1
|
Mekala S, Rai R, Reed SL, Bowen B, Michalopoulos GK, Locker J, Raeman R, Oertel M. Antagonizing Activin A/p15 INK4b Signaling as Therapeutic Strategy for Liver Disease. Cells 2024; 13:649. [PMID: 38607090 PMCID: PMC11011318 DOI: 10.3390/cells13070649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/09/2024] [Accepted: 02/01/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND/AIM Activin A is involved in the pathogenesis of human liver diseases, but its therapeutic targeting is not fully explored. Here, we tested the effect of novel, highly specific small-molecule-based activin A antagonists (NUCC-474/555) in improving liver regeneration following partial hepatectomy and halting fibrosis progression in models of chronic liver diseases (CLDs). METHODS Cell toxicity of antagonists was determined in rat hepatocytes and Huh-7 cells using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay. Hepatocytes and hepatic stellate cells (HSCs) were treated with activin A and NUCC-555 and analyzed by reverse transcription-polymerase chain reaction and immunohistochemistry. Partial hepatectomized Fisher (F)344 rats were treated with NUCC-555, and bromodeoxyuridine (BrdU) incorporation was determined at 18/24/36/120/240 h. NUCC-555 was administered into thioacetamide- or carbon tetrachloride-treated F344 rats or C57BL/6 mice, and the fibrosis progression was studied. RESULTS NUCC-474 showed higher cytotoxicity in cultured hepatic cells; therefore, NUCC-555 was used in subsequent studies. Activin A-stimulated overexpression of cell cycle-/senescence-related genes (e.g., p15INK4b, DEC1, Glb1) was near-completely reversed by NUCC-555 in hepatocytes. Activin A-mediated HSC activation was blocked by NUCC-555. In partial hepatectomized rats, antagonizing activin A signaling resulted in a 1.9-fold and 2.3-fold increase in BrdU+ cells at 18 and 24 h, respectively. Administration of NUCC-555 in rats and mice with progressing fibrosis significantly reduced collagen accumulation (7.9-fold), HSC activation indicated by reduced alpha smooth muscle actin+ and vimentin+ cells, and serum aminotransferase activity. CONCLUSIONS Our studies demonstrate that activin A antagonist NUCC-555 promotes liver regeneration and halts fibrosis progression in CLD models, suggesting that blocking activin A signaling may represent a new approach to treating people with CLD.
Collapse
Affiliation(s)
- Sowmya Mekala
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, 200 Lothrop Street—BST S-404, Pittsburgh, PA 15261, USA (R.R.); (G.K.M.); (R.R.)
| | - Ravi Rai
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, 200 Lothrop Street—BST S-404, Pittsburgh, PA 15261, USA (R.R.); (G.K.M.); (R.R.)
| | - Samantha Loretta Reed
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, 200 Lothrop Street—BST S-404, Pittsburgh, PA 15261, USA (R.R.); (G.K.M.); (R.R.)
| | - Bill Bowen
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, 200 Lothrop Street—BST S-404, Pittsburgh, PA 15261, USA (R.R.); (G.K.M.); (R.R.)
| | - George K. Michalopoulos
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, 200 Lothrop Street—BST S-404, Pittsburgh, PA 15261, USA (R.R.); (G.K.M.); (R.R.)
- Pittsburgh Liver Research Center (PLRC), University of Pittsburgh, Pittsburgh, PA 15261, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Joseph Locker
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, 200 Lothrop Street—BST S-404, Pittsburgh, PA 15261, USA (R.R.); (G.K.M.); (R.R.)
- Pittsburgh Liver Research Center (PLRC), University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Reben Raeman
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, 200 Lothrop Street—BST S-404, Pittsburgh, PA 15261, USA (R.R.); (G.K.M.); (R.R.)
- Pittsburgh Liver Research Center (PLRC), University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Michael Oertel
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, 200 Lothrop Street—BST S-404, Pittsburgh, PA 15261, USA (R.R.); (G.K.M.); (R.R.)
- Pittsburgh Liver Research Center (PLRC), University of Pittsburgh, Pittsburgh, PA 15261, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
2
|
Hamang M, Yaden B, Dai G. Gastrointestinal pharmacology activins in liver health and disease. Biochem Pharmacol 2023; 214:115668. [PMID: 37364623 PMCID: PMC11234865 DOI: 10.1016/j.bcp.2023.115668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/06/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023]
Abstract
Activins are a subgroup of the TGFβ superfamily of growth and differentiation factors, dimeric in nature and consisting of two inhibin beta subunits linked via a disulfide bridge. Canonical activin signaling occurs through Smad2/3, with negative feedback initiated by Smad6/7 following signal transduction, which binds activin type I receptor preventing phosphorylation of Smad2/3 and activation of downstream signaling. In addition to Smad6/7, other inhibitors of activin signaling have been identified as well, including inhibins (dimers of an inhibin alpha and beta subunit), BAMBI, Cripto, follistatin, and follistatin-like 3 (fstl3). To date, activins A, B, AB, C, and E have been identified and isolated in mammals, with activin A and B having the most characterization of biological activity. Activin A has been implicated as a regulator of several important functions of liver biology, including hepatocyte proliferation and apoptosis, ECM production, and liver regeneration; the role of other subunits of activin in liver physiology are less understood. There is mounting data to suggest a link between dysregulation of activins contributing to various hepatic diseases such as inflammation, fibrosis, and hepatocellular carcinoma, and emerging studies demonstrating the protective and regenerative effects of inhibiting activins in mouse models of liver disease. Due to their importance in liver biology, activins demonstrate utility as a therapeutic target for the treatment of hepatic diseases such as cirrhosis, NASH, NAFLD, and HCC; further research regarding activins may provide diagnostic or therapeutic opportunity for those suffering from various liver diseases.
