1
|
de Castro Sampaio SS, Ramalho MCC, de Souza CS, de Almeida Rodrigues B, de Mendonça GRS, Lazarini M. RHO subfamily of small GTPases in the development and function of hematopoietic cells. J Cell Physiol 2025; 240:e31469. [PMID: 39434451 DOI: 10.1002/jcp.31469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/16/2024] [Accepted: 10/03/2024] [Indexed: 10/23/2024]
Abstract
RHOA, RHOB, and RHOC comprise a subfamily of RHO GTPase proteins famed for controlling cytoskeletal dynamics. RHO proteins operate downstream of multiple signals emerging from the microenvironment, leading to diverse cell responses, such as proliferation, adhesion, and migration. Therefore, RHO signaling has been centrally placed in the regulation of blood cells. Despite their high homology, unique roles of RHOA, RHOB, and RHOC have been described in hematopoietic cells. In this article, we overview the contribution of RHO proteins in the development and function of each blood cell lineage. Additionally, we highlight the aberrations of the RHO signaling pathways found in hematological malignancies, providing clues for the identification of new therapeutic targets.
Collapse
Affiliation(s)
| | | | - Caroline Santos de Souza
- Department of Clinical and Experimental Oncology, Federal University of São Paulo, São Paulo, Brazil
| | | | | | - Mariana Lazarini
- Department of Clinical and Experimental Oncology, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Kristiansson A, Ceberg C, Bjartell A, Ceder J, Timmermand OV. Investigating Ras homolog gene family member C (RhoC) and Ki67 expression following external beam radiation therapy show increased RhoC expression in relapsing prostate cancer xenografts. Biochem Biophys Res Commun 2024; 728:150324. [PMID: 38968772 DOI: 10.1016/j.bbrc.2024.150324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024]
Abstract
Ras homolog gene family member C (RhoC) is a GTPase involved in cell migration, implicated in epithelial-mesenchymal transition and treatment resistance and metastasis of cancer. For example, RhoC has been shown to be involved in resistance to radiation in cervical carcinoma. Here, the effect of X-ray irradiation on RhoC expression in prostate cancer (PCa) xenografts was investigated in both xenografts in regression and relapse. Male BALB/cAnNRj-Foxn1nu/nu mice were inoculated with 4-6 million LNCaP-FGC cells and established xenografts were irradiated with X-rays (200 kV, 1 Gymin-1), 5, 10 or 15 Gy using a Gulmay Medical X-ray system. Expression of RhoC and Ki67, a known proliferation marker, was investigated in xenografts, given 15 Gy, 7 days (midst response as measured by size) or 3 weeks (relapse) post irradiation. Staining was quantified using the Halo software (v2.3.2089.34) with the Indica Labs - cytonuclear v1.6 algorithm. RhoC and Ki67 staining was divided into weak, medium, and strong staining and the percentage of cells stained, single and dual staining, was quantified. The HALO software was further used to classify the tissue in each section so that analysis of RhoC and Ki67 expression in cancer cells, stroma and necrotic areas could be done separately. The results showed that RhoC expression in cancer and stroma cells was significantly higher in relapsed xenografts than in those in regression. This was not seen for Ki67 staining, where the percentage of stained cells were the same in regressing and relapsing tumors. RhoC could be a useful biomarker to confirm relapse following external beam radiation therapy.
Collapse
Affiliation(s)
- Amanda Kristiansson
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Oncology and pathology, Lund, Sweden; Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Section for Pediatrics, Lund, Sweden; Department of Neonatology, Skåne University Hospital, Lund, Sweden
| | - Crister Ceberg
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Medical Radiation Physics, Lund, Sweden
| | - Anders Bjartell
- Lund University, Faculty of Medicine, Department of Translational Medicine, Urological Cancers, Malmö, Sweden
| | - Jens Ceder
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Oncology and pathology, Lund, Sweden
| | - Oskar Vilhelmsson Timmermand
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Oncology and pathology, Lund, Sweden.
| |
Collapse
|
3
|
Kansy M, Wert K, Kolb K, Gallwas J, Gründker C. ARHGAP29 Is Involved in Increased Invasiveness of Tamoxifen-resistant Breast Cancer Cells and its Expression Levels Correlate With Clinical Tumor Parameters of Breast Cancer Patients. Cancer Genomics Proteomics 2024; 21:368-379. [PMID: 38944420 PMCID: PMC11215425 DOI: 10.21873/cgp.20454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/27/2024] [Accepted: 06/07/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND/AIM Aggressive breast cancer (BC) cells show high expression of Rho GTPase activating protein 29 (ARHGAP29), a negative regulator of RhoA. In breast cancer cells in which mesenchymal transformation was induced, ARHGAP29 was the only one of 32 GTPase-activating enzymes whose expression increased significantly. Therefore, we investigated whether there is a correlation between expression of ARHGAP29 and tumor progression in BC. Since tamoxifen-resistant BC cells exhibit increased mesenchymal properties and invasiveness, we additionally investigated the relationship between ARHGAP29 and increased invasion rate in tamoxifen resistance. The question arises as to whether ARHGAP29 is a suitable prognostic marker for the progression of BC. MATERIALS AND METHODS Tissue microarrays were used to investigate expression of ARHGAP29 in BC and adjacent normal breast tissues. Knockdown experiments using siRNA were performed to investigate the influence of ARHGAP29 and the possible downstream actors RhoC and pAKT1 on invasive growth of tamoxifen-resistant BC spheroids in vitro. RESULTS Expression of ARHGAP29 was frequently increased in BC tissues compared to adjacent normal breast tissues. In addition, there was evidence of a correlation between high ARHGAP29 expression and advanced clinical tumor stage. Tamoxifen-resistant BC cells show a significantly higher expression of ARHGAP29 compared to their parental wild-type cells. After knockdown of ARHGAP29 in tamoxifen-resistant BC cells, expression of RhoC was significantly reduced. Further, expression of pAKT1 decreased significantly. Invasive growth of three-dimensional tamoxifen-resistant BC spheroids was reduced after knockdown of ARHGAP29. This could be partially reversed by AKT1 activator SC79. CONCLUSION Expression of ARHGAP29 correlates with the clinical tumor parameters of BC patients. In addition, ARHGAP29 is involved in increased invasiveness of tamoxifen-resistant BC cells. ARHGAP29 alone or in combination with its downstream partners RhoC and pAKT1 could be suitable prognostic markers for BC progression.
Collapse
Affiliation(s)
- Maike Kansy
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany
| | - Katharina Wert
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany
| | - Katharina Kolb
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany
| | - Julia Gallwas
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany
| | - Carsten Gründker
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
4
|
Raghuram N, Temel EI, Kawamata T, Kozma KJ, Loch AJ, Wang W, Adams JR, Muller WJ, Egan SE. Elevated expression of wildtype RhoC promotes ErbB2- and Pik3ca-induced mammary tumor formation. Breast Cancer Res 2024; 26:86. [PMID: 38807216 PMCID: PMC11134842 DOI: 10.1186/s13058-024-01842-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/17/2024] [Indexed: 05/30/2024] Open
Abstract
Copy number gains in genes coding for Rho activating exchange factors as well as losses affecting genes coding for RhoGAP proteins are common in breast cancer (BC), suggesting that elevated Rho signaling may play an important role. Extra copies and overexpression of RHOC also occur, although a role for RhoC overexpression in driving tumor formation has not been assessed in vivo. To this end, we report on the development of a Rosa26 (R26)-targeted Cre-conditional RhoC overexpression mouse (R26RhoC). This mouse was crossed to two models for ERBB2/NEU+ breast cancer: one based on expression of an oncogenic ErbB2/Neu cDNA downstream of the endogenous ErbB2 promoter (FloxNeoNeuNT), the other, a metastatic model that is based on high-level expression from MMTV regulatory elements (NIC). RhoC overexpression dramatically enhanced mammary tumor formation in FloxNeoNeuNT mice but showed a more subtle effect in the NIC line, which forms multiple mammary tumors after a very short latency. RhoC overexpression also enhanced mammary tumor formation in an activated Pik3ca model for breast cancer (Pik3caH1047R). The transforming effect of RhoC was associated with epithelial/mesenchymal transition (EMT) in ErbB2/NeuNT and Pik3caH1047R systems. Thus, our study reveals the importance of elevated wildtype Rho protein expression as a driver of breast tumor formation and highlights the significance of Copy Number Abberations that affect Rho signalling.
Collapse
Affiliation(s)
- Nandini Raghuram
- Program in Cell Biology, The Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Room 16-9703, Toronto, ON, M5G 0A4, Canada
- Department of Molecular Genetics, The University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - E Idil Temel
- Program in Cell Biology, The Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Room 16-9703, Toronto, ON, M5G 0A4, Canada
- Department of Molecular Genetics, The University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Toshihiro Kawamata
- Program in Cell Biology, The Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Room 16-9703, Toronto, ON, M5G 0A4, Canada
| | - Katelyn J Kozma
- Program in Cell Biology, The Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Room 16-9703, Toronto, ON, M5G 0A4, Canada
- Department of Molecular Genetics, The University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Amanda J Loch
- Program in Cell Biology, The Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Room 16-9703, Toronto, ON, M5G 0A4, Canada
| | - Wei Wang
- Program in Cell Biology, The Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Room 16-9703, Toronto, ON, M5G 0A4, Canada
| | - Jessica R Adams
- Program in Cell Biology, The Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Room 16-9703, Toronto, ON, M5G 0A4, Canada
| | - William J Muller
- Department of Biochemistry and Department of Medicine, Rosalind and Morris Goodman Cancer Research Institute, McGill University, Montreal, QC, H3A 1A3, Canada
| | - Sean E Egan
- Program in Cell Biology, The Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Room 16-9703, Toronto, ON, M5G 0A4, Canada.
- Department of Molecular Genetics, The University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
5
|
Cossard A, Stam K, Smets A, Jossin Y. MKL/SRF and Bcl6 mutual transcriptional repression safeguards the fate and positioning of neocortical progenitor cells mediated by RhoA. SCIENCE ADVANCES 2023; 9:eadd0676. [PMID: 37967194 PMCID: PMC10651131 DOI: 10.1126/sciadv.add0676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/16/2023] [Indexed: 11/17/2023]
Abstract
During embryogenesis, multiple intricate and intertwined cellular signaling pathways coordinate cell behavior. Their slightest alterations can have dramatic consequences for the cells and the organs they form. The transcriptional repressor Bcl6 was recently found as important for brain development. However, its regulation and integration with other signals is unknown. Using in vivo functional approaches combined with molecular mechanistic analysis, we identified a reciprocal regulatory loop between B cell lymphoma 6 (Bcl6) and the RhoA-regulated transcriptional complex megakaryoblastic leukemia/serum response factor (MKL/SRF). We show that Bcl6 physically interacts with MKL/SRF, resulting in a down-regulation of the transcriptional activity of both Bcl6 and MKL/SRF. This molecular cross-talk is essential for the control of proliferation, neurogenesis, and spatial positioning of neural progenitors. Overall, our data highlight a regulatory mechanism that controls neuronal production and neocortical development and reveal an MKL/SRF and Bcl6 interaction that may have broader implications in other physiological functions and in diseases.
Collapse
Affiliation(s)
- Alexia Cossard
- Laboratory of Mammalian Development and Cell Biology, Institute of Neuroscience, Université Catholique de Louvain, Brussels 1200, Belgium
| | | | | | | |
Collapse
|
6
|
Jiang Z, Ju YJ, Ali A, Chung PED, Wang DY, Liu JC, Li H, Vorobieva I, Mwewa E, Ghanbari-Azarnier R, Shrestha M, Ben-David Y, Zacksenhaus E. Thinking (Metastasis) outside the (Primary Tumor) Box. Cancers (Basel) 2023; 15:5315. [PMID: 38001575 PMCID: PMC10670606 DOI: 10.3390/cancers15225315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
The metastasis of tumor cells into vital organs is a major cause of death from diverse types of malignancies [...].
Collapse
Affiliation(s)
- Zhe Jiang
- Toronto General Research Institute—University Health Network, 101 College Street, Max Bell Research Centre, Suite 5R406, Toronto, ON M5G 1L7, Canada (Y.-J.J.); (A.A.); (D.-Y.W.); (H.L.); (E.M.); (R.G.-A.); (M.S.)
| | - Young-Jun Ju
- Toronto General Research Institute—University Health Network, 101 College Street, Max Bell Research Centre, Suite 5R406, Toronto, ON M5G 1L7, Canada (Y.-J.J.); (A.A.); (D.-Y.W.); (H.L.); (E.M.); (R.G.-A.); (M.S.)
| | - Amjad Ali
- Toronto General Research Institute—University Health Network, 101 College Street, Max Bell Research Centre, Suite 5R406, Toronto, ON M5G 1L7, Canada (Y.-J.J.); (A.A.); (D.-Y.W.); (H.L.); (E.M.); (R.G.-A.); (M.S.)
| | - Philip E. D. Chung
- Toronto General Research Institute—University Health Network, 101 College Street, Max Bell Research Centre, Suite 5R406, Toronto, ON M5G 1L7, Canada (Y.-J.J.); (A.A.); (D.-Y.W.); (H.L.); (E.M.); (R.G.-A.); (M.S.)
