1
|
Yan H, Wang C. Key Factors for "Fishing" NTCP as a Functional Receptor for HBV and HDV. Viruses 2023; 15:v15020512. [PMID: 36851726 PMCID: PMC9959848 DOI: 10.3390/v15020512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
About ten years ago, Wenhui Li's research group in China identified the sodium taurocholate co-transporting polypeptide (NTCP), a bile acid transporter predominantly expressed in the liver, as a functional receptor for hepatitis B virus (HBV) and its satellite hepatitis delta virus (HDV) through biochemical and genetic studies. This finding unraveled a longtime mystery in the HBV field and led to the establishment of efficient and easy-to-use HBV infection models, which paved the way for the in-depth study of the HBV entry mechanism and facilitated the development of therapeutics against HBV and HDV. The whole picture of the complex HBV entry process became clear upon the follow-up studies over the years, including the recent resolution found for the NTCP structure. As one of the first authors of the 2012 eLife paper on NTCP identification, here, I (H. Y.) share our experience on the bumpy and exciting journey of receptor hunting, particularly on the photo-cross-linking study and some detailed descriptions of the "fishing" process and summarize the key factors for our successful receptor identification. This review may also provide helpful insights for identifying a protein target by peptide or protein baits through cross-linking and immunoprecipitation.
Collapse
|
2
|
MRI Contrast Agents in Glycobiology. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238297. [PMID: 36500389 PMCID: PMC9735696 DOI: 10.3390/molecules27238297] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022]
Abstract
Molecular recognition involving glycoprotein-mediated interactions is ubiquitous in both normal and pathological natural processes. Therefore, visualization of these interactions and the extent of expression of the sugars is a challenge in medical diagnosis, monitoring of therapy, and drug design. Here, we review the literature on the development and validation of probes for magnetic resonance imaging using carbohydrates either as targeting vectors or as a target. Lectins are important targeting vectors for carbohydrate end groups, whereas selectins, the asialoglycoprotein receptor, sialic acid end groups, hyaluronic acid, and glycated serum and hemoglobin are interesting carbohydrate targets.
Collapse
|
3
|
Inhibition of Metastatic Hepatocarcinoma by Combined Chemotherapy with Silencing VEGF/VEGFR2 Genes through a GalNAc-Modified Integrated Therapeutic System. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072082. [PMID: 35408480 PMCID: PMC9000533 DOI: 10.3390/molecules27072082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 11/30/2022]
Abstract
Hepatocellular carcinoma (HCC) is a highly malignant tumor related to high mortality and is still lacking a satisfactory cure. Tumor metastasis is currently a major challenge of cancer treatment, which is highly related to angiogenesis. The vascular endothelial growth factor (VEGF)/VEGFR signaling pathway is thus becoming an attractive therapeutic target. Moreover, chemotherapy combined with gene therapy shows great synergistic potential in cancer treatment with the promise of nanomaterials. In this work, a formulation containing 5-FU and siRNA against the VEGF/VEGFR signaling pathway into N-acetyl-galactosamine (GalNAc)-modified nanocarriers is established. The targeting ability, biocompatibility and pH-responsive degradation capacity ensure the efficient transport of therapeutics by the formulation of 5-FU/siRNA@GalNAc-pDMA to HCC cells. The nano-construct integrated with gene/chemotherapy exhibits significant anti-metastatic HCC activity against C5WN1 liver cancer cells with tumorigenicity and pulmonary metastasis in the C5WN1-induced tumor-bearing mouse model with a tumor inhibition rate of 96%, which is promising for future metastatic HCC treatment.
Collapse
|
4
|
Herrscher C, Roingeard P, Blanchard E. Hepatitis B Virus Entry into Cells. Cells 2020; 9:cells9061486. [PMID: 32570893 PMCID: PMC7349259 DOI: 10.3390/cells9061486] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV), an enveloped partially double-stranded DNA virus, is a widespread human pathogen responsible for more than 250 million chronic infections worldwide. Current therapeutic strategies cannot eradicate HBV due to the persistence of the viral genome in a special DNA structure (covalently closed circular DNA, cccDNA). The identification of sodium taurocholate co-transporting polypeptide (NTCP) as an entry receptor for both HBV and its satellite virus hepatitis delta virus (HDV) has led to great advances in our understanding of the life cycle of HBV, including the early steps of infection in particular. However, the mechanisms of HBV internalization and the host factors involved in this uptake remain unclear. Improvements in our understanding of HBV entry would facilitate the design of new therapeutic approaches targeting this stage and preventing the de novo infection of naïve hepatocytes. In this review, we provide an overview of current knowledge about the process of HBV internalization into cells.
Collapse
Affiliation(s)
- Charline Herrscher
- Inserm U1259, Morphogénèse et Antigénicité du VIH et des Virus des Hépatites (MAVIVH), Université de Tours and CHRU de Tours, 37032 Tours, France;
| | - Philippe Roingeard
- Inserm U1259, Morphogénèse et Antigénicité du VIH et des Virus des Hépatites (MAVIVH), Université de Tours and CHRU de Tours, 37032 Tours, France;
- Plate-Forme IBiSA des Microscopies, PPF ASB, Université de Tours and CHRU de Tours, 37032 Tours, France
- Correspondence: (P.R.); (E.B.); Tel.: +33-2-3437-9646 (E.B.)
| | - Emmanuelle Blanchard
- Inserm U1259, Morphogénèse et Antigénicité du VIH et des Virus des Hépatites (MAVIVH), Université de Tours and CHRU de Tours, 37032 Tours, France;
- Plate-Forme IBiSA des Microscopies, PPF ASB, Université de Tours and CHRU de Tours, 37032 Tours, France
- Correspondence: (P.R.); (E.B.); Tel.: +33-2-3437-9646 (E.B.)
| |
Collapse
|
5
|
Kim JS, Hwang SI, Ryu JL, Hong HS, Lee JM, Lee SM, Jin X, Han C, Kim JH, Han J, Lee MR, Woo DH. ER stress reliever enhances functionalities of in vitro cultured hepatocytes. Stem Cell Res 2020; 43:101732. [DOI: 10.1016/j.scr.2020.101732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 10/25/2022] Open
|
6
|
Yang X, Cai W, Sun X, Bi Y, Zeng C, Zhao X, Zhou Q, Xu T, Xie Q, Sun P, Zhou X. Defined host factors support HBV infection in non-hepatic 293T cells. J Cell Mol Med 2020; 24:2507-2518. [PMID: 31930674 PMCID: PMC7028854 DOI: 10.1111/jcmm.14944] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/11/2019] [Accepted: 12/09/2019] [Indexed: 02/05/2023] Open
Abstract
Hepatitis B virus (HBV) is a human hepatotropic virus. However, HBV infection also occurs at extrahepatic sites, but the relevant host factors required for HBV infection in non-hepatic cells are only partially understood. In this article, a non-hepatic cell culture model is constructed by exogenous expression of four host genes (NTCP, HNF4α, RXRα and PPARα) in human non-hepatic 293T cells. This cell culture model supports HBV entry, transcription and replication, as evidenced by the detection of HBV pgRNA, HBV cccDNA, HBsAg, HBeAg, HBcAg and HBVDNA. Our results suggest that the above cellular factors may play a key role in HBV infection of non-hepatic cells. This model will facilitate the identification of host genes that support extrahepatic HBV infection.
Collapse
Affiliation(s)
- Xiaoqiang Yang
- Stem Cell Research CenterShantou University Medical CollegeShantouChina
- The Center for Reproductive MedicineShantou University Medical CollegeShantouChina
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular ImmunopathologyShantou University Medical CollegeShantouChina
- Medical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Weiwen Cai
- Stem Cell Research CenterShantou University Medical CollegeShantouChina
- The Center for Reproductive MedicineShantou University Medical CollegeShantouChina
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular ImmunopathologyShantou University Medical CollegeShantouChina
| | - Xiaoyue Sun
- Stem Cell Research CenterShantou University Medical CollegeShantouChina
- The Center for Reproductive MedicineShantou University Medical CollegeShantouChina
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular ImmunopathologyShantou University Medical CollegeShantouChina
| | - Yanwei Bi
- Stem Cell Research CenterShantou University Medical CollegeShantouChina
- The Center for Reproductive MedicineShantou University Medical CollegeShantouChina
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular ImmunopathologyShantou University Medical CollegeShantouChina
| | - Chui Zeng
- Stem Cell Research CenterShantou University Medical CollegeShantouChina
- The Center for Reproductive MedicineShantou University Medical CollegeShantouChina
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular ImmunopathologyShantou University Medical CollegeShantouChina
| | - XiaoYu Zhao
- Stem Cell Research CenterShantou University Medical CollegeShantouChina
- The Center for Reproductive MedicineShantou University Medical CollegeShantouChina
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular ImmunopathologyShantou University Medical CollegeShantouChina
| | - Qi Zhou
- Stem Cell Research CenterShantou University Medical CollegeShantouChina
- The Center for Reproductive MedicineShantou University Medical CollegeShantouChina
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular ImmunopathologyShantou University Medical CollegeShantouChina
| | - Tian Xu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular ImmunopathologyShantou University Medical CollegeShantouChina
| | - Qingdong Xie
- Stem Cell Research CenterShantou University Medical CollegeShantouChina
- The Center for Reproductive MedicineShantou University Medical CollegeShantouChina
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular ImmunopathologyShantou University Medical CollegeShantouChina
| | - Pingnan Sun
- Stem Cell Research CenterShantou University Medical CollegeShantouChina
- The Center for Reproductive MedicineShantou University Medical CollegeShantouChina
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular ImmunopathologyShantou University Medical CollegeShantouChina
| | - Xiaoling Zhou
- Stem Cell Research CenterShantou University Medical CollegeShantouChina
- The Center for Reproductive MedicineShantou University Medical CollegeShantouChina
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular ImmunopathologyShantou University Medical CollegeShantouChina
| |
Collapse
|
7
|
|
8
|
Wang Y, Yu RZ, Henry S, Geary RS. Pharmacokinetics and Clinical Pharmacology Considerations of GalNAc 3-Conjugated Antisense Oligonucleotides. Expert Opin Drug Metab Toxicol 2019; 15:475-485. [PMID: 31144994 DOI: 10.1080/17425255.2019.1621838] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: Triantennary N-acetyl galactosamine (GalNAc3) - conjugated antisense oligonucleotides (ASOs) have demonstrated improved hepatocyte uptake and pharmacologic activity over their parent unconjugated ASOs in animals and humans. Areas covered: In this review, the ADME (absorption, distribution, metabolism, and excretion) characteristics of GalNAc3-conjugated ASOs in animals and in humans are summarized, and their clinical relevance is evaluated from the clinical pharmacology perspectives. Expert opinion: ASOs distribute to tissues via receptor-mediated processes, and conjugation to a ligand specific to certain cell types can improve target tissue delivery. GalNAc3-conjugation represents a good example on this regard and has demonstrated ideal characteristics of a prodrug to target delivery of ASOs to hepatocytes via the asialoglycoprotein receptor (ASGPR). The improved potency and safety margin permit more flexible dosing (e.g. monthly or less frequently if needed) taking full advantage of the long half-life of the parent ASO in humans. However, while still speculative, it should be noted that ASGPR-mediated uptake could become nonlinear with dose and factors that impact ASGPR expression or compete with ASGPR-mediated uptake could potentially affect the uptake of GalNAc3-conjugated ASOs, further studies are warranted.
