1
|
Boisson-Dupuis S, Bastard P, Béziat V, Bustamante J, Cobat A, Jouanguy E, Puel A, Rosain J, Zhang Q, Zhang SY, Boisson B. The monogenic landscape of human infectious diseases. J Allergy Clin Immunol 2025; 155:768-783. [PMID: 39724971 PMCID: PMC11875930 DOI: 10.1016/j.jaci.2024.12.1078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
The spectrum of known monogenic inborn errors of immunity is growing, with certain disorders underlying a specific and narrow range of infectious diseases. These disorders reveal the core mechanisms by which these infections occur in various settings, including inherited and acquired immunodeficiencies, thereby delineating the essential mechanisms of protective immunity to the corresponding pathogens. These findings also have medical implications, facilitating diagnosis and improving the management of individuals at risk of disease.
Collapse
Affiliation(s)
- Stéphanie Boisson-Dupuis
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Paul Bastard
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France; Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Vivien Béziat
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Jacinta Bustamante
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France; Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Aurélie Cobat
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Emmanuelle Jouanguy
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Anne Puel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Jérémie Rosain
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France; Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Qian Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Shen-Ying Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Bertrand Boisson
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France.
| |
Collapse
|
2
|
Tuor M, Stappers MHT, Desgardin A, Ruchti F, Sparber F, Orr SJ, Gow NAR, LeibundGut-Landmann S. Card9 and MyD88 differentially regulate Th17 immunity to the commensal yeast Malassezia in the murine skin. Mucosal Immunol 2025; 18:205-219. [PMID: 39579986 DOI: 10.1016/j.mucimm.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/28/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024]
Abstract
The fungal community of the skin microbiome is dominated by a single genus, Malassezia. Besides its symbiotic lifestyle at the host interface, this commensal yeast has also been associated with diverse inflammatory skin diseases in humans and pet animals. Stable colonization is maintained by antifungal type 17 immunity. The mechanisms driving Th17 responses to Malassezia remain, however, unclear. Here, we show that the C-type lectin receptors Mincle, Dectin-1, and Dectin-2 recognize conserved patterns in the cell wall of Malassezia and induce dendritic cell activation in vitro, while only Dectin-2 is required for Th17 activation during experimental skin colonization in vivo. In contrast, Toll-like receptor recognition was redundant in this context. Instead, inflammatory IL-1 family cytokines signaling via MyD88 were also implicated in Th17 activation in a T cell-intrinsic manner. Taken together, we characterized the pathways contributing to protective immunity against the most abundant member of the skin mycobiome. This knowledge contributes to the understanding of barrier immunity and its regulation by commensals and is relevant considering how aberrant immune responses are associated with severe skin pathologies.
Collapse
Affiliation(s)
- Meret Tuor
- Section of Immunology, Vetsuisse Faculty and Institute of Experimental Immunology, University of Zürich, 8057 Zurich, Switzerland
| | - Mark H T Stappers
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Department of Biosciences, Faculty of Health and Life Sciences, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Alice Desgardin
- Section of Immunology, Vetsuisse Faculty and Institute of Experimental Immunology, University of Zürich, 8057 Zurich, Switzerland
| | - Fiorella Ruchti
- Section of Immunology, Vetsuisse Faculty and Institute of Experimental Immunology, University of Zürich, 8057 Zurich, Switzerland
| | - Florian Sparber
- Section of Immunology, Vetsuisse Faculty and Institute of Experimental Immunology, University of Zürich, 8057 Zurich, Switzerland
| | - Selinda J Orr
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Neil A R Gow
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Department of Biosciences, Faculty of Health and Life Sciences, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Salomé LeibundGut-Landmann
- Section of Immunology, Vetsuisse Faculty and Institute of Experimental Immunology, University of Zürich, 8057 Zurich, Switzerland; Medical Research Council Centre for Medical Mycology at the University of Exeter, Department of Biosciences, Faculty of Health and Life Sciences, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK.
| |
Collapse
|
3
|
He K, Zhao K, Yin T, Liu M, Liu J, Du W, Liu X, Cheng B, Zhang D, Zheng Y. A real-world Pharmacovigilance study of brodalumab based on the FDA adverse event reporting system. Sci Rep 2025; 15:2346. [PMID: 39824966 PMCID: PMC11742032 DOI: 10.1038/s41598-025-86976-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/15/2025] [Indexed: 01/20/2025] Open
Abstract
Brodalumab, a humanized monoclonal antibody that targets the interleukin-17 receptor A, is primarily used to manage moderate-to-severe plaque psoriasis. Although it has demonstrated favorable efficacy and safety in clinical trials, the strict inclusion and exclusion criteria may not fully reflect its safety profile in real-world settings. As its use becomes more widespread in clinical practice, understanding its safety in real-world applications is crucial.This study employed disproportionality analysis to assess the safety of brodalumab by examining all adverse event reports that identified brodalumab as the primary suspected drug in the FDA Adverse Event Reporting System database since 2017. Techniques such as the Reporting Odds Ratio, Proportional Reporting Ratio, Multi-item Gamma Poisson Shrinker, and Bayesian Confidence Propagation Neural Network were utilized to analyze the adverse events associated with brodalumab. Additionally, the Weibull distribution was used to model the temporal risk of adverse events.The study identified several adverse reactions already listed on the drug's label that showed positive signals, including arthralgia, headache, myalgia, suicidal ideation, oropharyngeal pain, injection site mass, and infections. Additionally, we found potential adverse reactions not noted on the drug's label that exhibited positive signals, including depression, increased blood pressure, peripheral swelling, gait disturbance, inability to walk, stress, myocardial infarction, sepsis, uveitis, nephrolithiasis, and interstitial lung disease. Moreover, this analysis highlighted the critical need for vigilant monitoring of adverse events, especially during the first month following the initiation of treatment.This study provides initial insights into the real-world safety of brodalumab, confirming known adverse reactions and uncovering additional potential risks. The results deliver vital information that can assist clinicians in making informed decisions when prescribing brodalumab for psoriasis treatment.
Collapse
Affiliation(s)
- Ke He
- Department of Dermatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Kaidi Zhao
- Department of Dermatology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Tingyi Yin
- Department of Dermatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Meng Liu
- Department of Dermatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jiashu Liu
- Department of Dermatology, Xi'an Children's Hospital, Xi'an, 710000, China
| | - Wenqian Du
- Department of Dermatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xinyi Liu
- Department of Dermatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Baochen Cheng
- Department of Dermatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Dewu Zhang
- Department of Dermatology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| | - Yan Zheng
- Department of Dermatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
4
|
Patnaik S, Durairajan SSK, Singh AK, Krishnamoorthi S, Iyaswamy A, Mandavi SP, Jeewon R, Williams LL. Role of Candida species in pathogenesis, immune regulation, and prognostic tools for managing ulcerative colitis and Crohn's disease. World J Gastroenterol 2024; 30:5212-5220. [PMID: 39735273 PMCID: PMC11612695 DOI: 10.3748/wjg.v30.i48.5212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/25/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
The gut microbiome plays a key role in the pathogenesis and disease activity of inflammatory bowel disease (IBD). While research has focused on the bacterial microbiome, recent studies have shifted towards host genetics and host-fungal interactions. The mycobiota is a vital component of the gastrointestinal microbial community and plays a significant role in immune regulation. Among fungi, Candida species, particularly Candida albicans (C. albicans), have been extensively studied due to their dual role as gut commensals and invasive pathogens. Recent findings indicate that various strains of C. albicans exhibit considerable differences in virulence factors, impacting IBD's pathophysiology. Intestinal fungal dysbiosis and antifungal mucosal immunity may be associated to IBD, especially Crohn's disease (CD). This article discusses intestinal fungal dysbiosis and antifungal immunity in healthy individuals and CD patients. It discusses factors influencing the mycobiome's role in IBD pathogenesis and highlights significant contributions from the scientific community aimed at enhancing understanding of the mycobiome and encouraging further research and targeted intervention studies on specific fungal populations. Our article also provided insights into a recent study by Wu et al in the World Journal of Gastroenterology regarding the role of the gut microbiota in the pathogenesis of CD.
Collapse
Affiliation(s)
- Supriti Patnaik
- Molecular Mycology and Neurodegenerative Disease Research Laboratory, Department of Microbiology, Central University of Tamil Nadu, Thiruvarur 610005, India
| | - Siva Sundara Kumar Durairajan
- Molecular Mycology and Neurodegenerative Disease Research Laboratory, Department of Microbiology, Central University of Tamil Nadu, Thiruvarur 610005, India
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Abhay Kumar Singh
- Molecular Mycology and Neurodegenerative Disease Research Laboratory, Department of Microbiology, Central University of Tamil Nadu, Thiruvarur 610005, India
| | - Senthilkumar Krishnamoorthi
- Mr. & Mrs Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Ashok Iyaswamy
- Mr. & Mrs Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641021, India
| | - Shiva Prasad Mandavi
- Department of Chemistry, Central University of Tamil Nadu, Tiruvarur 610005, India
| | - Rajesh Jeewon
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit 80837, Mauritius
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Leonard L Williams
- Center for Excellence in Post Harvest Technologies, North Carolina Agricultural and Technical State University, The North Carolina Research Campus, Kannapolis, NC 28081, United States
| |
Collapse
|
5
|
Alakeel A, Nagshabandi KN, Alsalhi A. Chronic mucocutaneous candidiasis due to signal transducer and activator of transcription 1 mutation in a Saudi patient: a case report. Dermatol Reports 2024; 16:9939. [PMID: 39687689 PMCID: PMC11647450 DOI: 10.4081/dr.2024.9939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/04/2024] [Indexed: 12/18/2024] Open
Abstract
Chronic mucocutaneous candidiasis (CMC) is a primary immunodeficiency condition caused by a genetic abnormality that increases the risk of recurrent and persistent skin, nail, and mucous membrane infections with Candida species, typically Candida albicans. Signal transducer and activator of transcription 1 (STAT1) gene mutation is a genetic trigger that causes CMC, which increases the risk of infections, multisystem disorders, and cancer susceptibility. We describe the first case of a Saudi female patient with clinical features of CMC with an underlying (STAT1) gene mutation.
Collapse
Affiliation(s)
| | - Khalid Nabil Nagshabandi
- Department of Dermatology, College of Medicine, King Saud University and King Saud University Medical City, Riyadh, Saudi Arabia
| | | |
Collapse
|
6
|
Millet N, Sekar J, Solis NV, Millet A, Aggor FE, Wildeman A, Lionakis MS, Gaffen SL, Jendzjowsky N, Filler SG, Swidergall M. Non-canonical IL-22 receptor signaling remodels the mucosal barrier during fungal immunosurveillance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.08.611873. [PMID: 39314368 PMCID: PMC11419061 DOI: 10.1101/2024.09.08.611873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Mucosal barrier integrity is vital for homeostasis with commensal organisms while preventing pathogen invasion. We unexpectedly found that fungal-induced immunosurveillance enhances resistance to fungal outgrowth and tissue invasion by remodeling the oral mucosal epithelial barrier in mouse models of adult and neonatal Candida albicans colonization. Epithelial subset expansion and tissue remodeling were dependent on interleukin-22 (IL-22) and signal transducer and activator of transcription 3 (STAT3) signaling, through a non-canonical receptor complex composed of glycoprotein 130 (gp130) coupled with IL-22RA1 and IL-10RB. Immunosurveillance-induced epithelial remodeling was restricted to the oral mucosa, whereas barrier architecture was reset once fungal-specific immunity developed. Collectively, these findings identify fungal-induced transient mucosal remodeling as a critical determinant of resistance to mucosal fungal infection during early stages of microbial colonization.
Collapse
Affiliation(s)
- Nicolas Millet
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, CA, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jinendiran Sekar
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, CA, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Norma V. Solis
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, CA, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Antoine Millet
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- Division of Respiratory and Critical Care Medicine and Physiology, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Felix E.Y. Aggor
- University of Pittsburgh, Division of Rheumatology and Clinical Immunology, Pittsburgh, PA, USA
| | - Asia Wildeman
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, CA, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Michail S. Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD, USA
| | - Sarah L. Gaffen
- University of Pittsburgh, Division of Rheumatology and Clinical Immunology, Pittsburgh, PA, USA
| | - Nicholas Jendzjowsky
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- Division of Respiratory and Critical Care Medicine and Physiology, Harbor-UCLA Medical Center, Torrance, CA, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Scott G. Filler
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, CA, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Marc Swidergall
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, CA, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
7
|
Zhou LH, Qiu WJ, Que CX, Cheng JH, Zhu RS, Huang JT, Jiang YK, Zhao HZ, Wang X, Cheng XJ, Zhu LP. A novel inherited CARD9 deficiency in an otherwise healthy woman with CNS candidiasis. Clin Immunol 2024; 265:110293. [PMID: 38936523 DOI: 10.1016/j.clim.2024.110293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/08/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024]
Abstract
Patients with caspase-associated recruitment domain-9 (CARD9) deficiency are more likely to develop invasive fungal disease that affect CNS. However, the understanding of how Candida invades and persists in CNS is still limited. We here reported a 24-year-old woman who were previously immunocompetent and diagnosed with CNS candidiasis. A novel autosomal recessive homozygous CARD9 mutation (c.184 + 5G > T) from this patient was identified using whole genomic sequencing. Furthermore, we extensively characterized the impact of this CARD9 mutation on the host immune response in monocytes, neutrophils and CD4 + T cells, using single cell sequencing and in vitro experiments. Decreased pro-inflammatory cytokine productions of CD14 + monocyte, impaired Th17 cell differentiation, and defective neutrophil accumulation in CNS were found in this patient. In conclusion, this study proposed a novel mechanism of CNS candidiasis development. Patients with CNS candidiasis in absence of known immunodeficiencies should be analyzed for CARD9 gene mutation as the cause of invasive fungal infection predisposition.
Collapse
Affiliation(s)
- Ling-Hong Zhou
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Wen-Jia Qiu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Chun-Xing Que
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China; Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jia-Hui Cheng
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Rong-Sheng Zhu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jun-Tian Huang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Ying-Kui Jiang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Hua-Zhen Zhao
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Xuan Wang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Xun-Jia Cheng
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Li-Ping Zhu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
8
|
Tuor M, Stappers MH, Ruchti F, Desgardin A, Sparber F, Orr SJ, Gow NA, LeibundGut-Landmann S. Card9 and MyD88 differentially regulate Th17 immunity to the commensal yeast Malassezia in the murine skin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.12.603211. [PMID: 39071334 PMCID: PMC11275786 DOI: 10.1101/2024.07.12.603211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The fungal community of the skin microbiome is dominated by a single genus, Malassezia. Besides its symbiotic lifestyle at the host interface, this commensal yeast has also been associated with diverse inflammatory skin diseases in humans and pet animals. Stable colonization is maintained by antifungal type 17 immunity. The mechanisms driving Th17 responses to Malassezia remain, however, unclear. Here, we show that the C-type lectin receptors Mincle, Dectin-1, and Dectin-2 recognize conserved patterns in the cell wall of Malassezia and induce dendritic cell activation in vitro, while only Dectin-2 is required for Th17 activation during experimental skin colonization in vivo. In contrast, Toll-like receptor recognition was redundant in this context. Instead, inflammatory IL-1 family cytokines signaling via MyD88 were also implicated in Th17 activation in a T cell-intrinsic manner. Taken together, we characterized the pathways contributing to protective immunity against the most abundant member of the skin mycobiome. This knowledge contributes to the understanding of barrier immunity and its regulation by commensals and is relevant considering how aberrant immune responses are associated with severe skin pathologies.
