcriptional mechanisms may closely interact with the circadian clock to tailor overt rhythms for sex-specific needs.
Collapse
Affiliation(s)
- Tsedey Mekbib
- Neuroscience Institute, Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Ting-Chung Suen
- Neuroscience Institute, Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Aisha Rollins-Hairston
- Neuroscience Institute, Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Kiandra Smith
- Neuroscience Institute, Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Ariel Armstrong
- Neuroscience Institute, Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Cloe Gray
- Neuroscience Institute, Department of Neurobiology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Sharon Owino
- Neuroscience Institute, Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Kenkichi Baba
- Neuroscience Institute, Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Julie E. Baggs
- Neuroscience Institute, Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - J. Christopher Ehlen
- Neuroscience Institute, Department of Neurobiology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Gianluca Tosini
- Neuroscience Institute, Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Jason P. DeBruyne
- Neuroscience Institute, Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| |
Collapse
|
36
|
Lou J, Wu J, Feng M, Dang X, Wu G, Yang H, Wang Y, Li J, Zhao Y, Shi C, Liu J, Zhao L, Zhang X, Gao F. Exercise promotes angiogenesis by enhancing endothelial cell fatty acid utilization via liver-derived extracellular vesicle miR-122-5p. JOURNAL OF SPORT AND HEALTH SCIENCE 2022; 11:495-508. [PMID: 34606978 PMCID: PMC9338338 DOI: 10.1016/j.jshs.2021.09.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/17/2021] [Accepted: 08/03/2021] [Indexed: 05/15/2023]
Abstract
BACKGROUND Angiogenesis constitutes a major mechanism responsible for exercise-induced beneficial effects. Our previous study identified a cluster of differentially expressed extracellular vesicle microRNAs (miRNAs) after exercise and found that some of them act as exerkines. However, whether these extracellular vesicle miRNAs mediate the exercise-induced angiogenesis remains unknown. METHODS A 9-day treadmill training was used as an exercise model in C57BL/6 mice. Liver-specific adeno-associated virus 8 was used to knock down microRNA-122-5p (miR-122-5p). Human umbilical vein endothelial cells were used in vitro. RESULTS Among these differentially expressed extracellular vesicle miRNAs, miR-122-5p was identified as a potent pro-angiogenic factor that activated vascular endothelial growth factor signaling and promoted angiogenesis both in vivo and in vitro. Exercise increased circulating levels of miR-122-5p, which was produced mainly by the liver and shuttled by extracellular vesicles in mice. Inhibition of circulating miR-122-5p or liver-specific knockdown of miR-122-5p significantly abolished the exercise-induced pro-angiogenic effect in skeletal muscles, and exercise-improved muscle performance in mice. Mechanistically, miR-122-5p promoted angiogenesis through shifting substrate preference to fatty acids in endothelial cells, and miR-122-5p upregulated endothelial cell fatty-acid utilization by targeting 1-acyl-sn-glycerol-3-phosphate acyltransferase (AGPAT1). In addition, miR-122-5p increased capillary density in perilesional skin tissues and accelerated wound healing in mice. CONCLUSION These findings demonstrated that exercise promotes angiogenesis through upregulation of liver-derived extracellular vesicle miR-122-5p, which enhances fatty acid utilization by targeting AGPAT1 in endothelial cells, highlighting the therapeutic potential of miR-122-5p in tissue repair.
Collapse
Affiliation(s)
- Jing Lou
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China; School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Jie Wu
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China; Medical School of Chinese PLA, Beijing 100853, China
| | - Mengya Feng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China; School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Xue Dang
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Guiling Wu
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Hongyan Yang
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Yan Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jia Li
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Yong Zhao
- Laboratory Animal Center, Fourth Military Medical University, Xi'an 710032, China
| | - Changhong Shi
- Laboratory Animal Center, Fourth Military Medical University, Xi'an 710032, China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lin Zhao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Xing Zhang
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Feng Gao
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
37
|
Chun KH. Molecular Targets and Signaling Pathways of microRNA-122 in Hepatocellular Carcinoma. Pharmaceutics 2022; 14:1380. [PMID: 35890276 PMCID: PMC9316959 DOI: 10.3390/pharmaceutics14071380] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 01/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading global causes of cancer mortality. MicroRNAs (miRNAs) are small interfering RNAs that alleviate the levels of protein expression by suppressing translation, inducing mRNA cleavage, and promoting mRNA degradation. miR-122 is the most abundant miRNA in the liver and is responsible for several liver-specific functions, including metabolism, cellular growth and differentiation, and hepatitis virus replication. Recent studies have shown that aberrant regulation of miR-122 is a key factor contributing to the development of HCC. In this review, the signaling pathways and the molecular targets of miR-122 involved in the progression of HCC have been summarized, and the importance of miR-122 in therapy has been discussed.