Collapse
Affiliation(s)
- Matthew Hamang
- Department of Biology, School of Science, Indiana University - Purdue University Indianapolis, IN, United States.
| | - Benjamin Yaden
- Department of Biology, School of Science, Indiana University - Purdue University Indianapolis, IN, United States.
| | - Guoli Dai
- Department of Biology, School of Science, Indiana University - Purdue University Indianapolis, IN, United States.
| |
Collapse
|
3
|
Santol J, Pereyra D, Haegele S, Ammon D, Ortmayr G, Pirabe A, Jonas JP, Schuster S, Kim S, Nguyen T, Gruenberger T, Assinger A, Starlinger P. The Ratio of Activin A and Follistatin-Like 3 Is Associated With Posthepatectomy Liver Failure and Morbidity in Patients Undergoing Liver Resection. GASTRO HEP ADVANCES 2023; 2:642-651. [PMID: 39129875 PMCID: PMC11307668 DOI: 10.1016/j.gastha.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/28/2023] [Indexed: 08/13/2024]
Abstract
Background and Aims Activin A is a key regulator in liver regeneration, but data evaluating its role in humans after hepatic surgery are limited. In this study we explore the predictive role of circulating activin A, its antagonist follistatin-like 3 (FSTL-3), and their ratio for posthepatectomy liver failure (PHLF) and monitor their levels after surgery, to evaluate their role in human liver regeneration. Methods Activin A and FSTL-3 levels were assessed in 59 patients undergoing liver surgery. Using receiver operating characteristic analysis, we evaluated the predictive potential of activin A, FSTL-3, and their ratio. Results While perioperative dynamics of activin A and FSTL3 were significantly affected by hepatic resection (activin A P = .045, FSTL-3 P = .005), their functionally relevant ratio did not significantly change (P = .528). Neither activin A nor FSTL-3 alone but only their ratio exhibited a significant predictive potential for PHLF (area under the curve: 0.789, P = .038). Patients with low preoperative activin A/FSTL-3 ratio were found to more frequently suffer from PHLF (0.017) and morbidity (0.005). Conclusion Activin A/FSTL-3 ratio predicts PHLF and morbidity. Its significance in preoperative patient assessment needs to be further validated in larger, independent cohorts.
Collapse
Affiliation(s)
- Jonas Santol
- Department of Surgery, Vienna Health Network, HPB Center, Clinic Favoriten and Sigmund Freud Private University, Vienna, Austria
- Institute of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - David Pereyra
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Stefanie Haegele
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Daphni Ammon
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Gregor Ortmayr
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Anita Pirabe
- Institute of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Jan Philipp Jonas
- Department of Surgery, Vienna Health Network, HPB Center, Clinic Favoriten and Sigmund Freud Private University, Vienna, Austria
- Department of Visceral and Transplantation Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Stefan Schuster
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Sarang Kim
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Toni Nguyen
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Thomas Gruenberger
- Department of Surgery, Vienna Health Network, HPB Center, Clinic Favoriten and Sigmund Freud Private University, Vienna, Austria
| | - Alice Assinger
- Institute of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Patrick Starlinger
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Mayo Clinic, Rochester, Minnesota
- Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Semba RD, Zhang P, Zhu M, Fabbri E, Gonzalez-Freire M, Moaddel R, Geng-Spyropoulos M, Ferrucci L. A targeted proteomic assay for the measurement of plasma proteoforms related to human aging phenotypes. Proteomics 2018; 17. [PMID: 28508553 DOI: 10.1002/pmic.201600232] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 03/31/2017] [Accepted: 05/09/2017] [Indexed: 12/31/2022]
Abstract
Circulating polypeptides and proteins have been implicated in reversing or accelerating aging phenotypes, including growth/differentiation factor 8 (GDF8), GDF11, eotaxin, and oxytocin. These proteoforms, which are defined as the protein products arising from a single gene due to alternative splicing and PTMs, have been challenging to study. Both GDF8 and GDF11 have known antagonists such as follistatin (FST), and WAP, Kazal, immunoglobulin, Kunitz, and NTR domain-containing proteins 1 and 2 (WFIKKN1, WFIKKN2). We developed a novel multiplexed SRM assay using LC-MS/MS to measure five proteins related to GDF8 and GDF11 signaling, and in addition, eotaxin, and oxytocin. Eighteen peptides consisting of 54 transitions were monitored and validated in pooled human plasma. In 24 adults, the mean (SD) concentrations (ng/mL) were as follows: GDF8 propeptide, 11.0 (2.4); GDF8 mature protein, 25.7 (8.0); GDF11 propeptide, 21.3 (10.9); GDF11 mature protein, 16.5 (12.4); FST, 29.8 (7.1); FST cleavage form FST303, 96.4 (69.2); WFIKKN1, 38.3 (8.3); WFIKKN2, 32.2 (10.5); oxytocin, 1.9 (0.9); and eotaxin, 2.3 (0.5). This novel multiplexed SRM assay should facilitate the study of the relationships of these proteoforms with major aging phenotypes.
Collapse
Affiliation(s)
- Richard D Semba
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pingbo Zhang
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Min Zhu
- National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Elisa Fabbri
- National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | | | - Ruin Moaddel
- National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | | | - Luigi Ferrucci
- National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
5
|
Activin-A causes Hepatic stellate cell activation via the induction of TNFα and TGFβ in Kupffer cells. Biochim Biophys Acta Mol Basis Dis 2017; 1864:891-899. [PMID: 29287776 DOI: 10.1016/j.bbadis.2017.12.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 12/06/2017] [Accepted: 12/22/2017] [Indexed: 01/14/2023]
Abstract
BACKGROUND & AIMS TGFβ superfamily member Activin-A is a multifunctional hormone/cytokine expressed in multiple tissues and cells, where it regulates cellular differentiation, proliferation, inflammation and tissue architecture. High activin-A levels have been reported in alcoholic cirrhosis and non-alcoholic steatohepatitis (NASH). Our aim was to identify the cell types involved in the fibrotic processes induced by activin-A in liver and verify the liver diseases that this molecule can be found increased. METHODS We studied the effect of activin-A on mouse primary Kupffer cells (KCs) and Hepatic Stellate cells (HSCs) and the levels of activin-A and its inhibitor follistatin in the serum of patients from a large panel of liver diseases. RESULTS Activin-A is expressed by mouse hepatocytes, HSCs and Liver Sinusoid Endothelial cells but not KCs. Each cell type expresses different activin receptor combinations. HSCs are unresponsive to activin-A due to downregulation/desensitization of type-II activin receptors, while KCs respond by increasing the expression/production of TNFα και TGFβ1. In the presence of KCs or conditioned medium from activin-A treated KCs, HSCs switch to a profibrogenic phenotype, including increased collagen and αSMA expression and migratory capacity. Incubation of activin-A treated KC conditioned medium with antibodies against TNFα and TGFβ1 partially blocks its capacity to activate HSCs. Only patients with alcoholic liver diseases and NASH cirrhosis have significantly higher activin-A levels and activin-A/follistatin ratio. CONCLUSIONS Activin-A may induce fibrosis in NASH and alcoholic cirrhosis via activation of KCs to express pro-inflammatory molecules that promote HSC-dependent fibrogenesis and could be a target for future anti-fibrotic therapies.
