1
|
Wang Z, Zhao S, Zhong X, Su Y, Song Y, Li J, Shi Y. Debate on the relationship between Helicobacter pylori infection and inflammatory bowel disease: a bibliometric analysis. Front Microbiol 2024; 15:1479941. [PMID: 39569001 PMCID: PMC11576472 DOI: 10.3389/fmicb.2024.1479941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/21/2024] [Indexed: 11/22/2024] Open
Abstract
Background Inflammatory bowel diseases (IBD) are chronic inflammation conditions affecting the gastrointestinal tract. Studies point out an association between Helicobacter pylori (H. pylori) infection and IBD. This study aims to visually assess the research trends and hotspots in the field of H. pylori infection and IBD, review mainstream perspectives in this field, and provide a foundation for future research and treatment. Methods We searched the Web of Science Core Collection Database for literature related to H. pylori and IBD, using VOS viewer to generate visual charts. Results A total of 246 publications were included, with articles being the predominant type of document. A significant increase in the number of publications was observed after 2011. China contributed the most of researches. Keyword clusters revealed that the researches primarily focused on immune mechanism, gut microbiome, diagnosis and treatment of IBD. Time trend results indicated that current researches centered on gut microbiota and immune mechanisms. Conclusion H. pylori infection may have a protective effect on IBD. The exact mechanisms remain unclear and may involve immunomodulation and changes of gut microbiota. Further researches are necessary for better understanding this relationship and its implications for clinical practice. Further researches and clinical practice should pay attention to this topic.
Collapse
Affiliation(s)
- Ziye Wang
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, China
- Peking University Health Science Center, Beijing, China
| | - Shiqing Zhao
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, China
- Peking University Health Science Center, Beijing, China
| | - Xiaotian Zhong
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, China
- Peking University Health Science Center, Beijing, China
| | - Yi Su
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, China
- Peking University Health Science Center, Beijing, China
| | - Yahan Song
- Library, Peking University Third Hospital, Beijing, China
| | - Jun Li
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Yanyan Shi
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
2
|
Liu J, Xiao Y, Xu Q, Xu Y, Guo M, Hu Y, Wang Y, Wang Y. Britannilactone 1-O-acetate induced ubiquitination of NLRP3 inflammasome through TRIM31 as a protective mechanism against reflux esophagitis-induced esophageal injury. Chin Med 2024; 19:118. [PMID: 39215331 PMCID: PMC11363507 DOI: 10.1186/s13020-024-00986-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Reflux esophagitis (RE) is a disease in which inflammation of the esophageal mucosa owing to the reflux of gastric contents into the esophagus results in cytokine damage. Britannilactone 1-O-acetate (Brt) has anti-inflammatory effects, significantly inhibiting the activation of the NLRP3 inflammasome, leading to a decrease in inflammatory factors including IL-1 β, IL-6, and TNF-α. However, the mechanism underlying its protective effect against RE-induced esophageal injury remains unclear. In the present study, we investigated the protective mechanism of TRIM31 against NLRP3 ubiquitination-induced RE both in vivo and in vitro. METHODS A model of RE was established in vivo in rats by the method of "4.2 mm pyloric clamp + 2/3 fundoplication". In vitro, the mod was constructed by using HET-1A (esophageal epithelial cells) and exposing the cells to acid, bile salts, and acidic bile salts. The 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay was used to screen the concentration of administered drugs, and the viability of HET-1A cells in each group. HE staining was used to assess the degree of pathological damage in esophageal tissues. Toluidine blue staining was used to detect whether the protective function of the esophageal epithelial barrier was damaged and restored. The enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of IL-1 β, IL-6, and TNF-α factors in serum. Immunohistochemistry (IHC) was used to detect the expression level of NLRP3 in esophageal tissues. The molecular docking and Co-immunoprecipitation assay (Co-IP assay) were used to detect the TRIM31 interacts with NLRP3. Western blotting detected the Claudin-4, Claudin-5, The G-protein-coupled receptor calcium-sensitive receptor (CaSR), NLRP3, TRIM31, ASC, C-Caspase1, and Caspase1 protein expression levels. RESULTS Brt could alleviate RE inflammatory responses by modulating serum levels of IL-1 β, IL-6, and TNF-α. It also activated the expression of NLRP3, ASC, Caspase 1, and C-Caspase-1 in HET-1A cells. Brt also attenuated TRIM31/NLRP3-induced pathological injury in rats with RE through a molecular mechanism consistent with the in vitro results. CONCLUSIONS Brt promotes the ubiquitination of NLRP3 through TRIM31 and attenuates esophageal epithelial damage induced by RE caused by acidic bile salt exposure. This study provides valuable insights into the mechanism of action of Brt in the treatment of RE and highlights its promising application in the prevention of NLRP3 inflammatory vesicle-associated inflammatory pathological injury.
Collapse
Affiliation(s)
- Ju Liu
- Office of Science and Technology Administration, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China
| | - Yang Xiao
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qianfei Xu
- Department of Spleen, Stomach and Hepatobiliary, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China
| | - Yunyan Xu
- Preventive Treatment Department, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China
| | - Manman Guo
- Pharmaceutical Department, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China
| | - Yun Hu
- Department of Spleen, Stomach and Hepatobiliary, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China
| | - Yan Wang
- Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yi Wang
- Pharmaceutical Department, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China.
| |
Collapse
|
3
|
Gravina AG, Pellegrino R, Iascone V, Palladino G, Federico A, Zagari RM. Impact of Helicobacter pylori Eradication on Inflammatory Bowel Disease Onset and Disease Activity: To Eradicate or Not to Eradicate? Diseases 2024; 12:179. [PMID: 39195178 DOI: 10.3390/diseases12080179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/23/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
Helicobacter pylori infection has significant epidemiological relevance due to the carcinogenic nature of this bacterium, which is potentially associated with cancer. When detected, it should ideally be eradicated using a treatment that currently involves a combination of gastric acid suppressors and multiple antibiotics. However, this treatment raises questions regarding efficacy and safety profiles in patients with specific comorbidities, including inflammatory bowel diseases (IBD). Eradication therapy for H. pylori includes components associated with adverse gastrointestinal events, such as Clostridioides difficile colitis. This necessitates quantifying this risk through dedicated studies to determine whether this antimicrobial treatment could be significantly associated with IBD relapse or exacerbation of pre-existing IBD, as well as whether it could potentially lead to the de novo onset of IBD. Although the available evidence is reassuring about the safety of eradication therapy in patients with IBD, it is limited, and there are no specific recommendations for this particular situation in the leading international IBD and H. pylori guidelines. Therefore, studies need to evaluate the efficacy and safety profiles of the available antimicrobial regimens for H. pylori eradication in patients with IBD, both in clinical trial settings and in real-life studies.
Collapse
Affiliation(s)
- Antonietta Gerarda Gravina
- Hepatogastroenterology Division, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Raffaele Pellegrino
- Hepatogastroenterology Division, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Veronica Iascone
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
- Esophagus and Stomach Organic Diseases Unit, IRCSS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Giovanna Palladino
- Hepatogastroenterology Division, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Alessandro Federico
- Hepatogastroenterology Division, Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Rocco Maurizio Zagari
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
- Esophagus and Stomach Organic Diseases Unit, IRCSS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
4
|
Li Y, Li L, Yin W, Wan J, Zhong X. Bibliometric analysis of the correlation between H. pylori and inflammatory bowel disease. JGH Open 2024; 8:e70014. [PMID: 39148512 PMCID: PMC11325047 DOI: 10.1002/jgh3.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/06/2024] [Accepted: 07/23/2024] [Indexed: 08/17/2024]
Abstract
Background Helicobacter pylori (H. pylori) infection is prevalent and associated with the development of various gastric diseases. On the other hand, inflammatory bowel disease (IBD) is an immune-related intestinal disorder influenced by factors like gut microbiota imbalance, genetic predisposition, and environmental influences. Despite extensive research on the H. pylori-IBD relationship, a comprehensive bibliometric analysis in this area is lacking. Therefore, this study aims to use bibliometric methods to explore research trends, hotspots, and frontiers in H. pylori and IBD-related research, offering valuable insights for future research and clinical practice. Methods We retrieved relevant literature on H. pylori and IBD from the Web of Science Core Collection (WoSCC) and Scopus databases covering 2007 to 2024. We perform a comprehensive analysis within the WoSCC literature. We compare these findings with relevant results from Scopus. Results Research on H. pylori and IBD has remained prominent in recent years. The United States leads in output, with strong contributions from authors, institutions, and journals. China, despite being a developing country, shows rapid article growth, signaling growing research potential. Key topics include Crohn's disease, gut microbiota, H. pylori infection, and ulcerative colitis. Newer interests include health, cancer prevention, and chronic gastritis. Conclusion Over the past, research on H. pylori and IBD has primarily centered around epidemiology and clinical studies. The question of whether H. pylori definitively offers protective effects against IBD remains unresolved. Therefore, further investigation could explore the underlying mechanisms of their relationship or initiate long-term prospective cohort studies to gather more compelling evidence.
Collapse
Affiliation(s)
- Yantong Li
- Department of Gastroenterology The Affiliated Hospital of Southwest Medical University Luzhou China
| | - Limin Li
- Department of Gastroenterology The Affiliated Hospital of Southwest Medical University Luzhou China
| | - Wenmeng Yin
- Department of Gastroenterology The Affiliated Hospital of Southwest Medical University Luzhou China
| | - Juyi Wan
- Department of Cardiovascular Surgery The Affiliated Hospital of Southwest Medical University Luzhou China
| | - Xiaolin Zhong
- Department of Gastroenterology The Affiliated Hospital of Southwest Medical University Luzhou China
| |
Collapse
|
5
|
Zhu Z, Yang Y, Han X, Peng L, Zhu H. Causality of Helicobacter pylori infection on eosinophilic esophagitis and potential pathogenesis: a Mendelian randomization study. Front Immunol 2024; 15:1365604. [PMID: 38779684 PMCID: PMC11109363 DOI: 10.3389/fimmu.2024.1365604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Background Observational studies have indicated a possible connection between Helicobacter pylori (H. pylori) infection and eosinophilic esophagitis (EoE), but their causal relationship has yet to be established. To investigate the causal associations between H. pylori infection and EoE, we performed a Mendelian randomization (MR) analysis. Methods Firstly, we conducted both univariable and multivariable Mendelian randomization (MR) analyses. Furthermore, a two-step MR was carried out to ascertain the potential underlying pathways of these associations, particularly the involvement of inflammatory cytokines. We employed the inverse-variance weighted (IVW) method as the main analysis in our MR study. To enhance the credibility of the results, we also conducted several sensitivity analyses. Results Our study demonstrated a noteworthy correlation between genetically predicted anti-H. pylori IgG antibody levels and a reduced risk of EoE (OR=0.325, 95% CI=0.165-0.643, P value=0.004, adj p value=0.009). No significant causal associations were detected between other H. pylori antibodies and EoE in our study. When it comes to multivariable MR analysis controlling for education attainment, household income, and deprivation individually, the independent causal impact of anti-H. pylori IgG on EoE persisted. Surprisingly, the two-step MR analysis indicated that inflammatory factors (IL-4, IL-5, IL-13, IL-17, and IFN-γ) did not appear to mediate the protective effect of H. pylori infection against EoE. Conclusion Findings suggested that among the range of H. pylori-related antibodies, anti-H. pylori IgG antibody is the sole causal factor associated with protection against EoE. Certain inflammatory factors may not be involved in mediating this association. These findings make a significant contribution to advancing our understanding of the pathogenesis of EoE and its evolving etiology.
Collapse
Affiliation(s)
| | | | | | - Lei Peng
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hong Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
6
|
Bretto E, Frara S, Armandi A, Caviglia GP, Saracco GM, Bugianesi E, Pitoni D, Ribaldone DG. Helicobacter pylori in Inflammatory Bowel Diseases: Active Protagonist or Innocent Bystander? Antibiotics (Basel) 2024; 13:267. [PMID: 38534702 DOI: 10.3390/antibiotics13030267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
Helicobacter pylori (H. pylori) infection is a prominent entity within human infectious diseases which cause chronic gastritis, peptic ulcers, gastric malignancies, and extragastric disorders. Its persistent colonization can lead to a systemic inflammatory cascade, potentially instigating autoimmune responses and contributing to the pathogenesis of autoimmune diseases. While the specific etiopathogenesis of inflammatory bowel diseases (IBDs) is still unknown, it is widely recognized that immunological, genetic, and environmental factors are implicated. Various bacterial and viral pathogens have been implicated in the pathogenesis of IBDs. Numerous studies suggest a correlation between H. pylori infection and IBDs. While subject to debate, this link suggests that the bacterium's presence somehow impacts the progression of IBDs by modifying the diversity of the gut microbiota, consequently altering local chemical profiles and disrupting the pattern of gut immune response. However, epidemiological evidence indicates a protective role of H. pylori infection against the onset of autoimmune diseases. Additionally, laboratory findings demonstrate H. pylori's capacity to promote immune tolerance and restrict inflammatory reactions. The aim of this review is to elucidate the proposed mechanisms and confounding factors that underlie the potential association between H. pylori infection and IBDs.