Collapse
Affiliation(s)
- Kwang-Hoon Chun
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Korea
| |
Collapse
|
38
|
Bala S, Babuta M, Catalano D, Saiju A, Szabo G. Alcohol Promotes Exosome Biogenesis and Release via Modulating Rabs and miR-192 Expression in Human Hepatocytes. Front Cell Dev Biol 2022; 9:787356. [PMID: 35096820 PMCID: PMC8795686 DOI: 10.3389/fcell.2021.787356] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Exosomes are membrane vesicles released by various cell types into the extracellular space under different conditions including alcohol exposure. Exosomes are involved in intercellular communication and as mediators of various diseases. Alcohol use causes oxidative stress that promotes exosome secretion. Here, we elucidated the effects of alcohol on exosome biogenesis and secretion using human hepatocytes. We found that alcohol treatment induces the expression of genes involved in various steps of exosome formation. Expression of Rab proteins such as Rab1a, Rab5c, Rab6, Rab10, Rab11, Rab27a and Rab35 were increased at the mRNA level in primary human hepatocytes after alcohol treatment. Rab5, Rab6 and Rab11 showed significant induction in the livers of patients with alcohol-associated liver disease. Further, alcohol treatment also led to the induction of syntenin, vesicle-associated membrane proteins (VAMPs), and syntaxin that all play various roles in exosome biogenesis and secretion. VAMP3, VAMP5, VAPb, and syntaxin16 mRNA transcripts were increased in alcohol treated cells and in the livers of alcohol-associated liver disease (ALD) patients. Induction in these genes was associated with increases in exosome secretion in alcohol treated hepatocytes. We found that hepatocyte enriched miR-192 and miR-122 levels were significantly decreased in alcohol treated hepatocytes whereas their levels were increased in the cell-free supernatant. The primary transcripts of miR-192 and miR-122 were reduced in alcohol treated hepatocytes, suggesting alcohol partially affects these miRNAs at the transcriptional level. We found that miR-192 has putative binding sites for genes involved in exosome secretion. Inhibition of miR-192 in human hepatoma cells caused a significant increase in Rab27a, Rab35, syntaxin7 and syntaxin16 and a concurrent increase in exosome secretion, suggesting miR-192 regulates exosomes release in hepatocytes. Collectively, our results reveal that alcohol modulates Rabs, VAMPs and syntaxins directly and partly via miR-192 to induce exosome machinery and release.
Collapse
Affiliation(s)
- Shashi Bala
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Mrigya Babuta
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Donna Catalano
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| | - Aman Saiju
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Gyongyi Szabo
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
39
|
Application and Prospect of Platelet Multi-Omics Technology in Study of Blood Stasis Syndrome. Chin J Integr Med 2021; 28:99-105. [PMID: 34935097 DOI: 10.1007/s11655-021-3349-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2021] [Indexed: 10/19/2022]
Abstract
The abnormality of platelet function plays an important role in the pathogenesis and evolution of blood stasis syndrome (BSS). The explanation of its mechanism is a key scientific issue in the study of cardiovascular and cerebrovascular diseases and treatment. System biology technology provides a good technical platform for further development of platelet multi-omics, which is conducive to the scientific interpretation of the biological mechanism of BSS. The article summarized the pathogenesis of platelets in BSS, the mechanism of action of blood activating and stasis resolving drugs, and the application of genomics, proteomics, and metabonomics in platelet research, and put forward the concept of "plateletomics in BSS". Through the combination and cross-validation of multi-omics technology, it mainly focuses on the clinical and basic research of cardiovascular and cerebrovascular diseases; through the interactive verification of multi-omics technology and system biology, it mainly focuses on the platelet function and secretion system. The article systematically explains the molecular biological mechanism of platelet activation, aggregation, release, and other stages in the formation and development of BSS, and provides a new research idea and method for clarifying the pathogenesis of BSS and the mechanism of action of blood activating and stasis resolving drugs.