Collapse
Affiliation(s)
- Meret Tuor
- Section of Immunology, Vetsuisse Faculty and Institute of Experimental Immunology, University of Zürich, Switzerland
| | - Mark H.T. Stappers
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Fiorella Ruchti
- Section of Immunology, Vetsuisse Faculty and Institute of Experimental Immunology, University of Zürich, Switzerland
| | - Alice Desgardin
- Section of Immunology, Vetsuisse Faculty and Institute of Experimental Immunology, University of Zürich, Switzerland
| | - Florian Sparber
- Section of Immunology, Vetsuisse Faculty and Institute of Experimental Immunology, University of Zürich, Switzerland
| | - Selinda J. Orr
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Neil A.R. Gow
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Salomé LeibundGut-Landmann
- Section of Immunology, Vetsuisse Faculty and Institute of Experimental Immunology, University of Zürich, Switzerland
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
9
|
Ziegler CGK, Owings AH, Galeas-Pena M, Kazer SW, Miao VN, Navia AW, Tang Y, Bromley JD, Lotfy P, Sloan M, Laird H, Williams HB, George M, Drake RS, Pride Y, Abraham GE, Senitko M, Robinson TO, Diamond G, Lionakis MS, Shalek AK, Ordovas-Montanes J, Horwitz BH, Glover SC. An enhanced IL17 and muted type I interferon nasal epithelial cell state characterizes severe COVID-19 with fungal coinfection. Microbiol Spectr 2024; 12:e0351623. [PMID: 38687064 PMCID: PMC11237666 DOI: 10.1128/spectrum.03516-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
Recent case reports and epidemiological data suggest that fungal infections represent an underappreciated complication among people with severe COVID-19. However, the frequency of fungal colonization in patients with COVID-19 and associations with specific immune responses in the airways remain incompletely defined. We previously generated a single-cell RNA-sequencing data set characterizing the upper respiratory microenvironment during COVID-19 and mapped the relationship between disease severity and the local behavior of nasal epithelial cells and infiltrating immune cells. Our previous study, in agreement with findings from related human cohorts, demonstrated that a profound deficiency in host immunity, particularly in type I and type III interferon signaling in the upper respiratory tract, is associated with rapid progression to severe disease and worse clinical outcomes. We have now performed further analysis of this cohort and identified a subset of participants with severe COVID-19 and concurrent detection of Candida species-derived transcripts within samples collected from the nasopharynx and trachea. Here, we present the clinical characteristics of these individuals. Using matched single-cell transcriptomic profiles of these individuals' respiratory mucosa, we identify epithelial immune signatures suggestive of IL17 stimulation and anti-fungal immunity. Further, we observe a significant expression of anti-fungal inflammatory cascades in the nasal and tracheal epithelium of all participants who went on to develop severe COVID-19, even among participants without detectable genetic material from fungal pathogens. Together, our data suggest that IL17 stimulation-in part driven by Candida colonization-and blunted interferon signaling represent a common feature of severe COVID-19 infection. IMPORTANCE In this paper, we present an analysis suggesting that symptomatic and asymptomatic fungal coinfections can impact patient disease progression during COVID-19 hospitalization. By looking into the presence of other pathogens and their effect on the host immune response during COVID-19 hospitalizations, we aim to offer insight into an underestimated scenario, furthering our current knowledge of determinants of severity that could be considered for future diagnostic and intervention strategies.
Collapse
Affiliation(s)
- Carly G. K. Ziegler
- Program in Health Sciences & Technology, Harvard Medical School & MIT, Boston, Massachusetts, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Harvard Graduate Program in Biophysics, Harvard University, Cambridge, Massachusetts, USA
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Anna H. Owings
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Michelle Galeas-Pena
- Department of Medicine, Section of Gastroenterology and Hepatology, Tulane University School of Medicine, New Orleans, Los Angeles, USA
| | - Samuel W. Kazer
- Program in Immunology, Harvard Medical School, Boston, Massachusetts, USA
- Division of Emergency Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Vincent N. Miao
- Program in Health Sciences & Technology, Harvard Medical School & MIT, Boston, Massachusetts, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Andrew W. Navia
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Ying Tang
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Joshua D. Bromley
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Microbiology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Peter Lotfy
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Meredith Sloan
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Hannah Laird
- Division of Digestive Diseases, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Haley B. Williams
- Division of Digestive Diseases, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Micayla George
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Riley S. Drake
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Yilianys Pride
- Division of Digestive Diseases, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - George E. Abraham
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Michal Senitko
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Tanya O. Robinson
- Division of Digestive Diseases, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Gill Diamond
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, Kentucky, USA
| | - Michail S. Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, Maryland, USA
| | - Alex K. Shalek
- Program in Health Sciences & Technology, Harvard Medical School & MIT, Boston, Massachusetts, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Harvard Graduate Program in Biophysics, Harvard University, Cambridge, Massachusetts, USA
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Program in Immunology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Jose Ordovas-Montanes
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Program in Immunology, Harvard Medical School, Boston, Massachusetts, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Bruce H. Horwitz
- Program in Immunology, Harvard Medical School, Boston, Massachusetts, USA
- Division of Emergency Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Sarah C. Glover
- Division of Digestive Diseases, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Center for Immunology and Microbial Research, Department of Cell & Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
10
|
Tomomasa D, Lee BH, Hirata Y, Inoue Y, Majima H, Imanaka Y, Asano T, Katakami T, Lee J, Hijikata A, Worakitchanon W, Yang X, Wang X, Watanabe A, Kamei K, Kageyama Y, Seo GH, Fujimoto A, Casanova JL, Puel A, Morio T, Okada S, Kanegane H. Inherited CARD9 Deficiency Due to a Founder Effect in East Asia. J Clin Immunol 2024; 44:121. [PMID: 38758287 PMCID: PMC11736695 DOI: 10.1007/s10875-024-01724-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/25/2024] [Indexed: 05/18/2024]
Abstract
Autosomal recessive CARD9 deficiency can underly deep and superficial fungal diseases. We identified two Japanese patients, suffering from superficial and invasive Candida albicans diseases, carrying biallelic variants of CARD9. Both patients, in addition to another Japanese and two Korean patients who were previously reported, carried the c.820dup CARD9 variant, either in the homozygous (two patients) or heterozygous (three patients) state. The other CARD9 alleles were c.104G > A, c.1534C > T and c.1558del. The c.820dup CARD9 variant has thus been reported, in the homozygous or heterozygous state, in patients originating from China, Japan, or South Korea. The Japanese, Korean, and Chinese patients share a 10 Kb haplotype encompassing the c.820dup CARD9 variant. This variant thus originates from a common ancestor, estimated to have lived less than 4,000 years ago. While phaeohyphomycosis caused by Phialophora spp. was common in the Chinese patients, none of the five patients in our study displayed Phialophora spp.-induced disease. This difference between Chinese and our patients probably results from environmental factors. (161/250).
Collapse
Affiliation(s)
- Dan Tomomasa
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Beom Hee Lee
- Department of Pediatrics, Medical Genetics Center, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, 88 Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, South Korea.
| | - Yuki Hirata
- Department of Opthalmology, Shonan Fujisawa Tokushukai Hospital, Kanagawa, Japan
| | - Yuzaburo Inoue
- Department of General Medical Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hidetaka Majima
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Yusuke Imanaka
- Department of Pediatrics, Hiroshima University Hospital, Hiroshima, Japan
| | - Takaki Asano
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
- Department of Genetics and Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Takashi Katakami
- Department of Neurology, Hyogo Prefectural Amagasaki General Medical Center, Hyogo, Japan
| | - Jina Lee
- Department of Pediatrics, Medical Genetics Center, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, 88 Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, South Korea
| | - Atsushi Hijikata
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Wittawin Worakitchanon
- Department of Human Genetics, School of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Xi Yang
- Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaowen Wang
- Department of Dermatology, Peking University First Hospital, Beijing, China
| | - Akira Watanabe
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Katsuhiko Kamei
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Yasufumi Kageyama
- Department of Neurology, Hyogo Prefectural Amagasaki General Medical Center, Hyogo, Japan
| | | | - Akihiro Fujimoto
- Department of Human Genetics, School of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, UMR 1163, INSERM, Necker Hospital for Sick Children, 75015, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, 10065, USA
- University Paris Cité, Imagine Institute, 75015, Paris, France
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, UMR 1163, INSERM, Necker Hospital for Sick Children, 75015, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, 10065, USA
- University Paris Cité, Imagine Institute, 75015, Paris, France
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Hirokazu Kanegane
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan.
| |
Collapse
|
11
|
Guérin A, Moncada-Vélez M, Jackson K, Ogishi M, Rosain J, Mancini M, Langlais D, Nunez A, Webster S, Goyette J, Khan T, Marr N, Avery DT, Rao G, Waterboer T, Michels B, Neves E, Iracema Morais C, London J, Mestrallet S, Quartier dit Maire P, Neven B, Rapaport F, Seeleuthner Y, Lev A, Simon AJ, Montoya J, Barel O, Gómez-Rodríguez J, Orrego JC, L’Honneur AS, Soudée C, Rojas J, Velez AC, Sereti I, Terrier B, Marin N, García LF, Abel L, Boisson-Dupuis S, Reis J, Marinho A, Lisco A, Faria E, Goodnow CC, Vasconcelos J, Béziat V, Ma CS, Somech R, Casanova JL, Bustamante J, Franco JL, Tangye SG. Helper T cell immunity in humans with inherited CD4 deficiency. J Exp Med 2024; 221:e20231044. [PMID: 38557723 PMCID: PMC10983808 DOI: 10.1084/jem.20231044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 01/04/2024] [Accepted: 01/31/2024] [Indexed: 04/04/2024] Open
Abstract
CD4+ T cells are vital for host defense and immune regulation. However, the fundamental role of CD4 itself remains enigmatic. We report seven patients aged 5-61 years from five families of four ancestries with autosomal recessive CD4 deficiency and a range of infections, including recalcitrant warts and Whipple's disease. All patients are homozygous for rare deleterious CD4 variants impacting expression of the canonical CD4 isoform. A shorter expressed isoform that interacts with LCK, but not HLA class II, is affected by only one variant. All patients lack CD4+ T cells and have increased numbers of TCRαβ+CD4-CD8- T cells, which phenotypically and transcriptionally resemble conventional Th cells. Finally, patient CD4-CD8- αβ T cells exhibit intact responses to HLA class II-restricted antigens and promote B cell differentiation in vitro. Thus, compensatory development of Th cells enables patients with inherited CD4 deficiency to acquire effective cellular and humoral immunity against an unexpectedly large range of pathogens. Nevertheless, CD4 is indispensable for protective immunity against at least human papillomaviruses and Trophyrema whipplei.
Collapse
Affiliation(s)
- Antoine Guérin
- Garvan Institute of Medical Research, Darlinghurst, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales Sydney, Sydney, Australia
| | - Marcela Moncada-Vélez
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Primary Immunodeficiencies Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellin, Colombia
| | | | - Masato Ogishi
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jérémie Rosain
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique–Hôpitaux de Paris, Paris, France
| | - Mathieu Mancini
- Department of Human Genetics, McGill University, Montreal, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
- Dahdaleh Institute of Genomic Medicine, McGill Research Centre on Complex Traits, McGill University, Montreal, Canada
| | - David Langlais
- Department of Human Genetics, McGill University, Montreal, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
- Dahdaleh Institute of Genomic Medicine, McGill Research Centre on Complex Traits, McGill University, Montreal, Canada
| | - Andrea Nunez
- Department of Molecular Medicine, School of Biomedical Sciences, University of New South Wales, Sydney, Australia
| | - Samantha Webster
- Department of Molecular Medicine, School of Biomedical Sciences, University of New South Wales, Sydney, Australia
| | - Jesse Goyette
- Department of Molecular Medicine, School of Biomedical Sciences, University of New South Wales, Sydney, Australia
| | - Taushif Khan
- Department of Human Immunology, Sidra Medicine, Doha, Qatar
- The Jackson Laboratory, Farmington, CT, USA
| | - Nico Marr
- Department of Human Immunology, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Danielle T. Avery
- Garvan Institute of Medical Research, Darlinghurst, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales Sydney, Sydney, Australia
| | - Geetha Rao
- Garvan Institute of Medical Research, Darlinghurst, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales Sydney, Sydney, Australia
| | - Tim Waterboer
- Division of Infections and Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Birgitta Michels
- Division of Infections and Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Esmeralda Neves
- Immunology Department—Pathology, University Hospital Center of Porto, Porto, Portugal
- Unit for Multidisciplinary Research in Biomedicine, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Cátia Iracema Morais
- Immunology Department—Pathology, University Hospital Center of Porto, Porto, Portugal
- Unit for Multidisciplinary Research in Biomedicine, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Jonathan London
- Service of Internal Medicine, Diaconesse-Croix Saint Simon Hospital, Paris, France
| | - Stéphanie Mestrallet
- Department of Internal Medicine and Infectious Diseases, Manchester Hospital, Charleville-Mézières, France
| | - Pierre Quartier dit Maire
- Pediatric Immunology-Hematology and Rheumatology Unit, Necker Hospital for Sick Children, Paris, France
| | - Bénédicte Neven
- Pediatric Immunology-Hematology and Rheumatology Unit, Necker Hospital for Sick Children, Paris, France
| | - Franck Rapaport
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Yoann Seeleuthner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Atar Lev
- Department of Pediatrics and Immunology Service, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Aviv School of Medicine, Tel Aviv, Israel
| | - Amos J. Simon
- Department of Pediatrics and Immunology Service, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Aviv School of Medicine, Tel Aviv, Israel
| | - Jorge Montoya
- San Vicente de Paul University Hospital, Medellin, Colombia
| | - Ortal Barel
- The Genomic Unit, Sheba Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel
| | - Julio Gómez-Rodríguez
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Julio C. Orrego
- Primary Immunodeficiencies Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellin, Colombia
| | - Anne-Sophie L’Honneur
- Department of Virology, Paris Cité University and Cochin Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Camille Soudée
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Jessica Rojas
- Primary Immunodeficiencies Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellin, Colombia
| | - Alejandra C. Velez
- Primary Immunodeficiencies Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellin, Colombia
| | - Irini Sereti
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin Terrier
- Department of Internal Medicine, Cochin Hospital, Assistance Publique–Hôpitaux de Paris, Paris Cité University, Paris, France
| | - Nancy Marin
- Cellular Immunology and Immunogenetics Group, University of Antioquia UdeA, Medellin, Colombia
| | - Luis F. García
- Cellular Immunology and Immunogenetics Group, University of Antioquia UdeA, Medellin, Colombia
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Stéphanie Boisson-Dupuis
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Joel Reis
- Dermatology Service, University Hospital Center of Porto, Porto, Portugal
| | - Antonio Marinho
- School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- Department of Clinical Immunology, University Hospital Center of Porto, Porto, Portugal
| | - Andrea Lisco
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Emilia Faria
- Allergy and Clinical Immunology Department, University Hospital Center of Coimbra, Coimbra, Portugal
| | - Christopher C. Goodnow
- Garvan Institute of Medical Research, Darlinghurst, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales Sydney, Sydney, Australia
| | - Julia Vasconcelos
- Immunology Department—Pathology, University Hospital Center of Porto, Porto, Portugal
- Unit for Multidisciplinary Research in Biomedicine, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Vivien Béziat
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Cindy S. Ma
- Garvan Institute of Medical Research, Darlinghurst, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales Sydney, Sydney, Australia
| | - Raz Somech
- Department of Pediatrics and Immunology Service, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Aviv School of Medicine, Tel Aviv, Israel
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, Assistance Publique–Hôpitaux de Paris, Paris, France
| | - Jacinta Bustamante
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique–Hôpitaux de Paris, Paris, France
| | - Jose Luis Franco
- Primary Immunodeficiencies Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellin, Colombia
| | - Stuart G. Tangye
- Garvan Institute of Medical Research, Darlinghurst, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales Sydney, Sydney, Australia
| |
Collapse
|
12
|
Kurz H, Lehmberg K, Farmand S. Inborn errors of immunity with susceptibility to S. aureus infections. Front Pediatr 2024; 12:1389650. [PMID: 38720948 PMCID: PMC11078099 DOI: 10.3389/fped.2024.1389650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/25/2024] [Indexed: 05/12/2024] Open
Abstract
Staphylococcus aureus (S. aureus) is a significant human pathogen, in particular in patients with an underlying medical condition. It is equipped with a large variety of virulence factors enabling both colonization and invasive disease. The spectrum of manifestation is broad, ranging from superficial skin infections to life-threatening conditions like pneumonia and sepsis. As a major cause of healthcare-associated infections, there is a great need in understanding staphylococcal immunity and defense mechanisms. Patients with inborn errors of immunity (IEI) frequently present with pathological infection susceptibility, however, not all of them are prone to S. aureus infection. Thus, enhanced frequency or severity of S. aureus infections can serve as a clinical indicator of a specific underlying immunological impairment. In addition, the analysis of immunological functions in patients with susceptibility to S. aureus provides a unique opportunity of understanding the complex interplay between staphylococcal virulence and host immune predisposition. While the importance of quantitatively and qualitatively normal neutrophils is widely known, less awareness exists about the role of specific cytokines such as functional interleukin (IL)-6 signaling. This review categorizes well-known IEI in light of their susceptibility to S. aureus and discusses the relevant associated pathomechanisms. Understanding host-pathogen-interactions in S. aureus infections in susceptible individuals can pave the way for more effective management and preventive treatment options. Moreover, these insights might help to identify patients who should be screened for an underlying IEI. Ultimately, enhanced understanding of pathogenesis and immune responses in S. aureus infections may also be of relevance for the general population.