Collapse
Affiliation(s)
- Yanfeng Wang
- a Ionis Pharmaceuticals, Inc , Carlsbad , CA , USA
| | - Rosie Z Yu
- a Ionis Pharmaceuticals, Inc , Carlsbad , CA , USA
| | - Scott Henry
- a Ionis Pharmaceuticals, Inc , Carlsbad , CA , USA
| | | |
Collapse
|
9
|
Vyas AK, Ramakrishna U, Sen B, Islam M, Ramakrishna G, Patra S, Rastogi A, Sarin SK, Trehanpati N. Placental expression of asialoglycoprotein receptor associated with Hepatitis B virus transmission from mother to child. Liver Int 2018; 38:2149-2158. [PMID: 29710378 DOI: 10.1111/liv.13871] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/17/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Asialoglycoprotein receptor expression on hepatocytes has been associated with endocytosis, binding and uptake of hepatitis B virus. The role of asialoglycoprotein receptor in hepatitis B virus vertical transmission and its expression on placenta has not yet been studied. PATIENTS AND METHODS Thirty-four HBsAg+ve and 13 healthy pregnant mothers along with their newborns were enrolled. The former were categorized into transmitting and non-transmitting mothers based on their newborns being hepatitis B surface antigen and hepatitis B virus DNA positive. Expression of asialoglycoprotein receptor and hepatitis B surface antigen in placenta and isoform of asialoglycoprotein receptor on dendritic cell in peripheral and cord blood dendritic cells were analysed using flowcytometry, immune histochemistry, immune florescence and qRT-PCR. RESULTS Twelve HBsAg+ve mothers transmitted hepatitis B virus to their newborns whereas the rest (n = 22) did not. Hepatitis B virus-transmitting mothers showed increased expression of asialoglycoprotein receptor in trophoblasts of placenta. Immunofluorescence microscopy revealed colocalization of hepatitis B surface antigen and asialoglycoprotein receptor in placenta as well as in DCs of transmitting mothers. There was no significant difference in the expression of asialoglycoprotein receptor on peripheral blood mononuclear cells or chord blood mononuclear cells between the 2 groups. However, hepatitis B virus-transmitting mothers and their HBsAg+ve newborns showed increased mRNA levels of isoform of asialoglycoprotein receptor on dendritic cell in peripheral blood mononuclear cells. Hepatitis B virus-transmitting mothers and their HBsAg+ve newborns showed an increased expression of isoform of asialoglycoprotein receptor on dendritic cell on circulating dendritic cells compared to hepatitis B virus non-transmitting mothers and their negative newborns. CONCLUSIONS This study revealed that increased expression of asialoglycoprotein receptor in placenta and colocalization with hepatitis B surface antigen strongly indicates its role in intrauterine transmission of hepatitis B virus. Asialoglycoprotein receptor-blocking strategy can be used for therapeutic intervention of vertical transmission.
Collapse
Affiliation(s)
- Ashish Kumar Vyas
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | | | - Bijoya Sen
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Mojahidul Islam
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Gayatri Ramakrishna
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | | | - Archana Rastogi
- Department of Pathology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Shiv Kumar Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Nirupma Trehanpati
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| |
Collapse
|
10
|
Yang Q, Wang P, Wang S, Wang Y, Feng S, Zhang S, Li H. The hepatic lectin of zebrafish binds a wide range of bacteria and participates in immune defense. FISH & SHELLFISH IMMUNOLOGY 2018; 82:267-278. [PMID: 30120977 DOI: 10.1016/j.fsi.2018.08.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/18/2018] [Accepted: 08/07/2018] [Indexed: 06/08/2023]
Abstract
C-type lectins (CTLs) have a diverse range of functions including cell-cell adhesion, immune response to pathogens and apoptosis. Asialoglycoprotein receptor (ASGPR), also known as hepatic lectin, a member of CTLs, was the first animal lectin identified, yet information regarding it remains rather limited in teleost. In this study, we identified a putative protein in zebrafish, named as the zebrafish hepatic lectin (Zhl). The zhl encoded a typical Ca2+-dependent carbohydrate-binding protein, and was mainly expressed in the liver in a tissue specific fashion. Challenge with LPS and LTA resulted in significant up-regulation of zhl expression, suggesting involvement in immune response. Actually, recombinant C-type lectin domain (rCTLD) of Zhl was found to be capable of agglutinating and binding to both Gram-negative and Gram-positive bacteria and enhancing the phagocytosis of the bacteria by macrophages. Moreover, rCTLD specifically bound to insoluble lipopolysaccharide (LPS), lipoteichoic acid (LTA) and peptidoglycan (PGN), which were inhibited by galactose. Interestingly, Zhl was located in the membrane, and its overexpression could inhibit the production of pre-inflammatory cytokines. Taken together, these results indicate that Zhl has immune activity capable of defending invading pathogens, enriching our understanding of the function of ASGPR/hepatic lectin.
Collapse
Affiliation(s)
- Qingyun Yang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Peng Wang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Su Wang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Yashuo Wang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Shuoqi Feng
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Shicui Zhang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Hongyan Li
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Department of Marine Biology, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
11
|
Abstract
With high morbidity and mortality worldwide, there is great interest in effective therapies for chronic hepatitis B (CHB) virus. There are currently several dozen investigational agents being developed for treatment of CHB. They can be broadly divided into two categories: (1) direct-acting antivirals (DAAs) that interfere with a specific step in viral replication; and (2) host-targeting agents that inhibit viral replication by modifying host cell function, with the latter group further divided into the subcategories of immune modulators and agents that target other host functions. Included among the DAAs being developed are RNA interference therapies, covalently closed circular DNA (cccDNA) formation and transcription inhibitors, core/capsid inhibitors, reverse transcriptase inhibitors, hepatitis B surface antigen (HBsAg) release inhibitors, antisense oligonucleotides, and helioxanthin analogues. Included among the host-targeting agents are entry inhibitors, cyclophilin inhibitors, and multiple immunomodulatory agents, including Toll-like receptor agonists, immune checkpoint inhibitors, therapeutic vaccines, engineered T cells, and several cytokine agents, including recombinant human interleukin-7 (CYT107) and SB 9200, a novel therapy that is believed to both have direct antiviral properties and to induce endogenous interferon. In this review we discuss agents that are currently in the clinical stage of development for CHB treatment as well as strategies and agents currently at the evaluation and discovery phase and potential future targets. Effective approaches to CHB may require suppression of viral replication combined with one or more host-targeting agents. Some of the recent research advances have led to the hope that with such a combined approach we may have a functional cure for CHB in the not distant future.
Collapse
Affiliation(s)
- Altaf Dawood
- Department of Internal Medicine, Section of Gastroenterology, University of Nevada School of Medicine, Las Vegas, NV, USA
| | - Syed Abdul Basit
- Department of Internal Medicine, Section of Gastroenterology, University of Nevada School of Medicine, Las Vegas, NV, USA
| | - Mahendran Jayaraj
- Department of Internal Medicine, Section of Gastroenterology, University of Nevada School of Medicine, Las Vegas, NV, USA
| | - Robert G Gish
- Department of Internal Medicine, Section of Gastroenterology, University of Nevada School of Medicine, Las Vegas, NV, USA.
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University Medical Center, Stanford, CA, USA.
- Hepatitis B Foundation, Doylestown, PA, USA.
- Asian Pacific Health Foundation, San Diego, CA, USA.
- National Viral Hepatitis Roundtable, Washington, DC, USA.
| |
Collapse
|
12
|
Fabrizi F, Bunnapradist S, Lunghi G, Villa M, Martin P. Transplanting Solid Organs from HBsAg Negative Donors Positive for Antibody to Hepatitis B Core Antigen: The Implications. Int J Artif Organs 2018; 26:972-83. [PMID: 14708825 DOI: 10.1177/039139880302601102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- F Fabrizi
- Division of Nephrology, Dialysis and Transplantation, Institute of Hygiene and Preventive Medicine, Policlinico IRCCS, Milan, Italy.
| | | | | | | | | |
Collapse
|
13
|
Nosratabadi R, Alavian SM, Zare-Bidaki M, Shahrokhi VM, Arababadi MK. Innate immunity related pathogen recognition receptors and chronic hepatitis B infection. Mol Immunol 2017; 90:64-73. [PMID: 28704708 DOI: 10.1016/j.molimm.2017.07.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/07/2017] [Accepted: 07/01/2017] [Indexed: 01/30/2023]
Abstract
Innate immunity consists of several kinds of pathogen recognition receptors (PRRs), which participate in the recognition of pathogens and consequently activation of innate immune system against pathogens. Recently, several investigations reported that PRRs may also play key roles in the induction/stimulation of immune system related complications in microbial infections. Hepatitis B virus (HBV), as the main cause of viral hepatitis in human, can induce several clinical forms of hepatitis B and also might be associated with hepatic complications such as cirrhosis and hepatocellular carcinoma (HCC). Based on the important roles of PRRs in the eradication of microbial infections including viral infections and their related complications, it appears that the molecules may be a main part of immune responses against viral infections including HBV and participate in the HBV related complications. Thus, this review article has brought together information regarding the roles of PRRs in immunity against HBV and its complications.