Collapse
|
6
|
Haridoss S, Yovchev MI, Schweizer H, Megherhi S, Beecher M, Locker J, Oertel M. Activin A is a prominent autocrine regulator of hepatocyte growth arrest. Hepatol Commun 2017; 1:852-870. [PMID: 29404498 PMCID: PMC5721463 DOI: 10.1002/hep4.1106] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/28/2017] [Accepted: 08/31/2017] [Indexed: 02/06/2023] Open
Abstract
Activin A, a multifunctional cytokine, plays an important role in hepatocyte growth suppression and is involved in liver size control. The present study was aimed to determine the cell location of activin A in the normal rat liver microenvironment and the contribution of activin A signaling to the hepatocyte phenotype to obtain insight into molecular mechanisms. Immunohistochemical and in situ hybridization analyses identified hepatocytes as the major activin A‐positive cell population in normal liver and identified mast cells as an additional activin A source. To investigate paracrine and autocrine activin A‐stimulated effects, hepatocytes were cocultured with engineered activin A‐secreting cell lines (RF1, TL8) or transduced with an adeno‐associated virus vector encoding activin βA, which led to strikingly altered expression of cell cycle‐related genes (Ki‐67, E2F transcription factor 1 [E2F1], minichromosome maintenance complex component 2 [Mcm2], forkhead box M1 [FoxM1]) and senescence‐related genes (cyclin‐dependent kinase inhibitor 2B [p15INK4b/CDKN2B], differentiated embryo‐chondrocyte expressed gene 1 [DEC1]) and reduced proliferation and induction of senescence. Microarray analyses identified 453 differentially expressed genes, many of which were not yet recognized as activin A downstream targets (e.g., ADAM metallopeptidase domain 12 [Adam12], semaphorin 7A [Sema7a], LIM and cysteine‐rich domains‐1 [Lmcd1], DAB2, clathrin adaptor protein [Dab2]). Among the main activin A‐mediated molecular/cellular functions are cellular growth/proliferation and movement, molecular transport, and metabolic processes containing highly down‐regulated genes, such as cytochrome P450, subfamily 2, polypeptide 11 (Cyp2C11), sulfotransferase family 1A, member 1 (Sult1a1), glycine‐N‐acyltransferase (Glyat), and bile acid‐CoA:amino acid N‐acyltransferase (Baat). Moreover, Ingenuity Pathway Analyses identified particular gene networks regulated by hepatocyte nuclear factor (HNF)‐4α and peroxisome proliferator‐activated receptor gamma (PPARγ) as key targets of activin A signaling. Conclusion: Our in vitro models demonstrated that activin A‐stimulated growth inhibition and cellular senescence is mediated through p15INK4b/CDKN2B and is associated with up‐ and down‐regulation of numerous target genes involved in multiple biological processes performed by hepatocytes, suggesting that activin A fulfills a critical role in normal liver function. (Hepatology Communications 2017;1:852‐870)
Collapse
Affiliation(s)
| | | | | | | | - Maria Beecher
- Department of Pathology University of Pittsburgh Pittsburgh PA
| | - Joseph Locker
- Department of Pathology University of Pittsburgh Pittsburgh PA.,Pittsburgh Liver Research Center University of Pittsburgh Pittsburgh PA
| | - Michael Oertel
- Department of Pathology University of Pittsburgh Pittsburgh PA.,Pittsburgh Liver Research Center University of Pittsburgh Pittsburgh PA.,McGowan Institute for Regenerative Medicine University of Pittsburgh Pittsburgh PA
| |
Collapse
|
7
|
Tseng FY, Chen YT, Chi YC, Chen PL, Yang WS. Serum Levels of Follistatin Are Positively Associated With Serum-Free Thyroxine Levels in Patients With Hyperthyroidism or Euthyroidism. Medicine (Baltimore) 2016; 95:e2661. [PMID: 26844494 PMCID: PMC4748911 DOI: 10.1097/md.0000000000002661] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Follistatin is a glycoprotein with various biologic functions that plays a role in adipocyte differentiation, muscle stimulation, anti-inflammation, and energy homeostasis. Thyroid hormones influence energy expenditure, glucose, and lipid metabolism. The association between serum follistatin level and thyroid function statuses has seldom been evaluated.The objectives of this study were to compare serum follistatin concentrations in different thyroid function statuses and to evaluate the associations between serum follistatin and free thyroxine (fT4) levels.In this study, 30 patients with hyperthyroidism (HY group) and 30 euthyroid individuals (EU group) were recruited. The patients of HY group were treated with antithyroid regimens as clinically indicated, whereas no medication was given to EU group. The demographic and anthropometric characteristics, biochemical data, serum levels of follistatin, and thyroid function of both groups at baseline and at the 6th month were compared. Data of all patients were pooled for the analysis of the associations between the levels of follistatin and fT4.At baseline, the HY group had significantly higher serum follistatin levels than the EU group (median [Q1, Q3]: 1.81 [1.33, 2.78] vs 1.13 [0.39, 1.45] ng/mL, P < 0.001). When treated with antithyroid regimens, the follistatin serum levels in HY group decreased to 1.54 [1.00, 1.88] ng/mL at the 6th month. In all patients, the serum levels of follistatin were positively associated with fT4 levels at baseline (β = 0.54, P = 0.005) and at the 6th month (β = 0.59, P < 0.001). The association between follistatin and fT4 levels remained significant in the stepwise multivariate regression analysis, both initially and at the 6th month.In comparison to the EU group, patients with hyperthyroidism had higher serum follistatin levels, which decreased after receiving antithyroid treatment. In addition, the serum follistatin concentrations were positively associated with serum fT4 levels in patients with hyperthyroidism or euthyroidism.
Collapse
Affiliation(s)
- Fen-Yu Tseng
- From the Division of Endocrinology & Metabolism, Department of Internal Medicine, National Taiwan University Hospital (F-YT, P-LC, W-SY); Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University (Y-TC, Y-CC, W-SY); Department of Medical Genetics, National Taiwan University Hospital, National Taiwan University (P-LC); and Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan (P-LC)
| | | | | | | | | |
Collapse
|
8
|
Pegylated Interferon-α Modulates Liver Concentrations of Activin-A and Its Related Proteins in Normal Wistar Rat. Mediators Inflamm 2015; 2015:414207. [PMID: 26236109 PMCID: PMC4506924 DOI: 10.1155/2015/414207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/30/2015] [Accepted: 06/03/2015] [Indexed: 02/06/2023] Open
Abstract
Aims. To measure the expression of activin βA-subunit, activin IIA and IIB receptors, Smad4, Smad7, and follistatin in the liver and the liver and serum concentrations of mature activin-A and follistatin in normal rat following treatment with pegylated interferon-α (Peg-INF-α) and ribavirin (RBV). Materials and Methods. 40 male Wistar rats were divided equally into 4 groups: “control,” “Peg-only” receiving 4 injections of Peg-INF-α (6 µg/rat/week), “RBV-only” receiving ribavirin (4 mg/rat/day) orally, and “Peg & RBV” group receiving both drugs. The expression of candidate molecules in liver was measured by immunohistochemistry and quantitative PCR. The concentrations of mature proteins in serum and liver homogenate samples were measured using ELISA. Results. Peg-INF-α ± RBV altered the expression of all candidate molecules in the liver at the gene and protein levels (P < 0.05) and decreased activin-A and increased follistatin in serum and liver homogenates compared with the other groups (P < 0.05). There were also significant correlations between serum and liver activin-A and follistatin. Conclusion. Peg-INF-α modulates the hepatic production of activin-A and follistatin, which can be detected in serum. Further studies are needed to explore the role of Peg-INF-α on the production of activins and follistatin by the liver and immune cells.