Collapse
Affiliation(s)
- Hannah Kurz
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kai Lehmberg
- Division of Pediatric Stem Cell Transplantation and Immunology, Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Susan Farmand
- Division of Pediatric Stem Cell Transplantation and Immunology, Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
13
|
Campbell E, Shaker MS, Williams KW. Clinical updates in inborn errors of immunity: a focus on the noninfectious clinical manifestations. Curr Opin Pediatr 2024; 36:228-236. [PMID: 38299990 DOI: 10.1097/mop.0000000000001331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
PURPOSE OF REVIEW In the last 5 years, several new inborn errors of immunity (IEI) have been described, especially in the areas of immune dysregulation and autoinflammation. As a result, the clinical presentation of IEIs has broadened. We review the heterogeneous presentation of IEIs and detail several of the recently described IEIs with a focus on the noninfectious manifestations commonly seen. RECENT FINDINGS IEIs may present with early onset and/or multiple autoimmune manifestations, increased risk for malignancy, lymphoproliferation, severe atopy, autoinflammation and/or hyperinflammation. Because of this, patients can present to a wide array of providers ranging from primary care to various pediatric subspecialists. The International Union of Immunological Societies (IUIS) expert committee has created a phenotypic classification of IEIs in order to help clinicians narrow their evaluation based on the laboratory and clinical findings. SUMMARY Both primary care pediatricians and pediatric subspecialists need to be aware of the common clinical features associated with IEI and recognize when to refer to allergy-immunology for further evaluation. Early diagnosis can lead to earlier treatment initiation and improve clinical outcomes for our patients.
Collapse
Affiliation(s)
- Emily Campbell
- Division of Pediatric Pulmonology, Allergy and Immunology, Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| | - Marcus S Shaker
- Section of Allergy and Clinical Immunology, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Kelli W Williams
- Division of Pediatric Pulmonology, Allergy and Immunology, Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
14
|
Mills JL, Lepletier A, Ozberk V, Dooley J, Kaden J, Calcutt A, Huo Y, Hicks A, Zaid A, Good MF, Pandey M. Disruption of IL-17-mediated immunosurveillance in the respiratory mucosa results in invasive Streptococcus pyogenes infection. Front Immunol 2024; 15:1351777. [PMID: 38576622 PMCID: PMC10991685 DOI: 10.3389/fimmu.2024.1351777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/22/2024] [Indexed: 04/06/2024] Open
Abstract
Introduction Streptococcus pyogenes is a Gram-positive pathogen that causes a significant global burden of skin pyoderma and pharyngitis. In some cases, infection can lead to severe invasive streptococcal diseases. Previous studies have shown that IL-17 deficiency in mice (IL-17-/-) can reduce S. pyogenes clearance from the mucosal surfaces. However, the effect of IL-17 on the development of severe invasive streptococcal disease has not yet been assessed. Methods Here, we modeled single or repeated non-lethal intranasal (IN) S. pyogenes M1 strain infections in immunocompetent and IL-17-/- mice to assess bacterial colonization following a final IN or skin challenge. Results Immunocompetent mice that received a single S. pyogenes infection showed long-lasting immunity to subsequent IN infection, and no bacteria were detected in the lymph nodes or spleens. However, in the absence of IL-17, a single IN infection resulted in dissemination of S. pyogenes to the lymphoid organs, which was accentuated by repeated IN infections. In contrast to what was observed in the respiratory mucosa, skin immunity did not correlate with the systemic levels of IL-17. Instead, it was found to be associated with the activation of germinal center responses and accumulation of neutrophils in the spleen. Discussion Our results demonstrated that IL-17 plays a critical role in preventing invasive disease following S. pyogenes infection of the respiratory tract.
Collapse
Affiliation(s)
- Jamie-Lee Mills
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Ailin Lepletier
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Victoria Ozberk
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Jessica Dooley
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Jacqualine Kaden
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Ainslie Calcutt
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Yongbao Huo
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Allan Hicks
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Ali Zaid
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Michael F. Good
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Manisha Pandey
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
15
|
Asano T, Noma K, Mizoguchi Y, Karakawa S, Okada S. Human STAT1 gain of function with chronic mucocutaneous candidiasis: A comprehensive review for strengthening the connection between bedside observations and laboratory research. Immunol Rev 2024; 322:81-97. [PMID: 38084635 DOI: 10.1111/imr.13300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 03/20/2024]
Abstract
Germline human heterozygous STAT1 gain-of-function (GOF) variants were first discovered a common cause of chronic mucocutaneous candidiasis (CMC) in 2011. Since then, numerous STAT1 GOF variants have been identified. A variety of clinical phenotypes, including fungal, viral, and bacterial infections, endocrine disorders, autoimmunity, malignancy, and aneurysms, have recently been revealed for STAT1 GOF variants, which has led to the expansion of the clinical spectrum associated with STAT1 GOF. Among this broad range of complications, it has been determined that invasive infections, aneurysms, and malignancies are poor prognostic factors for STAT1 GOF. The effectiveness of JAK inhibitors as a therapeutic option has been established, although further investigation of their long-term utility and side effects is needed. In contrast to the advancements in treatment options, the precise molecular mechanism underlying STAT1 GOF remains undetermined. Two primary hypotheses for this mechanism involve impaired STAT1 dephosphorylation and increased STAT1 protein levels, both of which are still controversial. A precise understanding of the molecular mechanism is essential for not only advancing diagnostics but also developing therapeutic interventions. Here, we provide a comprehensive review of STAT1 GOF with the aim of establishing a stronger connection between bedside observations and laboratory research.
Collapse
Affiliation(s)
- Takaki Asano
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Science, Hiroshima, Japan
- Department of Genetics and Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Kosuke Noma
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Science, Hiroshima, Japan
| | - Yoko Mizoguchi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Science, Hiroshima, Japan
| | - Shuhei Karakawa
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Science, Hiroshima, Japan
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Science, Hiroshima, Japan
| |
Collapse
|
16
|
Gounari E, Elfeky R, Ghataore L, Muhi-Iddin N, Buchanan CR, Arya VB. A well child with prolonged oral thrush: an unexpected diagnostic journey. Arch Dis Child Educ Pract Ed 2024; 109:47-54. [PMID: 37985017 DOI: 10.1136/archdischild-2023-325497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023]
Abstract
Oral thrush is a familiar presentation in both general practice and paediatrics, and is usually responsive to treatment in the community. Here, we present the diagnostic journey of a previously well boy aged 3 years who presented with treatment-resistant thrush and describe how 'unexpected' results led to eventual diagnosis and management. This intriguing case was managed jointly by district hospital general paediatric team and tertiary hospital specialist teams.
Collapse
Affiliation(s)
- Eleni Gounari
- Department of Paediatrics, East Sussex Hospitals NHS Trust, St Leonards-on-Sea, UK
| | - Reem Elfeky
- Department of Immunology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- Immunity and Transplantation, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Lea Ghataore
- Department of Clinical Biochemistry (Viapath), King's College Hospital, London, UK
| | - Nadia Muhi-Iddin
- Department of Paediatrics, East Sussex Hospitals NHS Trust, St Leonards-on-Sea, UK
| | - Charles R Buchanan
- Department of Child Health, King's College Hospital NHS Foundation Trust, London, UK
| | - Ved Bhushan Arya
- Department of Child Health, King's College Hospital NHS Foundation Trust, London, UK
- Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
17
|
Liu Y, Ouyang Y, You W, Liu W, Cheng Y, Mai X, Shen Z. Physiological roles of human interleukin-17 family. Exp Dermatol 2024; 33:e14964. [PMID: 37905720 DOI: 10.1111/exd.14964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/08/2023] [Accepted: 10/13/2023] [Indexed: 11/02/2023]
Abstract
Interleukin-17 s (IL-17s) are well-known proinflammatory cytokines, and their antagonists perform excellently in the treatment of inflammatory skin diseases such as psoriasis. However, their physiological functions have not been given sufficient attention by clinicians. IL-17s can protect the host from extracellular pathogens, maintain epithelial integrity, regulate cognitive processes and modulate adipocyte activity through distinct mechanisms. Here, we present a systematic review concerning the physiological functions of IL-17s. Our goal is not to negate the therapeutic effect of IL-17 antagonists, but to ensure their safe use and reasonably explain the possible adverse events that may occur in their application.
Collapse
Affiliation(s)
- Yucong Liu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Ye Ouyang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Wanchun You
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Wenqi Liu
- Department of Dermatology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yufan Cheng
- Department of Dermatology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xinming Mai
- Medical School, Shenzhen University, Shenzhen, China
| | - Zhu Shen
- Department of Dermatology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
18
|
Arts RJW, Janssen NAF, van de Veerdonk FL. Anticytokine Autoantibodies in Infectious Diseases: A Practical Overview. Int J Mol Sci 2023; 25:515. [PMID: 38203686 PMCID: PMC10778971 DOI: 10.3390/ijms25010515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Anticytokine autoantibodies (ACAAs) are a fascinating group of antibodies that have gained more and more attention in the field of autoimmunity and secondary immunodeficiencies over the years. Some of these antibodies are characterized by their ability to target and neutralize specific cytokines. ACAAs can play a role in the susceptibility to several infectious diseases, and their infectious manifestations depending on which specific immunological pathway is affected. In this review, we will give an outline per infection in which ACAAs might play a role and whether additional immunomodulatory treatment next to antimicrobial treatment can be considered. Finally, we describe the areas for future research on ACAAs.
Collapse
Affiliation(s)
- Rob J. W. Arts
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS), Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (N.A.F.J.); (F.L.v.d.V.)
| | - Nico A. F. Janssen
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS), Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (N.A.F.J.); (F.L.v.d.V.)
- Center of Expertise in Mycology Radboudumc, Canisius-Wilhelmina Hospital, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Department of Infectious Diseases, The National Aspergillosis Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Southmoor Road, Wythenshawe, Manchester M23 9LT, UK
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Frank L. van de Veerdonk
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS), Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (N.A.F.J.); (F.L.v.d.V.)
- Center of Expertise in Mycology Radboudumc, Canisius-Wilhelmina Hospital, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
19
|
Noma K, Tsumura M, Nguyen T, Asano T, Sakura F, Tamaura M, Imanaka Y, Mizoguchi Y, Karakawa S, Hayakawa S, Shoji T, Hosokawa J, Izawa K, Ling Y, Casanova JL, Puel A, Tangye SG, Ma CS, Ohara O, Okada S. Isolated Chronic Mucocutaneous Candidiasis due to a Novel Duplication Variant of IL17RC. J Clin Immunol 2023; 44:18. [PMID: 38129603 PMCID: PMC10807285 DOI: 10.1007/s10875-023-01601-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023]
Abstract
PURPOSE Inborn errors of the IL-17A/F-responsive pathway lead to chronic mucocutaneous candidiasis (CMC) as a predominant clinical phenotype, without other significant clinical manifestations apart from mucocutaneous staphylococcal diseases. Among inborn errors affecting IL-17-dependent immunity, autosomal recessive (AR) IL-17RC deficiency is a rare disease with only three kindreds described to date. The lack of an in vitro functional evaluation system of IL17RC variants renders its diagnosis difficult. We sought to characterize a 7-year-old Japanese girl with CMC carrying a novel homozygous duplication variant of IL17RC and establish a simple in vitro system to evaluate the impact of this variant. METHODS Flow cytometry, qPCR, RNA-sequencing, and immunoblotting were conducted, and an IL17RC-knockout cell line was established for functional evaluation. RESULTS The patient presented with oral and mucocutaneous candidiasis without staphylococcal diseases since the age of 3 months. Genetic analysis showed that the novel duplication variant (Chr3: 9,971,476-9,971,606 dup (+131bp)) involving exon 13 of IL17RC results in a premature stop codon (p.D457Afs*16 or p.D457Afs*17). Our functional evaluation system revealed this duplication to be loss-of-function and enabled discrimination between loss-of-function and neutral IL17RC variants. The lack of response to IL-17A by the patient's SV40-immortalized fibroblasts was restored by introducing WT-IL17RC, suggesting that the genotype identified is responsible for her clinical phenotype. CONCLUSIONS The clinical and cellular phenotype of the current case of AR IL-17RC deficiency supports a previous report on this rare disorder. Our newly established evaluation system will be useful for the diagnosis of AR IL-17RC deficiency, providing accurate validation of unknown IL17RC variants.