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Dong-Yu Wang
- Toronto General Research Institute—University Health Network, 101 College Street, Max Bell Research Centre, Suite 5R406, Toronto, ON M5G 1L7, Canada (Y.-J.J.); (A.A.); (D.-Y.W.); (H.L.); (E.M.); (R.G.-A.); (M.S.)
| | - Jeff C. Liu
- The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada;
| | - Huiqin Li
- Toronto General Research Institute—University Health Network, 101 College Street, Max Bell Research Centre, Suite 5R406, Toronto, ON M5G 1L7, Canada (Y.-J.J.); (A.A.); (D.-Y.W.); (H.L.); (E.M.); (R.G.-A.); (M.S.)
| | - Ioulia Vorobieva
- Toronto General Research Institute—University Health Network, 101 College Street, Max Bell Research Centre, Suite 5R406, Toronto, ON M5G 1L7, Canada (Y.-J.J.); (A.A.); (D.-Y.W.); (H.L.); (E.M.); (R.G.-A.); (M.S.)
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ethel Mwewa
- Toronto General Research Institute—University Health Network, 101 College Street, Max Bell Research Centre, Suite 5R406, Toronto, ON M5G 1L7, Canada (Y.-J.J.); (A.A.); (D.-Y.W.); (H.L.); (E.M.); (R.G.-A.); (M.S.)
| | - Ronak Ghanbari-Azarnier
- Toronto General Research Institute—University Health Network, 101 College Street, Max Bell Research Centre, Suite 5R406, Toronto, ON M5G 1L7, Canada (Y.-J.J.); (A.A.); (D.-Y.W.); (H.L.); (E.M.); (R.G.-A.); (M.S.)
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Mariusz Shrestha
- Toronto General Research Institute—University Health Network, 101 College Street, Max Bell Research Centre, Suite 5R406, Toronto, ON M5G 1L7, Canada (Y.-J.J.); (A.A.); (D.-Y.W.); (H.L.); (E.M.); (R.G.-A.); (M.S.)
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Yaacov Ben-David
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550025, China;
- The Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Eldad Zacksenhaus
- Toronto General Research Institute—University Health Network, 101 College Street, Max Bell Research Centre, Suite 5R406, Toronto, ON M5G 1L7, Canada (Y.-J.J.); (A.A.); (D.-Y.W.); (H.L.); (E.M.); (R.G.-A.); (M.S.)
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Medicine, University of Toronto, Toronto, ON M5S 3H2, Canada
| |
Collapse
|
7
|
Khan SU, Fatima K, Malik F, Kalkavan H, Wani A. Cancer metastasis: Molecular mechanisms and clinical perspectives. Pharmacol Ther 2023; 250:108522. [PMID: 37661054 DOI: 10.1016/j.pharmthera.2023.108522] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
Metastatic progression combined with non-responsiveness towards systemic therapy often shapes the course of disease for cancer patients and commonly determines its lethal outcome. The complex molecular events that promote metastasis are a combination of both, the acquired pro-metastatic properties of cancer cells and a metastasis-permissive or -supportive tumor micro-environment (TME). Yet, dissemination is a challenging process for cancer cells that requires a series of events to enable cancer cell survival and growth. Metastatic cancer cells have to initially detach themselves from primary tumors, overcome the challenges of their intravasal journey and colonize distant sites that are suited for their metastases. The implicated obstacles including anoikis and immune surveillance, can be overcome by intricate intra- and extracellular signaling pathways, which we will summarize and discuss in this review. Further, emerging modulators of metastasis, like the immune-microenvironment, microbiome, sublethal cell death engagement, or the nervous system will be integrated into the existing working model of metastasis.
Collapse
Affiliation(s)
- Sameer Ullah Khan
- The University of Texas MD Anderson Cancer Center, Division of Genitourinary Medical Oncology, Holcombe Blvd, Houston, TX 77030, USA; Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu and Kashmir, India
| | - Kaneez Fatima
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu and Kashmir, India; Academy of Scientific and Innovative Research (ASIR), Ghaziabad 201002, India
| | - Fayaz Malik
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu and Kashmir, India; Academy of Scientific and Innovative Research (ASIR), Ghaziabad 201002, India.
| | - Halime Kalkavan
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany; German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany.
| | - Abubakar Wani
- St. Jude Children's Research Hospital, 262 Danny Thomas Pl, Memphis, TN 38105, United States.
| |
Collapse
|
8
|
Jiang Z, Ju Y, Ali A, Chung PED, Skowron P, Wang DY, Shrestha M, Li H, Liu JC, Vorobieva I, Ghanbari-Azarnier R, Mwewa E, Koritzinsky M, Ben-David Y, Woodgett JR, Perou CM, Dupuy A, Bader GD, Egan SE, Taylor MD, Zacksenhaus E. Distinct shared and compartment-enriched oncogenic networks drive primary versus metastatic breast cancer. Nat Commun 2023; 14:4313. [PMID: 37463901 PMCID: PMC10354065 DOI: 10.1038/s41467-023-39935-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 06/16/2023] [Indexed: 07/20/2023] Open
Abstract
Metastatic breast-cancer is a major cause of death in women worldwide, yet the relationship between oncogenic drivers that promote metastatic versus primary cancer is still contentious. To elucidate this relationship in treatment-naive animals, we hereby describe mammary-specific transposon-mutagenesis screens in female mice together with loss-of-function Rb, which is frequently inactivated in breast-cancer. We report gene-centric common insertion-sites (gCIS) that are enriched in primary-tumors, in metastases or shared by both compartments. Shared-gCIS comprise a major MET-RAS network, whereas metastasis-gCIS form three additional hubs: Rho-signaling, Ubiquitination and RNA-processing. Pathway analysis of four clinical cohorts with paired primary-tumors and metastases reveals similar organization in human breast-cancer with subtype-specific shared-drivers (e.g. RB1-loss, TP53-loss, high MET, RAS, ER), primary-enriched (EGFR, TGFβ and STAT3) and metastasis-enriched (RHO, PI3K) oncogenic signaling. Inhibitors of RB1-deficiency or MET plus RHO-signaling cooperate to block cell migration and drive tumor cell-death. Thus, targeting shared- and metastasis- but not primary-enriched derivers offers a rational avenue to prevent metastatic breast-cancer.
Collapse
Affiliation(s)
- Zhe Jiang
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, suite 5R406, Toronto, ON, M5G 1L7, Canada
| | - YoungJun Ju
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, suite 5R406, Toronto, ON, M5G 1L7, Canada
| | - Amjad Ali
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, suite 5R406, Toronto, ON, M5G 1L7, Canada
| | - Philip E D Chung
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, suite 5R406, Toronto, ON, M5G 1L7, Canada
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Patryk Skowron
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
- Program in Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Dong-Yu Wang
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, suite 5R406, Toronto, ON, M5G 1L7, Canada
| | - Mariusz Shrestha
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, suite 5R406, Toronto, ON, M5G 1L7, Canada
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Huiqin Li
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, suite 5R406, Toronto, ON, M5G 1L7, Canada
| | - Jeff C Liu
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Ioulia Vorobieva
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, suite 5R406, Toronto, ON, M5G 1L7, Canada
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Ronak Ghanbari-Azarnier
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, suite 5R406, Toronto, ON, M5G 1L7, Canada
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Ethel Mwewa
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, suite 5R406, Toronto, ON, M5G 1L7, Canada
| | | | - Yaacov Ben-David
- The Key laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, Guizhou, 550014, China
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550025, China
| | - James R Woodgett
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Toronto, ON, Canada
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center, Departments of Genetics and Pathology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Adam Dupuy
- Department of Pathology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, 52242, USA
| | - Gary D Bader
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Sean E Egan
- Program in Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Michael D Taylor
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
- Program in Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Eldad Zacksenhaus
- Toronto General Research Institute - University Health Network, 101 College Street, Max Bell Research Centre, suite 5R406, Toronto, ON, M5G 1L7, Canada.
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada.
- Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
9
|
Qian L, Li N, Lu XC, Xu M, Liu Y, Li K, Zhang Y, Hu K, Qi YT, Yao J, Wu YL, Wen W, Huang S, Chen ZJ, Yin M, Lei QY. Enhanced BCAT1 activity and BCAA metabolism promotes RhoC activity in cancer progression. Nat Metab 2023; 5:1159-1173. [PMID: 37337119 DOI: 10.1038/s42255-023-00818-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 05/05/2023] [Indexed: 06/21/2023]
Abstract
Increased expression of branched-chain amino acid transaminase 1 or 2 (BCAT1 and BCAT2) has been associated with aggressive phenotypes of different cancers. Here we identify a gain of function of BCAT1 glutamic acid to alanine mutation at codon 61 (BCAT1E61A) enriched around 2.8% in clinical gastric cancer samples. We found that BCAT1E61A confers higher enzymatic activity to boost branched-chain amino acid (BCAA) catabolism, accelerate cell growth and motility and contribute to tumor development. BCAT1 directly interacts with RhoC, leading to elevation of RhoC activity. Notably, the BCAA-derived metabolite, branched-chain α-keto acid directly binds to the small GTPase protein RhoC and promotes its activity. BCAT1 knockout-suppressed cell motility could be rescued by expressing BCAT1E61A or adding branched-chain α-keto acid. We also identified that candesartan acts as an inhibitor of BCAT1E61A, thus repressing RhoC activity and cancer cell motility in vitro and preventing peritoneal metastasis in vivo. Our study reveals a link between BCAA metabolism and cell motility and proliferation through regulating RhoC activation, with potential therapeutic implications for cancers.
Collapse
Affiliation(s)
- Lin Qian
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; School of Basic Medical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology; The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Na Li
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; School of Basic Medical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology; The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Chen Lu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; School of Basic Medical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology; The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Midie Xu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; School of Basic Medical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology; The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Pathology, Fudan University Shanghai Cancer Center; Institute of Pathology, Fudan University, Shanghai, China
| | - Ying Liu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Kaiyue Li
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; School of Basic Medical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology; The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi Zhang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; School of Basic Medical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology; The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Kewen Hu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; School of Basic Medical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology; The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu-Ting Qi
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; School of Basic Medical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology; The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jun Yao
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ying-Li Wu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenyu Wen
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; School of Basic Medical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology; The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Shenglin Huang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; School of Basic Medical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology; The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zheng-Jun Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Miao Yin
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; School of Basic Medical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology; The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qun-Ying Lei
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; School of Basic Medical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology; The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.
| |
Collapse
|
10
|
Cervantes-Villagrana RD, García-Jiménez I, Vázquez-Prado J. Guanine nucleotide exchange factors for Rho GTPases (RhoGEFs) as oncogenic effectors and strategic therapeutic targets in metastatic cancer. Cell Signal 2023; 109:110749. [PMID: 37290677 DOI: 10.1016/j.cellsig.2023.110749] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/11/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Metastatic cancer cells dynamically adjust their shape to adhere, invade, migrate, and expand to generate secondary tumors. Inherent to these processes is the constant assembly and disassembly of cytoskeletal supramolecular structures. The subcellular places where cytoskeletal polymers are built and reorganized are defined by the activation of Rho GTPases. These molecular switches directly respond to signaling cascades integrated by Rho guanine nucleotide exchange factors (RhoGEFs), which are sophisticated multidomain proteins that control morphological behavior of cancer and stromal cells in response to cell-cell interactions, tumor-secreted factors and actions of oncogenic proteins within the tumor microenvironment. Stromal cells, including fibroblasts, immune and endothelial cells, and even projections of neuronal cells, adjust their shapes and move into growing tumoral masses, building tumor-induced structures that eventually serve as metastatic routes. Here we review the role of RhoGEFs in metastatic cancer. They are highly diverse proteins with common catalytic modules that select among a variety of homologous Rho GTPases enabling them to load GTP, acquiring an active conformation that stimulates effectors controlling actin cytoskeleton remodeling. Therefore, due to their strategic position in oncogenic signaling cascades, and their structural diversity flanking common catalytic modules, RhoGEFs possess unique characteristics that make them conceptual targets of antimetastatic precision therapies. Preclinical proof of concept, demonstrating the antimetastatic effect of inhibiting either expression or activity of βPix (ARHGEF7), P-Rex1, Vav1, ARHGEF17, and Dock1, among others, is emerging.