Collapse
Affiliation(s)
- Elisabetta Bretto
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
- Unit of Gastroenterology, Città della Salute e della Scienza di Torino-Molinette Hospital, 10126 Turin, Italy
| | - Simone Frara
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
- Unit of Gastroenterology, Città della Salute e della Scienza di Torino-Molinette Hospital, 10126 Turin, Italy
| | - Angelo Armandi
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
- Unit of Gastroenterology, Città della Salute e della Scienza di Torino-Molinette Hospital, 10126 Turin, Italy
| | | | - Giorgio Maria Saracco
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
- Unit of Gastroenterology, Città della Salute e della Scienza di Torino-Molinette Hospital, 10126 Turin, Italy
| | - Elisabetta Bugianesi
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
- Unit of Gastroenterology, Città della Salute e della Scienza di Torino-Molinette Hospital, 10126 Turin, Italy
| | - Demis Pitoni
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
- Unit of Gastroenterology, Città della Salute e della Scienza di Torino-Molinette Hospital, 10126 Turin, Italy
| | - Davide Giuseppe Ribaldone
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
- Unit of Gastroenterology, Città della Salute e della Scienza di Torino-Molinette Hospital, 10126 Turin, Italy
| |
Collapse
|
7
|
Engelsberger V, Gerhard M, Mejías-Luque R. Effects of Helicobacter pylori infection on intestinal microbiota, immunity and colorectal cancer risk. Front Cell Infect Microbiol 2024; 14:1339750. [PMID: 38343887 PMCID: PMC10853882 DOI: 10.3389/fcimb.2024.1339750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/10/2024] [Indexed: 02/15/2024] Open
Abstract
Infecting about half of the world´s population, Helicobacter pylori is one of the most prevalent bacterial infections worldwide and the strongest known risk factor for gastric cancer. Although H. pylori colonizes exclusively the gastric epithelium, the infection has also been associated with various extragastric diseases, including colorectal cancer (CRC). Epidemiological studies reported an almost two-fold increased risk for infected individuals to develop CRC, but only recently, direct causal and functional links between the chronic infection and CRC have been revealed. Besides modulating the host intestinal immune response, H. pylori is thought to increase CRC risk by inducing gut microbiota alterations. It is known that H. pylori infection not only impacts the gastric microbiota at the site of infection but also leads to changes in bacterial colonization in the distal large intestine. Considering that the gut microbiome plays a driving role in CRC, H. pylori infection emerges as a key factor responsible for promoting changes in microbiome signatures that could contribute to tumor development. Within this review, we want to focus on the interplay between H. pylori infection, changes in the intestinal microbiota, and intestinal immunity. In addition, the effects of H. pylori antibiotic eradication therapy will be discussed.
Collapse
Affiliation(s)
| | | | - Raquel Mejías-Luque
- Institute for Medical Microbiology, Immunology and Hygiene, TUM School of Medicine and Health, Department Preclinical Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
8
|
Li S, Luo L, Wang S, Sun Q, Zhang Y, Huang K, Guan X. Regulation of gut microbiota and alleviation of DSS-induced colitis by vitexin. Eur J Nutr 2023; 62:3433-3445. [PMID: 37676484 DOI: 10.1007/s00394-023-03237-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 08/10/2023] [Indexed: 09/08/2023]
Abstract
PURPOSE Vitexin is one of the flavonoids in millet and has a variety of biological activities. However, the function of vitexin on colitis is not clear. This research studied the regulation of vitexin on colitis and investigated the possible mechanisms. METHODS An in vitro fermentation model was used to evaluate the regulation of vitexin on gut microbiota of patients with inflammatory bowel disease (IBD). At the same time, an acute colitis mice model induced by dextran sodium sulfate (DSS) was used to evaluate the effects of vitexin on intestinal inflammation, barrier and gut microbiota. RESULTS In this study, it was found that vitexin altered the structure of gut microbiota by decreasing harmful bacteria, such as Veillonella, Terrisporobacter, Klebsiella, Paeniclostridium, and increasing beneficial bacteria, such as Parabacteroides, Flavonifractor, Blautia after in vitro fermentation with the feces of colitis patients. Further, DSS-induced colitis mice models revealed that vitexin treatment significantly improved colitis symptoms, maintained intestinal barrier and down-regulated the expression of inflammatory factors, such as IL-1β and TNF-α. In addition, vitexin also improved the diversity of gut microbiota of colitis mice by decreasing the abundance of harmful bacteria. CONCLUSION This research suggested that vitexin could alleviate colitis by regulating gut microbiota and attenuated gut inflammation.
Collapse
Affiliation(s)
- Sen Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, 200093, China
| | - Lei Luo
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, 200093, China
| | - Shuo Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, 200093, China
| | - Qiqi Sun
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, 200093, China
| | - Yu Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, 200093, China
| | - Kai Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, 200093, China
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China.
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, 200093, China.
| |
Collapse
|
9
|
Feilstrecker Balani G, dos Santos Cortez M, Picasky da Silveira Freitas JE, Freire de Melo F, Zarpelon-Schutz AC, Teixeira KN. Immune response modulation in inflammatory bowel diseases by Helicobacter pylori infection. World J Gastroenterol 2023; 29:4604-4615. [PMID: 37662864 PMCID: PMC10472898 DOI: 10.3748/wjg.v29.i30.4604] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/01/2023] [Accepted: 07/24/2023] [Indexed: 08/10/2023] Open
Abstract
Many studies point to an association between Helicobacter pylori (H. pylori) infection and inflammatory bowel diseases (IBD). Although controversial, this association indicates that the presence of the bacterium somehow affects the course of IBD. It appears that H. pylori infection influences IBD through changes in the diversity of the gut microbiota, and hence in local chemical characteristics, and alteration in the pattern of gut immune response. The gut immune response appears to be modulated by H. pylori infection towards a less aggressive inflammatory response and the establishment of a targeted response to tissue repair. Therefore, a T helper 2 (Th2)/macrophage M2 response is stimulated, while the Th1/macrophage M1 response is suppressed. The immunomodulation appears to be associated with intrinsic factors of the bacteria, such as virulence factors - such oncogenic protein cytotoxin-associated antigen A, proteins such H. pylori neutrophil-activating protein, but also with microenvironmental changes that favor permanence of H. pylori in the stomach. These changes include the increase of gastric mucosal pH by urease activity, and suppression of the stomach immune response promoted by evasion mechanisms of the bacterium. Furthermore, there is a causal relationship between H. pylori infection and components of the innate immunity such as the NLR family pyrin domain containing 3 inflammasome that directs IBD toward a better prognosis.
Collapse
Affiliation(s)
| | | | | | - Fabrício Freire de Melo
- Campus Anísio Teixeira, Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, Vitória da Conquista 45.029-094, Bahia, Brazil
| | - Ana Carla Zarpelon-Schutz
- Campus Toledo, Universidade Federal do Paraná, Toledo 85.919-899, Paraná, Brazil
- Programa de Pós-graduação em Biotecnologia - Setor Palotina, Universidade Federal do Paraná, Palotina 85.950-000, Paraná, Brazil
| | - Kádima Nayara Teixeira
- Campus Toledo, Universidade Federal do Paraná, Toledo 85.919-899, Paraná, Brazil
- Programa Multicêntrico de Pós-graduação em Bioquímica e Biologia Molecular - Setor Palotina, Universidade Federal do Paraná, Palotina 85.950-000, Paraná, Brazil
| |
Collapse
|
10
|
Lin X, Wang M, He Z, Hao G. Gut microbiota mediated the therapeutic efficiency of Simiao decoction in the treatment of gout arthritis mice. BMC Complement Med Ther 2023; 23:206. [PMID: 37344836 DOI: 10.1186/s12906-023-04042-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/15/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND Gut microbiota plays a significant role in the development and treatment of gouty arthritis. Simiao decoction has been shown to alleviate gouty arthritis by inhibiting inflammation, regulating NLRP3 inflammasome, and altering gut microbiota. However, there is no evidence to prove whether gut microbiota directly mediates the therapeutic efficiency of Simiao decoction in treating gout arthritis. METHODS In this study, fecal microbiota transplantation (FMT) was used to transfer the gut microbiota of gout arthritis mice treated with Simiao decoction or allopurinol to blank gout arthritis mice, in order to investigate whether FMT had therapeutic effects on gout arthritis. RESULTS Both Simiao decoction and allopurinol effectively reduced the levels of serum uric acid, liver XOD activity, foot thickness, serum IL-1β, and G-CSF in gout arthritis mice. However, Simiao decoction also had additional benefits, including raising the pain threshold, reducing serum TNF-α and IL-6, alleviating gut inflammation, and repairing intestinal pathology, which were not observed with allopurinol treatment. Moreover, Simiao decoction had a greater impact on gut microbiota than allopurinol, as it was able to restore the abundance of phylum Proteobacteria and genus Helicobacter. After transplantation into gout arthritis mice, gut microbiota altered by Simiao decoction exhibited similar therapeutic effects to those of Simiao decoction, but gut microbiota altered by allopurinol showed no therapeutic effect. CONCLUSIONS These findings demonstrates that Simiao decoction can alleviate gout arthritis symptoms by regulating gut microbiota.
Collapse
Affiliation(s)
- Xiaoying Lin
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Institute of Basic Research in Clinical Medicine, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Mingzhu Wang
- Institute of Basic Research in Clinical Medicine, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zhixing He
- Institute of Basic Research in Clinical Medicine, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Guifeng Hao
- Institute of Basic Research in Clinical Medicine, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Center for General Practice Medicine, Department of Rheumatology and Immunology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, China.
| |
Collapse
|
11
|
Kim JS, Kim HK, Lee J, Jang S, Cho E, Mun SJ, Yoon S, Yang CS. Inhibition of CD82 improves colitis by increasing NLRP3 deubiquitination by BRCC3. Cell Mol Immunol 2023; 20:189-200. [PMID: 36600050 PMCID: PMC9887069 DOI: 10.1038/s41423-022-00971-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023] Open
Abstract
CD82 is a transmembrane protein that is involved in cancer suppression and activates immune cells; however, information on the NLRP3 inflammasome is limited. Herein, we show that although CD82 suppressed the activation of the NLRP3 inflammasome in vivo and in vitro, CD82 deficiency decreased the severity of colitis in mice. Furthermore, two binding partners of CD82, NLRP3 and BRCC3, were identified. CD82 binding to these partners increased the degradation of NLRP3 by blocking BRCC3-dependent K63-specific deubiquitination. Previous studies have shown that CD82-specific bacteria in the colon microbiota called Bacteroides vulgatus (B. vulgatus) regulated the expression of CD82 and promoted the activation of the NLRP3 inflammasome. Accordingly, we observed that B. vulgatus administration increased mouse survival by mediating CD82 expression and activating NLRP3 in mice with colitis. Overall, this study showed that CD82 suppression reduced the pathogenesis of colitis by elevating the activation of the NLRP3 inflammasome through BRCC3-dependent K63 deubiquitination. Based on our findings, we propose that B. vulgatus is a novel therapeutic candidate for colitis.
Collapse
Affiliation(s)
- Jae-Sung Kim
- Department of Bionano Technology, Hanyang University, Seoul, 04673, Korea
- Institute of Natural Science & Technology, Hanyang University, Ansan, 15588, Korea
| | - Hyo Keun Kim
- Department of Molecular and Life Science, Hanyang University, Ansan, 15588, Korea
- Center for Bionano Intelligence Education and Research, Ansan, 15588, Korea
| | - Joongho Lee
- Department of Computer Science, College of SW Convergence, Dankook University, Yongin, 16890, Korea
| | - Sein Jang
- Department of Molecular and Life Science, Hanyang University, Ansan, 15588, Korea
- Center for Bionano Intelligence Education and Research, Ansan, 15588, Korea
| | - Euni Cho
- Department of Bionano Technology, Hanyang University, Seoul, 04673, Korea
- Center for Bionano Intelligence Education and Research, Ansan, 15588, Korea
| | - Seok-Jun Mun
- Department of Bionano Technology, Hanyang University, Seoul, 04673, Korea
- Center for Bionano Intelligence Education and Research, Ansan, 15588, Korea
| | - Seokhyun Yoon
- Department of Electronics & Electrical Engineering, College of Engineering, Dankook University, Yongin, 16890, Korea
| | - Chul-Su Yang
- Department of Molecular and Life Science, Hanyang University, Ansan, 15588, Korea.
- Center for Bionano Intelligence Education and Research, Ansan, 15588, Korea.
| |
Collapse
|
12
|
Yu Q, Shi H, Ding Z, Wang Z, Yao H, Lin R. The E3 ubiquitin ligase TRIM31 attenuates NLRP3 inflammasome activation in Helicobacter pylori-associated gastritis by regulating ROS and autophagy. Cell Commun Signal 2023; 21:1. [PMID: 36597090 PMCID: PMC9809066 DOI: 10.1186/s12964-022-00954-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/06/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The NLRP3 inflammasome activation is the molecular basis of Helicobacter pylori (Hp)-associated gastritis. Tripartite motif (TRIM) 31 is involved in diverse pathological events. However, whether TRIM31 plays a role in the activation of NLRP3 inflammasome in Hp infection is not clarified. METHODS A mouse model of chronic Hp infection was established, and the gastric tissues were subjected to the polymerase chain reaction, western blotting, histopathological analysis, and RNA sequencing. The mitochondrial membrane potential and ROS in the human gastric epithelium GES-1 cells with or without Hp infection were measured by flow cytometry. GES-1 cells with or without TRIM31 knockdown were transfected with mCherry-EGFP-LC3 adenovirus. After rapamycin and bafilomycin A1 stimulation, autophagy flux in the above primed GES-1 cells was assessed by laser confocal microscope. Lysosomal acidification and expression levels of cathepsin B and cathepsin D in GES-1 cells with Hp infection were measured. RESULTS NLRP3 inflammasome was activated in the gastric tissues of mice with chronic Hp infection in vivo and the GES-1 cells with Hp infection in vitro. TRIM31 was downregulated in Hp infection. TRIM31 negatively regulated the NLRP3 inflammasome activation. Enhanced ROS, impaired autophagy flux, and decreased expression of lysosomal cathepsin B and cathepsin D were observed in TRIM31-deficient GES-1 cells with Hp infection. In turn, inhibition of ROS led to the decreased expression of NLRP3 inflammasome. CONCLUSIONS Together, our data identified that TRIM31 negatively regulated the activation of NLRP3 inflammasome in Hp-associated gastritis by affecting ROS and autophagy of gastric epithelial cells. Video abstract.