Collapse
Affiliation(s)
- Kosuke Noma
- Department of Pediatrics, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Miyuki Tsumura
- Department of Pediatrics, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Tina Nguyen
- Immunology Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| | - Takaki Asano
- Department of Pediatrics, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Fumiaki Sakura
- Department of Pediatrics, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Moe Tamaura
- Department of Pediatrics, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Yusuke Imanaka
- Department of Pediatrics, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Yoko Mizoguchi
- Department of Pediatrics, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Shuhei Karakawa
- Department of Pediatrics, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Seiichi Hayakawa
- Department of Pediatrics, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Takayo Shoji
- Division of Pediatric Infectious Diseases, Shizuoka Children's Hospital, Shizuoka, Japan
| | | | - Kazushi Izawa
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yun Ling
- Department of Infectious Disease, Shanghai Public Health Clinical Center, Shanghai, China
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris Cité, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris Cité, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Stuart G Tangye
- Immunology Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| | - Cindy S Ma
- Immunology Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| | - Osamu Ohara
- Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
| | - Satoshi Okada
- Department of Pediatrics, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| |
Collapse
|
20
|
Carlson SL, Mathew L, Savage M, Kok K, Lindsay JO, Munro CA, McCarthy NE. Mucosal Immunity to Gut Fungi in Health and Inflammatory Bowel Disease. J Fungi (Basel) 2023; 9:1105. [PMID: 37998910 PMCID: PMC10672531 DOI: 10.3390/jof9111105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/09/2023] [Accepted: 11/12/2023] [Indexed: 11/25/2023] Open
Abstract
The gut microbiome is a diverse microbial community composed of bacteria, viruses, and fungi that plays a major role in human health and disease. Dysregulation of these gut organisms in a genetically susceptible host is fundamental to the pathogenesis of inflammatory bowel disease (IBD). While bacterial dysbiosis has been a predominant focus of research for many years, there is growing recognition that fungal interactions with the host immune system are an important driver of gut inflammation. Candida albicans is likely the most studied fungus in the context of IBD, being a near universal gut commensal in humans and also a major barrier-invasive pathogen. There is emerging evidence that intra-strain variation in C. albicans virulence factors exerts a critical influence on IBD pathophysiology. In this review, we describe the immunological impacts of variations in C. lbicans colonisation, morphology, genetics, and proteomics in IBD, as well as the clinical and therapeutic implications.
Collapse
Affiliation(s)
- Sean L. Carlson
- Centre for Immunobiology, The Blizard Institute, Queen Mary University of London, London E1 2AT, UK
- Gastroenterology Department, Royal London Hospital, Barts Health NHS Trust, London E1 1BB, UK
| | - Liya Mathew
- Centre for Immunobiology, The Blizard Institute, Queen Mary University of London, London E1 2AT, UK
| | - Michael Savage
- Centre for Immunobiology, The Blizard Institute, Queen Mary University of London, London E1 2AT, UK
| | - Klaartje Kok
- Centre for Immunobiology, The Blizard Institute, Queen Mary University of London, London E1 2AT, UK
- Gastroenterology Department, Royal London Hospital, Barts Health NHS Trust, London E1 1BB, UK
| | - James O. Lindsay
- Centre for Immunobiology, The Blizard Institute, Queen Mary University of London, London E1 2AT, UK
- Gastroenterology Department, Royal London Hospital, Barts Health NHS Trust, London E1 1BB, UK
| | - Carol A. Munro
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB24 3FX, UK
| | - Neil E. McCarthy
- Centre for Immunobiology, The Blizard Institute, Queen Mary University of London, London E1 2AT, UK
| |
Collapse
|
21
|
Noma K, Tsumura M, Nguyen T, Asano T, Sakura F, Tamaura M, Imanaka Y, Mizoguchi Y, Karakawa S, Hayakawa S, Shoji T, Hosokawa J, Izawa K, Ling Y, Casanova JL, Puel A, Tangye SG, Ma CS, Ohara O, Okada S. Isolated chronic mucocutaneous candidiasis due to a novel duplication variant of IL17RC. RESEARCH SQUARE 2023:rs.3.rs-3062583. [PMID: 37577484 PMCID: PMC10418529 DOI: 10.21203/rs.3.rs-3062583/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Purpose Inborn errors of the IL-17A/F-responsive pathway lead to chronic mucocutaneous candidiasis (CMC) as a predominant clinical phenotype, without other significant clinical manifestations apart from mucocutaneous staphylococcal diseases. Amongst inborn errors affecting IL-17-dependent immunity, autosomal recessive (AR) IL-17RC deficiency is a rare disease with only three kindreds described to date. The lack of an in vitro functional evaluation system of IL17RC variants renders its diagnosis difficult. We sought to characterize a seven-year-old Japanese girl with CMC carrying a novel homozygous duplication variant of IL17RC and establish a simple in vitro system to evaluate the impact of this variant. Methods Flow cytometry, qPCR, RNA-sequencing, and immunoblotting were conducted, and an IL17RC-knockout cell line was established for functional evaluation. Results The patient presented with oral and mucocutaneous candidiasis without staphylococcal diseases since the age of three months. Genetic analysis showed that the novel duplication variant (Chr3: 9,971,476-9,971,606 dup (+ 131bp)) involving exon 13 of IL17RC results in a premature stop codon (p.D457Afs*16 or p.D457Afs*17). Our functional evaluation system revealed this duplication to be loss-of-function and enabled discrimination between loss-of-function and neutral IL17RC variants. The lack of response to IL-17A by the patient's SV40-immortalized fibroblasts was restored by introducing WT-IL17RC, suggesting that the genotype identified is responsible for her clinical phenotype. Conclusions The clinical and cellular phenotype of the current case of AR IL-17RC deficiency supports a previous report on this rare disorder. Our newly established evaluation system will be useful for diagnosis of AR IL-17RC deficiency, providing accurate validation of unknown IL17RC variants.
Collapse
Affiliation(s)
- Kosuke Noma
- Hiroshima University Graduate School of Biomedical and Health Sciences
| | - Miyuki Tsumura
- Hiroshima University Graduate School of Biomedical and Health Sciences
| | - Tina Nguyen
- Hiroshima University Graduate School of Biomedical and Health Sciences
| | - Takaki Asano
- Hiroshima University Graduate School of Biomedical and Health Sciences
| | - Fumiaki Sakura
- Hiroshima University Graduate School of Biomedical and Health Sciences
| | - Moe Tamaura
- Hiroshima University Graduate School of Biomedical and Health Sciences
| | - Yusuke Imanaka
- Hiroshima University Graduate School of Biomedical and Health Sciences
| | - Yoko Mizoguchi
- Hiroshima University Graduate School of Biomedical and Health Sciences
| | - Shuhei Karakawa
- Hiroshima University Graduate School of Biomedical and Health Sciences
| | - Seiichi Hayakawa
- Hiroshima University Graduate School of Biomedical and Health Sciences
| | - Takayo Shoji
- Hiroshima University Graduate School of Biomedical and Health Sciences
| | - Junichi Hosokawa
- Hiroshima University Graduate School of Biomedical and Health Sciences
| | - Kazushi Izawa
- Hiroshima University Graduate School of Biomedical and Health Sciences
| | - Yun Ling
- Hiroshima University Graduate School of Biomedical and Health Sciences
| | | | - Anne Puel
- Hiroshima University Graduate School of Biomedical and Health Sciences
| | - Stuart G Tangye
- Hiroshima University Graduate School of Biomedical and Health Sciences
| | - Cindy S Ma
- Hiroshima University Graduate School of Biomedical and Health Sciences
| | - Osamu Ohara
- Hiroshima University Graduate School of Biomedical and Health Sciences
| | - Satoshi Okada
- Hiroshima University Graduate School of Biomedical and Health Sciences
| |
Collapse
|
22
|
Yakıcı N, Oskay Halaçlı S, Tan Ç, Gür Çetinkaya P, Akar HT, Çavdarlı B, Özbek B, Çağdaş D, Tezcan İ. A Novel Interleukin 17 Receptor A Mutation in a Child with Chronic Mucocutaneous Candidiasis and Staphylococcal Skin Infections. Turk Arch Pediatr 2023; 58:442-447. [PMID: 37317577 PMCID: PMC10441147 DOI: 10.5152/turkarchpediatr.2023.22311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 03/16/2023] [Indexed: 06/16/2023]
Abstract
OBJECTIVE Chronic mucocutaneous candidiasis leads to persistent or recurrent fungal infections of the nail, skin, oral, and genital mucosa. Impaired interleukin 17-mediated immunity is a cause of chronic mucocutaneous candidiasis. We aimed to show the pathogenicity of a novel interleukin 17 receptor A mutation through functional studies. MATERIALS AND METHODS After next-generation sequencing analysis showed the interleukin 17 receptor A variant, we confirmed the variant by Sanger sequencing and functional validation of the variant by flow cytometry. RESULTS We present the case of a 6-year-old male patient who presented with recurrent oral and genital Candida infections and eczema. He had staphylococcal skin lesions, fungal susceptibility, and eczema. The patient carried a novel homozygous nonsense [(c.787C> T) (p.Arg263Ter)] mutation in the interleukin 17 receptor A gene. Sanger sequencing confirmed the variant and revealed the segregation of the variant in the family. We used flow cytometry to detect interleukin 17 receptor A protein expression in peripheral blood mononuclear cells from patients and measured Th17 cell percentage. We observed low interleukin 17 receptor A protein expression in patient peripheral blood mononuclear cells, decreased CD4+ interleukin 17+ cell percentage, and decreased interleukin 17F expression in CD4+ cells compared to healthy controls. CONCLUSIONS Innate immune defects may lead to chronic recurrent fungal and bacterial infections of the skin, mucosa, and nails. Generally, genetic and functional analysis is needed in addition to basic immunological tests.
Collapse
Affiliation(s)
- Nalan Yakıcı
- Department of Pediatric Immunology and Allergy, Karadeniz Technical University Faculty of Medicine, Trabzon, Turkey
| | - Sevil Oskay Halaçlı
- Department of Pediatric Immunology, Hacettepe University Faculty of Medicine, İhsan Doğramacı Children's Hospital, Ankara, Turkey
| | - Çağman Tan
- Department of Pediatric Immunology, Hacettepe University Faculty of Medicine, İhsan Doğramacı Children's Hospital, Ankara, Turkey
| | - Pınar Gür Çetinkaya
- Department of Pediatric Immunology, Hacettepe University Faculty of Medicine, İhsan Doğramacı Children's Hospital, Ankara, Turkey
| | - Halil T. Akar
- Department of Pediatric Immunology, Hacettepe University Faculty of Medicine, İhsan Doğramacı Children's Hospital, Ankara, Turkey
| | - Büşra Çavdarlı
- Department of Medical Genetics, Ankara City Hospital, Ankara, Turkey
| | - Begüm Özbek
- Department of Pediatric Immunology, Hacettepe University Faculty of Medicine, İhsan Doğramacı Children's Hospital, Ankara, Turkey
| | - Deniz Çağdaş
- Department of Pediatric Immunology, Hacettepe University Faculty of Medicine, İhsan Doğramacı Children's Hospital, Ankara, Turkey
| | - İlhan Tezcan
- Department of Pediatric Immunology, Hacettepe University Faculty of Medicine, İhsan Doğramacı Children's Hospital, Ankara, Turkey
| |
Collapse
|
23
|
Lionakis MS, Drummond RA, Hohl TM. Immune responses to human fungal pathogens and therapeutic prospects. Nat Rev Immunol 2023; 23:433-452. [PMID: 36600071 PMCID: PMC9812358 DOI: 10.1038/s41577-022-00826-w] [Citation(s) in RCA: 118] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2022] [Indexed: 01/06/2023]
Abstract
Pathogenic fungi have emerged as significant causes of infectious morbidity and death in patients with acquired immunodeficiency conditions such as HIV/AIDS and following receipt of chemotherapy, immunosuppressive agents or targeted biologics for neoplastic or autoimmune diseases, or transplants for end organ failure. Furthermore, in recent years, the spread of multidrug-resistant Candida auris has caused life-threatening outbreaks in health-care facilities worldwide and raised serious concerns for global public health. Rapid progress in the discovery and functional characterization of inborn errors of immunity that predispose to fungal disease and the development of clinically relevant animal models have enhanced our understanding of fungal recognition and effector pathways and adaptive immune responses. In this Review, we synthesize our current understanding of the cellular and molecular determinants of mammalian antifungal immunity, focusing on observations that show promise for informing risk stratification, prognosis, prophylaxis and therapies to combat life-threatening fungal infections in vulnerable patient populations.
Collapse
Affiliation(s)
- Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Rebecca A Drummond
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Tobias M Hohl
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
24
|
Cannon L, Pan A, Kovalick L, Sarkissian A, Wu EY. Secondary immunodeficiencies and infectious considerations of biologic immunomodulatory therapies. Ann Allergy Asthma Immunol 2023; 130:718-726. [PMID: 36801438 PMCID: PMC10247415 DOI: 10.1016/j.anai.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/02/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023]
Abstract
Biologic immunomodulatory medications have rapidly expanded in the previous decades, providing new treatment options for individuals with a spectrum of oncologic, allergic, rheumatologic, and neurologic conditions. Biologic therapies alter immune function and can impair key host defense mechanisms, resulting in secondary immunodeficiency and increased infectious risks. Biologic medications can increase general risk for upper respiratory tract infections but can also be associated with unique infectious risks owing to distinct mechanisms of action. With the widespread use of these medications, providers in every area of medicine will likely care for individuals receiving biologic therapies and understanding their potential infectious complications can help mitigate these risks. This practical review discusses the infectious implications of biologics by class of medication and provides recommendations regarding the examination and screening both before therapy initiation and while the patient is receiving the medication. With this knowledge and background, providers can reduce risk whereas patients receive the treatment benefits of these biologic medications.
Collapse
Affiliation(s)
- Laura Cannon
- Division of Pediatric Rheumatology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Alice Pan
- Division of Pediatric Rheumatology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Pharmacy, UNC Health, Chapel Hill, North Carolina
| | - Leonard Kovalick
- Division of Pediatric Rheumatology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Aliese Sarkissian
- Division of Pediatric Rheumatology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Eveline Y Wu
- Division of Pediatric Rheumatology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Division of Pediatric Allergy/Immunology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| |
Collapse
|
25
|
Lionakis MS. Exploiting antifungal immunity in the clinical context. Semin Immunol 2023; 67:101752. [PMID: 37001464 PMCID: PMC10192293 DOI: 10.1016/j.smim.2023.101752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Indexed: 03/31/2023]
Abstract
The continuous expansion of immunocompromised patient populations at-risk for developing life-threatening opportunistic fungal infections in recent decades has helped develop a deeper understanding of antifungal host defenses, which has provided the foundation for eventually devising immune-based targeted interventions in the clinic. This review outlines how genetic variation in certain immune pathway-related genes may contribute to the observed clinical variability in the risk of acquisition and/or severity of fungal infections and how immunogenetic-based patient stratification may enable the eventual development of personalized strategies for antifungal prophylaxis and/or vaccination. Moreover, this review synthesizes the emerging cytokine-based, cell-based, and other immunotherapeutic strategies that have shown promise as adjunctive therapies for boosting or modulating tissue-specific antifungal immune responses in the context of opportunistic fungal infections.