Collapse
|
11
|
Thomas P, Srivastava S, Udayashankara AH, Damodaran S, Yadav L, Mathew B, Suresh SB, Mandal AK, Srikantia N. RhoC in association with TET2/WDR5 regulates cancer stem cells by epigenetically modifying the expression of pluripotency genes. Cell Mol Life Sci 2022; 80:1. [PMID: 36469134 PMCID: PMC11073244 DOI: 10.1007/s00018-022-04645-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022]
Abstract
Emerging evidence illustrates that RhoC has divergent roles in cervical cancer progression where it controls epithelial to mesenchymal transition (EMT), migration, angiogenesis, invasion, tumor growth, and radiation response. Cancer stem cells (CSCs) are the primary cause of recurrence and metastasis and exhibit all of the above phenotypes. It, therefore, becomes imperative to understand if RhoC regulates CSCs in cervical cancer. In this study, cell lines and clinical specimen-based findings demonstrate that RhoC regulates tumor phenotypes such as clonogenicity and anoikis resistance. Accordingly, inhibition of RhoC abrogated these phenotypes. RNA-seq analysis revealed that RhoC over-expression resulted in up-regulation of 27% of the transcriptome. Further, the Infinium MethylationEPIC array showed that RhoC over-expressing cells had a demethylated genome. Studies divulged that RhoC via TET2 signaling regulated the demethylation of the genome. Further investigations comprising ChIP-seq, reporter assays, and mass spectrometry revealed that RhoC associates with WDR5 in the nucleus and regulates the expression of pluripotency genes such as Nanog. Interestingly, clinical specimen-based investigations revealed the existence of a subset of tumor cells marked by RhoC+/Nanog+ expression. Finally, combinatorial inhibition (in vitro) of RhoC and its partners (WDR5 and TET2) resulted in increased sensitization of clinical specimen-derived cells to radiation. These findings collectively reveal a novel role for nuclear RhoC in the epigenetic regulation of Nanog and identify RhoC as a regulator of CSCs. The study nominates RhoC and associated signaling pathways as therapeutic targets.
Collapse
Affiliation(s)
- Pavana Thomas
- Translational and Molecular Biology Laboratory (TMBL), Division of Molecular Biology and Genetics, St. John's Research Institute (SJRI), St. John's Medical College, Bangalore, 560034, India
- School of Integrative Health Sciences, The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bangalore, 560064, India
| | - Sweta Srivastava
- Translational and Molecular Biology Laboratory (TMBL), Division of Molecular Biology and Genetics, St. John's Medical College Hospital, Bangalore, 560034, India.
| | - Avinash H Udayashankara
- Department of Radiation Oncology, St John's Medical College Hospital, Bangalore, 560034, India
| | - Samyuktha Damodaran
- Translational and Molecular Biology Laboratory (TMBL), Division of Molecular Biology and Genetics, St. John's Research Institute (SJRI), St. John's Medical College, Bangalore, 560034, India
| | - Lokendra Yadav
- Translational and Molecular Biology Laboratory (TMBL), Division of Molecular Biology and Genetics, St. John's Medical College Hospital, Bangalore, 560034, India
| | - Boby Mathew
- Clinical Proteomics Unit, Division of Molecular Medicine, St. John's Research Institute (SJRI), St. John's Medical College, Bangalore, 560034, India
| | - Srinag Bangalore Suresh
- Translational and Molecular Biology Laboratory (TMBL), Division of Molecular Biology and Genetics, St. John's Research Institute (SJRI), St. John's Medical College, Bangalore, 560034, India
| | - Amit Kumar Mandal
- Clinical Proteomics Unit, Division of Molecular Medicine, St. John's Research Institute (SJRI), St. John's Medical College, Bangalore, 560034, India
| | - Nirmala Srikantia
- Department of Radiation Oncology, St John's Medical College Hospital, Bangalore, 560034, India
| |
Collapse
|
12
|
Mittler F, Obeïd P, Haguet V, Allier C, Gerbaud S, Rulina AV, Gidrol X, Balakirev MY. Mechanical stress shapes the cancer cell response to neddylation inhibition. J Exp Clin Cancer Res 2022; 41:115. [PMID: 35354476 PMCID: PMC8966269 DOI: 10.1186/s13046-022-02328-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/13/2022] [Indexed: 12/28/2022] Open
Abstract
Background The inhibition of neddylation by the preclinical drug MLN4924 represents a new strategy to combat cancer. However, despite being effective against hematologic malignancies, its success in solid tumors, where cell–cell and cell-ECM interactions play essential roles, remains elusive. Methods Here, we studied the effects of MLN4924 on cell growth, migration and invasion in cultured prostate cancer cells and in disease-relevant prostate tumoroids. Using focused protein profiling, drug and RNAi screening, we analyzed cellular pathways activated by neddylation inhibition. Results We show that mechanical stress induced by MLN4924 in prostate cancer cells significantly affects the therapeutic outcome. The latter depends on the cell type and involves distinct Rho isoforms. In LNCaP and VCaP cells, the stimulation of RhoA and RhoB by MLN4924 markedly upregulates the level of tight junction proteins at cell–cell contacts, which augments the mechanical strain induced by Rho signaling. This “tight junction stress response” (TJSR) causes the collapse of cell monolayers and a characteristic rupture of cancer spheroids. Notably, TJSR is a major cause of drug-induced apoptosis in these cells. On the other hand, in PC3 cells that underwent partial epithelial-to-mesenchymal transition (EMT), the stimulation of RhoC induces an adverse effect by promoting amoeboid cell scattering and invasion. We identified complementary targets and drugs that allow for the induction of TJSR without stimulating RhoC. Conclusions Our finding that MLN4924 acts as a mechanotherapeutic opens new ways to improve the efficacy of neddylation inhibition as an anticancer approach. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02328-y.
Collapse
|
13
|
Gugnoni M, Manzotti G, Vitale E, Sauta E, Torricelli F, Reggiani F, Pistoni M, Piana S, Ciarrocchi A. OVOL2 impairs RHO GTPase signaling to restrain mitosis and aggressiveness of Anaplastic Thyroid Cancer. J Exp Clin Cancer Res 2022; 41:108. [PMID: 35337349 PMCID: PMC8957195 DOI: 10.1186/s13046-022-02316-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/08/2022] [Indexed: 11/10/2022] Open
Abstract
Background Anaplastic Thyroid Cancer (ATC) is an undifferentiated and aggressive tumor that often originates from well-Differentiated Thyroid Carcinoma (DTC) through a trans-differentiation process. Epithelial-to-Mesenchymal Transition (EMT) is recognized as one of the major players of this process. OVOL2 is a transcription factor (TF) that promotes epithelial differentiation and restrains EMT during embryonic development. OVOL2 loss in some types of cancers is linked to aggressiveness and poor prognosis. Here, we aim to clarify the unexplored role of OVOL2 in ATC. Methods Gene expression analysis in thyroid cancer patients and cell lines showed that OVOL2 is mainly associated with epithelial features and its expression is deeply impaired in ATC. To assess OVOL2 function, we established an OVOL2-overexpression model in ATC cell lines and evaluated its effects by analyzing gene expression, proliferation, invasion and migration abilities, cell cycle, specific protein localization through immunofluorescence staining. RNA-seq profiling showed that OVOL2 controls a complex network of genes converging on cell cycle and mitosis regulation and Chromatin Immunoprecipitation identified new OVOL2 target genes. Results Coherently with its reported function, OVOL2 re-expression restrained EMT and aggressiveness in ATC cells. Unexpectedly, we observed that it caused G2/M block, a consequent reduction in cell proliferation and an increase in cell death. This phenotype was associated to generalized abnormalities in the mitotic spindle structure and cytoskeletal organization. By RNA-seq experiments, we showed that many pathways related to cytoskeleton and migration, cell cycle and mitosis are profoundly affected by OVOL2 expression, in particular the RHO-GTPase pathway resulted as the most interesting. We demonstrated that RHO GTPase pathway is the central hub of OVOL2-mediated program in ATC and that OVOL2 transcriptionally inhibits RhoU and RhoJ. Silencing of RhoU recapitulated the OVOL2-driven phenotype pointing to this protein as a crucial target of OVOL2 in ATC. Conclusions Collectively, these data describe the role of OVOL2 in ATC and uncover a novel function of this TF in inhibiting the RHO GTPase pathway interlacing its effects on EMT, cytoskeleton dynamics and mitosis. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02316-2.
Collapse
|
14
|
Fan A, Zhang Y, Cheng J, Li Y, Chen W. A novel prognostic model for prostate cancer based on androgen biosynthetic and catabolic pathways. Front Oncol 2022; 12:950094. [PMID: 36439479 PMCID: PMC9685527 DOI: 10.3389/fonc.2022.950094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 10/20/2022] [Indexed: 08/14/2023] Open
Abstract
Prostate cancer (PCa) is one of the most common malignancies in males globally, and its pathogenesis is significantly related to androgen. As one of the important treatments for prostate cancer, androgen deprivation therapy (ADT) inhibits tumor proliferation by controlling androgen levels, either surgically or pharmacologically. However, patients treated with ADT inevitably develop biochemical recurrence and advance to castration-resistant prostate cancer which has been reported to be associated with androgen biosynthetic and catabolic pathways. Thus, gene expression profiles and clinical information of PCa patients were collected from TCGA, MSKCC, and GEO databases for consensus clustering based on androgen biosynthetic and catabolic pathways. Subsequently, a novel prognostic model containing 13 genes (AFF3, B4GALNT4, CD38, CHRNA2, CST2, ADGRF5, KLK14, LRRC31, MT1F, MT1G, SFTPA2, SLC7A4, TDRD1) was constructed by univariate cox regression, lasso regression, and multivariate cox regression. Patients were divided into two groups based on their risk scores: high risk (HS) and low risk (LS), and survival analysis was used to determine the difference in biochemical recurrence-free time between the two. The results were validated on the MSKCC dataset and the GEO dataset. Functional enrichment analysis revealed some pivotal pathways that may have an impact on the prognosis of patients including the CDK-RB-E2F axis, G2M checkpoint, and KRAS signaling. In addition, somatic mutation, immune infiltration, and drug sensitivity analyses were performed to further explore the characteristics of HS and LS groups. Besides, two potential therapeutic targets, BIRC5 and RHOC, were identified by us in prostate cancer. These results indicate that the prognostic model may serve as a predictive tool to guide clinical treatment and provide new insight into the basic research in prostate cancer.
Collapse
Affiliation(s)
| | | | | | | | - Wei Chen
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Fan T, Kuang G, Long R, Han Y, Wang J. The overall process of metastasis: From initiation to a new tumor. Biochim Biophys Acta Rev Cancer 2022; 1877:188750. [PMID: 35728735 DOI: 10.1016/j.bbcan.2022.188750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 11/26/2022]
Abstract
Metastasis-a process that involves the migration of cells from the primary site to distant organs-is the leading cause of cancer-associated death. Improved technology and in-depth research on tumors have furthered our understanding of the various mechanisms involved in tumor metastasis. Metastasis is initiated by cancer cells of a specific phenotype, which migrate with the assistance of extracellular components and metastatic traits conferred via epigenetic regulation while modifying their behavior in response to the complex and dynamic human internal environment. In this review, we have summarized the general steps involved in tumor metastasis and their characteristics, incorporating recent studies and topical issues, including epithelial-mesenchymal transition, cancer stem cells, neutrophil extracellular traps, pre-metastatic niche, extracellular vesicles, and dormancy. Several feasible treatment directions have also been summarized. In addition, the correlation between cancer metastasis and lifestyle factors, such as obesity and circadian rhythm, has been illustrated.
Collapse
Affiliation(s)
- Tianyue Fan
- Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Guicheng Kuang
- Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Runmin Long
- Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Yunwei Han
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Jing Wang
- Department of Blood Transfusion, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China.
| |
Collapse
|
16
|
Lou Y, Jiang Y, Liang Z, Liu B, Li T, Zhang D. Role of RhoC in cancer cell migration. Cancer Cell Int 2021; 21:527. [PMID: 34627249 PMCID: PMC8502390 DOI: 10.1186/s12935-021-02234-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/27/2021] [Indexed: 12/20/2022] Open
Abstract
Migration is one of the five major behaviors of cells. Although RhoC-a classic member of the Rho gene family-was first identified in 1985, functional RhoC data have only been widely reported in recent years. Cell migration involves highly complex signaling mechanisms, in which RhoC plays an essential role. Cell migration regulated by RhoC-of which the most well-known function is its role in cancer metastasis-has been widely reported in breast, gastric, colon, bladder, prostate, lung, pancreatic, liver, and other cancers. Our review describes the role of RhoC in various types of cell migration. The classic two-dimensional cell migration cycle constitutes cell polarization, adhesion regulation, cell contraction and tail retraction, most of which are modulated by RhoC. In the three-dimensional cell migration model, amoeboid migration is the most classic and well-studied model. Here, RhoC modulates the formation of membrane vesicles by regulating myosin II, thereby affecting the rate and persistence of amoeba-like migration. To the best of our knowledge, this review is the first to describe the role of RhoC in all cell migration processes. We believe that understanding the detail of RhoC-regulated migration processes will help us better comprehend the mechanism of cancer metastasis. This will contribute to the study of anti-metastatic treatment approaches, aiding in the identification of new intervention targets for therapeutic or genetic transformational purposes.