Collapse
|
40
|
Zhang Y, Tan YY, Chen PP, Xu H, Xie SJ, Xu SJ, Li B, Li JH, Liu S, Yang JH, Zhou H, Qu LH. Genome-wide identification of microRNA targets reveals positive regulation of the Hippo pathway by miR-122 during liver development. Cell Death Dis 2021; 12:1161. [PMID: 34907157 PMCID: PMC8671590 DOI: 10.1038/s41419-021-04436-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 12/19/2022]
Abstract
Liver development is a highly complex process that is regulated by the orchestrated interplay of epigenetic regulators, transcription factors, and microRNAs (miRNAs). Owing to the lack of global in vivo targets of all miRNAs during liver development, the mechanisms underlying the dynamic control of hepatocyte differentiation by miRNAs remain elusive. Here, using Argonaute (Ago) high-throughput sequencing of RNA isolated by crosslinking immunoprecipitation (HITS-CLIP) in the mouse liver at different developmental stages, we characterized massive Ago-binding RNAs and obtained a genome-wide map of liver miRNA-mRNA interactions. The dynamic changes of five clusters of miRNAs and their potential targets were identified to be differentially involved at specific stages, a dozen of high abundant miRNAs and their epigenetic regulation by super-enhancer were found during liver development. Remarkably, miR-122, a liver-specific and most abundant miRNA in newborn and adult livers, was found by its targetome and pathway reporter analyses to regulate the Hippo pathway, which is crucial for liver size control and homeostasis. Mechanistically, we further demonstrated that miR-122 negatively regulates the outcomes of the Hippo pathway transcription factor TEAD by directly targeting a number of hippo pathway regulators, including the coactivator TAZ and a key factor of the phosphatase complex PPP1CC, which contributes to the dephosphorylation of YAP, another coactivator downstream of the Hippo pathway. This study identifies for the first time the genome-wide miRNA targetomes during mouse liver development and demonstrates a novel mechanism of terminal differentiation of hepatocytes regulated by the miR-122/Hippo pathway in a coordinated manner. As the Hippo pathway plays important roles in cell proliferation and liver pathological processes like inflammation, fibrosis, and hepatocellular carcinoma (HCC), our study could also provide a new insight into the function of miR-122 in liver pathology.
Collapse
Affiliation(s)
- Yin Zhang
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene function and regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275 China ,grid.12981.330000 0001 2360 039XGuangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120 China
| | - Ye-Ya Tan
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene function and regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Pei-Pei Chen
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene function and regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275 China ,grid.413402.00000 0004 6068 0570Guangdong Province Hospital of Chinese Medicine, AMI Key Laboratory of Chinese Medicine in Guangzhou, , The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Science, Guangzhou, 510006 China
| | - Hui Xu
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene function and regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Shu-Juan Xie
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene function and regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Shi-Jun Xu
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene function and regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Bin Li
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene function and regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Jun-Hao Li
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene function and regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Shun Liu
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene function and regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Jian-Hua Yang
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene function and regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Hui Zhou
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene function and regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Liang-Hu Qu
- MOE Key Laboratory of Gene function and regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
41
|
Wang L, Chen H. Correlation between serum miR-122 and myocardial damage and ventricular function in patients with essential hypertension. J Thorac Dis 2021; 13:4999-5006. [PMID: 34527338 PMCID: PMC8411147 DOI: 10.21037/jtd-21-677] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 07/19/2021] [Indexed: 12/29/2022]