Collapse
Affiliation(s)
- Michail S Lionakis
- From the Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
26
|
Reilev M, Jensen PB, Ranch LS, Egeberg A, Furu K, Gembert K, Hagg D, Haug U, Karlstad Ø, Reutfors J, Schäfer W, Schwartz S, Smits E, Holthius E, Herings R, Trifirò G, Kirchmayer U, Rosa AC, Belleudi V, Gini R, Støvring H, Hallas J. Methodology of the brodalumab assessment of hazards: a multicentre observational safety (BRAHMS) study. BMJ Open 2023; 13:e066057. [PMID: 36725094 PMCID: PMC9896233 DOI: 10.1136/bmjopen-2022-066057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
INTRODUCTION Safe and effective pharmacological treatment is of paramount importance for treating severe psoriasis. Brodalumab, a monoclonal antibody against interleukin (IL) 17 receptor A, was granted marketing authorisation in the EU in 2017. The European Medicines Agency requested a postauthorisation safety study of brodalumab to address potential safety issues raised during drug development regarding major adverse cardiovascular events, suicidal conduct, cancer and serious infections. METHODS AND ANALYSIS BRodalumab Assessment of Hazards: A Multinational Safety is a multicentre observational safety study of brodalumab running from 2017 to 2029 using population-based healthcare databases from Denmark, Sweden, Norway, Netherlands, Germany and three different centres in Italy. A distributed database network approach is used, such that only aggregate data are exchanged between sites.Two types of designs are used: a case-time-control design to study acute effects of transient treatment and a variation of the new user active comparator design to study the effects of transient or chronic treatment. As comparators, inhibitors of TNF-α, inhibitors of IL-12 and IL-23, and other inhibitors of cytokine IL-17A are included.In the self-controlled case-time-control design, the risk of developing the outcome of interest during periods of brodalumab use is compared within individuals to the risk in periods without use.In the active comparator cohort design, new users of brodalumab are identified and matched to new users of active comparators. Potential baseline confounders are adjusted for by using propensity score modelling. For outcomes that potentially require large cumulative exposure, an adapted active comparator design has been developed. ETHICS AND DISSEMINATION The study is approved by relevant authorities in Denmark, Norway, Sweden, the Netherlands, Germany and Italy in line with the relevant legislation at each site. Data confidentiality is secured by the distributed network approach. Results will be published in peer-reviewed journals. TRIAL REGISTRATION NUMBER EUPAS30280.
Collapse
Affiliation(s)
- Mette Reilev
- Clinical Pharmacology, Pharmacy and Environmental Medicine, University of Southern Denmark, Odense, Denmark
| | - Peter Bjødstrup Jensen
- Clinical Pharmacology, Pharmacy and Environmental Medicine, University of Southern Denmark, Odense, Denmark
| | - Lise Skov Ranch
- Biostatistics and Pharmacoepidemiology, LEO Pharma A/S, Ballerup, Denmark
| | - Alexander Egeberg
- Department of dermatology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Kari Furu
- Department of Chronic Diseases, Norwegian Institute of Public Helath, Oslo, Norway
| | - Karin Gembert
- Department of Medicine Solna, Centre for Pharmacoepidemiology, Karolinska Institute, Stockholm, Sweden
| | - David Hagg
- Department of Medicine Solna, Centre for Pharmacoepidemiology, Karolinska Institute, Stockholm, Sweden
| | - Ulrike Haug
- Clinical Epidemiology, Leibniz-Institute for Prevention Research and Epidemiology-BIPS, Bremen, Germany
- Faculty of Human and Health Science, University of Bremen, Bremen, Germany
| | - Øystein Karlstad
- Department of Chronic Diseases, Norwegian Institute of Public Helath, Oslo, Norway
| | - Johan Reutfors
- Department of Medicine Solna, Centre for Pharmacoepidemiology, Karolinska Institute, Stockholm, Sweden
| | - Wiebke Schäfer
- Clinical Epidemiology, Leibniz-Institute for Prevention Research and Epidemiology-BIPS, Bremen, Germany
| | - Sarina Schwartz
- Clinical Epidemiology, Leibniz-Institute for Prevention Research and Epidemiology-BIPS, Bremen, Germany
| | - Elisabeth Smits
- PHARMO Institute for Drug Outcomes Research, Utrecht, The Netherlands
| | - Emily Holthius
- PHARMO Institute for Drug Outcomes Research, Utrecht, The Netherlands
| | - Ron Herings
- PHARMO Institute for Drug Outcomes Research, Utrecht, The Netherlands
- Epidemiology and Data Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Gianluca Trifirò
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Ursula Kirchmayer
- Department of Epidemiology, Lazio Regional Health Service, Rome, Italy
| | | | - Valeria Belleudi
- Department of Epidemiology, Lazio Regional Health Service, Rome, Italy
| | - Rosa Gini
- Epidemiology Unit, Agenzia regionale di sanità della Toscana, Florence, Italy
| | - Henrik Støvring
- Clinical Pharmacology, Pharmacy and Environmental Medicine, University of Southern Denmark, Odense, Denmark
| | - Jesper Hallas
- Clinical Pharmacology, Pharmacy and Environmental Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
27
|
Lopes JP, Lionakis MS. Pathogenesis and virulence of Candida albicans. Virulence 2022; 13:89-121. [PMID: 34964702 PMCID: PMC9728475 DOI: 10.1080/21505594.2021.2019950] [Citation(s) in RCA: 180] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 12/18/2022] Open
Abstract
Candida albicans is a commensal yeast fungus of the human oral, gastrointestinal, and genital mucosal surfaces, and skin. Antibiotic-induced dysbiosis, iatrogenic immunosuppression, and/or medical interventions that impair the integrity of the mucocutaneous barrier and/or perturb protective host defense mechanisms enable C. albicans to become an opportunistic pathogen and cause debilitating mucocutaneous disease and/or life-threatening systemic infections. In this review, we synthesize our current knowledge of the tissue-specific determinants of C. albicans pathogenicity and host immune defense mechanisms.
Collapse
Affiliation(s)
- José Pedro Lopes
- From the Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD, USA
| | - Michail S. Lionakis
- From the Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD, USA
| |
Collapse
|
28
|
Drummond RA, Desai JV, Hsu AP, Oikonomou V, Vinh DC, Acklin JA, Abers MS, Walkiewicz MA, Anzick SL, Swamydas M, Vautier S, Natarajan M, Oler AJ, Yamanaka D, Mayer-Barber KD, Iwakura Y, Bianchi D, Driscoll B, Hauck K, Kline A, Viall NS, Zerbe CS, Ferré EM, Schmitt MM, DiMaggio T, Pittaluga S, Butman JA, Zelazny AM, Shea YR, Arias CA, Ashbaugh C, Mahmood M, Temesgen Z, Theofiles AG, Nigo M, Moudgal V, Bloch KC, Kelly SG, Whitworth MS, Rao G, Whitener CJ, Mafi N, Gea-Banacloche J, Kenyon LC, Miller WR, Boggian K, Gilbert A, Sincock M, Freeman AF, Bennett JE, Hasbun R, Mikelis CM, Kwon-Chung KJ, Belkaid Y, Brown GD, Lim JK, Kuhns DB, Holland SM, Lionakis MS. Human Dectin-1 deficiency impairs macrophage-mediated defense against phaeohyphomycosis. J Clin Invest 2022; 132:e159348. [PMID: 36377664 PMCID: PMC9663159 DOI: 10.1172/jci159348] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Subcutaneous phaeohyphomycosis typically affects immunocompetent individuals following traumatic inoculation. Severe or disseminated infection can occur in CARD9 deficiency or after transplantation, but the mechanisms protecting against phaeohyphomycosis remain unclear. We evaluated a patient with progressive, refractory Corynespora cassiicola phaeohyphomycosis and found that he carried biallelic deleterious mutations in CLEC7A encoding the CARD9-coupled, β-glucan-binding receptor, Dectin-1. The patient's PBMCs failed to produce TNF-α and IL-1β in response to β-glucan and/or C. cassiicola. To confirm the cellular and molecular requirements for immunity against C. cassiicola, we developed a mouse model of this infection. Mouse macrophages required Dectin-1 and CARD9 for IL-1β and TNF-α production, which enhanced fungal killing in an interdependent manner. Deficiency of either Dectin-1 or CARD9 was associated with more severe fungal disease, recapitulating the human observation. Because these data implicated impaired Dectin-1 responses in susceptibility to phaeohyphomycosis, we evaluated 17 additional unrelated patients with severe forms of the infection. We found that 12 out of 17 carried deleterious CLEC7A mutations associated with an altered Dectin-1 extracellular C-terminal domain and impaired Dectin-1-dependent cytokine production. Thus, we show that Dectin-1 and CARD9 promote protective TNF-α- and IL-1β-mediated macrophage defense against C. cassiicola. More broadly, we demonstrate that human Dectin-1 deficiency may contribute to susceptibility to severe phaeohyphomycosis by certain dematiaceous fungi.
Collapse
Affiliation(s)
| | | | - Amy P. Hsu
- Immunopathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | | | - Donald C. Vinh
- Division of Infectious Diseases, McGill University Health Centre (MUHC), and Infectious Disease Susceptibility Program, Research Institute-MUHC, Montreal, Quebec, Canada
| | - Joshua A. Acklin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | - Sarah L. Anzick
- Research Technologies Branches, NIAID, NIH, Hamilton, Montana, USA
| | | | | | | | - Andrew J. Oler
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, NIAID, NIH, Bethesda, Maryland, USA
| | - Daisuke Yamanaka
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | | | - Yoichiro Iwakura
- Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - David Bianchi
- National Institute of Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
| | - Brian Driscoll
- National Institute of Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
| | - Ken Hauck
- National Institute of Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
| | | | | | - Christa S. Zerbe
- Immunopathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | | | | | | | - Stefania Pittaluga
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, Maryland, USA
| | | | - Adrian M. Zelazny
- Department of Laboratory Medicine, NIH Clinical Center, NIH, Bethesda, Maryland, USA
| | - Yvonne R. Shea
- Department of Laboratory Medicine, NIH Clinical Center, NIH, Bethesda, Maryland, USA
| | - Cesar A. Arias
- Division of Infectious Diseases, Houston Methodist Hospital, Houston, Texas, USA
- Center for Infectious Research, Houston Methodist Research Institute, Houston, Texas, USA
| | - Cameron Ashbaugh
- Division of Infectious Diseases, UCSF, San Francisco, California, USA
| | - Maryam Mahmood
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | - Zelalem Temesgen
- Division of Hospital Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Masayuki Nigo
- Division of Infectious Diseases, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Varsha Moudgal
- Department of Internal Medicine, St. Joseph Mercy Hospital, Ann Arbor, Michigan, USA
| | - Karen C. Bloch
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sean G. Kelly
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Ganesh Rao
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Cindy J. Whitener
- Division of Infectious Diseases, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Neema Mafi
- Division of Infectious Diseases, Mayo Clinic Hospital, Phoenix, Arizona, USA
| | | | - Lawrence C. Kenyon
- Department of Pathology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - William R. Miller
- Division of Infectious Diseases, Houston Methodist Hospital, Houston, Texas, USA
- Center for Infectious Research, Houston Methodist Research Institute, Houston, Texas, USA
| | - Katia Boggian
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St. Gallen, Switzerland
| | - Andrea Gilbert
- Department of Pathology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | | | - Alexandra F. Freeman
- Immunopathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | | | - Rodrigo Hasbun
- Department of Internal Medicine, University of Texas Health Science Center, Houston, Texas, USA
| | - Constantinos M. Mikelis
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, USA
- Department of Pharmacy, University of Patras, Patras, Greece
| | | | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, NIAID, NIH, Bethesda, Maryland, USA
| | - Gordon D. Brown
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Jean K. Lim
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Douglas B. Kuhns
- Neutrophil Monitoring Laboratory, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Steven M. Holland
- Immunopathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | | |
Collapse
|
29
|
Ziegler CGK, Owings AH, Miao VN, Navia AW, Tang Y, Bromley JD, Lotfy P, Sloan M, Laird H, Williams HB, George M, Drake RS, Pride Y, Abraham GE, Senitko M, Robinson TO, Lionakis MS, Shalek AK, Ordovas-Montanes J, Horwitz BH, Glover SC. Severe COVID-19 is associated with fungal colonization of the nasopharynx and potent induction of IL-17 responses in the nasal epithelium. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.10.25.22281528. [PMID: 36324802 PMCID: PMC9628205 DOI: 10.1101/2022.10.25.22281528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent case reports and epidemiological data suggest fungal infections represent an under-appreciated complication among people with severe COVID-19. However, the frequency of fungal colonization in patients with COVID-19 and associations with specific immune responses in the airways remain incompletely defined. We previously generated a single-cell RNA-sequencing (scRNA-seq) dataset characterizing the upper respiratory microenvironment during COVID-19, and mapped the relationship between disease severity and the local behavior of nasal epithelial cells and infiltrating immune cells. Our study, in agreement with findings from related human cohorts, demonstrated that a profound deficiency in host immunity, particularly in type I and type III interferon signaling in the upper respiratory tract, is associated with rapid progression to severe disease and worse clinical outcomes. We have now performed further analysis of this cohort and identified a subset of participants with severe COVID-19 and concurrent detection of Candida species-derived transcripts within samples collected from the nasopharynx and trachea. Here, we present the clinical characteristics of these individuals, including confirmatory diagnostic testing demonstrating elevated serum (1, 3)-β-D-glucan and/or confirmed fungal culture of the predicted pathogen. Using matched single-cell transcriptomic profiles of these individuals' respiratory mucosa, we identify epithelial immune signatures suggestive of IL-17 stimulation and anti-fungal immunity. Further, we observe significant expression of anti-fungal inflammatory cascades in the nasal and tracheal epithelium of all participants who went on to develop severe COVID-19, even among participants without detectable genetic material from fungal pathogens. Together, our data suggests that IL-17 stimulation - in part driven by Candida colonization - and blunted type I/III interferon signaling represents a common feature of severe COVID-19 infection.