Collapse
Affiliation(s)
- Qiao Yu
- grid.33199.310000 0004 0368 7223Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Huiying Shi
- grid.33199.310000 0004 0368 7223Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Zhen Ding
- grid.33199.310000 0004 0368 7223Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Zhe Wang
- grid.33199.310000 0004 0368 7223Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Hailing Yao
- grid.33199.310000 0004 0368 7223Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Rong Lin
- grid.33199.310000 0004 0368 7223Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| |
Collapse
|
13
|
Wessler S, Posselt G. Bacterial Proteases in Helicobacter pylori Infections and Gastric Disease. Curr Top Microbiol Immunol 2023; 444:259-277. [PMID: 38231222 DOI: 10.1007/978-3-031-47331-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Helicobacter pylori (H. pylori) proteases have become a major focus of research in recent years, because they not only have an important function in bacterial physiology, but also directly alter host cell functions. In this review, we summarize recent findings on extracellular H. pylori proteases that target host-derived substrates to facilitate bacterial pathogenesis. In particular, the secreted H. pylori collagenase (Hp0169), the metalloprotease Hp1012, or the serine protease High temperature requirement A (HtrA) are of great interest. Specifically, various host cell-derived substrates were identified for HtrA that directly interfere with the gastric epithelial barrier allowing full pathogenesis. In light of increasing antibiotic resistance, the development of inhibitory compounds for extracellular proteases as potential targets is an innovative field that offers alternatives to existing therapies.
Collapse
Affiliation(s)
- Silja Wessler
- Department of Biosciences and Medical Biology, Laboratory for Microbial Infection and Cancer, Paris-Lodron University of Salzburg, Salzburg, Austria.
- Cancer Cluster Salzburg and Allergy-Cancer-BioNano Research Centre, Salzburg, Austria.
| | - Gernot Posselt
- Department of Biosciences and Medical Biology, Laboratory for Microbial Infection and Cancer, Paris-Lodron University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg and Allergy-Cancer-BioNano Research Centre, Salzburg, Austria
| |
Collapse
|
14
|
Fuchs S, Gong R, Gerhard M, Mejías-Luque R. Immune Biology and Persistence of Helicobacter pylori in Gastric Diseases. Curr Top Microbiol Immunol 2023; 444:83-115. [PMID: 38231216 DOI: 10.1007/978-3-031-47331-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Helicobacter pylori is a prevalent pathogen, which affects more than 40% of the global population. It colonizes the human stomach and persists in its host for several decades or even a lifetime, if left untreated. The persistent infection has been linked to various gastric diseases, including gastritis, peptic ulcers, and an increased risk for gastric cancer. H. pylori infection triggers a strong immune response directed against the bacterium associated with the infiltration of innate phagocytotic immune cells and the induction of a Th1/Th17 response. Even though certain immune cells seem to be capable of controlling the infection, the host is unable to eliminate the bacteria as H. pylori has developed remarkable immune evasion strategies. The bacterium avoids its killing through innate recognition mechanisms and manipulates gastric epithelial cells and immune cells to support its persistence. This chapter focuses on the innate and adaptive immune response induced by H. pylori infection, and immune evasion strategies employed by the bacterium to enable persistent infection.
Collapse
Affiliation(s)
- Sonja Fuchs
- Institute for Medical Microbiology, Immunology and Hygiene, TUM School of Medicine and Health, Department Preclinical Medicine, Technical University of Munich (TUM), Trogerstraße 30, 81675, Munich, Germany
| | - Ruolan Gong
- Institute for Medical Microbiology, Immunology and Hygiene, TUM School of Medicine and Health, Department Preclinical Medicine, Technical University of Munich (TUM), Trogerstraße 30, 81675, Munich, Germany
| | - Markus Gerhard
- Institute for Medical Microbiology, Immunology and Hygiene, TUM School of Medicine and Health, Department Preclinical Medicine, Technical University of Munich (TUM), Trogerstraße 30, 81675, Munich, Germany
| | - Raquel Mejías-Luque
- Institute for Medical Microbiology, Immunology and Hygiene, TUM School of Medicine and Health, Department Preclinical Medicine, Technical University of Munich (TUM), Trogerstraße 30, 81675, Munich, Germany.
| |
Collapse
|
15
|
Zhang L, Zhao M, Fu X. Gastric microbiota dysbiosis and Helicobacter pylori infection. Front Microbiol 2023; 14:1153269. [PMID: 37065152 PMCID: PMC10098173 DOI: 10.3389/fmicb.2023.1153269] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/14/2023] [Indexed: 04/18/2023] Open
Abstract
Helicobacter pylori (H. pylori) infection is one of the most common causes of gastric disease. The persistent increase in antibiotic resistance worldwide has made H. pylori eradication challenging for clinicians. The stomach is unsterile and characterized by a unique niche. Communication among microorganisms in the stomach results in diverse microbial fitness, population dynamics, and functional capacities, which may be positive, negative, or neutral. Here, we review gastric microecology, its imbalance, and gastric diseases. Moreover, we summarize the relationship between H. pylori and gastric microecology, including non-H. pylori bacteria, fungi, and viruses and the possibility of facilitating H. pylori eradication by gastric microecology modulation, including probiotics, prebiotics, postbiotics, synbiotics, and microbiota transplantation.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Gastroenterology, Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Ming Zhao
- Department of Gastroenterology, Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Xiangsheng Fu
- Department of Gastroenterology, Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
16
|
Arab HH, Eid AH, El-Sheikh AAK, Arafa ESA, Ashour AM. Irbesartan reprofiling for the amelioration of ethanol-induced gastric mucosal injury in rats: Role of inflammation, apoptosis, and autophagy. Life Sci 2022; 308:120939. [PMID: 36115582 DOI: 10.1016/j.lfs.2022.120939] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/28/2022] [Accepted: 09/05/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Pronounced anti-inflammatory and anti-apoptotic features have been characterized for the angiotensin receptor blocker irbesartan. Yet, its effect on ethanol-induced gastropathy has not been studied. The present work explored the potential modulation of inflammatory, apoptotic, and autophagic events by irbesartan for the attenuation of ethanol-evoked gastric mucosal injury. METHODOLOGY Wistar rats were divided into control, control + irbesartan, ethanol, ethanol + irbesartan, and ethanol + omeprazole groups. Macroscopic examination, histopathology, immunohistochemistry, and biochemical assays were applied to examine the gastric tissues. KEY FINDINGS Irbesartan administration (50 mg/kg; by gavage) in ethanol-evoked gastropathy improved the gastric pathological manifestations (area of gastric lesion and ulcer index scores), histopathological changes, and microscopic damage scores. These beneficial effects were interceded by suppression of the HMGB1-associated inflammatory events and the linked downregulation of the nuclear NF-κBp65 protein expression. In the meantime, curtailing of the NLRP3 inflammasome by irbesartan was observed with consequent decline of the pro-inflammatory cytokine IL-1β. In tandem, upregulation of the antioxidant Nrf2 and the cytoprotective PPAR-γ were seen. Together, suppression of the pro-inflammatory cues and pro-oxidant signals attenuated the pro-apoptotic events as evidenced by Bcl-2 upregulation, Bax downregulation, and caspase 3 dampened activity. Regarding gastric autophagy signals, irbesartan diminished SQSTM-1/p62 accumulation and upregulated Beclin 1. This was associated with gastric AMPK/mTOR pathway activation evidenced by increased AMPK (Ser487) phosphorylation and lowered mTOR (Ser2448) phosphorylation. CONCLUSION Suppression of the inflammatory and apoptotic signals and upregulation of the pro-autophagy events may advocate the promising gastroprotective actions of irbesartan against ethanol-induced gastric injury.
Collapse
Affiliation(s)
- Hany H Arab
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Ahmed H Eid
- Department of Pharmacology, Egyptian Drug Authority (EDA), formerly NODCAR, Giza, Egypt
| | - Azza A K El-Sheikh
- Basic Health Sciences Department, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - El-Shaimaa A Arafa
- College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates; Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates
| | - Ahmed M Ashour
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al Qura University, P.O. Box 13578, Makkah 21955, Saudi Arabia
| |
Collapse
|
17
|
Higher levels of Bifidobacteria and tumor necrosis factor in children with drug-resistant epilepsy are associated with anti-seizure response to the ketogenic diet. EBioMedicine 2022; 80:104061. [PMID: 35598439 PMCID: PMC9126955 DOI: 10.1016/j.ebiom.2022.104061] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/22/2022] [Accepted: 04/29/2022] [Indexed: 12/02/2022] Open
Abstract
Background Recently, studies have suggested a role for the gut microbiota in epilepsy. Gut microbial changes during ketogenic diet (KD) treatment of drug-resistant epilepsy have been described. Inflammation is associated with certain types of epilepsy and specific inflammation markers decrease during KD. The gut microbiota plays an important role in the regulation of the immune system and inflammation. Methods 28 children with drug-resistant epilepsy treated with the ketogenic diet were followed in this observational study. Fecal and serum samples were collected at baseline and three months after dietary intervention. Findings We identified both gut microbial and inflammatory changes during treatment. KD had a general anti-inflammatory effect. Novel bioinformatics and machine learning approaches identified signatures of specific Bifidobacteria and TNF (tumor necrosis factor) associated with responders before starting KD. During KD, taxonomic and inflammatory profiles between responders and non-responders were more similar than at baseline. Interpretation Our results suggest that children with drug-resistant epilepsy are more likely to benefit from KD treatment when specific Bifidobacteria and TNF are elevated. We here present a novel signature of interaction of the gut microbiota and the immune system associated with anti-epileptic response to KD treatment. This signature could be used as a prognostic biomarker to identify potential responders to KD before starting treatment. Our findings may also contribute to the development of new anti-seizure therapies by targeting specific components of the gut microbiota. Funding This study was supported by the Swedish Brain Foundation, Margarethahemmet Society, Stiftelsen Sunnerdahls Handikappfond, Linnea & Josef Carlssons Foundation, and The McCormick Genomic & Proteomic Center.
Collapse
|
18
|
Oster P, Vaillant L, McMillan B, Velin D. The Efficacy of Cancer Immunotherapies Is Compromised by Helicobacter pylori Infection. Front Immunol 2022; 13:899161. [PMID: 35677057 PMCID: PMC9168074 DOI: 10.3389/fimmu.2022.899161] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022] Open
Abstract
Helicobacter pylori infects the gastric mucosa of a large number of humans. Although asymptomatic in the vast majority of cases, H pylori infection can lead to the development of peptic ulcers gastric adenocarcinoma and mucosa-associated lymphoid tissue (MALT) lymphoma. Using a variety of mechanisms, H pylori locally suppresses the function of the host immune system to establish chronic infection. Systemic immunomodulation has been observed in both clinical and pre-clinical studies, which have demonstrated that H pylori infection is associated with reduced incidence of inflammatory diseases, such as asthma and Crohn’s disease. The introduction of immunotherapies in the arsenal of anti-cancer drugs has revealed a new facet of H pylori-induced immune suppression. In this review, we will describe the intimate interactions between H pylori and its host, and formulate hypothtyeses describing the detrimental impact of H pylori infection on the efficacy of cancer immunotherapies.
Collapse
|
19
|
Lillehoj EP, Luzina IG, Atamas SP. Mammalian Neuraminidases in Immune-Mediated Diseases: Mucins and Beyond. Front Immunol 2022; 13:883079. [PMID: 35479093 PMCID: PMC9035539 DOI: 10.3389/fimmu.2022.883079] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/21/2022] [Indexed: 12/28/2022] Open
Abstract
Mammalian neuraminidases (NEUs), also known as sialidases, are enzymes that cleave off the terminal neuraminic, or sialic, acid resides from the carbohydrate moieties of glycolipids and glycoproteins. A rapidly growing body of literature indicates that in addition to their metabolic functions, NEUs also regulate the activity of their glycoprotein targets. The simple post-translational modification of NEU protein targets-removal of the highly electronegative sialic acid-affects protein folding, alters protein interactions with their ligands, and exposes or covers proteolytic sites. Through such effects, NEUs regulate the downstream processes in which their glycoprotein targets participate. A major target of desialylation by NEUs are mucins (MUCs), and such post-translational modification contributes to regulation of disease processes. In this review, we focus on the regulatory roles of NEU-modified MUCs as coordinators of disease pathogenesis in fibrotic, inflammatory, infectious, and autoimmune diseases. Special attention is placed on the most abundant and best studied NEU1, and its recently discovered important target, mucin-1 (MUC1). The role of the NEU1 - MUC1 axis in disease pathogenesis is discussed, along with regulatory contributions from other MUCs and other pathophysiologically important NEU targets.