Abstract
Background Myocardial damage and decreased ventricular function are risk factors leading to a bad prognosis in patients with essential hypertension (EH). MicroRNAs play important roles in myocardial function impairment in patients with hypertension. The purpose of our research was to investigate the correlation between serum miR-122 and myocardial damage and ventricular functions in EH patients. Methods The clinic data of EH patients (group A, n=60) and healthy individuals (group B, n=60) from December 2016 to December 2019 in our hospital were collected and analyzed. Serum miR-122, myocardial damage markers [B-type brain natriuretic peptide (BNP), homocysteine (Hcy), cardiac troponin T (cTnT) and creatine kinase MB isoenzyme (CK-MB)] and cardiac function indicators [ejection fraction (EF), left ventricular septal thickness (IVST), left ventricular isovolumic relaxation time (IVRT), left ventricular end-diastolic diameter (LVEDD), left ventricular posterior wall thickness (LVPWT), and left ventricular end-systolic diameter (LVESD)] were assessed in both groups. The correlation between serum miR-122 and myocardial damage markers and ventricular function indicators was analyzed. Results (I) The mean serum miR-122 concentration in group A and group B was 6.86±1.23 and 3.36±1.87 µmol/L, respectively. The serum miR-122 concentration in group A was evidently increased compared with that in group B. (II) The levels of BNP, Hcy, cTnT, and CK-MB in the peripheral blood in group A were evidently increased compared with those in group B (P<0.05). (III) EF and IVRT were evidently decreased in group A compared with that in group B (P<0.05). (IV) Serum miR-122 concentration was positively correlated with the myocardial damage markers BNP, Hcy, cTnT and CK-MB, and serum miR-122 concentration was negatively correlated with the ventricular function indicators EF and IVRT but not significantly correlated with other ventricular function indicators (IVST, LVEDD, LVPWT and LVESD). Conclusions The serum miR-122 concentration in EH patients was higher than that in healthy individuals, and miR-122 concentration was positively correlated with myocardial damage markers. Serum miR-122 level was negatively correlated with the ventricular function indicators EF and IVRT but was not significantly correlated with other ventricular function indicators (IVST, LVEDD, LVPWT, and LVESD).
Collapse
Affiliation(s)
- Liangguo Wang
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huabing Chen
- Department of Radiology, Second Clinical School of Medicine, Changjiang University, Jingzhou, China
| |
Collapse
|
42
|
Anna G, Kannan NN. Post-transcriptional modulators and mediators of the circadian clock. Chronobiol Int 2021; 38:1244-1261. [PMID: 34056966 PMCID: PMC7611477 DOI: 10.1080/07420528.2021.1928159] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/26/2021] [Accepted: 05/03/2021] [Indexed: 01/04/2023]
Abstract
The endogenous circadian timekeeping system drives ~24-h rhythms in gene expression and rhythmically coordinates the physiology, metabolism and behavior in a wide range of organisms. Regulation at various levels is important for the accurate functioning of this circadian timing system. The core circadian oscillator consists of an interlocked transcriptional-translational negative feedback loop (TTFL) that imposes a substantial delay between the accumulation of clock gene mRNA and its protein to generate 24-h oscillations. This TTFL mediated daily oscillation of clock proteins is further fine-tuned by post-translational modifications that regulate the clock protein stability, interaction with other proteins and subcellular localization. Emerging evidence from various studies indicates that besides TTFL and post-translational modifications, post-transcriptional regulation plays a key role in shaping the rhythmicity of mRNAs and to delay the accumulation of clock proteins in relation to their mRNAs. In this review, we summarize the current knowledge on the importance of post-transcriptional regulatory mechanisms such as splicing, polyadenylation, the role of RNA-binding proteins, RNA methylation and microRNAs in the context of shaping the circadian rhythmicity in Drosophila and mammals. In particular, we discuss microRNAs, an important player in post-transcriptional regulation of core-clock machinery, circadian neural circuit, clock input, and output pathways. Furthermore, we provide an overview of the microRNAs that exhibit diurnal rhythm in expression and their role in mediating rhythmic physiological processes.