Collapse
Affiliation(s)
- Carly G. K. Ziegler
- Program in Health Sciences & Technology, Harvard Medical School & MIT, Boston, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Graduate Program in Biophysics, Harvard University, Cambridge, MA, USA
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anna H. Owings
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Vincent N. Miao
- Program in Health Sciences & Technology, Harvard Medical School & MIT, Boston, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andrew W. Navia
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ying Tang
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital, Boston, MA, USA
| | - Joshua D. Bromley
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Microbiology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Peter Lotfy
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital, Boston, MA, USA
| | - Meredith Sloan
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Hannah Laird
- Division of Digestive Diseases, University of Mississippi Medical Center, Jackson, MS, USA
| | - Haley B. Williams
- Division of Digestive Diseases, University of Mississippi Medical Center, Jackson, MS, USA
| | - Micayla George
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Riley S. Drake
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yilianys Pride
- Division of Digestive Diseases, University of Mississippi Medical Center, Jackson, MS, USA
| | - George E. Abraham
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Michal Senitko
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Tanya O. Robinson
- Division of Digestive Diseases, University of Mississippi Medical Center, Jackson, MS, USA
| | - Michail S. Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD, USA
| | - Alex K. Shalek
- Program in Health Sciences & Technology, Harvard Medical School & MIT, Boston, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Graduate Program in Biophysics, Harvard University, Cambridge, MA, USA
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Program in Immunology, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Jose Ordovas-Montanes
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital, Boston, MA, USA
- Program in Immunology, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Bruce H. Horwitz
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital, Boston, MA, USA
- Program in Immunology, Harvard Medical School, Boston, MA, USA
- Division of Emergency Medicine, Boston Children’s Hospital, Boston, MA, USA
| | - Sarah C. Glover
- Division of Digestive Diseases, University of Mississippi Medical Center, Jackson, MS, USA
- Center for Immunology and Microbial Research, Department of Cell & Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
30
|
Differential Spleen miRNA Expression Profile of Beagle Dogs Infected with Toxocara canis. Animals (Basel) 2022; 12:ani12192638. [PMID: 36230377 PMCID: PMC9558963 DOI: 10.3390/ani12192638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 12/02/2022] Open
Abstract
Toxocara canis is an unnoticed zoonotic helminth that causes severe disease in animals and humans. The spleen has a wide range of immunological functions in protecting the host against infection by many pathogens, but the function of the spleen in T. canis infection is still to be clarified, especially for the role of spleen microRNAs (miRNAs). In this study, deep sequencing of spleen RNA samples of 18 Beagle puppies was conducted to uncover the miRNAs expression profiling at 24 h post-infection (hpi), 96 hpi, and 36 days post infection (dpi). A total of 20, 34, and 19 differentially expressed miRNAs (DEmiRNAs) were identified at 24 hpi, 96 hpi, and 36 dpi, respectively. These DEmiRNAs (e.g., cfa-miR-206, cfa-miR-331, and cfa-miR-339) could play critical roles in Beagle puppies against T. canis infection, such as influencing inflammatory and immune-related cells and cytokines, by regulating target genes that are tightly associated with host immune function and enriched in immune response and immune pathways based on GO annotation and KEGG enrichment analysis. The current study discovered marked alterations of spleen miRNAs after T. canis infection, with potential effects on the pathogenesis of toxocariasis.
Collapse
|
31
|
Millet N, Solis NV, Aguilar D, Lionakis MS, Wheeler RT, Jendzjowsky N, Swidergall M. IL-23 signaling prevents ferroptosis-driven renal immunopathology during candidiasis. Nat Commun 2022; 13:5545. [PMID: 36138043 PMCID: PMC9500047 DOI: 10.1038/s41467-022-33327-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 09/13/2022] [Indexed: 01/04/2023] Open
Abstract
During infection the host relies on pattern-recognition receptors to sense invading fungal pathogens to launch immune defense mechanisms. While fungal recognition and immune effector responses are organ and cell type specific, during disseminated candidiasis myeloid cells exacerbate collateral tissue damage. The β-glucan receptor ephrin type-A 2 receptor (EphA2) is required to initiate mucosal inflammatory responses during oral Candida infection. Here we report that EphA2 promotes renal immunopathology during disseminated candidiasis. EphA2 deficiency leads to reduced renal inflammation and injury. Comprehensive analyses reveal that EphA2 restrains IL-23 secretion from and migration of dendritic cells. IL-23 signaling prevents ferroptotic host cell death during infection to limit inflammation and immunopathology. Further, host cell ferroptosis limits antifungal effector functions via releasing the lipid peroxidation product 4-hydroxynonenal to induce various forms of cell death. Thus, we identify ferroptotic cell death as a critical pathway of Candida-mediated renal immunopathology that opens a new avenue to tackle Candida infection and inflammation.
Collapse
Affiliation(s)
- Nicolas Millet
- grid.239844.00000 0001 0157 6501Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, CA USA ,grid.513199.6The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA USA
| | - Norma V. Solis
- grid.239844.00000 0001 0157 6501Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, CA USA ,grid.513199.6The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA USA
| | - Diane Aguilar
- grid.513199.6The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA USA
| | - Michail S. Lionakis
- grid.419681.30000 0001 2164 9667Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD USA
| | - Robert T. Wheeler
- grid.21106.340000000121820794Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME USA
| | - Nicholas Jendzjowsky
- grid.513199.6The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA USA ,grid.19006.3e0000 0000 9632 6718David Geffen School of Medicine at UCLA, Los Angeles, CA USA
| | - Marc Swidergall
- grid.239844.00000 0001 0157 6501Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, CA USA ,grid.513199.6The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA USA ,grid.19006.3e0000 0000 9632 6718David Geffen School of Medicine at UCLA, Los Angeles, CA USA
| |
Collapse
|
32
|
Hazime R, Eddehbi FE, El Mojadili S, Lakhouaja N, Souli I, Salami A, M’Raouni B, Brahim I, Oujidi M, Guennouni M, Bousfiha AA, Admou B. Inborn errors of immunity and related microbiome. Front Immunol 2022; 13:982772. [PMID: 36177048 PMCID: PMC9513548 DOI: 10.3389/fimmu.2022.982772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/19/2022] [Indexed: 11/15/2022] Open
Abstract
Inborn errors of immunity (IEI) are characterized by diverse clinical manifestations that are dominated by atypical, recurrent, chronic, or severe infectious or non-infectious features, including autoimmunity, lymphoproliferative disease, granulomas, and/or malignancy, which contribute substantially to morbidity and mortality. Some data suggest a correlation between clinical manifestations of IEI and altered gut microbiota. Many IEI display microbial dysbiosis resulting from the proliferation of pro-inflammatory bacteria or a decrease in anti-inflammatory bacteria with variations in the composition and function of numerous microbiota. Dysbiosis is considered more established, mainly within common variable immunodeficiency, selective immunoglobulin A deficiency, severe combined immunodeficiency diseases, Wiskott–Aldrich syndrome, Hyper-IgE syndrome, autoimmune polyendocrinopathy–candidiasis–ectodermal-dystrophy (APECED), immune dysregulation, polyendocrinopathy, enteropathy X-linked (IPEX) syndrome, IL-10 receptor deficiency, chronic granulomatous disease, and Kostmann disease. For certain IEIs, the specific predominance of gastrointestinal, respiratory, and cutaneous involvement, which is frequently associated with dysbiosis, justifies the interest for microbiome identification. With the better understanding of the relationship between gut microbiota, host immunity, and infectious diseases, the integration of microbiota modulation as a therapeutic approach or a preventive measure of infection becomes increasingly relevant. Thus, a promising strategy is to develop optimized prebiotics, probiotics, postbiotics, and fecal microbial transplantation to rebalance the intestinal microbiota and thereby attenuate the disease activity of many IEIs.
Collapse
Affiliation(s)
- Raja Hazime
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
- Biosciences Research Laboratory, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| | - Fatima-Ezzohra Eddehbi
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Saad El Mojadili
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Nadia Lakhouaja
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Ikram Souli
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Abdelmouïne Salami
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Bouchra M’Raouni
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Imane Brahim
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Mohamed Oujidi
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Morad Guennouni
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Ahmed Aziz Bousfiha
- Pediatric infectious and Immunology Department, Ibn Rochd University Hospital, Casablanca, Morocco
- Laboratory of Clinical Immunology inflammation and Allergy, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Brahim Admou
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
- Biosciences Research Laboratory, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
- *Correspondence: Brahim Admou,
| |
Collapse
|
33
|
Raymond LS, Leiding J, Forbes-Satter LR. Diagnostic Modalities in Primary Immunodeficiency. Clin Rev Allergy Immunol 2022; 63:90-98. [PMID: 35290615 DOI: 10.1007/s12016-022-08933-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2022] [Indexed: 01/12/2023]
Abstract
As the field of inborn errors of immunity expands, providers continually update and fine-tune their diagnostic approach and selection of testing modalities to increase diagnostic accuracy. Here, we first describe a mechanistic consideration of laboratory testing, highlighting both benefits and drawbacks of currently clinically available testing modalities. Next, we provide methods in evaluation of patients presenting with concern for inborn errors of immunity as defined by the International Union of Immunological Societies 2019 phenotypic categories: primary antibody deficiencies, cellular and humoral immune deficiency, disorders of the innate immune system, and syndrome-associated and primary immune regulation disorders (PIRDs). Using the suggested approach in this paper as a roadmap highlights the importance of thorough history taking and physical examination as the foundation to guide further diagnostic tests. This is followed by enumeration and functional testing. Finally, to determine the underlying molecular etiology-specific genetic panels, chromosomal microarrays, and broad genetic testing (whole exome sequencing or whole genome sequencing) are available.
Collapse
Affiliation(s)
- Loveita S Raymond
- Department of Medicine, Baylor College of Medicine, Houston, USA.,William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, USA
| | - Jennifer Leiding
- Department of Pediatrics, John's Hopkins University, All Children's Hospital, Baltimore, USA
| | - Lisa R Forbes-Satter
- Department of Medicine, Baylor College of Medicine, Houston, USA. .,Department of Pediatrics, John's Hopkins University, All Children's Hospital, Baltimore, USA. .,William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, USA.
| |
Collapse
|
34
|
A Fun-Guide to Innate Immune Responses to Fungal Infections. J Fungi (Basel) 2022; 8:jof8080805. [PMID: 36012793 PMCID: PMC9409918 DOI: 10.3390/jof8080805] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/22/2022] Open
Abstract
Immunocompromised individuals are at high risk of developing severe fungal infections with high mortality rates, while fungal pathogens pose little risk to most healthy people. Poor therapeutic outcomes and growing antifungal resistance pose further challenges for treatments. Identifying specific immunomodulatory mechanisms exploited by fungal pathogens is critical for our understanding of fungal diseases and development of new therapies. A gap currently exists between the large body of literature concerning the innate immune response to fungal infections and the potential manipulation of host immune responses to aid clearance of infection. This review considers the innate immune mechanisms the host deploys to prevent fungal infection and how these mechanisms fail in immunocompromised hosts. Three clinically relevant fungal pathogens (Candida albicans, Cryptococcus spp. and Aspergillus spp.) will be explored. This review will also examine potential mechanisms of targeting the host therapeutically to improve outcomes of fungal infection.
Collapse
|
35
|
Efficacy of Cochleated Amphotericin B in Mouse and Human Mucocutaneous Candidiasis. Antimicrob Agents Chemother 2022; 66:e0030822. [PMID: 35699443 PMCID: PMC9295580 DOI: 10.1128/aac.00308-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Candida albicans causes debilitating, often azole-resistant, infections in patients with chronic mucocutaneous candidiasis (CMC). Amphotericin B (AMB) resistance is rare, but AMB use is limited by parenteral administration and nephrotoxicity. In this study, we evaluated cochleated AMB (CAMB), a new oral AMB formulation, in mouse models of oropharyngeal candidiasis (OPC) and vulvovaginal candidiasis (VVC) and in patients with azole-resistant CMC. OPC and VVC were modeled in Act1-/- mice, and mucosal tissue fungal burden was assessed after once-daily treatment with CAMB, vehicle, or AMB-deoxycholate (AMB-d). Four patients with azole-resistant CMC enrolled in a phase 2 CAMB dose-escalation study. The primary endpoint was clinical improvement at 2 weeks followed by optional extension for long-term CMC suppression to assess safety and efficacy. CAMB-treated mice had significantly reduced tongue and vaginal fungal burdens compared to vehicle-treated mice and exhibited comparable fungal burden reduction relative to AMB-d-treated mice. All CAMB-treated patients reached clinical efficacy by 2 weeks, three at 400 mg twice daily and one at 200 mg twice-daily dosing. All patients continued to the extension phase, with three having sustained clinical improvement of OPC and esophageal candidiasis (EC) for up to 60 months. One patient had a relapse of esophageal symptoms at week 24 and was withdrawn from further study. Clinical responses were not seen for onychomycosis or VVC. CAMB was safe and well-tolerated, without any evidence of nephrotoxicity. In summary, oral CAMB reduced tongue and vaginal fungal burdens during murine candidiasis. A proof-of-concept clinical trial in human CMC showed efficacy with good tolerability and safety. This study has been registered at ClinicalTrials.gov under identifier NCT02629419.
Collapse
|
36
|
Gray PE, Bartlett AW, Tangye SG. Severe COVID-19 represents an undiagnosed primary immunodeficiency in a high proportion of infected individuals. Clin Transl Immunology 2022; 11:e1365. [PMID: 35444807 PMCID: PMC9013505 DOI: 10.1002/cti2.1365] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 01/08/2023] Open
Abstract
Since the emergence of the COVID-19 pandemic in early 2020, a key challenge has been to define risk factors, other than age and pre-existing comorbidities, that predispose some people to severe disease, while many other SARS-CoV-2-infected individuals experience mild, if any, consequences. One explanation for intra-individual differences in susceptibility to severe COVID-19 may be that a growing percentage of otherwise healthy people have a pre-existing asymptomatic primary immunodeficiency (PID) that is unmasked by SARS-CoV-2 infection. Germline genetic defects have been identified in individuals with life-threatening COVID-19 that compromise local type I interferon (IFN)-mediated innate immune responses to SARS-CoV-2. Remarkably, these variants - which impact responses initiated through TLR3 and TLR7, as well as the response to type I IFN cytokines - may account for between 3% and 5% of severe COVID-19 in people under 70 years of age. Similarly, autoantibodies against type I IFN cytokines (IFN-α, IFN-ω) have been detected in patients' serum prior to infection with SARS-CoV-2 and were found to cause c. 20% of severe COVID-19 in the above 70s and 20% of total COVID-19 deaths. These autoantibodies, which are more common in the elderly, neutralise type I IFNs, thereby impeding innate antiviral immunity and phenocopying an inborn error of immunity. The discovery of PIDs underlying a significant percentage of severe COVID-19 may go some way to explain disease susceptibility, may allow for the application of targeted therapies such as plasma exchange, IFN-α or IFN-β, and may facilitate better management of social distancing, vaccination and early post-exposure prophylaxis.