Collapse
Affiliation(s)
- Yingyue Lou
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yuhan Jiang
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhen Liang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Bingzhang Liu
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Tian Li
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun, Jilin, China.
| | - Duo Zhang
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
17
|
Crosas-Molist E, Samain R, Kohlhammer L, Orgaz J, George S, Maiques O, Barcelo J, Sanz-Moreno V. RhoGTPase Signalling in Cancer Progression and Dissemination. Physiol Rev 2021; 102:455-510. [PMID: 34541899 DOI: 10.1152/physrev.00045.2020] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Rho GTPases are a family of small G proteins that regulate a wide array of cellular processes related to their key roles controlling the cytoskeleton. On the other hand, cancer is a multi-step disease caused by the accumulation of genetic mutations and epigenetic alterations, from the initial stages of cancer development when cells in normal tissues undergo transformation, to the acquisition of invasive and metastatic traits, responsible for a large number of cancer related deaths. In this review, we discuss the role of Rho GTPase signalling in cancer in every step of disease progression. Rho GTPases contribute to tumour initiation and progression, by regulating proliferation and apoptosis, but also metabolism, senescence and cell stemness. Rho GTPases play a major role in cell migration, and in the metastatic process. They are also involved in interactions with the tumour microenvironment and regulate inflammation, contributing to cancer progression. After years of intensive research, we highlight the importance of relevant models in the Rho GTPase field, and we reflect on the therapeutic opportunities arising for cancer patients.
Collapse
Affiliation(s)
- Eva Crosas-Molist
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Remi Samain
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Leonie Kohlhammer
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Jose Orgaz
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.,Instituto de Investigaciones Biomédicas 'Alberto Sols', CSIC-UAM, 28029, Madrid, Spain
| | - Samantha George
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Oscar Maiques
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Jaume Barcelo
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | | |
Collapse
|
18
|
Abraham HG, Ulintz PJ, Goo L, Yates JA, Little AC, Bao L, Wu Z, Merajver SD. RhoC Modulates Cell Junctions and Type I Interferon Response in Aggressive Breast Cancers. Front Oncol 2021; 11:712041. [PMID: 34513691 PMCID: PMC8428533 DOI: 10.3389/fonc.2021.712041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/05/2021] [Indexed: 01/02/2023] Open
Abstract
Metastases are the leading cause of death in cancer patients. RhoC, a member of the Rho GTPase family, has been shown to facilitate metastasis of aggressive breast cancer cells by influencing motility, invasion, and chemokine secretion, but as yet there is no integrated model of the precise mechanism of how RhoC promotes metastasis. A common phenotypic characteristic of metastatic cells influenced by these mechanisms is dysregulation of cell-cell junctions. Thus, we set out to study how RhoA- and RhoC-GTPase influence the cell-cell junctions in aggressive breast cancers. We demonstrate that CRISPR-Cas9 knockout of RhoC in SUM 149 and MDA 231 breast cancer cells results in increased normalization of junctional integrity denoted by junction protein expression/colocalization. In functional assessments of junction stability, RhoC knockout cells have increased barrier integrity and increased cell-cell adhesion compared to wild-type cells. Whole exome RNA sequencing and targeted gene expression profiling demonstrate decreased expression of Type I interferon-stimulated genes in RhoC knockout cells compared to wild-type, and subsequent treatment with interferon-alpha resulted in significant increases in adhesion and decreases in invasiveness of wild-type cells and a dampened response to interferon-alpha stimulation with respect to adhesion and invasiveness in RhoC knockout cells. We delineate a key role of RhoC-GTPase in modulation of junctions and response to interferon, which supports inhibition of RhoC as a potential anti-invasion therapeutic strategy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sofia D. Merajver
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
19
|
Comprehensive understanding of anchorage-independent survival and its implication in cancer metastasis. Cell Death Dis 2021; 12:629. [PMID: 34145217 PMCID: PMC8213763 DOI: 10.1038/s41419-021-03890-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023]
Abstract
Detachment is the initial and critical step for cancer metastasis. Only the cells that survive from detachment can develop metastases. Following the disruption of cell-extracellular matrix (ECM) interactions, cells are exposed to a totally different chemical and mechanical environment. During which, cells inevitably suffer from multiple stresses, including loss of growth stimuli from ECM, altered mechanical force, cytoskeletal reorganization, reduced nutrient uptake, and increased reactive oxygen species generation. Here we review the impact of these stresses on the anchorage-independent survival and the underlying molecular signaling pathways. Furthermore, its implications in cancer metastasis and treatment are also discussed.
Collapse
|
20
|
Progression to Metastasis of Solid Cancer. Cancers (Basel) 2021; 13:cancers13040717. [PMID: 33578666 PMCID: PMC7916396 DOI: 10.3390/cancers13040717] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 12/26/2022] Open
|
21
|
Hensley AP, McAlinden A. The role of microRNAs in bone development. Bone 2021; 143:115760. [PMID: 33220505 PMCID: PMC8019264 DOI: 10.1016/j.bone.2020.115760] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/06/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023]
Abstract
Epigenetic regulation is critical for proper bone development. Evidence from a large body of published literature informs us that microRNAs (miRNAs) are important epigenetic factors that control many aspects of bone development, homeostasis, and repair processes. These small non-coding RNAs function at the post-transcriptional level to suppress expression of specific target genes. Many target genes may be affected by one miRNA resulting in alteration in cellular pathways and networks. Therefore, changes in levels or activity of a specific miRNA (e.g. via genetic mutations, disease scenarios, or by over-expression or inhibition strategies in vitro or in vivo) can lead to substantial changes in cell processes including proliferation, metabolism, apoptosis and differentiation. In this review, Section 1 briefly covers general background information on processes that control bone development as well as the biogenesis and function of miRNAs. In Section 2, we discuss the importance of miRNAs in skeletal development based on findings from in vivo mouse models and human clinical reports. Section 3 focuses on describing more recent data from the last three years related to miRNA regulation of osteoblast differentiation in vitro. Some of these studies also involve utilization of an in vivo rodent model to study the effects of miRNA modulation in scenarios of osteoporosis, bone repair or ectopic bone formation. In Section 4, we provide some recent information from studies analyzing the potential of miRNA-mediated crosstalk in bone and how exosomes containing miRNAs from one bone cell may affect the differentiation or function of another bone cell type. We then conclude by summarizing where the field currently stands with respect to miRNA-mediated regulation of osteogenesis and how information gained from developmental processes can be instructive in identifying potential therapeutic miRNA targets for the treatment of certain bone conditions.
Collapse
Affiliation(s)
- Austin P Hensley
- Department of Biomedical Engineering, Washington University School of Medicine, St Louis, MO, United States of America
| | - Audrey McAlinden
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, United States of America; Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO, United States of America; Shriners Hospital for Children - St Louis, St Louis, MO, United States of America.
| |
Collapse
|
22
|
Nikolopoulou PA, Koufaki MA, Kostourou V. The Adhesome Network: Key Components Shaping the Tumour Stroma. Cancers (Basel) 2021; 13:525. [PMID: 33573141 PMCID: PMC7866493 DOI: 10.3390/cancers13030525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023] Open
Abstract
Beyond the conventional perception of solid tumours as mere masses of cancer cells, advanced cancer research focuses on the complex contributions of tumour-associated host cells that are known as "tumour microenvironment" (TME). It has been long appreciated that the tumour stroma, composed mainly of blood vessels, cancer-associated fibroblasts and immune cells, together with the extracellular matrix (ECM), define the tumour architecture and influence cancer cell properties. Besides soluble cues, that mediate the crosstalk between tumour and stroma cells, cell adhesion to ECM arises as a crucial determinant in cancer progression. In this review, we discuss how adhesome, the intracellular protein network formed at cell adhesions, regulate the TME and control malignancy. The role of adhesome extends beyond the physical attachment of cells to ECM and the regulation of cytoskeletal remodelling and acts as a signalling and mechanosensing hub, orchestrating cellular responses that shape the tumour milieu.
Collapse
Affiliation(s)
| | | | - Vassiliki Kostourou
- Biomedical Sciences Research Centre “Alexander Fleming”, Institute of Bioinnovation, 34 Fleming Str., 16672 Vari-Athens, Greece; (P.A.N.); (M.A.K.)
| |
Collapse
|
23
|
Targeting the cytoskeleton against metastatic dissemination. Cancer Metastasis Rev 2021; 40:89-140. [PMID: 33471283 DOI: 10.1007/s10555-020-09936-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 10/08/2020] [Indexed: 02/08/2023]
Abstract
Cancer is a pathology characterized by a loss or a perturbation of a number of typical features of normal cell behaviour. Indeed, the acquisition of an inappropriate migratory and invasive phenotype has been reported to be one of the hallmarks of cancer. The cytoskeleton is a complex dynamic network of highly ordered interlinking filaments playing a key role in the control of fundamental cellular processes, like cell shape maintenance, motility, division and intracellular transport. Moreover, deregulation of this complex machinery contributes to cancer progression and malignancy, enabling cells to acquire an invasive and metastatic phenotype. Metastasis accounts for 90% of death from patients affected by solid tumours, while an efficient prevention and suppression of metastatic disease still remains elusive. This results in the lack of effective therapeutic options currently available for patients with advanced disease. In this context, the cytoskeleton with its regulatory and structural proteins emerges as a novel and highly effective target to be exploited for a substantial therapeutic effort toward the development of specific anti-metastatic drugs. Here we provide an overview of the role of cytoskeleton components and interacting proteins in cancer metastasis with a special focus on small molecule compounds interfering with the actin cytoskeleton organization and function. The emerging involvement of microtubules and intermediate filaments in cancer metastasis is also reviewed.
Collapse
|
24
|
TSG101 Promotes the Proliferation, Migration, and Invasion of Human Glioma Cells by Regulating the AKT/GSK3β/β-Catenin and RhoC/Cofilin Pathways. Mol Neurobiol 2021; 58:2118-2132. [PMID: 33411238 DOI: 10.1007/s12035-020-02231-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Abstract
The tumor susceptibility gene 101 (TSG101) has been reported to play important roles in the development and progression of several human cancers, such as pancreatic cancer, prostate cancer, and hepatocellular carcinoma. However, its potential roles and underlined mechanisms in human glioma are still needed to be further clarified. This study was designed to assess the expression of TSG101 in glioma patients and its effects on glioma cell proliferation, migration, and invasion. Publicly available data revealed that TSG101 mRNA was significantly upregulated in glioma tissues, and high levels of TSG101 were associated with poor prognosis in glioma patients. Western blot and immunohistochemistry experiments further showed that the expression level of TSG101 protein was significantly upregulated in glioma patients, especially in the patients with high-grade glioma. The functional studies showed that knockdown of TSG101 suppressed the proliferation, migration, and invasion of glioma cells, while overexpression of TSG101 facilitated them. Mechanistic studies indicated that the proliferation, migration, and invasion induced by TSG101 in human glioma were related to AKT/GSK3β/β-catenin and RhoC/Cofilin signaling pathways. In conclusion, the above results suggest that the expression of TSG101 is elevated in glioma patients, which accelerates the proliferation, migration, and invasion of glioma cells by regulating the AKT/GSK3β/β-catenin and RhoC/Cofilin pathways.
Collapse
|
25
|
Chen Y, Xue F, Russo A, Wan Y. Proteomic Analysis of Extracellular Vesicles Derived from MDA-MB-231 Cells in Microgravity. Protein J 2021; 40:108-118. [PMID: 33387250 DOI: 10.1007/s10930-020-09949-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2020] [Indexed: 12/31/2022]
Abstract
Patients with triple-negative breast cancer (TNBC) have a relatively poor prognosis and cannot benefit from endocrine and/or targeted therapy. Considerable effort has been devoted toward the elucidation of the molecular mechanisms and potential diagnostic/therapeutic targets. However, it is inefficient and often ineffective to study the biological nuances of TNBC in large-scale clinical trials. In contrast, the investigation of the association between molecular alterations induced through controlled variables and relevant physiochemical characteristics of TNBC cells in laboratory settings is simple, definite, and efficient in exploring the molecular mechanisms. In this study, microgravity was selected as the sole variable of study as it can inhibit cancer cell viability, proliferation, metastasis, and chemoresistance. Identifying the key molecules that shift cancer cells toward a less aggressive phenotype may facilitate future TNBC studies. We focused on extracellular vesicles (EV) derived from TNBC MDA-MB-231 cells in microgravity, which mediate intercellular communication by transporting signaling molecules between cells. Our results show that in comparison with cells in full gravity, EV release rate decreased in microgravity while average EV size increased. In addition, we found EVs may be superior to cells in analyzing differentially expressed proteins, especially those that are down-regulated ones and usually unidentified or neglected in analysis of intact cellular contents. Proteomic analysis of both EVs and cells further revealed a significant correlation with GTPases and proliferation of MDA-MB-231 cells in microgravity. Altogether, our findings would further inspire in-depth correlative cancer biological studies and subsequent clinical research.