Collapse
Affiliation(s)
- Geo Anna
- Chronobiology Laboratory, School of Biology, Indian Institute of Science Education and Research (IISER), Thiruvananthapuram, Kerala 695551, India
| | - Nisha N Kannan
- Chronobiology Laboratory, School of Biology, Indian Institute of Science Education and Research (IISER), Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
43
|
Abd El-Haleim EA, Sallam NA. Vitamin D modulates hepatic microRNAs and mitigates tamoxifen-induced steatohepatitis in female rats. Fundam Clin Pharmacol 2021; 36:338-349. [PMID: 34312906 DOI: 10.1111/fcp.12720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/23/2021] [Indexed: 12/26/2022]
Abstract
Tamoxifen (TAM) is a life-saving and cost-effective drug widely used in the prevention and treatment of breast cancer. However, the adverse effects of tamoxifen can lead to non-adherence and poor patient outcomes. Therefore, exploring novel strategies to improve TAM safety profile is crucial. Given the key role that vitamin D (VD) plays in modulating lipid metabolism and inflammation, in addition to its benefits in reducing risk and progression of breast cancer, we evaluated the protective potential of VD against TAM-induced hepatotoxicity focusing on lipid metabolism and microRNAs (miRNAs) regulation. Female rats were pretreated with VD as cholecalciferol (500 IU/kg/day, po) for 4 weeks before receiving TAM (40 mg/kg/day, po) concurrently with VD during the fifth and sixth weeks. Liver histology, lipid profile and expression of genes, proteins, and miRNAs involved in lipid metabolism and inflammation were examined. TAM-induced steatohepatitis was evidenced by elevated liver triglycerides and cholesterol contents, increased serum miRNA-122 level, and ALT activity, in parallel with accumulation of lipid droplets, focal necrosis, and inflammatory cells infiltration in hepatocytes. Prophylactic use of VD mitigated TAM-induced steatohepatitis by modulating key transcription factors in the liver: PPAR-α, Srebf1, and NF-κB and their downstream genes/proteins Fas, CPT-1A, and TNF-α resulting in reduced hepatic lipids and suppressed pro-inflammatory signaling. Notably, VD pretreatment mitigated TAM-induced alterations in the expression of serum miRNA-122, hepatic miRNA-21, and miRNA-33. The combination therapy of VD and TAM has complementary benefits in terms of safety and not only efficacy and should be further investigated clinically.
Collapse
Affiliation(s)
- Enas A Abd El-Haleim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Nada A Sallam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
44
|
Wu J, Nagy LE, Liangpunsakul S, Wang L. Non-coding RNA crosstalk with nuclear receptors in liver disease. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166083. [PMID: 33497819 PMCID: PMC7987766 DOI: 10.1016/j.bbadis.2021.166083] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/28/2020] [Accepted: 01/16/2021] [Indexed: 02/06/2023]
Abstract
The dysregulation of nuclear receptors (NRs) underlies the pathogenesis of a variety of liver disorders. Non-coding RNAs (ncRNAs) are defined as RNA molecules transcribed from DNA but not translated into proteins. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are two types of ncRNAs that have been extensively studied for regulating gene expression during diverse cellular processes. NRs as therapeutic targets in liver disease have been exemplified by the successful application of their pharmacological ligands in clinics. MiRNA-based reagents or drugs are emerging as flagship products in clinical trials. Advancing our understanding of the crosstalk between NRs and ncRNAs is critical to the development of diagnostic and therapeutic strategies. This review summarizes recent findings on the reciprocal regulation between NRs and ncRNAs (mainly on miRNAs and lncRNAs) and their implication in liver pathophysiology, which might be informative to the translational medicine of targeting NRs and ncRNAs in liver disease.
Collapse
Affiliation(s)
- Jianguo Wu
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America; Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH, United States of America.
| | - Laura E Nagy
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America; Department of Gastroenterology and Hepatology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America; Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH, United States of America
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States of America; Roudebush Veterans Administration Medical Center, Indianapolis, IN, United States of America; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Li Wang
- Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, CT, United States of America
| |
Collapse
|
45
|
Ahmad SF, Shanaz S, Kumar A, Dar AH, Mohmad A, Bhushan B. Crosstalk of epigenetics with biological rhythmicity in animal kingdom. BIOL RHYTHM RES 2021. [DOI: 10.1080/09291016.2019.1607218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Sheikh Firdous Ahmad
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Syed Shanaz
- Department of Animal Genetics and Breeding, Sher-i-Kashmir University of Agricultural Sciences and Technology, Srinagar, India
| | - Abhishek Kumar
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Aashaq Hussain Dar
- Department of Livestock Production and Management, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand
| | - Aquil Mohmad
- Division of Parasitology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Bharat Bhushan
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Bareilly, India