Collapse
Affiliation(s)
- Paul E Gray
- Department of Immunology and Infectious Diseases Sydney Children's Hospital Randwick NSW Australia.,School of Women's and Children's Health University of New South Wales Randwick NSW Australia
| | - Adam W Bartlett
- Department of Immunology and Infectious Diseases Sydney Children's Hospital Randwick NSW Australia.,School of Women's and Children's Health University of New South Wales Randwick NSW Australia
| | - Stuart G Tangye
- Garvan Institute of Medical Research Darlinghurst NSW Australia.,St Vincent's Clinical School UNSW Sydney Randwick NSW Australia
| |
Collapse
|
37
|
Puel A, Bastard P, Bustamante J, Casanova JL. Human autoantibodies underlying infectious diseases. J Exp Med 2022; 219:e20211387. [PMID: 35319722 PMCID: PMC8952682 DOI: 10.1084/jem.20211387] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/14/2022] Open
Abstract
The vast interindividual clinical variability observed in any microbial infection-ranging from silent infection to lethal disease-is increasingly being explained by human genetic and immunological determinants. Autoantibodies neutralizing specific cytokines underlie the same infectious diseases as inborn errors of the corresponding cytokine or response pathway. Autoantibodies against type I IFNs underlie COVID-19 pneumonia and adverse reactions to the live attenuated yellow fever virus vaccine. Autoantibodies against type II IFN underlie severe disease caused by environmental or tuberculous mycobacteria, and other intra-macrophagic microbes. Autoantibodies against IL-17A/F and IL-6 are less common and underlie mucocutaneous candidiasis and staphylococcal diseases, respectively. Inborn errors of and autoantibodies against GM-CSF underlie pulmonary alveolar proteinosis; associated infections are less well characterized. In individual patients, autoantibodies against cytokines preexist infection with the pathogen concerned and underlie the infectious disease. Human antibody-driven autoimmunity can interfere with cytokines that are essential for protective immunity to specific infectious agents but that are otherwise redundant, thereby underlying specific infectious diseases.
Collapse
Affiliation(s)
- Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut national de la santé et de la recherche médicale, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut national de la santé et de la recherche médicale, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut national de la santé et de la recherche médicale, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut national de la santé et de la recherche médicale, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, Paris, France
| |
Collapse
|
38
|
Abstract
Over the past decades, tremendous success in the treatment of psoriasis has been achieved using biologics, such as neutralizing antibodies against TNF/TNFR, IL-23, and IL-17A/IL-17RA. Although psoriatic skin lesions appear to resolve after treatment with these biologics, lesions often recur after therapy is discontinued or during therapy. Memory T cells residing in the skin have been considered as the major driver of psoriasis relapse. However, whether structural cells in the skin such as keratinocytes and fibroblasts are involved in the relapse of psoriasis is unknown. In this review, we outline the therapeutic rationale of biologics used in the treatment of psoriasis, summarize different clinical features of psoriasis relapse on the basis of preclinical and clinical data, and specifically discuss how memory T cells and structural cells in the skin are involved in psoriasis relapse. Finally, we discuss the future challenges in the basic or clinical research on psoriasis.
Collapse
|
39
|
Armstrong AW, Blauvelt A, Mrowietz U, Strober B, Gisondi P, Merola JF, Langley RG, Ståhle M, Lebwohl M, Netea MG, Nunez Gomez N, Warren RB. A Practical Guide to the Management of Oral Candidiasis in Patients with Plaque Psoriasis Receiving Treatments That Target Interleukin-17. Dermatol Ther (Heidelb) 2022; 12:787-800. [PMID: 35167107 PMCID: PMC8941045 DOI: 10.1007/s13555-022-00687-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/22/2022] [Indexed: 12/21/2022] Open
Abstract
Plaque psoriasis is an immune-mediated inflammatory skin disease associated with the dysregulation of cytokines, especially those involved in the interleukin (IL)-23/IL-17 pathways. In recent years, there has been growing interest in developing biologic therapies that target these pathways. However, inhibition of the cytokines of the IL-23/IL-17 pathways may increase patients' risk of developing fungal infections, particularly oral candidiasis. Therefore, it is important that dermatology practitioners can effectively diagnose and treat oral candidiasis. In this review, we examine the role of the IL-23/IL-17 pathways in antifungal host defense, and provide a practical guide to the diagnosis and treatment of oral candidiasis in patients with psoriasis. Overall, while treatment with anti-IL-17 medications leads to an increased incidence of oral candidiasis in patients with psoriasis, these cases are typically mild or moderate in severity and can be managed with standard antifungal therapy without discontinuing treatment for psoriasis. If applicable, patients with psoriasis should also be advised to practice good oral hygiene and manage or control co-existing diabetes, and should be provided with information on smoking cessation to prevent oral candidiasis.
Collapse
Affiliation(s)
- April W Armstrong
- Department of Dermatology, Keck School of Medicine of USC, 1975 Zonal Ave, Los Angeles, CA, 90033, USA.
| | | | - Ulrich Mrowietz
- Psoriasis-Center at the Department of Dermatology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Bruce Strober
- Yale University, New Haven, CT, USA
- Central Connecticut Dermatology Research, Cromwell, CT, USA
| | | | - Joseph F Merola
- Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Richard G Langley
- Division of Dermatology, Department of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Mona Ståhle
- Department of Medicine, Unit of Dermatology, Karolinska Institutet, Solna, Sweden
| | - Mark Lebwohl
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Richard B Warren
- Dermatology Centre, Salford Royal NHS Foundation Trust, Manchester NIHR Biomedical Research Centre, The University of Manchester, Manchester, UK
| |
Collapse
|
40
|
Davidson L, Van den Reek JMPA, Van Hunsel F, De Jong EMGJ, Kullberg BJ. Global Risk of Bacterial Skin Infections and Herpesviridae Infections with Ustekinumab, Secukinumab, and Tumour Necrosis Factor-alpha Inhibitors: Spontaneous Reports of Adverse Drug Reactions from the World Health Organization Pharmacovigilance Center. Acta Derm Venereol 2022; 102:adv00648. [PMID: 35088874 PMCID: PMC9558332 DOI: 10.2340/actadv.v102.175] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Genetic defects in interleukin-12/23/17 immunity are associated with an increased risk of Staphylococcus aureus and herpesvirus skin infections. This study analysed spontaneous safety reports from the WHO Pharmacovigilance Center of bacterial skin or herpesvirus infections associated with secukinumab, ustekinumab and tumour necrosis factor-α inhibitors. Associations found in disproportionality analyses were expressed as reporting odds ratios (ROR). For bacterial skin infections, ustekinumab showed the strongest association (ROR 6.09; 95% confidence interval (95% CI) 5.44-6.81), and, among the tumour necrosis factor-α inhibitors, infliximab showed the strongest association (ROR 4.18; 95% CI 3.97-4.40). Risk was comparable between infliximab and secukinumab (ROR 3.51; 95% CI 3.00-4.09). Secukinumab showed the strongest association with herpes simplex infection (ROR 4.80; 95% CI 3.78-6.10). All biologics were equally associated with herpes zoster. Infliximab was the only biologic associated with cytomegalovirus infection (ROR 5.66; 95% CI 5.08-6.31) and had the strongest association with Epstein-Barr virus infection (ROR 6.90; 95% CI 6.03-7.90). All biologics evaluated were positively associated with bacterial skin infections, herpes simplex, and herpes zoster, compared with all other drugs in the WHO database for which individual case safety reports were collected. The possibility of under-reporting, reporting bias and difference in causality assessment between countries and reporters must be taken into account when interpreting the results of disproportionality analyses.
Collapse
Affiliation(s)
- Linda Davidson
- Department of Internal Medicine and Radboudumc Center for Infectious diseases (RCI), Radboud University Medical Center, Geert Grooteplein Zuid 10, NL-6525 GA Nijmegen, The Netherlands.
| | | | | | | | | |
Collapse
|
41
|
Knight V. Immunodeficiency and Autoantibodies to Cytokines. J Appl Lab Med 2022; 7:151-164. [PMID: 34996092 DOI: 10.1093/jalm/jfab139] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022]
Abstract
BACKGROUND Anti-cytokine autoantibodies (AAbs) associated with an infectious phenotype are now included along with anti-complement AAbs and somatic pathogenic gene variants as a distinct category termed 'phenocopies of primary immunodeficiencies' in the classification of inborn errors of immunity. Anti-cytokine AAbs target specific cytokine pathways, leading to inordinate susceptibility to specific organisms, generally in the setting of immunocompetence. CONTENT Anti-cytokine AAbs are detected in the majority of healthy individuals and may play a regulatory role in limiting exaggerated responses to cytokines. While it is not well understood why some individuals with anti-cytokine AAbs develop increased susceptibility to organisms of low pathogenicity and others do not, it is likely that genetics and environment play a role. To date, AAbs to interferon gamma (IFNγ), interferon alpha (IFNα), interleukins-17 and 22 (IL-17/IL-22), interleukin-6 and granulocyte macrophage colony stimulating factor (GM-CSF) and their association with increased susceptibility to nontuberculous mycobacteria and other intracellular organisms, viral infections, Candida albicans, Staphylococcus aureus and other pyogenic organisms, and fungal infections respectively, have been described. The clinical phenotype of these patients is very similar to that of individuals with pathogenic gene variants in the specific cytokine pathway that the autoantibody targets, hence the term 'phenocopy.' Recognition of anti-cytokine AAbs as a distinct cause of immunodeficiency or immune dysregulation is important for appropriate management of such patients. SUMMARY Understanding the roles that anti-cytokine AAbs play in health and disease continues to be a fascinating area of research. Evaluating generally immunocompetent individuals who present with chronic, treatment refractory, or unusual infections for anti-cytokine AAbs is critical as it may direct therapy and disease management.
Collapse
Affiliation(s)
- Vijaya Knight
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA.,Children's Hospital, Colorado, Aurora, CO, USA
| |
Collapse
|
42
|
van Beers JJBC, Damoiseaux JGMC. Treatment of Autoimmune Diseases with Therapeutic Antibodies: Lessons Learned from PID Patients Allow for Stratification of the Infection Risk. Methods Mol Biol 2022; 2313:27-44. [PMID: 34478130 DOI: 10.1007/978-1-0716-1450-1_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Over the years, a wide variety of therapeutic antibodies has been successfully introduced in the autoimmunology clinic and many more are on the edge to follow. Many of these treatments address either a pathogenic circulating molecule or a cell-bound molecule. Whereas the former target results in neutralization of the soluble factor, the latter target either inhibits cellular function or induces selective cell death. If this targeted molecule or cell is part of the immune system, this therapy evokes a state of immunodeficiency. Knowing the exact function of the respective components enables the risk stratification for possible infectious complications in patients treated with biologics. Much of the understanding of the function of immune cells and their associated molecules, in relation to redundancy in the immune system, is derived from studies in knockout mice. However, as mice are not men in terms of their life-expectancy, their infection exposure, or the composition of their immune system, the most useful knowledge for estimating the consequence of therapeutic intervention on immune competence comes from monitoring patients. In the current chapter, we focus on patients with a primary immunodeficiency (PID) because they provide us with a unique perspective to estimate the redundancy of a certain genetic defect for overall immune competence. These patients have inborn errors of the immune system that, in general, are due to single gene defects. Depending on the immunological pathway that is defective, patients can present with different types of (opportunistic) infectious diseases, as well as other clinical manifestations. Based on selected examples, we focus in this chapter on finding parallels in the infectious risk of autoimmune patients treated with biologics and PID patients with a defect in the immunological pathway that is affected by the respective biologic. The goal is to learn from the (dis)similarities between both patient populations in terms of safety profiles of biologic treatments.
Collapse
Affiliation(s)
- Joyce J B C van Beers
- Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jan G M C Damoiseaux
- Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, The Netherlands.
| |
Collapse
|
43
|
Cao B, Liu M, Zhao Y, Gong C. Chronic oral mucocutaneous candidiasis, recurrent respiratory infection, hepatosplenomegaly, and autoimmune diabetes mellitus: A case report of a gain-of-function mutation of STAT1 in a Chinese boy. Front Pediatr 2022; 10:1001290. [PMID: 36304533 PMCID: PMC9595572 DOI: 10.3389/fped.2022.1001290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/16/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Signal transducer and activator of transcription 1 (STAT1) gain-of-function (GOF) mutations are characterized by chronic mucocutaneous candidiasis and autoimmune diseases. Type 1 diabetes mellitus is one of the well-characterized autoimmune conditions. CASE PRESENTATION We reported a 5-year-old boy who presented with polydipsia and polyuria, with a medical history of chronic oral mucocutaneous candidiasis, recurrent respiratory infection, hepatosplenomegaly, and abnormal liver function. Genetic analysis identified a heterozygous GOF mutation (c.866A > G, p.Y289C) in STAT1. RESULTS Various medicines were given to the boy during the follow-up, including insulin to keep blood glucose stable, intravenous immunoglobulin and antifungal agents for recurrent infections, and antituberculosis drugs (isoniazid, rifampicin) to combat tuberculosis infection. He did not show recurrent infection, but chronic oral mucocutaneous candidiasis still occurred twice per month. The blood glucose level was well controlled. CONCLUSION This article illustrates that early diagnosis and identification of STAT1 mutation are essential for assessing the severity of the disease and determining reasonable treatment options.
Collapse
Affiliation(s)
- Bingyan Cao
- Department of Endocrinology, Genetic and Metabolism, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Meijuan Liu
- Department of Endocrinology, Genetic and Metabolism, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yun Zhao
- Department of Pediatric, Second Hospital of Shijiazhuang, Shijiazhuang, China
| | - Chunxiu Gong
- Department of Endocrinology, Genetic and Metabolism, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| |
Collapse
|
44
|
Oikonomou V, Break TJ, Gaffen SL, Moutsopoulos NM, Lionakis MS. Infections in the monogenic autoimmune syndrome APECED. Curr Opin Immunol 2021; 72:286-297. [PMID: 34418591 PMCID: PMC8578378 DOI: 10.1016/j.coi.2021.07.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022]
Abstract
Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is caused by mutations in the Autoimmune Regulator (AIRE) gene, which impair the thymic negative selection of self-reactive T-cells and underlie the development of autoimmunity that targets multiple endocrine and non-endocrine tissues. Beyond autoimmunity, APECED features heightened susceptibility to certain specific infections, which is mediated by anti-cytokine autoantibodies and/or T-cell driven autoimmune tissue injury. These include the 'signature' APECED infection chronic mucocutaneous candidiasis (CMC), but also life-threatening coronavirus disease 2019 (COVID-19) pneumonia, bronchiectasis-associated bacterial pneumonia, and sepsis by encapsulated bacteria. Here we discuss the expanding understanding of the immunological mechanisms that contribute to infection susceptibility in this prototypic syndrome of impaired central tolerance, which provide the foundation for devising improved diagnostic and therapeutic strategies for affected patients.