Collapse
Affiliation(s)
- Yundi Chen
- The Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University-SUNY, Binghamton, New York, 13902, USA
| | - Fei Xue
- The Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University-SUNY, Binghamton, New York, 13902, USA
| | - Andrea Russo
- The Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University-SUNY, Binghamton, New York, 13902, USA
| | - Yuan Wan
- The Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University-SUNY, Binghamton, New York, 13902, USA. .,, Biotechnology Building, Room 2625, 65 Murray Hill Road, Vestal, New York, 13850, USA.
| |
Collapse
|
26
|
Tian Z, Dong Q, Wu T, Guo J. MicroRNA-20b-5p aggravates neuronal apoptosis induced by β-Amyloid via down-regulation of Ras homolog family member C in Alzheimer's disease. Neurosci Lett 2020; 742:135542. [PMID: 33278507 DOI: 10.1016/j.neulet.2020.135542] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 11/22/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023]
Abstract
Recent studies have reported that microRNAs are abnormally expressed in brain tissues of Alzheimers disease (AD) patients. However, the accurate function of miR-20b-5p in AD has not been elucidated. We intended to investigate the role and underlying mechanism of miR-20b-5p in AD. The expression of miR-20b-5p was increased, and the expression of RhoC was decreased in the hippocampus of Appswe/PS△E 9 mice. In order to construct a cell model in vitro to study the underlying action mechanism, PC12 cells were treated with Aβ25-35. The cell apoptosis detected by flow cytometry and the expression of cleaved-caspase-3 detected by western blot were both remarkably increased in PC12 cells treated with Aβ25-35, but they were reduced by miR-20b-5p inhibitor. In addition, MTT test showed that the cell survival rate in Aβ25-35 + miR-20b-5p inhibitor group was higher than that in Aβ25-35 + NC inhibitor group. Double luciferase reporter gene analysis confirmed that the binding site of miR-20b-5p was in 3'- UTR of RhoC mRNA. Knockdown of RhoC increased neuronal apoptosis induced by Aβ25-35 and the expression of cleaved-caspase-3, while miR-20b-5p inhibitor reversed these effects. Knockdown of RhoC aggravated the inhibition effect on cell viability induced by Aβ25-35, while miR-20b-5p inhibitor diminished these effects. In conclusion, inhibition of miR-20b-5p attenuates apoptosis induced by Aβ25-35 in PC12 cells through targeting RhoC. Therefore, miR-20b-5p may be a perspective curative target for AD.
Collapse
Affiliation(s)
- Zhu Tian
- Department of Neurology, Tianjin First Central Hospital, Tianjin, 300000, China
| | - Qian Dong
- College of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, 300000, China
| | - Tongrui Wu
- College of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, 300000, China
| | - Jie Guo
- Department of Neurology, Tianjin First Central Hospital, Tianjin, 300000, China.
| |
Collapse
|
27
|
Wu Z, Liu H, Sun W, Du Y, He W, Guo S, Chen L, Zhao Z, Wang P, Liang H, Deng J. RNF180 mediates STAT3 activity by regulating the expression of RhoC via the proteasomal pathway in gastric cancer cells. Cell Death Dis 2020; 11:881. [PMID: 33082325 PMCID: PMC7575565 DOI: 10.1038/s41419-020-03096-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 12/22/2022]
Abstract
Ring finger protein 180 (RNF180) is an important member of the E3 ubiquitin ligase family. As a tumor suppressor gene, RNF180 is significantly associated with the prognosis of patients with gastric cancer (GC) and can inhibit the proliferation, invasion, and migration of GC cells. Signal transducer and activator of transcription 3 (STAT3) are considered one of the most common oncogenes in human cancers with a key role in GC progression. In this study, we explored the molecular signaling pathways by which RNF180 could potentially regulate STAT3 through transcriptomics and proteomics experiments. Here, we found RNF180 overexpression could suppress STAT3 phosphorylation in GC cells. Ubiquitin label-free experiments showed that the ubiquitination level of Ras homolog gene family member C (RhoC) is significantly increased in GC cells transfected with an RNF180 expression vector (RNF180-GFP vector) compared with cells transfected with an empty vector (vehicle vector). We subsequently demonstrated that RNF180 could directly combine with RhoC and promote the ubiquitination and degradation of RhoC protein in GC cells. The phosphorylation level of STAT3 significantly decreased in GC cells after RhoC knockdown using small hairpin RNA (shRNA). Together, these results reveal RNF180 could inhibit GC progression by reducing the phosphorylation of STAT3 via the ubiquitination and degradation of RhoC protein in GC cells. Thus, the protein may be considered a novel therapeutic target for patients with GC.
Collapse
Affiliation(s)
- Zizhen Wu
- Department of Gastric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Huifang Liu
- Department of Gastric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Weilin Sun
- Department of Gastric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yingxin Du
- Department of Gastric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Wenting He
- Department of Gastric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Shiwei Guo
- Department of Gastric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Liqiao Chen
- Department of Gastric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Zhenzhen Zhao
- Department of Gastric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Pengliang Wang
- Department of Gastric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Han Liang
- Department of Gastric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China. .,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China. .,Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| | - Jingyu Deng
- Department of Gastric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China. .,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China. .,Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| |
Collapse
|
28
|
Xu M, Huang S, Dong X, Chen Y, Li M, Shi W, Wang G, Huang C, Wang Q, Liu Y, Sun P, Yang S, Xiang R, Chang A. A novel isoform of ATOH8 promotes the metastasis of breast cancer by regulating RhoC. J Mol Cell Biol 2020; 13:59-71. [PMID: 33049034 PMCID: PMC8035989 DOI: 10.1093/jmcb/mjaa050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/20/2020] [Accepted: 08/02/2020] [Indexed: 12/24/2022] Open
Abstract
Metastases are the main cause of cancer-related mortality in breast cancer. Although significant progress has been made in the field of tumor metastasis, the exact molecular mechanisms involved in tumor metastasis are still unclear. Here, we report that ATOH8-V1, a novel isoform of ATOH8, is highly expressed in breast cancer and is a negative prognostic indicator of survival for patients. Forced expression of ATOH8-V1 dramatically enhances, while silencing of ATOH8-V1 decreases the metastasis of breast cancer cell lines. Moreover, ATOH8-V1 directly binds to the RhoC promoter and stimulates the expression of RhoC, which in turn enhances the metastasis of breast cancer. Altogether, our data demonstrate that ATOH8-V1 is a novel pro-metastatic factor that enhances cancer metastasis, suggesting that ATOH8-V1 is a potential therapeutic target for treatment of metastatic cancers.
Collapse
Affiliation(s)
- Mengyao Xu
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Shan Huang
- School of Medicine, Nankai University, Tianjin 300071, China.,Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University Medical Center, Winston-Salem, NC 27157, USA
| | - Xiaoli Dong
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Yanan Chen
- School of Medicine, Nankai University, Tianjin 300071, China.,International Collaborative Innovation Center of Medicine, Nankai University, Tianjin 300071, China
| | - Miao Li
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Wen Shi
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Guanwen Wang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Chongbiao Huang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Qiong Wang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Yanhua Liu
- School of Medicine, Nankai University, Tianjin 300071, China.,International Collaborative Innovation Center of Medicine, Nankai University, Tianjin 300071, China
| | - Peiqing Sun
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University Medical Center, Winston-Salem, NC 27157, USA
| | - Shuang Yang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Rong Xiang
- School of Medicine, Nankai University, Tianjin 300071, China.,International Collaborative Innovation Center of Medicine, Nankai University, Tianjin 300071, China
| | - Antao Chang
- School of Medicine, Nankai University, Tianjin 300071, China.,Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University Medical Center, Winston-Salem, NC 27157, USA.,International Collaborative Innovation Center of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
29
|
Leukemia-Associated Rho Guanine Nucleotide Exchange Factor and Ras Homolog Family Member C Play a Role in Glioblastoma Cell Invasion and Resistance. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:2165-2176. [PMID: 32693062 DOI: 10.1016/j.ajpath.2020.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/16/2020] [Accepted: 07/07/2020] [Indexed: 11/23/2022]
Abstract
Glioblastoma (GBM) is the most common primary malignant brain cancer in adults. A hallmark of GBM is aggressive invasion of tumor cells into the surrounding normal brain. Both the current standard of care and targeted therapies have largely failed to specifically address this issue. Therefore, identifying key regulators of GBM cell migration and invasion is important. The leukemia-associated Rho guanine nucleotide exchange factor (LARG) has previously been implicated in cell invasion in other tumor types; however, its role in GBM pathobiology remains undefined. Herein, we report that the expression levels of LARG and ras homolog family members C (RhoC), and A (RhoA) increase with glial tumor grade and are highest in GBM. LARG and RhoC protein expression is more prominent in invading cells, whereas RhoA expression is largely restricted to cells in the tumor core. Knockdown of LARG by siRNA inhibits GBM cell migration in vitro and invasion ex vivo in organotypic brain slices. Moreover, siRNA-mediated silencing of RhoC suppresses GBM cell migration in vitro and invasion ex vivo, whereas depletion of RhoA enhances GBM cell migration and invasion, supporting a role for LARG and RhoC in GBM cell migration and invasion. Depletion of LARG increases the sensitivity of GBM cells to temozolomide treatment. Collectively, these results suggest that LARG and RhoC may represent unappreciated targets to inhibit glioma invasion.
Collapse
|
30
|
Karasic TB, Chiorean EG, Sebti SM, O'Dwyer PJ. A Phase I Study of GGTI-2418 (Geranylgeranyl Transferase I Inhibitor) in Patients with Advanced Solid Tumors. Target Oncol 2020; 14:613-618. [PMID: 31372813 DOI: 10.1007/s11523-019-00661-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Geranylgeranyltransferase I (GGTase I) catalyzes geranylgeranylation, a modification required for the function of many oncogenic RAS-related proteins. GGTI-2418 is a peptidomimetic small molecule inhibitor of GGTase I. OBJECTIVE The aim of this study was to establish the maximum tolerated dose of GGTI-2418 in patients with advanced solid tumors. PATIENTS AND METHODS This was a phase I, open-label, dose-escalation study conducted in two US centers (University of Pennsylvania and Indiana University) in adults with treatment-refractory advanced solid tumors. An accelerated dose-escalation schema was used across eight dose levels, from 120 to 2060 mg/m2, administered on days 1-5 of each 21-day cycle. RESULTS Fourteen patients were enrolled in the dose-escalation cohort. No dose-limiting toxicities were observed, and 2060 mg/m2 was determined to be the maximum tolerated dose. The only potential drug-related grade 3 or 4 toxicities were elevated bilirubin and alkaline phosphatase in a single patient with concurrent malignant biliary obstruction. No objective responses were observed. Four of thirteen evaluable patients had stable disease for up to 6.7 months. The study was terminated prior to dose expansion based on a sponsor decision. Pharmacokinetic analysis demonstrated a mean terminal half-life of 1.1 h. CONCLUSIONS GGTI2418 was safe and tolerable at all tested dose levels with some evidence of disease stability. Due to rapid elimination, dosing of GGTI2418 in this study may have been inadequate to achieve optimal inhibition of its target, GGTase I.
Collapse
Affiliation(s)
| | | | - Said M Sebti
- H. Lee Moffitt Cancer Care and Research Center, Tampa, FL, USA
| | | |
Collapse
|
31
|
ROCK and RHO Playlist for Preimplantation Development: Streaming to HIPPO Pathway and Apicobasal Polarity in the First Cell Differentiation. ADVANCES IN ANATOMY EMBRYOLOGY AND CELL BIOLOGY 2020; 229:47-68. [PMID: 29177764 DOI: 10.1007/978-3-319-63187-5_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In placental mammalian development, the first cell differentiation produces two distinct lineages that emerge according to their position within the embryo: the trophectoderm (TE, placenta precursor) differentiates in the surface, while the inner cell mass (ICM, fetal body precursor) forms inside. Here, we discuss how such position-dependent lineage specifications are regulated by the RHOA subfamily of small GTPases and RHO-associated coiled-coil kinases (ROCK). Recent studies in mouse show that activities of RHO/ROCK are required to promote TE differentiation and to concomitantly suppress ICM formation. RHO/ROCK operate through the HIPPO signaling pathway, whose cell position-specific modulation is central to establishing unique gene expression profiles that confer cell fate. In particular, activities of RHO/ROCK are essential in outside cells to promote nuclear localization of transcriptional co-activators YAP/TAZ, the downstream effectors of HIPPO signaling. Nuclear localization of YAP/TAZ depends on the formation of apicobasal polarity in outside cells, which requires activities of RHO/ROCK. We propose models of how RHO/ROCK regulate lineage specification and lay out challenges for future investigations to deepen our understanding of the roles of RHO/ROCK in preimplantation development. Finally, as RHO/ROCK may be inhibited by certain pharmacological agents, we discuss their potential impact on human preimplantation development in relation to fertility preservation in women.