Collapse
Affiliation(s)
- Reza Nosratabadi
- Immunology of Infectious Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Dept. of Immunology, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Seyed Moayed Alavian
- Baqiyatallah Research Center for Gastroenterology and Liver Disease, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Zare-Bidaki
- Immunology of Infectious Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Dept. of Microbiology, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Vahid Mohammadi Shahrokhi
- Immunology of Infectious Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Dept. of Immunology, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Kazemi Arababadi
- Immunology of Infectious Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Dept. of Immunology, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
14
|
Lee J, Park JY, Huh KH, Kim BS, Kim MS, Kim SI, Ahn SH, Kim YS. Rituximab and hepatitis B reactivation in HBsAg-negative/ anti-HBc-positive kidney transplant recipients. Nephrol Dial Transplant 2017; 32:722-729. [PMID: 28339910 DOI: 10.1093/ndt/gfw455] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 11/22/2016] [Indexed: 01/01/2023] Open
Abstract
Background Hepatitis B virus (HBV) reactivation is a well-known complication of immunosuppressive therapy. Although rituximab is increasingly used for desensitization of ABO-incompatible or positive crossmatch kidney transplantation, the risk of HBV reactivation in hepatitis B surface antigen (HBsAg)-negative/hepatitis B core antibody (anti-HBc)-positive kidney transplant patients receiving rituximab desensitization remains undetermined. Methods We analysed 172 resolved HBV patients who underwent living donor kidney transplantation between 2008 and 2014. Patients were divided into rituximab ( n = 49) or control ( n = 123) groups. All patients were observed for HBV reactivation, which was defined as the reappearance of hepatitis B surface antigen or HBV DNA. Results During the follow-up period (median, 58 months; range, 4-95 months), five patients (10.2%) in the rituximab group and two patients (1.6%) in the control group experienced HBV reactivation (P = 0.003). In the rituximab group, two patients experienced HBV-related severe hepatitis, and one patient died due to hepatic failure. The median time from rituximab desensitization to HBV reactivation was 11 months (range, 5-22 months). By contrast, no patients in the control group experienced severe hepatitis. The status of hepatitis B surface antibody was similar between groups. Rituximab desensitization [hazard ratio (HR), 9.18; 95% confidence interval (CI), 1.74-48.86; P = 0.009] and hepatitis B surface antibody status (HR, 4.74; 95% CI, 1.05-21.23, P = 0.04) were significant risk factors for HBV reactivation. Conclusions Rituximab desensitization for incompatible kidney transplantation significantly increased the risk of HBV reactivation in HBsAg-negative/anti-HBc-positive patients. Therefore, close monitoring of HBV DNA is required in these patients.
Collapse
Affiliation(s)
- Juhan Lee
- Department of Transplantation Surgery, Severance Hospital, Yonsei University Health System, Seoul, Republic of Korea.,Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jun Yong Park
- Department of Gastroenterology, Severance Hospital, Yonsei University Health System, Seoul, Republic of Korea.,Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyu Ha Huh
- Department of Transplantation Surgery, Severance Hospital, Yonsei University Health System, Seoul, Republic of Korea.,Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea.,The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Beom Seok Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.,The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, Republic of Korea.,Department of Nephrology, Severance Hospital, Yonsei University Health System, Seoul, Republic of Korea
| | - Myoung Soo Kim
- Department of Transplantation Surgery, Severance Hospital, Yonsei University Health System, Seoul, Republic of Korea.,Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea.,The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Soon Il Kim
- Department of Transplantation Surgery, Severance Hospital, Yonsei University Health System, Seoul, Republic of Korea.,Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea.,The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang Hoon Ahn
- Department of Gastroenterology, Severance Hospital, Yonsei University Health System, Seoul, Republic of Korea.,Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yu Seun Kim
- Department of Transplantation Surgery, Severance Hospital, Yonsei University Health System, Seoul, Republic of Korea.,Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea.,The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
15
|
Human induced-pluripotent stem cell-derived hepatocyte-like cells as an in vitro model of human hepatitis B virus infection. Sci Rep 2017; 7:45698. [PMID: 28374759 PMCID: PMC5379564 DOI: 10.1038/srep45698] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 03/03/2017] [Indexed: 01/02/2023] Open
Abstract
In order to understand the life cycle of hepatitis B virus (HBV) and to develop efficient anti-HBV drugs, a useful in vitro cell culture system which allows HBV infection and recapitulates virus-host interactions is essential; however, pre-existing in vitro HBV infection models are often problematic. Here, we examined the potential of human induced-pluripotent stem (iPS) cell-derived hepatocyte-like cells (iPS-HLCs) as an in vitro HBV infection model. Expression levels of several genes involved in HBV infection, including the sodium taurocholate cotransporting polypeptide (NTCP) gene, were gradually elevated as the differentiation status of human iPS cells proceeded to iPS-HLCs. The mRNA levels of these genes were comparable between primary human hepatocytes (PHHs) and iPS-HLCs. Following inoculation with HBV, we found significant production of HBV proteins and viral RNAs in iPS-HLCs. The three major forms of the HBV genome were detected in iPS-HLCs by Southern blotting analysis. Anti-HBV agents entecavir and Myrcludex-B, which are a nucleoside analogue reverse transcriptase inhibitor and a synthetic pre-S1 peptide, respectively, significantly inhibited HBV infection in iPS-HLCs. These data demonstrate that iPS-HLCs can be used as a promising in vitro HBV infection model.
Collapse
|
16
|
Huang X, Leroux JC, Castagner B. Well-Defined Multivalent Ligands for Hepatocytes Targeting via Asialoglycoprotein Receptor. Bioconjug Chem 2016; 28:283-295. [DOI: 10.1021/acs.bioconjchem.6b00651] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Xiangang Huang
- Institute
of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Jean-Christophe Leroux
- Institute
of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Bastien Castagner
- Department
of Pharmacology and Therapeutics, McGill University, 3655 Prom. Sir-William-Osler, Montréal, Québec H3G 1Y6, Canada
| |
Collapse
|
17
|
Zhang L, Tian Y, Wen Z, Zhang F, Qi Y, Huang W, Zhang H, Wang Y. Asialoglycoprotein receptor facilitates infection of PLC/PRF/5 cells by HEV through interaction with ORF2. J Med Virol 2016; 88:2186-2195. [DOI: 10.1002/jmv.24570] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Li Zhang
- Division of HIV/AIDS and Sexually-Transmitted Virus Vaccines; National Institutes for Food and Drug Control; Beijing China
| | - Yabin Tian
- Division of HIV/AIDS and Sexually-Transmitted Virus Vaccines; National Institutes for Food and Drug Control; Beijing China
| | - Zhiheng Wen
- Division of HIV/AIDS and Sexually-Transmitted Virus Vaccines; National Institutes for Food and Drug Control; Beijing China
| | - Feng Zhang
- Division of Monoclonal Antibody Products; National Institutes for Food and Drug Control; Beijing China
| | - Ying Qi
- Division of HIV/AIDS and Sexually-Transmitted Virus Vaccines; National Institutes for Food and Drug Control; Beijing China
| | - Weijin Huang
- Division of HIV/AIDS and Sexually-Transmitted Virus Vaccines; National Institutes for Food and Drug Control; Beijing China
| | - Heqiu Zhang
- Department of Bio-Diagnosis; Beijing Institute of Basic Medical Sciences; Beijing China
| | - Youchun Wang
- Division of HIV/AIDS and Sexually-Transmitted Virus Vaccines; National Institutes for Food and Drug Control; Beijing China
| |
Collapse
|
18
|
Mohebbi A, Mohammadi S, Memarian A. Prediction of HBF-0259 interactions with hepatitis B Virus receptors and surface antigen secretory factors. Virusdisease 2016; 27:234-241. [PMID: 28466034 PMCID: PMC5394709 DOI: 10.1007/s13337-016-0333-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 07/20/2016] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B virus (HBV) is an etiological agent of viral hepatitis, which may lead to cirrhosis, and hepatocellular carcinoma. Current treatment strategies have not shown promising effect to date but various complications such as, drug toxicity-resistance have been reported. Study on newly discovered compounds, with minimal side effects, as specific HBV inhibitors is a fundamental subject introducing new biologic drugs. Here, we aimed to, by prediction, estimate interactions of HBF-0259 as a non-toxic anti-HBV compound on inhibiting the HBV through either interaction with the viral entry or HBsAg secreting factors using In Silico procedure. Molecular docking was performed by Hex 8.0.0 software to predict the interaction energy (Etot) between HBF-0259 and known cellular factors involved in HBV entry and HBsAg secreting factors. Hex 8.0.0 also employed to create protein-protein complexes. These interactions were then used to analyze the binding site of HBF-0259 within the assumed receptors by MGLTools software. Finally, the amino acid sequences involved in this interaction were aligned for any conservancy. Here, we showed that HBF-0259 Etot with CypA (-545.41 kcal/mol) and SCCA1 (499.68 kcal/mol), involved in HBsAg secretion and HBV integration, respectively, was higher than other interactions. Furthermore, HBF-0259 predicted interaction energy was even higher than those of CypA inhibitors. In addition, we claim that preS1 and/or preS2 regions within HBsAg are not suitable targets for HBF-0259. HBF-0259 has higher interaction energy with CypA and SCCA1, even more than other known receptors, co-receptors, viral ligands, and secretory factors. HBF-0259 could be introduced as potent anti-viral compound in which CypA and or SCCA1, as previously shown, are involved.
Collapse
Affiliation(s)
- Alireza Mohebbi
- School of Medicine, Golstan University of Medical Sciences, Gorgan, Iran
| | - Saeed Mohammadi
- Department of Molecular Medicine, Faculty of Advanced Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ali Memarian
- Stem Cell Research Center, Deputy of Research and Technology, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
19
|
Yang X, Zhou X, Tone P, Durkin ME, Popescu NC. Cooperative antiproliferative effect of coordinated ectopic expression of DLC1 tumor suppressor protein and silencing of MYC oncogene expression in liver cancer cells: Therapeutic implications. Oncol Lett 2016; 12:1591-1596. [PMID: 27446476 DOI: 10.3892/ol.2016.4781] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 06/03/2016] [Indexed: 12/14/2022] Open
Abstract
Human hepatocellular carcinoma (HCC) is one of the most common types of cancer and has a very poor prognosis; thus, the development of effective therapies for the treatment of advanced HCC is of high clinical priority. In the present study, the anti-oncogenic effect of combined knockdown of c-Myc expression and ectopic restoration of deleted in liver cancer 1 (DLC1) expression was investigated in human liver cancer cells. Expression of c-Myc in human HCC cells was knocked down by stable transfection with a Myc-specific short hairpin (sh) RNA vector. DLC1 expression in Huh7 cells was restored by adenovirus transduction, and the effects of DLC1 expression and c-Myc knockdown on Ras homolog gene family, member A (RhoA) levels, cell proliferation, soft agar colony formation and cell invasion were measured. Downregulation of c-Myc or re-expression of DLC1 led to a marked reduction in RhoA levels, which was associated with decreases in cell proliferation, soft agar colony formation and invasiveness; this inhibitory effect was augmented with a combination of DLC1 transduction and c-Myc suppression. To determine whether liver cell-specific delivery of DLC1 was able to enhance the inhibitory effect of c-Myc knockdown on tumor growth in vivo, DLC1 vector DNA complexed with galactosylated polyethylene glycol-linear polyethyleneimine was administered by tail vein injection to mice bearing subcutaneous xenografts of Huh7 cells transfected with shMyc or control shRNA. A cooperative inhibitory effect of DLC1 expression and c-Myc knockdown on the growth of Huh7-derived tumors was observed, suggesting that targeted liver cell delivery of DLC1 and c-Myc shRNA may serve as a possible gene therapy modality for the treatment of human HCC.