Collapse
Affiliation(s)
- Vasileios Oikonomou
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology (LCIM), National Institute of Allergy & Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Timothy J Break
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology (LCIM), National Institute of Allergy & Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Sarah L Gaffen
- University of Pittsburgh, Division of Rheumatology and Clinical Immunology, Pittsburgh PA, USA
| | - Niki M Moutsopoulos
- Oral Immunity and Inflammation Section, National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, MD, USA
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology (LCIM), National Institute of Allergy & Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
45
|
Peterson P, Kisand K, Kluger N, Ranki A. Loss of AIRE-Mediated Immune Tolerance and the Skin. J Invest Dermatol 2021; 142:760-767. [PMID: 34535292 DOI: 10.1016/j.jid.2021.04.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 02/08/2023]
Abstract
The core function of the immune response is to distinguish between self and foreign. The multiorgan human autoimmune disease, autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED/autoimmune polyendocrine syndrome type 1) is an example of what happens in the body when central immune tolerance goes astray. APECED revealed the existence and function of the autoimmune regulator gene, which has a central role in the development of tolerance. The discovery of autoimmune regulator was the start of a new period in immunology and in understanding the role of central and peripheral tolerance, also very relevant to many skin diseases as we highlight in this review.
Collapse
Affiliation(s)
- Pärt Peterson
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Kai Kisand
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Nicolas Kluger
- Department of Dermatology, Allergology and Venereology, Clinicum, University of Helsinki, and Inflammation Center, Helsinki University Hospital, Helsinki, Finland
| | - Annamari Ranki
- Department of Dermatology, Allergology and Venereology, Clinicum, University of Helsinki, and Inflammation Center, Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
46
|
Lévy R, Langlais D, Béziat V, Rapaport F, Rao G, Lazarov T, Bourgey M, Zhou YJ, Briand C, Moriya K, Ailal F, Avery DT, Markle J, Lim AI, Ogishi M, Yang R, Pelham S, Emam M, Migaud M, Deswarte C, Habib T, Saraiva LR, Moussa EA, Guennoun A, Boisson B, Belkaya S, Martinez-Barricarte R, Rosain J, Belkadi A, Breton S, Payne K, Benhsaien I, Plebani A, Lougaris V, Di Santo JP, Neven B, Abel L, Ma CS, Bousfiha AA, Marr N, Bustamante J, Liu K, Gros P, Geissmann F, Tangye SG, Casanova JL, Puel A. Inherited human c-Rel deficiency disrupts myeloid and lymphoid immunity to multiple infectious agents. J Clin Invest 2021; 131:150143. [PMID: 34623332 DOI: 10.1172/jci150143] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/08/2021] [Indexed: 12/26/2022] Open
Abstract
We studied a child with severe viral, bacterial, fungal, and parasitic diseases, who was homozygous for a loss-of-function mutation of REL, encoding c-Rel, which is selectively expressed in lymphoid and myeloid cells. The patient had low frequencies of NK, effector memory cells reexpressing CD45RA (Temra) CD8+ T cells, memory CD4+ T cells, including Th1 and Th1*, Tregs, and memory B cells, whereas the counts and proportions of other leukocyte subsets were normal. Functional deficits of myeloid cells included the abolition of IL-12 and IL-23 production by conventional DC1s (cDC1s) and monocytes, but not cDC2s. c-Rel was also required for induction of CD86 expression on, and thus antigen-presenting cell function of, cDCs. Functional deficits of lymphoid cells included reduced IL-2 production by naive T cells, correlating with low proliferation and survival rates and poor production of Th1, Th2, and Th17 cytokines by memory CD4+ T cells. In naive CD4+ T cells, c-Rel is dispensable for early IL2 induction but contributes to later phases of IL2 expression. The patient's naive B cells displayed impaired MYC and BCL2L1 induction, compromising B cell survival and proliferation and preventing their differentiation into Ig-secreting plasmablasts. Inherited c-Rel deficiency disrupts the development and function of multiple myeloid and lymphoid cells, compromising innate and adaptive immunity to multiple infectious agents.
Collapse
Affiliation(s)
- Romain Lévy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,University of Paris, Imagine Institute, Paris, France.,Pediatric Immunology, Hematology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
| | | | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,University of Paris, Imagine Institute, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
| | - Franck Rapaport
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
| | - Geetha Rao
- Garvan Institute, Darlinghurst, New South Wales 2010, Australia
| | - Tomi Lazarov
- Memorial Sloan Kettering Institute, New York, New York, USA
| | | | - Yu J Zhou
- Columbia University, New York, New York, USA
| | - Coralie Briand
- Pediatric Immunology, Hematology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Kunihiko Moriya
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | | | | | - Janet Markle
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
| | | | - Masato Ogishi
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
| | - Rui Yang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
| | - Simon Pelham
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
| | - Mehdi Emam
- McGill University, Montreal, Quebec, Canada
| | - Mélanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | - Caroline Deswarte
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | | | | | | | | | - Bertrand Boisson
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,University of Paris, Imagine Institute, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
| | - Serkan Belkaya
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
| | - Ruben Martinez-Barricarte
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | - Aziz Belkadi
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | - Sylvain Breton
- Pediatric Radiology, Necker Hospital for Sick Children, Paris, France
| | - Kathryn Payne
- Garvan Institute, Darlinghurst, New South Wales 2010, Australia
| | | | - Alessandro Plebani
- University of Brescia and ASST-Spedali Civili of Brescia, Brescia, Italy
| | - Vassilios Lougaris
- University of Brescia and ASST-Spedali Civili of Brescia, Brescia, Italy
| | | | - Bénédicte Neven
- University of Paris, Imagine Institute, Paris, France.,Pediatric Immunology, Hematology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,University of Paris, Imagine Institute, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
| | - Cindy S Ma
- Garvan Institute, Darlinghurst, New South Wales 2010, Australia
| | | | - Nico Marr
- Sidra Medicine, Doha, Qatar.,College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,University of Paris, Imagine Institute, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA.,Center for the Study of Primary Immunodeficiencies, Necker Hospital for Sick Children, Paris, France
| | - Kang Liu
- Columbia University, New York, New York, USA
| | | | | | - Stuart G Tangye
- Garvan Institute, Darlinghurst, New South Wales 2010, Australia
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,University of Paris, Imagine Institute, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA.,Howard Hughes Medical Institute (HHMI), New York, New York, USA
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,University of Paris, Imagine Institute, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
| |
Collapse
|
47
|
Philippot Q, Casanova JL, Puel A. Candidiasis in patients with APS-1: low IL-17, high IFN-γ, or both? Curr Opin Immunol 2021; 72:318-323. [PMID: 34455138 DOI: 10.1016/j.coi.2021.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/18/2022]
Abstract
Chronic mucocutaneous candidiasis (CMC) is one of the earliest and most frequent clinical manifestations of autosomal recessive autoimmune polyendocrine syndrome type 1 (APS-1), a monogenic inborn error of immunity caused by deleterious variants of the autoimmune regulator (AIRE) gene. APS-1 patients suffer from various autoimmune diseases, due to the defective thymic deletion of autoreactive T cells, and the development of a large range of autoantibodies (auto-Abs) against various tissue antigens, and some cytokines. The mechanisms underlying CMC remained elusive for many years, until the description in 2010 of high serum titers of neutralizing auto-Abs against IL-17A, IL-17F, and/or IL-22, which are present in almost all APS-1 patients. Excessively high mucosal concentrations of IFN-γ were recently proposed as an alternative mechanism for CMC in APS-1.
Collapse
Affiliation(s)
- Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; University of Paris, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; University of Paris, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, United States; Howard Hughes Medical Institute, New York, NY, United States
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; University of Paris, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, United States.
| |
Collapse
|
48
|
Chen K, Tan J, Qian S, Wu S, Chen Q. Case Report: Disseminated Talaromyces marneffei Infection in a Patient With Chronic Mucocutaneous Candidiasis and a Novel STAT1 Gain-of-Function Mutation. Front Immunol 2021; 12:682350. [PMID: 34421897 PMCID: PMC8374937 DOI: 10.3389/fimmu.2021.682350] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/22/2021] [Indexed: 11/13/2022] Open
Abstract
Chronic mucocutaneous candidiasis (CMC) is a disorder of recurrent or persistent chronic noninvasive symptomatic infections of the skin, nails and mucous membranes. This disorder is primarily caused by Candida albicans. Many factors, including primary immunodeficiencies, can make a host more susceptible to CMC. Signal transducer and activator of transcription 1 (STAT1) gain-of-function (GOF) mutations are the most common genetic etiologies of CMC. We describe a case of CMC with disseminated Talaromyces marneffei infection caused by a new pathogenic Y287N mutation at amino acid 287 in the coiled-coiled domain of STAT1, which was identified using whole-exome sequencing. Position 287 might be a hot spot for missense mutations because several amino acid substitutions were found there. Flow cytometry suggested that the Y287N mutation might reduce the expression of IL-17 of Th17 cells in peripheral blood mononuclear cells stimulated by phorbol myristate acetate and ionomycin. The STAT1 Y287N GOF mutation may be the direct cause of recurrent cutaneous and mucosal candidiasis, including the T. marneffei infection in this patient.
Collapse
Affiliation(s)
- Kuang Chen
- Department of Hematology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junfeng Tan
- Department of Hematology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shenxian Qian
- Department of Hematology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shenghai Wu
- Department of Laboratory Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiong Chen
- Department of Laboratory Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
49
|
Shamriz O, Lev A, Simon AJ, Barel O, Javasky E, Matza-Porges S, Shaulov A, Davidovics Z, Toker O, Somech R, Zlotogorski A, Molho-Pessach V, Tal Y. Chronic demodicosis in patients with immune dysregulation: An unexpected infectious manifestation of Signal transducer and activator of transcription (STAT)1 gain-of-function. Clin Exp Immunol 2021; 206:56-67. [PMID: 34114647 DOI: 10.1111/cei.13636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/22/2021] [Accepted: 06/08/2021] [Indexed: 12/24/2022] Open
Abstract
Signal transducer and activator of transcription (STAT)1 heterozygous gain-of-function (GOF) mutations are known to induce immune dysregulation and chronic mucocutaneous candidiasis (CMCC). Previous reports suggest an association between demodicosis and STAT1 GOF. However, immune characterization of these patients is lacking. Here, we present a retrospective analysis of patients with immune dysregulation and STAT1 GOF who presented with facial and ocular demodicosis. In-depth immune phenotyping and functional studies were used to characterize the patients. We identified five patients (three males) from two non-consanguineous Jewish families. The mean age at presentation was 11.11 (range = 0.58-24) years. Clinical presentation included CMCC, chronic demodicosis and immune dysregulation in all patients. Whole-exome and Sanger sequencing revealed a novel heterozygous c.1386C>A; p.S462R STAT1 GOF mutation in four of the five patients. Immunophenotyping demonstrated increased phosphorylated signal transducer and activator of transcription in response to interferon-α stimuli in all patients. The patients also exhibited decreased T cell proliferation capacity and low counts of interleukin-17-producing T cells, as well as low forkhead box protein 3+ regulatory T cells. Specific antibody deficiency was noted in one patient. Treatment for demodicosis included topical ivermectin and metronidazole. Demodicosis may indicate an underlying primary immune deficiency and can be found in patients with STAT1 GOF. Thus, the management of patients with chronic demodicosis should include an immunogenetic evaluation.
Collapse
Affiliation(s)
- Oded Shamriz
- Allergy and Clinical Immunology Unit, Department of Medicine, Hadassah Medical Organization, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.,The Lautenberg Center for Immunology and Cancer Research, Institute of Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Atar Lev
- Pediatric Department A and Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amos J Simon
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sheba Cancer Research Center and Institute of Hematology, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Ortal Barel
- Sheba Cancer Research Center and Institute of Hematology, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,The Genomic Unit, Sheba Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel.,Sheba Medical Center, Wohl Institute of Translational Medicine, Ramat Gan, Israel
| | - Elisheva Javasky
- Sheba Cancer Research Center and Institute of Hematology, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,The Genomic Unit, Sheba Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel.,Sheba Medical Center, Wohl Institute of Translational Medicine, Ramat Gan, Israel
| | - Sigal Matza-Porges
- Department of Human Genetics, Institute for Medical Research the Hebrew University of Jerusalem,, Jerusalem, Israel.,Department of Biotechnology, Hadassah Academic College, Jerusalem, Israel
| | - Adir Shaulov
- Department of Hematology, Hadassah Medical Organization, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Zev Davidovics
- Gastroenterology Unit, Department of Pediatrics, Hadassah Medical Organization, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ori Toker
- Allergy and Clinical Immunology Unit, Shaare Zedek Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Raz Somech
- Pediatric Department A and Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Abraham Zlotogorski
- Pediatric Dermatology Service, Department of Dermatology, Hadassah Medical Organization, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Vered Molho-Pessach
- Pediatric Dermatology Service, Department of Dermatology, Hadassah Medical Organization, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yuval Tal
- Allergy and Clinical Immunology Unit, Department of Medicine, Hadassah Medical Organization, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
50
|
Ardizzoni A, Wheeler RT, Pericolini E. It Takes Two to Tango: How a Dysregulation of the Innate Immunity, Coupled With Candida Virulence, Triggers VVC Onset. Front Microbiol 2021; 12:692491. [PMID: 34163460 PMCID: PMC8215348 DOI: 10.3389/fmicb.2021.692491] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/12/2021] [Indexed: 12/11/2022] Open
Abstract
Vulvovaginal candidiasis (VVC) is a symptomatic inflammation of the vagina mainly caused by C. albicans. Other species, such as C. parapsilosis, C. glabrata, C. tropicalis, and C. krusei, are mainly associated to the recurrent form of the disease (RVVC), although with a lower frequency. In its yeast form, C. albicans is tolerated by the vaginal epithelium, but switching to the invasive hyphal form, co-regulated with the expression of genes encoding virulence factors such as secreted aspartyl proteases (Sap) and candidalysin, allows for tissue damage. Vaginal epithelial cells play an important role by impairing C. albicans tissue invasion through several mechanisms such as epithelial shedding, secretion of mucin and strong interepithelial cell connections. However, morphotype switching coupled to increasing of the fungal burden can overcome the tolerance threshold and trigger an intense inflammatory response. Pathological inflammation is believed to be facilitated by an altered vaginal microbiome, i.e., Lactobacillus dysbiosis. Notwithstanding the damage caused by the fungus itself, the host response to the fungus plays an important role in the onset of VVC, exacerbating fungal-mediated damage. This response can be triggered by host PRR-fungal PAMP interaction and other more complex mechanisms (i.e., Sap-mediated NLRP3 activation and candidalysin), ultimately leading to strong neutrophil recruitment. However, recruited neutrophils appear to be ineffective at reducing fungal burden and invasion; therefore, they seem to contribute more to the symptoms associated with vaginitis than to protection against the disease. Recently, two aspects of the vulvovaginal environment have been found to associate with VVC and induce neutrophil anergy in vitro: perinuclear anti-neutrophil cytoplasmic antibodies (pANCA) and heparan sulfate. Interestingly, CAGTA antibodies have also been found with higher frequency in VVC as compared to asymptomatic colonized women. This review highlights and discusses recent advances on understanding the VVC pathogenesis mechanisms as well as the role of host defenses during the disease.
Collapse
Affiliation(s)
- Andrea Ardizzoni
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Robert T Wheeler
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, United States.,Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States
| | - Eva Pericolini
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy.,Graduate School of Microbiology and Virology, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|