Collapse
Affiliation(s)
- Erik P. Lillehoj
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Irina G. Luzina
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Research Service, Baltimore Veterans Affairs (VA) Medical Center, Baltimore, MD, United States
| | - Sergei P. Atamas
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
20
|
Wang L, Cao ZM, Zhang LL, Dai XC, Liu ZJ, Zeng YX, Li XY, Wu QJ, Lv WL. Helicobacter Pylori and Autoimmune Diseases: Involving Multiple Systems. Front Immunol 2022; 13:833424. [PMID: 35222423 PMCID: PMC8866759 DOI: 10.3389/fimmu.2022.833424] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
The modern Gastroenterology have witnessed an essential stride since Helicobacter pylori was first found in the stomach and then its pathogenic effect was discovered. According to the researches conducted during the nearly 40 years, it has been found that this bacterium is associated with a natural history of many upper gastrointestinal diseases. Epidemiological data show an increased incidence of autoimmune disorders with or after infection with specific microorganisms. The researches have revealed that H. pylori is a potential trigger of gastric autoimmunity, and it may be associated with other autoimmune diseases, both innate and acquired. This paper reviews the current support or opposition about H. pylori as the role of potential triggers of autoimmune diseases, including inflammatory bowel disease, autoimmune thyroiditis, type 1 diabetes mellitus, autoimmune liver diseases, rheumatoid arthritis, idiopathic thrombocytopenic purpura, systemic lupus erythematosus, as well as Sjogren’s syndrome, chronic urticaria and psoriasis, and tried to explain the possible mechanisms.
Collapse
Affiliation(s)
- Li Wang
- Department of Infection, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zheng-Min Cao
- Department of Infection, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li-Li Zhang
- Department of Infection, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xin-Can Dai
- Department of Infection, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhen-Ju Liu
- Department of Proctology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi-Xian Zeng
- Department of Proctology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xin-Ye Li
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qing-Juan Wu
- Department of Infection, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wen-Liang Lv
- Department of Infection, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
21
|
Liu Y, Chen M. Insights into the underlying mechanisms and clinical management of microscopic colitis in relation to other gastrointestinal disorders. Gastroenterol Rep (Oxf) 2022; 10:goac011. [PMID: 35401986 PMCID: PMC8988210 DOI: 10.1093/gastro/goac011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/26/2022] [Accepted: 02/28/2022] [Indexed: 11/14/2022] Open
Abstract
Microscopic colitis (MC) is a chronic inflammatory disease of the large intestine and as a relatively late recognized condition, its relationship with other disorders of the gastrointestinal tract is gradually being understood and investigated. As a multifactorial disease, MC interacts with inflammatory bowel disease, celiac disease, and irritable bowel syndrome through genetic overlap, immunological factors, and gut microflora. The risk of colorectal cancer was significantly lower in MC, gastrointestinal infections increased the risk of developing MC, and there was an inverse association between Helicobacter pylori infection and MC. A variety of associations are found between MC and other gastrointestinal disorders, where aspects such as genetic effects, resemblance of immunological profiles, and intestinal microecology are potential mechanisms behind the relationships. Clinicians should be aware of these connections to achieve a better understanding and management of MC.
Collapse
Affiliation(s)
- Yuanbin Liu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Mingkai Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| |
Collapse
|
22
|
Qiao H, Zhao T, Yin J, Zhang Y, Ran H, Chen S, Wu Z, Zhang R, Wang X, Gan L, Wang J. Structural Characteristics of Inulin and Microcrystalline Cellulose and Their Effect on Ameliorating Colitis and Altering Colonic Microbiota in Dextran Sodium Sulfate-Induced Colitic Mice. ACS OMEGA 2022; 7:10921-10932. [PMID: 35415348 PMCID: PMC8991927 DOI: 10.1021/acsomega.1c06552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Several studies have reported that dietary fibers (DFs) from plants may exert beneficial effects on inflammatory bowel disease. In the present study, we investigated the structural differences of soluble DF (inulin) and insoluble DF (microcrystalline cellulose, MCC) and their effects on the intestinal barrier integrity, gut microbiota community, and inflammation response in mice with dextran sodium sulfate (DSS)-induced colitis. Mice were fed for 21 days with diets containing inulin or MCC (2.5 g/kg body weight), and colitis was induced by administration of DSS (4% w/v) in drinking water during the last 8 days of experimentation. The results showed that inulin and MCC differ in morphology and structure. MCC exhibited a smaller particle size, a larger specific surface area, and higher thermal stability than inulin. In addition, both inulin and MCC restored various physical signs (body weight, colon weight and length, disease activity index score, and infiltration of inflammatory cells), gut barrier function (as evidenced by the increased expression of claudin-3, claudin-7, ZO-2, occludin, JAM-2, and MUC-3 and the decreased activity of myeloperoxidase activity), downregulation of mRNA expression of proinflammatory cytokines (caspase-1, NLPR3, TLR4, TNF-α, and IL-1β), and modulation of colon microbiota community. Taken together, the present study demonstrates that DFs differ in morphology and structure and ameliorate DSS-induced colitis in mice by blocking proinflammatory cytokines, reinforcing gut barrier integrity, and modulating gut microbiota. Therefore, DFs, especially inulin, are promising dietary supplements to alleviate intestinal inflammation.
Collapse
Affiliation(s)
- Hanzhen Qiao
- Henan University of Technology,
College
of Biological Engineering, Henan University
of Technology, Lianhua
Street, Hi-tech Zone, Zhengzhou 450001, China
| | - Tongxi Zhao
- Henan University of Technology,
College
of Biological Engineering, Henan University
of Technology, Lianhua
Street, Hi-tech Zone, Zhengzhou 450001, China
| | - Jie Yin
- Henan University of Technology,
College
of Biological Engineering, Henan University
of Technology, Lianhua
Street, Hi-tech Zone, Zhengzhou 450001, China
| | - Yichen Zhang
- Henan University of Technology,
College
of Biological Engineering, Henan University
of Technology, Lianhua
Street, Hi-tech Zone, Zhengzhou 450001, China
| | - Hongmei Ran
- Henan University of Technology,
College
of Biological Engineering, Henan University
of Technology, Lianhua
Street, Hi-tech Zone, Zhengzhou 450001, China
| | - Shaojie Chen
- Henan University of Technology,
College
of Biological Engineering, Henan University
of Technology, Lianhua
Street, Hi-tech Zone, Zhengzhou 450001, China
| | - Ziwei Wu
- Henan University of Technology,
College
of Biological Engineering, Henan University
of Technology, Lianhua
Street, Hi-tech Zone, Zhengzhou 450001, China
| | - Ran Zhang
- Henan University of Technology,
College
of Biological Engineering, Henan University
of Technology, Lianhua
Street, Hi-tech Zone, Zhengzhou 450001, China
| | - Xingkexin Wang
- Henan University of Technology,
College
of Biological Engineering, Henan University
of Technology, Lianhua
Street, Hi-tech Zone, Zhengzhou 450001, China
| | - Liping Gan
- Henan University of Technology,
College
of Biological Engineering, Henan University
of Technology, Lianhua
Street, Hi-tech Zone, Zhengzhou 450001, China
| | - Jinrong Wang
- Henan University of Technology,
College
of Biological Engineering, Henan University
of Technology, Lianhua
Street, Hi-tech Zone, Zhengzhou 450001, China
| |
Collapse
|
23
|
Oster P, Vaillant L, Riva E, McMillan B, Begka C, Truntzer C, Richard C, Leblond MM, Messaoudene M, Machremi E, Limagne E, Ghiringhelli F, Routy B, Verdeil G, Velin D. Helicobacter pylori infection has a detrimental impact on the efficacy of cancer immunotherapies. Gut 2022; 71:457-466. [PMID: 34253574 PMCID: PMC8862014 DOI: 10.1136/gutjnl-2020-323392] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 06/24/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE In this study, we determined whether Helicobacter pylori (H. pylori) infection dampens the efficacy of cancer immunotherapies. DESIGN Using mouse models, we evaluated whether immune checkpoint inhibitors or vaccine-based immunotherapies are effective in reducing tumour volumes of H. pylori-infected mice. In humans, we evaluated the correlation between H. pylori seropositivity and the efficacy of the programmed cell death protein 1 (PD-1) blockade therapy in patients with non-small-cell lung cancer (NSCLC). RESULTS In mice engrafted with MC38 colon adenocarcinoma or B16-OVA melanoma cells, the tumour volumes of non-infected mice undergoing anticytotoxic T-lymphocyte-associated protein 4 and/or programmed death ligand 1 or anti-cancer vaccine treatments were significantly smaller than those of infected mice. We observed a decreased number and activation status of tumour-specific CD8+ T cells in the tumours of infected mice treated with cancer immunotherapies independent of the gut microbiome composition. Additionally, by performing an in vitro co-culture assay, we observed that dendritic cells of infected mice promote lower tumour-specific CD8+ T cell proliferation. We performed retrospective human clinical studies in two independent cohorts. In the Dijon cohort, H. pylori seropositivity was found to be associated with a decreased NSCLC patient survival on anti-PD-1 therapy. The survival median for H. pylori seropositive patients was 6.7 months compared with 15.4 months for seronegative patients (p=0.001). Additionally, in the Montreal cohort, H. pylori seropositivity was found to be associated with an apparent decrease of NSCLC patient progression-free survival on anti-PD-1 therapy. CONCLUSION Our study unveils for the first time that the stomach microbiota affects the response to cancer immunotherapies and that H. pylori serology would be a powerful tool to personalize cancer immunotherapy treatment.
Collapse
Affiliation(s)
- Paul Oster
- Service of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Laurie Vaillant
- Service of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Erika Riva
- Service of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Brynn McMillan
- Service of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Christina Begka
- Service of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Caroline Truntzer
- Department of Medical Oncology, Centre Georges François Leclerc, Dijon, France
| | - Corentin Richard
- Research Centre for the University of Montréal (CRCHUM), Hematology-Oncology Division, Department of Medicine, University of Montreal Healthcare Centre (CHUM), Montreal, Quebec, Canada
| | - Marine M Leblond
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Meriem Messaoudene
- Research Centre for the University of Montréal (CRCHUM), Hematology-Oncology Division, Department of Medicine, University of Montreal Healthcare Centre (CHUM), Montreal, Quebec, Canada
| | - Elisavet Machremi
- Service of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Emeric Limagne
- Department of Medical Oncology, Centre Georges François Leclerc, Dijon, France
| | | | - Bertrand Routy
- Research Centre for the University of Montréal (CRCHUM), Hematology-Oncology Division, Department of Medicine, University of Montreal Healthcare Centre (CHUM), Montreal, Quebec, Canada
| | - Gregory Verdeil
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Dominique Velin
- Service of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
24
|
Sitkin S, Lazebnik L, Avalueva E, Kononova S, Vakhitov T. Gastrointestinal microbiome and Helicobacter pylori: Eradicate, leave it as it is, or take a personalized benefit–risk approach? World J Gastroenterol 2022; 28:766-774. [PMID: 35317277 PMCID: PMC8891730 DOI: 10.3748/wjg.v28.i7.766] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/17/2021] [Accepted: 01/20/2022] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) is generally regarded as a human pathogen and a class 1 carcinogen, etiologically related to gastric and duodenal ulcers, gastric cancer, and mucosa-associated lymphoid tissue lymphoma. However, H. pylori can also be regarded as a commensal symbiont. Unlike other pathogenic/ opportunistic bacteria, H. pylori colonization in infancy is facilitated by T helper type 2 immunity and leads to the development of immune tolerance. Fucosylated gastric mucin glycans, which are an important part of the innate and adaptive immune system, mediate the adhesion of H. pylori to the surface of the gastric epithelium, contributing to successful colonization. H. pylori may have beneficial effects on the host by regulating gastrointestinal (GI) microbiota and protecting against some allergic and autoimmune disorders and inflammatory bowel disease. The potential protective role against inflammatory bowel disease may be related to both modulation of the gut microbiota and the immunomodulatory properties of H. pylori. The inverse association between H. pylori and some potentially proinflammatory and/or procarcinogenic bacteria may suggest it regulates the GI microbiota. Eradication of H. pylori can cause various adverse effects and alter the GI microbiota, leading to short-term or long-term dysbiosis. Overall, studies have shown that gastric Actinobacteria decrease after H. pylori eradication, Proteobacteria increase during short-term follow-up and then return to baseline levels, and Enterobacteriaceae and Enterococcus increase in the short-term and interim follow-up. Various gastric mucosal bacteria (Actinomyces, Granulicatella, Parvimonas, Peptostreptococcus, Prevotella, Rothia, Streptococcus, Rhodococcus, and Lactobacillus) may contribute to precancerous gastric lesions and cancer itself after H. pylori eradication. H. pylori eradication can also lead to dysbiosis of the gut microbiota, with increased Proteobacteria and decreased Bacteroidetes and Actinobacteria. The increase in gut Proteobacteria may contribute to adverse effects during and after eradication. The decrease in Actinobacteria, which are pivotal in the maintenance of gut homeostasis, can persist for > 6 mo after H. pylori eradication. Furthermore, H. pylori eradication can alter the metabolism of gastric and intestinal bacteria. Given the available data, eradication cannot be an unconditional recommendation in every case of H. pylori infection, and the decision to eradicate H. pylori should be based on an assessment of the benefit–risk ratio for the individual patient. Thus, the current guidelines based on the unconditional “test-and-treat” strategy should be revised. The most cautious and careful approach should be taken in elderly patients with multiple eradication failures since repeated eradication can cause antibiotic-associated diarrhea, including severe Clostridioides difficile-associated diarrhea and colitis and antibiotic-associated hemorrhagic colitis due to Klebsiella oxytoca. Furthermore, since eradication therapy with antibiotics and proton pump inhibitors can lead to serious adverse effects and/or dysbiosis of the GI microbiota, supplementation of probiotics, prebiotics, and microbial metabolites (e.g., butyrate + inulin) should be considered to decrease the negative effects of eradication.