Collapse
|
9
|
Refaat B, Ashshi AM, El-Shemi AG, Azhar E. Activins and Follistatin in Chronic Hepatitis C and Its Treatment with Pegylated-Interferon-α Based Therapy. Mediators Inflamm 2015; 2015:287640. [PMID: 25969625 PMCID: PMC4417604 DOI: 10.1155/2015/287640] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 02/27/2015] [Accepted: 02/27/2015] [Indexed: 12/12/2022] Open
Abstract
Pegylated-interferon-α based therapy for the treatment of chronic hepatitis C (CHC) is considered suboptimal as not all patients respond to the treatment and it is associated with several side effects that could lead to dose reduction and/or termination of therapy. The currently used markers to monitor the response to treatment are based on viral kinetics and their performance in the prediction of treatment outcome is moderate and does not combine accuracy and their values have several limitations. Hence, the development of new sensitive and specific predictor markers could provide a useful tool for the clinicians and healthcare providers, especially in the new era of interferon-free therapy, for the classification of patients according to their response to the standard therapy and only subscribing the novel directly acting antiviral drugs to those who are anticipated not to respond to the conventional therapy and/or have absolute contraindications for its use. The importance of activins and follistatin in the regulation of immune system, liver biology, and pathology has recently emerged. This review appraises the up-to-date knowledge regarding the role of activins and follistatin in liver biology and immune system and their role in the pathophysiology of CHC.
Collapse
Affiliation(s)
- Bassem Refaat
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al-'Abdiyah Campus, P. O. Box 7607, Makkah, Saudi Arabia
| | - Ahmed Mohamed Ashshi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al-'Abdiyah Campus, P. O. Box 7607, Makkah, Saudi Arabia
| | - Adel Galal El-Shemi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al-'Abdiyah Campus, P. O. Box 7607, Makkah, Saudi Arabia
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut 6515, Egypt
| | - Esam Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
| |
Collapse
|
10
|
Wang Y, Wang XH, Fan DX, Zhang Y, Li MQ, Wu HX, Jin LP. PCSK6 regulated by LH inhibits the apoptosis of human granulosa cells via activin A and TGFβ2. J Endocrinol 2014; 222:151-60. [PMID: 24860148 DOI: 10.1530/joe-13-0592] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mammalian proprotein convertases (PCs) play an important role in folliculogenesis, as they proteolytically activate a variety of substrates such as the transforming growth factor beta (TGFβ) superfamily. PC subtilism/kexin 6 (PCSK6) is a member of the PC family and is ubiquitously expressed and implicated in many physiological and pathological processes. However, in human granulosa cells, the expression of the PC family members, their hormonal regulation, and the function of PCs are not clear. In this study, we found that PCSK6 is the most highly expressed PC family member in granulosa cells. LH increased PCSK6 mRNA level and PCSK6 played an anti-apoptosis function in KGN cells. Knockdown of PCSK6 not only increased the secretion of activin A and TGFβ2 but also decreased the secretion of follistatin, estrogen, and the mRNA levels of FSH receptor (FSHR) and P450AROM (CYP19A1). We also found that, in the KGN human granulosa cell line, TGFβ2 and activin A could promote the apoptosis of KGN cells and LH could regulate the follistatin level. These data indicate that PCSK6, which is regulated by LH, is highly expressed in human primary granulosa cells of pre-ovulatory follicles and plays important roles in regulating a series of downstream molecules and apoptosis of KGN cells.
Collapse
Affiliation(s)
- Ying Wang
- Laboratory for Reproductive ImmunologyHospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, No. 413, Zhaozhou Road, Shanghai 200011, ChinaShanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghai 200011, ChinaDepartment of Reproductive MedicineShanghai First Maternity and Infant Hospital, Tongji University School of Medicine, No. 536, Changle Road, Shanghai 200040, ChinaLaboratory for Reproductive ImmunologyHospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, No. 413, Zhaozhou Road, Shanghai 200011, ChinaShanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghai 200011, ChinaDepartment of Reproductive MedicineShanghai First Maternity and Infant Hospital, Tongji University School of Medicine, No. 536, Changle Road, Shanghai 200040, China
| | - Xiao-Hui Wang
- Laboratory for Reproductive ImmunologyHospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, No. 413, Zhaozhou Road, Shanghai 200011, ChinaShanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghai 200011, ChinaDepartment of Reproductive MedicineShanghai First Maternity and Infant Hospital, Tongji University School of Medicine, No. 536, Changle Road, Shanghai 200040, ChinaLaboratory for Reproductive ImmunologyHospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, No. 413, Zhaozhou Road, Shanghai 200011, ChinaShanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghai 200011, ChinaDepartment of Reproductive MedicineShanghai First Maternity and Infant Hospital, Tongji University School of Medicine, No. 536, Changle Road, Shanghai 200040, China
| | - Deng-Xuan Fan
- Laboratory for Reproductive ImmunologyHospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, No. 413, Zhaozhou Road, Shanghai 200011, ChinaShanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghai 200011, ChinaDepartment of Reproductive MedicineShanghai First Maternity and Infant Hospital, Tongji University School of Medicine, No. 536, Changle Road, Shanghai 200040, ChinaLaboratory for Reproductive ImmunologyHospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, No. 413, Zhaozhou Road, Shanghai 200011, ChinaShanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghai 200011, ChinaDepartment of Reproductive MedicineShanghai First Maternity and Infant Hospital, Tongji University School of Medicine, No. 536, Changle Road, Shanghai 200040, China
| | - Yuan Zhang
- Laboratory for Reproductive ImmunologyHospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, No. 413, Zhaozhou Road, Shanghai 200011, ChinaShanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghai 200011, ChinaDepartment of Reproductive MedicineShanghai First Maternity and Infant Hospital, Tongji University School of Medicine, No. 536, Changle Road, Shanghai 200040, ChinaLaboratory for Reproductive ImmunologyHospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, No. 413, Zhaozhou Road, Shanghai 200011, ChinaShanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghai 200011, ChinaDepartment of Reproductive MedicineShanghai First Maternity and Infant Hospital, Tongji University School of Medicine, No. 536, Changle Road, Shanghai 200040, China