| |
Collapse
|
46
|
Parnell AA, De Nobrega AK, Lyons LC. Translating around the clock: Multi-level regulation of post-transcriptional processes by the circadian clock. Cell Signal 2021; 80:109904. [PMID: 33370580 PMCID: PMC8054296 DOI: 10.1016/j.cellsig.2020.109904] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022]
Abstract
The endogenous circadian clock functions to maintain optimal physiological health through the tissue specific coordination of gene expression and synchronization between tissues of metabolic processes throughout the 24 hour day. Individuals face numerous challenges to circadian function on a daily basis resulting in significant incidences of circadian disorders in the United States and worldwide. Dysfunction of the circadian clock has been implicated in numerous diseases including cancer, diabetes, obesity, cardiovascular and hepatic abnormalities, mood disorders and neurodegenerative diseases. The circadian clock regulates molecular, metabolic and physiological processes through rhythmic gene expression via transcriptional and post-transcriptional processes. Mounting evidence indicates that post-transcriptional regulation by the circadian clock plays a crucial role in maintaining tissue specific biological rhythms. Circadian regulation affecting RNA stability and localization through RNA processing, mRNA degradation, and RNA availability for translation can result in rhythmic protein synthesis, even when the mRNA transcripts themselves do not exhibit rhythms in abundance. The circadian clock also targets the initiation and elongation steps of translation through multiple pathways. In this review, the influence of the circadian clock across the levels of post-transcriptional, translation, and post-translational modifications are examined using examples from humans to cyanobacteria demonstrating the phylogenetic conservation of circadian regulation. Lastly, we briefly discuss chronotherapies and pharmacological treatments that target circadian function. Understanding the complexity and levels through which the circadian clock regulates molecular and physiological processes is important for future advancement of therapeutic outcomes.
Collapse
Affiliation(s)
- Amber A Parnell
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Aliza K De Nobrega
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Lisa C Lyons
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
47
|
Sundrani DP, Karkhanis AR, Joshi SR. Peroxisome Proliferator-Activated Receptors (PPAR), fatty acids and microRNAs: Implications in women delivering low birth weight babies. Syst Biol Reprod Med 2021; 67:24-41. [PMID: 33719831 DOI: 10.1080/19396368.2020.1858994] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Low birth weight (LBW) babies are associated with neonatal morbidity and mortality and are at increased risk for noncommunicable diseases (NCDs) in later life. However, the molecular determinants of LBW are not well understood. Placental insufficiency/dysfunction is the most frequent etiology for fetal growth restriction resulting in LBW and placental epigenetic processes are suggested to be important regulators of pregnancy outcome. Early life exposures like altered maternal nutrition may have long-lasting effects on the health of the offspring via epigenetic mechanisms like DNA methylation and microRNA (miRNA) regulation. miRNAs have been recognized as major regulators of gene expression and are known to play an important role in placental development. Angiogenesis in the placenta is known to be regulated by transcription factor peroxisome proliferator-activated receptor (PPAR) which is activated by ligands such as long-chain-polyunsaturated fatty acids (LCPUFA). In vitro studies in different cell types indicate that fatty acids can influence epigenetic mechanisms like miRNA regulation. We hypothesize that maternal fatty acid status may influence the miRNA regulation of PPAR genes in the placenta in women delivering LBW babies. This review provides an overview of miRNAs and their regulation of PPAR gene in the placenta of women delivering LBW babies.Abbreviations: AA - Arachidonic Acid; Ago2 - Argonaute2; ALA - Alpha-Linolenic Acid; ANGPTL4 - Angiopoietin-Like Protein 4; C14MC - Chromosome 14 miRNA Cluster; C19MC - Chromosome 19 miRNA Cluster; CLA - Conjugated Linoleic Acid; CSE - Cystathionine γ-Lyase; DHA - Docosahexaenoic Acid; EFA - Essential Fatty Acids; E2F3 - E2F transcription factor 3; EPA - Eicosapentaenoic Acid; FGFR1 - Fibroblast Growth Factor Receptor 1; GDM - Gestational Diabetes Mellitus; hADMSCs - Human Adipose Tissue-Derived Mesenchymal Stem Cells; hBMSCs - Human Bone Marrow Mesenchymal Stem Cells; HBV - Hepatitis B Virus; HCC - Hepatocellular Carcinoma; HCPT - Hydroxycamptothecin; HFD - High-Fat Diet; Hmads - Human Multipotent Adipose-Derived Stem; HSCS - Human Hepatic Stellate Cells; IUGR - Intrauterine Growth Restriction; LA - Linoleic Acid; LBW - Low Birth Weight; LCPUFA - Long-Chain Polyunsaturated Fatty Acids; MEK1 - Mitogen-Activated Protein Kinase 1; MiRNA - MicroRNA; mTOR - Mammalian Target of Rapamycin; NCDs - NonCommunicable Diseases; OA - Oleic Acid; PASMC - Pulmonary Artery Smooth Muscle Cell; PLAG1 - Pleiomorphic Adenoma Gene 1; PPAR - Peroxisome Proliferator-Activated Receptor; PPARα - PPAR alpha; PPARγ - PPAR gamma; PPARδ - PPAR delta; pre-miRNA - precursor miRNA; RISC - RNA-Induced Silencing Complex; ROS - Reactive Oxygen Species; SAT - Subcutaneous Adipose Tissue; WHO - World Health Organization.