Collapse
Affiliation(s)
- Stanislav Sitkin
- Department of Internal Diseases, Gastroenterology and Dietetics, North-Western State Medical University Named After I.I. Mechnikov, St. Petersburg 191015, Russia
- Non-Infectious Disease Metabolomics Group, Institute of Experimental Medicine, St. Petersburg 197376, Russia
- Epigenetics and Metagenomics Group, Institute of Perinatology and Pediatrics, Almazov National Medical Research Centre, St. Petersburg 197341, Russia
| | - Leonid Lazebnik
- Department of Outpatient Therapy, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Moscow 127473, Russia
| | - Elena Avalueva
- Department of Internal Diseases, Gastroenterology and Dietetics, North-Western State Medical University Named After I.I. Mechnikov, St. Petersburg 191015, Russia
| | - Svetlana Kononova
- Non-Infectious Disease Metabolomics Group, Institute of Experimental Medicine, St. Petersburg 197376, Russia
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| | - Timur Vakhitov
- Non-Infectious Disease Metabolomics Group, Institute of Experimental Medicine, St. Petersburg 197376, Russia
| |
Collapse
|
25
|
Arab HH, Ashour AM, Gad AM, Mahmoud AM, Kabel AM. Activation of AMPK/mTOR-driven autophagy and inhibition of NLRP3 inflammasome by saxagliptin ameliorate ethanol-induced gastric mucosal damage. Life Sci 2021; 280:119743. [PMID: 34166711 DOI: 10.1016/j.lfs.2021.119743] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/03/2021] [Accepted: 06/11/2021] [Indexed: 02/08/2023]
Abstract
AIMS Saxagliptin, a selective/potent dipeptidyl peptidase-4 inhibitor, has revealed remarkable anti-inflammatory features in murine models of nephrotoxicity, hepatic injury, and neuroinflammation. However, its potential effect on ethanol-induced gastric mucosal injury has not been examined. Hence, the present work investigated the prospect of saxagliptin to attenuate ethanol-evoked gastric injury, with emphasis on the AMPK/mTOR-driven autophagy and NLRP3/ASC/caspase-1 pathway. MATERIALS AND METHODS In ethanol-induced gastropathy, the gastric tissues were examined by immunohistochemistry, immunoblotting, histopathology, and ELISA. KEY FINDINGS The results demonstrated that saxagliptin (10 mg/kg; by gavage) suppressed the gastric pathological signs (area of gastric ulcer and ulcer index scores), histopathologic aberrations/damage scores, without provoking hypoglycemia in rats. These protective features were attributed to the enhancement of gastric mucosal autophagy flux, as proven with increased expression of LC3-II and Beclin 1, decreased accumulation of p62 SQSTM1, and activation of the autophagy-linked AMPK/mTOR pathway by increasing the expression of p-AMPK/AMPK and decreasing the expression of the autophagy suppressor p-mTOR/mTOR signal. In tandem, saxagliptin counteracted the ethanol-induced pro-apoptotic events by downregulating Bax, upregulating Bcl2 protein, and lowering the Bax/Bcl2 ratio. Equally important, saxagliptin suppressed the NLRP3 inflammasome in the gastric tissue by lowering the expression of NLRP3, ASC, and nuclear NF-κBp65, decreasing the activity of caspase-1, and diminishing the IL-1β levels. In the same regard, saxagliptin suppressed the mucosal oxidative stress by lowering lipid peroxide levels, increasing GSH and GPx antioxidants, and activating Nrf2/HO-1 pathway. SIGNIFICANCE Saxagliptin may be a promising intervention against ethanol-evoked gastropathy by activating AMPK/mTOR-driven autophagy and inhibiting NLRP3 inflammasome.
Collapse
Affiliation(s)
- Hany H Arab
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Ahmed M Ashour
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al Qura University, P.O. Box 13578, Makkah 21955, Saudi Arabia
| | - Amany M Gad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University, El Ismailia, Egypt; Department of Pharmacology, Egyptian Drug Authority (EDA), formerly NODCAR, Giza, Egypt
| | - Ayman M Mahmoud
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt; Biotechnology Department, Research Institute of Medicinal and Aromatic Plants, Beni-Suef University, Beni-Suef, Egypt
| | - Ahmed M Kabel
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
26
|
Jinmaitong ameliorates diabetic peripheral neuropathy in streptozotocin-induced diabetic rats by modulating gut microbiota and neuregulin 1. Aging (Albany NY) 2021; 12:17436-17458. [PMID: 32920546 PMCID: PMC7521543 DOI: 10.18632/aging.103750] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 07/06/2020] [Indexed: 12/18/2022]
Abstract
Jinmaitong (JMT), a compound prescription of traditional Chinese medicine, has long been used as a therapy for diabetic peripheral neuropathy (DPN). However, the neuroprotective mechanisms of JMT and its effect on gut microbiota remained unknown. Here, we examined the effects of JMT on behavior, pathomorphology and gut microbiota in streptozotocin (STZ)-induced DPN rats. Compared to distilled water administration, JMT reversed decreases in mechanical withdraw threshold and intraepidermal nerve fiber density, improved neurological morphology of sciatic nerves, increased serum neuregulin 1 (NRG1) level and contactin-associated protein (Caspr)-positive paranodes, and decreased amyloid precursor protein (APP) accumulation in DPN rats. More importantly, JMT enriched nine species of the gut microbiota of DPN rats, helping to prevent dysbiosis. Among these species, p_Actinobacteria, p_Proteobacteria and c_Actinobacteria were negatively correlated with DPN phenotypes and positively correlated with serum NRG1 level. These results indicate that JMT may exert a neuroprotective effect by modulating phenotype-associated gut microbiota and increasing serum NRG1 level in STZ-induced DPN rats. JMT may therefore be an effective complementary and alternative anti-DPN therapy.
Collapse
|
27
|
Dhingra A, Sharp RC, Kim T, Popov AV, Ying GS, Pietrofesa RA, Park K, Christofidou-Solomidou M, Boesze-Battaglia K. Assessment of a Small Molecule Synthetic Lignan in Enhancing Oxidative Balance and Decreasing Lipid Accumulation in Human Retinal Pigment Epithelia. Int J Mol Sci 2021; 22:5764. [PMID: 34071220 PMCID: PMC8198017 DOI: 10.3390/ijms22115764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 01/03/2023] Open
Abstract
Visual function depends on the intimate structural, functional and metabolic interactions between the retinal pigment epithelium (RPE) and the neural retina. The daily phagocytosis of the photoreceptor outer segment tips by the overlaying RPE provides essential nutrients for the RPE itself and photoreceptors through intricate metabolic synergy. Age-related retinal changes are often characterized by metabolic dysregulation contributing to increased lipid accumulation and peroxidation as well as the release of proinflammatory cytokines. LGM2605 is a synthetic lignan secoisolariciresinol diglucoside (SDG) with free radical scavenging, antioxidant and anti-inflammatory properties demonstrated in diverse in vitro and in vivo inflammatory disease models. In these studies, we tested the hypothesis that LGM2605 may be an attractive small-scale therapeutic that protects RPE against inflammation and restores its metabolic capacity under lipid overload. Using an in vitro model in which loss of the autophagy protein, LC3B, results in defective phagosome degradation and metabolic dysregulation, we show that lipid overload results in increased gasdermin cleavage, IL-1 β release, lipid accumulation and decreased oxidative capacity. The addition of LGM2605 resulted in enhanced mitochondrial capacity, decreased lipid accumulation and amelioration of IL-1 β release in a model of defective lipid homeostasis. Collectively, these studies suggest that lipid overload decreases mitochondrial function and increases the inflammatory response, with LGM2605 acting as a protective agent.
Collapse
Affiliation(s)
- Anuradha Dhingra
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.D.); (R.C.S.)
| | - Rachel C. Sharp
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.D.); (R.C.S.)
| | - Taewan Kim
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Anatoliy V. Popov
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Gui-Shuang Ying
- Center for Preventive Ophthalmology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (G.-S.Y.); (K.P.)
| | - Ralph A. Pietrofesa
- Department of Medicine, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (R.A.P.); (M.C.-S.)
| | - Kyewon Park
- Center for Preventive Ophthalmology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (G.-S.Y.); (K.P.)
| | - Melpo Christofidou-Solomidou
- Department of Medicine, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (R.A.P.); (M.C.-S.)
| | - Kathleen Boesze-Battaglia
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.D.); (R.C.S.)
| |
Collapse
|
28
|
Feng C, Tang Y, Liu X, Zhou Z. CMPK2 of triploid crucian carp is involved in immune defense against bacterial infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 116:103924. [PMID: 33186560 DOI: 10.1016/j.dci.2020.103924] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/06/2020] [Accepted: 11/06/2020] [Indexed: 06/11/2023]
Abstract
Cytidine/uridine monophosphate kinase 2 (CMPK2) is a thymidylate kinase and in mammals is known to be involved in mitochondrial DNA (mtDNA) synthesis and antiviral immunity. However, very little is known about the function of CMPK2 in fish. With an aim to elucidate the antimicrobial mechanism of CMPK2 in fish, we in this study examined the function of CMPK2 from triploid crucian carp (3nCmpk2). 3nCmpk2 is 426 residues in length and possesses the conserved thymidylate kinase domain. The deduced amino acid sequence of 3nCmpk2 shares 53.2%-99.1% overall identities with the CMPK2 of several fish species. Quantitative real time RT-PCR (qRT-PCR) analysis showed that 3nCmpk2 expression occurred in multiple tissues and was upregulated by bacterial infection in a time-dependent manner. Recombinant 3nCmpk2 (r3nCmpk2) induced mtDNA synthesis and NLRP3 activation. Overexpression of 3nCmpk2 protects the intestinal barrier and hampers the bacterial colonization in fish tissues. These results provide the first evidence that 3nCmpk2 is involved in host innate immunity and plays a protective role in antimicrobial responses during bacterial infection.
Collapse
Affiliation(s)
- Chen Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yiyang Tang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Xiaofeng Liu
- Department of Nutrition, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zejun Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
29
|
Pellicano R, Ianiro G, Fagoonee S, Settanni CR, Gasbarrini A. Review: Extragastric diseases and Helicobacter pylori. Helicobacter 2020; 25 Suppl 1:e12741. [PMID: 32918343 DOI: 10.1111/hel.12741] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The involvement of Helicobacter pylori infection in many extra-gastroduodenal manifestations remains a fascinating field of investigation. However, for several of these supposed associations, the potential pathogenic mechanism remains unclear. The present review highlights the main associations of H pylori with extra-gastroduodenal manifestations reported during the last year. We searched for the most relevant studies on this topic, published between April 2019 and March 2020, identified using the term "Helicobacter" in the MEDLINE/Pubmed database. Consistent data emerged from studies investigating metabolic syndrome and ischaemic cardiovascular diseases. Other reported fields of investigation were hepatology, especially focused on non-alcoholic steatohepatitis, neurology, including Parkinson's disease and Alzheimer's disease, as well as dermatology. Inflammatory bowel disease (IBD), that comprises Crohn's disease and ulcerative colitis, may originate from a dysregulation of the host's immune response to commensal bacteria in individuals with genetic predisposition. The reduction of biodiversity and other specific imbalances in the faecal microbiome composition of IBD patients compared to that of healthy controls support this hypothesis. In this context, an inverse correlation between H pylori infection and IBD prevalence has been confirmed. Similar results were found in patients with kidney diseases and allergic manifestations. There are indications of the possible involvement of H pylori infection in metabolic syndrome and ischaemic cardiovascular diseases. However, due to a series of factors linked to study designs and the multifactorial pathogenesis of some diseases, further studies are needed.