| | - Ming-Qing Li
- Laboratory for Reproductive ImmunologyHospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, No. 413, Zhaozhou Road, Shanghai 200011, ChinaShanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghai 200011, ChinaDepartment of Reproductive MedicineShanghai First Maternity and Infant Hospital, Tongji University School of Medicine, No. 536, Changle Road, Shanghai 200040, ChinaLaboratory for Reproductive ImmunologyHospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, No. 413, Zhaozhou Road, Shanghai 200011, ChinaShanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghai 200011, ChinaDepartment of Reproductive MedicineShanghai First Maternity and Infant Hospital, Tongji University School of Medicine, No. 536, Changle Road, Shanghai 200040, China
| | - Hai-Xia Wu
- Laboratory for Reproductive ImmunologyHospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, No. 413, Zhaozhou Road, Shanghai 200011, ChinaShanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghai 200011, ChinaDepartment of Reproductive MedicineShanghai First Maternity and Infant Hospital, Tongji University School of Medicine, No. 536, Changle Road, Shanghai 200040, China
| | - Li-Ping Jin
- Laboratory for Reproductive ImmunologyHospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, No. 413, Zhaozhou Road, Shanghai 200011, ChinaShanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghai 200011, ChinaDepartment of Reproductive MedicineShanghai First Maternity and Infant Hospital, Tongji University School of Medicine, No. 536, Changle Road, Shanghai 200040, ChinaLaboratory for Reproductive ImmunologyHospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, No. 413, Zhaozhou Road, Shanghai 200011, ChinaShanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghai 200011, ChinaDepartment of Reproductive MedicineShanghai First Maternity and Infant Hospital, Tongji University School of Medicine, No. 536, Changle Road, Shanghai 200040, China
| |
Collapse
|
11
|
Effects of chronic hepatitis C genotype 1 and 4 on serum activins and follistatin in treatment naïve patients and their correlations with interleukin-6, tumour necrosis factor-α, viral load and liver damage. Clin Exp Med 2014; 15:293-302. [DOI: 10.1007/s10238-014-0297-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 05/10/2014] [Indexed: 02/08/2023]
|
12
|
Serum Activins and Follistatin during the Treatment of Chronic Hepatitis C Genotypes 1 and 4 and Their Correlations with Viral Load and Liver Enzymes: A Preliminary Report. Gastroenterol Res Pract 2014; 2014:628683. [PMID: 24799891 PMCID: PMC3995172 DOI: 10.1155/2014/628683] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 02/21/2014] [Accepted: 03/07/2014] [Indexed: 12/26/2022] Open
Abstract
Aims. To measure the effect of pegylated interferon-α therapy on serum activin-A, activin-B, and follistatin and their correlation with viral load and liver fibrosis in chronic hepatitis C (CHC). Methods. This study was cross-sectional and sera were collected from 165 participants classified into 7 groups: 40 healthy negative control, 33 treatment naïve patients as positive control, 19 patients at week 4, 22 at week 12, and 19 at week 24 of treatment initiation and 21 responders and 11 nonresponders at the end of 48-week treatment protocol. Serum candidate proteins were measured using ELISA and liver fibrosis was assessed by AST platelet ratio index (APRI). Results. CHC significantly increased activins and decreased follistatin compared to negative control (P < 0.05). Activin-A and follistatin levels returned to the levels of negative control group at weeks 4, 12, and 24 following treatment initiation and were significantly different from positive control (P < 0.05). Both proteins were significantly different between responders and nonresponders. Activin-A correlated positively and significantly with the viral load and APRI. Conclusion. CHC modulates serum activin-A and follistatin and they appear to be influenced by pegylated interferon-α therapy. Further studies are needed to explore the role of activins in CHC.
Collapse
|
13
|
Menthena A, Koehler CI, Sandhu JS, Yovchev MI, Hurston E, Shafritz DA, Oertel M. Activin A, p15INK4b signaling, and cell competition promote stem/progenitor cell repopulation of livers in aging rats. Gastroenterology 2011; 140:1009-20. [PMID: 21147108 PMCID: PMC3087123 DOI: 10.1053/j.gastro.2010.12.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2010] [Revised: 11/17/2010] [Accepted: 12/02/2010] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS Highly proliferative fetal liver stem/progenitor cells (FLSPCs) repopulate livers of normal recipients by cell competition. We investigated the mechanisms by which FLSPCs repopulate livers of older compared with younger rats. METHODS Fetal liver cells were transplanted from DPPIV(+) F344 rats into DPPIV(-) rats of different ages (2, 6, 14, or 18 months); liver tissues were analyzed 6 months later. Cultured cells and liver tissues were analyzed by reverse transcription polymerase chain reaction, immunoblot, histochemistry, laser-capture microscopy, and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling analyses. RESULTS We observed 4- to 5-fold increases in liver repopulation when FLSPCs were transplanted into older compared with younger rats. Messenger RNA levels of cyclin-dependent kinase inhibitors increased progressively in livers of older rats; hepatocytes from 20-month-old rats had 6.1-fold higher expression of p15INK4b and were less proliferative in vitro than hepatocytes from 2-month-old rats. Expression of p15INK4b in cultured hepatocytes was up-regulated by activin A, which increased in liver during aging. Activin A inhibited proliferation of adult hepatocytes, whereas FLSPCs were unresponsive because they had reduced expression of activin receptors (eg, ALK-4). In vivo, expanding cell clusters derived from transplanted FLSPCs had lower levels of ALK-4 and p15INK4b and increased levels of Ki-67 compared with the host parenchyma. Liver tissue of older rats had 3-fold more apoptotic cells than that of younger rats. CONCLUSIONS FLSPCs, resistant to activin A signaling, repopulate livers of older rats; hepatocytes in older rats have less proliferation because of increased activin A and p15INK4b levels and increased apoptosis than younger rats. These factors and cell types might be manipulated to improve liver cell transplantation strategies in patients with liver diseases in which activin A levels are increased.