Collapse
Affiliation(s)
- Deepali P Sundrani
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Aishwarya R Karkhanis
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Sadhana R Joshi
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| |
Collapse
|
48
|
Ge X, Xie H, Wang L, Li R, Zhang F, Xu J, Zhao B, Du J. MicroRNA-122 promotes apoptosis of keratinocytes in oral lichen planus through suppressing VDR expression. J Cell Mol Med 2021; 25:3400-3407. [PMID: 33656264 PMCID: PMC8034474 DOI: 10.1111/jcmm.16418] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/05/2021] [Accepted: 02/12/2021] [Indexed: 12/14/2022] Open
Abstract
MicroRNA‐122 (miR‐122) is known to be up‐regulated by inflammation to exert a variety of biological functions in hepatocellular carcinoma (HCC)‐derived human cell lines. Vitamin D receptor (VDR) is reported to regulate excessive oral keratinocytes apoptosis which compromises oral epithelial barrier in oral lichen planus (OLP). Although many studies have suggested that miR‐122 is capable of regulating cell apoptosis, its effects on the development of OLP and VDR expression are still unclear. Herein, we demonstrate that miR‐122 expression is increased in the epithelial layer of OLP. Mechanically, transcription factor nuclear factor‐κB (NF‐κB) selectively binds with κB element in the promoter of miR‐122 to accelerate gene transcription. The up‐regulation of miR‐122 induces cell apoptosis in human oral keratinocytes (HOKs) by targeting VDR mRNA. In VDR knockout oral keratinocytes, miR‐122 fails to improve caspase 3 activity and cleaved caspase 3 and poly(ADP‐ribose) polymerase (PARP) levels. Moreover, VDR overexpression is able to reverse lipopolysaccharide (LPS)‐ or activated CD4+ T cell–induced miR‐122 up‐regulation and ameliorate miR‐122‐stimulated caspase 3 activity. Collectively, our results suggest that miR‐122 promotes oral keratinocytes apoptosis in OLP through decreasing VDR expression.
Collapse
Affiliation(s)
- Xuejun Ge
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China.,Department of Endodontics, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Hanting Xie
- Department of Pathology, Shanxi Medical University, Taiyuan, China
| | - Lu Wang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Ran Li
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Fang Zhang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China.,Department of Oral Medicine, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Jing Xu
- Department of Pathology, Shanxi Medical University, Taiyuan, China
| | - Bin Zhao
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Jie Du
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China.,Department of Oral Medicine, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China.,Institute of Biomedical Research, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
49
|
Mohr R, Özdirik B, Lambrecht J, Demir M, Eschrich J, Geisler L, Hellberg T, Loosen SH, Luedde T, Tacke F, Hammerich L, Roderburg C. From Liver Cirrhosis to Cancer: The Role of Micro-RNAs in Hepatocarcinogenesis. Int J Mol Sci 2021; 22:1492. [PMID: 33540837 PMCID: PMC7867354 DOI: 10.3390/ijms22031492] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 01/23/2021] [Accepted: 01/28/2021] [Indexed: 12/19/2022] Open
Abstract
In almost all cases, hepatocellular carcinoma (HCC) develops as the endpoint of a sequence that starts with chronic liver injury, progresses to liver cirrhosis, and finally, over years and decades, results in liver cancer. Recently, the role of non-coding RNA such as microRNA (miRNA) has been demonstrated in the context of chronic liver diseases and HCC. Moreover, data from a phase II trial suggested a potential role of microRNAs as therapeutics in hepatitis-C-virus infection, representing a significant risk factor for development of liver cirrhosis and HCC. Despite progress in the clinical management of chronic liver diseases, pharmacological treatment options for patients with liver cirrhosis and/or advanced HCC are still limited. With their potential to regulate whole networks of genes, miRNA might be used as novel therapeutics in these patients but could also serve as biomarkers for improved patient stratification. In this review, we discuss available data on the role of miRNA in the transition from liver cirrhosis to HCC. We highlight opportunities for clinical translation and discuss open issues applicable to future developments.