Collapse
|
32
|
Kanwar N, Carmine-Simmen K, Nair R, Wang C, Moghadas-Jafari S, Blaser H, Tran-Thanh D, Wang D, Wang P, Wang J, Pasculescu A, Datti A, Mak T, Lewis JD, Done SJ. Amplification of a calcium channel subunit CACNG4 increases breast cancer metastasis. EBioMedicine 2020; 52:102646. [PMID: 32062352 PMCID: PMC7016384 DOI: 10.1016/j.ebiom.2020.102646] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/20/2019] [Accepted: 01/15/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Previously, we found that amplification of chromosome 17q24.1-24.2 is associated with lymph node metastasis, tumour size, and lymphovascular invasion in invasive ductal carcinoma. A gene within this amplicon, CACNG4, an L-type voltage-gated calcium channel gamma subunit, is elevated in breast cancers with poor prognosis. Calcium homeostasis is achieved by maintaining low intracellular calcium levels. Altering calcium influx/efflux mechanisms allows tumour cells to maintain homeostasis despite high serum calcium levels often associated with advanced cancer (hypercalcemia) and aberrant calcium signaling. METHODS In vitro 2-D and 3-D assays, and intracellular calcium influx assays were utilized to measure tumourigenic activity in response to altered CANCG4 levels and calcium channel blockers. A chick-CAM model and mouse model for metastasis confirmed these results in vivo. FINDINGS CACNG4 alters cell motility in vitro, induces malignant transformation in 3-dimensional culture, and increases lung-specific metastasis in vivo. CACNG4 functions by closing the channel pore, inhibiting calcium influx, and altering calcium signaling events involving key survival and metastatic pathway genes (AKT2, HDAC3, RASA1 and PKCζ). INTERPRETATION CACNG4 may promote homeostasis, thus increasing the survival and metastatic ability of tumour cells in breast cancer. Our findings suggest an underlying pathway for tumour growth and dissemination regulated by CACNG4 that is significant with respect to developing treatments that target these channels in tumours with aberrant calcium signaling. FUNDING Canadian Breast Cancer Foundation, Ontario; Canadian Institutes of Health Research.
Collapse
Affiliation(s)
- Nisha Kanwar
- The Campbell Family for Breast Cancer Research, Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada; Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| | | | - Ranju Nair
- The Campbell Family for Breast Cancer Research, Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada
| | - Chunjie Wang
- Department of Pathology and Laboratory Medicine, Saskatoon City Hospital, Saskatoon, SK S7K 0M7, Canada
| | - Soode Moghadas-Jafari
- The Campbell Family for Breast Cancer Research, Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada
| | - Heiko Blaser
- The Campbell Family for Breast Cancer Research, Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada
| | - Danh Tran-Thanh
- Department of Pathology, Centre Hospitalier de l'Université de Montréal, Montréal, QC H2W 1T8, Canada
| | - Dongyu Wang
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, ON M5S 1A1, Canada
| | - Peiqi Wang
- The Campbell Family for Breast Cancer Research, Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada
| | - Jenny Wang
- Samuel Lunenfeld Research Institute, Mt. Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Adrian Pasculescu
- Samuel Lunenfeld Research Institute, Mt. Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Alessandro Datti
- Samuel Lunenfeld Research Institute, Mt. Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Agricultural, Food, and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Tak Mak
- The Campbell Family for Breast Cancer Research, Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada; Department of Medical Biophysics, Faculty of Medicine, University of Toronto, ON M5S 1A1, Canada
| | - John D Lewis
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Susan J Done
- The Campbell Family for Breast Cancer Research, Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada; Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada; Department of Medical Biophysics, Faculty of Medicine, University of Toronto, ON M5S 1A1, Canada; Laboratory Medicine Program, Department of Pathology, University Health Network, Toronto General Hospital, 200 Elizabeth Street, 11th floor, Toronto, ON M5G 2C4, Canada.
| |
Collapse
|
33
|
Guan X, Guan X, Dong C, Jiao Z. Rho GTPases and related signaling complexes in cell migration and invasion. Exp Cell Res 2020; 388:111824. [PMID: 31926148 DOI: 10.1016/j.yexcr.2020.111824] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/16/2022]
Abstract
Cell migration and invasion play an important role in the development of cancer. Cell migration is associated with several specific actin filament-based structures, including lamellipodia, filopodia, invadopodia and blebs, and with cell-cell adhesion, cell-extracellular matrix adhesion. Migration occurs via different modes, human epithelial cancer cells mainly migrate collectively, while in vivo imaging studies in laboratory animals have found that most cells migrate as single cells. Rho GTPases play an important role in the process of cell migration, and several Rho GTPase-related signaling complexes are also involved. However, the exact mechanism by which these signaling complexes act remains unclear. This paper reviews how Rho GTPases and related signaling complexes interact with other proteins, how their expression is regulated, how tumor microenvironment-related factors play a role in invasion and metastasis, and the mechanism of these complex signaling networks in cell migration and invasion.
Collapse
Affiliation(s)
- Xiaoying Guan
- Pathology Department, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Xiaoli Guan
- General Medicine Department, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Chi Dong
- Pathology Department, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Zuoyi Jiao
- The First Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China.
| |
Collapse
|
34
|
Sridharan S, Howard CM, Tilley AMC, Subramaniyan B, Tiwari AK, Ruch RJ, Raman D. Novel and Alternative Targets Against Breast Cancer Stemness to Combat Chemoresistance. Front Oncol 2019; 9:1003. [PMID: 31681564 PMCID: PMC6805781 DOI: 10.3389/fonc.2019.01003] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/18/2019] [Indexed: 12/15/2022] Open
Abstract
Breast cancer stem cells (BCSCs) play a vital role in tumor progression and metastasis. They are heterogeneous and inherently radio- and chemoresistant. They have the ability to self-renew and differentiate into non-BCSCs. These determinants of BCSCs including the plasticity between the mesenchymal and epithelial phenotypes often leads to minimal residual disease (MRD), tumor relapse, and therapy failure. By studying the resistance mechanisms in BCSCs, a combinatorial therapy can be formulated to co-target BCSCs and bulk tumor cells. This review addresses breast cancer stemness and molecular underpinnings of how the cancer stemness can lead to pharmacological resistance. This might occur through rewiring of signaling pathways and modulated expression of various targets that support survival and self-renewal, clonogenicity, and multi-lineage differentiation into heterogeneous bulk tumor cells following chemotherapy. We explore emerging novel and alternative molecular targets against BC stemness and chemoresistance involving survival, drug efflux, metabolism, proliferation, cell migration, invasion, and metastasis. Strategic targeting of such vulnerabilities in BCSCs may overcome the chemoresistance and increase the longevity of the metastatic breast cancer patients.
Collapse
Affiliation(s)
- Sangita Sridharan
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| | - Cory M. Howard
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| | | | | | - Amit K. Tiwari
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, OH, United States
| | - Randall J. Ruch
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| | - Dayanidhi Raman
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| |
Collapse
|
35
|
Pranatharthi A, Thomas P, Udayashankar AH, Bhavani C, Suresh SB, Krishna S, Thatte J, Srikantia N, Ross CR, Srivastava S. RhoC regulates radioresistance via crosstalk of ROCK2 with the DNA repair machinery in cervical cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:392. [PMID: 31488179 PMCID: PMC6729006 DOI: 10.1186/s13046-019-1385-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/15/2019] [Indexed: 01/06/2023]
Abstract
Background Radioresistance remains a challenge to the successful treatment of various tumors. Intrinsic factors like alterations in signaling pathways regulate response to radiation. RhoC, which has been shown to modulate several tumor phenotypes has been investigated in this report for its role in radioresistance. In vitro and clinical sample-based studies have been performed to understand its contribution to radiation response in cervical cancer and this is the first report to establish the role of RhoC and its effector ROCK2 in cervical cancer radiation response. Methods Biochemical, transcriptomic and immunological approaches including flow cytometry and immunofluorescence were used to understand the role of RhoC and ROCK2. RhoC variants, siRNA and chemical inhibitors were used to alter the function of RhoC and ROCK2. Transcriptomic profiling was performed to understand the gene expression pattern of the cells. Live sorting using an intracellular antigen has been developed to isolate the cells for transcriptomic studies. Results Enhanced expression of RhoC conferred radioprotection on the tumor cells while inhibition of RhoC resulted in sensitization of cells to radiation. The RhoC overexpressing cells had a better DNA repair machinery as observed using transcriptomic analysis. Similarly, overexpression of ROCK2, protected tumor cells against radiation while its inhibition increased radiosensitivity in vitro. Further investigations revealed that ROCK2 inhibition abolished the radioresistance phenotype, conferred by RhoC on SiHa cells, confirming that it is a downstream effector of RhoC in this context. Additionally, transcriptional analysis of the live sorted ROCK2 high and ROCK2 low expressing SiHa cells revealed an upregulation of the DNA repair pathway proteins. Consequently, inhibition of ROCK2 resulted in reduced expression of pH2Ax and MRN complex proteins, critical to repair of double strand breaks. Clinical sample-based studies also demonstrated that ROCK2 inhibition sensitizes tumor cells to irradiation. Conclusions Our data primarily indicates that RhoC and ROCK2 signaling is important for the radioresistance phenotype in cervical cancer tumor cells and is regulated via association of ROCK2 with the proteins of DNA repair pathway involving pH2Ax, MRE11 and RAD50 proteins, partly offering insights into the mechanism of radioresistance in tumor cells. These findings highlight RhoC-ROCK2 signaling involvement in DNA repair and urge the need for development of these molecules as targets to alleviate the non-responsiveness of cervical cancer tumor cells to irradiation treatment. Electronic supplementary material The online version of this article (10.1186/s13046-019-1385-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Annapurna Pranatharthi
- National Centre for Biological Sciences (NCBS), Bangalore, 560065, India.,Rajiv Gandhi University of Health Sciences, Bangalore, 560041, India.,Translational and Molecular Biology Laboratory (TMBL), Department of Medicine, St. John's Medical College Hospital (SJMCH), Bangalore, 560034, India
| | - Pavana Thomas
- School of Integrative Health Sciences, The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bangalore, 560064, India.,Translational and Molecular Biology Laboratory (TMBL), St. John's Research Institute (SJRI), Bangalore, 560034, India
| | - Avinash H Udayashankar
- Department of Radiation Oncology, St John's Medical College Hospital (SJMCH), Bangalore, 560034, India
| | - Chandra Bhavani
- Translational and Molecular Biology Laboratory (TMBL), St. John's Research Institute (SJRI), Bangalore, 560034, India
| | - Srinag Bangalore Suresh
- Rajiv Gandhi University of Health Sciences, Bangalore, 560041, India.,Translational and Molecular Biology Laboratory (TMBL), Department of Medicine, St. John's Medical College Hospital (SJMCH), Bangalore, 560034, India
| | - Sudhir Krishna
- National Centre for Biological Sciences (NCBS), Bangalore, 560065, India
| | - Jayashree Thatte
- National Centre for Biological Sciences (NCBS), Bangalore, 560065, India
| | - Nirmala Srikantia
- Department of Radiation Oncology, St John's Medical College Hospital (SJMCH), Bangalore, 560034, India
| | - Cecil R Ross
- Rajiv Gandhi University of Health Sciences, Bangalore, 560041, India.,Translational and Molecular Biology Laboratory (TMBL), Department of Medicine, St. John's Medical College Hospital (SJMCH), Bangalore, 560034, India
| | - Sweta Srivastava
- Translational and Molecular Biology Laboratory (TMBL), Department of Transfusion Medicine and Immunohematology, St. John's Medical College Hospital (SJMCH), Bangalore, 560034, India. .,School of Integrative Health Sciences, The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bangalore, 560064, India.
| |
Collapse
|
36
|
Rho GTPases in cancer: friend or foe? Oncogene 2019; 38:7447-7456. [PMID: 31427738 DOI: 10.1038/s41388-019-0963-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/02/2019] [Accepted: 07/10/2019] [Indexed: 01/06/2023]
Abstract
The Rho GTPases RhoA, Rac1, and Cdc42 are important regulators of cytoskeletal dynamics. Although many in vitro and in vivo data indicate tumor-promoting effects of activated Rho GTPases, also tumor suppressive functions have been described, suggesting either highly cell-type-specific functions for Rho GTPases in cancer or insufficient cancer models. The availability of a large number of cancer genome-sequencing data by The Cancer Genome Atlas (TCGA) allows for the investigation of Rho GTPase function in human cancers in silico. This information should be used to improve our in vitro and in vivo cancer models, which are essential for a molecular understanding of Rho GTPase function in malignant tumors and for the potential development of cancer drugs targeting Rho GTPase signaling.