Collapse
|
14
|
|
15
|
Kreidl E, Oztürk D, Metzner T, Berger W, Grusch M. Activins and follistatins: Emerging roles in liver physiology and cancer. World J Hepatol 2009; 1:17-27. [PMID: 21160961 PMCID: PMC2999257 DOI: 10.4254/wjh.v1.i1.17] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 09/10/2009] [Accepted: 09/17/2009] [Indexed: 02/06/2023] Open
Abstract
Activins are secreted proteins belonging to the TGF-β family of signaling molecules. Activin signals are crucial for differentiation and regulation of cell proliferation and apoptosis in multiple tissues. Signal transduction by activins relies mainly on the Smad pathway, although the importance of crosstalk with additional pathways is increasingly being recognized. Activin signals are kept in balance by antagonists at multiple levels of the signaling cascade. Among these, follistatin and FLRG, two members of the emerging family of follistatin-like proteins, can bind secreted activins with high affinity, thereby blocking their access to cell surface-anchored activin receptors. In the liver, activin A is a major negative regulator of hepatocyte proliferation and can induce apoptosis. The functions of other activins expressed by hepatocytes have yet to be more clearly defined. Deregulated expression of activins and follistatin has been implicated in hepatic diseases including inflammation, fibrosis, liver failure and primary cancer. In particular, increased follistatin levels have been found in the circulation and in the tumor tissue of patients suffering from hepatocellular carcinoma as well as in animal models of liver cancer. It has been argued that up-regulation of follistatin protects neoplastic hepatocytes from activin-mediated growth inhibition and apoptosis. The use of follistatin as biomarker for liver tumor development is impeded, however, due to the presence of elevated follistatin levels already during preceding stages of liver disease. The current article summarizes our evolving understanding of the multi-faceted activities of activins and follistatins in liver physiology and cancer.
Collapse
Affiliation(s)
- Emanuel Kreidl
- Emanuel Kreidl, Deniz Öztürk, Thomas Metzner, Walter Berger, Michael Grusch, Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, Vienna A-1090, Austria
| | | | | | | | | |
Collapse
|
16
|
Zhang HJ, Liu ZH, Chen FF, Ma D, Zhou J, Tai GX. Activin receptor-interacting protein 2 expression and its biological function in mouse hepatocytes. Shijie Huaren Xiaohua Zazhi 2008; 16:350-355. [DOI: 10.11569/wcjd.v16.i4.350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the activin receptor-interacting protein 2 (ARIP2) expression and its biological function in hepatocytes.
METHODS: Expression of ARIP2 in mouse liver tissue and hepatoma cell line Hepal-6 cells was detected by Western blot, immunohistochemistry and cytochemical staining. Effect of ARIP2 on activin-induced gene transcription was analyzed using CAGA-lux plasmid. Effect of over-expression of ARIP2 on the proliferation of Hepal-6 cells was assayed with MTT method.
RESULTS: ARIP2 was expressed in mouse liver tissue and Hepal-6 cells. The expression of ARIP2 in activin A-stimulated Hepal-6 cells was increased in a time-dependent manner, and peaked at 24 h. There was a significant difference in the expression level of ARIP2 on Hepal-6 cells at 12 and 24 h in contrast with the control group (1.01 ± 0.16, 1.62 ± 0.26 vs 0.82 ± 0.11, P < 0.05, P < 0.01). pcDNA3-ARIP2-transfected Hepal-6 cells obviously suppressed the gene transcription induced by activin A. MTT assay displayed that activin A (5 μg/L and 10 μg/L) remarkably inhibited the proliferation of Hepal-6 cells, the A570 nm value was 1.59 ± 0.03 and 1.49 ± 0.04 vs 1.79±0.07, respectively (P < 0.05, P < 0.01). ARIP2 over-expression in Hepal-6 cells significantly blocked the inhibitory effects of activin A (5 μg/L and 10 μg/L) on the proliferation of Hepal-6 cells.
CONCLUSION: ARIP2 can be expected to become a regulation target of genes in treatment of liver injury induced by activin.
Collapse
|
17
|
Acute and chronic liver insufficiency. HEPATOLOGY TEXTBOOK AND ATLAS 2008. [PMCID: PMC7121136 DOI: 10.1007/978-3-540-76839-5_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The term “liver insufficiency” denotes a break down in the functions of the liver. The syndrome of functional liver failure covers a wide spectrum of clinical, biochemical and neurophysiological changes. In principle, liver insufficiency can occur without previous liver damage as well as with already existing liver disease. It is characterized by a deterioration in the synthesizing, regulatory and detoxifying function of the liver. This final stage of liver disease terminates in hepatic coma.
Collapse
|
18
|
Zhang HJ, Tai GX, Zhou J, Ma D, Liu ZH. Regulation of activin receptor-interacting protein 2 expression in mouse hepatoma Hepa1-6 cells and its relationship with collagen type IV. World J Gastroenterol 2007; 13:5501-5. [PMID: 17907296 PMCID: PMC4171287 DOI: 10.3748/wjg.v13.i41.5501] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the regulation of activin receptor-interacting protein 2 (ARIP2) expression and its possible relationships with collagen type IV (collagen IV) in mouse hepatoma cell line Hepal-6 cells.
METHODS: The ARIP2 mRNA expression kinetics in Hepal-6 cells was detected by RT-PCR, and its regulation factors were analyzed by treatment with signal transduction activators such as phorbol 12-myristate 13-acetate (PMA), forskolin and A23187. After pcDNA3-ARIP2 was transfected into Hepal-6 cells, the effects of ARIP2 overexpression on activin type II receptor (ActRII) and collagen IV expression were evaluated.
RESULTS: The expression levels of ARIP2 mRNA in Hapel-6 cells were elevated in time-dependent manner 12 h after treatment with activin A and endotoxin LPS, but not changed evidently in the early stage of stimulation (2 or 4 h). The ARIP2 mRNA expression was increased after stimulated with signal transduction activators such as PMA and forskolin in Hepal-6 cells, whereas decreased after treatment with A23187 (25.3% ± 5.7% vs 48.1% ± 3.6%, P < 0.01). ARIP2 overexpression could remarkably suppress the expression of ActRIIA mRNA in dose-dependent manner, but has no effect on ActRIIB in Hepal-6 cells induced by activin A. Furthermore, we have found that overexpression of ARIP2 could inhibit collagen IV mRNA and protein expressions induced by activin A in Hapel-6 cells.
CONCLUSION: These findings suggest that ARIP2 expression can be influenced by various factors. ARIP2 may participate in the negative feedback regulation of signal transduction in the late stage by affecting the expression of ActRIIA and play an important role in regulation of development of liver fibrosis induced by activin.