Collapse
Affiliation(s)
- Xuyu Yang
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 2089-4262, USA; Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Development, Bethesda, MD 2089-4262, USA
| | - Xiaoling Zhou
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 2089-4262, USA; Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 2089-4262, USA
| | - Paul Tone
- Department of Medicine, Richmond University Medical Center, Staten Island, NY 10310, USA
| | - Marian E Durkin
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 2089-4262, USA; Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4262, USA
| | - Nicholas C Popescu
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 2089-4262, USA; Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4262, USA
| |
Collapse
|
20
|
Liu D, Zhang J, Xu S, Liu H. Membrane property and biofunction of phospholiposome incorporated with anomeric galactolipids. SPRINGERPLUS 2016; 5:655. [PMID: 27330921 PMCID: PMC4870520 DOI: 10.1186/s40064-016-2236-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/26/2016] [Indexed: 11/21/2022]
Abstract
There has been increasing interest in the construction of liposomes containing a targeting reagent for target-specific drug delivery. Glycoconjugates that can be recognized by transmembrane glycoprotein receptors have been extensively used to form glyco-liposomal drug carriers. However, the impact of anomerism, which is a common identity of natural glycoconjugates, on the glyco-liposomal properties has been hardly probed in previous studies. Here we investigate the liposomal properties of phospholipid incorporated with a pair of anomeric galactolipids. The anomeric galacto-liposomes are characterized and their membrane fluidity, thermo-stability, DNA condensation efficiency and fluorescence leakage are comparatively tested. The in vitro cellular internalization effect of the galacto-liposomes is also demonstrated. This study suggests that anomerism might give distinct impact on the membrane properties and even biofunctions of glyco-liposomes.
Collapse
Affiliation(s)
- Danyang Liu
- />Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237 People’s Republic of China
| | - Junqi Zhang
- />Key Laboratory of Medical Molecular Virology (Ministry of Health and Ministry of Education), School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Rd, Shanghai, 200032 People’s Republic of China
| | - Shouhong Xu
- />Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237 People’s Republic of China
| | - Honglai Liu
- />Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237 People’s Republic of China
| |
Collapse
|
21
|
Zacco E, Hütter J, Heier JL, Mortier J, Seeberger PH, Lepenies B, Koksch B. Tailored Presentation of Carbohydrates on a Coiled Coil-Based Scaffold for Asialoglycoprotein Receptor Targeting. ACS Chem Biol 2015; 10:2065-72. [PMID: 26057877 DOI: 10.1021/acschembio.5b00435] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The coiled-coil folding motif represents an ideal scaffold for the defined presentation of ligands due to the possibility of positioning them at specific distances along the axis. We created a coiled-coil glycopeptide library to characterize the distances between the carbohydrate-binding sites of the asialoglycoprotein receptors (ASGPR) on hepatocytes. The components of the glycopeptide library vary for the number of displayed ligands (galactose), their position on the peptide sequence, and the space between peptide backbone and carbohydrate. We determined the binding of the glycopeptides to the hepatocytes, and we established the optimal distance and orientation of the galactose moieties for interaction with the ASGPR using flow cytometry. We confirmed that the binding occurs through endocytosis mediated by ASGPR via inhibition studies with cytochalasin D; fluorescence microscopy studies display the uptake of the carrier peptides inside the cell. Thus, this study demonstrates that the coiled-coil motif can be used as reliable scaffold for the rational presentation of ligands.
Collapse
Affiliation(s)
- Elsa Zacco
- Institute of Chemistry
and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Julia Hütter
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Jason L. Heier
- Institute of Chemistry
and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Jérémie Mortier
- Institute of Chemistry
and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luisestrasse
2, 14195 Berlin, Germany
| | - Peter H. Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Bernd Lepenies
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Beate Koksch
- Institute of Chemistry
and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| |
Collapse
|
22
|
Villalta D, Mytilinaiou MG, Elsner M, Hentschel C, Cuccato J, Somma V, Schierack P, Roggenbuck D, Bogdanos DP. Autoantibodies to asialoglycoprotein receptor (ASGPR) in patients with autoimmune liver diseases. Clin Chim Acta 2015. [PMID: 26220739 DOI: 10.1016/j.cca.2015.07.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND The liver asialoglycoprotein receptor (ASGPR) is the only organ-specific autoantigenic target in autoimmune hepatitis (AIH) patients and corresponding autoantibodies (Abs) have been suggested aiding in the serology of autoimmune liver diseases (ALD). METHODS A novel enzyme-linked immunosorbent assay (ELISA) employing purified rabbit ASGPR was used to detect ASGPR Abs in patients with ALD and controls. ASGPR Ab was determined in sera from 172 patients with AIH type 1, AIH type 2 (n=42), primary biliary cirrhosis (PBC) (n=113), cryptogenic liver disease (n=30), toxic liver disease (n=11), primary sclerosing cholangitis (PSC) (n=27), HCV infection (n=25), non-alcoholic steatohepatitis (n=43) and 100 blood donors. ASGPR Ab positivity was compared with AIH-related Abs (ANA, ASMA, Abs to LKM-1, LC-1, and SLA/LP) in patients with AIH. RESULTS Patients with AIH-1 and AIH-2 demonstrated an ASGPR Ab prevalence of 29.1% and 16.7%, respectively. ASGPR Ab positivity in patients with AIH-1 and AIH-2 was not significantly different to those in patients with PSC and HCV (p>0.05, respectively). ASGPR Ab levels in all study cohorts were significantly different with the highest medians in patients with AIH, PSC, and HCV infection (p<0.0001). ASGPR Ab can be found as only AIH-specific Ab determined by LIA and ELISA in 24.4% of AIH patients (48/197). CONCLUSIONS The novel ASGPR Ab ELISA is a specific diagnostic tool for ASGPR Ab detection in AIH. In addition to AIH, patients with PSC can demonstrate elevated ASGPR Ab amongst those with ALD suggesting a tolerance break to ASGPR in PSC.
Collapse
Affiliation(s)
- Danilo Villalta
- Allergologia e Immunologia Clinica, A.O. S. Maria degli Angeli, Pordenone, Italy
| | - Maria G Mytilinaiou
- Division of Transplantation Immunology and Mucosal Biology, King's College London School of Medicine at King's College Hospital, London, UK
| | | | | | | | | | - Peter Schierack
- Faculty of Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Dirk Roggenbuck
- GA Generic Assays GmbH, Dahlewitz, Germany; Faculty of Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany.
| | - Dimitrios P Bogdanos
- Division of Transplantation Immunology and Mucosal Biology, King's College London School of Medicine at King's College Hospital, London, UK; Department or Rheumatology, School of Health Sciences, University of Thessaly, Larissa, Greece
| |
Collapse
|
23
|
Rehman Z, Fahim A, Sadia H. Deciphering the mystery of hepatitis B virus receptors: A historical perspective. Virusdisease 2015; 26:97-104. [PMID: 26396975 DOI: 10.1007/s13337-015-0260-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 06/25/2015] [Indexed: 12/22/2022] Open
Abstract
Hepatitis B virus is one of the major reasons of viral hepatitis with an estimated 350 million infected patients worldwide. Although, the virus was discovered and cloned more than three decades ago, its entry mechanism has still been in investigation. Numerous potential candidates have been proposed and investigated rigorously to reveal HBV entry mechanism and to unveil the first door of viral entry to hepatocytes. This review provides a short account of role of receptors for entry of HBV into hepatocytes. The viral preS1 region of large surface protein is involved in the attachment of HBV to hepatocytes. The putative attachment site of HBV is located at amino acids 21-47 of preS1. So far, several proteins have been proposed to interact with these different regions of the preS1 domain which includes human immunoglobulin A receptor, glyceraldehyde-3-phosphate dehydrogenase, interleukin-6, a 31-kDa protein, HBV binding factor, asialoglycoprotein receptor, nascent polypeptide-associated complex α polypeptide, lipoprotein lipase, hepatocyte-associated heparan sulfate proteoglycans, glucose-regulated protein 75. However, none of them have appeared to be generally accepted as a true receptor for the virus until recently when sodium taurocholate cotransporting polypeptide identified as HBV entry receptor. Current review provides scientific historical perspective of various candidates known to be interacting with preS1 of HBV for their possible role in viral entry.
Collapse
Affiliation(s)
- Zaira Rehman
- Healthcare Biotechnology Department, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences & Technology (NUST), Sector H-12, Islamabad, Pakistan
| | - Ammad Fahim
- Healthcare Biotechnology Department, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences & Technology (NUST), Sector H-12, Islamabad, Pakistan
| | - Hajra Sadia
- Healthcare Biotechnology Department, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences & Technology (NUST), Sector H-12, Islamabad, Pakistan
| |
Collapse
|
24
|
Mu H, Lin KX, Zhao H, Xing S, Li C, Liu F, Lu HZ, Zhang Z, Sun YL, Yan XY, Cai JQ, Zhao XH. Identification of biomarkers for hepatocellular carcinoma by semiquantitative immunocytochemistry. World J Gastroenterol 2014; 20:5826-5838. [PMID: 24914343 PMCID: PMC4024792 DOI: 10.3748/wjg.v20.i19.5826] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 02/14/2014] [Accepted: 04/09/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression of key biomarkers in hepatoma cell lines, tumor cells from patients’ blood samples, and tumor tissues.