Collapse
Affiliation(s)
- Raphael Mohr
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (B.Ö.); (J.L.); (M.D.); (J.E.); (L.G.); (T.H.); (F.T.); (L.H.); (C.R.)
| | - Burcin Özdirik
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (B.Ö.); (J.L.); (M.D.); (J.E.); (L.G.); (T.H.); (F.T.); (L.H.); (C.R.)
| | - Joeri Lambrecht
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (B.Ö.); (J.L.); (M.D.); (J.E.); (L.G.); (T.H.); (F.T.); (L.H.); (C.R.)
| | - Münevver Demir
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (B.Ö.); (J.L.); (M.D.); (J.E.); (L.G.); (T.H.); (F.T.); (L.H.); (C.R.)
| | - Johannes Eschrich
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (B.Ö.); (J.L.); (M.D.); (J.E.); (L.G.); (T.H.); (F.T.); (L.H.); (C.R.)
| | - Lukas Geisler
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (B.Ö.); (J.L.); (M.D.); (J.E.); (L.G.); (T.H.); (F.T.); (L.H.); (C.R.)
| | - Teresa Hellberg
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (B.Ö.); (J.L.); (M.D.); (J.E.); (L.G.); (T.H.); (F.T.); (L.H.); (C.R.)
| | - Sven H. Loosen
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty of Heinrich Heine University Düsseldorf, University Hospital Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (S.H.L.); (T.L.)
| | - Tom Luedde
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty of Heinrich Heine University Düsseldorf, University Hospital Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (S.H.L.); (T.L.)
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (B.Ö.); (J.L.); (M.D.); (J.E.); (L.G.); (T.H.); (F.T.); (L.H.); (C.R.)
| | - Linda Hammerich
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (B.Ö.); (J.L.); (M.D.); (J.E.); (L.G.); (T.H.); (F.T.); (L.H.); (C.R.)
| | - Christoph Roderburg
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (B.Ö.); (J.L.); (M.D.); (J.E.); (L.G.); (T.H.); (F.T.); (L.H.); (C.R.)
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty of Heinrich Heine University Düsseldorf, University Hospital Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (S.H.L.); (T.L.)
| |
Collapse
|
50
|
Oda S, Yokoi T. Recent progress in the use of microRNAs as biomarkers for drug-induced toxicities in contrast to traditional biomarkers: A comparative review. Drug Metab Pharmacokinet 2021; 37:100372. [PMID: 33461055 DOI: 10.1016/j.dmpk.2020.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 02/09/2023]
Abstract
microRNAs (miRNAs) are small non-coding RNAs with 18-25 nucleotides. They play key regulatory roles in versatile biological process including development and apoptosis, and in disease pathogenesis, for example carcinogenesis, by negatively regulating gene expression. miRNAs often exhibit characteristics suitable for biomarkers such as tissue-specific expression patterns, high stability in serum/plasma, and change in abundance in circulation immediately after toxic injury. Since the discovery of circulating miRNAs in extracellular biological fluids in 2008, there have been many reports on the use of miRNAs as biomarkers for various diseases including cancer and organ injury in humans and experimental animals. In this review article, we have summarized the utility and limitation of circulating miRNAs as safety/toxicology biomarkers for specific tissue injuries including liver, skeletal muscle, heart, retina, and pancreas, by comparing them with conventional protein biomarkers. We have also covered the discovery of miRNAs in serum/plasma and their stability, the knowledge of which is essential for understanding the kinetics of miRNA biomarkers. Since numerous studies have reported the use of these circulating miRNAs as safety biomarkers with high sensitivity and specificity, we believe that circulating miRNAs can promote pre-clinical drug development and improve the monitoring of tissue injuries in clinical pharmacotherapy.
Collapse
Affiliation(s)
- Shingo Oda
- Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan.
| | - Tsuyoshi Yokoi
- Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| |
Collapse
|