Collapse
Affiliation(s)
| | - Gianluca Ianiro
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Sacred Heart, Rome, Italy
| | - Sharmila Fagoonee
- Institute of Biostructure and Bioimaging (CNR) c/o Molecular Biotechnology Center, Turin, Italy
| | - Carlo R Settanni
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Sacred Heart, Rome, Italy
| | - Antonio Gasbarrini
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Sacred Heart, Rome, Italy
| |
Collapse
|
30
|
Donovan C, Liu G, Shen S, Marshall JE, Kim RY, Alemao CA, Budden KF, Choi JP, Kohonen-Corish M, El-Omar EM, Yang IA, Hansbro PM. The role of the microbiome and the NLRP3 inflammasome in the gut and lung. J Leukoc Biol 2020; 108:925-935. [PMID: 33405294 DOI: 10.1002/jlb.3mr0720-472rr] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/15/2022] Open
Abstract
The nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family, pyrin domain-containing protein 3 (NLRP3) inflammasome, is one of the most well-characterized inflammasomes, activated by pathogen-associated molecular patterns and damage-associated molecular patterns, including from commensal or pathogenic bacterial and viral infections. The NLRP3 inflammasome promotes inflammatory cell recruitment and regulates immune responses in tissues such as the gastrointestinal tract and the lung, and is involved in many diseases that affect the gut and lung. Recently, the microbiome in the gut and the lung, and the crosstalk between these organs (gut-lung axis), has been identified as a potential mechanism that may influence disease in a bidirectional manner. In this review, we focus on themes presented in this area at the 2019 World Congress on Inflammation. We discuss recent evidence on how the microbiome can affect NLRP3 inflammasome responses in the gut and lung, the role of this inflammasome in regulating gut and lung inflammation in disease, and its potential role in the gut-lung axis. We highlight the exponential increase in our understanding of the NLRP3 inflammasome due to the synthesis of the NLRP3 inflammasome inhibitor, MCC950, and propose future studies that may further elucidate the roles of the NLRP3 inflammasome in gut and lung diseases.
Collapse
Affiliation(s)
- Chantal Donovan
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, New South Wales, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Gang Liu
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, New South Wales, Australia
| | - Sj Shen
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, New South Wales, Australia
| | - Jacqueline E Marshall
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, New South Wales, Australia
| | - Richard Y Kim
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, New South Wales, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Charlotte A Alemao
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Kurtis F Budden
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Jaesung P Choi
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, New South Wales, Australia
| | - Maija Kohonen-Corish
- Woolcock Institute of Medical Research and Faculty of Science, University of Technology Sydney, Garvan Institute of Medical Research and St George and Sutherland Clinical School, University of New South Wales, Kogarah, New South Wales, Australia
| | - Emad M El-Omar
- Microbiome Research Centre, St George and Sutherland Clinical School, University of New South Wales, Kogarah, New South Wales, Australia
| | - Ian A Yang
- The Prince Charles Hospital and The University of Queensland, Brisbane, Queensland, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, New South Wales, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| |
Collapse
|
31
|
The role of the changing human microbiome in the asthma pandemic. J Allergy Clin Immunol 2020; 144:1457-1466. [PMID: 31812180 DOI: 10.1016/j.jaci.2019.10.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 02/06/2023]
Abstract
Asthma and allergy incidence continue to increase globally. We have made significant strides in treating disease, but it is becoming more apparent that we need to advance our knowledge into the origins of asthmatic disease. Much recent work has indicated that microbiome composition influences immune regulation and that multiple health care factors have driven a loss in microbiome diversity in modern human populations. Evidence is growing of microbiota-driven influences on immune development, asthma susceptibility, and asthma pathogenesis. The focus of this review is to highlight the strides the field has made in characterizing the constituents of the human gastrointestinal microbiota, such as Helicobacter pylori, other members of the neonatal intestinal microbiota, and microbial peptides and metabolites that influence host immunity and immune response to allergens. As we delve further into this field of research, the goal will be to find actionable and clinical interventions to identify at-risk populations earlier to prevent disease onset. Manipulation of the host microbial community during infancy might be an especially promising approach.
Collapse
|
32
|
Axelrad JE, Cadwell KH, Colombel JF, Shah SC. Systematic review: gastrointestinal infection and incident inflammatory bowel disease. Aliment Pharmacol Ther 2020; 51:1222-1232. [PMID: 32372471 PMCID: PMC7354095 DOI: 10.1111/apt.15770] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/24/2020] [Accepted: 04/14/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND The initiating events of chronic gastrointestinal (GI) inflammation in Crohn's disease (CD) and ulcerative colitis (UC) are not well-defined, but GI infections are implicated. AIMS To define the role of GI infections in risk of incident inflammatory bowel disease (IBD) and synthesise the current body of relevant translational data to provide biological context for associations between GI infections and IBD risk. METHODS We systematically reviewed electronic databases through February 2020. Clinical studies that provided risk estimates of the association between GI infections and incident IBD were included. Inclusion criteria were broader for translational studies aiming to define mechanisms of GI infections and predisposition to or protection from IBD. RESULTS Of the studies identified, 63 met full inclusion criteria. Among studies of clinical gastroenteritis, bacteria-specifically, Salmonella species, Campylobacter species and Clostridioides difficile-demonstrated consistent positive associations with risk of incident IBD. Of viruses, norovirus was associated with increased risk of incident CD. Regarding inverse associations with incident IBD, Helicobacter pylori and helminth infections were associated with a generally consistent reduced risk of IBD. Based on a qualitative analysis of the translational data, putative mechanisms involve multiple microbial and immunologic pathways. CONCLUSIONS Based on this systematic review, certain enteric pathogens are associated with an increased risk of incident IBD, while others are potentially protective. Prospective studies are required to clarify the clinical implications of these enteric pathogens on the risk and course of IBD, and possible therapeutic or preventative benefit.
Collapse
Affiliation(s)
- Jordan E Axelrad
- Division of Gastroenterology, Department of Medicine, NYU School of Medicine, New York, NY, USA
| | - Ken H Cadwell
- Division of Gastroenterology, Department of Medicine, NYU School of Medicine, New York, NY, USA
- Department of Microbiology, NYU School of Medicine, New York, NY, USA
| | - Jean-Frederic Colombel
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shailja C Shah
- Division of Gastroenterology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
33
|
Xia Y, Chen Y, Wang G, Yang Y, Song X, Xiong Z, Zhang H, Lai P, Wang S, Ai L. Lactobacillus plantarum AR113 alleviates DSS-induced colitis by regulating the TLR4/MyD88/NF-κB pathway and gut microbiota composition. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103854] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
34
|
Agrawal M, Burisch J, Colombel JF, C Shah S. Viewpoint: Inflammatory Bowel Diseases Among Immigrants From Low- to High-Incidence Countries: Opportunities and Considerations. J Crohns Colitis 2020; 14:267-273. [PMID: 31359034 DOI: 10.1093/ecco-jcc/jjz139] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The inflammatory bowel diseases [IBDs], inclusive of Crohn's disease [CD] and ulcerative colitis [UC], are chronic, progressive immune-mediated diseases associated with high morbidity and substantial economic impact. The pathogenesis implicates a complex interaction between environmental determinants and genetic susceptibility. Of concern, the incidence and prevalence of IBD are increasing globally, with the highest relative increase observed in developing and recently developed countries. One high-risk yet underappreciated population is immigrants from countries of low to high IBD incidence, as evidenced by epidemiologic studies demonstrating higher risk of IBD among second- versus first-generation and younger versus older immigrants from low- to high-incidence countries [LTHICs]. The reasons underlying these emerging patterns among immigrants are incompletely understood and provide enormous opportunities to better define the pathophysiology of IBD and move toward disease prevention or at least earlier diagnosis. The rapidity of this epidemiologic shift in the demographic profile of IBD, which was traditionally a disease of Caucasians in industrialized countries, strongly implicates non-genetic factors and gene-environment interactions in the pathophysiology of IBD among immigrants from LTHICs. The primary objectives of this Viewpoint are to [1] provide a focused overview of IBD epidemiology among immigrants from countries at differential IBD risk; [2] emphasize the potential to advance our understanding of IBD pathogenesis via targeted research efforts to delineate risk and protective determinants in this cohort; and [3] highlight disparities and barriers in IBD care, as well as the economic implications of the rising, yet underappreciated, disease burden among immigrants from LTHICs.
Collapse
Affiliation(s)
- Manasi Agrawal
- Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York NY, USA
| | - Johan Burisch
- Gastrounit, Medical Division, Hvidovre Hospital, Copenhagen, Denmark
| | - Jean-Frederic Colombel
- Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York NY, USA
| | - Shailja C Shah
- Division of Gastroenterology, Vanderbilt University, Nashville TN, USA
| |
Collapse
|
35
|
Zhang X, Arnold IC, Müller A. Mechanisms of persistence, innate immune activation and immunomodulation by the gastric pathogen Helicobacter pylori. Curr Opin Microbiol 2020; 54:1-10. [PMID: 32007716 DOI: 10.1016/j.mib.2020.01.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/03/2020] [Indexed: 12/20/2022]
Abstract
The gastric bacterium Helicobacter pylori efficiently evades innate immune detection and persistently colonizes its human host. Understanding the genetic determinants that H. pylori uses to establish and maintain persistence, along with their cellular targets, is key to our understanding of the pathogenesis of this extraordinarily successful bacterial colonizer of the human stomach. This review highlights recent advances in elucidating innate immune recognition of H. pylori, its interactions with myeloid cells and the consequences that this very local infection has for immune responses at extragastric sites in models of allergy, autoimmunity and parasitic infection. The human-specific, gram-negative gastric colonizer and carcinogen H. pylori represents the prototype of a persistent bacterial pathogen. It is transmitted during early childhood, typically from mother to infant, and is believed to persist in its human host from the cradle to the grave. The tremendous success of H. pylori in infecting and colonizing half of the world's population, and in continuously accompanying humans since they migrated out of Africa over 60000 years ago, can largely be attributed to its ability to manipulate the host immune system to its own advantage, and to thereby ensure its own persistence and chronicity. In his final years as an active PI, Stanley Falkow increasingly recognized the need to understand bacterial persistence strategies as a prerequisite of understanding the pathogenesis of chronic bacterial infections, and, inspired in large part by Denise Monack's work on Salmonella persistence, many of our discussions at the time revolved around this topic. Multiple labs have since made important contributions to our understanding of innate immune detection of H. pylori, the types and polarization of adaptive immune responses that ensue, the ability of H. pylori to skew such immune responses to its advantage, and its ability to manipulate the host immune system with far-reaching, even systemic consequences. This review attempts to cover some of these topics, with a particular focus on the most recent contributions by researchers in the field.
Collapse
Affiliation(s)
- Xiaozhou Zhang
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Isabelle C Arnold
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Anne Müller
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
36
|
Shah SC, Tepler A, Peek RM, Colombel JF, Hirano I, Narula N. Association Between Helicobacter pylori Exposure and Decreased Odds of Eosinophilic Esophagitis-A Systematic Review and Meta-analysis. Clin Gastroenterol Hepatol 2019; 17:2185-2198.e3. [PMID: 30659992 PMCID: PMC7354099 DOI: 10.1016/j.cgh.2019.01.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Previous or current infection with Helicobacter pylori (exposure) has been reported to protect against eosinophilic esophagitis (EoE), perhaps owing to H pylori-induced immunomodulation. However, findings vary. We performed a systematic review and meta-analysis of comparative studies to define the association between H pylori exposure and EoE more clearly. METHODS We searched 4 large databases to identify comparative clinical studies that included sufficient detail to determine the odds or risk of EoE (primary outcome) or esophageal eosinophilia (secondary outcome) among individuals exposed to H pylori (exposed) vs individuals who were tested and found to be unexposed. Estimates were pooled using a random-effects model. Meta-regression and sensitivity analyses were planned a priori. Studies were evaluated for quality, risk of bias, publication bias, and heterogeneity. RESULTS We analyzed 11 observational studies comprising data on 377,795 individuals worldwide. H pylori exposure vs nonexposure was associated with a 37% reduction in odds of EoE (odds ratio, 0.63; 95% CI, 0.51-0.78) and a 38% reduction in odds of esophageal eosinophilia (odds ratio, 0.62; 95% CI, 0.52-0.76). Fewer prospective studies found a significant association between H pylori exposure and EoE (P = .06) than retrospective studies. Effect estimates were not affected by study location, whether the studies were performed in pediatric or adult populations, time period (before vs after 2007), or prevalence of H pylori in the study population. CONCLUSIONS In a comprehensive meta-analysis, we found evidence for a significant association between H pylori exposure and reduced odds of EoE. Studies are needed to determine the mechanisms of this association.
Collapse
Affiliation(s)
- Shailja C. Shah
- Division of Gastroenterology, Hepatology, and Nutrition,
Vanderbilt University Medical Center, Nashville TN USA
| | - Adam Tepler
- Department of Medicine, Montefiore Medical Center, New
York NY USA
| | - Richard M. Peek
- Division of Gastroenterology, Hepatology, and Nutrition,
Vanderbilt University Medical Center, Nashville TN USA
| | | | - Ikuo Hirano
- Division of Gastroenterology, Northwestern University
Feinberg School of Medicine, Chicago IL USA
| | - Neeraj Narula
- Division of Gastroenterology, Department of Medicine and
Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton
Ontario Canada
| |
Collapse
|
37
|
Tepler A, Narula N, Peek RM, Patel A, Edelson C, Colombel JF, Shah SC. Systematic review with meta-analysis: association between Helicobacter pylori CagA seropositivity and odds of inflammatory bowel disease. Aliment Pharmacol Ther 2019; 50:121-131. [PMID: 31165513 PMCID: PMC7393806 DOI: 10.1111/apt.15306] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/13/2019] [Accepted: 04/25/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Accumulating data support a protective role of Helicobacter pylori against inflammatory bowel diseases (IBD), which might be mediated by strain-specific constituents, specifically cagA expression. AIM To perform a systematic review and meta-analysis to more clearly define the association between CagA seropositivity and IBD. METHODS We identified comparative studies that included sufficient detail to determine the odds or risk of IBD, Crohn's disease (CD) or ulcerative colitis (UC) amongst individuals with vs without evidence of cagA expression (eg CagA seropositivity). Estimates were pooled using a random effects model. RESULTS Three clinical studies met inclusion criteria. cagA expression was represented by CagA seropositivity in all studies. Compared to CagA seronegativity overall, CagA seropositivity was associated with lower odds of IBD (OR 0.31, 95% CI 0.21-0.44) and CD (OR 0.25, 95% CI 0.17-0.38), and statistically nonsignificant lower odds for UC (OR 0.68, 95% CI 0.35-1.32). Similarly, compared to H pylori non-exposed individuals, H pylori exposed, CagA seropositive individuals had lower odds of IBD (OR 0.26, 95% CI 0.16-0.41) and CD (OR 0.23, 95% CI 0.15-0.35), but not UC (OR 0.66, 0.34-1.27). However, there was no significant difference in the odds of IBD, CD or UC between H pylori exposed, CagA seronegative and H pylori non-exposed individuals. CONCLUSION We found evidence for a significant association between CagA seropositive H pylori exposure and reduced odds of IBD, particularly CD, but not for CagA seronegative H pylori exposure. Additional studies are needed to confirm these findings and define underlying mechanisms.