METHODS: We performed the biomarker tests in two steps. First, cells plated on coverslips were used to assess biomarkers, and fluorescence intensities were calculated using the NIH Image J software. The measured values were analyzed using the SPSS 19.0 software to make comparisons among eight cell lines. Second, eighty-four individual samples were used to assess the biomarkers’ expression. Negative enrichment of the blood samples was performed, and karyocytes were isolated and dropped onto pre-treated glass slides for further analysis by immunofluorescence staining. Fluorescence intensities were compared among hepatocellular carcinoma (HCC) patients, chronic HBV-infected patients, and healthy controls following methods similar to those used for cell lines. The relationships between the expression of biomarkers and clinical pathological parameters were analyzed by Spearman rank correlation tests. In addition, we studied the distinct biomarkers’ expression with three-dimensional laser confocal microscopy reconstructions, and Kaplan-Meier survival analysis was performed to understand the clinical significance of these biomarkers.
RESULTS: Microscopic examination and fluorescence intensity calculations indicated that cytokeratin 8/18/19 (CK) expression was significantly higher in six of the seven HCC cell lines examined than in the control cells, and the expression levels of asialoglycoprotein receptor (ASGPR) and glypican-3 (GPC3) were higher in all seven HCC cell lines than in the control. Cells obtained from HCC patients’ blood samples also displayed significantly higher expression levels of ASGPR, GPC3, and CK than cells from chronic HBV-infected patients or healthy controls; these proteins may be valuable surface biomarkers for identifying HCC circulating tumor cells isolated and enriched from the blood samples. The stem cell-like and epithelial-mesenchymal transition-related biomarkers could be detected on the karyocyte slides. ASGPR and GPC3 were expressed at high levels, and thus three-dimensional reconstructions were used to observe their expression in detail. This analysis indicated that GPC3 was localized in the cytoplasm and membrane, but that ASGPR had a polar localization. Survival analyses showed that expression of GPC3 and ASGPR is associated with a patient’s overall survival (OS).
CONCLUSION: ASGPR, GPC3, and CK may be valuable HCC biomarkers for CTC detection; the expression of ASGPR and GPC3 might be helpful for understanding patients’ OS.
Collapse
MESH Headings
- Adult
- Aged
- Asialoglycoprotein Receptor/metabolism
- Biomarkers, Tumor/metabolism
- Carcinoma, Hepatocellular/diagnosis
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/mortality
- Cell Line, Tumor
- Female
- Gene Expression Regulation, Neoplastic
- Glypicans/metabolism
- Hepatitis B virus
- Hepatitis B, Chronic/complications
- Hepatitis B, Chronic/metabolism
- Humans
- Immunohistochemistry
- Kaplan-Meier Estimate
- Keratin-18/metabolism
- Keratin-19/metabolism
- Keratin-8/metabolism
- Liver Neoplasms/diagnosis
- Liver Neoplasms/metabolism
- Liver Neoplasms/mortality
- Male
- Middle Aged
- Neoplasm Metastasis
- Neoplasm Recurrence, Local
- Neoplastic Cells, Circulating/metabolism
Collapse
|
25
|
Tian Y, Ni D, Yang W, Zhang Y, Zhao K, Song J, Mao Q, Tian Z, van Velkinburgh JC, Yang D, Wu Y, Ni B. Telbivudine treatment corrects HBV-induced epigenetic alterations in liver cells of patients with chronic hepatitis B. Carcinogenesis 2013; 35:53-61. [PMID: 24067902 DOI: 10.1093/carcin/bgt317] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
UNLABELLED Hepatitis B virus (HBV) alters the expression of host cellular genes to support its replication and survival and to promote the liver cell injury. However, the underlying mechanism remained incompletely understood. In this study, we investigated HBV-induced epigenetic changes in HepG2 cells by profiling the landscapes of the active histone modification mark H3K4me3 and repressive mark H3K27me3 using chromatin immunoprecipitation-sequencing. HBV caused the altered histone modifications at thousands of genomic loci, which are critically involved in HBV entry, inflammation, fibrosis and carcinogenesis of host cells. Interestingly, treatment of the HBV-transformed HepG2 cells with the anti-HBV drug Telbivudine substantially restored the H3K4me3 level to that of untransformed HepG2 cells. More importantly, our analysis of liver samples from control and chronic hepatitis B patients revealed that treatment of the patients with Telbivudine not only corrected the target gene expression but also the epigenetic modification of critical genes. In addition, the expression of the histone methyltransferases SMYD3 and EZH2 that regulate histone H3-specific methylation showed no difference in HepG2 cell with or without HBV existence. Thus, our data suggest that abnormal histone modifications might critically involved in HBV-mediated liver pathogenesis and Telbivudine therapy might benefit patients with HBV-related chronic infection, liver cirrhosis and even hepatic carcinoma. SUMMARY Telbivudine substantially restores in vitro and in vivo HBV-caused abnormal expressions and histone H3K4me3 and H3K27me3 modifications at thousands of genomic loci that are involved in the pathogenesis of liver cells, revealing a novel mechanism for HBV-mediated liver damage.
Collapse
Affiliation(s)
- Yi Tian
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Sun P, Zheng J, She G, Wei X, Zhang X, Shi H, Zhou X. Expression pattern of asialoglycoprotein receptor in human testis. Cell Tissue Res 2013; 352:761-8. [PMID: 23604802 DOI: 10.1007/s00441-013-1616-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 03/11/2013] [Indexed: 02/05/2023]
Abstract
During acute or chronic hepatitis B virus (HBV) infection, the virus can invade the male reproductive system, pass through the blood-testis barrier and integrate into the germ line, resulting in abnormal spermatozoa. However, the pathway remains unclear. The asialoglycoprotein receptor (ASGR), a potential receptor for HBV, is mainly distributed in hepatocytes. We have examined the distribution of ASGR in human testis and found it in the seminiferous tubules and interstitial region but its enrichment in human testis is much lower than that in liver. By multiple immunoenzyme histochemistry staining, ASGR was precisely co-localized with vimentin (Sertoli cell marker) but not proliferating cell nuclear antigen (spermatogonial cell marker) in testis tissue. ASGR was expressed in human Leydig cells, stromal cells in the seminiferous tubules and Sertoli cells but seldom in spermatogonial cells. Therefore, ASGR could provide HBV with access to the luminal compartment of human testis. The mechanism by which HBV invades germ cells remains unknown.
Collapse
Affiliation(s)
- Pingnan Sun
- Department of Pathology, Shantou University Medical College, Shantou, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
27
|
Coulstock E, Sosabowski J, Ovečka M, Prince R, Goodall L, Mudd C, Sepp A, Davies M, Foster J, Burnet J, Dunlevy G, Walker A. Liver-targeting of interferon-alpha with tissue-specific domain antibodies. PLoS One 2013; 8:e57263. [PMID: 23451195 PMCID: PMC3581439 DOI: 10.1371/journal.pone.0057263] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 01/18/2013] [Indexed: 12/27/2022] Open
Abstract
Interferon alpha (IFNα) is used for the treatment of hepatitis C infection and whilst efficacious it is associated with multiple adverse events including reduced leukocyte, erythrocyte, and platelet counts, fatigue, and depression. These events are most likely caused by systemic exposure to interferon. We therefore hypothesise that targeting the therapeutic directly to the intended site of action in the liver would reduce exposure in blood and peripheral tissue and hence improve the safety and tolerability of IFNα therapy. We genetically fused IFN to a domain antibody (dAb) specific to a hepatocyte restricted antigen, asialoglycoprotein receptor (ASGPR). Our results show that the murine IFNα2 homolog (mIFNα2) fused to an ASGPR specific dAb, termed DOM26h-196-61, could be expressed in mammalian tissue culture systems and retains the desirable biophysical properties and activity of both fusion partners when measured in vitro. Furthermore a clear increase in in vivo targeting of the liver by mIFNα2-ASGPR dAb fusion protein, compared to that observed with either unfused mIFNα2 or mIFNα2 fused to an isotype control dAb VHD2 (which does not bind ASGPR) was demonstrated using microSPECT imaging. We suggest that these findings may be applicable in the development of a liver-targeted human IFN molecule with improved safety and patient compliance in comparison to the current standard of care, which could ultimately be used as a treatment for human hepatitis virus infections.
Collapse
Affiliation(s)
- Edward Coulstock
- Innovation Biopharm Discovery Unit, Biopharm R&D, GlaxoSmithKline, Cambridge, United Kingdom
| | - Jane Sosabowski
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Milan Ovečka
- Innovation Biopharm Discovery Unit, Biopharm R&D, GlaxoSmithKline, Cambridge, United Kingdom
| | - Rob Prince
- Innovation Biopharm Discovery Unit, Biopharm R&D, GlaxoSmithKline, Cambridge, United Kingdom
| | - Laura Goodall
- Innovation Biopharm Discovery Unit, Biopharm R&D, GlaxoSmithKline, Cambridge, United Kingdom
| | - Clare Mudd
- Innovation Biopharm Discovery Unit, Biopharm R&D, GlaxoSmithKline, Cambridge, United Kingdom
| | - Armin Sepp
- Innovation Biopharm Discovery Unit, Biopharm R&D, GlaxoSmithKline, Cambridge, United Kingdom
| | - Marie Davies
- Innovation Biopharm Discovery Unit, Biopharm R&D, GlaxoSmithKline, Cambridge, United Kingdom
| | - Julie Foster
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Jerome Burnet
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Gráinne Dunlevy
- Innovation Biopharm Discovery Unit, Biopharm R&D, GlaxoSmithKline, Cambridge, United Kingdom
| | - Adam Walker
- Innovation Biopharm Discovery Unit, Biopharm R&D, GlaxoSmithKline, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
28
|
Jan RH, Lin YL, Chen CJ, Lin TY, Hsu YC, Chen LK, Chiang BL. Hepatitis B virus surface antigen can activate human monocyte-derived dendritic cells by nuclear factor kappa B and p38 mitogen-activated protein kinase mediated signaling. Microbiol Immunol 2013; 56:719-27. [PMID: 22853328 DOI: 10.1111/j.1348-0421.2012.00496.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatitis B virus Ag (HBsAg), a major antigen of hepatitis B virus (HBV), is also a vaccine component for prevention of HBV infection. Dendritic cells (DCs) of HBV carriers reportedly exhibit functional impairment. In this study, the aim was to investigate the effect of HBsAg on activation of human monocyte-derived dendritic cells (MD-DCs), and the subsequent signal transduction pathway. Treatment of MD-DCs with HBsAg resulted in enhanced cell surface expression of cluster of differentiation 80, CD83, CD86 and major histocompatibility complex class II, and increased interleukin (IL)-12 p40, IL-12p70, and IL-10 production. Furthermore, HBsAg treatment of MD-DCs with HBsAg resulted in enhanced T cell-stimulatory capacity and increased T cell secretion of interferon and IL-10. The pathway of MD-DCs activation by HBsAg was further investigated in the present study. Inhibition of nuclear factor (NF)-kappa B (κB) by helenalin and p38 mitogen-activated protein kinase (MAPK) by SB203580 prevented production of IL-12 p40, IL-12 p70, and IL-10. HBsAg also augmented MAPK phosphorylation. Thus, cytokine secretion of human MD-DCs by HBsAg is blocked by inhibition of the NF-κB and p38 MAPK pathways. Likewise, decreased inhibition of kappa B alpha concentrations and MAPK phosphorylation are critical for MD-DC maturation by HBsAg. These findings may provide a strategy for improving the prophylactic and therapeutic efficacy of vaccines and tumor therapies that utilize these pathways.