Collapse
|
37
|
Thomas P, Pranatharthi A, Ross C, Srivastava S. RhoC: a fascinating journey from a cytoskeletal organizer to a Cancer stem cell therapeutic target. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:328. [PMID: 31340863 PMCID: PMC6651989 DOI: 10.1186/s13046-019-1327-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/15/2019] [Indexed: 01/05/2023]
Abstract
Tumor heterogeneity results in differential response to therapy due to the existence of plastic tumor cells, called cancer stem cells (CSCs), which exhibit the property of resistance to therapy, invasion and metastasis. These cells have a distinct, signaling network active at every stage of progression. It is difficult to envisage that the CSCs will have a unique set of signaling pathways regulating every stage of disease progression. Rather, it would be easier to believe that a single pivotal pathway having significant contribution at every stage, which can further turn on a battery of signaling mechanisms specific to that stage, would be instrumental in regulating the signaling network, enabling easy transition from one state to another. In this context, we discuss the role of RhoC which has contributed to several phenotypes during tumor progression. RhoC (Ras homolog gene family member C) has been widely reported to regulate actin organization. It has been shown to impact the motility of cancer cells, resultantly affecting invasion and metastasis, and has contributed to carcinoma progression of the breast, pancreas, lung, ovaries and cervix, among several others. The most interesting finding has been its indispensable role in metastasis. Also, it has the ability to modulate various other phenotypes like angiogenesis, motility, invasion, metastasis, and anoikis resistance. These observations suggest that RhoC imparts the plasticity required by tumor cells to exhibit such diverse functions based on microenvironmental cues. This was further confirmed by recent reports which show that it regulates cancer stem cells in breast, ovary and head and neck cancers. Studies also suggest that the inhibition of RhoC results in abolition of advanced tumor phenotypes. Our review throws light on how RhoC, which is capable of modulating various phenotypes may be the apt core signaling candidate regulating disease progression. Additionally, mice studies show that RhoC is not essential for embryogenesis, giving scope for its development as a possible therapeutic target. This review thus stresses on the need to understand the protein and its functioning in greater detail to enable its development as a stem cell marker and a possible therapeutic target.
Collapse
Affiliation(s)
- Pavana Thomas
- Translational and Molecular Biology Laboratory (TMBL), St. John's Research Institute (SJRI), Bangalore, 560034, India.,School of Integrative Health Sciences, The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bangalore, 560064, India
| | - Annapurna Pranatharthi
- Rajiv Gandhi University of Health Sciences (RGUHS), Bangalore, 560041, India.,National Centre for Biological Sciences (NCBS), Bangalore, 560065, India.,Translational and Molecular Biology Laboratory (TMBL), Department of Medicine, St. John's Medical College Hospital (SJMCH), Bangalore, 560034, India
| | - Cecil Ross
- Translational and Molecular Biology Laboratory (TMBL), Department of Medicine, St. John's Medical College Hospital (SJMCH), Bangalore, 560034, India
| | - Sweta Srivastava
- Translational and Molecular Biology Laboratory (TMBL), Department of Transfusion Medicine and Immunohematology, St. John's Medical College Hospital (SJMCH), Bangalore, 560034, India.
| |
Collapse
|
38
|
Barlow HR, Cleaver O. Building Blood Vessels-One Rho GTPase at a Time. Cells 2019; 8:cells8060545. [PMID: 31174284 PMCID: PMC6627795 DOI: 10.3390/cells8060545] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/01/2019] [Accepted: 06/03/2019] [Indexed: 01/09/2023] Open
Abstract
Blood vessels are required for the survival of any organism larger than the oxygen diffusion limit. Blood vessel formation is a tightly regulated event and vessel growth or changes in permeability are linked to a number of diseases. Elucidating the cell biology of endothelial cells (ECs), which are the building blocks of blood vessels, is thus critical to our understanding of vascular biology and to the development of vascular-targeted disease treatments. Small GTPases of the Rho GTPase family are known to regulate several processes critical for EC growth and maintenance. In fact, many of the 21 Rho GTPases in mammals are known to regulate EC junctional remodeling, cell shape changes, and other processes. Rho GTPases are thus an attractive target for disease treatments, as they often have unique functions in specific vascular cell types. In fact, some Rho GTPases are even expressed with relative specificity in diseased vessels. Interestingly, many Rho GTPases are understudied in ECs, despite their known expression in either developing or mature vessels, suggesting an even greater wealth of knowledge yet to be gleaned from these complex signaling pathways. This review aims to provide an overview of Rho GTPase signaling contributions to EC vasculogenesis, angiogenesis, and mature vessel barrier function. A particular emphasis is placed on so-called "alternative" Rho GTPases, as they are largely understudied despite their likely important contributions to EC biology.
Collapse
Affiliation(s)
- Haley Rose Barlow
- Department of Molecular Biology and Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Ondine Cleaver
- Department of Molecular Biology and Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
39
|
Little AC, Pathanjeli P, Wu Z, Bao L, Goo LE, Yates JA, Oliver CR, Soellner MB, Merajver SD. IL-4/IL-13 Stimulated Macrophages Enhance Breast Cancer Invasion Via Rho-GTPase Regulation of Synergistic VEGF/CCL-18 Signaling. Front Oncol 2019; 9:456. [PMID: 31214501 PMCID: PMC6554436 DOI: 10.3389/fonc.2019.00456] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/14/2019] [Indexed: 01/16/2023] Open
Abstract
Tumor associated macrophages (TAMs) are increasingly recognized as major contributors to the metastatic progression of breast cancer and enriched levels of TAMs often correlate with poor prognosis. Despite our current advances it remains unclear which subset of M2-like macrophages have the highest capacity to enhance the metastatic program and which mechanisms regulate this process. Effective targeting of macrophages that aid cancer progression requires knowledge of the specific mechanisms underlying their pro-metastatic actions, as to avoid the anticipated toxicities from generalized targeting of macrophages. To this end, we set out to understand the relationship between the regulation of tumor secretions by Rho-GTPases, which were previously demonstrated to affect them, macrophage differentiation, and the converse influence of macrophages on cancer cell phenotype. Our data show that IL-4/IL-13 in vitro differentiated M2a macrophages significantly increase migratory and invasive potential of breast cancer cells at a greater rate than M2b or M2c macrophages. Our previous work demonstrated that the Rho-GTPases are potent regulators of macrophage-induced migratory responses; therefore, we examined M2a-mediated responses in RhoA or RhoC knockout breast cancer cell models. We find that both RhoA and RhoC regulate migration and invasion in MDA-MB-231 and SUM-149 cells following stimulation with M2a conditioned media. Secretome analysis of M2a conditioned media reveals high levels of vascular endothelial growth factor (VEGF) and chemokine (C-C motif) ligand 18 (CCL-18). Results from our functional assays reveal that M2a TAMs synergistically utilize VEGF and CCL-18 to promote migratory and invasive responses. Lastly, we show that pretreatment with ROCK inhibitors Y-276332 or GSK42986A attenuated VEGF/CCL-18 and M2a-induced migration and invasion. These results support Rho-GTPase signaling regulates downstream responses induced by TAMs, offering a novel approach for the prevention of breast cancer metastasis by anti-RhoA/C therapies.
Collapse
Affiliation(s)
- Andrew C. Little
- Department of Internal Medicine, Hematology-Oncology, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | | | | | | | | | | | | | | | - Sofia D. Merajver
- Department of Internal Medicine, Hematology-Oncology, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
40
|
Zhang JG, Zhang DD, Liu Y, Hu JN, Zhang X, Li L, Mu W, Zhu GH, Li Q, Liu GL. RhoC/ROCK2 promotes vasculogenic mimicry formation primarily through ERK/MMPs in hepatocellular carcinoma. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1113-1125. [PMID: 30779947 DOI: 10.1016/j.bbadis.2018.12.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 11/06/2018] [Accepted: 12/05/2018] [Indexed: 12/12/2022]
Abstract
Vasculogenic mimicry (VM) results in the formation of an alternative circulatory system that can improve the blood supply to multiple malignant tumors, including hepatocellular carcinoma (HCC). However, the potential mechanisms of RhoC/ROCK in VM have not yet been investigated in HCC. Here, RhoC expression was upregulated in HCC tissues, especially the VM-positive (VM+) group, compared to noncancerous tissues (P < 0.01), and patients with high expression of RhoC had shorter survival times (P < 0.001). The knockdown of RhoC via short hairpin RNA (shRNA) in SK-Hep-1 cells significantly decreased VM formation and cell motility. In contrast, cell motility and VM formation were remarkably enhanced when RhoC was overexpressed in HepG2 cells. To further assess the potential role of ROCK1 and ROCK2 on VM, we stably knocked down ROCK1 or ROCK2 in MHCC97H cells. Compared to ROCK1 shRNA, ROCK2 shRNA could largely affect VM formation, cell motility and the key VM factors, as well as the epithelial-mesenchymal transition (EMT) markers in vitro and in vivo. Moreover, p-ERK, p-MEK, p-FAK, p-paxillin, MT1-MMP and MMP2 levels were clearly altered following the overexpression of RhoC, but ROCK2 shRNA had little effect on the expression of p-FAK, which indicated that RhoC regulates FAK/paxillin signaling, but not through ROCK2. In conclusion, our results show that RhoC/ROCK2 may have a major effect on VM in HCC via ERK/MMPs signaling and might be a potential therapeutic target for the treatment of HCC.
Collapse
Affiliation(s)
- Ji-Gang Zhang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100 Haining Road, Shanghai 200080, PR China
| | - Dan-Dan Zhang
- Department of Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.1665 Kongjiang Road, Shanghai 200092, PR China
| | - Ying Liu
- Department of Clinical Pharmacy, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, 200032 Shanghai, PR China
| | - Juan-Ni Hu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100 Haining Road, Shanghai 200080, PR China
| | - Xue Zhang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100 Haining Road, Shanghai 200080, PR China
| | - Li Li
- Department of Pharmacy, The Eighth Affiliated Hospital of Sun Yat-Sen University, No 3025, Nanhai Road, 518033 Shenzhen, PR China
| | - Wan Mu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100 Haining Road, Shanghai 200080, PR China
| | - Guan-Hua Zhu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100 Haining Road, Shanghai 200080, PR China
| | - Qin Li
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100 Haining Road, Shanghai 200080, PR China.
| | - Gao-Lin Liu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100 Haining Road, Shanghai 200080, PR China.
| |
Collapse
|
41
|
Ueyama T. Rho-Family Small GTPases: From Highly Polarized Sensory Neurons to Cancer Cells. Cells 2019; 8:cells8020092. [PMID: 30696065 PMCID: PMC6406560 DOI: 10.3390/cells8020092] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/19/2019] [Accepted: 01/23/2019] [Indexed: 12/22/2022] Open
Abstract
The small GTPases of the Rho-family (Rho-family GTPases) have various physiological functions, including cytoskeletal regulation, cell polarity establishment, cell proliferation and motility, transcription, reactive oxygen species (ROS) production, and tumorigenesis. A relatively large number of downstream targets of Rho-family GTPases have been reported for in vitro studies. However, only a small number of signal pathways have been established at the in vivo level. Cumulative evidence for the functions of Rho-family GTPases has been reported for in vivo studies using genetically engineered mouse models. It was based on different cell- and tissue-specific conditional genes targeting mice. In this review, we introduce recent advances in in vivo studies, including human patient trials on Rho-family GTPases, focusing on highly polarized sensory organs, such as the cochlea, which is the primary hearing organ, host defenses involving reactive oxygen species (ROS) production, and tumorigenesis (especially associated with RAC, novel RAC1-GSPT1 signaling, RHOA, and RHOBTB2).
Collapse
Affiliation(s)
- Takehiko Ueyama
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan.
| |
Collapse
|
42
|
Sridharan S, Howard CM, Tilley AMC, Subramaniyan B, Tiwari AK, Ruch RJ, Raman D. Novel and Alternative Targets Against Breast Cancer Stemness to Combat Chemoresistance. Front Oncol 2019. [PMID: 31681564 DOI: 10.3389/fonc.2019.01003.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023] Open
Abstract
Breast cancer stem cells (BCSCs) play a vital role in tumor progression and metastasis. They are heterogeneous and inherently radio- and chemoresistant. They have the ability to self-renew and differentiate into non-BCSCs. These determinants of BCSCs including the plasticity between the mesenchymal and epithelial phenotypes often leads to minimal residual disease (MRD), tumor relapse, and therapy failure. By studying the resistance mechanisms in BCSCs, a combinatorial therapy can be formulated to co-target BCSCs and bulk tumor cells. This review addresses breast cancer stemness and molecular underpinnings of how the cancer stemness can lead to pharmacological resistance. This might occur through rewiring of signaling pathways and modulated expression of various targets that support survival and self-renewal, clonogenicity, and multi-lineage differentiation into heterogeneous bulk tumor cells following chemotherapy. We explore emerging novel and alternative molecular targets against BC stemness and chemoresistance involving survival, drug efflux, metabolism, proliferation, cell migration, invasion, and metastasis. Strategic targeting of such vulnerabilities in BCSCs may overcome the chemoresistance and increase the longevity of the metastatic breast cancer patients.