Collapse
MESH Headings
- Activin Receptors, Type II/genetics
- Activin Receptors, Type II/metabolism
- Activins/metabolism
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Adenylyl Cyclases/metabolism
- Animals
- Calcimycin/pharmacology
- Calcium/metabolism
- Carcinoma, Hepatocellular/enzymology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Cell Line, Tumor
- Colforsin/pharmacology
- Collagen Type IV/genetics
- Collagen Type IV/metabolism
- Enzyme Activators/pharmacology
- Gene Expression Regulation, Neoplastic/drug effects
- Ionophores/pharmacology
- Kinetics
- Lipopolysaccharides/pharmacology
- Liver Neoplasms/enzymology
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Protein Kinase C/metabolism
- RNA, Messenger/metabolism
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Tetradecanoylphorbol Acetate/pharmacology
- Transfection
Collapse
Affiliation(s)
- Hong-Jun Zhang
- Department of Immunology, School of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | | | | | | | | |
Collapse
|
19
|
Abstract
We have compiled from literature and other sources a list of 1261 proteins believed to be differentially expressed in human cancer. These proteins, only some of which have been detected in plasma to date, represent a population of candidate plasma biomarkers that could be useful in early cancer detection and monitoring given sufficiently sensitive specific assays. We have begun to prioritize these markers for future validation by frequency of literature citations, both total and as a function of time. The candidates include proteins involved in oncogenesis, angiogenesis, development, differentiation, proliferation, apoptosis, hematopoiesis, immune and hormonal responses, cell signaling, nucleotide function, hydrolysis, cellular homing, cell cycle and structure, the acute phase response and hormonal control. Many have been detected in studies of tissue or nuclear components; nevertheless we hypothesize that most if not all should be present in plasma at some level. Of the 1261 candidates only 9 have been approved as "tumor associated antigens" by the FDA. We propose that systematic collection and large-scale validation of candidate biomarkers would fill the gap currently existing between basic research and clinical use of advanced diagnostics.
Collapse
Affiliation(s)
- Malu Polanski
- The Plasma Proteome Institute, P.O. Box: 53450, Washington DC, 20009-3450, USA
| | | |
Collapse
|
20
|
Zhou M, Prieto DA, Lucas DA, Chan KC, Issaq HJ, Veenstra TD, Conrads TP. Identification of the SELDI ProteinChip human serum retentate by microcapillary liquid chromatography-tandem mass spectrometry. J Proteome Res 2006; 5:2207-16. [PMID: 16944932 DOI: 10.1021/pr060061h] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Surface-enhanced laser desorption/ionization (SELDI) time-of-flight (TOF) mass spectrometry (MS) has been widely applied for conducting biomarker research with the goal of discovering patterns of proteins and/or peptides from biological samples that reflect disease status. Many diseases, ranging from cancers of the colon, breast, and prostate to Alzheimer's disease, have been studied through serum protein profiling using SELDI-based methods. Although the results from SELDI-based diagnostic studies have generated a great deal of excitement and skepticism alike, the basis of the molecular identities of the features that underpin the diagnostic potential of the mass spectra is still largely unexplored. A detailed investigation has been undertaken to identify the compliment of serum proteins that bind to the commonly used weak cation exchange (WCX-2) SELDI protein chip. Following incubation and washing of a standard serum sample on the WCX-2 sorbent, proteins were harvested, digested with trypsin, fractionated by strong cation exchange liquid chromatography (LC), and subsequently analyzed by microcapillary reversed-phase LC coupled online with an ion-trap mass spectrometer. This analysis resulted in the identification of 383 unique proteins in the WCX-2 serum retentate. Among the proteins identified, 50 (13%) are documented clinical biomarkers with 36 of these (72%) identified from multiple peptides.
Collapse
Affiliation(s)
- Ming Zhou
- Laboratory of Proteomics and Analytical Technologies, SAIC-Frederick, Inc., National Cancer Institute at Frederick, P.O. Box B, Frederick, Maryland 21702, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Rodgarkia-Dara C, Vejda S, Erlach N, Losert A, Bursch W, Berger W, Schulte-Hermann R, Grusch M. The activin axis in liver biology and disease. Mutat Res 2006; 613:123-37. [PMID: 16997617 DOI: 10.1016/j.mrrev.2006.07.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 07/27/2006] [Accepted: 07/27/2006] [Indexed: 12/22/2022]
Abstract
Activins are a closely related subgroup within the TGFbeta superfamily of growth and differentiation factors. They consist of two disulfide-linked beta subunits. Four mammalian activin beta subunits termed beta(A), beta(B), beta(C), and beta(E), respectively, have been identified. Activin A, the homodimer of two beta(A) subunits, has important regulatory functions in reproductive biology, embryonic development, inflammation, and tissue repair. Several intra- and extracellular antagonists, including the activin-binding proteins follistatin and follistatin-related protein, serve to fine-tune activin A activity. In the liver there is compelling evidence that activin A is involved in the regulation of cell number by inhibition of hepatocyte replication and induction of apoptosis. In addition, activin A stimulates extracellular matrix production in hepatic stellate cells and tubulogenesis of sinusoidal endothelial cells, and thus contributes to restoration of tissue architecture during liver regeneration. Accumulating evidence from animal models and from patient data suggests that deregulation of activin A signaling contributes to pathologic conditions such as hepatic inflammation and fibrosis, acute liver failure, and development of liver cancer. Increased production of activin A was suggested to be a contributing factor to impaired hepatocyte regeneration in acute liver failure and to overproduction of extracellular matrix in liver fibrosis. Recent evidence suggests that escape of (pre)neoplastic hepatocytes from growth control by activin A through overexpression of follistatin and reduced activin production contributes to hepatocarcinogenesis. The role of the activin subunits beta(C) and beta(E), which are both highly expressed in hepatocytes, is still quite incompletely understood. Down-regulation in liver tumors and a growth inhibitory function similar to that of beta(A) has been shown for beta(E). Contradictory results with regard to cell proliferation have been reported for beta(C). The profound involvement of the activin axis in liver biology and in the pathogenesis of severe hepatic diseases suggests activin as potential target for therapeutic interventions.
Collapse
Affiliation(s)
- Chantal Rodgarkia-Dara
- Department of Medicine I, Division: Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Lin SD, Kawakami T, Ushio A, Sato A, Sato SI, Iwai M, Endo R, Takikawa Y, Suzuki K. Ratio of circulating follistatin and activin A reflects the severity of acute liver injury and prognosis in patients with acute liver failure. J Gastroenterol Hepatol 2006; 21:374-80. [PMID: 16509861 DOI: 10.1111/j.1440-1746.2005.04036.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIM The activin A-follistatin system is known to play a critical role in hepatocyte regeneration during the repair of liver tissue. However, the relationship between blood levels of these compounds and the severity and prognosis of acute liver injury remains unclear. The aim of this study was to evaluate the clinical significance of circulating activin A and follistatin in patients with acute liver disease. METHODS Serum activin A and plasma follistatin levels were determined on admission by enzyme-linked immunosorbent assay in 32 patients with acute hepatitis (AH), 23 patients with acute severe hepatitis (ASH) and 16 patients with acute liver failure (ALF). RESULTS Both serum activin A and plasma follistatin levels were significantly elevated in patients with ASH and ALF when compared with those in patients with AH and normal controls (NC). Although plasma follistatin levels were significantly and positively correlated with serum activin A levels (r = 0.413, P < 0.001), the follistatin and activin A (F/A) ratio showed distinct deviation from NC between AH and ALF patients. The F/A ratio in AH patients was significantly elevated when compared with NC, but was significantly reduced in ALF patients. Furthermore, the F/A ratio in non-surviving ALF patients was significantly lower than that in survivors. Levels of serum activin A and plasma follistatin were significantly and negatively correlated with prothrombin time (PT) and normotest (NT) levels, while the F/A ratio showed significant and positive correlations with PT and NT. CONCLUSIONS Decreased blood F/A ratio in ALF patients may be a reliable indicator of the severity of acute liver injury and prognosis in ALF.