Collapse
Affiliation(s)
- Rong-Hwa Jan
- Institute of Medical Sciences, Tzu-Chi University, National Taiwan University Hospital, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
29
|
Paganelli M, Dallmeier K, Nyabi O, Scheers I, Kabamba B, Neyts J, Goubau P, Najimi M, Sokal EM. Differentiated umbilical cord matrix stem cells as a new in vitro model to study early events during hepatitis B virus infection. Hepatology 2013; 57:59-69. [PMID: 22898823 DOI: 10.1002/hep.26006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Accepted: 07/30/2012] [Indexed: 01/08/2023]
Abstract
UNLABELLED The role of cell differentiation state on hepatitis B virus (HBV) replication has been well demonstrated, whereas how it determines cell susceptibility to HBV entry is far less understood. We previously showed that umbilical cord matrix stem cells (UCMSC) can be differentiated towards hepatocyte-like cells in vitro. In this study we infected undifferentiated (UD-) and differentiated (D-) UCMSCs with HBV and studied the infection kinetics, comparing them to primary human hepatocytes (PHHs). UD-UCMSCs, although permissive to viral binding, had a very limited uptake capacity, whereas D-UCMSCs showed binding and uptake capabilities similar to PHHs. Likewise, asialoglycoprotein receptor (ASGPR) was up-regulated in UCMSCs upon differentiation. In D-UCMSCs, a dose-dependent inhibition of HBV binding and uptake was observed when ASGPR was saturated with known specific ligands. Subsequent viral replication was shown in D-UCMSCs but not in UD-UCMSCs. Susceptibility of UCMSCs to viral replication correlated with the degree of differentiation. Replication efficiency was low compared to PHHs, but was confirmed by (1) a dose-dependent inhibition by specific antiviral treatment using tenofovir; (2) the increase of viral RNAs along time; (3) de novo synthesis of viral proteins; and (4) secretion of infectious viral progeny. CONCLUSION UCMSCs become supportive of the entire HBV life cycle upon in vitro hepatic differentiation. Despite low replication efficiency, D-UCMSCs proved to be fully capable of HBV uptake. Overall, UCMSCs are a unique human, easily available, nontransformed, in vitro model of HBV infection that could prove useful to study early infection events and the role of the cell differentiation state on such events.
Collapse
Affiliation(s)
- Massimiliano Paganelli
- Pediatric Gastroenterology & Hepatology Unit, Université catholique de Louvain and Cliniques universitaires Saint-Luc, Brussels, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Tian X, Baek KH, Shin I. Dual-labeled glycoclusters: synthesis and their application in monitoring lectin-mediated endocytosis. MOLECULAR BIOSYSTEMS 2013; 9:978-86. [DOI: 10.1039/c3mb25491g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
31
|
Roggenbuck D, Mytilinaiou MG, Lapin SV, Reinhold D, Conrad K. Asialoglycoprotein receptor (ASGPR): a peculiar target of liver-specific autoimmunity. AUTO- IMMUNITY HIGHLIGHTS 2012; 3:119-25. [PMID: 26000135 PMCID: PMC4389076 DOI: 10.1007/s13317-012-0041-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 10/11/2012] [Indexed: 12/11/2022]
Abstract
Asialoglycoprotein receptor (ASGPR) autoantibodies have been considered specific markers of autoimmune hepatitis (AIH). The exact mechanisms responsible for the development of these autoantibodies and leading to autoimmunity to this peculiar liver receptor remain elusive. Furthermore, loss of T cell tolerance to ASGPR has been demonstrated in patients with AIH, but it is poorly understood whether such liver-specific T cell responses bear a pathogenic potential and/or participate in the precipitation of AIH. Newly developed enzyme-linked immunosorbent assays have led to the investigation of the sensitivity and specificity of anti-ASGPR antibodies for AIH. The present review provides an overview of the diagnostic and clinical relevance of anti-ASGPR antibodies. A thorough investigation of the autoreactivity against ASGPR may assist efforts to understand liver autoimmunity in susceptible individuals.
Collapse
Affiliation(s)
- Dirk Roggenbuck
- Faculty of Natural Sciences, University of Applied Sciences, Großenhainer Str. 57, 01968 Senftenberg, Germany
- GA Generic Assays GmbH, 15827 Dahlewitz/Berlin, Germany
| | - Maria G. Mytilinaiou
- Division of Transplantation Immunology and Mucosal Biology, Institute of Liver Studies, King’s College London School of Medicine at King’s College Hospital, London, UK
| | - Sergey V. Lapin
- Laboratory of Autoimmune Diagnostics, St. Petersburg Pavlov State Medical University, St.Petersburg, Russia
| | - Dirk Reinhold
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Magdeburg, Germany
| | - Karsten Conrad
- Institute of Immunology, Technical University Dresden, Dresden, Germany
| |
Collapse
|
32
|
Kanaan N, Kabamba B, Maréchal C, Pirson Y, Beguin C, Goffin E, Hassoun Z. Significant rate of hepatitis B reactivation following kidney transplantation in patients with resolved infection. J Clin Virol 2012; 55:233-8. [DOI: 10.1016/j.jcv.2012.07.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 07/21/2012] [Accepted: 07/25/2012] [Indexed: 02/07/2023]
|
33
|
Rigopoulou EI, Roggenbuck D, Smyk DS, Liaskos C, Mytilinaiou MG, Feist E, Conrad K, Bogdanos DP. Asialoglycoprotein receptor (ASGPR) as target autoantigen in liver autoimmunity: lost and found. Autoimmun Rev 2012; 12:260-9. [PMID: 22571878 DOI: 10.1016/j.autrev.2012.04.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 04/23/2012] [Indexed: 12/11/2022]
Abstract
Asialoglycoprotein receptor (ASGPR) has attracted the attention of liver immunologists for many years. This liver-specific lectin was found to be a major B and T cell autoantigenic target in patients with autoimmune liver diseases, and in particular in autoimmune hepatitis (AIH). This review discusses the biological significance of ASGPR and its relevance to the pathogenesis of autoimmune and virus-triggered liver diseases. We also discuss emerging data on the diagnostic and clinical relevance of anti-ASGPR antibodies in light of recent reports based on commercially available anti-ASGPR enzyme-linked immunosorbent assays. Finally, we critically revisit the data reporting on disease-specific cellular immune responses against ASGPR and their relevance in relation to the pathogenesis of AIH.
Collapse
Affiliation(s)
- Eirini I Rigopoulou
- Department of Medicine, University Hospital of Larissa, University of Thessaly Medical School, Viopolis 41110, Larissa, Greece.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Hao Z, Zheng L, Kluwe L, Huang W. Ferritin light chain and squamous cell carcinoma antigen 1 are coreceptors for cellular attachment and entry of hepatitis B virus. Int J Nanomedicine 2012; 7:827-34. [PMID: 22359459 PMCID: PMC3284225 DOI: 10.2147/ijn.s27803] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Overexpression of squamous cell carcinoma antigen 1 (SCCA1) in hepatitis G2 (HepG2) and Chinese hamster ovary cells can increase hepatitis B virus (HBV) binding capacity by interacting with the preS1 domain of the HBV surface antigen. However, the magnitude of increase in binding capacity was higher by several orders in the former, indicating the existence of additional factor(s) produced by HepG2 cells, which facilitates HBV attachment. Ferritin light chain (FTL) was identified as the sole high hit candidate by screening human liver cDNA library using a bacterial two-hybrid system with either preS or SCCA1 as the bait. Subsequent in vitro protein–protein interaction assays confirmed the binding activity of FTL to both preS and SCCA1, as well as the formation of triple complex preS-FTL-SCCA1, and narrowed down the binding sites on FTL. In vitro overexpression of FTL could further enhance HBV attachment in both HepG2 and Chinese hamster ovary cells, which were already overexpressing SCCA1. Importantly, in vivo co-expression of human FTL and SCCA1 in mouse liver by means of tailvein hydrodynamic injection increased serum levels of HBV surface antigen transiently 24 hours post challenge with HBV-positive human sera, and a large amount of HBV core antigen-positive hepatocytes around blood vessels could be identified by immunohistochemical staining 48 hours post challenge. The data strongly suggest that FTL and SCCA1 may serve as coreceptors in HBV cellular attachment and virus entry into hepatocytes.
Collapse
Affiliation(s)
- Zhaojing Hao
- Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai, People's Republic of China
| | | | | | | |
Collapse
|
35
|
|
36
|
Miki T, Ring A, Gerlach J. Hepatic differentiation of human embryonic stem cells is promoted by three-dimensional dynamic perfusion culture conditions. Tissue Eng Part C Methods 2011; 17:557-68. [PMID: 21210720 DOI: 10.1089/ten.tec.2010.0437] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The developmental potential of human embryonic stem cells (hESCs) holds great promise to provide a source of human hepatocytes for use in drug discovery, toxicology, hepatitis research, and extracorporeal bioartificial liver support. There are, however, limitations to induce fully functional hepatocytes on conventional two-dimensional (2D) static culture. It had been shown that dynamic three-dimensional (3D) perfusion culture is superior to induce maturation in fetal hepatocytes and prolong hepatic functions of primary adult hepatocytes. We investigated the potential of using a four-compartment 3D perfusion culture to induce hepatic differentiation in hESC. Undifferentiated hESC were inoculated into hollow fiber-based 3D perfusion bioreactors with integral oxygenation. Hepatic differentiation was induced with a multistep growth factor cocktail protocol. Parallel controls were operated under equal perfusion conditions without the growth factor supplementations to allow for spontaneous differentiation, as well as in conventional 2D static conditions using growth factors. Metabolism, hepatocyte-specific gene expression, protein expression, and hepatic function were evaluated after 20 days. Significantly upregulated hepatic gene expression was observed in the hepatic differentiation 3D culture group. Ammonia metabolism activity and albumin production was observed in the 3D directed differentiation culture. Drug-induced cytochrome P450 gene expression was increased with rifampicin induction. Using flow cytometry analysis the mature hepatocyte marker asialoglycoprotein receptor was found on up to 30% of the cells in the 3D system with directed hepatic differentiation. Histological and immunohistochemical analysis revealed structural formation of hepatic and biliary marker-positive cells. In contrast to 2D culture, the 3D perfusion culture induced more functional maturation in hESC-derived hepatic cells. 3D perfusion bioreactor technologies may be useful for further studies on generating hESC-derived hepatic cells.