Collapse
Affiliation(s)
- Adam Tepler
- Department of Medicine, Montefiore Medical Center, New York NY USA
| | - Neeraj Narula
- Division of Gastroenterology, Department of Medicine and Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton Ontario Canada
| | - Richard M. Peek
- Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville TN USA
| | - Anish Patel
- Department of Gastroenterology, Brooke Army Medical Center, Houston TX USA
| | - Cyrus Edelson
- Department of Medicine, Brooke Army Medical Center, Houston TX USA
| | | | - Shailja C. Shah
- Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville TN USA,Corresponding Author: Shailja C. Shah, MD, 2215 Garland Avenue, Medical Research Building IV, 1030C, Vanderbilt University Medical Center, Nashville, TN 37212, Phone: (615) 343-5952 / Fax: (615) 343-6229,
| |
Collapse
|
38
|
BATF3-dependent dendritic cells drive both effector and regulatory T-cell responses in bacterially infected tissues. PLoS Pathog 2019; 15:e1007866. [PMID: 31188899 PMCID: PMC6590837 DOI: 10.1371/journal.ppat.1007866] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/24/2019] [Accepted: 05/23/2019] [Indexed: 12/23/2022] Open
Abstract
The gastric lamina propria of mice that have been experimentally infected with the pathobiont Helicobacter pylori hosts a dense network of myeloid cells that includes BATF3-dependent CD103+ dendritic cells (DCs). We show here that CD103+ DCs are strictly required for gastric Th1 responses to H. pylori and for H. pylori infection control. A similar dependence of type 1 immunity on CD103+ DCs is observed in a Mycobacterium bovis BCG infection model, and in a syngeneic colon cancer model. Strikingly, we find that not only the expansion and/or recruitment of Th1 cells, but also of peripherally induced, neuropilin-negative regulatory T-cells to sites of infection requires BATF3-dependent DCs. A shared feature of the examined models is the strongly reduced production of the chemokines and CXCR3 ligands CXCL9, 10 and 11 in BATF3-deficient mice. The results implicate BATF3-dependent DCs in the recruitment of CXCR3+ effector and regulatory T-cells to target tissues and in their local expansion. In this work, Arnold & Zhang et al report that CD103+ DCs are required for protective Th1 responses, infection control of mucosal and systemic bacterial pathogens, and anti-tumor immunity driven by CD4+ Th1 cells and CD8+ T cells. CD103+ DCs further specifically promote the recruitment of Tbet+ peripherally induced Tregs to sites of infection. The results implicate CD103+ DCs in the trafficking of CXCR3+ Tbet+ T-cells to sites of infection and tumorigenesis.
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW Infections play a role in the pathogenesis of autoimmune diseases (AID). Several bacterial and viral pathogens play a double role, as both inducers and inhibitors of AID. In this review, we will present current evidence and discuss different aspects of this notion. RECENT FINDINGS Infectors that both inhibit and induce AID include Helicobacter pylori, Klebsiella pneumoniae, hepatitis B virus, group B Coxsackieviruses, Epstein-Barr virus and Lymphocytic choriomeningitis virus. Numerous AID are affected by infections, including polyarteritis nodosa, inflammatory bowel disease, and type 1 diabetes. Some pathogens, such as group B Coxsackieviruses, may induce and inhibit the development of the same AID. This reveals a complex role of infections in autoimmunity pathogenesis. SUMMARY Elucidating the exact role of each pathogen on each specific AID is important, as this will enable evaluating the manipulation of these infections in the treatment of AID.
Collapse
|
40
|
Polymorphism in Toll-Like Receptors and Helicobacter Pylori Motility in Autoimmune Atrophic Gastritis and Gastric Cancer. Cancers (Basel) 2019; 11:cancers11050648. [PMID: 31083432 PMCID: PMC6562993 DOI: 10.3390/cancers11050648] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/03/2019] [Accepted: 05/07/2019] [Indexed: 12/17/2022] Open
Abstract
Autoimmune atrophic gastritis (AAG) is associated with an increased risk of certain types of gastric cancer (GC). Helicobacter pylori (H. pylori) infection may have a role in the induction and/or maintenance of AAG and GC. Toll-like receptors (TLR) are essential for H. pylori recognition and subsequent innate and adaptive immunity responses. This study therefore aimed to characterize TLR polymorphisms, and features of bacterial flagellin A in samples from patients with AAG (n = 67), GC (n = 114) and healthy donors (HD; n = 97). TLR5 rs5744174 C/C genotype was associated with GC, lower IgG anti H. pylori response and a higher H. pylori flagellin A abundance and motility. In a subset of patients with AAG, H. pylori strains showed a reduction of the flagellin A abundance and a moderate motility compared with strains from GC patients, a prerequisite for active colonization of the deeper layers of the mucosa, host immune response and inflammation. TLR9 rs5743836 T allele showed an association with serum gastrin G17. In conclusion, our study suggests that alterations of flaA protein, moderate motility in H. pylori and two polymorphisms in TLR5 and TLR9 may favor the onset of AAG and GC, at least in a subset of patients. These findings corroborate the function of pathogen–host cell interactions and responses, likely influencing the pathogenetic process.
Collapse
|
41
|
Helicobacter pylori VacA Targets Myeloid Cells in the Gastric Lamina Propria To Promote Peripherally Induced Regulatory T-Cell Differentiation and Persistent Infection. mBio 2019; 10:mBio.00261-19. [PMID: 30890606 PMCID: PMC6426600 DOI: 10.1128/mbio.00261-19] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Helicobacter pylori has coexisted with humans for at least 60.000 years and has evolved persistence strategies that allow it to evade host immunity and colonize its host for life. The VacA protein is expressed by all H. pylori strains and is required for high-level persistent infection in experimental mouse models. Here, we show that VacA targets myeloid cells in the gastric mucosa to create a tolerogenic environment that facilitates regulatory T-cell differentiation, while suppressing effector T-cell priming and functionality. Tregs that are induced in the periphery during H. pylori infection can be found not only in the stomach but also in the lungs of infected mice, where they are likely to affect immune responses to allergens. The gastric bacterium Helicobacter pylori causes a persistent infection that is directly responsible for gastric ulcers and gastric cancer in some patients and protective against allergic and other immunological disorders in others. The two outcomes of the Helicobacter-host interaction can be modeled in mice that are infected as immunocompetent adults and as neonates, respectively. Here, we have investigated the contribution of the Helicobacter immunomodulator VacA to H. pylori-specific local and systemic immune responses in both models. We found that neonatally infected mice are colonized at higher levels than mice infected as adults and fail to generate effector T-cell responses to the bacteria; rather, T-cell responses in neonatally infected mice are skewed toward Foxp3-positive (Foxp3+) regulatory T cells that are neuropilin negative and express RORγt. We found these peripherally induced regulatory T cells (pTregs) to be enriched, in a VacA-dependent manner, not only in the gastric mucosa but also in the lungs of infected mice. Pulmonary pTreg accumulation was observed in mice that have been infected neonatally with wild-type H. pylori but not in mice that have been infected as adults or mice infected with a VacA null mutant. Finally, we traced VacA to gastric lamina propria myeloid cells and show that it suppressed interleukin-23 (IL-23) expression by dendritic cells and induced IL-10 and TGF-β expression in macrophages. Taken together, the results are consistent with the idea that H. pylori creates a tolerogenic environment through its immunomodulator VacA, which skews T-cell responses toward Tregs, favors H. pylori persistence, and affects immunity at distant sites.
Collapse
|
42
|
Arnold IC, Zhang X, Urban S, Artola-Borán M, Manz MG, Ottemann KM, Müller A. NLRP3 Controls the Development of Gastrointestinal CD11b + Dendritic Cells in the Steady State and during Chronic Bacterial Infection. Cell Rep 2019; 21:3860-3872. [PMID: 29281833 DOI: 10.1016/j.celrep.2017.12.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 10/24/2017] [Accepted: 12/01/2017] [Indexed: 12/14/2022] Open
Abstract
The gastric lamina propria is largely uncharted immunological territory. Here we describe the evolution and composition of the gastric, small intestinal, and colonic lamina propria mononuclear phagocyte system during the steady state and infection with the gastric pathogen Helicobacter pylori. We show that monocytes, CX3CR1hi macrophages, and CD11b+ dendritic cells are recruited to the infected stomach in a CCR2-dependent manner. All three populations, but not BATF3-dependent CD103+ DCs, sample red fluorescent protein (RFP)+Helicobacter pylori (H. pylori). Mice reconstituted with human hematopoietic stem cells recapitulate several features of the myeloid cell-H. pylori interaction. The differentiation in and/or recruitment to gastrointestinal, lung, and lymphoid tissues of CD11b+ DCs requires NLRP3, but not apoptosis-associated speck-like protein containing a carboxy-terminal CARD (ASC) or caspase-1, during steady-state and chronic infection. NLRP3-/- mice fail to generate Treg responses to H. pylori and control the infection more effectively than wild-type mice. The results demonstrate a non-canonical inflammasome-independent function of NLRP3 in DC development and immune regulation.
Collapse
Affiliation(s)
- Isabelle C Arnold
- Institute of Molecular Cancer Research , University of Zürich, 8057 Zürich, Switzerland.
| | - Xiaozhou Zhang
- Institute of Molecular Cancer Research , University of Zürich, 8057 Zürich, Switzerland
| | - Sabine Urban
- Institute of Molecular Cancer Research , University of Zürich, 8057 Zürich, Switzerland
| | - Mariela Artola-Borán
- Institute of Molecular Cancer Research , University of Zürich, 8057 Zürich, Switzerland
| | - Markus G Manz
- Department of Hematology, University of Zürich, 8057 Zürich, Switzerland
| | - Karen M Ottemann
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Anne Müller
- Institute of Molecular Cancer Research , University of Zürich, 8057 Zürich, Switzerland.
| |
Collapse
|
43
|
Zhen Y, Zhang H. NLRP3 Inflammasome and Inflammatory Bowel Disease. Front Immunol 2019; 10:276. [PMID: 30873162 PMCID: PMC6403142 DOI: 10.3389/fimmu.2019.00276] [Citation(s) in RCA: 433] [Impact Index Per Article: 72.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 01/31/2019] [Indexed: 02/05/2023] Open
Abstract
NLRP3 inflammasome can be widely found in epithelial cells and immune cells. The NOD-like receptors (NLRs) family member NLRP3 contains a central nucleotide-binding and oligomerization (NACHT) domain which facilitates self-oligomerization and has ATPase activity. The C-terminal conserves a leucine-rich repeats (LRRs) domain which can modulate NLRP3 activity and sense endogenous alarmins and microbial ligands. In contrast, the N-terminal pyrin domain (PYD) can account for homotypic interactions with the adaptor protein-ASC of NLRP3 inflammasome. These characters enable it function in innate immunity. Its downstream effector proteins include caspase-1 and IL-1β etc. which exhibit protective or detrimental roles in mucosal immunity in different studies. Here, we comprehensively review the current literature regarding the physiology of NLRP3 inflammasome and its potential roles in the pathogenesis of IBD. We also discuss about the complex interactions among the NLRP3 inflammasome, mucosal immune response, and gut homeostasis as found in experimental models and IBD patients.
Collapse
Affiliation(s)
- Yu Zhen
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China.,The Centre of Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Hu Zhang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China.,The Centre of Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
44
|
Chung IC, OuYang CN, Yuan SN, Lin HC, Huang KY, Wu PS, Liu CY, Tsai KJ, Loi LK, Chen YJ, Chung AK, Ojcius DM, Chang YS, Chen LC. Pretreatment with a Heat-Killed Probiotic Modulates the NLRP3 Inflammasome and Attenuates Colitis-Associated Colorectal Cancer in Mice. Nutrients 2019; 11:nu11030516. [PMID: 30823406 PMCID: PMC6471765 DOI: 10.3390/nu11030516] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/19/2019] [Accepted: 02/24/2019] [Indexed: 01/22/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies worldwide. Inflammation contributes to cancer development and inflammatory bowel disease is an important risk factor for CRC. The aim of this study is to assess whether a widely used probiotic Enterococcus faecalis can modulate the NLRP3 inflammasome and protect against colitis and colitis-associated CRC. We studied the effect of heat-killed cells of E. faecalis on NLRP3 inflammasome activation in THP-1-derived macrophages. Pretreatment of E. faecalis or NLRP3 siRNA can inhibit NLRP3 inflammasome activation in macrophages in response to fecal content or commensal microbes, P. mirabilis or E. coli, according to the reduction of caspase-1 activation and IL-1β maturation. Mechanistically, E. faecalis attenuates the phagocytosis that is required for the full activation of the NLRP3 inflammasome. In in vivo mouse experiments, E. faecalis can ameliorate the severity of intestinal inflammation and thereby protect mice from dextran sodium sulfate (DSS)-induced colitis and the formation of CRC in wild type mice. On the other hand, E. faecalis cannot prevent DSS-induced colitis in NLRP3 knockout mice. Our findings indicate that application of the inactivated probiotic, E. faecalis, may be a useful and safe strategy for attenuation of NLRP3-mediated colitis and inflammation-associated colon carcinogenesis.