Collapse
Affiliation(s)
- Shi De Lin
- First Department of Internal Medicine, Iwate Medical University, Morioka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Acute and chronic liver insufficiency. HEPATOLOGY PRINCIPLES AND PRACTICE 2006. [PMCID: PMC7120693 DOI: 10.1007/3-540-28977-1_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Abstract
Acute liver failure constitutes a challenge to clinicians and scientists alike. The course of the disease, usually unpredictable and polarizing, is associated with a high mortality unless liver transplantation is feasible, but can end in a spontaneous restitution. It poses many scientific questions regarding the mechanisms of liver cell damage and regeneration and the possibility of new therapeutic approaches. However, the performance of clinical studies in patients in acute liver failure presents problems because of the varied etiology, the small number of cases, and furthermore due to ethical and logistical difficulties. For this reason experimental investigations have gained a special importance. Arising from the improved understanding of the mechanisms of liver cell damage in acute liver failure, which may be primarily due not to the initial noxious agent alone but may also be triggered secondarily by the release of proinflammatory mediators, there are numerous options for liver cell protection, some of which have already proved successful in experimental studies. New insights into the mechanisms of regulation of liver regeneration and the physiological liver mass, gathered in particular from experimental models of partial hepatectomy and by the use of gene-manipulated animals, have contributed to the development of new therapeutic approaches for the stimulation of liver cell regeneration. Temporary liver support systems have already been successfully employed in some cases under clinical conditions. Although the systematic experimental investigation of many of the questions of acute liver failure has significantly contributed to a better understanding of liver cell damage and regeneration, the application of this new knowledge to clinical practice is to some extent made difficult by the artificial simplification that experimental studies inevitably entail and needs to be validated by controlled clinical studies.
Collapse
Affiliation(s)
- D Palmes
- Surgical Research, Department of General Surgery, Münster University Hospital, Münster, Germany
| | | | | |
Collapse
|
25
|
Abstract
Inflammation is a complex process regulated by a cascade of cytokines and growth factors. This review summarizes the emerging evidence implicating activin A and follistatin in the inflammatory process. Our recent studies have highlighted that activin A is released early in the process as part of the circulatory cytokine cascade during acute systemic inflammation. This release occurs concurrently with tumor necrosis factor (TNF)-alpha and prior to that of interleukin (IL)-6 and follistatin. Although, the cellular source(s) of activin A are yet to be established, circulating blood cells and the vascular endothelium are candidates for this rapid release of activin A into the circulation. The release of activin A and follistatin is also observed in the clinical setting, in particular in sepsis. Furthermore activin A is released into cerebrospinal fluid in a model of meningitis in rabbits. The role of activin A in the inflammatory response is poorly understood, however, in vitro data has highlighted that activin A can have both pro- and anti-inflammatory actions on key mediators of the inflammatory response such as TNF-alpha, IL-1beta and IL-6. Furthermore, emerging data would suggest that activin A induction is restricted to certain types of inflammation and its release is dependant upon the inflammatory setting.
Collapse
Affiliation(s)
- Kristian L Jones
- Center for Molecular Reproduction and Endocrinology, Monash Institute of Reproduction and Development, 27-31 Wright Street, Clayton 3168, Victoria, Australia
| | | | | | | |
Collapse
|
26
|
Liu QH, Li DG, Huang X, You HN, Pan Q, Xu LM, Xu QF, Lu HM. Effect of Activin on extracelluar matrix secretion in isolated rat hepatic stellate cell. Shijie Huaren Xiaohua Zazhi 2003; 11:745-748. [DOI: 10.11569/wcjd.v11.i6.745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the effect of activin A on the extracelluar matrix secretion of rat hepatic stellate cell.
METHODS Hepatic stellate cells were isolated and purified from normal male Sprague-Dawley rat liver by a combination of pronase-collagenase perfusion and density gradient centrifugation. Passaged hepatic stellate cells were divided randomly into eight groups: control group(A group), ACTA 1 μg/L group (B group), ACTA 10 μg/L group(C group), ACTA 100 μg/L group (D group), TGF β1 10 μg/L group(E group), TGF β1 10 μg/L plus ACTA 1 μg/L group(F group), TGF β1 10 μg/L plus ACTA 10 μg/L group(G group), TGF β1 10 μg/L plus ACTA 100 μg/L group(H group). 24 h after incubation secretion of procollagen Ⅲ, collagen Ⅳ and mRNA of collagen Ⅲ in hepatic stellate cells were detected by radioimmunoassays and semi-quantitative RT-PCR method respectively.
RESULTS Extracellular matrix secretion in passaged hepatic stellate cells was enhanced by activin A according to its concentration, the capacity of extracellular matrix secretion by 100 μg/L activin A was equal to that of 10 μg/L TGF β1, extracellular matrix secretion and type Ⅲ collagen mRNA expression in passaged hepatic stellate cells was enhanced by activin A and TGFβ1 in a synergistic manner.
CONCLUSION Activin A may contribute to hepatic fibrogenesis.
Collapse
Affiliation(s)
- Qing-Hua Liu
- Department of Gastroenterology of Xinhua Hospital, Shanghai Second Medical University, Shanghai 200092, China
| | - Ding-Guo Li
- Department of Gastroenterology of Xinhua Hospital, Shanghai Second Medical University, Shanghai 200092, China
| | - Xin Huang
- Department of Gastroenterology of Xinhua Hospital, Shanghai Second Medical University, Shanghai 200092, China
| | - Han-Ning You
- Department of Gastroenterology of Xinhua Hospital, Shanghai Second Medical University, Shanghai 200092, China
| | - Qin Pan
- Department of Gastroenterology of Xinhua Hospital, Shanghai Second Medical University, Shanghai 200092, China
| | - Lei-Ming Xu
- Department of Gastroenterology of Xinhua Hospital, Shanghai Second Medical University, Shanghai 200092, China
| | - Qin-Fang Xu
- Department of Gastroenterology of Xinhua Hospital, Shanghai Second Medical University, Shanghai 200092, China
| | - Han-Ming Lu
- Department of Gastroenterology of Xinhua Hospital, Shanghai Second Medical University, Shanghai 200092, China
| |
Collapse
|