Collapse
Affiliation(s)
- Toshio Miki
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| | | | | |
Collapse
|
37
|
Mukhopadhyay A, Nieves E, Che FY, Wang J, Jin L, Murray JW, Gordon K, Angeletti RH, Wolkoff AW. Proteomic analysis of endocytic vesicles: Rab1a regulates motility of early endocytic vesicles. J Cell Sci 2011; 124:765-75. [PMID: 21303926 DOI: 10.1242/jcs.079020] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Texas-Red-asialoorosomucoid (ASOR) fluorescence-sorted early and late endocytic vesicles from rat liver were subjected to proteomic analysis with the aim of identifying functionally important proteins. Several Rab GTPases, including Rab1a, were found. The present study immunolocalized Rab1a to early and late endocytic vesicles and examined its potential role in endocytosis. Huh7 cells with stable knockdown of Rab1a exhibited reduced endocytic processing of ASOR. This correlated with the finding that Rab1a antibody reduced microtubule-based motility of rat-liver-derived early but not late endocytic vesicles in vitro. The inhibitory effect of Rab1a antibody was observed to be specifically towards minus-end-directed motility. Total and minus-end-directed motility was also reduced in early endocytic vesicles prepared from Rab1a-knockdown cells. These results corresponded with virtual absence of the minus-end-directed kinesin Kifc1 from early endocytic vesicles in Rab1a knockdown cells and imply that Rab1a regulates minus-end-directed motility largely by recruiting Kifc1 to early endocytic vesicles.
Collapse
Affiliation(s)
- Aparna Mukhopadhyay
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Zhang X, Lin SM, Chen TY, Liu M, Ye F, Chen YR, Shi L, He YL, Wu LX, Zheng SQ, Zhao YR, Zhang SL. Asialoglycoprotein receptor interacts with the preS1 domain of hepatitis B virus in vivo and in vitro. Arch Virol 2011; 156:637-45. [PMID: 21207081 DOI: 10.1007/s00705-010-0903-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 12/20/2010] [Indexed: 01/04/2023]
Abstract
BACKGROUND The preS1 domain of the large envelope protein has been identified as an essential viral structure involved in hepatitis B virus (HBV) attachment. However, the cellular receptor(s) for HBV has not yet been identified. AIMS To identify a cell-surface receptor for HBV, which could elucidate the molecular mechanism of HBV infection. METHODS A novel yeast two-hybrid system was used to screen proteins interacting with the preS1 region of HBV. Their interaction was verified by yeast cotransformation, coimmunoprecipitation and mammalian two-hybrid assay, while their intracellular and tissue localization was analyzed by confocal microscopy and immunohistochemistry, respectively. RESULTS Asialoglycoprotein receptor (ASGPR) interacted specifically and directly with the preS1 domain of HBV in vivo and in vitro. The levels of expression of preS1 and ASGPR in the liver were similar and correlated with each other. CONCLUSIONS ASGPR is a candidate receptor for HBV that mediates further steps of HBV entry.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Infectious Diseases, The First Affiliated Hospital of Medical College of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, Shaanxi Province, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Stefanescu R, Born R, Moise A, Ernst B, Przybylski M. Epitope structure of the carbohydrate recognition domain of asialoglycoprotein receptor to a monoclonal antibody revealed by high-resolution proteolytic excision mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:148-157. [PMID: 21472553 DOI: 10.1007/s13361-010-0010-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 10/04/2010] [Accepted: 10/11/2010] [Indexed: 05/30/2023]
Abstract
Recent studies suggest that the H1 subunit of the carbohydrate recognition domain (H1CRD) of the asialoglycoprotein receptor is used as an entry site into hepatocytes by hepatitis A and B viruses and Marburg virus. Thus, molecules binding specifically to the CRD might exert inhibition towards these diseases by blocking the virus entry site. We report here the identification of the epitope structure of H1CRD to a monoclonal antibody by proteolytic epitope excision of the immune complex and high-resolution MALDI-FTICR mass spectrometry. As a prerequisite of the epitope determination, the primary structure of the H1CRD antigen was characterised by ESI-FTICR-MS of the intact protein and by LC-MS/MS of tryptic digest mixtures. Molecular mass determination and proteolytic fragments provided the identification of two intramolecular disulfide bridges (seven Cys residues), and a Cys-mercaptoethanol adduct formed by treatment with β-mercaptoethanol during protein extraction. The H1CRD antigen binds to the monoclonal antibody in both native and Cys-alkylated form. For identification of the epitope, the antibody was immobilized on N-hydroxysuccinimide (NHS)-activated Sepharose. Epitope excision and epitope extraction with trypsin and FTICR-MS of affinity-bound peptides provided the identification of two specific epitope peptides (5-16) and (17-23) that showed high affinity to the antibody. Affinity studies of the synthetic epitope peptides revealed independent binding of each peptide to the antibody.
Collapse
Affiliation(s)
- Raluca Stefanescu
- Laboratory of Analytical Chemistry and Biopolymer Structure Analysis, Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | | | | | | | | |
Collapse
|
40
|
Xie Y, Zhai J, Deng Q, Tiollais P, Wang Y, Zhao M. Entry of hepatitis B virus: mechanism and new therapeutic target. ACTA ACUST UNITED AC 2010; 58:301-7. [PMID: 20570056 DOI: 10.1016/j.patbio.2010.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 04/12/2010] [Indexed: 12/21/2022]
Abstract
Entry of hepatitis B virus (HBV) into human hepatocytes constitutes the initial step in viral infection. The study of HBV entry had long been hampered by the lack of efficient cell culture systems and small animal models. The situation was greatly improved in the last decade with the development of HBV-infectible HepaRG cell line and primary Tupaia hepatocyte culture. Armed with these new tools, marked progresses have been achieved in the elucidation of the mechanism of HBV entry. Plenty of evidences indicate that the viral large surface protein (LHBs) is essential for HBV entry. Several regions in the PreS1 domain of LHBs have been verified to contribute directly to the viral attachment. In addition, a myristate moiety linked to the N-terminal glycine of PreS1 appears critical for HBV infectivity. Recently, the cysteine-rich antigenic loop of the S domain was identified as another crucial determinant for HBV infectivity. On the other hand, several cellular proteins were implicated in HBV attachment to hepatic cells, though definitive proofs are required in support to their functional involvement in HBV infection. Aiming to blocking viral entry, a couple of approaches based on acylated PreS1-derived peptides and short PreS1-binding peptides are currently under investigation, which have the potential to become novel antiviral therapeutics.
Collapse
Affiliation(s)
- Y Xie
- Key Laboratory of Medical Molecular Virology, Shanghai Medical College, Fudan University, Shanghai, China.
| | | | | | | | | | | |
Collapse
|
41
|
Fibronectin and asialoglyprotein receptor mediate hepatitis B surface antigen binding to the cell surface. Arch Virol 2010; 155:881-8. [PMID: 20364278 DOI: 10.1007/s00705-010-0657-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Accepted: 03/03/2010] [Indexed: 12/15/2022]
Abstract
Both fibronectin and the asialoglycoprotein receptor (ASGPR) have been identified by some investigators as partners for hepatitis B virus (HBV) envelope proteins. Because fibronectin is a natural ligand for ASGPR, we speculated that HBV might attach to ASGPR expressed on the hepatocyte surface via fibronectin. To test this hypothesis, we first confirmed by co-immunoprecipitation that ASGPR, fibronectin and HBsAg bind to each other in HepG2.2.15 cells, and possible binding domains were identified by GST pull-down. In addition, by measuring binding of HBsAg to cells, we found that ASGPR and fibronectin enhanced the binding capability of HBsAg to HepG2 cells, and even to 293T and CHO cells, which normally do not bind HBV. In conclusion, our findings suggest that both fibronectin and ASGPR mediate HBsAg binding to the cell surface, which provides further evidence for the potential roles of these two proteins in mediating HBV binding to liver cells.
Collapse
|
42
|
Abstract
Acute hepatitis B virus (HBV) is a common cause of acute icteric hepatitis in adults. The vast majority of these patients resolve this acute infection and develop long-lasting immunity. In contrast, the vast majority of patients who develop chronic HBV have minimal symptoms and do not develop jaundice after becoming infected with HBV. These patients will frequently remain undiagnosed for years or decades. Approximately 1% of persons with acute HBV develop acute liver failure. Preventing acute HBV with vaccination is the best treatment. Although universal vaccination is now administered to newborns in many countries, the majority of adults have not been vaccinated and remain at risk. Because the majority of patients with acute HBV resolve this infection spontaneously, treatment with an oral anti-HBV agent is not necessary. However, the use of an oral anti-HBV agent is not unreasonable to use in a patient who is developing acute liver failure from severe acute HBV.
Collapse
|
43
|
Trahtenherts A, Benhar I. An internalizing antibody specific for the human asialoglycoprotein receptor. Hybridoma (Larchmt) 2009; 28:225-33. [PMID: 19663694 DOI: 10.1089/hyb.2009.0019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The liver possesses a variety of characteristics that make this organ a very attractive target for gene and drug delivery. The asialoglycoprotein receptor (ASGPR) is a heterodimeric liver-specific C-type lectin that mediates endocytosis and degradation of desialylated glycoproteins and is considered a preferable target for liver-specific drug delivery. Asialoglycoprotein-coupled, galactosylated, or anti-ASGPR antibody-targeted molecules may be used to deliver pharmaceutical agents to the liver. Here we present a new anti-ASGPR single-chain antibody (scFv) that was isolated from the synthetic human "Ronit-1" antibody phage display library. This scFv (B11) was shown to bind the recombinant and native forms of the ASGPR and could also facilitate ASGPR specific internalization of a B11-PE38KDEL immunotoxin and cause cell death. Thus, this newly isolated antibody can serve as a targeting moiety for ASGPR-directed drug delivery.