Collapse
Affiliation(s)
- I-Che Chung
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 333, Taiwan.
| | - Chun-Nan OuYang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 333, Taiwan.
| | - Sheng-Ning Yuan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 333, Taiwan.
| | - Hsin-Chung Lin
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan.
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, Taipei 114, Taiwan.
| | - Kuo-Yang Huang
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei 114, Taiwan.
| | - Pao-Shu Wu
- Department of Pathology, Mackay Memorial Hospital, New Taipei City 251, Taiwan.
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan.
| | - Chia-Yuan Liu
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan.
- Division of Gastroenterology, Department of Internal Medicine, MacKay Memorial Hospital, New Taipei City 251, Taiwan.
- Department of Medical Research, MacKay Memorial Hospital, New Taipei City 251, Taiwan.
| | - Kuen-Jou Tsai
- Department of Laboratory Medicine, MacKay Memorial Hospital, Taipei 104, Taiwan.
| | - Lai-Keng Loi
- Department of Dentistry, School of Dentistry, National Yang-Minutesg University, Taipei 112, Taiwan.
| | - Yu-Jen Chen
- Department of Medical Research, MacKay Memorial Hospital, New Taipei City 251, Taiwan.
- Department of Radiation Oncology, Mackay Memorial Hospital, New Taipei City 251, Taiwan.
| | - An-Ko Chung
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
| | - David M Ojcius
- Department of Biomedical Sciences, University of the Pacific Arthur A. Dugoni School of Dentistry, San Francisco, CA 94103, USA.
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan 333, Taiwan.
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital, Linkou 333, Taiwan.
| | - Yu-Sun Chang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 333, Taiwan.
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
- Department of Otolaryngology-Head & Neck Surgery, Chang Gung Memorial Hospital, Linkou 333, Taiwan.
| | - Lih-Chyang Chen
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan.
| |
Collapse
|
45
|
Rojas M, Restrepo-Jiménez P, Monsalve DM, Pacheco Y, Acosta-Ampudia Y, Ramírez-Santana C, Leung PS, Ansari AA, Gershwin ME, Anaya JM. Molecular mimicry and autoimmunity. J Autoimmun 2018; 95:100-123. [DOI: 10.1016/j.jaut.2018.10.012] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/12/2018] [Accepted: 10/16/2018] [Indexed: 12/15/2022]
|
46
|
Inflammasome activation and regulation during Helicobacter pylori pathogenesis. Microb Pathog 2018; 125:468-474. [PMID: 30316008 DOI: 10.1016/j.micpath.2018.10.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/28/2018] [Accepted: 10/09/2018] [Indexed: 12/24/2022]
Abstract
Helicobacter pylori is a leading cause of gastric cancer worldwide, its type four secretary toxin CagA is cited to be primarily responsible for it. Other virulence factors such as urease, VacA, HopQ, BabA and SabA are responsible for bacterial survival in acidic environment, adherence and cellular damage but its molecular mechanism is not completely understood. A number of pathogens including bacteria, fungi and virus are involved in the regulation of cellular machinery of inflammasome. Inflammasomes are multimeric protein complexes formed after external stimuli such as PAMPs/DAMPs or salt crystals and activates cellular caspases causes inflammation via pro-inflammatory cytokines. Virulence factors associated with microbial pathogens causes' cellular damage through damaging mitochondria, rupturing lysosome, producing endoplasmic stress and dysregulation of cellular ions balance. These cellular dysfunctioning leads to oxidative stress, cathepsin B production, nuclear and mitochondrial DNA damage which activates inflammasome machinery, pro-inflammatory cytokine release and cellular death known as pyroptosis. The mechanism of inflammasome induction by H. pylori is not studied extensively and very few virulence factors such as UreB, CagA, FlaA and VacA and their role in inflammasomes is established. This review elaborates the mechanism of inflammasomes regulation and elucidates the pathways through which H. pylori regulates inflammasome activation.
Collapse
|
47
|
Yu Y, Zhu S, Li P, Min L, Zhang S. Helicobacter pylori infection and inflammatory bowel disease: a crosstalk between upper and lower digestive tract. Cell Death Dis 2018; 9:961. [PMID: 30237392 PMCID: PMC6148320 DOI: 10.1038/s41419-018-0982-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/22/2018] [Accepted: 08/22/2018] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori has coexisted with humans for approximately 60,000 years and greater than 50% of the global population is infected with H. pylori. H. pylori was successfully cultured in vitro in 1983 and studies of H. pylori have achieved substantial advances over the last 35 years. Since then, H. pylori has been characterized as the primary pathogenic factor for chronic gastritis, peptic ulcer, and gastric malignancy. Numerous patients have received H. pylori eradication treatment, but only 1-2% of H. pylori-infected individuals ultimately develop gastric cancer. Recently, numerous epidemiological and basic experimental studies suggested a role for chronic H. pylori infection in protecting against inflammatory bowel disease (IBD) by inducing systematic immune tolerance and suppressing inflammatory responses. Here we summarize the current research progress on the association between H. pylori and IBD, and further describe the detailed molecular mechanism underlying H. pylori-induced dendritic cells (DCs) with the tolerogenic phenotype and immunosuppressive regulatory T cells (Tregs). Based on the potential protective role of H. pylori infection on IBD, we suggest that the interaction between H. pylori and the host is complicated, and H. pylori eradication treatment should be administered with caution, especially for children and young adults.
Collapse
Affiliation(s)
- Yang Yu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, China
| | - Shengtao Zhu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, China
| | - Peng Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, China
| | - Li Min
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, China.
| | - Shutian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, China.
| |
Collapse
|
48
|
Wang K, Lv Q, Miao YM, Qiao SM, Dai Y, Wei ZF. Cardamonin, a natural flavone, alleviates inflammatory bowel disease by the inhibition of NLRP3 inflammasome activation via an AhR/Nrf2/NQO1 pathway. Biochem Pharmacol 2018; 155:494-509. [PMID: 30071202 DOI: 10.1016/j.bcp.2018.07.039] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/27/2018] [Indexed: 01/02/2023]
Abstract
The present study aimed to evaluate the anti-colitis effect and underlying mechanisms of cardamonin, a natural flavone isolated from Alpinia katsumadai Hayata. The results showed that oral cardamonin significantly inhibited dextran sulfate sodium (DSS)- and 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis in mice, evidenced by improvement of disease activity index scores, myeloperoxidase activity, length shortening and histopathological changes of colons. A rectal administration of cardamonin also exhibited marked anti-colitis effect, suggesting that oral cardamonin might function in a prototype form. Cardamonin down-regulated levels of IL-1β, TNF-α, IL-6, NLRP3, cleaved caspase-1, ASC, cleaved IL-1β in colons of colitis mice. In vitro, cardamonin inhibited NLRP3 inflammasome activation in THP-1 and bone marrow-derived macrophages. It acted as an AhR activator, enhanced dissociation of AhR/HSP90 complexes, association of AhR/ARNT complexes, AhR nuclear translocation, XRE reporter gene activity, and AhR/ARNT/XRE DNA binding activity in THP-1 cells. The AhR antagonist CH223191 obviously abolished NLRP3 inflammasome activation inhibited by cardamonin. Furthermore, cardamonin elevated levels of Nrf2 and its target genes NQO1, Trx1, SOD2, HO-1, and the effect on NQO1 was the most obvious. The relationship of cardamonin-adjusted AhR activation, expressions of Nrf2 and NQO1, and NLRP3 inflammasome activation was confirmed by using CH223191, siAhR, ML385 and siNQO1, respectively. Finally, CH223191 was shown to abolish amelioration of cardamonin on DSS- and TNBS-induced colitis, inhibition of NLRP3 inflammasome activation and up-regulation of Nrf2 and NQO1 levels in colons. Taken together, cardamonin ameliorated colitis in mice through the activation of AhR/Nrf2/NQO1 pathway and consequent inhibition of NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Kai Wang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Qi Lv
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Yu-Meng Miao
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Si-Miao Qiao
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Yue Dai
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China.
| | - Zhi-Feng Wei
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China.
| |
Collapse
|
49
|
Zhang H, Dai Y, Liu Y, Wu T, Li J, Wang X, Wang W. Helicobacter pylori Colonization Protects Against Chronic Experimental Colitis by Regulating Th17/Treg Balance. Inflamm Bowel Dis 2018; 24:1481-1492. [PMID: 29788098 DOI: 10.1093/ibd/izy107] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Epidemiological studies have demonstrated an inverse association between Helicobacter pylori infection and the risk of developing inflammatory bowel disease (IBD). The mechanisms by which H. pylori infection protects against IBD are unclear. Here, we explored the possible protective effects and mechanisms of gastric H. pylori colonization on a chronic colitis model, with focus on whether H. pylori exerted its effects through regulating Th17/Treg immune responses. METHODS Chronic colitis was induced by dextran sulfate sodium (DSS) treatment. Flow cytometry analysis was performed to determine Th17 cells, Treg cells, and M1/M2 macrophages in the spleen, mesenteric lymph nodes, and colonic lamina propria. The levels of Th17- and Treg-associated cytokines were measured by quantitative polymerase chain reaction. The direct effect of H. pylori extract on the polarization status of macrophages was determined in vitro. RESULTS Gastric H. pylori colonization significantly ameliorated the severity of chronic DSS-induced colitis. H. pylori colonization decreased Th17 cells and mRNA levels of IL-17A, IL-17F, and IL-21 in the colon. Simultaneously, H. pylori colonization increased Treg cells and IL-10 expression. As to cytokines driving Th17 and Treg differentiation, H. pylori colonization increased TGFβ and decreased IL-6 and IL-23. Moreover, H. pylori colonization significantly increased M2 macrophages in the colon. In vitro, H. pylori extract promotion of M2 macrophage polarization was dependent on the presence of CagA. CONCLUSIONS H. pylori colonization protects against chronic DSS-induced colitis via balancing Th17/Treg responses and shifting macrophages toward anti-inflammatory M2 phenotype. Our results strengthen the rationale for gastric H. pylori colonization affecting the immune homeostasis of the colon.
Collapse
Affiliation(s)
- Hongchen Zhang
- Department of Gastroenterology, Peking University First Hospital, Beijing, China
| | - Yun Dai
- Department of Gastroenterology, Peking University First Hospital, Beijing, China
| | - Yun Liu
- Department of Gastroenterology, Peking University First Hospital, Beijing, China
| | - Ting Wu
- Department of Gastroenterology, Peking University First Hospital, Beijing, China
| | - Jing Li
- Department of Gastroenterology, Peking University First Hospital, Beijing, China
| | - Xiaolei Wang
- Department of Gastroenterology, Peking University First Hospital, Beijing, China
| | - Weihong Wang
- Department of Gastroenterology, Peking University First Hospital, Beijing, China
| |
Collapse
|
50
|
Han X, Zheng J, Wang Y, Gao Z. miRNA-29a inhibits colon cancer growth by regulation of the PTEN/Akt/GSK3β and Wnt/β-catenin signaling pathways. Oncol Lett 2018; 16:2638-2644. [PMID: 30013659 DOI: 10.3892/ol.2018.8905] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 03/19/2018] [Indexed: 12/13/2022] Open
Abstract
In the present study, the effects of microRNA-29a (miRNA-29a) on colon cancer cell viability and the molecular mechanisms underlying the effects were investigated. The expression of miRNA-29a in colon cancer serum samples was notably downregulated, compared with in the normal group. First, miRNA-29a mimic was used to increase the expression of miRNA-29a in HCT-116 cells. Furthermore, upregulation of miRNA-29a suppressed cell viability, increased lactate dehydrogenase levels and apoptosis, and promoted caspase-3/9 activities and B-cell lymphoma 2-associated X protein and phosphatase and tensin homolog (PTEN) protein expression in colon cancer cells. Furthermore, upregulation of miRNA-29a decreased phosphoinositide 3-kinase, phosphorylated (p)-protein kinase B (Akt) and p-glycogen synthase kinase 3β (GSK3β) protein expression and suppressed the Wnt/β-catenin signaling pathway in colon cancer cells. The results of the present study verified that the protective effects of miRNA-29a suppress the PTEN/Akt/GSK3β and Wnt/β-catenin signaling pathways in colon cancer.
Collapse
Affiliation(s)
- Xiaofeng Han
- Department of General Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100043, P.R. China
| | - Jianwei Zheng
- Department of General Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100043, P.R. China
| | - Yunlei Wang
- Department of General Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100043, P.R. China
| | - Zhigang Gao
- Department of General Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100043, P.R. China
| |
Collapse
|