Collapse
Affiliation(s)
- Sangita Sridharan
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| | - Cory M Howard
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| | - Augustus M C Tilley
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| | | | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, OH, United States
| | - Randall J Ruch
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| | - Dayanidhi Raman
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| |
Collapse
|
43
|
Huang D, Wang Y, Xu L, Chen L, Cheng M, Shi W, Xiong H, Zalli D, Luo S. GLI2 promotes cell proliferation and migration through transcriptional activation of ARHGEF16 in human glioma cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:247. [PMID: 30305138 PMCID: PMC6180656 DOI: 10.1186/s13046-018-0917-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/25/2018] [Indexed: 01/02/2023]
Abstract
BACKGROUND The Hedgehog (Hh) signaling pathway plays critical roles in modulating embryogenesis and maintaining tissue homeostasis, with glioma-associated oncogene (GLI) transcription factors being the main mediators. Aberrant activation of this pathway is associated with various human malignancies including glioblastoma, although the mechanistic details are not well understood. METHODS We performed a microarray analysis of genes that are differentially expressed in glioblastoma U87 cells overexpressing GLI2A, the active form of GLI2, relative to the control cells. Chromatin immunoprecipitation and dual-luciferase assays were used to determine whether Rho guanine nucleotide exchange factor 16 (ARHGEF16) is a downstream target of GLI2. Then, transwell migration, EdU and soft-agar colony formation assays were employed to test effects of ARHGEF16 on glioma cancer cell migration and proliferation, and the effects of GLI2/ARHGEF16 signaling on tumor growth were examined in vivo. Finally, we performed yeast two-hybrid assay, Co-IP and GST-pull down to identify factors that mediate effects of ARHGEF16. RESULTS We found that ARHGEF16 mRNA level was upregulated in U87 cells overexpressing GLI2A relative to control cells. GLI2 binds to the ARHGEF16 promoter and activates gene transcription. Glioma cells U87 and U118 overexpressing ARHGEF16 showed enhanced migration and proliferation relative to the control cells, while knockdown of ARHGEF16 in H4 cells led to decreased cell proliferation compared to the control H4 cells. In contrast to the promoting effect of GLI2A overexpression on glioma xenograft growth, both GLI2 inhibition and ARHGEF16 knockdown retarded tumor growth. Cytoskeleton-associated protein 5 (CKAP5) was identified as an interaction protein of ARHGEF16, which is important for the stimulatory effects of ARHGEF16 on glioma cell migration and proliferation. CONCLUSIONS These results suggest that therapeutic strategies targeting the GLI2/ARHGEF16/CKAP5 signaling axis could inhibit glioma progression and recurrence.
Collapse
Affiliation(s)
- Dengliang Huang
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nanchang, 330006, Jiangxi, China.,Jiangxi Key Laboratory of Molecular Diagnostics and Precision Medicine, Nanchang, 330006, Jiangxi, China
| | - Yiting Wang
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nanchang, 330006, Jiangxi, China.,Jiangxi Key Laboratory of Molecular Diagnostics and Precision Medicine, Nanchang, 330006, Jiangxi, China
| | - Linlin Xu
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nanchang, 330006, Jiangxi, China.,Jiangxi Key Laboratory of Molecular Diagnostics and Precision Medicine, Nanchang, 330006, Jiangxi, China
| | - Limin Chen
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nanchang, 330006, Jiangxi, China.,Jiangxi Key Laboratory of Molecular Diagnostics and Precision Medicine, Nanchang, 330006, Jiangxi, China
| | - Minzhang Cheng
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nanchang, 330006, Jiangxi, China.,Jiangxi Key Laboratory of Molecular Diagnostics and Precision Medicine, Nanchang, 330006, Jiangxi, China
| | - Wei Shi
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nanchang, 330006, Jiangxi, China.,Jiangxi Key Laboratory of Molecular Diagnostics and Precision Medicine, Nanchang, 330006, Jiangxi, China
| | - Huanting Xiong
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nanchang, 330006, Jiangxi, China.,Jiangxi Key Laboratory of Molecular Diagnostics and Precision Medicine, Nanchang, 330006, Jiangxi, China
| | - Detina Zalli
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Shiwen Luo
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nanchang, 330006, Jiangxi, China. .,Jiangxi Key Laboratory of Molecular Diagnostics and Precision Medicine, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
44
|
Zeng YF, Xiao YS, Liu Y, Luo XJ, Wen LD, Liu Q, Chen M. Formin-like 3 regulates RhoC/FAK pathway and actin assembly to promote cell invasion in colorectal carcinoma. World J Gastroenterol 2018; 24:3884-3897. [PMID: 30228782 PMCID: PMC6141330 DOI: 10.3748/wjg.v24.i34.3884] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 06/16/2018] [Accepted: 06/27/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To clarify the underlying mechanism of formin-like 3 (FMNL3) in the promotion of colorectal carcinoma (CRC) cell invasion.
METHODS The in vitro biological function analyses of FMNL3 were performed by gain- and loss-of function approaches. Changes in the F-actin cytoskeleton were detected by the technologies of phalloidin-TRITC labeling and confocal microscopy. The signaling pathway mediated by FMNL3 was explored by western blot, gelatin zymograph assay, co-immunoprecipitation (co-IP), immunofluorescence co-localization, and glutathione S-transferase (GST) pull-down assay.
RESULTS The in vitro experimental results showed that FMNL3 significantly promoted the proliferation, invasion, and migration of CRC cells (P < 0.05 and P < 0.01). Moreover, FMNL3 regulated the remodeling of actin-based protrusions such as filopodia and lamellipodia in a RhoC-dependent manner. The western blot and gelatin zymograph assay results indicated that FMNL3 was involved in the RhoC/ focal adhesion kinase (FAK) pathway and acted as an effector of RhoC to activate the downstream signaling of p-FAK as well as p-MAPK and p-AKT. This resulted in the increased expression of matrix metalloproteinase 2 (MMP2), matrix metalloproteinase 9 (MMP9) and vascular endothelial growth factor (VEGF), and the subsequent promotion of CRC cell invasion. The results of TAE226, U0126 or Ly294002 treatment confirmed an essential role of FMNL3 in activation of the RhoC/FAK pathway and the subsequent promotion of CRC invasion. Co-IP, co-localization and GST pull-down assays showed the direct interaction of FMNL3 with RhoC in vivo and in vitro.
CONCLUSION FMNL3 regulates the RhoC/FAK signaling pathway and RhoC-dependent remodeling of actin-based protrusions to promote CRC invasion.
Collapse
Affiliation(s)
- Yuan-Feng Zeng
- Department of Pathology, Jiangxi Provincial People’s Hospital, Nanchang 330006, Jiangxi Province, China
| | - Yi-Sheng Xiao
- Teaching and Researching Section of Morphology, College of Basic Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Yong Liu
- Department of Pathology, Jiangxi Provincial People’s Hospital, Nanchang 330006, Jiangxi Province, China
| | - Xiao-Jiang Luo
- Department of General Surgery, Jiangxi Provincial People’s Hospital, Nanchang 330006, Jiangxi Province, China
| | - Li-Dan Wen
- Clinical Medical Sciences Institute, Jiangxi Provincial People’s Hospital, Nanchang 330006, Jiangxi Province, China
| | - Qian Liu
- Department of Pathology, Jiangxi Provincial People’s Hospital, Nanchang 330006, Jiangxi Province, China
| | - Min Chen
- Department of Pathology, Jiangxi Provincial People’s Hospital, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
45
|
Molecular therapy using siRNA: Recent trends and advances of multi target inhibition of cancer growth. Int J Biol Macromol 2018; 116:880-892. [DOI: 10.1016/j.ijbiomac.2018.05.077] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 05/11/2018] [Accepted: 05/12/2018] [Indexed: 01/07/2023]
|
46
|
Zheng H, Ramnaraign D, Anderson BA, Tycksen E, Nunley R, McAlinden A. MicroRNA-138 Inhibits Osteogenic Differentiation and Mineralization of Human Dedifferentiated Chondrocytes by Regulating RhoC and the Actin Cytoskeleton. JBMR Plus 2018; 3:e10071. [PMID: 30828688 PMCID: PMC6383697 DOI: 10.1002/jbm4.10071] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/22/2018] [Accepted: 06/26/2018] [Indexed: 01/03/2023] Open
Abstract
MicroRNAs (miRNAs) are known to play critical roles in many cellular processes including those regulating skeletal development and homeostasis. A previous study from our group identified differentially expressed miRNAs in the developing human growth plate. Among those more highly expressed in hypertrophic chondrocytes compared to progenitor chondrocytes was miR‐138, therefore suggesting a possible role for this miRNA in regulating chondrogenesis and/or endochondral ossification. The goal of this study was to determine the function of miR‐ 138 in regulating osteogenesis by using human osteoarthritic dedifferentiated chondrocytes (DDCs) as source of inducible cells. We show that over‐expression of miR‐138 inhibited osteogenic differentiation of DDCs in vitro. Moreover, cell shape was altered and cell proliferation and possibly migration was also suppressed by miR‐138. Given alterations in cell shape, closer analysis revealed that F‐actin polymerization was also inhibited by miR‐138. Computational approaches showed that the small GTPase, RhoC, is a potential miR‐138 target gene. We pursued RhoC further given its function in regulating cell proliferation and migration in cancer cells. Indeed, miR‐138 over‐expression in DDCs resulted in decreased RhoC protein levels. A series of rescue experiments showed that RhoC over‐expression could attenuate the inhibitory actions of miR‐138 on DDC proliferation, F‐actin polymerization and osteogenic differentiation. Bone formation was also found to be enhanced within human demineralized bone scaffolds seeded with DDCs expressing both miR‐138 and RhoC. In conclusion, we have discovered a new mechanism in DDCs whereby miR‐138 functions to suppress RhoC which subsequently inhibits proliferation, F‐actin polymerization and osteogenic differentiation. To date, there are no published reports on the importance of RhoC in regulating osteogenesis. This opens up new avenues of research involving miR‐138 and RhoC pathways to better understand mechanisms regulating bone formation in addition to the potential use of DDCs as a cell source for bone tissue engineering. © 2018 The Authors. JBMR Plus is published by Wiley Periodicals, Inc. on behalf of the American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Hongjun Zheng
- Department of Orthopaedic SurgeryWashington University School of MedicineSt LouisMOUSA
| | | | - Britta A Anderson
- Department of Orthopaedic SurgeryWashington University School of MedicineSt LouisMOUSA
| | - Eric Tycksen
- Genome Technology Access CenterWashington University School of MedicineSt LouisMOUSA
| | - Ryan Nunley
- Department of Orthopaedic SurgeryWashington University School of MedicineSt LouisMOUSA
| | - Audrey McAlinden
- Department of Orthopaedic SurgeryWashington University School of MedicineSt LouisMOUSA
- Department of Cell BiologyWashington University School of MedicineSt LouisMOUSA
| |
Collapse
|
47
|
Bustelo XR. RHO GTPases in cancer: known facts, open questions, and therapeutic challenges. Biochem Soc Trans 2018; 46:741-760. [PMID: 29871878 PMCID: PMC7615761 DOI: 10.1042/bst20170531] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/17/2018] [Accepted: 05/03/2018] [Indexed: 02/06/2023]
Abstract
RHO GTPases have been traditionally associated with protumorigenic functions. While this paradigm is still valid in many cases, recent data have unexpectedly revealed that RHO proteins can also play tumor suppressor roles. RHO signaling elements can also promote both pro- and antitumorigenic effects using GTPase-independent mechanisms, thus giving an extra layer of complexity to the role of these proteins in cancer. Consistent with these variegated roles, both gain- and loss-of-function mutations in RHO pathway genes have been found in cancer patients. Collectively, these observations challenge long-held functional archetypes for RHO proteins in both normal and cancer cells. In this review, I will summarize these data and discuss new questions arising from them such as the functional and clinical relevance of the mutations found in patients, the mechanistic orchestration of those antagonistic functions in tumors, and the pros and cons that these results represent for the development of RHO-based anticancer drugs.
Collapse
Affiliation(s)
- Xosé R Bustelo
- Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, and Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
48
|
Narumiya S, Thumkeo D. Rho signaling research: history, current status and future directions. FEBS Lett 2018; 592:1763-1776. [PMID: 29749605 PMCID: PMC6032899 DOI: 10.1002/1873-3468.13087] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/30/2018] [Accepted: 05/02/2018] [Indexed: 12/24/2022]
Abstract
One of the main research areas in biology from the mid‐1980s through the 1990s was the elucidation of signaling pathways governing cell responses. These studies brought, among other molecules, the small GTPase Rho to the epicenter. Rho signaling research has since expanded to all areas of biology and medicine. Here, we describe how Rho emerged as a key molecule governing cell morphogenesis and movement, how it was linked to actin reorganization, and how the study of Rho signaling has expanded from cultured cells to whole biological systems. We then give an overview of the current research status of Rho signaling in development, brain, cardiovascular system, immunity and cancer, and discuss the future directions of Rho signaling research, with emphasis on one Rho effector, ROCK*.
|