Collapse
Affiliation(s)
- Alla Trahtenherts
- Department of Molecular Microbiology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat Aviv, Israel
| | | |
Collapse
|
44
|
Op den Brouw ML, Binda RS, Geijtenbeek TBH, Janssen HLA, Woltman AM. The mannose receptor acts as hepatitis B virus surface antigen receptor mediating interaction with intrahepatic dendritic cells. Virology 2009; 393:84-90. [PMID: 19683778 DOI: 10.1016/j.virol.2009.07.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 06/15/2009] [Accepted: 07/17/2009] [Indexed: 12/20/2022]
Abstract
Dendritic cells (DC) play a key role in anti-viral immunity. Direct interactions between DC and hepatitis B virus (HBV) may explain the impaired DC function and the ineffective anti-viral response of chronic HBV patients resulting in HBV persistence. Here, the interaction between HBV surface antigens (HBsAg) and DC and the receptor involved were examined by flow cytometry in blood and liver tissue of HBV patients. The in vitro data showed that the mannose receptor (MR) is involved in HBsAg recognition and uptake by DC. The presence of HBsAg-positive DC was demonstrated sporadically in blood, but frequently in the liver of HBV patients. Interestingly, a positive correlation was found between HBsAg positivity and MR expression level in both liver- and blood-derived DC. These data suggest that in HBV infected patients, MR-mediated interaction between HBsAg and DC and subsequent impairment of DC predominantly occurs at the main site of infection, the liver.
Collapse
|
45
|
Zhou XL, Sun PN, Huang TH, Xie QD, Kang XJ, Liu LM. Effects of hepatitis B virus S protein on human sperm function. Hum Reprod 2009; 24:1575-83. [PMID: 19279032 DOI: 10.1093/humrep/dep050] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) has been determined to exist in semen and male germ cells from patients with chronic HBV infection, but no data are yet available on the impact of HBV S protein (HBs), the main component of HBV envelop protein, on the human reproductive system. The purpose of this article was to investigate the effect of HBs on human sperm function. METHODS Sperm motility analyses, sperm penetration assays, mitochondrial membrane potential assays, immunolocalizations with confocal microscopy and flow cytometry analyses were performed. RESULTS HBs reduced sperm motility in a dose- and time-dependent manner and caused the loss of sperm mitochondrial membrane potential. HBs-HBs monoclonal antibody (MAb) complex apparently aggravated such impairments. After 4 h incubation with HBs at concentrations of 25, 50, 100 microg/ml, the percentages of sperm motility a+b significantly decreased compared with the control (P < 0.01). The fertilization rate and the fertilizing index in HBs-treated group were 40% and 0.57, respectively, which were significantly lower than 90% and 1.6, respectively, in the control (P < 0.01). The asialoglycoprotein receptor (ASGP-R) and HBs were found to localize mainly on the postacrosomal region. Both ASGP-R MAb and asialofoetuin, a high-affinity ligand of ASGP-R, inhibited the HBs-caused loss of sperm motility and mitochondrial membrane potential. CONCLUSIONS HBs had adverse effects on human sperm function, and ASGP-R may play a role in the uptake of HBs into sperm cells, as demonstrated by the competitive inhibition of ASGP-R MAb or asialofoetuin, resulting in diminished impairment caused by HBs.
Collapse
Affiliation(s)
- Xiao-Ling Zhou
- Research Center for Reproductive Medicine, Shantou University Medical College, Shantou 515041, People's Republic of China
| | | | | | | | | | | |
Collapse
|
46
|
Gao YF, Yu L, Li JB, Wei SF, Li X, Shen JL. Inhibition of hepatitis B virus gene expression and replication by artificial microRNA targeted ASGPR1. Shijie Huaren Xiaohua Zazhi 2009; 17:699-704. [DOI: 10.11569/wcjd.v17.i7.699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the inhibitory effects on hepatitis B virus (HBV) replication and expression by transfecting artificial microRNA targeted ASGPR1 into HepG2.2.15 cells.
METHODS: Three amiRNA-HBV plasmids were constructed and transfected into HepG2.2.15 cells via LipofectamineTM 2000 reagent. The level of ASGPR1 mRNA was measured by semi-quantitative RT-PCR. The level of ASGPR1 protein was measured by western blot. HBV antigen secretion was detected in the cells with transient and stable transfection by time-resolved fluoroimmunoassays (TRFIA). HBV DNA replication was examined by fluorescence quantitative PCR.
RESULTS: Three amiRNA significantly reduced ASGPR1 mRNA and protein expression, and the greatest reduction was seen in amiRNA-ASGPR1-610 transfected group. Expressions of ASGPR1 mRNA and protein were down-regulated by 57.3% and 49.8% at 72 h(P < 0.01). At the virus level, three amiRNA-ASGPR1 plasmids obviously inhibited the secretion of HBsAg and HBeAg with the greatest reduction seen in amiRNA-ASGPR1-610 transfected group. Expression levels of HBsAg and HBeAg were down-regulated by 31.3% and 33.6% after 72 h (P < 0.01) and HBV DNA level was down-regulated by 29.7% at 72 h (P < 0.01).
CONCLUSION: In HepG2.2.15 cells, HBV replication and expression could be inhibited by artificial microRNA targeted ASGPR1. Artificial microRNA targeted ASGPR1 could be a promising therapeutic approach for chronic HBV infection.
Collapse
|
47
|
Saito S, Ojima H, Ichikawa H, Hirohashi S, Kondo T. Molecular background of alpha-fetoprotein in liver cancer cells as revealed by global RNA expression analysis. Cancer Sci 2008; 99:2402-9. [PMID: 19038010 PMCID: PMC11158806 DOI: 10.1111/j.1349-7006.2008.00973.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
alpha-Fetoprotein (AFP) is considered to be a diagnostic and prognostic biomarker in hepatocellular carcinoma (HCC). However, the role of AFP in the development of HCC is presently obscure. We hypothesized that a certain set of genes is expressed in a manner coordinate with AFP, and that these genes essentially contribute to the malignant characteristics of AFP-producing HCC. To address this hypothesis, we carried out global mRNA expression analysis of 21 liver cancer cell lines that produce varying levels of AFP. We identified 213 genes whose mRNA expression levels were significantly correlated with that of AFP (P < 0.0001). These included liver-specific transcription factors for AFP and other albumin family genes. Eighteen HCC-associated genes and 11 genes associated with malignancies other than HCC showed significant correlations with AFP production levels. Genes involved in lipid catabolism, blood coagulation, iron metabolism, angiogenesis, and the Wnt and mitogen-activated protein kinase pathways were also identified. Text data mining revealed that participation in the transcription factor network could explain the connection between 78 of the identified genes. Glypican 3, which is a component of the Wnt pathway and contributes to HCC development, had the fifth highest correlation coefficient with AFP. Reactivity to specific antibodies confirmed the significant correlation between AFP and glypican 3 expression in HCC tissues. These observations suggest that AFP-producing liver cancer cells may have a unique molecular background consisting of cancer-associated genes. From this genome-wide association study, novel aspects of the molecular background of AFP were revealed, and thus may lead to the identification of novel biomarker candidates.
Collapse
MESH Headings
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- DNA, Complementary/biosynthesis
- Gene Expression Regulation, Neoplastic
- Glypicans/metabolism
- Humans
- Immunohistochemistry
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Oligonucleotide Array Sequence Analysis
- RNA, Messenger/analysis
- RNA, Neoplasm/analysis
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- alpha-Fetoproteins/analysis
- alpha-Fetoproteins/genetics
- alpha-Fetoproteins/metabolism
Collapse
Affiliation(s)
- Shigeru Saito
- Proteome Bioinformatics Project, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, Japan
| | | | | | | | | |
Collapse
|
48
|
Op den Brouw ML, De Jong MAWP, Ludwig IS, Van Der Molen RG, Janssen HLA, Geijtenbeek TBH, Woltman AM. Branched oligosaccharide structures on HBV prevent interaction with both DC-SIGN and L-SIGN. J Viral Hepat 2008; 15:675-83. [PMID: 18482282 PMCID: PMC7166686 DOI: 10.1111/j.1365-2893.2008.00993.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatitis B virus (HBV) is a DNA virus that infects the liver as primary target. Currently, a high affinity receptor for HBV is still unknown. The dendritic cell specific C-type lectin DC-SIGN is involved in pathogen recognition through mannose and fucose containing carbohydrates leading to the induction of an anti-viral immune response. Many glycosylated viruses subvert this immune surveillance function and exploit DC-SIGN as a port of entry and for trans-infection of target cells. The glycosylation pattern on HBV surface antigens (HBsAg) together with the tissue distribution of HBV would allow interaction between HBV and DC-SIGN and its liver-expressed homologue L-SIGN. Therefore, a detailed study to investigate the binding of HBV to DC-SIGN and L-SIGN was performed. For HCV, both DC-SIGN and L-SIGN are known to bind envelope glycoproteins E1 and E2. Soluble DC-SIGN and L-SIGN specifically bound HCV virus-like particles, but no interaction with either HBsAg or HepG2.2.15-derived HBV was detected. Also, neither DC-SIGN nor L-SIGN transfected Raji cells bound HBsAg. In contrast, highly mannosylated HBV, obtained by treating HBV producing HepG2.2.15 cells with the alpha-mannosidase I inhibitor kifunensine, is recognized by DC-SIGN. The alpha-mannosidase I trimming of N-linked oligosaccharide structures thus prevents recognition by DC-SIGN. On the basis of these findings, it is tempting to speculate that HBV exploits mannose trimming as a way to escape recognition by DC-SIGN and thereby subvert a possible immune activation response.
Collapse
Affiliation(s)
- M. L. Op den Brouw
- Department of Gastroenterology and Hepatology, Erasmus MC, Rotterdam, The Netherlands
| | - M. A. W. P. De Jong
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - I. S. Ludwig
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - R. G. Van Der Molen
- Department of Gastroenterology and Hepatology, Erasmus MC, Rotterdam, The Netherlands
| | - H. L. A. Janssen
- Department of Gastroenterology and Hepatology, Erasmus MC, Rotterdam, The Netherlands
| | - T. B. H. Geijtenbeek
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - A. M. Woltman
- Department of Gastroenterology and Hepatology, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
49
|
Bock CT, Torresi J. Closing the door on hepatitis B. Hepatology 2008; 48:338-41. [PMID: 18570287 DOI: 10.1002/hep.22447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- C-Thomas Bock
- Department of Molecular Pathology, Institute of Pathology, University Hospital of Tübingen, Germany
| | | |
Collapse
|
50
|
Leistner CM, Gruen-Bernhard S, Glebe D. Role of glycosaminoglycans for binding and infection of hepatitis B virus. Cell Microbiol 2007; 10:122-33. [DOI: 10.1111/j.1462-5822.2007.01023.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|